-
Notifications
You must be signed in to change notification settings - Fork 0
/
Distortion.cpp
440 lines (403 loc) · 17.8 KB
/
Distortion.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
/*
This file is part of Repetier-Firmware.
Repetier-Firmware is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Repetier-Firmware is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Repetier-Firmware. If not, see <http://www.gnu.org/licenses/>.
This firmware is a nearly complete rewrite of the sprinter firmware
by kliment (https://github.com/kliment/Sprinter)
which based on Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware.
Functions in this file are used to communicate using ascii or repetier protocol.
*/
#include "Repetier.h"
#if DISTORTION_CORRECTION
Distortion Printer::distortion;
void Printer::measureDistortion(void) {
prepareForProbing();
#if defined(Z_PROBE_MIN_TEMPERATURE) && Z_PROBE_MIN_TEMPERATURE && Z_PROBE_REQUIRES_HEATING
float actTemp[NUM_EXTRUDER];
for(int i = 0; i < NUM_EXTRUDER; i++)
actTemp[i] = extruder[i].tempControl.targetTemperatureC;
Printer::moveToReal(IGNORE_COORDINATE, IGNORE_COORDINATE, RMath::max(EEPROM::zProbeHeight(), static_cast<float>(ZHOME_HEAT_HEIGHT)), IGNORE_COORDINATE, Printer::homingFeedrate[Z_AXIS]);
Commands::waitUntilEndOfAllMoves();
#if ZHOME_HEAT_ALL
for(int i = 0; i < NUM_EXTRUDER; i++) {
Extruder::setTemperatureForExtruder(RMath::max(actTemp[i], static_cast<float>(ZPROBE_MIN_TEMPERATURE)), i, false, false);
}
for(int i = 0; i < NUM_EXTRUDER; i++) {
if(extruder[i].tempControl.currentTemperatureC < ZPROBE_MIN_TEMPERATURE)
Extruder::setTemperatureForExtruder(RMath::max(actTemp[i], static_cast<float>(ZPROBE_MIN_TEMPERATURE)), i, false, true);
}
#else
if(extruder[Extruder::current->id].tempControl.currentTemperatureC < ZPROBE_MIN_TEMPERATURE)
Extruder::setTemperatureForExtruder(RMath::max(actTemp[Extruder::current->id], static_cast<float>(ZPROBE_MIN_TEMPERATURE)), Extruder::current->id, false, true);
#endif
#endif
float oldFeedrate = Printer::feedrate;
Printer::coordinateOffset[X_AXIS] = Printer::coordinateOffset[Y_AXIS] = Printer::coordinateOffset[Z_AXIS] = 0;
if(!distortion.measure()) {
GCode::fatalError(PSTR("G33 failed!"));
return;
}
Printer::feedrate = oldFeedrate;
#if defined(Z_PROBE_MIN_TEMPERATURE) && Z_PROBE_MIN_TEMPERATURE && Z_PROBE_REQUIRES_HEATING
#if ZHOME_HEAT_ALL
for(int i = 0; i < NUM_EXTRUDER; i++)
Extruder::setTemperatureForExtruder(actTemp[i], i, false, false);
for(int i = 0; i < NUM_EXTRUDER; i++)
Extruder::setTemperatureForExtruder(actTemp[i], i, false, actTemp[i] > MAX_ROOM_TEMPERATURE);
#else
Extruder::setTemperatureForExtruder(actTemp[Extruder::current->id], Extruder::current->id, false, actTemp[Extruder::current->id] > MAX_ROOM_TEMPERATURE);
