-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRefresh daily LSTM- Individual Stock.py
733 lines (687 loc) · 27.2 KB
/
Refresh daily LSTM- Individual Stock.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
import os
import tushare as ts
import pandas as pd
import numpy as np
import matplotlib as plt
import math
import time
import itertools
from sklearn.ensemble import RandomForestClassifier
from sklearn import svm
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import train_test_split
import imblearn
from collections import Counter
from imblearn.over_sampling import SMOTE
import xgboost as xgb
from sklearn.model_selection import StratifiedKFold, GridSearchCV
import os
import talib as ta
from sklearn.preprocessing import MinMaxScaler
yesterday = '20210630'
today='20210701'
tmrw= '20210702'
ts.set_token('deeed5c0b53302fc47d6f00400c7a42941b2f7f32bf2b0cdd445421d')
pro = ts.pro_api()
def get_data(ts_code, start_date,end_date, retry = 10, pause = 20):
for _ in range(retry):
try:
df_new_basic = ts.pro_bar(ts_code= ts_code, adj='qfq',start_date=start_date, end_date=end_date)
df_new_info = pro.daily_basic(ts_code= ts_code, fields='trade_date,turnover_rate,pe',start_date=start_date, end_date=end_date)
column = 'trade_date'
df_new = df_new_basic.join(df_new_info.set_index(column), on=column)
except:
print('Timed Out ... Reconnectiong ...')
time.sleep(pause)
else:
return df_new
directory = r'D:/Trading_Bot/Data/Individual_Stock/'
for filename in os.listdir(directory):
if filename.endswith(".csv") and len(filename) == 13:
csv_file = os.path.join(directory, filename)
csv_name = csv_file.replace(".csv", "")
d='D:/Trading_Bot/Data/Individual_Stock/'
csv_name = csv_name.replace(d,"")
df = pd.read_csv(csv_file)
if str(df.iloc[-1, df.columns.get_loc('trade_date')]) != yesterday and str(df.iloc[-1, df.columns.get_loc('trade_date')]) != today:
df_new = get_data(ts_code=csv_name, start_date='20140101', end_date=tmrw)
df = df_new.iloc[::-1].reset_index(drop=True)
df = df.fillna(0)
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
outputpath = "D:/Trading_Bot/Data/Individual_Stock/"+csv_name+".csv"
df.to_csv(outputpath,sep=',',index=False,header=True)
print(csv_name + ' gathered')
elif str(df.iloc[-1, df.columns.get_loc('trade_date')]) != today:
df_new = get_data(ts_code=csv_name, start_date=today, end_date=tmrw)
df = df.append(df_new, ignore_index = True)
df = df.reset_index(drop=True)
df = df.fillna(0)
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
outputpath = "D:/Trading_Bot/Data/Individual_Stock/"+csv_name+".csv"
df.to_csv(outputpath,sep=',',index=False,header=True)
print(csv_name + ' updated')
elif len(filename)!=13:
csv_file =os.path.join(directory, filename)
os.remove(csv_file)
print(csv_name + ' is removed')
else:
print(csv_name + ' already updated')
##
##WR:上升通道没有破线的稳涨的可能性大,但是涨多少得看
##WR_L[i]>40 and \
##macd[i]<0 and \
##ma10[i]>ma20[i] and\
##ma20[i]>ma55[i] and ma55[i]>ma144[i]
##
##ma5[i]>=ma10[i] and\
## ma20[i]>0.98 and\
## ma20[i]<1.05 and\
## ma5[i]<=ma20[i]
##ma5[i]<=ma20[i] and\
## ma20[i]>=ma55[i] and\
## ma20[i]>0.98 and\
## ma20[i]<1.05
##DTPL:
##DTPLMA20:
##ma20[i]>1 and \
##ma5[i]>ma10[i] and ma10[i]>ma20[i] and ma20[i]>ma55[i]
