-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathargs.py
344 lines (319 loc) · 13.8 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# Copyright (c) 2021 Graphcore Ltd. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import sys
import yaml
import popdist
import horovod.torch as hvd
config_file = "./configs.yml"
def str_to_bool(value):
if isinstance(value, bool) or value is None:
return value
if value.lower() in {"false", "f", "0", "no", "n"}:
return False
elif value.lower() in {"true", "t", "1", "yes", "y"}:
return True
raise argparse.ArgumentTypeError(f"{value} is not a valid boolean value")
def init_popdist(args):
hvd.init()
popdist.init()
if popdist.getNumTotalReplicas() != args.replication_factor:
print(f"The number of replicas is overridden by PopRun. " f"The new value is {popdist.getNumTotalReplicas()}.")
args.replication_factor = int(popdist.getNumLocalReplicas())
args.popdist_rank = popdist.getInstanceIndex()
args.popdist_size = popdist.getNumInstances()
def parse_args(args=None):
parser = argparse.ArgumentParser(
"PopTorch ViT", add_help=True, formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("--config", type=str, help="Configuration Name", required=True)
pargs, remaining_args = parser.parse_known_args(args=args)
# Execution
parser.add_argument("--micro-batch-size", type=int, help="Set the micro batch-size")
parser.add_argument("--training-steps", type=int, default=0, help="Number of training steps")
parser.add_argument("--epochs", type=int, default=0, help="Number of epochs")
parser.add_argument("--device-iterations", type=int, help="Number of batches per training step")
parser.add_argument("--replication-factor", type=int, help="Number of replicas")
parser.add_argument(
"--gradient-accumulation", type=int, help="Number of gradients to accumulate before updating the weights"
)
parser.add_argument(
"--half-partials",
type=str_to_bool,
nargs="?",
const=True,
default=True,
help="Set the data type of partial results for matrix multiplication " "and convolution operators",
)
parser.add_argument(
"--stochastic-rounding",
type=str_to_bool,
nargs="?",
const=True,
default=True,
help="enable stochastic rounding",
)
parser.add_argument(
"--recompute-checkpoint-every-layer",
type=str_to_bool,
nargs="?",
const=True,
default=False,
help="This controls how recomputation is handled in pipelining. "
"If True the output of each encoder layer will be stashed keeping "
"the max liveness of activations to be at most one layer. "
"However, the stash size scales with the number of pipeline stages "
"so this may not always be beneficial. "
"The added stash + code could be greater than "
"the reduction in temporary memory.",
)
parser.add_argument("--ipus-per-replica", type=int, help="Number of IPUs required by each replica")
parser.add_argument(
"--matmul-proportion", type=float, nargs="+", help="Relative IPU memory proportion size allocated for matmul"
)
parser.add_argument("--random-seed", type=int, help="Seed for RNG")
parser.add_argument(
"--precision",
choices=["16.16", "16.32", "32.32"],
default="16.16",
help="Precision of Ops(weights/activations/gradients) and " "Master data types: 16.16, 16.32, 32.32",
)
parser.add_argument("--layers-per-ipu", type=int, nargs="+", help="number of layers placed on each IPU")
parser.add_argument("--prefetch-depth", type=int, help="Prefetch buffering depth")
parser.add_argument(
"--pretrain",
type=str_to_bool,
nargs="?",
const=True,
default=False,
help="A flag that marks if training from scracth or not",
)
parser.add_argument(
"--reduction-type",
type=str,
choices=["sum", "mean"],
default=None,
help="reduction type of accumulation and replication.",
)
parser.add_argument("--layer-norm-eps", type=float, help="LayerNorm epsilon")
parser.add_argument("--enable-rts", type=str_to_bool, nargs="?", const=True, default=False, help="Enabling RTS")
parser.add_argument(
"--optimizer-state-offchip",
type=str_to_bool,
nargs="?",
const=True,
default=True,
help="Set the tensor storage location for optimizer state to be offchip.",
)
# Optimizer
parser.add_argument("--optimizer", type=str, choices=["SGD", "Adam"], help="optimizer to use for the training")
parser.add_argument(
"--learning-rate", type=float, help="Learning rate value for constant schedule, " "maximum for linear schedule."
