-
Notifications
You must be signed in to change notification settings - Fork 221
/
main.py
362 lines (241 loc) · 14.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
from scipy.misc import imsave
import os
import shutil
from PIL import Image
import time
import random
import sys
from layers import *
from model import *
img_height = 256
img_width = 256
img_layer = 3
img_size = img_height * img_width
to_train = True
to_test = False
to_restore = False
output_path = "./output"
check_dir = "./output/checkpoints/"
temp_check = 0
max_epoch = 1
max_images = 100
h1_size = 150
h2_size = 300
z_size = 100
batch_size = 1
pool_size = 50
sample_size = 10
save_training_images = True
ngf = 32
ndf = 64
class CycleGAN():
def input_setup(self):
'''
This function basically setup variables for taking image input.
filenames_A/filenames_B -> takes the list of all training images
self.image_A/self.image_B -> Input image with each values ranging from [-1,1]
'''
filenames_A = tf.train.match_filenames_once("./input/horse2zebra/trainA/*.jpg")
self.queue_length_A = tf.size(filenames_A)
filenames_B = tf.train.match_filenames_once("./input/horse2zebra/trainB/*.jpg")
self.queue_length_B = tf.size(filenames_B)
filename_queue_A = tf.train.string_input_producer(filenames_A)
filename_queue_B = tf.train.string_input_producer(filenames_B)
image_reader = tf.WholeFileReader()
_, image_file_A = image_reader.read(filename_queue_A)
_, image_file_B = image_reader.read(filename_queue_B)
self.image_A = tf.subtract(tf.div(tf.image.resize_images(tf.image.decode_jpeg(image_file_A),[256,256]),127.5),1)
self.image_B = tf.subtract(tf.div(tf.image.resize_images(tf.image.decode_jpeg(image_file_B),[256,256]),127.5),1)
def input_read(self, sess):
'''
It reads the input into from the image folder.
self.fake_images_A/self.fake_images_B -> List of generated images used for calculation of loss function of Discriminator
self.A_input/self.B_input -> Stores all the training images in python list
'''
# Loading images into the tensors
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
num_files_A = sess.run(self.queue_length_A)
num_files_B = sess.run(self.queue_length_B)
self.fake_images_A = np.zeros((pool_size,1,img_height, img_width, img_layer))
self.fake_images_B = np.zeros((pool_size,1,img_height, img_width, img_layer))
self.A_input = np.zeros((max_images, batch_size, img_height, img_width, img_layer))
self.B_input = np.zeros((max_images, batch_size, img_height, img_width, img_layer))
for i in range(max_images):
image_tensor = sess.run(self.image_A)
if(image_tensor.size() == img_size*batch_size*img_layer):
self.A_input[i] = image_tensor.reshape((batch_size,img_height, img_width, img_layer))
for i in range(max_images):
image_tensor = sess.run(self.image_B)
if(image_tensor.size() == img_size*batch_size*img_layer):
self.B_input[i] = image_tensor.reshape((batch_size,img_height, img_width, img_layer))
coord.request_stop()
coord.join(threads)
def model_setup(self):
''' This function sets up the model to train
self.input_A/self.input_B -> Set of training images.
self.fake_A/self.fake_B -> Generated images by corresponding generator of input_A and input_B
self.lr -> Learning rate variable
self.cyc_A/ self.cyc_B -> Images generated after feeding self.fake_A/self.fake_B to corresponding generator. This is use to calcualte cyclic loss
'''
self.input_A = tf.placeholder(tf.float32, [batch_size, img_width, img_height, img_layer], name="input_A")
self.input_B = tf.placeholder(tf.float32, [batch_size, img_width, img_height, img_layer], name="input_B")
self.fake_pool_A = tf.placeholder(tf.float32, [None, img_width, img_height, img_layer], name="fake_pool_A")
self.fake_pool_B = tf.placeholder(tf.float32, [None, img_width, img_height, img_layer], name="fake_pool_B")
self.global_step = tf.Variable(0, name="global_step", trainable=False)
