-
Notifications
You must be signed in to change notification settings - Fork 29
/
index.md
1007 lines (878 loc) · 38 KB
/
index.md
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
- [Beautiful thematic maps with
ggplot2 (only)](#beautiful-thematic-maps-with-ggplot2-only)
- [Reproducibility](#reproducibility)
- [Preparations](#preparations)
- [Clear workspace and install necessary
packages](#clear-workspace-and-install-necessary-packages)
- [General ggplot2 theme for
map](#general-ggplot2-theme-for-map)
- [Data sources](#data-sources)
- [Read in data and preprocess](#read-in-data-and-preprocess)
- [Read in geodata](#read-in-geodata)
- [A very basic map](#a-very-basic-map)
- [A better color scale](#a-better-color-scale)
- [Horizontal legend](#horizontal-legend)
- [Discrete classes with quantile
scale](#discrete-classes-with-quantile-scale)
- [Discrete classes with pretty
breaks](#discrete-classes-with-pretty-breaks)
- [More intuitive legend](#more-intuitive-legend)
- [Better colors for classes](#better-colors-for-classes)
- [Relief](#relief)
- [Final map](#final-map)
- [Update, January 2nd, 2017](#update-january-2nd-2017)
- [Data in a barchart](#data-in-a-barchart)
Beautiful thematic maps with ggplot2 (only) {#beautiful-thematic-maps-with-ggplot2-only}
===========================================
<img src="https://timogrossenbacher.ch/wp-content/uploads/2016/12/tm-final-map-1.png" width="100%" />
The above *choropleth* was created with `ggplot2` (2.2.0) only. Well,
almost. Of course, you need the usual suspects such as `rgdal` and
`rgeos` when dealing with geodata, and `raster` for the relief. But
apart from that: nothing fancy such as `ggmap` or the like. The imported
packages are kept to an absolute minimum.
In this blog post, I am going to explain step by step how I (eventually)
achieved this result – from a very basic, useless, ugly, default map to
the publication-ready and (in my opinion) highly aesthetic choropleth.
Reproducibility {#reproducibility}
---------------
As always, you can reproduce, reuse and remix everything you find here,
just go to [this
repository](https://github.com/grssnbchr/thematic-maps-ggplot2) and
clone it. All the needed input files are in the `input` folder, and the
main file to execute is `index.Rmd`. Right now, knitting it produces an
`index.md` that I use for my blog post on
[timogrossenbacher.ch](https://timogrossenbacher.ch), but you can adapt
the script to produce an HTML file, too. The PNGs produced herein are
saved to `wp-content/uploads/2016/12` so I can display them directly in
my blog, but of course you can also adjust this.
Preparations {#preparations}
------------
### Clear workspace and install necessary packages {#clear-workspace-and-install-necessary-packages}
This is just my usual routine: Detach all packages, remove all variables
in the global environment, etc, and then load the packages. Saves me a
lot of headaches.
``` r
knitr::opts_chunk$set(
out.width = "100%",
dpi = 300,
fig.width = 8,
fig.height = 6,
fig.path = 'https://timogrossenbacher.ch/wp-content/uploads/2016/12/tm-',
strip.white = T,
dev = "png",
dev.args = list(png = list(bg = "transparent"))
)
remove(list = ls(all.names = TRUE))
detachAllPackages <- function() {
basic.packages.blank <- c("stats",
"graphics",
"grDevices",
"utils",
"datasets",
"methods",
"base")
basic.packages <- paste("package:", basic.packages.blank, sep = "")
package.list <- search()[ifelse(unlist(gregexpr("package:", search())) == 1,
TRUE,
FALSE)]
package.list <- setdiff(package.list, basic.packages)
if (length(package.list) > 0) for (package in package.list) {
detach(package, character.only = TRUE)
print(paste("package ", package, " detached", sep = ""))
}
}
detachAllPackages()
if (!require(rgeos)) {
install.packages("rgeos", repos = "http://cran.us.r-project.org")
require(rgeos)
}
if (!require(rgdal)) {
install.packages("rgdal", repos = "http://cran.us.r-project.org")
require(rgdal)
}
if (!require(raster)) {
install.packages("raster", repos = "http://cran.us.r-project.org")
require(raster)
}
if(!require(ggplot2)) {
install.packages("ggplot2", repos="http://cloud.r-project.org")
require(ggplot2)
}
if(!require(viridis)) {
install.packages("viridis", repos="http://cloud.r-project.org")
require(viridis)
}
if(!require(dplyr)) {
install.packages("dplyr", repos = "https://cloud.r-project.org/")
require(dplyr)
}
if(!require(gtable)) {
install.packages("gtable", repos = "https://cloud.r-project.org/")
require(gtable)
}
if(!require(grid)) {
install.packages("grid", repos = "https://cloud.r-project.org/")
require(grid)
}
if(!require(readxl)) {
install.packages("readxl", repos = "https://cloud.r-project.org/")
require(readxl)
}
if(!require(magrittr)) {
install.packages("magrittr", repos = "https://cloud.r-project.org/")
require(magrittr)
}
```
### General ggplot2 theme for map {#general-ggplot2-theme-for-map}
First of all, I define a generic theme that will be used as the basis
for all of the following steps. It's based on `theme_minimal` and
basically resets all the axes. It also defined a very subtle grid and a
warmgrey background, which gives it some sort of paper map feeling, I
find.