)
parser.add_argument(
"--lr-schedule",
type=str,
choices=["constant", "linear", "cosine"],
help="Type of learning rate schedule. " "--learning-rate will be used as the max value",
)
parser.add_argument(
"--auto-loss-scaling",
type=str_to_bool,
nargs="?",
const=True,
default=False,
help="Enable automatic loss scaling for half precision training.",
)
parser.add_argument("--loss-scaling", type=float, help="Loss scaling factor (recommend using powers of 2)")
parser.add_argument("--weight-decay", type=float, help="Set the weight decay")
parser.add_argument("--momentum", type=float, help="The momentum factor of optimizer")
parser.add_argument("--warmup-steps", type=int, help="Number of warmup steps")
parser.add_argument(
"--adam-betas",
nargs="+",
type=float,
default=None,
help="betas in ADAM or LAMB optimizer, [beta1, beta2]. "
"None will result in default setting in Adam / LAMB optimizer.",
)
parser.add_argument(
"--adam-eps",
type=float,
default=None,
help="Optimizer term added to the denominator to ensure numerical stability/",
)
parser.add_argument("--bias-correction", type=bool, default=None, help="Compute Adam/LAMB with bias correction")
parser.add_argument(
"--use-combined-accum",
type=str_to_bool,
nargs="?",
const=True,
default=False,
help="PopTorch uses a single tensor (the combined tensor) for gradient accumulation"
" and velocity of the SGD optimizer.",
)
parser.add_argument(
"--accum-type", type=str, choices=["fp16", "fp32"], default="fp16", help="Data type used for gradients."
)
parser.add_argument(
"--first-order-type",
type=str,
choices=["fp16", "fp32"],
default="fp32",
help="Data type used to store the first order momentum values for each parameter.",
)
parser.add_argument(
"--second-order-type",
type=str,
choices=["fp16", "fp32"],
default="fp32",
help="Data type used to store the second order momentum values for each parameter.",
)
parser.add_argument("--max-norm", type=float, default=65535, help="the max weight norm for lamb")
parser.add_argument("--max-norm-bias", type=float, default=0.0, help="the max weight norm for bias param")
# Model
parser.add_argument("--hidden-size", type=int, help="The size of the hidden state of the transformer layers")
parser.add_argument("--num-hidden-layers", type=int, help="The number of transformer layers")
parser.add_argument("--num-attention-heads", type=int, help="Set the number of heads in self attention")
parser.add_argument("--mlp-dim", type=int, help="The size of mlp dimension")
parser.add_argument("--hidden-dropout-prob", type=float, nargs="?", const=True, help="Dropout probability")
parser.add_argument("--patches-size", type=float, nargs="+", help="The size of image tokens")
parser.add_argument("--num-labels", type=int, help="The number of classes")
parser.add_argument(
"--attention-probs-dropout-prob", type=float, nargs="?", const=True, help="Attention dropout probability"
)
parser.add_argument(
"--representation-size", type=int, default=None, help="Representation size of head when pretraining"
)
parser.add_argument("--drop_path_rate", type=float, default=0.1, help="stochastic depth rate")
parser.add_argument("--loss", type=str, choices=["SigmoidCELoss", "CELoss"], help="Loss function for the training")
parser.add_argument(
"--recompute-mid-layers",
nargs="+",
type=float,
default=None,
help="Index of layers to add a recompute point in the middle " "of an attention block",
)
# Dataset
parser.add_argument(
"--dataset", choices=["cifar10", "imagenet1k", "generated"], default="cifar10", help="Choose data"
)
parser.add_argument("--dataset-path", type=str, help="Input data files")
parser.add_argument("--rebatched-worker-size", type=int, default=None, help="Set the rebatched worker size")
parser.add_argument(