##28.180%,0.344%
## 01/05/2021:
## ma10[i]>=ma20[i] and\
## ma20[i]>=ma55[i] and\
## PSAR_S[i]<3 and\
## PSAR_S[i]>-8 and\
def get_label ():
label = [0,0]
for i in range(2,(len(closing_price))-2,1):
if amount[i]>400000:
if amount[i] > 1000000:
if ((high[i+2]-open_l[i+1])/open_l[i+1])>=0.05:
label.append(1)
else:
label.append(0)
else:
if amount[i] > amount[i-1]:
if ((high[i+2]-open_l[i+1])/open_l[i+1])>=0.05:
label.append(1)
else:
label.append(0)
else:
label.append(0)
else:
label.append(0)
label.append(0)
label.append(0)
return label
def get_data_label ():
data_label = [0,0]
for i in range(2,(len(closing_price)),1):
if amount[i]>400000:
if amount[i] > 1000000:
data_label.append(1)
else:
if amount[i] > amount[i-1]:
data_label.append(1)
else:
data_label.append(0)
else:
data_label.append(0)
return data_label
def actual_return():
actual_return=[]
for i in range(len(closing_price)-2):
re = (high[i+2]-open_l[i+1])/open_l[i+1]
if re>=0.05:
ret = 0.05
else:
ret = (closing_price[i+2]-open_l[i+1])/open_l[i+1]
actual_return.append(ret)
actual_return.append(0)
actual_return.append(0)
return actual_return
#def RSI():
# RSI=[0,0,0,0,0,0,0,0]
# l=(2/(8+1))
# for i in range(8, (len(closing_price)),1):
# U=[]
# D=[]
# for a in range(i-7,i,1):
# if (closing_price[a]-closing_price[a-1])>0:
# u=(closing_price[a]-closing_price[a-1])/closing_price[a-1]
# U.append(u)
# else:
# d=(closing_price[a-1]-closing_price[a])/closing_price[a-1]
# D.append(d)
# if len(D)==0:
# AvgD = 0
# RS=100
# elif len(U) == 0:
# AvgU= 0
# RS = 0
# else:
# AvgU=sum(U)/len(U)
# AvgD=sum(D)/len(D)
# RS=100-(100/(1+(AvgU/AvgD)))
# RSI.append(RS)
# return RSI
#
#def Vol_MA5 ():
# Vol_MA5 =[0,0,0,0]
# for i in range(4, (len(closing_price)),1):
# s=((volume[i-4]+volume[i-3]+volume[i-2]+volume[i-1]+volume[i])/5)*100/volume[i]
# Vol_MA5.append(s)
# return Vol_MA5
#
#def Vol_MA10 ():
# Vol_MA10 =[0,0,0,0,0,0,0,0,0]
# for i in range(9, (len(closing_price)),1):
# s=((volume[i-9]+volume[i-8]+volume[i-7]+volume[i-6]+volume[i-5]+volume[i-4]+volume[i-3]+volume[i-2]+volume[i-1]+volume[i])/10)*100/volume[i]
# Vol_MA10.append(s)
# return Vol_MA10
#
#def Vol_def ():
# Vol_def =[]
# for i in range(0,(len(closing_price)),1):
# d= Vol_MA10_L[i]-Vol_MA5_L[i]
# Vol_def.append(d)
# return Vol_def
#
#def MA5 ():
# MA5 =[0,0,0,0]
# for i in range(4, (len(closing_price)),1):
# s=((closing_price[i-4]+closing_price[i-3]+closing_price[i-2]+closing_price[i-1]+closing_price[i])/5)*100/closing_price[i]
# MA5.append(s)
# return MA5
#
#def MA5_def():
# MA5_def =[]
# for i in range(0,(len(closing_price)),1):
# d= 1-MA5_L[i]
# MA5_def.append(d)
# return MA5_def
#
#def MA10 ():
# MA10 =[0,0,0,0,0,0,0,0,0]
# for i in range(9, (len(closing_price)),1):
# s=((closing_price[i-9]+closing_price[i-8]+closing_price[i-7]+closing_price[i-6]+closing_price[i-5]+closing_price[i-4]+closing_price[i-3]+closing_price[i-2]+closing_price[i-1]+closing_price[i])/10)*100/closing_price[i]
# MA10.append(s)
# return MA10
#
#def MA10_def():
# MA10_def =[]
# for i in range(0,(len(closing_price)),1):
# d= 1-MA10_L[i]
# MA10_def.append(d)
# return MA10_def
#
#def EMA8():
