Skip to content

Latest commit

 

History

History
 
 

eva

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EVA: Pre-training and Image Classification

Table of Contents

EVA Model Card

We provide all pre-trained & fine-tuned EVAs for the community. The following table summarizes the basic statistics of MIM pre-trained EVA and image classification EVA.

model name #param. MIM pt ep IN-21K ft ep IN-1K ft ep IN-1K top-1 weight
eva_psz14 1.0B 150 - - - 🤗 HF link (2GB)
eva_psz14to16 1.0B 150 - - - 🤗 HF link (2GB)
eva_21k_224px_psz14 1.0B 150 60 - - 🤗 HF link (2GB)
eva_21k_1k_336px_psz14_ema 1.0B 150 60 10 89.6 🤗 HF link (4GB)
eva_21k_1k_560px_psz14_ema 1.0B 150 60 15 89.7 🤗 HF link (4GB)
  • eva_psz14to16 model interpolates the kernel size of patch_embed from 14x14 to 16x16. This is useful for object detection, instance segmentation & semantic segmentation, etc. See interpolate_patch_14to16.py for implementation details.
  • For MIM pre-trained EVA and EVA-CLIP, we use deepspeed fp16 format. IN-1K fine-tuned EVA weights are larger (4GB v.s. 2GB) because ema updates models with fp32 format. The weights of other downstream tasks are also with fp32 format.

Performance of MIM pre-trained EVA encoder on ImageNet-1K

model IN-1K IN-V2 IN-ReaL IN-Adv. IN-Ren. IN-Ske. ObjectNet
EVA (336px) 89.6 81.6 90.8 86.2 88.3 67.7 60.9

For reference, timm collects some open-sourced state-of-the-art models' image classification results here (IN-1K, IN-V2, IN-ReaL, IN-Adv., IN-Ren., IN-Ske.).

Compared with other open-sourced models, EVA achieves state-of-the-art performance in all the classification benchmarks.

Performance of EVA-CLIP vision encoder on ImageNet-1K


PWC
PWC
PWC

model zero-shot (224px) linear probing (224px) linear probing (336px) fine-tuning (224px) fine-tuning (336px)
EVA-CLIP 78.5 (weight | log) 86.5 (weight | log 86.5 (weight | log) 89.1 (weight | log) 89.4 (weight | log)

We also evaluate the transfer learning ability of EVA-CLIP, which achieves the state-of-the-art top-1 accuracy on ImageNet-1K among all self-supervised learning approaches.

EVA-L: Learning better MIM representations from EVA-CLIP

We show EVA-CLIP is not only performant in zero-shot recognition, but also can improve the representation quality of MIM pre-training.

EVA-L is a vanilla ViT-Large encoder (#layer=24; dim=1024; patch_size=14x14; #param: 303M) pre-trained via MIM with vision features from EVA-CLIP as prediction targets. Therefore, during pre-training EVA-L learns MIM pre-text task while distills knowledge from a stronger teacher.

We adopt the MAE-style MIM pre-training with an asymmetric encoder-decoder architecture (modeling_mae_pretrain.py), and we provide the MIM-only pre-trained checkpoint (dataset / schedule: IN-21K / 150 epochs) as well as MIM pre-trained + supervised intermediate fine-tuned checkpoint (dataset / schedule: IN-21K / 90 epochs) for the community.

model name enc #param. IN-21K pt ep IN-21K ft ep weight pt log
eva_l_psz14 303M 150 - 🤗 HF link link
eva_l_psz14_21k_ft 303M 150 90 🤗 HF link link

Notice that for MAE-style ViTs, q,k,v all have bias term, which is different from the BEiT-style ViTs that only q&v have bias.

Performance of EVA-L on ImageNet-1K

model init. ckpt resolution #param. top-1 weight ft log
EVA-L eva_l_psz14 196x196 304M 88.0 🤗 HF link link
EVA-L eva_l_psz14 336x336 304M 88.6 🤗 HF link link
EVA-L eva_l_psz14_21k_ft 196x196 304M 88.6 🤗 HF link link
EVA-L eva_l_psz14_21k_ft 336x336 304M 89.2 🤗 HF link link

Comparisons with other large-sized models on ImageNet-1K

model resolution #param. top-1
InternImage-XL 384x384 335M 88.0
BEiT-L/16 512x512 306M 88.6
BEiTv2-L/16 (prev. best) 384x384 304M 89.0
EVA-L/14 336x336 304M 89.2

EVA-L can reach up to 89.2 top-1 accuracy on ImageNet-1K, which is very similar to the fine-tuned EVA-CLIP teacher (89.4 top-1 accuracy). To our knowledge, EVA-L is the best open-sourced large-sized vision encoder to date.

