forked from arjunfzk/Tensorflow_gun_detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathac-Copy.py
117 lines (71 loc) · 3.36 KB
/
ac-Copy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import numpy as np
import os
#import six.moves.urllib as urllib
import sys
#import tarfile
import tensorflow as tf
import zipfile#first run tar file unzip karne ke liye
import sys
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
import face_recognition
import cv2
cap = cv2.VideoCapture(0)
from utils import label_map_util
from utils import visualization_utils as vis_util
#FOR LABELLING ON REALTIME OPENCV OUTPUT --REMOVE DOG BEFORE HACKATHON PRESENTATION
MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17'#inception model ki accuracy check karni hai
MODEL_FILE = MODEL_NAME + '.tar.gz'
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')
#dog ka label delete karna hai
NUM_CLASSES = 90
#HAS TO BE INTEGRATED IN UJJWAL's CODE remember in every code Graph has to be called only once----speed ka issue
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()#genr mach for metdat
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
while True:
ret, image_np = cap.read()
#tensorflow image has got to be in np array --speed ka issue
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
#print(classes)
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
#FACE RECOGNITION CODE OF DEBTANU GOES HERE
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
s_class = classes[scores > 0.5]
#print(len(s_class))
x=0
for i in s_class:
if category_index.get(i)=='person':
x+=1
# print(x,'x')
for i in s_class:
face_locations = face_recognition.face_locations(image_np)
print("I found {} face(s) in this photograph.".format(len(face_locations)))
print(category_index.get(i))
if(category_index.get(i)['name'])==sys.argv[1]:#:'person'
x+=1
print(x)#sys.argv[1]+'found')
vis_util.visualize_boxes_and_labels_on_image_array(image_np,np.squeeze(boxes),np.squeeze(classes).astype(np.int32),np.squeeze(scores),category_index,use_normalized_coordinates=True,line_thickness=8)
cv2.imshow('object detection', cv2.resize(image_np, (800,600)))
if cv2.waitKey(25) & 0xFF == ord('q'):
cv2.destroyAllWindows()
break