# EMA8 = [0,0,0,0,0,0,0]
# s=(closing_price[0]+closing_price[1]+closing_price[2]+closing_price[3]+closing_price[4]+closing_price[5]+closing_price[6]+closing_price[7])/8
# EMA8.append(s)
# k=(2/(8+1))
# for i in range(8, (len(closing_price)),1):
# e=closing_price[i]*k+EMA8[i-1]*(1-k)
# EMA8.append(e)
# return EMA8
#
#def EMA12():
# EMA12 = [0,0,0,0,0,0,0,0,0,0,0]
# s=(closing_price[0]+closing_price[1]+closing_price[2]+closing_price[3]+closing_price[4]+closing_price[5]+closing_price[6]+closing_price[7]+closing_price[8]+closing_price[9]+closing_price[10]+closing_price[11])/12
# EMA12.append(s)
# k=(2/(12+1))
# for i in range(12, (len(closing_price)),1):
# e=closing_price[i]*k+EMA12[i-1]*(1-k)
# EMA12.append(e)
# return EMA12
#
#def MACD ():
# MACD=[]
# for i in range(0, (len(closing_price)),1):
# a=EMA8_L[i]
# b=EMA12_L[i]
# CD=(a-b)/closing_price[i]
# MACD.append(CD)
# return MACD
#
#def EMA5_MACD():
# EMA5 = [0,0,0,0]
# s=(MACD_L[0]+MACD_L[1]+MACD_L[2]+MACD_L[3]+MACD_L[4])/5
# k=(2/(5+1))
# EMA5.append(s)
# for i in range(5, (len(MACD_L)),1):
# e=MACD_L[i]*k+EMA5[i-1]*(1-k)
# EMA5.append(e)
# return EMA5
#
#def MACD_def():
# MACD_def =[]
# for i in range(0,(len(closing_price)),1):
# d= MACD_L[i]- MACD_signal_L[i]
# MACD_def.append(d)
# return MACD_def
#
#def BOL_UP():
# BOL_UP = [0,0,0,0,0,0,0,0,0]
# for i in range(9, (len(closing_price)),1):
# s=closing_price[i-9]+closing_price[i-8]+closing_price[i-7]+closing_price[i-6]+closing_price[i-5]+closing_price[i-4]+closing_price[i-3]+closing_price[i-2]+closing_price[i-1]+closing_price[i]
# m=s/10
# su=[]
# for n in range(i-9,i,1):
# a=closing_price[n]-m
# b=a*a
# su.append(b)
# sun=sum(su)
# sund=sun/9
# std = math.sqrt(sund)
# BOL= (m+(1.96*std))*100/closing_price[i]
# BOL_UP.append(BOL)
# return BOL_UP
#
#def BOL_UP_def():
# BOL_UP_def =[]
# for i in range(0,(len(closing_price)),1):
# d= BOL_UP_L[i] - 100
# BOL_UP_def.append(d)
# return BOL_UP_def
#
#def BOL_LOW():
# BOL_LOW = [0,0,0,0,0,0,0,0,0]
# for i in range(9, (len(closing_price)),1):
# s=closing_price[i-9]+closing_price[i-8]+closing_price[i-7]+closing_price[i-6]+closing_price[i-5]+closing_price[i-4]+closing_price[i-3]+closing_price[i-2]+closing_price[i-1]+closing_price[i]
# m=s/10
# su=[]
# for n in range(i-9,i,1):
# a=closing_price[n]-m
# b=a*a
# su.append(b)
# sun=sum(su)
# sund=sun/9
# std = math.sqrt(sund)
# BOL= (m-1.96*std)*100/closing_price[i]
# BOL_LOW.append(BOL)
# return BOL_LOW
#
#def BOL_LOW_def():
# BOL_LOW_def =[]
# for i in range(0,(len(closing_price)),1):
# d= 100 - BOL_LOW_L[i]
# BOL_LOW_def.append(d)
# return BOL_LOW_def
#
#def get_month():
# trade_date = []
# for date in original_data['trade_date']:
# dt = str(date)
# dtu = dt[4:-2]
# trade_date.append(dtu)
# return trade_date
#
#items = {'trade_date':[], 'open':[], 'high':[], 'low':[], 'close':[], 'pct_chg':[], 'vol':[], 'amount':[], 'Vol_MA5':[], 'Vol_MA10':[], 'Vol_def':[], 'MA5':[], 'MA10':[], 'MA5_def':[], 'MA10_def':[], 'MACD':[], 'MACD_signal':[], 'MACD_def':[], 'BOL_UP_def':[], 'BOL_UP':[], 'BOL_LOW_def':[], 'BOL_LOW':[], 'RSI':[], 'Label':[]}
#dtest = pd.DataFrame (items, columns = ['trade_date', 'open', 'high', 'low', 'close', 'pct_chg', 'vol', 'amount', 'Vol_MA5', 'Vol_MA10', 'Vol_def', 'MA5', 'MA10', 'MA5_def', 'MA10_def', 'MACD', 'MACD_signal', 'MACD_def', 'BOL_UP_def', 'BOL_UP', 'BOL_LOW_def', 'BOL_LOW', 'RSI', 'Label'])
