-
Notifications
You must be signed in to change notification settings - Fork 0
/
Engineering-Mathematics.tex
1245 lines (1097 loc) · 71.4 KB
/
Engineering-Mathematics.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter[Engineering Mathematics]{Engineering Mathematics}
Engineering Mathematics is one of the key subject related to all other subjects. In GATE, this subject has a good weightage of around 13-14 marks. This document contains all the concepts, formulas and key notes for all the chapters in the syllabus of GATE 2023 Mechanical Engineering.\\
The most common type of questions from each unit is given in the below mentioned figure.
\begin{figure}[h!]
\centering
\includegraphics[width=\linewidth]{images/engineering-mathematics.png}
\end{figure}
% Section 1
\chapter*{Linear Algebra}
\section{Linear Algebra}
\subsection{Basic Matrix Operations}
Let A be a matrix of size 3x3, A =
$\begin{bmatrix}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}
\end{bmatrix}$
\begin{itemize}
\item Inverse of a Matrix: \(A^{-1}=\frac{1}{|A|}adj(A)\)
\item \(adj(A) = C^T\), C =
$\begin{bmatrix}
+\begin{vmatrix} a_{22} & a_{23}\\ a_{32} & a_{33} \end{vmatrix} &
-\begin{vmatrix} a_{21} & a_{23}\\ a_{31} & a_{33} \end{vmatrix} &
+\begin{vmatrix} a_{21} & a_{22}\\ a_{31} & a_{33} \end{vmatrix} & \\
-\begin{vmatrix} a_{12} & a_{13}\\ a_{32} & a_{33} \end{vmatrix} &
+\begin{vmatrix} a_{11} & a_{13}\\ a_{31} & a_{33} \end{vmatrix} &
-\begin{vmatrix} a_{11} & a_{12}\\ a_{31} & a_{32} \end{vmatrix} & \\
+\begin{vmatrix} a_{12} & a_{13}\\ a_{22} & a_{23} \end{vmatrix} &
-\begin{vmatrix} a_{11} & a_{13}\\ a_{21} & a_{23} \end{vmatrix} &
+\begin{vmatrix} a_{11} & a_{12}\\ a_{21} & a_{22} \end{vmatrix} &
\end{bmatrix}$
\item LU Decomposition - given matrix A is reduced to Lower L and Upper U triangular matrix
[A=LU]
\begin{itemize}
\item Crout's method (Strict last column operation)\\
Column-wise Elementary transformation (one element at a time) can be used to obtain lower triangular matrix L. The Constants used for deducing matrix L is used to create upper triangular matrix U by replacing the specific constant (K). \\ A = LU =
$\begin{bmatrix} l_{11} & 0\\ l_{21} & l_{22} \end{bmatrix}$
$\begin{bmatrix} 1 & u_{12}\\ 0 & 1 \end{bmatrix}$
\(C_i \rightarrow C_i + KC_j\)
\item DooLittle's method (Strict last row operation)\\
Row-wise Elementary transformation (one element at a time) can be used to obtain upper triangular matrix U. The Constants used for deducing matrix U is used to create lower triangular matrix L by replacing the specific constant (K).\\ A = LU =
$\begin{bmatrix} 1 & 0\\ l_{21} & 1 \end{bmatrix}$
$\begin{bmatrix} u_{11} & u_{12}\\ 0 & u_{22} \end{bmatrix}$
\(R_i \rightarrow R_i + KR_j\)
\end{itemize}
\end{itemize}
\subsection{Rank of a Matrix}
It is defined as the number of non-zero rows present after obtaining eucleon form of the given matrix. Rank of the matrix is evaluated using Elementary Transform method(Row or Column) or Minor method.\vspace{0.5cm}\\
\textbf{Properties}
\begin{itemize}
\item For a null matrix '0' of any order rank(0) = 0
\item For a non-zero matrix of order n*n; \(1 \leq rank(A) \leq n\)
\item For a non-zero \& singular matrix \(1 \leq rank(A) < n\)
\item For a non-zero \& non singular matrix \(A_{n*n} rank(A) = n\)
\item For a non-zero rectangular matrix A of order m*n \(1\leq rank(A)\leq min(m,n)\)
\item Rank of a matrix A is equal to Rank of transpose of A \(\rho(A) = \rho(A^T) \)
\begin{table}[h!]
\centering
\setlength{\tabcolsep}{1em}
\tabulinesep=1.5mm
\begin{tabu}{c c}
\textbf{\(\rho(A_{n*n}\))} & \textbf{\(\rho(adj(A))\)} \\
n & n \\
n-1 & 1 \\
\textless{}n-1 & 0 \\
\end{tabu}
\end{table}
\end{itemize}
\subsection{System of Linear Equation}
Consider the following system of linear equation with three variables.\\
\[a_{11}x + a_{12}y + a_{13}z = b1; a_{21}x + a_{22}y + a_{23}z = b2; a_{31}x + a_{32}y + a_{33}z = b3;\]
The system of linear equation can be represented as matrices \textbf{AX = B} as mentioned below.
\begin{center}
$\begin{bmatrix}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}
\end{bmatrix}$
$\begin{bmatrix} x\\ y\\ z \end{bmatrix}$ =
$\begin{bmatrix} b1\\ b2\\ b3 \end{bmatrix}$\\
\end{center}
In this matrix A is co-efficient matrix, X is variable co-efficient matrix and B is constant column matrix. If B = 0, then it is known as homogeneous system and If \(B \neq 0\), then the given equations form non-homogeneous system.
\subsection*{Homogeneous System [AX=0]}
\begin{itemize}
\item Trivial Solution(Zero Solution) if \(|A| \neq 0\)
\item Non-Trivial Solution(many Solution) if \(|A|= 0\)
\item Number of Independent Solution = no of variables(n) - rank of matrix(p)
\end{itemize}
\subsection*{Non-homogeneous System [AX=B]}
Consider a \textbf{2x2 Matrix} with the system of linear equations.
\[a_1x+b_1y=c_1;\ a_2x+b_2y=c_2\]
The solution for these equation are given by
\begin{itemize}
\item if \(\frac{a1}{a2}\neq \frac{b1}{b2}\) system is consistent and have a unique solution.
\item if \(\frac{a1}{a2}=\frac{b1}{b2}=\frac{c1}{c2}\) system is consistent and have infinitely many solution.
\item if \(\frac{a1}{a2}=\frac{b1}{b2}\neq\frac{c1}{c2}\) system is inconsistent and have no solution.
\end{itemize}
\vspace{0.2cm}Consider a \textbf{3x3 Matrix} with the system of linear equations.
\[a_{11}x + a_{12}y + a_{13}z = b1; a_{21}x + a_{22}y + a_{23}z = b2; a_{31}x + a_{32}y + a_{33}z = b3;\]
Then Matrix C is given by
C = [A:B] C =
$\begin{bmatrix}
a_{11} & a_{12} & a_{13} & b1\\
a_{21} & a_{22} & a_{23} & b2\\
a_{31} & a_{32} & a_{33} & b3
\end{bmatrix}$
\begin{fleqn}
\[\rho(A)=p;\ \rho(c)=r;\ \text{n - no of variables}\]
\end{fleqn}
The solution for these equations are given by
\begin{itemize}
\item if \(r=p=N\), then the system is consistent and has unique solution.
\item if \(r=p<N\), then the system is consistent and has infinetly many solution.
\item if \(r\neq p\), then the system is inconsistent and has no solution.
\end{itemize}
\subsection{Eigen Values \& Eigen Vectors}
\begin{figure}[h!]
\centering
\includegraphics[scale=0.6]{images/eigen-value-vector.png}
\end{figure}
\[AX=\lambda X \Rightarrow AX-\lambda X=0\ \ \ \ \ \ \ (A-\lambda)X=0 \Rightarrow BX=0 \text{ [Homogenous]}\]
\textbf{Characteristic Equation} for Matrix A is given as\\
For 2x2 Matrix, \(\lambda^2-\beta_1\lambda+|A|=0\)\\
For 3x3 Matrix, \(\lambda^3-\beta_1\lambda^2+\beta_2\lambda-|A|=0\)\\
\(\beta_1\rightarrow\text{sum of the diagnol elements(trace); } \beta_2\rightarrow\text{Sum of minors of diagnol elements}\)\vspace{0.2cm}\\
\textbf{Algebric Multiplicity (AM)} of an eigen value\\
If ``\(\lambda\)'' is repeated ``m" times, then AM = m\vspace{0.2cm}\\
\textbf{Geometric Multiplicity (GM)} of an eigen value\\
If ``\(\lambda\)" has ``p" linear independent eigen vectors then GM=p\\
\(GM\ of\ \lambda = n-p(A-\lambda I)=n-r\)
\subsection*{Properties of Eigen Values and Eigen Vectors}
\begin{enumerate}
\item sum of Eigen Values = trace of the matrix
\item product of Eigen Values = \(|A|\)
\item A and \(A^T\) will have same eigen values
\item The rank of the matrix is equal to the number of non-zero eigen values of the matrix(except triangular matrix)
\item For a triangular matrix, the eigen values are equal to diagnol elements.
\item Relation between Eigen Value and Eigen Vector for different form of the given matrix.
\begin{table}[h!]
\centering
\setlength{\tabcolsep}{1em}
\begin{tabu}{ccc}
\textbf{Matrix} & \textbf{Eigen Value} & \textbf{Eigen Vector} \\
A & \(\lambda\) & X \\
\(A^n\) & \(\lambda^n\) & X \\
A+I & \(\lambda+I\) & X \\
KA & \(K\lambda\) & X
\end{tabu}
\end{table}
\item If the sum of elements of every row/column is same then one of the eigen value of the matrix is equal to the sum.