The font used here is `Ubuntu Regular` – adapt to your liking, but the
font must be installed on your OS.
``` r
theme_map <- function(...) {
theme_minimal() +
theme(
text = element_text(family = "Ubuntu Regular", color = "#22211d"),
axis.line = element_blank(),
axis.text.x = element_blank(),
axis.text.y = element_blank(),
axis.ticks = element_blank(),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
# panel.grid.minor = element_line(color = "#ebebe5", size = 0.2),
panel.grid.major = element_line(color = "#ebebe5", size = 0.2),
panel.grid.minor = element_blank(),
plot.background = element_rect(fill = "#f5f5f2", color = NA),
panel.background = element_rect(fill = "#f5f5f2", color = NA),
legend.background = element_rect(fill = "#f5f5f2", color = NA),
panel.border = element_blank(),
...
)
}
```
Data sources {#data-sources}
------------
For this choropleth, I used **three** data sources:
- Thematic data: Average age per municipality as of end of 2015. The
data is freely available from [The Swiss Federal Statistical
Office (FSO)](https://www.bfs.admin.ch/bfs/de/home/statistiken/bevoelkerung/stand-entwicklung/alter-zivilstand-staatsangehoerigkeit.html)
and included in the `input` folder.
- Municipality geometries: The geometries do not show the political
borders of Swiss municipalities, but the so-called "productive"
area, i.e., larger lakes and other "unproductive" areas such as
mountains are excluded. This has two advantages: 1) The relatively
sparsely populated but very large municipalities in the Alps don't
have too much visual weight and 2) it allows us to use the beautiful
raster relief of the Alps as a background. The data are also from
the FSO, but not freely available. You could also use the freely
available [political
boundaries](https://www.bfs.admin.ch/bfs/de/home/dienstleistungen/geostat/geodaten-bundesstatistik/administrative-grenzen/generalisierte-gemeindegrenzen.html)
of course. I was allowed to republish the Shapefile for this
educational purpose (also included in the `input` folder). Please
stick to that policy.
- Relief: This is a freely available GeoTIFF from [The Swiss Federal
Office of
Topography (swisstopo)](https://shop.swisstopo.admin.ch/en/products/maps/national/digital/srm1000).
### Read in data and preprocess {#read-in-data-and-preprocess}
``` r
data <- read.csv("input/avg_age_15.csv", stringsAsFactors = F)
```
### Read in geodata {#read-in-geodata}
Here, the geodata is loaded using `rgeos` / `rgdal` standard procedures.
It is then *"fortified"*, i.e. transformed into a ggplot2-compatible
data frame (the `fortify`-function is part of `ggplot2`). Also, the
thematic data is joined using the `bfs_id` field (each municipality has
a unique one).
