-
Notifications
You must be signed in to change notification settings - Fork 165
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
多余的sees.run #71
Comments
这是为了更大化利用gpu资源。
如果不设置为计算图中操作,这部分操作要在CPU进行,CPU计算速度比较慢,gpu呈现一段时间为0状态,训练时间大大增加。
…---原始邮件---
发件人: "Roc"<[email protected]>
发送时间: 2019年12月16日(周一) 下午4:31
收件人: "guoqiangqi/PFLD"<[email protected]>;
抄送: "Subscribed"<[email protected]>;
主题: [guoqiangqi/PFLD] 多余的sees.run (#71)
请问各位,main方法中在构建网络时可以看到,attributes_w_n可以由attribute自动推理出来,
但是在train方法中为什么要多加这一步:
attributes_w_n = sess.run(list_ops['attributes_w_n_batch'],feed_dict={list_ops['image_batch']: images,list_ops['attribute_batch']: attributes})
然后在下面feed_dict中填入:
feed_dict = {
list_ops['image_batch']: images,
list_ops['landmark_batch']: landmarks,
list_ops['attribute_batch']: attributes,
list_ops['phase_train_placeholder']: True,
list_ops['euler_angles_gt_batch'] : eulers,
list_ops['attributes_w_n_batch']: attributes_w_n
}
之后才去执行其他的,然而在test方法中则没有这一步,请问,加与不加有什么区别?我对tensorflow尚不非常了解,劳烦讲一下,谢谢
—
You are receiving this because you are subscribed to this thread.
Reply to this email directly, view it on GitHub, or unsubscribe.
|
多谢这么快回复 @luckynote |
请问各位,main方法中在构建网络时可以看到,attributes_w_n可以由attribute自动推理出来,
但是在train方法中为什么要多加这一步:
attributes_w_n = sess.run(list_ops['attributes_w_n_batch'],feed_dict={list_ops['image_batch']: images,list_ops['attribute_batch']: attributes})
然后在下面feed_dict中填入:
feed_dict = {
list_ops['image_batch']: images,
list_ops['landmark_batch']: landmarks,
list_ops['attribute_batch']: attributes,
list_ops['phase_train_placeholder']: True,
list_ops['euler_angles_gt_batch'] : eulers,
list_ops['attributes_w_n_batch']: attributes_w_n
}
之后才去执行其他的,然而在test方法中则没有这一步,请问,加与不加有什么区别?我对tensorflow尚不非常了解,劳烦讲一下,谢谢
The text was updated successfully, but these errors were encountered: