-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_inputs_old.py
279 lines (222 loc) · 12 KB
/
train_inputs_old.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import numpy as np
import tensorflow as tf
from inputs import distorted_shifted_bounding_box, distort_color, apply_with_random_selector, build_heatmaps, extract_crop, two_d_gaussian, flip_parts_left_right
def input_nodes(
tfrecords,
num_parts,
# number of times to read the tfrecords
num_epochs=None,
# Data queue feeding the model
batch_size=32,
num_threads=2,
shuffle_batch = True,
capacity = 1000,
min_after_dequeue = 96,
# Tensorboard Summaries
add_summaries = True,
# Global configuration
cfg=None):
with tf.name_scope('inputs'):
# A producer to generate tfrecord file paths
filename_queue = tf.train.string_input_producer(
tfrecords,
num_epochs=num_epochs,
shuffle=shuffle_batch
)
# Construct a Reader to read examples from the tfrecords file
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
# Parse an Example to access the Features
features = tf.parse_single_example(
serialized_example,
features = {
'image/id' : tf.FixedLenFeature([], tf.string),
'image/encoded' : tf.FixedLenFeature([], tf.string),
'image/height' : tf.FixedLenFeature([], tf.int64),
'image/width' : tf.FixedLenFeature([], tf.int64),
'image/object/bbox/xmin' : tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/ymin' : tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/xmax' : tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/ymax' : tf.VarLenFeature(dtype=tf.float32),
'image/object/bbox/count' : tf.FixedLenFeature([], tf.int64),
'image/object/parts/x' : tf.VarLenFeature(dtype=tf.float32), # x coord for all parts and all objects
'image/object/parts/y' : tf.VarLenFeature(dtype=tf.float32), # y coord for all parts and all objects
'image/object/parts/v' : tf.VarLenFeature(dtype=tf.int64), # part visibility for all parts and all objects
'image/object/area' : tf.VarLenFeature(dtype=tf.float32), # the area of the object, based on segmentation mask or bounding box mask
}
)
# Read in a jpeg image
image = tf.image.decode_jpeg(features['image/encoded'], channels=3)
# Convert the pixel values to be in the range [0,1]
if image.dtype != tf.float32:
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
image_height = tf.cast(features['image/height'], tf.float32)
image_width = tf.cast(features['image/width'], tf.float32)
image_id = features['image/id']
xmin = tf.expand_dims(features['image/object/bbox/xmin'].values, 0)
ymin = tf.expand_dims(features['image/object/bbox/ymin'].values, 0)
xmax = tf.expand_dims(features['image/object/bbox/xmax'].values, 0)
ymax = tf.expand_dims(features['image/object/bbox/ymax'].values, 0)
num_bboxes = tf.cast(features['image/object/bbox/count'], tf.int32)
no_bboxes = tf.equal(num_bboxes, 0)
parts_x = tf.expand_dims(features['image/object/parts/x'].values, 0)
parts_y = tf.expand_dims(features['image/object/parts/y'].values, 0)
parts_v = tf.cast(tf.expand_dims(features['image/object/parts/v'].values, 0), tf.int32)
#part_visibilities = tf.cast(features['image/object/parts/v'], tf.int32)
#part_visibilities = tf.reshape(tf.sparse_tensor_to_dense(part_visibilities), tf.pack([num_bboxes, num_parts]))
areas = features['image/object/area'].values
areas = tf.reshape(areas, [num_bboxes])
# Add a summary of the original data
if add_summaries:
bboxes_to_draw = tf.cond(no_bboxes, lambda: tf.constant([[0, 0, 1, 1]], tf.float32), lambda: tf.transpose(tf.concat(0, [ymin, xmin, ymax, xmax]), [1, 0]))
bboxes_to_draw = tf.reshape(bboxes_to_draw, [1, -1, 4])
image_with_bboxes = tf.image.draw_bounding_boxes(tf.expand_dims(image, 0), bboxes_to_draw)
tf.image_summary('original_image', image_with_bboxes)