#
#items = {'trade_date':[], 'open':[], 'high':[], 'low':[], 'close':[], 'pct_chg':[], 'vol':[], 'amount':[], 'Vol_MA5':[], 'Vol_MA10':[], 'Vol_def':[], 'MA5':[], 'MA10':[], 'MA5_def':[], 'MA10_def':[], 'MACD':[], 'MACD_signal':[], 'MACD_def':[], 'BOL_UP_def':[], 'BOL_UP':[], 'BOL_LOW_def':[], 'BOL_LOW':[], 'RSI':[], 'Label':[]}
#aggregate_data = pd.DataFrame (items, columns = ['trade_date', 'open', 'high', 'low', 'close', 'pct_chg', 'vol', 'amount', 'Vol_MA5', 'Vol_MA10', 'Vol_def', 'MA5', 'MA10', 'MA5_def', 'MA10_def', 'MACD', 'MACD_signal', 'MACD_def', 'BOL_UP_def', 'BOL_UP', 'BOL_LOW_def', 'BOL_LOW', 'RSI', 'Label'])
def EMA(lst,n):
lst = pd.Series(lst)
modPrice = lst.copy()
sman=modPrice.rolling(n).mean()
modPrice.iloc[0:n] = sman[0:n]
ema = modPrice.ewm(span=n, adjust=False).mean()
return ema
def PSAR (AFrate):
direction = [None,None,None]
psar =[None,None,None]
EP = [None,None,None]
pri_EP_count = 1
AF = min(pri_EP_count*AFrate,0.2)
if high[4]> high[3]:
psar.append(high[3])
EP.append(high[3])
direction.append('F')
else:
psar.append(low[3])
EP.append(low[3])
direction.append('F')
for i in range(4,len(low)):
if low[i]<psar[i-1] and direction[i-1] == 'R':
direction.append('F')
AF = 0.02
npsar = EP[i-1] - AF*(EP[i-1] - psar[i-1])
psar.append(round(npsar,2))
pri_EP_count = 1
if low[i]< EP[i-1]:
EP.append(low[i])
else:
EP.append(EP[i-1])
elif high[i]<=psar[i-1] and direction[i-1] == 'F':
if low[i]< EP[i-1]:
pri_EP_count = pri_EP_count + 1
EP.append(low[i])
else:
EP.append(EP[i-1])
direction.append('F')
AF = min(pri_EP_count*AFrate,0.2)
npsar = psar[i-1] - AF*(psar[i-1] - min(low[i-4],low[i-3],low[i-2],low[i-1],low[i]))
psar.append(round(npsar,2))
elif low[i]>=psar[i-1] and direction[i-1] == 'R':
if high[i]> EP[i-1]:
pri_EP_count = pri_EP_count + 1
EP.append(high[i])
else:
EP.append(EP[i-1])
direction.append('R')
AF = min(pri_EP_count*AFrate,0.2)
npsar = psar[i-1] + AF*(max(high[i-1],high[i]) - psar[i-1])
psar.append(round(npsar,2))
elif high[i]> psar[i-1] and direction[i-1] == 'F':
direction.append('R')
AF = 0.02
npsar = low[i-1]
psar.append(round(npsar,2))
pri_EP_count = 1
if high[i]> EP[i-1]:
EP.append(high[i])
else:
EP.append(EP[i-1])
else:
print('DIRECTION_ERROR')
return psar
def DMA(series,weight):
a = series[0]
Y = [a]
for i in range(1,len(series)):
b = weight[i]*series[i] + (1-weight[i])*Y[i-1]
Y.append(b)
return Y
def MACD(series, short = 12, long = 26, mid = 9):
DIF = ta.EMA(series,short)-ta.EMA(series,long)
DEA = ta.EMA(DIF,mid)
MACD = (DIF-DEA)*2
return DIF, DEA, MACD
def WRF(n = 6):
v1 = []
for i in range(len(closing_price)):
h_l = [h for h in list(high[max(0,i+1-n):i+1])]
h_n = np.float(max(h_l))
l_l = [l for l in list(low[max(0,i+1-n):i+1])]
l_n = np.float(min(l_l))
a = np.float(h_n - l_n)
b = np.float(h_n - closing_price[i])
if a != 0:
c = np.float(b/a)
d = c*100
else:
d = 0
v1.append(d)
return pd.Series(v1)
def MCST():
turn_per = turn/100
L = DMA(av_price,turn_per)
return L
def _ma(series, n):
"""
移动平均
"""
return series.rolling(n).mean()
def CYHT(V_period = 34, E_period = 13):
var2 =low.rolling(V_period).min()
