-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathautodiff.py
110 lines (84 loc) · 2.92 KB
/
autodiff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from matrix import Matrix
import matrix
from scalar import Scalar
def _scalarize(m):
if isinstance(m, Matrix):
assert m.rows == 1
assert m.cols == 1
return m.get(0,0)
return m
def _matricize(s):
if isinstance(s, Matrix):
return s
return Matrix(1, 1, s)
def is_scalarish(val):
return isinstance(val, float) or isinstance(val, int) or isinstance(val, Scalar)
def finite_difference(func, params, gradient_target = 0):
epsilon = 1e-7
# compute f(x)
result = func(*params)
var = params[gradient_target]
result_was_scalar = is_scalarish(result)
var_was_scalar = is_scalarish(var)
var = _matricize(var)
result = _matricize(result)
assert isinstance(var, Matrix) and var.cols == 1
assert isinstance(result, Matrix) and result.cols == 1
z = Matrix(var.rows, result.rows)
for r in range(z.rows):
for c in range(z.cols):
epsilon_var = var.copy()
epsilon_var[r] += epsilon
epsilon_params = list(params)
epsilon_params[gradient_target] = _scalarize(epsilon_var) if var_was_scalar else epsilon_var
result_epsilon = _matricize(func(*epsilon_params))
z[r] = ((result_epsilon - result) / epsilon).transpose()
if result_was_scalar and z.rows == z.cols == 1:
z = z[0, 0]
result = result[0, 0]
return (result, z)
def reverse_autodiff(result, var):
Scalar.opcount = 0
result_was_scalar = is_scalarish(result)
var = _matricize(var)
result = _matricize(result)
assert isinstance(var, Matrix) and var.cols == 1
assert isinstance(result, Matrix) and result.cols == 1
z = Matrix(var.rows, result.rows)
for r in range(z.cols):
result._apply(lambda x: x._reset_grad())
result[r].grad_value = 1
var._apply(lambda x: x._reset_grad())
var._apply(lambda x: x._reverse_autodiff())
for c in range(var.rows):
z[c,r] = var[c].grad_value
if result_was_scalar and z.rows == z.cols == 1:
z = z[0,0]
return z
def forward_autodiff(result, var):
Scalar.opcount = 0
result_was_scalar = is_scalarish(result)
var = _matricize(var)
result = _matricize(result)
assert isinstance(var, Matrix) and var.cols == 1
assert isinstance(result, Matrix) and result.cols == 1
z = Matrix(var.rows, result.rows)
for r in range(z.rows):
result._apply(lambda x: x._reset_grad())
var._apply(lambda x: x._reset_grad())
var[r].grad_value = 1
for c in range(result.rows):
z[r, c] = result[c, 0]._forward_autodiff()
if result_was_scalar and z.rows == z.cols == 1:
z = z[0,0]
return z
def compute_gradients(func, args, gradient_target, reverse_mode = True):
args = list(map((lambda x: matrix.convert_to_scalar(x)), args))
f_val = func(*args)
if reverse_mode:
f_grad = reverse_autodiff(f_val, args[gradient_target])
else:
f_grad = forward_autodiff(f_val, args[gradient_target])
f_val = matrix.convert_from_scalar(f_val)
f_grad = matrix.convert_from_scalar(f_grad)
return f_val, f_grad, Scalar.opcount