``` r
gde_15 <- readOGR("input/geodata/gde-1-1-15.shp", layer = "gde-1-1-15")
```
## OGR data source with driver: ESRI Shapefile
## Source: "input/geodata/gde-1-1-15.shp", layer: "gde-1-1-15"
## with 2324 features
## It has 2 fields
``` r
# set crs to ch1903/lv03, just to make sure (EPSG:21781)
crs(gde_15) <- "+proj=somerc +lat_0=46.95240555555556
+lon_0=7.439583333333333 +k_0=1 +x_0=600000 +y_0=200000
+ellps=bessel +towgs84=674.374,15.056,405.346,0,0,0,0 +units=m +no_defs"
# fortify, i.e., make ggplot2-compatible
map_data_fortified <- fortify(gde_15, region = "BFS_ID") %>%
mutate(id = as.numeric(id))
# now we join the thematic data
map_data <- map_data_fortified %>% left_join(data, by = c("id" = "bfs_id"))
# whole municipalities
gde_15_political <- readOGR("input/geodata/g1g15.shp", layer = "g1g15")
```
## OGR data source with driver: ESRI Shapefile
## Source: "input/geodata/g1g15.shp", layer: "g1g15"
## with 2328 features
## It has 20 fields
``` r
crs(gde_15_political) <- "+proj=somerc +lat_0=46.95240555555556
+lon_0=7.439583333333333 +k_0=1 +x_0=600000 +y_0=200000
+ellps=bessel +towgs84=674.374,15.056,405.346,0,0,0,0 +units=m +no_defs"
map_data_political_fortified <- fortify(gde_15_political, region = "GMDNR") %>%
mutate(id = as.numeric(id))
map_data_political <- map_data_political_fortified %>% left_join(data, by = c("id" = "bfs_id"))
map_data_political <- map_data_political[complete.cases(map_data_political),]
# read in background relief
relief <- raster("input/geodata/02-relief-georef-clipped-resampled.tif")
relief_spdf <- as(relief, "SpatialPixelsDataFrame")
# relief is converted to a very simple data frame,
# just as the fortified municipalities.
# for that we need to convert it to a
# SpatialPixelsDataFrame first, and then extract its contents
# using as.data.frame
relief <- as.data.frame(relief_spdf) %>%
rename(value = `X02.relief.georef.clipped.resampled`)
# remove unnecessary variables
rm(relief_spdf)
rm(gde_15)
rm(map_data_fortified)
rm(map_data_political_fortified)
```
A very basic map {#a-very-basic-map}
----------------
What follows now is a very basic map with the municipalities rendered
with `geom_polygon` and their outline with `geom_path`. I don't even
define a color scale here, it just uses ggplot2's default continuous
color scale, because `avg_age_15` is a continuous variable.
Because the geodata are in a projected format, it is important to use
`coord_equal()` here, if not, Switzerland would be distorted.
``` r
p <- ggplot() +
# municipality polygons
geom_polygon(data = map_data, aes(fill = avg_age_15,
x = long,
y = lat,
group = group)) +
# municipality outline
geom_path(data = map_data, aes(x = long,
y = lat,
group = group),
color = "white", size = 0.1) +
coord_equal() +
# add the previously defined basic theme
theme_map() +
labs(x = NULL,
y = NULL,
title = "Switzerland's regional demographics",
subtitle = "Average age in Swiss municipalities, 2015",
caption = "Geometries: ThemaKart, BFS; Data: BFS, 2016")
p
```
<img src="https://timogrossenbacher.ch/wp-content/uploads/2016/12/tm-basic-map-1.png" width="100%" />
How ugly! The color scale is not very sensitive to the data at hand,
i.e., regional patterns cannot be detected at all.
### A better color scale {#a-better-color-scale}
See how I reuse the previously defined `p`-object and just add the
continuous `viridis` scale from the same named package. All of a sudden
the map looks more aesthetic and regional patterns are already visible
in this linear scale. For example one can see that the municipalities in
the south and in the Alps (where there are a lot of gaps, the
unproductive areas I talked about) seem to have an older-than-average
population (mainly because young people move to the cities for work
etc.).
``` r
q <- p + scale_fill_viridis(option = "magma", direction = -1)
q
```
<img src="https://timogrossenbacher.ch/wp-content/uploads/2016/12/tm-basic-map-viridis-1.png" width="100%" />
### Horizontal legend {#horizontal-legend}
Also I think one could save some space by using a horizontal legend at
the bottom of the plot.
``` r
q <- p +
# this is the main part
theme(legend.position = "bottom") +
scale_fill_viridis(
option = "magma",
direction = -1,
name = "Average age",
# here we use guide_colourbar because it is still a continuous scale
guide = guide_colorbar(
direction = "horizontal",
barheight = unit(2, units = "mm"),
barwidth = unit(50, units = "mm"),
draw.ulim = F,
title.position = 'top',
# some shifting around
title.hjust = 0.5,
label.hjust = 0.5
))
q
```
<img src="https://timogrossenbacher.ch/wp-content/uploads/2016/12/tm-basic-map-viridis-horizontal-1.png" width="100%" />
Well, the plot now has a weird aspect ratio, but okay...
Discrete classes with quantile scale {#discrete-classes-with-quantile-scale}
------------------------------------
I am still not happy with the color scale because I think regional
patterns could be made more clearly visible. For that I break up the
continuous `avg_age_15` variable into 6 quantiles (remember your
statistics class?). The effect of that is that I now have about the same
number of municipalities in each class.