# GVH: We need to ensure that the perturbed bbox still contains the parts...
# Perturb the bounding box coordinates
r = tf.random_uniform([], minval=0, maxval=1, dtype=tf.float32)
do_perturb = tf.logical_and(tf.less(r, cfg.DO_RANDOM_BBOX_SHIFT), tf.greater(num_bboxes, 0))
xmin, ymin, xmax, ymax = tf.cond(do_perturb,
lambda: distorted_shifted_bounding_box(xmin, ymin, xmax, ymax, num_bboxes, image_height, image_width, cfg.RANDOM_BBOX_SHIFT_EXTENT),
lambda: tf.tuple([xmin, ymin, xmax, ymax])
)
# Randomly flip the image:
if cfg.DO_RANDOM_FLIP_LEFT_RIGHT:
r = tf.random_uniform([], minval=0, maxval=1, dtype=tf.float32)
do_flip = tf.less(r, 0.5)
image = tf.cond(do_flip, lambda: tf.image.flip_left_right(image), lambda: tf.identity(image))
xmin, xmax = tf.cond(do_flip, lambda: tf.tuple([1. - xmax, 1. - xmin]), lambda: tf.tuple([xmin, xmax]))
parts_x, parts_y, parts_v = tf.cond(do_flip,
lambda: tf.py_func(flip_parts_left_right, [parts_x, parts_y, parts_v, cfg.PARTS.LEFT_RIGHT_PAIRS, num_parts], [tf.float32, tf.float32, tf.int32]),
lambda: tf.tuple([parts_x, parts_y, parts_v])
)
part_visibilities = tf.reshape(parts_v, tf.pack([num_bboxes, num_parts]))
# Distort the colors
r = tf.random_uniform([], minval=0, maxval=1, dtype=tf.float32)
do_color_distortion = tf.less(r, cfg.DO_COLOR_DISTORTION)
num_color_cases = 1 if cfg.COLOR_DISTORT_FAST else 4
distorted_image = apply_with_random_selector(
image,
lambda x, ordering: distort_color(x, ordering, fast_mode=cfg.COLOR_DISTORT_FAST),
num_cases=num_color_cases)
image = tf.cond(do_color_distortion, lambda: tf.identity(distorted_image), lambda: tf.identity(image))
image.set_shape([cfg.INPUT_SIZE, cfg.INPUT_SIZE, 3])
# Add a summary
if add_summaries:
bboxes_to_draw = tf.cond(no_bboxes, lambda: tf.constant([[0, 0, 1, 1]], tf.float32), lambda: tf.transpose(tf.concat(0, [ymin, xmin, ymax, xmax]), [1, 0]))
bboxes_to_draw = tf.reshape(bboxes_to_draw, [1, -1, 4])
image_with_bboxes = tf.image.draw_bounding_boxes(tf.expand_dims(image, 0), bboxes_to_draw)
tf.image_summary('flipped_distorted_image', image_with_bboxes)
# Extract the crops and construct the heatmaps
scaled_xmin = xmin * image_width
scaled_ymin = ymin * image_height
scaled_xmax = xmax * image_width
scaled_ymax = ymax * image_height
scaled_bboxes = tf.concat(0, [scaled_xmin, scaled_ymin, scaled_xmax, scaled_ymax])
# order the bboxes so that they have the shape: [num_bboxes, bbox_coords]
scaled_bboxes = tf.transpose(scaled_bboxes, [1, 0])
scaled_parts_x = parts_x * image_width
scaled_parts_y = parts_y * image_height
scaled_parts = tf.concat(0, [scaled_parts_x, scaled_parts_y])
scaled_parts = tf.transpose(scaled_parts, [1, 0])
scaled_parts = tf.reshape(scaled_parts, [-1, num_parts * 2])
def crop_and_resize(loop_iteration, n_boxes, image, bboxes, parts, part_visibilities, areas, part_sigmas, input_size, heatmap_size, cropped_images, all_heatmaps, adjusted_keypoints):
# Access the current bbbox and parts
bbox = tf.squeeze(tf.gather(bboxes, [loop_iteration]))
keypoints = tf.squeeze(tf.gather(parts, [loop_iteration]))
visibilites = tf.squeeze(tf.gather(part_visibilities, [loop_iteration]))
area = tf.squeeze(tf.gather(areas, [loop_iteration]))
# crop out the bounding box
params = [image, bbox]
if cfg.LOOSE_BBOX_CROP:
params += [True, cfg.LOOSE_BBOX_PAD_FACTOR]
cropped_image, upper_left_x_y = tf.py_func(extract_crop, params, [tf.float32, tf.float32])
# shift the keypoints based on the new image top left coordinate
cropped_keypoints = tf.reshape(tf.reshape(keypoints, [-1, 2]) - upper_left_x_y, [-1])
# construct the heatmaps and scale the keypoints
params = [cropped_keypoints, visibilites, area, part_sigmas, cropped_image, input_size, heatmap_size]
heatmaps, scaled_keypoints = tf.py_func(build_heatmaps, params, [tf.float32, tf.float32])