\item For a real matrix, if \(\alpha+i\beta\) is an eigen value then \(\alpha-i\beta\) will also be an eigen value[conjugate pair].
\item If a eigen value is \(\alpha+i\beta\) for a complex matrix, then there is no conjugate pair.
\item The eigen values of a real symmetric matrix \([A=A^T]\) are real.
\item The eigen values of a real skew-symmetric matrix \([A=-A^T]\) are either zero (or) purely imaginary.
\item The eigen vector corresponding to the distinct eigen values of a real symmteric matrix will be orthogonal to each other.
\item The eigen values of a hermition matrix are always real.
\item The eigen values of a unitary matrix (or) real orthogonal matrix satisfies \(|\lambda|=1\)
\item The number of linearly independent eigen vectors of a matrix are equal to the number of distinct eigen values of the matrix.
\end{enumerate}
\subsection*{Cayley Hamilton Theorem}
Every square matrix satisfies its own characteristic equation.
\[\lambda^2-(trace)\lambda+|A|=0\ \Rightarrow A^2-(trace)A+|A|=0\]
\pagebreak
% Section
\section{Trignometric Relations}
All the basic and important trignometric relations are listed in this section.
\subsection{Basics}
\textbf{Comman Angles of sin, cos and tan}
\begin{table}[h!]
\centering
\setlength{\tabcolsep}{2em}
\tabulinesep=3.5mm
\begin{tabu}{|c|c|c|c|c|c|}
\hline
\textbf{Degrees} & \textbf{\(0^\circ\)} & \textbf{\(30^\circ\)} & \textbf{\(45^\circ\)} & \textbf{\(60^\circ\)} & \textbf{\(90^\circ\)} \\ \hline
\textbf{Radians} & 0 & \(\frac{\pi}{6}\) & \(\frac{\pi}{4}\) & \(\frac{\pi}{3}\) & \(\frac{\pi}{2}\) \\ \hline
\textbf{sin} & 0 & \(\frac{1}{2}\) & \(\frac{1}{\sqrt{2}}\) & \(\frac{\sqrt{3}}{2}\) & 1 \\ \hline
\textbf{cos} & 1 & \(\frac{\sqrt{3}}{2}\) & \(\frac{1}{\sqrt{2}}\) & \(\frac{1}{2}\) & 0 \\ \hline
\textbf{tan} & 0 & \(\frac{1}{\sqrt{3}}\) & 1 & \(\sqrt{3}\) & \(\infty\) \\ \hline
\end{tabu}
\end{table}
\textbf{Reciprocal Functions}
\[csc\ x=\frac{1}{sin\ x}\ \ \ \ \ \ \ sec\ x=\frac{1}{cos\ x}\ \ \ \ \ \ \ cot\ x=\frac{1}{tan\ x} \]
\textbf{Even/Odd Relation}
\[sin\ (-x)=-sin\ x\ \ \ \ \ \ \ cos\ (-x)=cos\ x\ \ \ \ \ \ \ tan\ (-x)=-tan\ x\]
\subsection{Identities}
\textbf{Pythagorous Identities}
\[sin^2x+cos^2x=1\ \ \ \ \ \ \ 1+cot^2x=csc^2x\ \ \ \ \ \ \ 1+tan^2x=sec^2x\]
\textbf{Cofunction Identities}
\begin{align*}
\sin(\frac{\pi}{2} - x) &= \cos x\hspace{3cm}
\cos(\frac{\pi}{2} - x) &= \sin x\hspace{3cm}
\tan(\frac{\pi}{2} - x) &= \cot x\\
\cot(\frac{\pi}{2} - x) &= \tan x\hspace{3cm}
\sec(\frac{\pi}{2} - x) &= \csc x\hspace{3cm}
\csc(\frac{\pi}{2} - x) &= \sec x
\end{align*}
\subsection{Angular Relations}
\textbf{Sum and Difference of Angles}
\begin{align*}
\sin(x + y) = \sin x \cos y + \cos x \sin y\hspace{2cm}
\sin(x - y) = \sin x \cos y - \cos x \sin y\\
\cos(x + y) = \cos x \cos y - \sin x \sin y\hspace{2cm}
\cos(x - y) = \cos x \cos y + \sin x \sin y\\
\tan(x + y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}\hspace{4cm}
\tan(x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}
\end{align*}
\textbf{Dobule Angles}
\begin{align*}
\sin(2x) &= 2 \sin x \cos x\\
\cos(2x) &= \cos^2 x - \sin^2 x = 2 \cos^2 x - 1 = 1 - 2 \sin^2 x\\
\tan(2x) &= \frac{2 \tan x}{1 - \tan^2 x}
\end{align*}
\textbf{Half Angles}
\begin{align*}
\sin \frac{x}{2} = \pm \sqrt{ \frac{1 - \cos x }{2} }\hspace{2cm}
\cos \frac{x}{2} = \pm \sqrt{ \frac{1 + \cos x }{2} }
\end{align*}
\begin{align*}
\tan \frac{x}{2} = \frac{1 - \cos x }{\sin x}= \frac{ \sin x }{ 1 + \cos x }
\end{align*}
\subsection{sum, Power and Products Relations}
\textbf{Power Reducing Formulas}
\begin{align*}
\sin^2 x = \frac{1 - \cos 2x}{2}\hspace{2cm}
\cos^2 x = \frac{1 + \cos 2x}{2}\hspace{2cm}
\tan^2 x = \frac{1 - \cos 2x}{1 + \cos 2x}
\end{align*}
\textbf{Product to sum}
\begin{align*}
\sin x \sin y &= \frac{1}{2}\big[\cos(x - y) - \cos(x + y)\big]\\
\cos x \cos y &= \frac{1}{2}\big[\cos(x - y) + \cos(x + y)\big]\\
\sin x \cos y &= \frac{1}{2}\big[\sin(x + y) + \sin(x - y)\big]\\
\tan x \tan y &= \frac{ \tan x + \tan y }{ \cot x + \cot y }\\
\tan x \cot y &= \frac{ \tan x + \cot y }{ \cot x + \tan y }
\end{align*}
\textbf{Sum to Product}
\begin{align*}
\sin x + \sin y &= 2 \sin \Big( \frac{x + y}{2} \Big) \cos \Big( \frac{x - y}{2} \Big)\\
\sin x - \sin y &= 2 \cos \Big( \frac{x + y}{2} \Big) \sin \Big( \frac{x - y}{2} \Big)\\
\cos x + \cos y &= 2 \cos \Big( \frac{x + y}{2} \Big) \cos \Big( \frac{x - y}{2} \Big)\\
\cos x - \cos y &= -2 \sin \Big( \frac{x + y}{2} \Big) \sin \Big( \frac{x - y}{2} \Big)\\
\tan x + \tan y &= \frac{ \sin(x + y) }{ \cos x \cos y}\\
\tan x - \tan y &= \frac{ \sin(x - y) }{ \cos x \cos y}\\
\end{align*}
\pagebreak
% Section
\section{Differentiation Formulas}
\begin{multicols}{2}
\begin{enumerate}
\item \(\frac{d}{dx}k=0\)
\item \(\frac{d}{dx}f(g(x))=f'(g(x)).g'(x)\)
\item \(\frac{d}{dx}[f(x)g(x)]=f(x)g'(x)+g'(x)f(x)\) % 3
\item \(\frac{d}{dx}x^n=nx^{n-1}\)
\item \(\frac{d}{dx}e^x=e^x\)
\item \(\frac{d}{dx}sin\ x=cos\ x\)
\item \(\frac{d}{dx}tan\ x=sec^2\ x\)
\item \(\frac{d}{dx}sec\ x=sec\ x\ tan\ x\)
\item \(\frac{d}{dx}\ sin^{-1}x=\frac{1}{\sqrt{1-x^2}}\)
\item \(\frac{d}{dx}\ tan^{-1}x=\frac{1}{\sqrt{x^2+1}}\)
\item \(\frac{d}{dx}\ sec^{-1}x=\frac{1}{|x|\sqrt{x^2-1}}\)
\item \(\frac{d}{dx}[k(f(x)]=k.f'(x)\) % 12
\item \(\frac{d}{dx}=[f(x)\pm g(x)]=f'(x)\pm g'(x)\) % 13
\item \(\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x)f'(x)-f(x)g'(x)}{[g(x)]^2}\)
\item \(\frac{d}{dx}\ ln|x|=\frac{1}{x}; \frac{d}{dx}\ log_a|x|=\frac{1}{x ln a} \)
\item \(\frac{d}{dx}a^x=a^x\ ln\ a\)
\item \(\frac{d}{dx}cos\ x=-sin\ x\)
\item \(\frac{d}{dx}cot\ x=-csc^2\ x\)
\item \(\frac{d}{dx}csc\ x=-csc\ x\ cot\ x\)
\item \(\frac{d}{dx}\ cos^{-1}x=\frac{-1}{\sqrt{1-x^2}}\)
\item \(\frac{d}{dx}\ cot^{-1}x=\frac{-1}{\sqrt{x^2+1}}\)
\item \(\frac{d}{dx}\ csc^{-1}x=\frac{-1}{|x|\sqrt{x^2-1}}\)
\end{enumerate}
\end{multicols}
% Section
\section{Integration Formulas}
\begin{multicols}{2}
\begin{enumerate}
\item \(\int \ dx=x+C\) %1
\item \(\int \frac{dx}{x}=ln|x|+C\) % 2
\item \(\int e^x \ dx=e^x+C\) % 3
\item \(\int \frac{f'(x)}{f(x)}\ dx=ln(f(x))+C\) % 4
\item \(\int sin\ x\ dx=-cos\ x+C\) % 5
\item \(\int tan\ x\ dx=-ln|cos\ x|=ln|sec\ x|\ +C\) % 6
\item \(\int sec\ x\ dx=ln|sec\ x+tan\ x|+C\) % 7
\item \(\int sec\ x\ tan\ x\ dx=sec\ x+C\) % 8
\item \(\int \frac{dx}{\sqrt{a^2-x^2}}=sin^{-1}\frac{x}{a}+C\) % 9
\item \(\int \frac{dx}{x\sqrt{x^2-a^2}}=\frac{1}{a}sec^{-1}\frac{|x|}{a}+C\) %10
\item \(\int x^n\ dx=\frac{x^{n+1}}{n+1}+C\) % 11
\item \(\int a^x\ dx=\frac{1}{ln\ a} a^x+C\) % 12
\item \(\int ln\ x\ dx=x\ ln\ x-x+C\) % 13
\item \(\int \frac{f'(x)}{\sqrt{f(x)}}\ dx=2\sqrt{f(x)}+C\) % 14
\item \(\int cos\ x\ dx=sin\ x+C\) % 15
\item \(\int cot\ x\ dx=ln|sin\ x|=-ln|csc\ x|\ +C\) % 16
\item \(\int csc\ x\ dx=-ln|csc\ x+cot\ x|+C\) % 17
\item \(\int csc\ x\ cot\ x\ dx=-csc\ x+C\) % 18
\item \(\int \frac{dx}{a^2+x^2}=\frac{1}{a}tan^{-1}\frac{x}{a}+C\) %19