"--synthetic-data", type=str_to_bool, nargs="?", const=True, default=False, help="Random data created on IPU"
)
parser.add_argument(
"--mixup", type=str_to_bool, nargs="?", const=True, default=False, help="Enabling mixup data augmentation"
)
parser.add_argument("--alpha", type=float, help="alpha parameter in beta distribution when applying mixup")
parser.add_argument(
"--extra-aug",
type=str,
choices=[
"imagenet_policy",
],
help="extra data augmentation pipelines",
default="cutout_basic_randaug",
)
parser.add_argument(
"--byteio",
type=str_to_bool,
nargs="?",
const=True,
default=False,
help="Use byte data format to transfer data from host to IPU",
)
parser.add_argument("--iterations", type=int, default=1, help="Number of iterations when using generated data")
# Misc
parser.add_argument("--dataloader-workers", type=int, help="The number of dataloader workers")
parser.add_argument(
"--wandb", type=str_to_bool, nargs="?", const=True, default=False, help="Enabling logging to Weights and Biases"
)
parser.add_argument("--wandb-project-name", type=str, default="torch-vit", help="wandb project name")
parser.add_argument("--wandb-run-name", type=str, default=None, help="wandb run name")
parser.add_argument(
"--executable-cache-dir",
type=str,
default="",
help="Directory where Poplar executables are cached. If set, recompilation of identical graphs can be avoided. "
"Required for both saving and loading executables.",
)
parser.add_argument("--profile-dir", type=str, help="Directory for profiling results")
# Checkpointing
parser.add_argument(
"--checkpoint-output-dir",
type=str,
default="",
help="Directory where checkpoints will be saved and restored from."
"This can be either an absolute or relative path. If this is "
"not specified, only end of run checkpoint is saved in an automatically "
"generated directory at the root of this project. Specifying directory is"
"recommended to keep track of checkpoints.",
)
parser.add_argument(
"--checkpoint-save-steps", type=int, default=100, help="Option to checkpoint model after n steps."
)
parser.add_argument(
"--resume-training-from-checkpoint",
type=str_to_bool,
nargs="?",
const=True,
default=False,
help="Restore both the model checkpoint and training state in order to resume a training run.",
)
parser.add_argument(
"--pretrained-checkpoint",
type=str,
default="",
help="Checkpoint to be retrieved for further training. This can"
"be either an absolute or relative path to the checkpoint file.",
)
# Load the yaml
yaml_args = dict()
with open(config_file, "r", encoding="UTF-8") as f:
try:
yaml_args.update(**yaml.safe_load(f)[pargs.config])
except yaml.YAMLError as exc:
print(exc)
sys.exit(1)
# Check the yaml args are valid
known_args = set(vars(parser.parse_args()))
unknown_args = set(yaml_args) - known_args
if unknown_args:
raise ValueError(f"Unknown arg(s) in config file: {unknown_args}")
parser.set_defaults(**yaml_args)
args = parser.parse_args(["--config", pargs.config] + remaining_args)
# Expand matmul_proportion input into list representation
if isinstance(args.matmul_proportion, float):
args.matmul_proportion = [args.matmul_proportion] * args.ipus_per_replica
else:
if len(args.matmul_proportion) != args.ipus_per_replica:
if len(args.matmul_proportion) == 1:
args.matmul_proportion = args.matmul_proportion * args.ipus_per_replica
else:
raise ValueError(
f"Length of matmul_proportion doesn't match ipus_per_replica: "
f"{args.matmul_proportion} vs {args.ipus_per_replica}"
)
args.use_popdist = False
if popdist.isPopdistEnvSet():
args.use_popdist = True
init_popdist(args)
args.global_batch_size = args.replication_factor * args.gradient_accumulation * args.micro_batch_size
args.samples_per_step = args.global_batch_size * args.device_iterations
return args
if __name__ == "__main__":
config = parse_args()
print(config)