-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtrain_svm.py
executable file
·115 lines (92 loc) · 5.32 KB
/
train_svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# Copyright (c) 2020. Hanchen Wang, [email protected]
# Ref: https://scikit-learn.org/stable/modules/svm.html
# Ref: https://scikit-learn.org/stable/modules/classes.html#module-sklearn.model_selection
import os, sys, torch, argparse, datetime, importlib, numpy as np
sys.path.append('utils')
sys.path.append('models')
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
from ModelNetDataLoader import General_CLSDataLoader_HDF5
from Torch_Utility import copy_parameters
# from sklearn.preprocessing import scale
from torch.utils.data import DataLoader
from Dataset_Loc import Dataset_Loc
from sklearn import svm, metrics
from tqdm import tqdm
def parse_args():
parser = argparse.ArgumentParser('SVM on Point Cloud Classification')
''' === Network Model === '''
parser.add_argument('--gpu', type=str, default='0', help='GPU [default: 0]')
parser.add_argument('--model', default='pcn_util', help='model [default: pcn_util]')
parser.add_argument('--batch_size', type=int, default=24, help='batch size [default: 24]')
parser.add_argument('--restore_path', type=str, help="path to pre-trained weights [default: None]")
parser.add_argument('--grid_search', action='store_true', help='opt parameters via Grid Search [default: False]')
''' === Dataset === '''
parser.add_argument('--partial', action='store_true', help='partial objects [default: False]')
parser.add_argument('--bn', action='store_true', help='with background noise [default: False]')
parser.add_argument('--dataset', type=str, default='modelnet40', help='dataset [default: modelnet40]')
parser.add_argument('--fname', type=str, default="", help='filename, used in ScanObjectNN [default: ]')
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
_, TRAIN_FILES, TEST_FILES = Dataset_Loc(dataset=args.dataset, fname=args.fname,
partial=args.partial, bn=args.bn)
TRAIN_DATASET = General_CLSDataLoader_HDF5(file_list=TRAIN_FILES)
TEST_DATASET = General_CLSDataLoader_HDF5(file_list=TEST_FILES)
trainDataLoader = DataLoader(TRAIN_DATASET, batch_size=args.batch_size, shuffle=True, num_workers=4)
testDataLoader = DataLoader(TEST_DATASET, batch_size=args.batch_size, shuffle=Falses, num_workers=4)
MODEL = importlib.import_module(args.model)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
encoder = MODEL.encoder(args=args, num_channel=3).to(device)
encoder = torch.nn.DataParallel(encoder)
checkpoint = torch.load(args.restore_path)
encoder = copy_parameters(encoder, checkpoint, verbose=True)
X_train, y_train, X_test, y_test = [], [], [], []
with torch.no_grad():
encoder.eval()
for points, target in tqdm(trainDataLoader, total=len(trainDataLoader), smoothing=0.9):
points, target = points.float().transpose(2, 1).cuda(), target.long().cuda()
feats = encoder(points)
X_train.append(feats.cpu().numpy())
y_train.append(target.cpu().numpy())
for points, target in tqdm(testDataLoader, total=len(testDataLoader), smoothing=0.9):
points, target = points.float().transpose(2, 1).cuda(), target.long().cuda()
feats = encoder(points)
X_test.append(feats.cpu().numpy())
y_test.append(target.cpu().numpy())
X_train, y_train = np.concatenate(X_train), np.concatenate(y_train)
X_test, y_test = np.concatenate(X_test), np.concatenate(y_test)
# Optional: Standardize the Feature Space
# X_train, X_test = scale(X_train), scale(X_test)
''' === Simple Trial === '''
linear_svm = svm.SVC(kernel='linear')
linear_svm.fit(X_train, y_train)
y_pred = linear_svm.predict(X_test)
print("\n", "Simple Linear SVC accuracy:", metrics.accuracy_score(y_test, y_pred), "\n")
rbf_svm = svm.SVC(kernel='rbf')
rbf_svm.fit(X_train, y_train)
y_pred = rbf_svm.predict(X_test)
print("Simple RBF SVC accuracy:", metrics.accuracy_score(y_test, y_pred), "\n")
''' === Grid Search for SVM with RBF Kernel === '''
if not args.grid_search:
sys.exit()
print("Now we use Grid Search to opt the parameters for SVM RBF kernel")
# [1e-3, 5e-3, 1e-2, ..., 5e1]
gamma_range = np.outer(np.logspace(-3, 1, 5), np.array([1, 5])).flatten()
# [1e-1, 5e-1, 1e0, ..., 5e1]
C_range = np.outer(np.logspace(-1, 1, 3), np.array([1, 5])).flatten()
parameters = {'kernel': ['rbf'], 'C': C_range, 'gamma': gamma_range}
svm_clsf = svm.SVC()
grid_clsf = GridSearchCV(estimator=svm_clsf, param_grid=parameters, n_jobs=8, verbose=1)
start_time = datetime.datetime.now()
print('Start Param Searching at {}'.format(str(start_time)))
grid_clsf.fit(X_train, y_train)
print('Elapsed time, param searching {}'.format(str(datetime.datetime.now() - start_time)))
sorted(grid_clsf.cv_results_.keys())
# scores = grid_clsf.cv_results_['mean_test_score'].reshape(len(C_range), len(gamma_range))
y_pred = grid_clsf.best_estimator_.predict(X_test)
print("\n\n")
print("="*37)
print("Best Params via Grid Search Cross Validation on Train Split is: ", grid_clsf.best_params_)
print("Best Model's Accuracy on Test Dataset: {}".format(metrics.accuracy_score(y_test, y_pred)))