-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_perfect_player.py
executable file
·148 lines (121 loc) · 4.28 KB
/
train_perfect_player.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#!/usr/bin/env python
from helpers import PLAYERS, next_player
from tqdm import tqdm
import pickle
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
EMBED_N = 128
###### GET OPTIMAL MOVES ######
def is_winner(board, player):
return (np.any(np.all(board == player, axis=1)) or \
np.any(np.all(board == player, axis=0)) or \
np.all(np.diag(board) == player) or \
np.all(np.diag(np.fliplr(board)) == player))
def is_draw(board):
return not np.any(board == 0)
def generate_valid_boards(current_board, player, all_boards, board_hashes):
board_hash = current_board.tobytes()
if board_hash in board_hashes:
return
if is_winner(current_board, PLAYERS.X) or is_winner(current_board, PLAYERS.O) or is_draw(current_board):
return
board_hashes.add(board_hash)
all_boards.append(current_board.copy())
for i in range(3):
for j in range(3):
if current_board[i, j] == 0:
current_board[i, j] = player
generate_valid_boards(current_board, next_player(player), all_boards, board_hashes)
current_board[i, j] = 0
def get_optimal_move(board, player):
assert not is_winner(board, PLAYERS.X)
assert not is_winner(board, PLAYERS.O)
assert not is_draw(board)
best_score = -np.inf
best_move = None
for i in range(3):
for j in range(3):
if board[i, j] == PLAYERS.NONE:
board[i, j] = player
if is_winner(board, player):
score = 1
elif is_draw(board):
score = 0
else:
_, score = get_optimal_move(board, next_player(player))
# Invert the score as it is from the opponent's perspective
score = -score
if score > best_score:
best_score = score
best_move = (i, j)
board[i, j] = PLAYERS.NONE
return best_move, best_score
def generate_perfect_moves():
all_boards = []
board_hashes = set()
initial_board = np.zeros((3, 3), dtype=int)
generate_valid_boards(initial_board, PLAYERS.X, all_boards, board_hashes)
board_move_pairs = []
for board in tqdm(all_boards):
player = PLAYERS.O if np.sum(board == PLAYERS.X) > np.sum(board == PLAYERS.O) else PLAYERS.X
move, _ = get_optimal_move(board, player)
board_move_pairs.append((board, move))
return board_move_pairs
###### TRAINING STUFF ######
class TicTacToeDataset(Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
board, move = self.data[idx]
board = torch.tensor(board).long()
board_flat_onehot = torch.nn.functional.one_hot(board.flatten(), num_classes=3).float()
board = torch.cat([board_flat_onehot.flatten(), 0.5*torch.ones((9,))])
move = move[0] * 3 + move[1] # Convert move to single integer
return board, move
class TicTacToeNN(nn.Module):
def __init__(self):
super(TicTacToeNN, self).__init__()
self.fc1 = nn.Linear(9*4, EMBED_N)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(EMBED_N, 9, bias=False)
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
return x
##### TRAIN PERFECT PLAYER #####
print('Generating perfect moves...')
dataset = TicTacToeDataset(generate_perfect_moves())
data_loader = DataLoader(dataset, batch_size=128, shuffle=True)
print('Starting training...')
model = TicTacToeNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.01)
steps = 300
pbar = tqdm(range(steps))
for step in pbar:
total_loss = 0
for board, optimal_move in data_loader:
outputs = model(board)
loss = criterion(outputs, optimal_move)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
pbar.set_description(f'Epoch {step+1}/{steps}, Loss: {total_loss/len(data_loader)}')
params = list(model.parameters())
names = ['input', 'bias', 'output']
save_params = {}
for name_, param in zip(names, params):
if len(param.data.shape) == 2:
save_params[name_] = param.data.T[None,:]
else:
save_params[name_] = param.data[None,:]
print('Saving weights...')
with open('perfect_dna.pkl', 'wb') as f:
pickle.dump(save_params, f)