-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathtrain.py
245 lines (213 loc) · 7.57 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# Copyright (c) 2021 Graphcore Ltd. All rights reserved.
import argparse
import torch
import poptorch
from pathlib import Path
import time
import numpy as np
import shutil
import warnings
from poptorch import DataLoader
from sklearn.metrics import average_precision_score, roc_auc_score
from tgn_modules import TGN, Data, DataWrapper, init_weights
def build_tgn(
data: Path,
dtype: str,
batch_size: int,
nodes_size: int,
edges_size: int,
dropout: float,
target: str,
):
model_dtype = torch.float32 if dtype == "float32" else torch.float16
train_data = DataWrapper(Data(data, model_dtype, batch_size, nodes_size, edges_size), "train")
test_data = DataWrapper(Data(data, model_dtype, batch_size, nodes_size, edges_size), "val")
tgn = TGN(
num_nodes=9227,
raw_msg_dim=172,
memory_dim=100,
time_dim=100,
embedding_dim=100,
dtype=model_dtype,
dropout=dropout,
target=target,
)
tgn.apply(init_weights)
return train_data, test_data, tgn
def run_train(model, train_data, optim, target, do_reset) -> float:
"""Trains TGN for one epoch"""
total_loss = 0
num_events = 0
model.train()
if do_reset:
model.memory.reset_state() # Start with a fresh memory.
if target == "ipu":
model.copyWeightsToDevice()
for n, batch in enumerate(train_data):
if target == "ipu":
count, loss = model(**batch)
else:
optim.zero_grad()
count, loss = model(**batch)
loss.backward()
optim.step()
total_loss += float(loss) * count
num_events += count
model.memory.detach()
return total_loss / num_events
@torch.no_grad()
def run_test(model, inference_data, target, model_compiled) -> (float, float):
"""Inference over one epoch"""
model.eval()
if model_compiled and target == "ipu":
model.copyWeightsToDevice()
torch.manual_seed(12345) # Ensure deterministic sampling across epochs
aps = 0.0
aucs = 0.0
num_events = 0
for batch in inference_data:
count, y_true, y_pred = model(**batch)
aps += count * average_precision_score(y_true, y_pred)
aucs += count * roc_auc_score(y_true, y_pred)
num_events += count
return aps / num_events, aucs / num_events
def _main() -> None:
parser = argparse.ArgumentParser(
description="Train the TGN example",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument("--data", default="data/JODIE", type=Path, help="directory to load/save the data")
parser.add_argument("-b", "--batch-size", default=40, type=int, help="batch size for training and validation/test")
parser.add_argument("--nodes-size", default=400, type=int, help="padding for nodes")
parser.add_argument("--edges-size", default=1200, type=int, help="padding for edges")
parser.add_argument(
"-t",
"--target",
choices=("cpu", "ipu"),
default="ipu",
help="device to run on",
)
parser.add_argument(
"-d",
"--dtype",
choices=("float16", "float32"),
default="float32",
help="floating point format",
)
parser.add_argument(
"-e",
"--epochs",
default=25,
type=int,
help="number of epochs to train for",
)
parser.add_argument(
"--validate-every",
default=1,
type=int,
help="run validation every n-th epoch",
)
parser.add_argument(
"--lr",
default=0.000075,
type=float,
help="learning rate",
)
parser.add_argument(
"--dropout",
default=0.1,
type=float,
help="dropout rate in the attention module",
)
parser.add_argument(
"--optimizer",
choices=("SGD", "Adam"),
default="Adam",
help="Optimizer",
)
parser.add_argument(
"-di",
"--device-iterations",
default=212,
type=int,
help="number of iterations to do on ipu before returning to host",
)
args = vars(parser.parse_args())
epochs = args.pop("epochs")
validate_every = args.pop("validate_every")
optim = args.pop("optimizer")
lr = args.pop("lr")
device_iterations = args.pop("device_iterations")
processed_dir = args["data"].joinpath("wikipedia").joinpath("processed")
# Cleanup artifacts left by previous run
if processed_dir.exists():
shutil.rmtree(processed_dir)
# Build dataloader and model
train_data, test_data, model = build_tgn(**args)
num_batches = len(train_data)
if args["target"] == "cpu":
device_iterations = int(1)
warnings.warn(f"device_iterations was set to 1 for training on CPU")
if not num_batches % device_iterations == 0:
factors = [x for x in np.arange(1, num_batches + 1) if num_batches % x == 0]
device_iterations = int(min(factors, key=lambda x: abs(x - device_iterations)))
warnings.warn(
f"device_iterations was set to {device_iterations}, the closest " f"factor of the training batch count"
)
train_opts = poptorch.Options()
train_opts.deviceIterations(device_iterations)
test_opts = poptorch.Options()
test_opts.deviceIterations(1)
torch.multiprocessing.set_sharing_strategy("file_system")
async_options = {
"sharing_strategy": poptorch.SharingStrategy.SharedMemory,
"load_indefinitely": True,
"early_preload": True,
"buffer_size": 2,
}
train_dl = DataLoader(
options=train_opts,
dataset=train_data,
batch_size=1,
mode=poptorch.DataLoaderMode.Async,
async_options=async_options,
)
test_dl = DataLoader(options=test_opts, dataset=test_data, batch_size=1)
if args["target"] == "ipu":
if optim.lower() == "sgd":
optim = poptorch.optim.SGD(model.parameters(), lr=lr)
elif optim.lower() == "adam":
optim = poptorch.optim.AdamW(
model.parameters(), lr=lr, bias_correction=True, weight_decay=0.0, eps=1e-8, betas=(0.9, 0.999)
)
else:
raise NotImplementedError(f"Optimizer {optim}")
model_train = poptorch.trainingModel(model, options=train_opts, optimizer=optim)
model_eval = poptorch.inferenceModel(model, options=test_opts)
else:
if optim.lower() == "sgd":
optim = torch.optim.SGD(model.parameters(), lr=lr)
elif optim.lower() == "adam":
optim = torch.optim.Adam(model.parameters(), lr=lr)
else:
raise NotImplementedError(f"Optimizer {optim}")
model_train = model
model_eval = model
dataset_size = len(train_dl) * (device_iterations * args["batch_size"])
test_model_compiled = False
# Run training
for epoch in range(1, epochs + 1):
t0 = time.time()
loss = run_train(model_train, train_dl, optim, args["target"], do_reset=(epoch > 1))
duration = time.time() - t0
tput = dataset_size / duration
print(f"Epoch {epoch}: Loss {loss:.4f}, Time {duration:.4f}, " f"Throughput: {tput:.4f} samples/s")
if epoch % validate_every == 0 or epoch == epochs:
aps, aucs = run_test(model_eval, test_dl, args["target"], model_compiled=test_model_compiled)
test_model_compiled = True
print(f"Validation APS {aps:.4f}, AUCS {aucs:.4f}")
print(f"Training finished \n" f"APS {aps:.4f}, AUCS {aucs:.4f}")
# Cleanup artifacts created by this run
shutil.rmtree(processed_dir)
if __name__ == "__main__":
_main()