self.num_fake_inputs = 0
self.lr = tf.placeholder(tf.float32, shape=[], name="lr")
with tf.variable_scope("Model") as scope:
self.fake_B = build_generator_resnet_9blocks(self.input_A, name="g_A")
self.fake_A = build_generator_resnet_9blocks(self.input_B, name="g_B")
self.rec_A = build_gen_discriminator(self.input_A, "d_A")
self.rec_B = build_gen_discriminator(self.input_B, "d_B")
scope.reuse_variables()
self.fake_rec_A = build_gen_discriminator(self.fake_A, "d_A")
self.fake_rec_B = build_gen_discriminator(self.fake_B, "d_B")
self.cyc_A = build_generator_resnet_9blocks(self.fake_B, "g_B")
self.cyc_B = build_generator_resnet_9blocks(self.fake_A, "g_A")
scope.reuse_variables()
self.fake_pool_rec_A = build_gen_discriminator(self.fake_pool_A, "d_A")
self.fake_pool_rec_B = build_gen_discriminator(self.fake_pool_B, "d_B")
def loss_calc(self):
''' In this function we are defining the variables for loss calcultions and traning model
d_loss_A/d_loss_B -> loss for discriminator A/B
g_loss_A/g_loss_B -> loss for generator A/B
*_trainer -> Variaous trainer for above loss functions
*_summ -> Summary variables for above loss functions'''
cyc_loss = tf.reduce_mean(tf.abs(self.input_A-self.cyc_A)) + tf.reduce_mean(tf.abs(self.input_B-self.cyc_B))
disc_loss_A = tf.reduce_mean(tf.squared_difference(self.fake_rec_A,1))
disc_loss_B = tf.reduce_mean(tf.squared_difference(self.fake_rec_B,1))
g_loss_A = cyc_loss*10 + disc_loss_B
g_loss_B = cyc_loss*10 + disc_loss_A
d_loss_A = (tf.reduce_mean(tf.square(self.fake_pool_rec_A)) + tf.reduce_mean(tf.squared_difference(self.rec_A,1)))/2.0
d_loss_B = (tf.reduce_mean(tf.square(self.fake_pool_rec_B)) + tf.reduce_mean(tf.squared_difference(self.rec_B,1)))/2.0
optimizer = tf.train.AdamOptimizer(self.lr, beta1=0.5)
self.model_vars = tf.trainable_variables()
d_A_vars = [var for var in self.model_vars if 'd_A' in var.name]
g_A_vars = [var for var in self.model_vars if 'g_A' in var.name]
d_B_vars = [var for var in self.model_vars if 'd_B' in var.name]
g_B_vars = [var for var in self.model_vars if 'g_B' in var.name]
self.d_A_trainer = optimizer.minimize(d_loss_A, var_list=d_A_vars)
self.d_B_trainer = optimizer.minimize(d_loss_B, var_list=d_B_vars)
self.g_A_trainer = optimizer.minimize(g_loss_A, var_list=g_A_vars)
self.g_B_trainer = optimizer.minimize(g_loss_B, var_list=g_B_vars)
for var in self.model_vars: print(var.name)
#Summary variables for tensorboard
self.g_A_loss_summ = tf.summary.scalar("g_A_loss", g_loss_A)
self.g_B_loss_summ = tf.summary.scalar("g_B_loss", g_loss_B)
self.d_A_loss_summ = tf.summary.scalar("d_A_loss", d_loss_A)
self.d_B_loss_summ = tf.summary.scalar("d_B_loss", d_loss_B)
def save_training_images(self, sess, epoch):
if not os.path.exists("./output/imgs"):
os.makedirs("./output/imgs")
for i in range(0,10):
fake_A_temp, fake_B_temp, cyc_A_temp, cyc_B_temp = sess.run([self.fake_A, self.fake_B, self.cyc_A, self.cyc_B],feed_dict={self.input_A:self.A_input[i], self.input_B:self.B_input[i]})
imsave("./output/imgs/fakeB_"+ str(epoch) + "_" + str(i)+".jpg",((fake_A_temp[0]+1)*127.5).astype(np.uint8))
imsave("./output/imgs/fakeA_"+ str(epoch) + "_" + str(i)+".jpg",((fake_B_temp[0]+1)*127.5).astype(np.uint8))
imsave("./output/imgs/cycA_"+ str(epoch) + "_" + str(i)+".jpg",((cyc_A_temp[0]+1)*127.5).astype(np.uint8))
imsave("./output/imgs/cycB_"+ str(epoch) + "_" + str(i)+".jpg",((cyc_B_temp[0]+1)*127.5).astype(np.uint8))
imsave("./output/imgs/inputA_"+ str(epoch) + "_" + str(i)+".jpg",((self.A_input[i][0]+1)*127.5).astype(np.uint8))
imsave("./output/imgs/inputB_"+ str(epoch) + "_" + str(i)+".jpg",((self.B_input[i][0]+1)*127.5).astype(np.uint8))
def fake_image_pool(self, num_fakes, fake, fake_pool):
''' This function saves the generated image to corresponding pool of images.