Setup

First, clone the repo and install required packages:

conda create --name eva python=3.8 -y
conda activate eva

git clone [email protected]:baaivision/EVA.git
cd eva
pip install torch==1.12.0+cu116 torchvision==0.13.0+cu116 torchaudio==0.12.0 --extra-index-url https://download.pytorch.org/whl/cu116
pip install -r requirements.txt

The core packages including: Pytorch version 1.12.0, torchvision version 0.13.0, timm version 0.5.4 and DeepSpeed version 0.7.5 etc.

Evaluate EVA on ImageNet-1K

We use the standard ImageNet-1K dataset. Download it from http://image-net.org. Then, move and extract the training and validation images to labeled subfolders, using the shell script.

Evaluate the fine-tuned EVA (336px, patch_size=14) on ImageNet-1K val with a single node (click to expand).
MODEL_NAME=eva_g_patch14

sz=336
batch_size=16
crop_pct=1.0

EVAL_CKPT=/path/to/eva_21k_1k_336px_psz14_ema_89p6.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_21k_1k_336px_psz14_ema_89p6.pt

DATA_PATH=/path/to/ImageNet-1K/


python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
        --data_path ${DATA_PATH}/train \
        --eval_data_path ${DATA_PATH}/val \
        --nb_classes 1000 \
        --data_set image_folder \
        --model ${MODEL_NAME} \
        --finetune ${EVAL_CKPT} \
        --input_size ${sz} \
        --batch_size ${batch_size} \
        --crop_pct ${crop_pct} \
        --no_auto_resume \
        --dist_eval \
        --eval \
        --enable_deepspeed

Expected results:

* Acc@1 89.622 Acc@5 98.930 loss 0.948
Evaluate the fine-tuned EVA (560px, patch_size=14) on ImageNet-1K val with a single node (click to expand).
MODEL_NAME=eva_g_patch14

sz=560
batch_size=16
crop_pct=1.0

EVAL_CKPT=/path/to/eva_21k_1k_560px_psz14_ema_89p7.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_21k_1k_560px_psz14_ema_89p7.pt

DATA_PATH=/path/to/ImageNet-1K/


python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
        --data_path ${DATA_PATH}/train \
        --eval_data_path ${DATA_PATH}/val \
        --nb_classes 1000 \
        --data_set image_folder \
        --model ${MODEL_NAME} \
        --finetune ${EVAL_CKPT} \
        --input_size ${sz} \
        --batch_size ${batch_size} \
        --crop_pct ${crop_pct} \
        --no_auto_resume \
        --dist_eval \
        --eval \
        --enable_deepspeed

Expected results:

* Acc@1 89.712 Acc@5 98.958 loss 0.881

Evaluate EVA on ImageNet-1K variants (IN-V2, IN-ReaL, IN-Adv., IN-Ren., IN-Ske., ObjectNet)

Evaluate the fine-tuned EVA (336px, patch_size=14) on ImageNet-V2 with a single node (click to expand).
MODEL_NAME=eva_g_patch14

sz=336
batch_size=16
crop_pct=1.0

EVAL_CKPT=/path/to/eva_21k_1k_336px_psz14_ema_89p6.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_21k_1k_336px_psz14_ema_89p6.pt

DATA_PATH=/path/to/imagenetv2/ImageNetV2-matched-frequency


python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
        --robust_test 'imagenet_v2' \
        --data_path ${DATA_PATH} \
        --eval_data_path ${DATA_PATH} \
        --nb_classes 1000 \
        --data_set image_folder \
        --model ${MODEL_NAME} \
        --finetune ${EVAL_CKPT} \
        --input_size ${sz} \
        --batch_size ${batch_size} \
        --crop_pct ${crop_pct} \
        --no_auto_resume \
        --dist_eval \
        --eval \
        --enable_deepspeed

Expected results:

* Acc@1 81.570 Acc@5 96.230 loss 1.274
Evaluate the fine-tuned EVA (336px, patch_size=14) on ImageNet-ReaL with a single GPU on a single node (click to expand).
MODEL_NAME=eva_g_patch14

sz=336
batch_size=16
crop_pct=1.0

EVAL_CKPT=/path/to/eva_21k_1k_336px_psz14_ema_89p6.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_21k_1k_336px_psz14_ema_89p6.pt

DATA_PATH=/path/to/ImageNet-1K


python -m torch.distributed.launch --nproc_per_node=1 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
        --real_labels real.json \
        --data_path ${DATA_PATH}/train \
        --eval_data_path ${DATA_PATH}/val \
        --nb_classes 1000 \
        --data_set image_folder \
        --model ${MODEL_NAME} \
        --finetune ${EVAL_CKPT} \
        --input_size ${sz} \
        --batch_size ${batch_size} \
        --crop_pct ${crop_pct} \
        --no_auto_resume \
        --dist_eval \
        --eval \
        --enable_deepspeed