\item \(\int_0^{\infty}cos^2x\ dx=\int_0^{\infty}sin^2x\ dx=\frac{1}{2}\sqrt{\frac{\pi}{2}}\) %20
\end{enumerate}
\end{multicols}
\textbf{Integration by Parts} \(\int u\ dv = uv_1 - u'\int v_2\) where \(v^n\) stands for integrating the given function n times. [priority for u - ILATE]
% Section 2
\chapter*{Calculus}
\section{Calculus}
\subsection{Limit, Continuity \& Differentiability}
\textbf{Conditions for Continuvity} \vspace{0.2cm} \\
f(x) is continuous at point x = a, if
\begin{enumerate}
\item \(\lim_{x\to a^-} f(x)=\lim_{x\to a^+} f(x) \) (LHL=RHL)
\item f(a) is finite
\item \(\lim_{x\to a^-} f(x)=\lim_{x\to a^+} f(x) =f(a)\)
\end{enumerate}
\textbf{Conditions for Differentiability} \vspace{0.2cm} \\
f(x) is differentiable at point x=a, if
\begin{enumerate}
\item f(x) should be continuous
\item \(\lim_{h\to0^-}\frac{f(x+h)-f(x)}{h}=\lim_{h\to0^+}\frac{(x+h)-f(x)}{h}\) (LHD=RHD)
\item f(x) should not have vertical tangent at x=0
\end{enumerate}
\textbf{Key Points}
\begin{enumerate}
\item The derivative at any point on the curve given the value of the slope of the tangent to the curve at that point.
\item \(sinx,\ cosx,\ e^x\) and polynomial functions are always continuous \& differentiable.
\item \(lnx\) is continuous and differentiable \(\forall x>0\)
\item If f(x) and g(x) are continuous and differentiable functions then the following function will also be continuous and differentiable.
\(i) f(x) \pm g(x) \ \ ii) f(x)g(x) \ \ iii) \frac{f(x)}{g(x)}, g(x) \neq 0\)
\item sharp (or) edge (or) break point is the point in which the nature of the curve changes(sudden change in slope). If a function is continuous at a point but RHD \( \neq \) LHD, then we get a sharp point.
\item \(|x-a|\) is continuous but not differentiable at x = a.
\end{enumerate}
\subsection*{Applying Limit to f(x)}
\[\lim_{x \to a} f(x) = k\]
\textbf{L'Hospital Rule} if Applying a limit in f(x) results \(\frac{0}{0}\ or\ \frac{\infty}{\infty}\), then differentiate numerator and denominator, continue differntiating and applying limits till the results not infinite.\\
If Applying Limits in f(x) results in \(\infty - \infty\), then substitution method is used. Choose a substitution value in such a way a limit is not infinity.
\subsection{Mean Value Theorems}
\textbf{Lagrange's Mean Value Theorem}\vspace{0.2cm}\\
If f(x) be a real valued function such that \\
1. It is continuous in [a, b] 2. It is differentiable in (a, b) \\
Then there exists a point \(x = C \in (a, b) \) such that
\[f'(c)= \frac{f(b)-f(a)}{b-a}\]
\textbf{Rolle's Theorem}\vspace{0.2cm}\\
If f(x) be a real valued function such that \\
1. It is continuous in [a, b] 2. It is differentiable in (a, b) 3. f(a) = f(b)\\
Then there exists a point \(x = C \in (a, b) \) such that
\[f'(c)=0\]
\textbf{Cauchy's Mean Value Theorem}\vspace{0.2cm}\\
If f(x) and g(x) be two real valued functions such that\\
1. It is continuous in [a, b] 2. differntiable in (a, b)\\
Then there exists a point \(x = C \in (a, b) \) such that
\[\frac{f'(c)}{g'(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}\]
\subsection*{Increasing and Decreasing Functions}
A function is said to be increasing if \(f'(x) > 0\).\\
A function is said to be decreasing if \(f'(x) < 0\).
\begin{figure}[h!]
\centering
\includegraphics[scale=0.775]{images/max-min.png}
\end{figure}
\subsection{Maxima and Minima}
For any function f(x) the tangent to local maxima and local minima is always parallel to x-axis, then f'(x) = 0 gives the stationary points.\\
Determine the maxima and minima for the given function using the below methods.\\
\textbf{1st Derivative Test}
\begin{enumerate}
\item Calculate the stationary point using the equation f'(x) = 0
\item If the point around the 1st derivative changes its sign from +ve to -ve then that stationary point is a point of local maxima.
\item If the point around the 1st derivative changes its sign from -ve to +ve then that stationary point is a point of local minima.
\end{enumerate}
\textbf{2nd Derivative Test}
\begin{enumerate}
\item Calculate the stationary point by the equation f'(x) = 0
\item let x=x0 be the stationary point.\vspace{0.2cm}\\
\( f''(x)_{x=x_0} =
\begin{cases}
+ve, & minima\\
0, & go further\\
-ve, & maxima
\end{cases} \)\hspace{1cm}
\( f^{iv}(x)_{x=x_0} =
\begin{cases}
+ve, & minima\\
0, & go further\\
-ve, & maxima
\end{cases} \)\vspace{0.2cm}\\
\( f'''(x)_{x=x_0} =
\begin{cases}
+ve, & \text{neither maximum or minimum}\\
0, & \text{go further}\\
-ve, & \text{neither maximum or minimum}
\end{cases} \)
\end{enumerate}
\textbf{Inflation Point} - stationary point at which the curve will be increasing/decreasing before and after stationary points then it known as point of inflation.
\subsection*{Wavy Curve Method}
Easy method to find maxima and minima but only applicable to f'(x) having polynomial inequalities.\\
Wavy Curve always start from right at positive and then change sign for every different roots.
\begin{figure}[h!]
\centering
\includegraphics[width=\linewidth]{images/wavy-curve.png}
\end{figure}
\subsection*{Global Maxima and Minima}
For a function f(x) in [a, b] global maxima and minima can be determined by
\begin{enumerate}
\item Find stationary points f'(x) = 0
\item find the values of \(f(a), f(b), f(x_n)\) and then compare the values to get maxima and minima.
\end{enumerate}
\textbf{Important Note:}
\begin{enumerate}
\item If interval not mentioned then find local maxima and local minima else find global maxima and global minima.
\item No of Stationary Point \(\alpha\) No of Maxima and minima.
\item If No of stationary point is 1 then local maxima/minima is global maxima/minima.
\end{enumerate}
\subsection{Partial Differentiation}
\begin{enumerate}
\item For a function of single independent variable, simple or ordinary derivative will exist.
\[y=f(x)=\frac{dy}{dx} \]
\item For a function of more than one independent variable partial derivative will exist.
\[u=f(x,y),\ \frac{\partial u}{\partial x},\ \frac{\partial u}{\partial y}\]
\item The number of partial derivatives existing for a functional relation is exactly equal to the number of independent variables.
\item The procedure to evaluate partial derivatives is same as that of the simple derivatives but the only difference is that all other independent variable will remain constant.
\item Dependent variable should never be assumed constant.
\end{enumerate}
\subsection*{Conditions for Maxima and Minima for Paritial Derivaties}
Let f(x, y) be any two functions of variables x and y, then
\[r=\frac{\partial^2f}{\partial x^2},\ \ s=\frac{\partial^2f}{\partial x\partial y}, \ \ t = \frac{\partial^2f}{\partial y^2}\]
\begin{enumerate}
\item if \(rt-s^2>0;\ r<0,\ t<0,\) then the point is local maxima
\item if \(rt-s^2>0;\ r>0,\ t>0,\) then the point is local minima
\item if \(rt-s^2<0;\) Neither Maxima or Minima
\item if \(rt-s^2=0;\ r<0,\ t<0,\) No conclusion further investigation required.
