-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
170 lines (145 loc) · 5.54 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import torch.nn as nn
from score_module import *
import CRF
from s4.s4 import S4
def init_weights(m):
if isinstance(m, (nn.Conv2d, nn.Conv1d)):
nn.init.kaiming_normal_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm1d):
nn.init.constant_(m.weight, 1)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
if isinstance(m, nn.Linear):
nn.init.kaiming_uniform_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
class Block1(nn.Module):
def __init__(self, cin, cout, kernel_size=9, padding=1):
super().__init__()
self.block = nn.Sequential(
nn.Conv1d(cin,
cout,
kernel_size=kernel_size,
stride=1,
padding=padding),
nn.BatchNorm1d(cout),
nn.ReLU(inplace=True),
nn.Conv1d(cout, cout,
kernel_size=kernel_size,
stride=1,
padding=padding),
nn.BatchNorm1d(cout))
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x_conv = self.block(x)
x = x + x_conv
outputs = self.relu(x)
return outputs
class Block2(nn.Module):
def __init__(self, cin, cout,
kernel_size=9,
stride_size=2,
pad_size=4):
super().__init__()
self.mainblock = nn.Sequential(
nn.Conv1d(cin, cout,
kernel_size=kernel_size,
stride=stride_size,
padding=pad_size),
nn.BatchNorm1d(cout),
nn.ReLU(inplace=True),
nn.Conv1d(cout,
cout,
kernel_size=kernel_size,
stride=1,
padding=pad_size),
nn.BatchNorm1d(cout))
self.sideblock = nn.Sequential(
nn.Conv1d(cin,
cout,
kernel_size=1,
stride=stride_size,
padding=0),
nn.BatchNorm1d(cout),
nn.ReLU(inplace=True))
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x_conv1 = self.mainblock(x)
x_conv2 = self.sideblock(x)
x_conv = x_conv1 + x_conv2
outputs = self.relu(x_conv)
return outputs
class S4_layer(nn.Module):
def __init__(self, dim, state_dim, bidirectional, dropout=0.1):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.S4 = S4(d_model=dim, d_state=state_dim,
bidirectional=bidirectional,
dropout=dropout)
def forward(self, x):
x = self.norm(x.transpose(-1, -2)).transpose(-1, -2)
x = self.S4(x)[0]
return x
class SEGCRF(nn.Module):
def __init__(self, inputdim, numclass=6, nb_layers=4,
skip_score=False, backbone_type='crnn',
**kwargs):
super().__init__()
# parameters
self.inputdim = inputdim
self.numclass = numclass
self.backbone_type = backbone_type
# choose backbone
if backbone_type == 'crnn':
hidden_size = 32
features = nn.ModuleList()
self.features = nn.Sequential(Block2(32, 48, stride_size=1),
Block2(48, 48, stride_size=1),
Block2(48, 64, stride_size=1),
Block2(64, 64, stride_size=1))
self.rnn = nn.LSTM(64, 64, bidirectional=True, batch_first=True)
self.pair_score = pairwise_score_module(128, numclass, skip_score=skip_score)
self.features.apply(init_weights)
elif backbone_type == 's4':
d_layers = []
hidden_size = 64
for _ in range(nb_layers):
d_layers.append(S4_layer(dim=hidden_size, state_dim=64,
bidirectional=True))
self.s4_layer = nn.ModuleList(d_layers)
self.pair_score = pairwise_score_module(64, numclass, skip_score=skip_score)
# n=20
self.conv1 = nn.Conv1d(inputdim, hidden_size, kernel_size=3, stride=1, padding=3)
self.apool = nn.AvgPool1d(10, stride=5, padding=2)
# initialization
self.conv1.apply(init_weights)
def forward(self, x, y=None):
x = self.conv1(x)
if self.backbone_type == 's4':
for layer in self.s4_layer:
skip = x
x = layer(x)
x = x + skip
elif self.backbone_type == 'crnn':
x = self.features(x).transpose(1, 2)
x, _ = self.rnn(x)
x = x.transpose(1, 2)
x = self.apool(x).transpose(1, 2)
# compute pair score
x, x_skip = self.pair_score(x)
# compute crf logp
crf = CRF.NeuralSemiCRFInterval(x, x_skip)
if y is not None:
y_flatten = sum(y, [])
assert(len(y_flatten) == len(y)* self.numclass)
pathScore = crf.evalPath(y_flatten)
logZ = crf.computeLogZ()
logProb = pathScore - logZ
logProb = logProb.view(len(y), -1)
else:
logProb = 0
return logProb, crf
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)