-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_torchrun_r1.sh
executable file
·135 lines (119 loc) · 4.73 KB
/
train_torchrun_r1.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#!/bin/bash
#SBATCH --partition=A800
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=8
#SBATCH --gres=gpu:8
#SBATCH --cpus-per-task=8
#SBATCH --nodelist=g73
#SBATCH -o ./llava_uhd_144_13b_loc_unpad.r1.log
#SBATCH --job-name=vlm_r1
RANK=1
export CUDA_HOME=/home/test/test08/gzh/cuda-12.1
export PATH=$CUDA_HOME/bin:$PATH
export LD_LIBRARY_PATH=$CUDA_HOME/lib64:$LD_LIBRARY_PATH
CKPT=llava-uhd-144-13b-loc-unpad
OUTPUT_DIR=./checkpoints_new/$CKPT
LLM_CKPT_DIR=./pretrained_models/vicuna-13b-v1.5
CLIP_CKPT_DIR=./pretrained_models/clip-vit-large-patch14-336
echo $OUTPUT_DIR
NPROC_PER_NODE=8
NNODES=2
MASTER_ADDR=g72
MASTER_PORT=12345
# pretraining script
# PRBATCH=32
# ACCU_STEPS=1
# torchrun --nproc_per_node=$NPROC_PER_NODE --nnodes=$NNODES --node_rank=$RANK --master_addr=$MASTER_ADDR --master_port $MASTER_PORT \
# llava/train/train_mem.py \
# --deepspeed ./scripts/zero2.json \
# --model_name_or_path $LLM_CKPT_DIR \
# --version plain \
# --data_path ./playground/data/LLaVA-Pretrain/blip_laion_cc_sbu_558k.json \
# --image_folder ./playground/data/LLaVA-Pretrain/images \
# --vision_tower $CLIP_CKPT_DIR \
# --mm_projector_type adapt_spatial_resampler \
# --tune_mm_mlp_adapter True \
# --mm_vision_select_layer -2 \
# --mm_use_im_start_end False \
# --mm_use_im_patch_token False \
# --bf16 True \
# --output_dir $OUTPUT_DIR \
# --num_train_epochs 1 \
# --per_device_train_batch_size $PRBATCH \
# --per_device_eval_batch_size 4 \
# --gradient_accumulation_steps $ACCU_STEPS \
# --evaluation_strategy "no" \
# --save_strategy "steps" \
# --save_steps 24000 \
# --save_total_limit 1 \
# --learning_rate 1e-3 \
# --weight_decay 0. \
# --warmup_ratio 0.03 \
# --lr_scheduler_type "cosine" \
# --logging_steps 1 \
# --tf32 True \
# --model_max_length 2048 \
# --gradient_checkpointing True \
# --dataloader_num_workers 4 \
# --lazy_preprocess True \
# --report_to wandb \
# --single True
# --data_path ./playground/data/llava_v1_5_mix665k.json \
# full ft script
FTRBATCH=8
ACCU_STEPS=2
torchrun --nproc_per_node=$NPROC_PER_NODE --nnodes=$NNODES --node_rank=$RANK --master_addr=$MASTER_ADDR --master_port $MASTER_PORT \
llava/train/train_mem.py \
--deepspeed ./scripts/zero2.json \
--model_name_or_path $LLM_CKPT_DIR \
--version v1 \
--data_path ./playground/data/updated_llava_v1_5_mix665k.json \
--image_folder ./playground/data \
--vision_tower $CLIP_CKPT_DIR \
--pretrain_mm_mlp_adapter $OUTPUT_DIR/mm_projector.bin \
--mm_projector_type adapt_spatial_resampler \
--mm_vision_select_layer -2 \
--mm_use_im_start_end False \
--mm_use_im_patch_token False \
--image_aspect_ratio pad \
--group_by_modality_length True \
--bf16 True \
--output_dir $OUTPUT_DIR \
--num_train_epochs 1 \
--per_device_train_batch_size $FTRBATCH \
--per_device_eval_batch_size 4 \
--gradient_accumulation_steps $ACCU_STEPS \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 50000 \
--save_total_limit 1 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--tf32 True \
--model_max_length 2048 \
--gradient_checkpointing True \
--dataloader_num_workers 4 \
--lazy_preprocess True \
--report_to wandb
# \
# --tune_mm_mlp_adapter True \
# --mm_use_loc_token True \
# --pretrain_word_embedding False \
# --tune_word_embedding True
# stage 1: tune_mm_mlp_adapter=True, mm_use_loc_token=False
# stage 2: tune_mm_mlp_adapter=True, mm_use_loc_token=True(需要增加loc token的训练),pretrain_word_embedding=False(还没pretrain这些embedding),tune_word_embedding=True(只Tune这些embedding)
# stage 3: tune_mm_mlp_adapter=False(打开LLM训练), mm_use_loc_token=True(需要增加loc token的训练),pretrain_word_embedding=True(用的是stage2的mm_projector.bin中存的参数),tune_word_embedding=False/True(因为LLM都tune了,不用专门调True/False)
# stage 2 之后vocab_size从32000到了32004,存在在checkpoint_new中的config.json,但是stage 3还是从vicuna那边去load config.json,所以还是32000,因此还需要再过一边初始化。这里面load的操作有两种。
# 第一种:只load新增的token的word embedding和lm_head的(目前这套代码)
# 第二种:全load这些embedding
# inference: 这些参数目前都没有写到config里面,但是vocab_size增加好,然后保存的参数也都是训练好的,因此直接inference
# evaluation
# if [ "$RANK" -eq 0 ]; then
# sh eval.sh $CKPT
# else
# echo 'Over'
# fi
# #