\end{enumerate}
\textbf{Homogeneous Function}\\
A function having same degree in all its terms is called Homogeneous function. A homogeneous function can be expressed either as a function of `y/x' or as a function of ``x/y''.
\[f(x, y)=x^nF(x/y)\ (or)\ x^n F(y/x) \]
\subsection*{Euler's Theorem for Homogeneous function}
\begin{fleqn}
\textbf{Corallory 0:} If u=f(x,y) be a homogeneous function of degree n.
\[1.\ x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}=nu\ \ \ \ \ \ \
2.\ x^2\frac{\partial^2 u}{\partial x^2} + y^2\frac{\partial^2 u}{\partial y^2} + 2xy\frac{\partial^2u}{\partial x\partial y}=n(n-1)u \]
\textbf{Corallory 1:} If u is not a homogeneous function but f(u) is a homogeneous function of degree n.
\[1.\ x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}=\frac{nf(u)}{f'(u)}= g(u) \ \ \ \ \ \ \
2.\ x^2\frac{\partial^2 u}{\partial x^2} + y^2\frac{\partial^2 u}{\partial y^2} + 2xy\frac{\partial^2u}{\partial x\partial y}=g(u)[g'(u)-1] \]
\textbf{Corallory 2:} If u=f(x,y) + g(x,y) + h(x,y) where f, g, h are homogeneous function of degree m, n, p respectively, then.
\[1.\ x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}=mf+ng+ph\ \ \ \ \ \ \
2.\ x^2\frac{\partial^2 u}{\partial x^2} + y^2\frac{\partial^2 u}{\partial y^2} + 2xy\frac{\partial^2u}{\partial x\partial y}=m(m-1)f+n(n-1)g+p(p-1)h \]
\end{fleqn}
\subsection{Total Derivatives}
\begin{enumerate}
\item In a composite relation, the derivative of an initial variable w.r.t final variable is called as Total derivative.
\item The number of total derivatives existing for a composite relation is exactly equal to the number of final variables.
\item The number of terms present in the expression of a total derivative is exactly equal to the number of intermediate variables.
\[w\rightarrow x,y\rightarrow t\ \ \frac{dw}{dt}=\frac{\partial w}{\partial x}\frac{dx}{dt}+ \frac{\partial w}{\partial y}\frac{dy}{dt}\]
\end{enumerate}
\subsection*{Taylor Series}
If f(X) has all its derivative as finite and contiuous \(\forall x \)
\[f(x) = f(a) + hf'(a)+h^2f''(a)+h^3f'''(a)+\ldots\ldots.\infty\]
If f(x,y) has all its derivative as finite and continuous at all point(x,y)
\begin{multline*}
f(x+h, y+k)=f(x,y)+[hf_x+kf_y]+\frac{1}{2!}[h^2f_{xx}+k^2f_{yy}+2hkf_{xy}] \\
+\frac{1}{3!}[h^3f_{xxx}+k^3f_{yyy}+3hk^2f_{xyy}+3h^2kf_{xxy}] + \ldots
\end{multline*}
\subsection{Gamma Function}
\begin{fleqn}
\[\Gamma n = \int_{0}^{\infty} e^{-x} x^{n-1} \,dx\ \ \ \ \ \
\frac{\Gamma n}{k^n}=\int_{0}^{\infty} e^{-kx} x^{n-1} \,dx\]
\[\Gamma \frac{1}{2} = \sqrt{\pi}\ \ \ \ \ \ \Gamma n\ \Gamma(1-n)=\frac{\pi}{sin\ n\pi}
\ \ \ \ \Gamma (n+1) =
\begin{cases}
n\Gamma n & \text{'n' is fraction}\\
n! & \text{'n' is integer}
\end{cases}
\]
\end{fleqn}
\subsection{Beta Function}
\begin{fleqn}
\[\beta(m,n)=\int_{0}^{1} x^{m-1} (1-x)^{n-1} \,dx\ \ \ \ \
\beta(m, n)=\int_{0}^{\infty}\frac{x^{n-1}}{(1+x)^{m+n}} \,dx\]
\[\beta(m,n)=\beta(n,m)\ \ \ \ \ \ \beta(m,n)=\frac{\Gamma m\ \Gamma n}{\Gamma (m+n)}\ \ \ \
\frac{1}{2}\beta\left(\frac{p+1}{2}, \frac{q+1}{2} \right)=\int_{0}^{\pi/2}sin^p\theta\ cos^q\theta \,d\theta\]
\textbf{Points to Remember}\\
\(1. \int_0^a f(x) \,dx =
\begin{cases}
0 & \text{if f(a-x)=-f(x)}\\
2\int_0^{a/2}f(x) \,dx & \text{if f(a-x)=f(x)}
\end{cases}
\)
\(2. \int_{-a}^a f(x) \,dx =
\begin{cases}
0 & \text{if f(x) is odd}\\
2\int_0^{a}f(x) \,dx & \text{if f(x) is even}
\end{cases}
\)
\end{fleqn}
\subsection{Double and Triple Integrals}
In Double and Triple Integrals, we need to find the limits of the function with respect to x, y and z-axis based on the given equation. To do that use the given equations in the problem.\\
1. Find the intersection point and plot the graph.\\
2. Draw a strip parallel to x-axis or y-axis based on the integration order.\\
3. Now, use sliding approach on the parallel axis to obtain limits for the constant set and find the limits for variable set using the strip and the equation of the given curve.\\
\begin{table}[h!]
\centering
\setlength{\tabcolsep}{1em}
\tabulinesep=1.5mm
\begin{tabu}{llll}
0 & a & Constant Set & \(||el\ to\ y-axis\) \\
0 & x & Variable Set & First Priority
\end{tabu}
\end{table}
\begin{figure}[h!]
\centering
\includegraphics[scale=0.6]{images/limit-finder.png}
\end{figure}
\subsection{Fourier Series}
\textbf{Periodic Function} - A function f(x) is periodic function of period \(T(T>0)\ if\ f(x)=f(x+T) \forall x\)\vspace{0.2cm}\\
\textbf{Orthogonal Function} - Two non-zero function f(x) and g(x) are said to be orthogonal on \(a \leq x \leq b\) if,
\[\int_a^bf(x)g(x)dx=0\]
\subsection*{Dirichlet's Condition}
The fourier series f(x) converges if
\begin{enumerate}
\item f(x) is periodic, single values and finite.
\item The function f(x) has finite number of finite discontinuties in any one period.
\item The function f(x) must have finite number of maxima and minima.
\end{enumerate}
\subsection*{Fourier Series}
The fourier series of a periodic function f(x) of period 2L on the interval (-L, L) is defined as
\[f(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}\left(a_n cos\frac{n\pi x}{L}+b_nsin \frac{n\pi x}{L}\right)\]
\[a_0=\frac{1}{L}\int_{-L}^Lf(x)dx\ \ \ \ a_n=\frac{1}{L}\int_{-L}^Lf(x)cos\frac{n\pi x}{L}\ dx\ \ \ \ b_n = \frac{1}{L}\int_{-L}^Lf(x)sin\frac{n\pi x}{L}\ dx\]
The fourier series of periodic function f(x) of period 2\(\pi\) on the interval \((-\pi, \pi)\) is defined as
\[f(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}\left(a_n cosnx+b_nsinnx\right)\]
\[a_0=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)dx\ \ \ \ a_n=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)cosnx\ dx\ \ \ \ b_n = \frac{1}{\pi}\int_{-\pi}^{\pi}f(x)sinnx\ dx\]
\textbf{Note: }Fourier Series expressing given function f(x) in terms of cos \& sin functions.\vspace{0.2cm}\\
\textbf{Example:} Fourier series of \(sinx-sin3x+cos2x\ in\ [-\pi, \pi]\ is\)\vspace{0.3cm}\\
The given function is itself a fourier series.\vspace{0.2cm}\\
The values of \(a_0 = 0, a_1=0, a_2=1\) and \(b_1=1, b_2=0, b_3=-1\)
\subsection*{Convergence of Fourier Series}
\begin{itemize}
\item If f(x) is continuous at x=c; \([Fourier\ Series\ of\ f(X)]_{x=c}=f(c)\)
\item If f(x) is not continuous at x=c; \([Fourier\ Series\ of\ f(X)]_{x=c}= \frac{f(c^-)+f(c^+)}{2}\)
\end{itemize}
\subsection*{Parseval Identity}
The parseval identity for fourier series in the interval (c,c+2l) is defined as
\[\frac{1}{2l}\int_c^{c+2l}[f(x)]^2=\frac{a_0^2}{4}+\frac{1}{2}\sum_{n=1}^{\infty}\left[a_n^2+b_n^2\right]\]
\textbf{Even Function} - f(-x) = f(x) then the graph of y=f(x) is symmetric about y-axis.\vspace{0.3cm}\\
\textbf{Odd Function} - f(-x) = -f(x) then the graph of y=f(x) is symmetric about origin.\vspace{0.3cm}\\
Parseval identity is used to derive standard series formula from fourier series.\\
\subsection*{Important Results}
\begin{multicols}{2}
\begin{itemize}[label={}]
\item \[\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\ldots\ldots.=\frac{\pi^2}{6}\]
\item \[\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+\ldots\ldots.=\frac{\pi^2}{8}\]
\item \[\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\ldots\ldots.=\frac{\pi^2}{24}\]
\item \[\frac{1}{1^4}+\frac{1}{2^4}+\frac{1}{3^4}+\frac{1}{4^4}+\ldots\ldots.=\frac{\pi^2}{90}\]
\item \[1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots\ldots\ldots.=\frac{\pi}{4}\]
\end{itemize}
\end{multicols}
\subsection*{Fourier Cosine Series}
The Fourier series of Even periodic function f(x) of period \(2\pi\) on the interval \(-\pi, \pi\) is fourier cosine series.
