-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresampler_mask.py
58 lines (49 loc) · 2.25 KB
/
resampler_mask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import torch
import torch.nn as nn
class CrossAttentionModule(nn.Module):
def __init__(self, embed_dim, num_heads):
super(CrossAttentionModule, self).__init__()
self.multihead_attn = nn.MultiheadAttention(embed_dim=embed_dim, num_heads=num_heads)
def forward(self, query, key, value, key_padding_mask=None, attn_mask=None):
# query: [seq_len, batch_size, embed_dim]
# key, value: [seq_len, batch_size, embed_dim]
# key_padding_mask: [batch_size, seq_len] 如果某些键不应该被注意到,可以设置为True
# attn_mask: [seq_len, seq_len] 在attention权重上应用的掩码
attn_output, attn_output_weights = self.multihead_attn(query, key, value,
key_padding_mask=key_padding_mask,
attn_mask=attn_mask)
return attn_output, attn_output_weights
# 参数设置
embed_dim = 256 # 嵌入维度
num_heads = 8 # 注意力头数
seq_len = 10 # 序列长度
batch_size = 3 # 批次大小
seq_len_q = 2 # 序列长度
# 创建模型
cross_attention = CrossAttentionModule(embed_dim, num_heads)
# 随机生成数据
query = torch.rand(seq_len_q, batch_size, embed_dim)
key = torch.rand(seq_len, batch_size, embed_dim)
value = torch.rand(seq_len, batch_size, embed_dim)
# 创建一个attn_mask,这里用一个简单的例子:屏蔽后半部分序列
attn_mask = torch.zeros(batch_size, num_heads, seq_len_q, seq_len)
# attn_mask[:, seq_len//2:] = float('-inf') # 使用-inf来确保这部分的权重在softmax后为0
token_nums = [
9, 10, 3
]
for k, num in enumerate(token_nums):
attn_mask[k][:, :, num:] = float('-inf')
print(attn_mask)
attn_mask = attn_mask.reshape(-1, seq_len_q, seq_len)
# 前向传播
output, weights = cross_attention(query, key, value, attn_mask=attn_mask)
print(output.shape, weights.shape)
# print("Attention Output Shape:", output.shape)
# print("Attention Weights Shape:", weights.shape)
import matplotlib.pyplot as plt
plt.figure(figsize=(20, 20))
for i, attn_weight in enumerate(weights):
plt.subplot(1, len(weights), i + 1)
print(attn_weight.detach().numpy())
plt.imshow(attn_weight.detach().numpy())
plt.savefig('attn_weights.png')