var3 =high.rolling(V_period).max()
var1 = (2*closing_price+high+low+open_l)/5
SK =ta.EMA((((var1-var2)/(var3-var2))*100),E_period)
SD = ta.EMA(SK,3)
return SK, SD
def CJDX ():
Var1 = (2*closing_price+high+low)/4
Var2 = (4*Var1+3*Var1.shift(1)+2*Var1.shift(2)+Var1.shift(3))/10
Var3 = (4*Var2+3*Var2.shift(1)+2*Var2.shift(2)+Var2.shift(3))/10
Var4 = (4*Var3+3*Var3.shift(1)+2*Var3.shift(2)+Var3.shift(3))/10
J = (Var4 - Var4.shift(1))*100/Var4.shift(1)
D = J.rolling(3).mean()
return J, D
def vosc(df, n=12, m=26):
"""
成交量震荡 vosc(12,26)
VOSC=(MA(VOLUME,SHORT)- MA(VOLUME,LONG))/MA(VOLUME,SHORT)×100
"""
_c = pd.DataFrame()
_c['trade_date'] = df['trade_date']
_c['osc'] = (_ma(df.vol, n) - _ma(df.vol, m)) / _ma(df.vol, n) * 100
return _c
def vol_per_change():
vol =[0]
for i in range(1,len(volume)):
_vol_per_change = (volume[i]-volume[i-1])/volume[i] * 100
vol.append(_vol_per_change)
return pd.Series(vol)
def vhf(df, n=28):
"""
纵横指标 vhf(28)
VHF=(N日内最大收盘价与N日内最小收盘价之前的差)/(N日收盘价与前收盘价差的绝对值之和)
"""
_vhf = pd.DataFrame()
_vhf['trade_date'] = df.trade_date
_vhf['vhf'] = (df.close.rolling(n).max() - df.close.rolling(n).min()) / (df.close - df.close.shift(1)).abs().rolling(n).sum()
return _vhf
def asi(df, n=5):
"""
振动升降指标(累计震动升降因子) ASI # 同花顺给出的公式不完整就不贴出来了
"""
_asi = pd.DataFrame()
_asi['trade_date'] = df.trade_date
_m = pd.DataFrame()
_m['a'] = (df.high - df.close.shift()).abs()
_m['b'] = (df.low - df.close.shift()).abs()
_m['c'] = (df.high - df.low.shift()).abs()
_m['d'] = (df.close.shift() - df.open.shift()).abs()
_m['r'] = _m.apply(lambda x: x.a + 0.5 * x.b + 0.25 * x.d if max(x.a, x.b, x.c) == x.a else (
x.b + 0.5 * x.a + 0.25 * x.d if max(x.a, x.b, x.c) == x.b else x.c + 0.25 * x.d
), axis=1)
_m['x'] = df.close - df.close.shift() + 0.5 * (df.close - df.open) + df.close.shift() - df.open.shift()
_m['k'] = np.maximum(_m.a, _m.b)
_asi['si'] = 16 * (_m.x / _m.r) * _m.k
_asi["asi"] = _ma(_asi.si, n)
return _asi
def scaling(data):
scaler = MinMaxScaler()
scaled_data =[]
if len(data)>250:
for i in range(len(data)-250+1):
if (i+250) != len(data):
scaler.fit(data[i:(i+250)].to_numpy().reshape(-1, 1))
scaled_data.append(scaler.transform(data[i].reshape(-1, 1)))
else:
scaler.fit(data[i:(i+250)].to_numpy().reshape(-1, 1))
for a in range(250):
scaled_data.append(scaler.transform(data[a+i].reshape(-1, 1)))
else:
scaler.fit(data.to_numpy().reshape(-1, 1))
for r in range(len(data)):
scaled_data.append(scaler.transform(data[r].reshape(-1, 1)))
final = np.array(scaled_data).flatten()
return final
def join_frame(d1, d2, column='trade_date'):
return d1.join(d2.set_index(column), on=column)
def data_sequence(data, seq_len): #### Data needs to be an array
X = []
y = []
test_code =[]
for i in range(seq_len,len(data)):
truncated_data = data[i-seq_len:i]
truncated_data = truncated_data.reset_index()
y.append(truncated_data['Label'].to_list())
del truncated_data['Label']
X.append(truncated_data)
test_code=data['ts_code'][0]
return X, y, test_code
seq_len = 30
### Data prep
train_X = []
train_y = []
test_X = []
test_y = []
Stock=[]
directory = "D:/Trading_Bot/Data/Individual_Stock/"
for filename in os.listdir(directory):
if filename.endswith(".csv"):
csv_file =os.path.join(directory, filename)