#endif
#endif
}
Distortion::Distortion() {
}
void Distortion::init() {
updateDerived();
#if !DISTORTION_PERMANENT
resetCorrection();
#endif
#if EEPROM_MODE != 0
enabled = EEPROM::isZCorrectionEnabled();
Com::printFLN(PSTR("zDistortionCorrection:"), (int)enabled);
#else
enabled = false;
#endif
}
void Distortion::updateDerived() {
#if DRIVE_SYSTEM == DELTA
step = (2 * Printer::axisStepsPerMM[Z_AXIS] * DISTORTION_CORRECTION_R) / (DISTORTION_CORRECTION_POINTS - 1.0f);
radiusCorrectionSteps = DISTORTION_CORRECTION_R * Printer::axisStepsPerMM[Z_AXIS];
#else
xCorrectionSteps = (DISTORTION_XMAX - DISTORTION_XMIN) * Printer::axisStepsPerMM[X_AXIS] / (DISTORTION_CORRECTION_POINTS - 1);
xOffsetSteps = DISTORTION_XMIN * Printer::axisStepsPerMM[X_AXIS];
yCorrectionSteps = (DISTORTION_YMAX - DISTORTION_YMIN) * Printer::axisStepsPerMM[Y_AXIS] / (DISTORTION_CORRECTION_POINTS - 1);
yOffsetSteps = DISTORTION_YMIN * Printer::axisStepsPerMM[Y_AXIS];
#endif
zStart = DISTORTION_START_DEGRADE * Printer::axisStepsPerMM[Z_AXIS] + Printer::zMinSteps;
zEnd = DISTORTION_END_HEIGHT * Printer::axisStepsPerMM[Z_AXIS] + Printer::zMinSteps;
}
void Distortion::enable(bool permanent) {
enabled = true;
#if DISTORTION_PERMANENT && EEPROM_MODE != 0
if(permanent)
EEPROM::setZCorrectionEnabled(enabled);
#endif
Com::printFLN(Com::tZCorrectionEnabled);
}
void Distortion::disable(bool permanent) {
enabled = false;
#if DISTORTION_PERMANENT && EEPROM_MODE != 0
if(permanent)
EEPROM::setZCorrectionEnabled(enabled);
#endif
#if DRIVE_SYSTEM != DELTA
Printer::zCorrectionStepsIncluded = 0;
#endif
Printer::updateCurrentPosition(false);
Com::printFLN(Com::tZCorrectionDisabled);
}
void Distortion::reportStatus() {
Com::printFLN(enabled ? Com::tZCorrectionEnabled : Com::tZCorrectionDisabled);
}
void Distortion::resetCorrection(void) {
Com::printInfoFLN(PSTR("Resetting Z correction"));
for(int i = 0; i < DISTORTION_CORRECTION_POINTS * DISTORTION_CORRECTION_POINTS; i++)
setMatrix(0, i);
}
int Distortion::matrixIndex(fast8_t x, fast8_t y) const {
return static_cast<int>(y) * DISTORTION_CORRECTION_POINTS + x;
}
int32_t Distortion::getMatrix(int index) const {
#if DISTORTION_PERMANENT
return EEPROM::getZCorrection(index);
#else
return matrix[index];
#endif
}
void Distortion::setMatrix(int32_t val, int index) {
#if DISTORTION_PERMANENT
#if EEPROM_MODE != 0
EEPROM::setZCorrection(val, index);
#endif
#else
matrix[index] = val;
#endif
}
bool Distortion::isCorner(fast8_t i, fast8_t j) const {
return (i == 0 || i == DISTORTION_CORRECTION_POINTS - 1)
&& (j == 0 || j == DISTORTION_CORRECTION_POINTS - 1);
}
/**
Extrapolates the changes from p1 to p2 to p3 which has the same distance as p1-p2.
*/
inline int32_t Distortion::extrapolatePoint(fast8_t x1, fast8_t y1, fast8_t x2, fast8_t y2) const {
return 2 * getMatrix(matrixIndex(x2, y2)) - getMatrix(matrixIndex(x1, y1));
}
void Distortion::extrapolateCorner(fast8_t x, fast8_t y, fast8_t dx, fast8_t dy) {
setMatrix((extrapolatePoint(x + 2 * dx, y, x + dx, y) + extrapolatePoint(x, y + 2 * dy, x, y + dy)) / 2.0,
matrixIndex(x, y));
}
void Distortion::extrapolateCorners() {
const fast8_t m = DISTORTION_CORRECTION_POINTS - 1;
extrapolateCorner(0, 0, 1, 1);
extrapolateCorner(0, m, 1, -1);
extrapolateCorner(m, 0, -1, 1);
extrapolateCorner(m, m, -1, -1);
}
bool Distortion::measure(void) {
fast8_t ix, iy;
disable(false);
Printer::prepareForProbing();
float z = RMath::max(EEPROM::zProbeBedDistance() + (EEPROM::zProbeHeight() > 0 ? EEPROM::zProbeHeight() : 0), static_cast<float>(ZHOME_HEAT_HEIGHT)); //EEPROM::zProbeBedDistance() + (EEPROM::zProbeHeight() > 0 ? EEPROM::zProbeHeight() : 0);
Com::printFLN(PSTR("Reference Z for measurement:"), z, 3);
updateDerived();
/*
#if DRIVE_SYSTEM == DELTA
// It is not possible to go to the edges at the top, also users try
// it often and wonder why the coordinate system is then wrong.
// For that reason we ensure a correct behavior by code.
Printer::homeAxis(true, true, true);
Printer::moveTo(IGNORE_COORDINATE, IGNORE_COORDINATE, EEPROM::zProbeBedDistance() + (EEPROM::zProbeHeight() > 0 ? EEPROM::zProbeHeight() : 0), IGNORE_COORDINATE, Printer::homingFeedrate[Z_AXIS]);
#else
if(!Printer::isXHomed() || !Printer::isYHomed())
Printer::homeAxis(true, true, false);
Printer::updateCurrentPosition(true);
Printer::moveTo(Printer::invAxisStepsPerMM[X_AXIS] * ((isCorner(0, 0) ? 1 : 0) * xCorrectionSteps + xOffsetSteps), Printer::invAxisStepsPerMM[Y_AXIS] * ((DISTORTION_CORRECTION_POINTS - 1) * yCorrectionSteps + yOffsetSteps), IGNORE_COORDINATE, IGNORE_COORDINATE, EEPROM::zProbeXYSpeed());
#endif
*/
//Com::printFLN(PSTR("radiusCorr:"), radiusCorrectionSteps);
//Com::printFLN(PSTR("steps:"), step);
int32_t zCorrection = 0;
#if Z_PROBE_Z_OFFSET_MODE == 1
zCorrection -= Printer::zBedOffset * Printer::axisStepsPerMM[Z_AXIS];
#endif
Printer::startProbing(true);
Printer::moveToReal(IGNORE_COORDINATE, IGNORE_COORDINATE, z, IGNORE_COORDINATE, Printer::homingFeedrate[Z_AXIS]);
for (iy = DISTORTION_CORRECTION_POINTS - 1; iy >= 0; iy--)
for (ix = 0; ix < DISTORTION_CORRECTION_POINTS; ix++) {
#if (DRIVE_SYSTEM == DELTA) && DISTORTION_EXTRAPOLATE_CORNERS
if (isCorner(ix, iy)) continue;
#endif
#if DRIVE_SYSTEM == DELTA
float mtx = Printer::invAxisStepsPerMM[X_AXIS] * (ix * step - radiusCorrectionSteps);
float mty = Printer::invAxisStepsPerMM[Y_AXIS] * (iy * step - radiusCorrectionSteps);
#else
float mtx = Printer::invAxisStepsPerMM[X_AXIS] * (ix * xCorrectionSteps + xOffsetSteps);
float mty = Printer::invAxisStepsPerMM[Y_AXIS] * (iy * yCorrectionSteps + yOffsetSteps);
#endif
//Com::printF(PSTR("mx "),mtx);
//Com::printF(PSTR("my "),mty);
//Com::printF(PSTR("ix "),(int)ix);
//Com::printFLN(PSTR("iy "),(int)iy);
Printer::moveToReal(mtx, mty, z, IGNORE_COORDINATE, EEPROM::zProbeXYSpeed());
float zp = Printer::runZProbe(false, false, Z_PROBE_REPETITIONS);
#if defined(DISTORTION_LIMIT_TO) && DISTORTION_LIMIT_TO != 0
if(zp == ILLEGAL_Z_PROBE || fabs(z - zp + zCorrection * Printer::invAxisStepsPerMM[Z_AXIS]) > DISTORTION_LIMIT_TO) {
#else
if(zp == ILLEGAL_Z_PROBE) {
#endif
Com::printErrorFLN(PSTR("Stopping distortion measurement due to errors."));
Printer::finishProbing();
return false;
}
setMatrix(floor(0.5f + Printer::axisStepsPerMM[Z_AXIS] * (z - zp)) + zCorrection,
matrixIndex(ix, iy));
}
Printer::finishProbing();
#if (DRIVE_SYSTEM == DELTA) && DISTORTION_EXTRAPOLATE_CORNERS
extrapolateCorners();
#endif
// make average center
// Disabled since we can use grid measurement to get average plane if that is what we want.
// Shifting z with each measuring is a pain and can result in unexpected behavior.
/*
float sum = 0;
for(int k = 0;k < DISTORTION_CORRECTION_POINTS * DISTORTION_CORRECTION_POINTS; k++)
sum += getMatrix(k);
sum /= static_cast<float>(DISTORTION_CORRECTION_POINTS * DISTORTION_CORRECTION_POINTS);
for(int k = 0;k < DISTORTION_CORRECTION_POINTS * DISTORTION_CORRECTION_POINTS; k++)
setMatrix(getMatrix(k) - sum, k);
Printer::zLength -= sum * Printer::invAxisStepsPerMM[Z_AXIS];
*/
#if EEPROM_MODE
EEPROM::storeDataIntoEEPROM();
#endif
// print matrix
Com::printInfoFLN(PSTR("Distortion correction matrix:"));
for (iy = DISTORTION_CORRECTION_POINTS - 1; iy >= 0 ; iy--) {
for(ix = 0; ix < DISTORTION_CORRECTION_POINTS; ix++)
Com::printF(ix ? PSTR(", ") : PSTR(""), getMatrix(matrixIndex(ix, iy)));
Com::println();
}
showMatrix();
enable(true);
return true;
//Printer::homeAxis(false, false, true);
}
int32_t Distortion::correct(int32_t x, int32_t y, int32_t z) const {
if (!enabled || Printer::isZProbingActive()) {
return 0;
}
z += Printer::offsetZ * Printer::axisStepsPerMM[Z_AXIS] - Printer::zMinSteps;
if (z > zEnd) {
/* Com::printF(PSTR("NoCor z:"),z);
Com::printF(PSTR(" zEnd:"),zEnd);
Com::printF(PSTR(" en:"),(int)enabled);
Com::printFLN(PSTR(" zp:"),(int)Printer::isZProbingActive());*/
return 0;
}
x -= Printer::offsetX * Printer::axisStepsPerMM[X_AXIS]; // correct active tool offset
y -= Printer::offsetY * Printer::axisStepsPerMM[Y_AXIS];
if(false) {
Com::printF(PSTR("correcting ("), x);
Com::printF(PSTR(","), y);
}
#if DRIVE_SYSTEM == DELTA
x += radiusCorrectionSteps;
y += radiusCorrectionSteps;
int32_t fxFloor = (x - (x < 0 ? step - 1 : 0)) / step; // special case floor for negative integers!
int32_t fyFloor = (y - (y < 0 ? step - 1 : 0)) / step;
#else
x -= xOffsetSteps;
y -= yOffsetSteps;
int32_t fxFloor = (x - (x < 0 ? xCorrectionSteps - 1 : 0)) / xCorrectionSteps; // special case floor for negative integers!
int32_t fyFloor = (y - (y < 0 ? yCorrectionSteps - 1 : 0)) / yCorrectionSteps;
#endif
// indexes to the matrix
// position between cells of matrix, range=0 to 1 - outside of the matrix the value will be outside this range and the value will be extrapolated
#if DRIVE_SYSTEM == DELTA
int32_t fx = x - fxFloor * step; // Grid normalized coordinates
int32_t fy = y - fyFloor * step;
if (fxFloor < 0) {
fxFloor = 0;
fx = 0;
} else if (fxFloor >= DISTORTION_CORRECTION_POINTS - 1) {
fxFloor = DISTORTION_CORRECTION_POINTS - 2;
fx = step;
}
if (fyFloor < 0) {
fyFloor = 0;
fy = 0;
} else if (fyFloor >= DISTORTION_CORRECTION_POINTS - 1) {
fyFloor = DISTORTION_CORRECTION_POINTS - 2;
fy = step;
}
int32_t idx11 = matrixIndex(fxFloor, fyFloor);
int32_t m11 = getMatrix(idx11), m12 = getMatrix(idx11 + 1);
int32_t m21 = getMatrix(idx11 + DISTORTION_CORRECTION_POINTS);
int32_t m22 = getMatrix(idx11 + DISTORTION_CORRECTION_POINTS + 1);
int32_t zx1 = m11 + ((m12 - m11) * fx) / step;
int32_t zx2 = m21 + ((m22 - m21) * fx) / step;
int32_t correction_z = zx1 + ((zx2 - zx1) * fy) / step;
/*if(z == Printer::zMinSteps) {
Com::printF(PSTR("DT M11:"),m11);
Com::printF(PSTR(" M12:"),m12);
Com::printF(PSTR(" M21:"),m21);
Com::printF(PSTR(" M22:"),m22);
Com::printF(PSTR(" FX:"),fx);
Com::printF(PSTR(" FY:"),fy);
Com::printF(PSTR(" FFX:"),fxFloor);
Com::printF(PSTR(" FFY:"),fyFloor);
Com::printF(PSTR(" XP:"),x-radiusCorrectionSteps);
Com::printF(PSTR(" Yp:"),y-radiusCorrectionSteps);
Com::printF(PSTR(" STEP:"),step);
Com::printFLN(PSTR(" ZCOR:"),correction_z);
}*/
#else
int32_t fx = x - fxFloor * xCorrectionSteps; // Grid normalized coordinates
int32_t fy = y - fyFloor * yCorrectionSteps;
if (fxFloor < 0) {
fxFloor = 0;
fx = 0;
} else if (fxFloor >= DISTORTION_CORRECTION_POINTS - 1) {
fxFloor = DISTORTION_CORRECTION_POINTS - 2;
fx = xCorrectionSteps;
}
if (fyFloor < 0) {
fyFloor = 0;
fy = 0;
} else if (fyFloor >= DISTORTION_CORRECTION_POINTS - 1) {
fyFloor = DISTORTION_CORRECTION_POINTS - 2;
fy = yCorrectionSteps;
}
int32_t idx11 = matrixIndex(fxFloor, fyFloor);
int32_t m11 = getMatrix(idx11), m12 = getMatrix(idx11 + 1);
int32_t m21 = getMatrix(idx11 + DISTORTION_CORRECTION_POINTS);
int32_t m22 = getMatrix(idx11 + DISTORTION_CORRECTION_POINTS + 1);
int32_t zx1 = m11 + ((m12 - m11) * fx) / xCorrectionSteps;
int32_t zx2 = m21 + ((m22 - m21) * fx) / xCorrectionSteps;
int32_t correction_z = zx1 + ((zx2 - zx1) * fy) / yCorrectionSteps;
#endif
/* if(false) {
Com::printF(PSTR(") by "), correction_z);
Com::printF(PSTR(" ix= "), fxFloor); Com::printF(PSTR(" fx= "), (float)fx/(float)xCorrectionSteps,3);
Com::printF(PSTR(" iy= "), fyFloor); Com::printFLN(PSTR(" fy= "), (float)fy/(float)yCorrectionSteps,3);
}*/
if (z > zStart && z > Printer::zMinSteps)
//All variables are type int. For calculation we need float values
correction_z = (correction_z * static_cast<float>(zEnd - z) / (zEnd - zStart));
/* if(correction_z > 20 || correction_z < -20) {
Com::printFLN(PSTR("Corr. error too big:"),correction_z);
Com::printF(PSTR("fxf"),(int)fxFloor);
Com::printF(PSTR(" fyf"),(int)fyFloor);
Com::printF(PSTR(" fx"),fx);
Com::printF(PSTR(" fy"),fy);
Com::printF(PSTR(" x"),x);
Com::printFLN(PSTR(" y"),y);
Com::printF(PSTR(" m11:"),m11);
Com::printF(PSTR(" m12:"),m12);
Com::printF(PSTR(" m21:"),m21);
Com::printF(PSTR(" m22:"),m22);
Com::printFLN(PSTR(" step:"),step);
correction_z = 0;
}*/
return correction_z;
}
void Distortion::set(float x, float y, float z) {
#if defined(DISTORTION_LIMIT_TO) && DISTORTION_LIMIT_TO != 0
if(fabs(z) > DISTORTION_LIMIT_TO) {
Com::printWarningFLN(PSTR("Max. distortion value exceeded - not setting this value."));
return;
}
#endif
#if DRIVE_SYSTEM == DELTA
int ix = (x * Printer::axisStepsPerMM[Z_AXIS] + radiusCorrectionSteps + step / 2) / step;
int iy = (y * Printer::axisStepsPerMM[Z_AXIS] + radiusCorrectionSteps + step / 2) / step;
#else
int ix = (x * Printer::axisStepsPerMM[X_AXIS] - xOffsetSteps + xCorrectionSteps / 2) / xCorrectionSteps;
int iy = (y * Printer::axisStepsPerMM[Y_AXIS] - yOffsetSteps + yCorrectionSteps / 2) / yCorrectionSteps;
#endif
if(ix < 0) ix = 0;
if(iy < 0) iy = 0;
if(ix >= DISTORTION_CORRECTION_POINTS - 1) ix = DISTORTION_CORRECTION_POINTS - 1;
if(iy >= DISTORTION_CORRECTION_POINTS - 1) iy = DISTORTION_CORRECTION_POINTS - 1;
int32_t idx = matrixIndex(ix, iy);
setMatrix(z * Printer::axisStepsPerMM[Z_AXIS], idx);
}
void Distortion::showMatrix() {
for(int ix = 0; ix < DISTORTION_CORRECTION_POINTS; ix++) {
for(int iy = 0; iy < DISTORTION_CORRECTION_POINTS; iy++) {
#if DRIVE_SYSTEM == DELTA
float x = (-radiusCorrectionSteps + ix * step) * Printer::invAxisStepsPerMM[Z_AXIS];
float y = (-radiusCorrectionSteps + iy * step) * Printer::invAxisStepsPerMM[Z_AXIS];
#else
float x = (xOffsetSteps + ix * xCorrectionSteps) * Printer::invAxisStepsPerMM[X_AXIS];
float y = (yOffsetSteps + iy * yCorrectionSteps) * Printer::invAxisStepsPerMM[Y_AXIS];
#endif
int32_t idx = matrixIndex(ix, iy);
float z = getMatrix(idx) * Printer::invAxisStepsPerMM[Z_AXIS];
Com::printF(PSTR("G33 X"), x, 2);
Com::printF(PSTR(" Y"), y, 2);
Com::printFLN(PSTR(" Z"), z, 3);
}
}
}
#endif // DISTORTION_CORRECTION