-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathmodel.py
78 lines (63 loc) · 3.27 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# Copyright (c) 2023 Graphcore Ltd. All rights reserved.
# Copyright (c) 2021 Weihua Hu
# This file has been modified by Graphcore
import torch
import torch.nn as nn
from torch_geometric.nn.conv import GINConv
from torch_geometric.nn.pool import global_add_pool
from torch_geometric.nn.models import MLP
class GIN(nn.Module):
"""
Graph Isomorphism Network modified to take into account fixed size
tensor inputs created with padding.
params:
in_channels (int): number of features each node is represented by
hidden_channels (int): number of hidden units for all MLP layers
out_channels (int): num of hidden units in the output of the network
num_conv_layers (int): number of GINConv layers in the network
num_mlp_layers (int): number of hidden layers in MLP
batch_size (int): maximum number of graphs in a batch
"""
def __init__(self, in_channels, hidden_channels, out_channels, num_conv_layers, num_mlp_layers, batch_size):
super().__init__()
self.batch_size = batch_size
# `num_conv_layers` layers for AGGREGATE and COMBINE
self.hop_k_gin_layers = nn.ModuleList()
# linear READOUT nets for (sum) graph pooling
# the first pooling occurs on the input nodes' features (0-hop)
self.hop_k_readout_layers = nn.ModuleList([nn.Linear(in_features=in_channels, out_features=out_channels)])
for k_hop in range(num_conv_layers):
phi = MLP(
in_channels=in_channels if k_hop == 0 else hidden_channels,
hidden_channels=hidden_channels,
out_channels=hidden_channels,
num_layers=num_mlp_layers,
act="relu",
norm="layer_norm",
plain_last=False,
)
# performs the initial (sum) neighbour pooling + (1-eps) * hv, then applies phi
# i.e phi o f = MLP((1-eps)*hv + (sum) neighbour k_hop representation)
self.hop_k_gin_layers.append(GINConv(nn=phi, eps=0, train_eps=False))
# READOUT is performed on each k_hop node representation for each graph
self.hop_k_readout_layers.append(nn.Linear(in_features=hidden_channels, out_features=out_channels))
def forward(self, x, edge_index, batch, graphs_mask=None, target=None):
# perform k-hop aggregation using GINConv, and return all layer outputs
hop_k_outputs = [x]
h = x
for gin_layer in self.hop_k_gin_layers:
h = gin_layer(h, edge_index)
hop_k_outputs.append(h)
# perform readout over all nodes in each graph in each layer
score_over_layer = torch.zeros((1))
for i, linear in enumerate(self.hop_k_readout_layers):
pooled_h = global_add_pool(x=hop_k_outputs[i], batch=batch, size=self.batch_size)
# compute scores
score_over_layer = score_over_layer + nn.functional.dropout(linear(pooled_h), training=self.training)
if self.training:
# Mask out the padded graphs
target = torch.where(graphs_mask, target, -100)
# Compute loss
loss = nn.functional.cross_entropy(score_over_layer, target, reduction="sum") / sum(graphs_mask)
return score_over_layer, loss
return score_over_layer