Skip to content

Latest commit

 

History

History
42 lines (36 loc) · 1.49 KB

File metadata and controls

42 lines (36 loc) · 1.49 KB

Build-a-convolutional-neural-network-with-Tensorflow-and-Keras

This is a tutorial for building a CNN with tensorflow and keras. The model will be used for plate recognition. The model is then converted to used by OpenCV dnn in a C# application.

Alt-text

Prerequisite

  • Packages: tensorflow, keras, scikit-learn, matplotlib
  • Project structure
├───train_data
│   ├───0
│   ├───1
│   ├───2
│   ├───3
│   ├───4
│   ├───5
│   ├───6
│   ├───7
│   ├───8
│   ├───9
├───Convert_keras_to_tf.py
├───Prediction_tf_pb.py
├───train.py

Implementation

  • Train the model

python train.py --dataset train_data --model model.model --label-bin bin --plot plot

  • Convert the model to tensorflow model

python Convert_keras_to_tf.py --keras_model model.model --tf_model tf_model.pb

  • Test the tensorflow model

python Prediction_tf_pb.py

Result

  • Accuracy: 99,9% after 20 epochs
  • Processing time: 3ms/1 image

Alt-text

Acknowledgement