\[f(x)=a_0+\sum_{n=1}^{\infty}a_n cosnx\ \ \ \ \ a_0=\frac{2}{\pi}\int_0^{\pi}f(x)\ dx\ \ \ \ \ a_n=\frac{2}{\pi}\int_0^{\pi}f(x)cosnx\ dx\]
\subsection*{Fourier Sine Series}
The Fourier series of Odd periodic function f(x) of period \(2\pi\) on the interval \(-\pi, \pi\) is fourier sine series.
\[f(x)=\sum_{n=1}^{\infty}b_n sinnx\ \ \ \ \ b_n=\frac{2}{\pi}\int_0^{\pi}f(x)sinnx\ dx\]
\subsection*{Half Range Fourier Series}
\textbf{Half Range Cosine Series} - It is defined in the interval \((0, \pi)\)
\[f(x)=a_0+\sum_{n=1}^{\infty}a_n cosnx\ \ \ \ \ a_0=\frac{2}{\pi}\int_0^{\pi}f(x)\ dx\ \ \ \ \ a_n=\frac{2}{\pi}\int_0^{\pi}f(x)cosnx\ dx\]
\textbf{Half Range Sine Series} - It is defined in the interval \((0, \pi)\)
\[f(x)=\sum_{n=1}^{\infty}b_n sinnx\ \ \ \ \ b_n=\frac{2}{\pi}\int_0^{\pi}f(x)sinnx\ dx\]
\subsection{Gradient, Divergence and Curl}
\textbf{Vector Differential Operator}
also known as Del Operator is given by
\[\overrightarrow{\rm \nabla} = \overrightarrow{\rm i}\frac{\partial}{\partial x} +
\overrightarrow{\rm j}\frac{\partial}{\partial y} +
\overrightarrow{\rm k}\frac{\partial}{\partial z}\]
\textbf{Gradient} is a vector quantity and it is defined as \\
\[Gradient(\emptyset) = \overrightarrow{\rm \nabla}\emptyset =
\overrightarrow{\rm i}\frac{\partial\emptyset}{\partial x} +
\overrightarrow{\rm j}\frac{\partial\emptyset}{\partial y} +
\overrightarrow{\rm k}\frac{\partial\emptyset}{\partial z}\]
\(Let\ \overrightarrow{\rm F} = F_x\overrightarrow{\rm i}+F_y\overrightarrow{\rm j}
+F_z\overrightarrow{\rm F}\)\\
\textbf{Divergence} is a scalar quantity and it is defined as \\
\[Divergence\overrightarrow{\rm F}=\overrightarrow{\rm \nabla}\ \overrightarrow{\rm F} =
\frac{\partial}{\partial x}F_x + \frac{\partial}{\partial y}F_y +
\frac{\partial}{\partial z}F_z\]
\textbf{Curl} is a vector quantity and it is defined as \\
\[Curl\overrightarrow{\rm F}=|\overrightarrow{\rm \nabla} \times \overrightarrow{\rm F}| =
\begin{vmatrix}
\overrightarrow{\rm i} & \overrightarrow{\rm j} & \overrightarrow{\rm k}\\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_x & F_y & F_z
\end{vmatrix}
\]
\subsection*{Properties}
\begin{enumerate}
\item \(\overrightarrow{\rm \nabla}^2\) is known as Laplacian Operator and it is defined as below
\[\overrightarrow{\rm \nabla}.(\overrightarrow{\rm \nabla}\emptyset) = \frac{\partial^2 \emptyset}{\partial x^2} + \frac{\partial^2 \emptyset}{\partial y^2} + \frac{\partial^2 \emptyset}{\partial z^2}\]
\item \(\overrightarrow{\rm \nabla}\times(\overrightarrow{\rm \nabla}\emptyset) = 0,\ \ \ \ \ \overrightarrow{\rm \nabla}\times\overrightarrow{\rm \nabla}=0\)
\item \(\overrightarrow{\rm \nabla}.(\overrightarrow{\rm \nabla}\times\overrightarrow{\rm F} = 0)\)
\item \(\overrightarrow{\rm \nabla}\times(\overrightarrow{\rm \nabla}\times\overrightarrow{\rm F})=\overrightarrow{\rm \nabla}.(\overrightarrow{\rm \nabla}.\overrightarrow{\rm F})-\overrightarrow{\rm \nabla}^2\overrightarrow{\rm F}\)
\end{enumerate}
\subsection*{Important Results}
\begin{itemize}
\item Directional Derivative = \(\overrightarrow{\rm \nabla}.\emptyset\ \hat{a}\ \ \ \ \ \hat{a}=\left[ \frac{\overrightarrow{\rm a}}{|\overrightarrow{\rm a}|} \right]\ \ \ \ \ |\overrightarrow{\rm a}|=\sqrt{a^2 + b^2 + c^2} \)
\item Curl \(\overrightarrow{\rm F} = 0\) means it is irrotational.
\item Divergence \(\overrightarrow{\rm F} = 0\) means it is solenoidal
\item Angle between two planes is given by
\(cos\theta = \frac{\overrightarrow{\rm \nabla} f1. \overrightarrow{\rm \nabla} f2}{|\overrightarrow{\rm \nabla} f1|.|\overrightarrow{\rm \nabla} f2|}\)
\item Two planes are said to be orthogonal if, \(\overrightarrow{\rm \nabla} f1. \overrightarrow{\rm \nabla} f2 = 0\)
\end{itemize}
\subsection*{Vector Identities}
\begin{enumerate}
\item \(\overrightarrow{\rm \nabla}(f+g)=\overrightarrow{\rm \nabla} f +\overrightarrow{\rm \nabla} g,\)\hspace{1cm}\(\overrightarrow{\rm \nabla}(\overrightarrow{\rm A}+\overrightarrow{\rm B}) = \overrightarrow{\rm \nabla}\overrightarrow{\rm A}+ \overrightarrow{\rm \nabla}\overrightarrow{\rm B},\)\hspace{1cm} \(\overrightarrow{\rm \nabla}\times(\overrightarrow{\rm A}+\overrightarrow{\rm B})=\overrightarrow{\rm \nabla}\times\overrightarrow{\rm A}+\overrightarrow{\rm \nabla}\times\overrightarrow{\rm B}\)
\item \(\overrightarrow{\rm \nabla}(f.g) = f(\overrightarrow{\rm \nabla} g) + g(\overrightarrow{\rm \nabla} f)\),\hspace{1cm} \(\overrightarrow{\rm \nabla}(f\overrightarrow{\rm A})=f(\overrightarrow{\rm \nabla} \overrightarrow{\rm A})+\overrightarrow{\rm A}(\overrightarrow{\rm \nabla}.f)\) \hspace{1cm}
\item \(\overrightarrow{\rm \nabla}\times(f\overrightarrow{\rm A})=f(\overrightarrow{\rm \nabla}\times\overrightarrow{\rm A})+\overrightarrow{\rm A}\times(\overrightarrow{\rm \nabla}.f)\), \hspace{1cm} \(\overrightarrow{\rm \nabla}(\overrightarrow{\rm A}\times\overrightarrow{\rm B})=\overrightarrow{\rm B}(\overrightarrow{\rm \nabla}\times\overrightarrow{\rm A})-\overrightarrow{\rm A}(\overrightarrow{\rm \nabla}\times\overrightarrow{\rm B})\)
\item \(\overrightarrow{\rm A}.(\overrightarrow{\rm B}\times\overrightarrow{\rm C})=
\begin{vmatrix} A_x & A_y & A_z \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{vmatrix}
\)
\end{enumerate}
\textbf{\large{Line Integral}} An integration evaluated along the given curve/line.
\[\overrightarrow{\rm F} = F_1\overrightarrow{\rm i}+F_2\overrightarrow{\rm j}+F_3\overrightarrow{\rm k}\ \ \ \ \overrightarrow{\rm dr}=dx\overrightarrow{\rm i}+dy\overrightarrow{\rm j}+dz\overrightarrow{\rm k}\]
\[\oint_C\overrightarrow{\rm F}\overrightarrow{\rm dr}=\oint_CF_1dx+F_2dy+F_3dz\]
If a Multi Variable function is given, then equate it to single variable function using the given equation/curve/points/parameters. Then the Limit will be fixed to 0 to 1
\[Ex:\ x=y=z=t\ \ \ dx=dy=dz=t\ \ \ \oint_C\overrightarrow{\rm F}\overrightarrow{\rm dr}=\int_Cf(x)t \,dt \]
\textbf{\large Surface Integral} An integration evaluated along the given surface by projecting the give surface to xy, yz, zx plane.