original_data = pd.read_csv(csv_file)
if len(original_data)>=150:
closing_price = original_data['close']
open_l = original_data['open']
volume = original_data['vol']
high = original_data['high']
amount = original_data['amount']
av_price = (original_data['amount']/original_data['vol'])*10/closing_price
low = original_data['low']
turn = original_data['turnover_rate']
rsi_6 = ta.RSI(closing_price, timeperiod=6)
rsi_12 = ta.RSI(closing_price, timeperiod=12)
rsi_24 = ta.RSI(closing_price, timeperiod=24)
original_data['rsi_6'] = scaling(rsi_6)
original_data['rsi_12'] = scaling(rsi_12)
original_data['rsi_12_dif'] = scaling(original_data['rsi_12'].diff())
original_data['close_dif1'] = scaling(original_data['close'].pct_change(periods = 1))
original_data['close_dif2'] = scaling(original_data['close'].pct_change(periods = 2))
original_data['close_dif3'] = scaling(original_data['close'].pct_change(periods = 3))
original_data['rsi_24'] = scaling(rsi_24)
original_data['rsi_dif'] = scaling((rsi_6 - rsi_24))
CJDX_J,CJDX_D = CJDX()
original_data['J'] = scaling(CJDX_J)
##original_data['D'] = CJDX_D
original_data['JD'] = scaling((CJDX_J - CJDX_D))
rsi_dif = original_data['rsi_dif']
MA_5 = ta.SMA(closing_price, timeperiod=5) / original_data['close']
MA_10 = ta.SMA(closing_price, timeperiod=10) / original_data['close']
MA_55 = ta.SMA(closing_price, timeperiod=55) / original_data['close']
MA_144 = ta.SMA(closing_price, timeperiod=144) / original_data['close']
original_data['MA_5'] = scaling(MA_5)
original_data['MA_10'] = scaling(MA_10)
original_data['MA_20'] = scaling(ta.SMA(closing_price, timeperiod=20) / original_data['close'])
MA_20 = original_data['MA_20']
MA_dif = MA_5 - MA_10
original_data['MA_dif'] = scaling(MA_dif)
SK_L, SD_L = CYHT()
original_data['SD'] = scaling(SD_L)
original_data['SK'] = scaling(SK_L)
##original_data['CYHT'] = SK_L - SD_L
vol_MA = ta.SMA(volume, timeperiod=5) / original_data['vol']
vol_MA20 = ta.SMA(volume, timeperiod=20) / original_data['vol']
VMA_dif = vol_MA - vol_MA20
original_data['VMA_dif'] = scaling(VMA_dif)
vol_change_L = vol_per_change()
original_data['vol_per'] = scaling(vol_change_L)
original_data['vol_per2'] = scaling(volume.pct_change(periods = 2))
vol_per=vol_change_L
ATR = ta.ATR(high, low, closing_price, timeperiod=14)
EMA_12 = ta.EMA(closing_price, timeperiod=12) / original_data['close']
original_data['EMA_12'] = scaling(EMA_12)
EMA_26 = ta.EMA(closing_price, timeperiod=26) / original_data['close']
original_data['EMA_26'] = scaling(EMA_26)
dif,dea,macd = MACD(closing_price)
original_data['macd'] = scaling(macd)
##original_data['macd_dif'] = original_data['macd'].diff()
##original_data['MFI'] = ta.MFI(high, low, closing_price, volume, timeperiod=14)
##MFI =original_data['MFI']
upperband, middleband, lowerband = ta.BBANDS(closing_price, timeperiod=20, nbdevup=2, nbdevdn=2, matype=0)
original_data['BBupperband'] = scaling((upperband / closing_price))
original_data['BBlowerband'] = scaling((lowerband / closing_price))
lb = lowerband / closing_price
##asi_l = asi(original_data)
##original_data = join_frame(original_data, asi_l)
##vosc_l = vosc(original_data)
##original_data = join_frame(original_data, vosc_l)