Expected results:

* Acc@1 90.828 Acc@5 98.683 loss 0.947
Evaluate the fine-tuned EVA (336px, patch_size=14) on ImageNet-Adversarial with a single node (click to expand).
MODEL_NAME=eva_g_patch14

sz=336
batch_size=16
crop_pct=1.0

EVAL_CKPT=/path/to/eva_21k_1k_336px_psz14_ema_89p6.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_21k_1k_336px_psz14_ema_89p6.pt

DATA_PATH=/path/to/imagenet-a

python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
        --robust_test 'imagenet_a' \
        --data_path ${DATA_PATH} \
        --eval_data_path ${DATA_PATH} \
        --nb_classes 200 \
        --data_set image_folder \
        --model ${MODEL_NAME} \
        --finetune ${EVAL_CKPT} \
        --input_size ${sz} \
        --batch_size ${batch_size} \
        --crop_pct ${crop_pct} \
        --no_auto_resume \
        --dist_eval \
        --eval \
        --enable_deepspeed

Expected results:

* Acc@1 86.154 Acc@5 96.509 loss 0.979
Evaluate the fine-tuned EVA (336px, patch_size=14) on ImageNet-Rendition with a single node (click to expand).
MODEL_NAME=eva_g_patch14

sz=336
batch_size=16
crop_pct=1.0


EVAL_CKPT=/path/to/eva_21k_1k_336px_psz14_ema_89p6.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_21k_1k_336px_psz14_ema_89p6.pt

DATA_PATH=/path/to/imagenet-r

python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
        --robust_test 'imagenet_r' \
        --data_path ${DATA_PATH} \
        --eval_data_path ${DATA_PATH} \
        --nb_classes 200 \
        --data_set image_folder \
        --model ${MODEL_NAME} \
        --finetune ${EVAL_CKPT} \
        --input_size ${sz} \
        --batch_size ${batch_size} \
        --crop_pct ${crop_pct} \
        --no_auto_resume \
        --dist_eval \
        --eval \
        --enable_deepspeed

Expected results:

* Acc@1 88.283 Acc@5 95.830 loss 0.965
Evaluate the fine-tuned EVA (336px, patch_size=14) on ImageNet-Sketch with a single node (click to expand).
MODEL_NAME=eva_g_patch14

sz=336
batch_size=16
crop_pct=1.0

EVAL_CKPT=/path/to/eva_21k_1k_336px_psz14_ema_89p6.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_21k_1k_336px_psz14_ema_89p6.pt

DATA_PATH=/path/to/imagenet_sketch


python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
        --data_path ${DATA_PATH} \
        --eval_data_path ${DATA_PATH} \
        --nb_classes 1000 \
        --data_set image_folder \
        --model ${MODEL_NAME} \
        --finetune ${EVAL_CKPT} \
        --input_size ${sz} \
        --batch_size ${batch_size} \
        --crop_pct ${crop_pct} \
        --no_auto_resume \
        --dist_eval \
        --eval \
        --enable_deepspeed

Expected results:

* Acc@1 67.724 Acc@5 87.964 loss 1.955
Evaluate the fine-tuned EVA (336px, patch_size=14) on ObjectNet with a single node (click to expand).
MODEL_NAME=eva_g_patch14

sz=336
batch_size=16
crop_pct=1.0

EVAL_CKPT=/path/to/eva_21k_1k_336px_psz14_ema_89p6.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_21k_1k_336px_psz14_ema_89p6.pt

DUMMY_DATA_PATH=/path/to/ImageNet-1K
DATA_PATH=/sharefs/baai-mmdataset/clip_benchmark_datasets/objectnet/objectnet-1.0/images

python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
        --robust_test 'objectnet' \
        --data_path ${DUMMY_DATA_PATH}/train \
        --eval_data_path ${DATA_PATH} \
        --nb_classes 1000 \
        --data_set image_folder \
        --model ${MODEL_NAME} \
        --finetune ${EVAL_CKPT} \
        --input_size ${sz} \
        --batch_size ${batch_size} \
        --crop_pct ${crop_pct} \
        --no_auto_resume \
        --dist_eval \
        --eval \
        --enable_deepspeed

Expected results:

