-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path5_1.py
70 lines (56 loc) · 2.72 KB
/
5_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
"""Naive Bayes Classifier Implementation"""
random_state = 47
import pandas as pd
import numpy as np
laplace_correction = True
def nbc(t_frac):
train_df = pd.read_csv('trainingSet.csv')
test_df = pd.read_csv('testSet.csv')
# sample the training data from training dataframe
sampled_train_df = train_df.sample(frac = t_frac, random_state = random_state, ignore_index = True)
attributes = sampled_train_df.columns[:-1]
# calculating prior probability
prior = sampled_train_df.groupby(by = 'decision').size().div(len(sampled_train_df))
# calculating conditional probabilities
conditional_prob = {}
for attribute in attributes:
numerator = sampled_train_df.groupby(by = ['decision'])[attribute].value_counts().unstack('decision')
denominator = numerator.sum()
k = sampled_train_df[attribute].nunique()
if laplace_correction and numerator.isna().any(axis=None):
numerator.fillna(value=0, inplace=True)
numerator += 1
denominator += k
conditional_prob[attribute] = numerator.div(denominator)
# calculating posterior probability for all training examples
def predict(row, label):
result = 1
for attribute in attributes:
try:
result *= conditional_prob[attribute][label][row[attribute]]
except:
# if there is a new attribute value not known at the training time
# laplace correction wouldn't work here, since the attr val is not known at the training time
continue
result *= prior[label]
return result
predicted_training_no = np.array([ predict(row, 0) for idx, row in sampled_train_df.iterrows() ])
predicted_training_yes = np.array([ predict(row, 1) for idx, row in sampled_train_df.iterrows() ])
predicted_training_labels = predicted_training_yes > predicted_training_no
train_accuracy = accuracy(sampled_train_df.iloc[:,-1], predicted_training_labels)
print(f'Training Accuracy: {round(train_accuracy,2)}')
predicted_test_no = np.array([ predict(row, 0) for idx, row in test_df.iterrows() ])
predicted_test_yes = np.array([ predict(row, 1) for idx, row in test_df.iterrows() ])
predicted_test_labels = predicted_test_yes > predicted_test_no
test_accuracy = accuracy(test_df.iloc[:,-1], predicted_test_labels)
print(f'Testing Accuracy: {round(test_accuracy,2)}')
return train_accuracy, test_accuracy
def accuracy(original_labels, predicted_labels):
count = 0
total_num = len(original_labels)
for idx in range(total_num):
if original_labels[idx] == predicted_labels[idx]:
count += 1
return float(count)/total_num
if __name__ == '__main__':
nbc(1)