``` r
no_classes <- 6
labels <- c()
quantiles <- quantile(map_data$avg_age_15,
probs = seq(0, 1, length.out = no_classes + 1))
# here I define custom labels (the default ones would be ugly)
labels <- c()
for(idx in 1:length(quantiles)){
labels <- c(labels, paste0(round(quantiles[idx], 2),
" – ",
round(quantiles[idx + 1], 2)))
}
# I need to remove the last label
# because that would be something like "66.62 - NA"
labels <- labels[1:length(labels)-1]
# here I actually create a new
# variable on the dataset with the quantiles
map_data$avg_age_15_quantiles <- cut(map_data$avg_age_15,
breaks = quantiles,
labels = labels,
include.lowest = T)
p <- ggplot() +
# municipality polygons (watch how I
# use the new variable for the fill aesthetic)
geom_polygon(data = map_data, aes(fill = avg_age_15_quantiles,
x = long,
y = lat,
group = group)) +
# municipality outline
geom_path(data = map_data, aes(x = long,
y = lat,
group = group),
color = "white", size = 0.1) +
coord_equal() +
theme_map() +
labs(x = NULL,
y = NULL,
title = "Switzerland's regional demographics",
subtitle = "Average age in Swiss municipalities, 2015",
caption = "Geometries: ThemaKart, BFS; Data: BFS, 2016") +
# now the discrete-option is used,
# and we use guide_legend instead of guide_colourbar
scale_fill_viridis(
option = "magma",
name = "Average age",
discrete = T,
direction = -1,
guide = guide_legend(
keyheight = unit(5, units = "mm"),
title.position = 'top',
reverse = T
))
p
```
<img src="https://timogrossenbacher.ch/wp-content/uploads/2016/12/tm-basic-map-viridis-horizontal-quantile-1.png" width="100%" />
Wow! Now that is some regional variability ;-). But there is still a
huge caveat: In my opinion, quantile scales are optimal at showing
intra-dataset-variability, but sometimes this variability can be
exaggerated. Most of the municipalities here are in the region between
39 and 43 years. The second caveat is that the legend looks somehow ugly
with all these decimals, and that people are probably having problems
interpreting such differently sized classes. That's why I am trying
"pretty breaks" in the next step, and this is basically also what you
see in almost all choropleths used for (data-)journalistic purposes.
### Discrete classes with pretty breaks {#discrete-classes-with-pretty-breaks}
``` r
# here I define equally spaced pretty breaks -
# they will be surrounded by the minimum value at
# the beginning and the maximum value at the end.
# One could also use something like c(39,39.5,41,42.5,43),
# this totally depends on the data and your personal taste.
pretty_breaks <- c(39,40,41,42,43)
# find the extremes
minVal <- min(map_data$avg_age_15, na.rm = T)
maxVal <- max(map_data$avg_age_15, na.rm = T)
# compute labels
labels <- c()
brks <- c(minVal, pretty_breaks, maxVal)
# round the labels (actually, only the extremes)
for(idx in 1:length(brks)){
labels <- c(labels,round(brks[idx + 1], 2))
}
labels <- labels[1:length(labels)-1]
# define a new variable on the data set just as above
map_data$brks <- cut(map_data$avg_age_15,
breaks = brks,
include.lowest = TRUE,
labels = labels)
brks_scale <- levels(map_data$brks)
labels_scale <- rev(brks_scale)
p <- ggplot() +
# municipality polygons
geom_polygon(data = map_data, aes(fill = brks,
x = long,
y = lat,
group = group)) +
# municipality outline
geom_path(data = map_data, aes(x = long,
y = lat,
group = group),
color = "white", size = 0.1) +
coord_equal() +
theme_map() +
theme(legend.position = "bottom") +
labs(x = NULL,
y = NULL,
title = "Switzerland's regional demographics",
subtitle = "Average age in Swiss municipalities, 2015",
caption = "Geometries: ThemaKart, BFS; Data: BFS, 2016")
q <- p +
# now we have to use a manual scale,
# because only ever one number should be shown per label
scale_fill_manual(
# in manual scales, one has to define colors, well, manually
# I can directly access them using viridis' magma-function
values = rev(magma(6)),
breaks = rev(brks_scale),
name = "Average age",
drop = FALSE,
labels = labels_scale,
guide = guide_legend(
direction = "horizontal",
keyheight = unit(2, units = "mm"),
keywidth = unit(70 / length(labels), units = "mm"),
title.position = 'top',
# I shift the labels around, the should be placed
# exactly at the right end of each legend key
title.hjust = 0.5,
label.hjust = 1,
nrow = 1,
byrow = T,
# also the guide needs to be reversed
reverse = T,
label.position = "bottom"
)
)
q
```
<img src="https://timogrossenbacher.ch/wp-content/uploads/2016/12/tm-discrete-classes-pretty-breaks-1.png" width="100%" />
Now we have classes with the ranges 33.06 to 39, 39 to 40, 40 to 41, and
so on... So four classes are of the same size and the two classes with
the extremes are differently sized. One option to communicate this is to
make their respective legend keys wider than usual. `ggplot2` doesn't
have a standard option for that, so I had to dig deep into the
underlying `grid` package and extract the relevant `grobs` and change
their widths. All of the following numbers are the result of trying and
trying around. I have not yet fully understood how that system actually
works and certainly, it could be made more versatile. Something for next
christmas...