* Acc@1 60.907 Acc@5 82.768 loss 2.305

Evaluate EVA-CLIP on ImageNet-1K

linear probing

Evaluate the linear probing performance of EVA-CLIP vision encoder (224px, patch_size=14) on ImageNet-1K val with a single node (click to expand).
MODEL_NAME=eva_g_patch14

sz=224
batch_size=16
crop_pct=1.0

EVAL_CKPT=/path/to/eva_clip_vis_enc_sz224_lincls_86p5.pth # https://huggingface.co/BAAI/EVA/blob/main/eva_clip_vis_enc_sz224_lincls_86p5.pth

DATA_PATH=/path/to/ImageNet-1K/


python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
        --data_path ${DATA_PATH}/train \
        --eval_data_path ${DATA_PATH}/val \
        --nb_classes 1000 \
        --data_set image_folder \
        --model ${MODEL_NAME} \
        --finetune ${EVAL_CKPT} \
        --input_size ${sz} \
        --batch_size ${batch_size} \
        --crop_pct ${crop_pct} \
        --no_auto_resume \
        --linear_probe \
        --use_cls \
        --dist_eval \
        --eval

Expected results:

* Acc@1 86.462 Acc@5 98.034 loss 0.479
Evaluate the linear probing performance of EVA-CLIP vision encoder (336px, patch_size=14) on ImageNet-1K val with a single node (click to expand).
MODEL_NAME=eva_g_patch14

sz=336
batch_size=16
crop_pct=1.0

EVAL_CKPT=/path/to/eva_clip_vis_enc_sz336_lincls_86p5.pth # https://huggingface.co/BAAI/EVA/blob/main/eva_clip_vis_enc_sz336_lincls_86p5.pth

DATA_PATH=/path/to/ImageNet-1K/


python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
        --data_path ${DATA_PATH}/train \
        --eval_data_path ${DATA_PATH}/val \
        --nb_classes 1000 \
        --data_set image_folder \
        --model ${MODEL_NAME} \
        --finetune ${EVAL_CKPT} \
        --input_size ${sz} \
        --batch_size ${batch_size} \
        --crop_pct ${crop_pct} \
        --no_auto_resume \
        --linear_probe \
        --use_cls \
        --dist_eval \
        --eval

Expected results:

* Acc@1 86.498 Acc@5 98.026 loss 0.479

fine-tuning

Evaluate the linear probing performance of EVA-CLIP vision encoder (224px, patch_size=14) on ImageNet-1K val with a single node (click to expand).
MODEL_NAME=eva_g_patch14

sz=224
batch_size=16
crop_pct=1.0

EVAL_CKPT=/path/to/eva_clip_vis_enc_sz224_ftcls_89p1.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_clip_vis_enc_sz224_ftcls_89p1.pt

DATA_PATH=/path/to/ImageNet-1K/


python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
        --data_path ${DATA_PATH}/train \
        --eval_data_path ${DATA_PATH}/val \
        --nb_classes 1000 \
        --data_set image_folder \
        --model ${MODEL_NAME} \
        --finetune ${EVAL_CKPT} \
        --input_size ${sz} \
        --batch_size ${batch_size} \
        --crop_pct ${crop_pct} \
        --no_auto_resume \
        --dist_eval \
        --eval \
        --enable_deepspeed

Expected results:

* Acc@1 89.074 Acc@5 98.710 loss 0.726
Evaluate the linear probing performance of EVA-CLIP vision encoder (336px, patch_size=14) on ImageNet-1K val with a single node (click to expand).
MODEL_NAME=eva_g_patch14

sz=336
batch_size=16
crop_pct=1.0

EVAL_CKPT=/path/to/eva_clip_vis_enc_sz336_ftcls_89p4.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_clip_vis_enc_sz336_ftcls_89p4.pt

DATA_PATH=/path/to/ImageNet-1K/


python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
        --data_path ${DATA_PATH}/train \
        --eval_data_path ${DATA_PATH}/val \
        --nb_classes 1000 \
        --data_set image_folder \
        --model ${MODEL_NAME} \
        --finetune ${EVAL_CKPT} \
        --input_size ${sz} \
        --batch_size ${batch_size} \
        --crop_pct ${crop_pct} \
        --no_auto_resume \
        --linear_probe \
        --eval \
        --enable_deepspeed

Expected results:

* Acc@1 89.378 Acc@5 98.792 loss 0.691

Pre-train EVA on the merged-30M image dataset

Structure of our merged-30M image dataset (click to expand)
merged_30m_pt
├── 21k
│   └── imagnet21k -> /path/to/ImageNet-21K
├── ade
│   └── training -> /path/to/ADEChallengeData2016/images/training
├── cc12m
│   └── pt_img_data -> /path/to/CC12M/pt_img_data
├── cc3m
│   └── train_image -> /path/to/cc-3m/conceptual-captions/train_image
├── coco
│   └── train2017 -> /path/to/coco/train2017
└── o365
    └── pt_images -> /path/to/Objects365/pt_images
We use 16 nodes (total_bsz = 16*8*32 = 4096) for pre-training (click to expand).
MODEL_NAME=eva_g_patch14