Consider \(\emptyset\) as given equation of the surface plane. Then the surface integral is defined as
\[\iint_S\overrightarrow{\rm F}.\hat{n}\,ds\ where\ \hat{n}= \frac{\overrightarrow{\rm \nabla}\emptyset}{|\overrightarrow{\rm \nabla}\emptyset|} \]
Consider if the surface is projected to x-y plane, then the surface integral is given as
\[\iint_S\overrightarrow{\rm F}.\hat{n}\,ds=\iint_R\overrightarrow{\rm F}.\hat{n}\,\frac{dxdy}{|\overrightarrow{\rm n}.\overrightarrow{\rm k}|}\]
\textbf{\large Volume Integral} An integral evaluated over a volume bounded by the surface.
\[\iiint_v F(x,y,z) \, dx\, dy\, dz\]
\subsection{Vector Calculus Theorems}
\subsection*{Green's Theorem}
If R is a closed Region of the XY plane bounded by a simple curve C is given as
\[\int_C(Mdx+Ndy)=\iint_R\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \,dxdy \]
\subsection*{Gauss Divergence Theorem}
If a closed surface S bounding a Volume is given by the Gauss Divergence Theorem as below.
\[\oint\oint_S\overrightarrow{\rm F}.\hat{n}\,ds=\iiint_V\overrightarrow{\rm \nabla}.\overrightarrow{\rm F} \,dv \ \ \ \ \ \ \ \ \ \ \ \ \ where \iiint_V \,dv \ \text{volume of the given equation}\]
\subsection*{Stokes Theorem}
Stokes Theorem is defined as
\[\int_C\overrightarrow{\rm F}\overrightarrow{\rm dr}=\iint_S(\overrightarrow{\rm \nabla}\times\overrightarrow{\rm F}).\hat{n} \,ds\]
% Section 3
\chapter*{Differential Equations}
\section{Differential Equations}
\textbf{Order} of the highest order derivative occurring in Differential Equation.\vspace{0.2cm}\\
\textbf{Degree} the power of highest order derivative occurring in the Differential Equation after the dependent and it's derivative are made free of radicals and fraction.\vspace{0.2cm}\\
\textbf{Example}
\[\left[1+\left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}=C\left(\frac{d^2y}{dx^2}\right);\ \ \ \ \ \ \ \ \ \ \text{Order = 2 degree = 2}\]
\textbf{Linear Differential Equation} -
A differential equation is said to be linear if the dependent variable and its differential co-efficient occurs only in the first degree and not multiplied together.
\[y(y'+1)=sin(x)\ and\ sec^2(y)\ y'+x\ tan(y) = x^2 are\ \text{non-linear}.\]
\[y''+3y+4y=x^3\ and\ x^2y''+2xy'+3y=cos(x)\ are\ linear.\]
\subsection*{Solution of Differential Equation}
The relation between dependent and independent variable which satisfies the given differential equations.\vspace{0.2cm}\\
\textbf{General Solution} - A solution of differential equation containing n arbitary constants which is same as the order of the equation.\vspace{0.2cm}\\
\textbf{Particular Solution} - A solution which can be obtained from general solution and has no arbitary constant.\vspace{0.2cm}\\
\textbf{Initial Value Problem} - Differential Equation + Initial Condition (conditions specified at same point).\vspace{0.2cm}\\
\textbf{Boundary Value Problem} - Differential Equation + Boundary Condition (conditions specified at different Point).
\subsection*{Law of Natural Growth}
The rate at which populatuib grows is proportional to instantaneous population present.
\[\frac{dx}{dt}\alpha x\ \ \ \ \ \ \frac{dx}{dt}=Kx\ \ \ \ \ \ x=Ce^{kt}\]
\subsection*{Newton's Law of Cooling}
The rate at change of temperature of a body is proportional to the difference of temperature of body and temperature of surrounding medium. \(\theta-\) Temperature of body. \(\theta_o-\) Temperature of surrounding medium.
\[\frac{d\theta}{dt}\alpha(\theta-\theta_o)\ \ \ \ \ \ \frac{d\theta}{dt}=K(\theta-\theta_o) \ \ \ \ \ \ \theta=\theta_o+Ce^{Kt}\]
\subsection{First Order Differential Equation}
\subsection*{Variable Seperable Method}
Seperating x and y terms and then integrating them to get the solution.
\[f(x, y, y')=0\ \ \ \ \ g(x)dx=h(y)dy\ \ \ \ \ \int g(x)\ dx=\int h(y)\ dy + C\]
Reducible to Variable Seperable Method using substitution.
\[\frac{dy}{dx}=f(x,y)\ \ \ \ \ t=f(x,y)\]
\subsection*{Leibnitz Differential Equation}
\[\frac{dy}{dx}+Py=Q\ \ \ \ \ \ \ \text{P, Q - functions of x/ Linear in y}\]
\[\text{Integrating Factor (IF)}=e^{\int P\ dx} \ \ \ \ \ \text{General Solution (GS)} \rightarrow
y(IF)=\int Q(IF)\ dx + C\]
\[\frac{dx}{dy}+Px=Q\ \ \ \ \ \ \ \text{P, Q - functions of y/ Linear in x}\]
\[\text{Integrating Factor (IF)}=e^{\int P\ dy} \ \ \ \ \ \text{General Solution (GS)} \rightarrow
x(IF)=\int Q(IF)\ dy + C\]
Reducible to Lebinitz Linear form
\[f'(y)\frac{dy}{dx}+Pf(y)=Q\ \ \ \ \ \ \ \text{P, Q - functions of x/ Linear in y}\]
\[\text{Put } f(y)=t,\ \ \ \ f'(y)\frac{dy}{dx}=\frac{dt}{dx},\ \ \ \ \ \ \frac{dt}{dx} + Pt=Q\ \ \ \ \text{Linear in t}\]
\subsection*{Bernoulli's Differential Equation}
\[\left(\frac{dy}{dx}\right)+ Py = Qy^n\ \ \ \ \ \ \ \ y^{-n}\left(\frac{dy}{dx}\right)+Py^{1-n}=Q \]
\[\text{Let }v=y^{1-n}\ \ \ \ \ \ \ \frac{dv}{dx}=(1-n)y^{-n}\frac{dy}{dx}\ \ \ \ \ \ \
y^{-n}\frac{dy}{dx}=\frac{1}{1-n}\frac{dv}{dx}\]
\[\frac{1}{1-n}\frac{dv}{dx}+Pv=Q\ \ \ \ \ \ \frac{dv}{dx}+(1-n)Pv=(1-n)Q \ \ \text{linear in v}\]
\subsection{Exact Differential Equation}
A differential Equation of form M(x,y)dx + N(x,y)dy=0 is said to be exact if Mdx + Ndy=du for some function u(x,y), then the general solution for u(x, y)=C.\vspace{0.2cm}\\
A differential Equation of the form M(x,y)dx + N(x,y)dy=0 is Exact Differential Equation if and only if
\[\frac{\partial N}{\partial x}=\frac{\partial M}{\partial y}\]
General Solution for the Exact Differential Equation is given by
\[\int_{y\ as\ constant}M(x,y)dx + \int_{independent\ of\ x}N(x,y)dy=C\]
If a Non-Exact differential equation is converted to exact Differential equation (Reducible to Exact diferential equation) by a multiplying a factor then it is called integrating factor.
\subsection*{Methods to Find Integrating Factor(IF)}
\begin{enumerate}
\item If Mdx + Ndy = 0 is non-exact differential equation and M and N are homogeneous functions of same degree, then \(IF=\frac{1}{M_x+N_y}\)
\item If Mdx + Ndy = 0 is non-exact differential equation and M=yf(x,y) and N=xg(x,y), then \(IF=\frac{1}{M_x-N_y}\)
\item If Mdx + Ndy = 0 is non-exact differential equation and \(\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N}=f(x)\) then \(IF=e^{\int f(X)\ dx}\)
\item If Mdx + Ndy = 0 is non-exact differential equation and \(\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{M}=f(y)\) then \(IF=e^{\int f(y)\ dy}\)
\end{enumerate}
\subsection{Orthogonal Trajectories}
Two families of curves \(F_1\ and F_2\) are said to be orthogonal trajectories if every number of either family cuts every member of the other family at right angles.\\
\textbf{Procedure to find Orthogonal Trajectories}(cartesian form)
\begin{enumerate}
\item Given Family of Curves \(F(x, y, C) = 0\)
\item Form Differential equation of the given family of curves \(f(x, y, y') = 0\)
\item Replace \(\frac{dy}{dx}\ with\ \frac{-dx}{dy}\ i.e\ f\left(x, y, \frac{-1}{y'}\right)=0\) which will give the required differential equation of the Orthogonal Trajectories.
\item Solve the differential equation \(G(x,y,c)\) to get equation of Orthogonal Trajectory.
\end{enumerate}
\textbf{Procedure to find Orthogonal Trajectories}(Polar form)
\begin{enumerate}
\item Given Family of Curves \(f(r, \theta, C) = 0\)
\item Form Differential equation of the given family of curves \(f\left(r, \theta, \frac{dr}{d\theta}\right) = 0\)
\item Replace \(\frac{dr}{d\theta}\ with\ -r^2\frac{d\theta}{dr}\ i.e\ f\left(x, y, -r^2\frac{d\theta}{dr}\right)=0\) which will give the required differential equation of the Orthogonal Trajectories.
\item Solve the differential equation \(G(r,\theta,c)\) to get equation of Orthogonal Trajectory.
\end{enumerate}
\subsection{Higher Order Differential Equation}
\[K_0 \frac{d^ny}{dx^n}+k_1\frac{d^{n-1}y}{dx^{n-1}}+\ldots\ldots.+K_ny=f(x)\]
\[K_0D^ny+k_1D^{n-1}y+\ldots\ldots.+K_ny=f(x)\ \ \ \ \ \ F(D)y=f(x)\]
\subsection*{Homogeneous Linear Differential Equation}
If f(x) = 0, then the given differential equation is homogeneous equation F(D)y=0. Then, the solution to the equation depends on the roots of the auxilary equation i.e \[F(m)=0\ \ \ K_0m^2+k_1m+k_2=0,\ gives\ roots\]
\subsection*{General Solution}
\begin{table}[h!]