# Resize the input image
cropped_image = tf.expand_dims(cropped_image, 0)
cropped_image.set_shape([1, None, None, 3])
num_resize_cases = 4
cropped_image = apply_with_random_selector(
cropped_image,
lambda x, method: tf.image.resize_images(x, size=[cfg.INPUT_SIZE, cfg.INPUT_SIZE], method=method),
num_cases=num_resize_cases
)
#cropped_image = tf.image.resize_images(cropped_image, size=[input_size, input_size])
cropped_images = tf.concat(0, [cropped_images, cropped_image])
heatmaps = tf.expand_dims(heatmaps, 0)
all_heatmaps = tf.concat(0, [all_heatmaps, heatmaps])
scaled_keypoints.set_shape([num_parts*2])
keypoints = tf.expand_dims(scaled_keypoints, 0)
adjusted_keypoints = tf.concat(0, [adjusted_keypoints, keypoints])
loop_iteration = tf.add(loop_iteration, 1)
return [loop_iteration, n_boxes, image, bboxes, parts, part_visibilities, areas, part_sigmas, input_size, heatmap_size, cropped_images, all_heatmaps, adjusted_keypoints]
def loop_cond(*args):
return tf.less(args[0], args[1])
# We'll generate the cropped images, the heatmaps, and the scaled / shifted keypoints
image_crops = tf.zeros([0, cfg.INPUT_SIZE, cfg.INPUT_SIZE, 3])
heatmaps = tf.zeros([0, cfg.HEATMAP_SIZE, cfg.HEATMAP_SIZE, num_parts])
adjusted_parts = tf.zeros([0, num_parts * 2])
loop_i = tf.constant(0)
loop_variables = [loop_i, num_bboxes, image, scaled_bboxes, scaled_parts, part_visibilities, areas, np.array(cfg.PARTS.SIGMAS), cfg.INPUT_SIZE, cfg.HEATMAP_SIZE, image_crops, heatmaps, adjusted_parts]
shape_invariants=[
loop_i.get_shape(),
num_bboxes.get_shape(),
image.get_shape(),
scaled_bboxes.get_shape(),
scaled_parts.get_shape(),
part_visibilities.get_shape(),
areas.get_shape(),
tf.TensorShape([num_parts]),
tf.TensorShape([]),
tf.TensorShape([]),
tf.TensorShape([None, cfg.INPUT_SIZE, cfg.INPUT_SIZE, 3]),
tf.TensorShape([None, cfg.HEATMAP_SIZE, cfg.HEATMAP_SIZE, num_parts]),
tf.TensorShape([None, num_parts * 2])
]
t = tf.while_loop(loop_cond, crop_and_resize, loop_variables, shape_invariants)
image_crops = t[-3]
heatmaps = t[-2]
adjusted_parts = t[-1]
# Add a summary of the final crops
if add_summaries:
tf.image_summary('cropped_images', image_crops)
# Get the images in the range [-1, 1]
cropped_images = tf.sub(image_crops, 0.5)
cropped_images = tf.mul(cropped_images, 2.0)
# Set the shape of everything for the queue
cropped_images.set_shape([None, cfg.INPUT_SIZE, cfg.INPUT_SIZE, 3])
image_ids = tf.tile([[image_id]], [num_bboxes, 1])
image_ids.set_shape([None, 1])
heatmaps.set_shape([None, cfg.HEATMAP_SIZE, cfg.HEATMAP_SIZE, num_parts])
bboxes = tf.concat(0, [xmin, ymin, xmax, ymax])
bboxes = tf.transpose(bboxes, [1, 0])
bboxes.set_shape([None, 4])
parts = adjusted_parts
parts.set_shape([None, num_parts * 2])
part_visibilities.set_shape([None, num_parts])
if shuffle_batch:
batched_images, batched_heatmaps, batched_parts, batched_part_visibilities, batched_image_ids = tf.train.shuffle_batch(
[cropped_images, heatmaps, parts, part_visibilities, image_ids],
batch_size=batch_size,
num_threads=num_threads,
capacity= capacity, #batch_size * (num_threads + 2),
# Ensures a minimum amount of shuffling of examples.
min_after_dequeue= min_after_dequeue, # 3 * batch_size,
seed = cfg.RANDOM_SEED,
enqueue_many=True,
name="shuffle_batch_queue"
)
else:
batched_images, batched_heatmaps, batched_parts, batched_part_visibilities, batched_image_ids = tf.train.batch(
[cropped_images, heatmaps, parts, part_visibilities, image_ids],
batch_size=batch_size,
num_threads=num_threads,
capacity= capacity, #batch_size * (num_threads + 2),
enqueue_many=True
)
# return a batch of images and their labels
return batched_images, batched_heatmaps, batched_parts, batched_part_visibilities, batched_image_ids