DATA_PATH=/path/to/merged_30m_pt
VAL_DATA_PATH=/path/to/ImageNet-1K # monitoring val loss 

input_size=224
num_mask_patches=105 ### 224*224/14/14 * 0.4 ###

batch_size=32
update_freq=1

lr=1e-3
b2=0.98
eps=1e-6
dpr=0.1
ls=0.0

epochs=150
wmep=2

mixup=0.0
cj=0.0

zero_stage=1
save_ckpt_freq=1

teacher_type=clip
clip_model=ViT-L/14
cache_dir=/path/to/clip/large   # "ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",


EXP_NAME=merge30M_${MODEL}_sz${input_size}_mask${num_mask_patches}_lr${lr}_b2${b2}_eps${eps}_dpr${dpr}_ls${ls}_bsz16x8x${batch_size}_ep${epochs}_wmep${wmep}_cj${cj}_ftpye${feature_type}_ltype${loss_type}_mixup${mixup}_abspos

OUTPUT_DIR=/path/to/output/${epochs}/${EXP_NAME}


python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_eva_pretraining.py \
        --data_path ${DATA_PATH} \
        --val_data_path ${VAL_DATA_PATH} \
        --output_dir ${OUTPUT_DIR} \
        --log_dir ${OUTPUT_DIR}/tb_log \
        --model ${MODEL} \
        --teacher_type ${teacher_type} \
        --clip_model ${clip_model} \
        --cache_dir ${cache_dir} \
        --input_size ${input_size} --second_input_size ${input_size} \
        --num_mask_patches ${num_mask_patches} \
        --layer_scale_init_value ${ls} \
        --batch_size ${batch_size} \
        --lr ${lr} \
        --opt_betas 0.9 ${b2} \
        --opt_eps ${eps} \
        --drop_path ${dpr} \
        --epochs ${epochs} \
        --mixup ${mixup} \
        --color_jitter ${cj} \
        --warmup_epochs ${wmep} \
        --update_freq ${update_freq} \
        --clip_grad 3.0 \
        --weight_decay 0.05 \
        --rand \
        --zero_stage ${zero_stage} \
        --save_ckpt_freq ${save_ckpt_freq} \
        --enable_deepspeed

Intermediate Fine-tune MIM pre-trained EVA on ImageNet-21K

We use 8 nodes (total_bsz = 8*8*64 = 4096) for intermediate fine-tuning (click to expand).
MODEL_NAME=eva_g_patch14

sz=224
batch_size=64
update_freq=1
lr=1e-4
lrd=0.85
partial_freeze=0
ep=60
wmep=15
reprob=0.0
dpr=0.4
mixup=0.0
cutmix=1.0
zero_stage=1
crop_pct=1.0
b2=0.98
eps=1e-6
scale_low=0.5

EXP_NAME=sz${sz}_cropscalelow${scale_low}_bsz8x8x${update_freq}x${batch_size}_lr${lr}_lrd${lrd}_b2${b2}_eps${eps}_partial_frz${partial_freeze}_ep${ep}_wmep${wmep}_reprob${reprob}_dpr${dpr}_mixup${mixup}_cutmix${cutmix}_crop_pct${crop_pct}

# path to MIM pre-trained ckpt
PRETRAIN_CHKPT=/path/to/eva_psz14.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_psz14.pt

OUTPUT_DIR=/path/to/output/{EXP_NAME}

DATA_PATH=/path/to/ImageNet-21K

python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
        --data_path ${DATA_PATH} \
        --disable_eval_during_finetuning \
        --nb_classes 21841 \
        --data_set image_folder \
        --output_dir ${OUTPUT_DIR} \
        --log_dir ${OUTPUT_DIR}/tb_log \
        --model ${MODEL_NAME} \
        --finetune ${PRETRAIN_CHKPT} \
        --input_size ${sz} \
        --lr ${lr} \
        --layer_decay ${lrd} \
        --opt_betas 0.9 ${b2} \
        --opt_eps ${eps} \
        --epochs ${ep} \
        --warmup_epochs ${wmep} \
        --drop_path ${dpr} \
        --reprob ${reprob} \
        --mixup ${mixup} \
        --cutmix ${cutmix} \
        --batch_size ${batch_size} \
        --update_freq ${update_freq} \
        --crop_pct ${crop_pct} \
        --zero_stage ${zero_stage} \
        --partial_freeze ${partial_freeze} \
        --weight_decay 0.05 \
        --scale ${scale_low} 1.0 \
        --use_checkpoint \
        --enable_deepspeed