### More intuitive legend {#more-intuitive-legend}
``` r
extendLegendWithExtremes <- function(p){
p_grob <- ggplotGrob(p)
legend <- gtable_filter(p_grob, "guide-box")
legend_grobs <- legend$grobs[[1]]$grobs[[1]]
# grab the first key of legend
legend_first_key <- gtable_filter(legend_grobs, "key-3-1-1")
legend_first_key$widths <- unit(2, units = "cm")
# modify its width and x properties to make it longer
legend_first_key$grobs[[1]]$width <- unit(2, units = "cm")
legend_first_key$grobs[[1]]$x <- unit(0.15, units = "cm")
# last key of legend
legend_last_key <- gtable_filter(legend_grobs, "key-3-6-1")
legend_last_key$widths <- unit(2, units = "cm")
# analogous
legend_last_key$grobs[[1]]$width <- unit(2, units = "cm")
legend_last_key$grobs[[1]]$x <- unit(1.02, units = "cm")
# grab the last label so we can also shift its position
legend_last_label <- gtable_filter(legend_grobs, "label-5-6")
legend_last_label$grobs[[1]]$x <- unit(2, units = "cm")
# Insert new color legend back into the combined legend
legend_grobs$grobs[legend_grobs$layout$name == "key-3-1-1"][[1]] <-
legend_first_key$grobs[[1]]
legend_grobs$grobs[legend_grobs$layout$name == "key-3-6-1"][[1]] <-
legend_last_key$grobs[[1]]
legend_grobs$grobs[legend_grobs$layout$name == "label-5-6"][[1]] <-
legend_last_label$grobs[[1]]
# finally, I need to create a new label for the minimum value
new_first_label <- legend_last_label$grobs[[1]]
new_first_label$label <- round(min(map_data$avg_age_15, na.rm = T), 2)
new_first_label$x <- unit(-0.15, units = "cm")
new_first_label$hjust <- 1
legend_grobs <- gtable_add_grob(legend_grobs,
new_first_label,
t = 6,
l = 2,
name = "label-5-0",
clip = "off")
legend$grobs[[1]]$grobs[1][[1]] <- legend_grobs
p_grob$grobs[p_grob$layout$name == "guide-box"][[1]] <- legend
# the plot is now drawn using this grid function
grid.newpage()
grid.draw(p_grob)
}
extendLegendWithExtremes(q)
```
<img src="https://timogrossenbacher.ch/wp-content/uploads/2016/12/tm-discrete-classes-better-legend-1.png" width="100%" />
### Better colors for classes {#better-colors-for-classes}
Almost perfect. What I still don't like is the very bright yellow color
of the first class. It makes it difficult to see the borders of the
municipalities with that color. Also I find the color of the last class
a bit too dark. That's why I now use the `magma` function with 8 classes
and strip of the first and last class.
``` r
p <- p + scale_fill_manual(
# magma with 8 classes
values = rev(magma(8)[2:7]),
breaks = rev(brks_scale),
name = "Average age",
drop = FALSE,
labels = labels_scale,
guide = guide_legend(
direction = "horizontal",
keyheight = unit(2, units = "mm"),
keywidth = unit(70/length(labels), units = "mm"),
title.position = 'top',
title.hjust = 0.5,
label.hjust = 1,
nrow = 1,
byrow = T,
reverse = T,
label.position = "bottom"
)
)
# reapply the legend modification from above
extendLegendWithExtremes(p)
```
<img src="https://timogrossenbacher.ch/wp-content/uploads/2016/12/tm-discrete-classes-better-colors-1.png" width="100%" />
A beauty!