\centering
% \resizebox{\textwidth}{!}{
\setlength{\tabcolsep}{1em}
\tabulinesep=1.5mm
\begin{tabu}{|c|c|c|}
% \begin{tabu}{|c|c|c|}
\hline
\textbf{Roots} & \textbf{\begin{tabu}[c]{@{}c@{}}Linearly\\ Independent\\ Solution\end{tabu}} & \textbf{General Solution} \\ \hline
\begin{tabu}[c]{@{}c@{}}Real and distinct\\ (b1 \& b2)\end{tabu} & \begin{tabu}[c]{@{}c@{}}\(e^{b_1x}\), \(e^{b_2x}\)\end{tabu} & \(y=C_1e^{b_1x}+C_2e^{b_2x}\) \\ \hline
\begin{tabu}[c]{@{}c@{}}Real and Equal \\ (b)\end{tabu} & \begin{tabu}[c]{@{}c@{}}\(e^{bx}\), \(xe^{bx}\)\\ \(x^2e^{bx}\)\end{tabu} & \begin{tabu}[c]{@{}c@{}}\(y=C_1e^{bx}+xC_2e^{bx}+x^2C_3e^{bx}\)\\ \(y=e^{bx}(C_1+xC_2+x^2C_3)\)\end{tabu} \\ \hline
\begin{tabu}[c]{@{}c@{}}Complex Conjugates\\ (a+ib)\end{tabu} & \begin{tabu}[c]{@{}c@{}}\(e^{ax}cosbx,\ \) \(e^{ax}sinbx\)\end{tabu} & \(y=e^{ax}(C_1cosbx+C_2sinbx)\) \\ \hline
\begin{tabu}[c]{@{}c@{}}Real and distinct \\ (For roots) \\ \(a\pm\sqrt{b}\)\end{tabu} & \begin{tabu}[c]{@{}c@{}}\(e^{ax}cosh\sqrt{b}x\)\\ \(e^{ax}sinh\sqrt{b}x\)\\ \(e^{a+\sqrt{b}x}\), \(e^{a-\sqrt{b}x}\)\end{tabu} & \begin{tabu}[c]{@{}c@{}}\(y=e^{ax}[C_1cosh\sqrt{b}x+C_2sinh\sqrt{b}x]\)\\ \(y=C_1e^{a+\sqrt{b}x}+C_2e^{a-\sqrt{b}x}\)\end{tabu} \\ \hline
\end{tabu}
% }
\end{table}
\subsection*{Non-Homogeneous Linear Differential Equation}
If the given linear differential equation is non-homogeneous i.e F(D)y = f(x), then the differential equation has two solution namely Complementary function \(y_c\) and particular Integral\(y_p\)
\[y_c\ - \text{solution of } F(D)y=0\ \ \ \ \ y_p - \text{solution of } F(D)y=f(x)\ \ \ Solution\ y=y_c+y_p \]\vspace{0.2cm}\\
\textbf{\large{Results}}\vspace{0.2cm}\\
\[1. \frac{1}{D}f(x)=\int f(x)\ dx\ \ \ \ \ \ \ \ \ \ \ 2. \frac{1}{D-a}f(x)=e^{ax}\int f(x)e^{-ax}\ dx\]
\subsection*{Methods for finding Particular Integral}
Refer Table Below to find Particular Integral for different Combinations.\\
\begin{table}[h!]
\centering
\setlength{\tabcolsep}{2em}
\begin{tabu}{cccc}
\textbf{Type} & \textbf{f(x)} & \textbf{Particular Integral} & \textbf{Substitution} \\
\textbf{1} & \(e^{ax}\) & \(\frac{1}{F(D)}e^{ax}\) & \(D=a\) \\ \\
\textbf{} & \multicolumn{3}{l}{\begin{tabu}[c]{@{}l@{}}Note: \(if\ D_r=0\ y_p=x\frac{1}{F'(D)}e^{ax}\) \\ Add x for each time D\_r gets 0\end{tabu}} \\
\textbf{2} & \(sinax/cosax\) & \(\frac{1}{F(D)}sinax/cosax\) & \(D^2=-a^2\) \\ \\
\textbf{} & \multicolumn{3}{l}{\begin{tabu}[c]{@{}l@{}}Note: \(if\ D_r=0\ y_p=x\frac{1}{F'(D)}sinax/cosax\)\\ Add x for each time D\_r gets 0\end{tabu}} \\
\multicolumn{1}{l}{} & \multicolumn{3}{l}{Results: \(\frac{1}{D^2+a^2}sinax=\frac{-x}{2a}cosax\ \ \ \ \frac{1}{D^2+a^2}cosax=\frac{x}{2a}sinax\)} \\ \\
\textbf{3} & \(x^m\) & \(\frac{1}{F(D)}x^m\) & Nil \\
\textbf{} & \multicolumn{3}{l}{\begin{tabu}[c]{@{}l@{}}Results: \((1+x)^n=1+nx+\frac{n(n-1)}{2}x^2+....\)\\ \(1.\ (1-x)^-1=1+x+x^2+x^3+x^4+....\)\\ \(2.\ (1-x)^-2=1+2x+3x^2+4x^3+....\)\\ \(3.\ (1+x)^-1=1-x+x^2-x^3+x^4-....\)\\ \(4.\ (1+x)^-2=1-2x+3x^2-4x^3+.....\)\end{tabu}} \\ \\
\textbf{4} & \(e^{ax}V\) & \multicolumn{2}{c}{\begin{tabu}[c]{@{}c@{}}\(\frac{1}{F(D)}e^{ax}V\)\\ \(e^{ax}\frac{1}{F(D+a)}V\) Now it will be in Type 2 or 3\end{tabu}} \\
\textbf{5} & \begin{tabu}[c]{@{}c@{}}\(xV\)\\ \(V=sinax/cosax\)\end{tabu} & \multicolumn{2}{c}{\begin{tabu}[c]{@{}c@{}}\(\frac{1}{F(D)}xV\)\\ \(x\frac{1}{F(D)}V-\frac{F'(D)}{[F(D)]^2}V\)\end{tabu}}
\end{tabu}
\end{table}
\subsection*{Euler-Cauchy's Homogeneous Equation}
\[a_0x^n \frac{d^ny}{dx^n}+a_1x^{n-1}\frac{d^{n-1}y}{dx^{n-1}}+\ldots\ldots.+a_{n-1}x\frac{dy}{dx}+a_ny=X\]
\[\left(a_0x^nD^n+a_1x^{n-1}D^{n-1}+\ldots\ldots.+a_n \right)y=X\]
\[f(XD)y=X\ \ \ \ \ \ Put\ x=e^z\ \ \ \ log(x)=z,\ \ \ \ \ XD=D_1 \ \ \ \ \ X^2D^2=D_1(D_1-1)\]
\textbf{Note:} Cauchy's Homogeneous form is a variable co-efficient linear differential equation in order to solve cauchy's form, it must be converted into constant co-efficient linear differential equation.
\subsection{Transform Theory}
\textbf{Laplace Transform} - It is used to transform one domain of variables to time domain.
\[F(S)=L\{f(t)\}=\int_0^{\infty}e^{-st}f(t)\ dt\]
\textbf{Inverse Laplace Transform} - It is used to transform a function f(S) to F(t).
\[L^{-1}\{F(S)\}=f(t)\]
\subsection*{Standard Function}
\begin{table}[h!]
\centering
\setlength{\tabcolsep}{1em}
\tabulinesep=2mm
\begin{tabu}{|c|c|c|c|}
\hline
\textbf{Y(t)} & \textbf{Y(s)} & \textbf{Y(t)} & \textbf{Y(s)} \\ \hline
\(\theta(t)\ or\ 1\) & \(\frac{1}{s}\) & \(t^n\) & \(\frac{n!}{s^{n+1}}\) \\ \hline
\(t^{1/2}\) & \(\frac{1}{2}\sqrt{\frac{\pi}{s^3}}\) & \(t^{-1/2}\) & \(\sqrt{\frac{\pi}{s}} \) \\ \hline
\(e^{-at}\) & \(\frac{1}{s+a}\) & \(e^{at}\) & \(\frac{1}{s-a}\) \\ \hline
\(sinwt\) & \(\frac{w}{s^2+w^2}\) & \(sinhwt\) & \(\frac{w}{s^2-w^2}\) \\ \hline
\(coswt\) & \(\frac{s}{s^2+w^2}\) & \(coshwt\) & \(\frac{s}{s^2-w^2}\) \\ \hline
\(L^{-1}\left(\frac{1}{s^n}\right) \) & \(\frac{1}{\Gamma n}t^{n-1}\) & \(L^{-1}\left(\frac{1}{s^n}\right)\) & \(\frac{1}{(n-1)!}t^{n-1}\) \\ \hline
\end{tabu}
\end{table}
\subsection*{Functions}
\textbf{Unit Step Function} - If a Unit Step Functions u(t) is defined as below, then it can be expressed in Laplace Transform.
\[u(t-a)=
\begin{cases}
0, &t<a \\
1, &t\geq a
\end{cases}
\]
\[L\{u(t-a)\}=\frac{e^{-as}}{s}\ \ \ \ \ \ \ \ \ \ L^{-1} \left( \frac{e^{-as}}{s}\right)=u(t-a)\]
\textbf{Impulse Unit Function} - If there is sudden peak raise in peak at some point of the function then it is called Impulse Unit function.
\[\delta(t-a)=
\begin{cases}
\frac{1}{\in}, &a<t<a+\in \\
0, &otherwise
\end{cases}
\]
\[L\{\delta(t-a)\}=e^{-as}\ \ \ \ \ \ \ \ \ \ L^{-1} \left( e^{-as} \right) =\delta(t-a)\]
\textbf{Shifted Function}
\[f^{\sim}(t)=
\begin{cases}
0, &t<0 \\
f(t-a), &t\geq a,\ \ a\geq0
\end{cases}
\]
\textbf{Result}
\[L \left( \frac{e^{at}-e^{bt}}{t} \right)=log\left(\frac{s-b}{s-a}\right) \]
\subsection*{Theorems and Properties}
\subsection*{Initial Value Theorem}
If \(L^{-1}\{F(S)\}=f(t)\), then \[\lim_{t \to 0}f(t)=\lim_{s\to \infty}[SF(S)]\]
\subsection*{Final Value Theorem}
If \(L^{-1}\{F(S)\}=f(t)\), then \[\lim_{t \to \infty}f(t)=\lim_{s\to 0}[SF(S)]\]
\textbf{Note} - Take co-efficient of highest degree polynomial(same) on numerator and denominator.