Fine-tuning EVA on ImageNet-1K with ImageNet-21K intermediate fine-tuned checkpoint

We use 4 nodes (total_bsz = 4*8*16 = 512) for fine-tuning (click to expand).
MODEL_NAME=eva_g_patch14

sz=336  # or 560
batch_size=16
update_freq=1

lr=3e-5      
lrd=0.95        

warmup_lr=0.0
min_lr=0.0
weight_decay=0.05

partial_freeze=0
ep=10   # or 15
wmep=2
dpr=0.4

reprob=0.0
mixup=0.0
cutmix=0.0

zero_stage=1
scale_low=0.08
crop_pct=1.0
smoothing=0.3
aa=rand-m9-mstd0.5-inc1


EXP_NAME=sz${sz}_cropscalelow${scale_low}_bsz4x8x${update_freq}x${batch_size}_lr${lr}_wmuplr${warmup_lr}_minlr${min_lr}_wd${weight_decay}_lrd${lrd}_partial_frz${partial_freeze}_ep${ep}_wmep${wmep}_reprob${reprob}_dpr${dpr}_mixup${mixup}_cutmix${cutmix}_aa${aa}_crop_pct${crop_pct}_sm${smoothing}


# path to ImageNet-21K Intermediate fine-tuned ckpt
PRETRAIN_CHKPT=/path/to/eva_21k_224px_psz14.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_21k_224px_psz14.pt

OUTPUT_DIR=/path/to/output/{EXP_NAME}

DATA_PATH=/path/to/ImageNet-1K


python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
        --data_path ${DATA_PATH}/train \
        --eval_data_path ${DATA_PATH}/val \
        --nb_classes 1000 \
        --data_set image_folder \
        --output_dir ${OUTPUT_DIR} \
        --log_dir ${OUTPUT_DIR}/tb_log \
        --model ${MODEL_NAME} \
        --finetune ${PRETRAIN_CHKPT} \
        --input_size ${sz} \
        --scale ${scale_low} 1.0 \
        --lr ${lr} \
        --warmup_lr ${warmup_lr} \
        --min_lr ${min_lr} \
        --layer_decay ${lrd} \
        --epochs ${ep} \
        --warmup_epochs ${wmep} \
        --drop_path ${dpr} \
        --reprob ${reprob} \
        --mixup ${mixup} \
        --cutmix ${cutmix} \
        --batch_size ${batch_size} \
        --update_freq ${update_freq} \
        --crop_pct ${crop_pct} \
        --zero_stage ${zero_stage} \
        --partial_freeze ${partial_freeze} \
        --smoothing ${smoothing} \
        --weight_decay ${weight_decay} \
        --aa ${aa} \
        --dist_eval \
        --use_checkpoint \
        --model_ema \
        --model_ema_eval \
        --enable_deepspeed

Transferring EVA-CLIP vision encoder to ImageNet-1K

linear probing

We use 5 nodes (total_bsz = 5*8*400 = 16000) for linear probing EVA-CLIP vision encoder w/ 224px inputs (click to expand).
MODEL_NAME=eva_g_patch14

sz=224 
batch_size=400
update_freq=1

lr=1.0      
lrd=1.0        

warmup_lr=0.0
min_lr=0.0
weight_decay=0.0

partial_freeze=0
ep=90
wmep=10
dpr=0.0

reprob=0.0
mixup=0.0
cutmix=0.0

zero_stage=0

scale_low=0.08
crop_pct=1.0
smoothing=0.0
aa=None


EXP_NAME=sz${sz}_cropscalelow${scale_low}_bsz4x8x${update_freq}x${batch_size}_lr${lr}_wmuplr${warmup_lr}_minlr${min_lr}_wd${weight_decay}_lrd${lrd}_partial_frz${partial_freeze}_ep${ep}_wmep${wmep}_reprob${reprob}_dpr${dpr}_mixup${mixup}_cutmix${cutmix}_aa${aa}_crop_pct${crop_pct}_sm${smoothing}


# path to EVA-CLIP vision encoder ckpt
PRETRAIN_CHKPT=/path/to/eva_clip_psz14_vision_enc.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_clip_psz14_vision_enc.pt