Relief {#relief}
------
What's needed now to give it a boost of aesthetic value is the relief of
the Swiss Alps. Every mountain lover will appreciate that.
I add the relief with `geom_raster`. Now the problem is that I can't use
the `fill` aesthetic because it (or its scale) is already in use by the
`geom_polygon` layer. The workaround is using the `alpha` aesthetic
which works fine here because the relief should be displayed with a
greyscale anyway.
``` r
p <- ggplot() +
# raster comes as the first layer, municipalities on top
geom_raster(data = relief, aes(x = x,
y = y,
alpha = value)) +
# use the "alpha hack"
scale_alpha(name = "", range = c(0.6, 0), guide = F) +
# municipality polygons
geom_polygon(data = map_data, aes(fill = brks,
x = long,
y = lat,
group = group)) +
# municipality outline
geom_path(data = map_data, aes(x = long,
y = lat,
group = group),
color = "white", size = 0.1) +
# apart from that, nothing changes
coord_equal() +
theme_map() +
theme(legend.position = "bottom") +
labs(x = NULL,
y = NULL,
title = "Switzerland's regional demographics",
subtitle = "Average age in Swiss municipalities, 2015",
caption = "Geometries: ThemaKart, BFS; Data: BFS, 2016; Relief: swisstopo, 2016") +
scale_fill_manual(
values = rev(magma(8)[2:7]),
breaks = rev(brks_scale),
name = "Average age",
drop = FALSE,
labels = labels_scale,
guide = guide_legend(
direction = "horizontal",
keyheight = unit(2, units = "mm"),
keywidth = unit(70/length(labels), units = "mm"),
title.position = 'top',
title.hjust = 0.5,
label.hjust = 1,
nrow = 1,
byrow = T,
reverse = T,
label.position = "bottom"
)
)
extendLegendWithExtremes(p)
```
<img src="https://timogrossenbacher.ch/wp-content/uploads/2016/12/tm-with-relief-1.png" width="100%" />
Final map {#final-map}
---------
What follows are a couple of adjustments concerning:
- font colors
- the position of the title
- the plot margins, i.e.: how to make better use of the available
space and show the map as big as possible
- smaller and less prominent caption at the bottom
Most of that happens in the additional `theme` specifications. Again,
this is just tediously trying out values after values after values...
To my great joy I also discovered that there is an `alpha` argument to
the `magma` function, which gives the colors a certain pastel tone and
make the map look even more geo-hipsterish (if you ask me).
``` r
p <- ggplot() +
# municipality polygons
geom_raster(data = relief, aes_string(x = "x",
y = "y",
alpha = "value")) +
scale_alpha(name = "", range = c(0.6, 0), guide = F) +
geom_polygon(data = map_data, aes(fill = brks,
x = long,
y = lat,
group = group)) +
# municipality outline
geom_path(data = map_data, aes(x = long,
y = lat,
group = group),
color = "white", size = 0.1) +
coord_equal() +
theme_map() +
theme(
legend.position = c(0.5, 0.03),
legend.text.align = 0,
legend.background = element_rect(fill = alpha('white', 0.0)),
legend.text = element_text(size = 7, hjust = 0, color = "#4e4d47"),
plot.title = element_text(hjust = 0.5, color = "#4e4d47"),
plot.subtitle = element_text(hjust = 0.5, color = "#4e4d47",
margin = margin(b = -0.1,
t = -0.1,
l = 2,
unit = "cm"),
debug = F),
legend.title = element_text(size = 8),
plot.margin = unit(c(.5,.5,.2,.5), "cm"),
panel.spacing = unit(c(-.1,0.2,.2,0.2), "cm"),
panel.border = element_blank(),
plot.caption = element_text(size = 6,
hjust = 0.92,
margin = margin(t = 0.2,
b = 0,
unit = "cm"),
color = "#939184")
) +
labs(x = NULL,
y = NULL,
title = "Switzerland's regional demographics",
subtitle = "Average age in Swiss municipalities, 2015",
caption = "Map CC-BY-SA; Author: Timo Grossenbacher (@grssnbchr), Geometries: ThemaKart, BFS; Data: BFS, 2016; Relief: swisstopo, 2016") +
scale_fill_manual(
values = rev(magma(8, alpha = 0.8)[2:7]),
breaks = rev(brks_scale),
name = "Average age",
drop = FALSE,
labels = labels_scale,
guide = guide_legend(
direction = "horizontal",
keyheight = unit(2, units = "mm"),
keywidth = unit(70/length(labels), units = "mm"),
title.position = 'top',
title.hjust = 0.5,
label.hjust = 1,
nrow = 1,
byrow = T,
reverse = T,
label.position = "bottom"
)
)
extendLegendWithExtremes(p)
```
<img src="https://timogrossenbacher.ch/wp-content/uploads/2016/12/tm-final-map-1.png" width="100%" />
Thanks for reading, I hope you learned something. Producing high-quality
graphics like these with pure `ggplot2` is sometimes more an art than a
science and veeeeeeeryyyyy tedious, and it would probably be way easier
to export the map at an early stage and make adjustments in Illustrator
or another vector editor. But then, I just like the thought of a fully
automagic, reproducible workflow, it's almost an obsession. The big
challenge here is to put everything into a more versatile function, or
even a package, that can produce maps like these with arbitrary scales
(discrete, continuous, quantiles, pretty breaks, whatever) and arbitrary
geo data (for the US, for example).