In starting. It keeps on feeling the pool till it is full and then randomly selects an
already stored image and replace it with new one.'''
if(num_fakes < pool_size):
fake_pool[num_fakes] = fake
return fake
else :
p = random.random()
if p > 0.5:
random_id = random.randint(0,pool_size-1)
temp = fake_pool[random_id]
fake_pool[random_id] = fake
return temp
else :
return fake
def train(self):
''' Training Function '''
# Load Dataset from the dataset folder
self.input_setup()
#Build the network
self.model_setup()
#Loss function calculations
self.loss_calc()
# Initializing the global variables
init = tf.global_variables_initializer()
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(init)
#Read input to nd array
self.input_read(sess)
#Restore the model to run the model from last checkpoint
if to_restore:
chkpt_fname = tf.train.latest_checkpoint(check_dir)
saver.restore(sess, chkpt_fname)
writer = tf.summary.FileWriter("./output/2")
if not os.path.exists(check_dir):
os.makedirs(check_dir)
# Training Loop
for epoch in range(sess.run(self.global_step),100):
print ("In the epoch ", epoch)
saver.save(sess,os.path.join(check_dir,"cyclegan"),global_step=epoch)
# Dealing with the learning rate as per the epoch number
if(epoch < 100) :
curr_lr = 0.0002
else:
curr_lr = 0.0002 - 0.0002*(epoch-100)/100
if(save_training_images):
self.save_training_images(sess, epoch)
# sys.exit()
for ptr in range(0,max_images):
print("In the iteration ",ptr)
print("Starting",time.time()*1000.0)
# Optimizing the G_A network
_, fake_B_temp, summary_str = sess.run([self.g_A_trainer, self.fake_B, self.g_A_loss_summ],feed_dict={self.input_A:self.A_input[ptr], self.input_B:self.B_input[ptr], self.lr:curr_lr})
writer.add_summary(summary_str, epoch*max_images + ptr)
fake_B_temp1 = self.fake_image_pool(self.num_fake_inputs, fake_B_temp, self.fake_images_B)
# Optimizing the D_B network
_, summary_str = sess.run([self.d_B_trainer, self.d_B_loss_summ],feed_dict={self.input_A:self.A_input[ptr], self.input_B:self.B_input[ptr], self.lr:curr_lr, self.fake_pool_B:fake_B_temp1})
writer.add_summary(summary_str, epoch*max_images + ptr)
# Optimizing the G_B network
_, fake_A_temp, summary_str = sess.run([self.g_B_trainer, self.fake_A, self.g_B_loss_summ],feed_dict={self.input_A:self.A_input[ptr], self.input_B:self.B_input[ptr], self.lr:curr_lr})
writer.add_summary(summary_str, epoch*max_images + ptr)
fake_A_temp1 = self.fake_image_pool(self.num_fake_inputs, fake_A_temp, self.fake_images_A)
# Optimizing the D_A network
_, summary_str = sess.run([self.d_A_trainer, self.d_A_loss_summ],feed_dict={self.input_A:self.A_input[ptr], self.input_B:self.B_input[ptr], self.lr:curr_lr, self.fake_pool_A:fake_A_temp1})
writer.add_summary(summary_str, epoch*max_images + ptr)
self.num_fake_inputs+=1
sess.run(tf.assign(self.global_step, epoch + 1))
writer.add_graph(sess.graph)
def test(self):
''' Testing Function'''
print("Testing the results")
self.input_setup()
self.model_setup()
saver = tf.train.Saver()
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
self.input_read(sess)
chkpt_fname = tf.train.latest_checkpoint(check_dir)
saver.restore(sess, chkpt_fname)
if not os.path.exists("./output/imgs/test/"):
os.makedirs("./output/imgs/test/")
for i in range(0,100):
fake_A_temp, fake_B_temp = sess.run([self.fake_A, self.fake_B],feed_dict={self.input_A:self.A_input[i], self.input_B:self.B_input[i]})
imsave("./output/imgs/test/fakeB_"+str(i)+".jpg",((fake_A_temp[0]+1)*127.5).astype(np.uint8))
imsave("./output/imgs/test/fakeA_"+str(i)+".jpg",((fake_B_temp[0]+1)*127.5).astype(np.uint8))
imsave("./output/imgs/test/inputA_"+str(i)+".jpg",((self.A_input[i][0]+1)*127.5).astype(np.uint8))
imsave("./output/imgs/test/inputB_"+str(i)+".jpg",((self.B_input[i][0]+1)*127.5).astype(np.uint8))
def main():
model = CycleGAN()
if to_train:
model.train()
elif to_test:
model.test()
if __name__ == '__main__':
main()