OUTPUT_DIR=/path/to/output/{EXP_NAME}

DATA_PATH=/path/to/ImageNet-1K


python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
        --data_path ${DATA_PATH}/train \
        --eval_data_path ${DATA_PATH}/val \
        --nb_classes 1000 \
        --data_set image_folder \
        --output_dir ${OUTPUT_DIR} \
        --log_dir ${OUTPUT_DIR}/tb_log \
        --model ${MODEL_NAME} \
        --finetune ${PRETRAIN_CHKPT} \
        --input_size ${sz} \
        --scale ${scale_low} 1.0 \
        --lr ${lr} \
        --warmup_lr ${warmup_lr} \
        --min_lr ${min_lr} \
        --layer_decay ${lrd} \
        --epochs ${ep} \
        --warmup_epochs ${wmep} \
        --drop_path ${dpr} \
        --reprob ${reprob} \
        --mixup ${mixup} \
        --cutmix ${cutmix} \
        --batch_size ${batch_size} \
        --update_freq ${update_freq} \
        --crop_pct ${crop_pct} \
        --zero_stage ${zero_stage} \
        --partial_freeze ${partial_freeze} \
        --smoothing ${smoothing} \
        --weight_decay ${weight_decay} \
        --aa ${aa} \
        --dist_eval \
        --linear_probe \
        --use_cls
We use 5 nodes (total_bsz = 5*8*400 = 16000) for linear probing EVA-CLIP vision encoder w/ 336px inputs (click to expand).
MODEL_NAME=eva_g_patch14

sz=336
batch_size=400
update_freq=1

lr=0.6      
lrd=1.0        

warmup_lr=0.0
min_lr=0.0
weight_decay=0.0

partial_freeze=0
ep=90
wmep=10
dpr=0.0

reprob=0.0
mixup=0.0
cutmix=0.0

zero_stage=0

scale_low=0.08
crop_pct=1.0
smoothing=0.0
aa=None


EXP_NAME=sz${sz}_cropscalelow${scale_low}_bsz4x8x${update_freq}x${batch_size}_lr${lr}_wmuplr${warmup_lr}_minlr${min_lr}_wd${weight_decay}_lrd${lrd}_partial_frz${partial_freeze}_ep${ep}_wmep${wmep}_reprob${reprob}_dpr${dpr}_mixup${mixup}_cutmix${cutmix}_aa${aa}_crop_pct${crop_pct}_sm${smoothing}


# path to EVA-CLIP vision encoder ckpt
PRETRAIN_CHKPT=/path/to/eva_clip_psz14_vision_enc.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_clip_psz14_vision_enc.pt

OUTPUT_DIR=/path/to/output/{EXP_NAME}

DATA_PATH=/path/to/ImageNet-1K


python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
        --data_path ${DATA_PATH}/train \
        --eval_data_path ${DATA_PATH}/val \
        --nb_classes 1000 \
        --data_set image_folder \
        --output_dir ${OUTPUT_DIR} \
        --log_dir ${OUTPUT_DIR}/tb_log \
        --model ${MODEL_NAME} \
        --finetune ${PRETRAIN_CHKPT} \
        --input_size ${sz} \
        --scale ${scale_low} 1.0 \
        --lr ${lr} \
        --warmup_lr ${warmup_lr} \
        --min_lr ${min_lr} \
        --layer_decay ${lrd} \
        --epochs ${ep} \
        --warmup_epochs ${wmep} \
        --drop_path ${dpr} \
        --reprob ${reprob} \
        --mixup ${mixup} \
        --cutmix ${cutmix} \
        --batch_size ${batch_size} \
        --update_freq ${update_freq} \
        --crop_pct ${crop_pct} \
        --zero_stage ${zero_stage} \
        --partial_freeze ${partial_freeze} \
        --smoothing ${smoothing} \
        --weight_decay ${weight_decay} \
        --aa ${aa} \
        --dist_eval \
        --linear_probe \
        --use_cls

fine-tuning

We use 4 nodes (total_bsz = 4*8*32 = 1024) for fine-tuning EVA-CLIP vision encoder w/ 224px inputs (click to expand).
MODEL_NAME=eva_g_patch14

sz=224 
batch_size=32
update_freq=1

lr=3e-5      
lrd=0.9        

warmup_lr=0.0
min_lr=0.0
weight_decay=0.05

partial_freeze=0
ep=20
wmep=2
dpr=0.4

reprob=0.0
mixup=0.0
cutmix=0.0

zero_stage=1
scale_low=0.08
crop_pct=1.0
smoothing=0.3
aa=rand-m9-mstd0.5-inc1


EXP_NAME=sz${sz}_cropscalelow${scale_low}_bsz4x8x${update_freq}x${batch_size}_lr${lr}_wmuplr${warmup_lr}_minlr${min_lr}_wd${weight_decay}_lrd${lrd}_partial_frz${partial_freeze}_ep${ep}_wmep${wmep}_reprob${reprob}_dpr${dpr}_mixup${mixup}_cutmix${cutmix}_aa${aa}_crop_pct${crop_pct}_sm${smoothing}