If you think this example can be improved in any way, please use the
comment function below. I'd also be very happy to see this map adapted
to other geographic regions and/or other datasets.
As always: Follow me on [Twitter](https://twitter.com/grssnbchr)!
Update, January 2nd, 2017 {#update-january-2nd-2017}
-------------------------
This blog post has gone quite through the roof. For example, it was
featured on the [Revolution Analytics
blog](http://blog.revolutionanalytics.com/2016/12/swiss-map.html). One
guy even [printed the map and hung it on the
wall](https://twitter.com/JerryVermanen/status/814087499773526016)!
I have also received a lot of constructive feedback in the meantime. I
especially appreciated the discussions on the [RStats
Subreddit](https://www.reddit.com/r/rstats/comments/5kirj0/this_highly_aesthetic_choropleth_map_was_made/),
particularly the one about the legend / color scale.
Based on that discussion I decided to make a slightly altered version of
the color scale so one can compare the visual effect.
``` r
# same code as above but different breaks
pretty_breaks <- c(40,42,44,46,48)
# find the extremes
minVal <- min(map_data$avg_age_15, na.rm = T)
maxVal <- max(map_data$avg_age_15, na.rm = T)
# compute labels
labels <- c()
brks <- c(minVal, pretty_breaks, maxVal)
# round the labels (actually, only the extremes)
for(idx in 1:length(brks)){
labels <- c(labels,round(brks[idx + 1], 2))
}
labels <- labels[1:length(labels)-1]
# define a new variable on the data set just as above
map_data$brks <- cut(map_data$avg_age_15,
breaks = brks,
include.lowest = TRUE,
labels = labels)
brks_scale <- levels(map_data$brks)
labels_scale <- rev(brks_scale)
p <- ggplot() +
# municipality polygons
geom_raster(data = relief, aes_string(x = "x",
y = "y",
alpha = "value")) +
scale_alpha(name = "", range = c(0.6, 0), guide = F) +
geom_polygon(data = map_data, aes(fill = brks,
x = long,
y = lat,
group = group)) +
# municipality outline
geom_path(data = map_data, aes(x = long,
y = lat,
group = group),
color = "white", size = 0.1) +
coord_equal() +
theme_map() +
theme(
legend.position = c(0.5, 0.03),
legend.text.align = 0,
legend.background = element_rect(fill = alpha('white', 0.0)),
legend.text = element_text(size = 7, hjust = 0, color = "#4e4d47"),
plot.title = element_text(hjust = 0.5, color = "#4e4d47"),
plot.subtitle = element_text(hjust = 0.5, color = "#4e4d47",
margin = margin(b = -0.1,
t = -0.1,
l = 2,
unit = "cm"),
debug = F),
legend.title = element_text(size = 8),
plot.margin = unit(c(.5,.5,.2,.5), "cm"),
panel.spacing = unit(c(-.1,0.2,.2,0.2), "cm"),
panel.border = element_blank(),
plot.caption = element_text(size = 6,
hjust = 0.92,
margin = margin(t = 0.2,
b = 0,
unit = "cm"),
color = "#939184")
) +
labs(x = NULL,
y = NULL,
title = "Switzerland's regional demographics",
subtitle = "Average age in Swiss municipalities, 2015",
caption = "Map CC-BY-SA; Author: Timo Grossenbacher (@grssnbchr), Geometries: ThemaKart, BFS; Data: BFS, 2016; Relief: swisstopo, 2016") +
scale_fill_manual(
values = rev(magma(8, alpha = 0.8)[2:7]),
breaks = rev(brks_scale),
name = "Average age",
drop = FALSE,
labels = labels_scale,
guide = guide_legend(
direction = "horizontal",
keyheight = unit(2, units = "mm"),
keywidth = unit(70/length(labels), units = "mm"),
title.position = 'top',
title.hjust = 0.5,
label.hjust = 1,
nrow = 1,
byrow = T,
reverse = T,
label.position = "bottom"
)
)
extendLegendWithExtremes(p)
```
<img src="https://timogrossenbacher.ch/wp-content/uploads/2016/12/tm-final-map-different-scale-1.png" width="100%" />
Notice that I extended the range of the first class from 33.06-39 to
33.06-40 and that, now, the classes in the "middle" have a range of two
years rather than one year. This has the advantage that both "extreme"
classes' ranges are now a bit more similar, but of course, the first is
still a lot smaller than the last. I would say the disadvantage of this
approach is that now some "visual balance" between both extremes is
lost, mostly due to the fact that a lot of municipalities have an
average age below 40 years. However, it has the other advantage that the
really "old" municipalities at the far-right of the scale can now be
more easily identified.