\subsection*{First Shifting Theorem}
If \(F(S)=L\{f(t)\}\), then
\[L\left(e^{at}f(t)\right)=F(s-a)\]
\subsection*{Second Shifting Theorem}
If \(F(S)=L\{f(t)\}\), then
\[L\left(f^{\sim}(t)\right)=L\left(f(t-a)u(t-a)\right)=e^{-as}F(s)\]
\subsection*{First Translational Property}
\[L^{-1}\left(F(s-a)\right)=e^{at}L^{-1}\left(F(s)\right)\]
\subsection*{Change of Scale Property}
If \(F(S)=L\{f(t)\}\), then
\[L\left(f(at)\right)=\frac{1}{a}F(s/a)\]
\subsection*{Multiplication by S(Laplace Transform of derivative)}
If \(F(S)=L\{f(t)\}\), then
\[L\left(f^n(t)\right)=s^nF(s)-s^{n-1}f(0)-s^{n-2}f''(0)-\ldots\ldots.f^{n-1}(0)\]
\subsection*{Division by S(Laplace Transform of Integration)}
\[L\left(\int_0^tf(\tau)\ d\tau\right)=\frac{F(s)}{s}\ \ \ \ \ \ \ \ \ \ \ L\left(\int_0^t \int_0^tf(\tau)\ d\tau dt\right)=\frac{F(s)}{s}\]
\subsection*{Multiplication by t(Derivative of Laplace Transform)}
\[L\left(tf(t)\right)=-\frac{dF(s)}{dn}\ \ \ \ \ \ \ \ L\left(t^nf(t) \right)=-\frac{d^n}{ds^n}F(s)(-1)^n \]
\subsection*{Division by t(Integral of Laplace Transform)}
\[L\left(\frac{f(t)}{t} \right)=\int_s^{\infty}F(s)\ ds\ \ \ \ \ \ \ \ \ L\left(\frac{f(t)}{t^n}=\int_s^{\infty}\int_s^{\infty}\ldots.\int_s^{\infty}F(s)\ ds.ds.\ldots. ds \right)\]
\subsection*{Convolution Theorem}
\[f(t)*g(t)=\int_0^tf(u)g(t-u)\ du\ \ \ \ \ \ L^{-1}\left(F(s)\right)=f(t)\ \ \ \ \ \ L^{-1}\left(G(s)\right)=g(t)\]
\[L^{-1}\left( F(s)*G(s)\right)=f(t)*g(t)=\int_0^tf(\tau)g(\tau-t)\ d\tau\]
\subsection*{Laplace Transform of a Periodic Function of period T}
If a function is said to be periodic \(f(t+T)=f(t)\),then T is the period of function f(t).
\[L\left(f(t)\right)=\frac{1}{1-e^{-st}}\int_0^Te^{-st}f(t)\ dt\]
% Section 4
\chapter*{Complex Variables}
\section{Complex Variables}
\subsection{Basics of Complex Variables}
\begin{itemize}
\item \(|Z|=\sqrt{x^2+y^2}\)\hspace{1cm} \(arg(z)=\theta=tan^-1(y/x)\)\hspace{1cm} \(e^{iz} = cosz + i sinz\)
\item \(cosiz = coshz\ \ \ \ \ coshiz=cosz\ \ \ \ \ siniz=isinhz\ \ \ \ \ \ sinhiz=isinz\ \ \ \ taniz=isinhz\)
\item \(sinz=\frac{1}{2i}(e^{iz}-e^{-iz})\ \ \ \ \ cosz=\frac{1}{2}(e^{iz}+e^{-iz})\)\hspace{1cm} \(sinhz=\frac{e^{z}-e^{-z}}{2}\ \ \ \ \ coshz=\frac{e^{z}+e^{-z}}{2}\)
\end{itemize}
\subsection*{Analytic Function}
A function f(z) is said to be analytical function in a region R, if it is analytic at every point of R. It is also called Regular Function (or) holomorphic function.\\
\textbf{Singular Point}
If there are some points C for an analytic function in which the function fails to be analytic.
\subsection*{Cauchy-Reimann's Equation}
Let \(w=f(z)=u+iv\) is an analytic function.
\[\text{For Cartesian System }\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}\ \ \ \ \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x};\ \ \text{For Polor System } \frac{\partial u}{\partial r}=\frac{1}{r}\frac{\partial v}{\partial \theta}\ \ \ \ \frac{\partial v}{\partial r}=-\frac{1}{r}\frac{\partial u}{\partial \theta} \]
\subsection*{Milne Thomson's Method}
To find f(z) when real (or) imaginary part is given by
\[f(z)=u+iv\ \ \ \ \ \ f'(z)=u_x+iv_x\ = u_x - iu_y\ \ \ \ \ f'(x) = u_x(z,0)-iu_y(z,0)\]
\[\int f'(z)\ dz=\int u_x(z,0)\ dz-i\int v_y(z,0)\ dz + C\]
\begin{fleqn}
\(\text{C = k to find real part and C = ik to find imaginary part}\)
\end{fleqn}
\subsection*{Harmonic Function}
A real function of two variables x and y posses continuous second order partial differential equations and satisfies laplace equation is called harmonic function.
\[\overrightarrow{\rm \nabla}\emptyset=\frac{\partial^2\emptyset}{\partial x^2}+\frac{\partial^2\emptyset}{\partial y^2}=0\]
\subsection{Cauchy's Integral Theorem}
If f(x) is analytic and f'(z) is continuous at all points inside and on simple closed curve C.
\[\int_C f(z)\ dz=0\]
For Multiple Connected Regions
\[\int_C f(z)\ dz= \int_{C1}f(z)\ dz+\int_{C2}f(z)\ dz+\ldots\ldots.+\int_{Cn}f(z)\ dz\]
\subsection{Cauchy's Integral Formula}
If f(z) is analytic function which has a singular point inside the closed surface C.
\[\oint_C \frac{f(z)}{z-a}\ dz=2\pi i\ f(a)\ \ \ \ \ \ \ \oint_C\frac{f(z)}{(z-a)^2}\ dz= \frac{2 \pi i}{2!}f'(a) \oint_C\frac{f(z)}{(z-a)^{n+1}}\ dz= \frac{2 \pi i}{n!}f^n(a)\]
If two function are inside curve partial fractions needs to be applied.
\subsection{Evaluation of Residues/ Contour Integration}
\begin{enumerate}
\item Residue at a simple pole - If z=a is a simple pole, then
\[[Res\ f(z)]_{z=a}=\lim_{z \to a}(z-a)f(z)\]
\item Residue at a pole of order n+1, If z=a is a pole of order n+1, then
\[[Res\ f(z)]_{z=a}=\frac{1}{n!}\lim_{z \to a}\frac{d^n}{dz^n}(z-a)^{n+1}f(z)\]
\end{enumerate}
\subsection*{Cauchy's Residue Theorem}
If f(z) is analytic at all points inside and on a simple closed curve C expect for a finite number of isolated singularities \(z_1, z_2, z_3,\ldots.z_n\)
\[\int_C f(z)\ dz=2\pi i[\text{sum of residues at } z_1, z_2, z_3,\ldots.z_n]\]
\subsection{Taylor Series}
If f(z) is analytic function inside a circle C with center at `a' and radius R, then at each point Z inside C.
\[f(z)=f(a)+\frac{f'(a)}{1!}(z-a)+\frac{f''(a)}{2!}(z-a)^2+\frac{f'''(a)}{3!}(z-a)^3+\ldots\ldots.\infty\]
\subsection{Laurent Series}
If \(C_1\ and\ C_2\) are two concentric circles with center at `a' and radii r1 and r2 \((r1 > r2)\) and if f(z) is analytic on \(C_1\ and\ C_2\) and throughput the annular region R between them, then at each point Z in R.
\[f(z)=\sum_{n=0}^{\infty}a_n(z-a)^n+\sum_{n=0}^{\infty}b_n(z-a)^{-n}, \ \ \ \ \ \ \ n=0, 1, 2\]
\[a_n=\frac{1}{2\pi i}\oint_{C1}\frac{f(w)}{(w-a)^{n+1}}dw\ \ \ \ \ b_n=\frac{1}{2\pi i}\oint_{C2}\frac{f(w)}{(w-a)^{-(n+1)}}dw\]
% Section 5