##vhf_l = vhf(original_data)
##original_data = join_frame(original_data, vhf_l)
WR_L = WRF()
original_data['WR'] = scaling(WR_L)
WR = WR_L
MCST_L = MCST()
original_data['MCST'] = scaling((MCST_L/closing_price))
##asil = original_data['asi']
##sil = original_data['si']
##oscl = original_data['osc']
##vhfl = original_data['vhf']
ma5 = MA_5
ma10 = MA_10
ma55 = MA_55
ma144 = MA_144
ma20 = original_data['MA_20']
PASR_L = pd.Series(PSAR(0.02))
PSAR_S = ((PASR_L - closing_price)/closing_price)*100
original_data['PSAR'] = scaling(PSAR_S)
label_L = get_label()
original_data['Label'] = label_L
data_label_L = get_data_label()
original_data['Data_Label'] = data_label_L
actual_return_L = actual_return()
original_data['Actual_Return'] = actual_return_L
original_data['close'] = scaling(closing_price)
original_data['open'] = scaling(open_l)
original_data['vol'] = scaling(volume)
original_data['high'] = scaling(high)
original_data['amount'] = scaling(amount)
original_data['low'] = scaling(low)
original_data['turnover_rate'] = scaling(turn)
original_data = original_data.loc[:, ~original_data.columns.str.contains('^Unnamed')]
original_data = original_data.drop(columns=['pre_close','open','high','low','amount','trade_date'])
original_data = original_data.drop(list(range(0, 145, 1)))
X,y,test_code = data_sequence(original_data, seq_len)
train_X.append(X[:-1])
train_y.append(y[:-1])
test_X.append(X[-1])
test_y.append(y[-1])
Stock.append(test_code)
print(filename)
else:
continue
#data = pd.read_csv('D:\Trading_Bot\Data\prediction_All_data.csv')
#X = data.drop(['Label'], axis=1)
#y = data['Label']
#sm = SMOTE()
#X_res, y_res = sm.fit_sample(X, y.ravel())
#xgb_model = xgb.XGBClassifier(objective = "binary:logistic",tree_method= 'gpu_hist')
#xgb_model = xgb.XGBClassifier(objective = "binary:logistic",num_round = 1000)
#xgb_model = xgb.XGBClassifier()
#params = {
# 'eta': 0.30406,
# 'max_depth': 23,
# 'max_delta_step': 10,
# 'scale_pos_weight': 217.87,
# 'objective': "binary:logistic"
# }
#skf = StratifiedKFold(n_splits=10, shuffle = True)
#grid = GridSearchCV(xgb_model,
# param_grid = params,
# n_jobs = -1,
# cv = skf.split(X_res, y_res)
# )
#grid.fit(X_res, y_res)
#best_pars = grid.best_params_
#param = params
#print(best_pars)
#dtrain = xgb.DMatrix(X_res,label=y_res)
#num_round = 100
#bst = xgb.Booster()
#bst = xgb.train(param, dtrain, num_round)
#model = bst
#bst.save_model('0001.model')
#bst.load_model('0001.model')
#result = {'Stock_Code': [],'Accuracy': [],'Prediction':[],'Sector':[]}
#df = pd.DataFrame (result, columns = ['Stock_Code','Accuracy','Prediction','Sector'])
#print("Loaded model")
#prediction_data = pd.read_csv('../Data/prediction_All_data_test.csv')
#X_pred = prediction_data.drop(['Label','Stock_Code','Sector'], axis=1)
#y_pred = prediction_data['Label']
#dtest = xgb.DMatrix(X_pred)
##pred = model.predict(X_pred)
#pred = bst.predict(dtest)
#correct = 0
#for i in range(0, len(y_pred), 1):
# if pred[i] == y_pred[i]:
# correct = correct + 1
#accuracy = correct / len(y_pred)
#f['Prediction'] = pred
#f['Accuracy'] = accuracy
#df['Sector'] = prediction_data['Sector']
#outputpath="../Result/prediction_All.csv"
#df.to_csv(outputpath,sep=',',index=False,header=True)