# path to EVA-CLIP vision encoder ckpt
PRETRAIN_CHKPT=/path/to/eva_clip_psz14_vision_enc.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_clip_psz14_vision_enc.pt

OUTPUT_DIR=/path/to/output/{EXP_NAME}

DATA_PATH=/path/to/ImageNet-1K


python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
        --data_path ${DATA_PATH}/train \
        --eval_data_path ${DATA_PATH}/val \
        --nb_classes 1000 \
        --data_set image_folder \
        --output_dir ${OUTPUT_DIR} \
        --log_dir ${OUTPUT_DIR}/tb_log \
        --model ${MODEL_NAME} \
        --finetune ${PRETRAIN_CHKPT} \
        --input_size ${sz} \
        --scale ${scale_low} 1.0 \
        --lr ${lr} \
        --warmup_lr ${warmup_lr} \
        --min_lr ${min_lr} \
        --layer_decay ${lrd} \
        --epochs ${ep} \
        --warmup_epochs ${wmep} \
        --drop_path ${dpr} \
        --reprob ${reprob} \
        --mixup ${mixup} \
        --cutmix ${cutmix} \
        --batch_size ${batch_size} \
        --update_freq ${update_freq} \
        --crop_pct ${crop_pct} \
        --zero_stage ${zero_stage} \
        --partial_freeze ${partial_freeze} \
        --smoothing ${smoothing} \
        --weight_decay ${weight_decay} \
        --aa ${aa} \
        --dist_eval \
        --use_checkpoint \
        --model_ema \
        --model_ema_eval \
        --enable_deepspeed
We use 4 nodes (total_bsz = 4*8*16 = 512) for fine-tuning EVA-CLIP vision encoder w/ 336px inputs (click to expand).
MODEL_NAME=eva_g_patch14

sz=336
batch_size=16
update_freq=1

lr=3e-5      
lrd=0.9        

warmup_lr=0.0
min_lr=0.0
weight_decay=0.05

partial_freeze=0
ep=20
wmep=2
dpr=0.4

reprob=0.0
mixup=0.0
cutmix=0.0

zero_stage=1
scale_low=0.08
crop_pct=1.0
smoothing=0.3
aa=rand-m9-mstd0.5-inc1


EXP_NAME=sz${sz}_cropscalelow${scale_low}_bsz4x8x${update_freq}x${batch_size}_lr${lr}_wmuplr${warmup_lr}_minlr${min_lr}_wd${weight_decay}_lrd${lrd}_partial_frz${partial_freeze}_ep${ep}_wmep${wmep}_reprob${reprob}_dpr${dpr}_mixup${mixup}_cutmix${cutmix}_aa${aa}_crop_pct${crop_pct}_sm${smoothing}


# path to EVA-CLIP vision encoder ckpt
PRETRAIN_CHKPT=/path/to/eva_clip_psz14_vision_enc.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_clip_psz14_vision_enc.pt

OUTPUT_DIR=/path/to/output/{EXP_NAME}

DATA_PATH=/path/to/ImageNet-1K


python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
        --data_path ${DATA_PATH}/train \
        --eval_data_path ${DATA_PATH}/val \
        --nb_classes 1000 \
        --data_set image_folder \
        --output_dir ${OUTPUT_DIR} \
        --log_dir ${OUTPUT_DIR}/tb_log \
        --model ${MODEL_NAME} \
        --finetune ${PRETRAIN_CHKPT} \
        --input_size ${sz} \
        --scale ${scale_low} 1.0 \
        --lr ${lr} \
        --warmup_lr ${warmup_lr} \
        --min_lr ${min_lr} \
        --layer_decay ${lrd} \
        --epochs ${ep} \
        --warmup_epochs ${wmep} \
        --drop_path ${dpr} \
        --reprob ${reprob} \
        --mixup ${mixup} \
        --cutmix ${cutmix} \
        --batch_size ${batch_size} \
        --update_freq ${update_freq} \
        --crop_pct ${crop_pct} \
        --zero_stage ${zero_stage} \
        --partial_freeze ${partial_freeze} \
        --smoothing ${smoothing} \
        --weight_decay ${weight_decay} \
        --aa ${aa} \
        --dist_eval \
        --use_checkpoint \
        --model_ema \
        --model_ema_eval \
        --enable_deepspeed

Acknowledgement

This part of EVA is built using the awesome BEiT, BEiTv2, CLIP, MAE, timm and DeepSpeed libraries. Thanks for their wonderful works!