At this point, it might make sense to look at the histogram of the
municipalities:
``` r
ggplot(data = data, aes(x = avg_age_15)) +
geom_histogram(binwidth = 0.5) +
theme_minimal() +
xlab("Average age in Swiss municipality, 2015") +
ylab("Count")
```
<img src="https://timogrossenbacher.ch/wp-content/uploads/2016/12/tm-histogram-1.png" width="100%" />
As you can see, the municipalities are almost normally distributed, with
most municipalities being in the range between 39 and 43 years (>75%,
look at the quantiles computation below). From that perspective, the
first class configuration might still be "closer" to the data.
``` r
quantile(data$avg_age_15)
```
## 0% 25% 50% 75% 100%
## 33.05566 39.99845 41.65980 43.37581 66.61538
But what do I know.
No, really: This is a very difficult problem. The choice of a certain
color scale greatly alters the visual perception of the underlying
spatial patterns. I remember from my Geography studies that there are
guidelines on how to handle this (anyone got a good link, by the way?),
but there is no wrong or right. It'd be nice if you posted your opinion
about that in the comments!
One last note: Some people seem to have had problems with the `maptools`
package. In case you're wondering, here is the setup I used to run the
script in the first place:
R version 3.3.1 (2016-06-21)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.1 LTS
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=de_CH.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=de_CH.UTF-8 LC_MESSAGES=en_US.UTF-8 LC_PAPER=de_CH.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C LC_MEASUREMENT=de_CH.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] grid stats graphics grDevices utils datasets methods base
other attached packages:
[1] gtable_0.2.0 dplyr_0.5.0 viridis_0.3.4 ggplot2_2.2.0 raster_2.5-8 rgdal_1.1-10 sp_1.2-3 rgeos_0.3-21
loaded via a namespace (and not attached):
[1] Rcpp_0.12.7 knitr_1.14 magrittr_1.5 maptools_0.8-40 munsell_0.4.3 colorspace_1.2-6 lattice_0.20-34
[8] R6_2.1.3 plyr_1.8.4 tools_3.3.1 DBI_0.5-1 digest_0.6.10 lazyeval_0.2.0 assertthat_0.1
[15] tibble_1.2 gridExtra_2.2.1 formatR_1.4 labeling_0.3 scales_0.4.1 foreign_0.8-66
Data in a barchart {#data-in-a-barchart}
------------------
``` r
rgs <- read_excel("input/be-b-00.04-rgs-15.xls", skip = 16, col_names = F) %>%
select(bfs_id = X__1, NAME = X__2)
data_sorted <- data %>% left_join(rgs) %>% arrange(desc(avg_age_15))
```
## Joining, by = "bfs_id"
``` r
data_to_plot <- data %>% left_join(rgs)
```
## Joining, by = "bfs_id"
``` r
data_to_plot %<>% mutate(NAME = factor(NAME, levels = data_sorted$NAME))
p <- ggplot(data_to_plot, aes(y = avg_age_15, x = NAME)) +
geom_bar(stat = "identity") +
labs(x = "Gemeinde", y = "Durchschnittsalter 2015") +
theme_minimal() +
theme(axis.text = element_text(size = 7))+
xlim(data_sorted[2315:2324,]$NAME) +