-
Notifications
You must be signed in to change notification settings - Fork 3
/
meta_test.py
904 lines (765 loc) · 44.7 KB
/
meta_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
import argparse
import pickle
import cv2
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils import data
import numpy as np
from torch.autograd import Variable
import torch.optim as optim
import scipy.misc as sm
import torch.backends.cudnn as cudnn
import sys
import os
import os.path as osp
from deeplab.model import ResNetUpsampled_Deeplab
from deeplab.loss import CrossEntropy2d
from deeplab.datasets import DavisSiameseMAMLSet
import matplotlib.pyplot as plt
import random
from PIL import Image
import pdb
import timeit
from datetime import datetime
from tqdm import tqdm
from deeplab.clustering import clustering, clustering_morph
import copy
import gc
from sklearn.cluster import MiniBatchKMeans
from src.disp import labelcolormap
from src.bbox import gen_bbox, label_to_prob, combine_prob, prob_to_label, IoU
from src.get_params import *
from src.loss_func import binary_cross_entropy2d, cross_entropy2d
from src.label_transfer import label_transfer, apply_crf
from src.utils import read_image_label, imwrite_indexed, read_image_only, gen_bbox_new
colors = labelcolormap(500)
start = timeit.default_timer()
IMG_MEAN = np.array((104.00698793, 116.66876762, 122.67891434), dtype=np.float32)
BATCH_SIZE = 1
DATA_DIRECTORY = 'DAVIS'
VERSION = '2017'
SPLIT = 'val'
DATA_LIST_PATH = 'dataset/{}_videos_{}.txt'.format(SPLIT, VERSION)
IGNORE_LABEL = 255
INPUT_SIZE = '240,427'
LEARNING_RATE = 2.5e-6
MOMENTUM = 0.9
NUM_CLASSES = 2
NUM_FT_STEPS = 150001
POWER = 0.9
# RESTORE_FROM = 'random'
# RESTORE_FROM = './dataset/MS_DeepLab_resnet_pretrained_COCO_init.pth'
RESTORE_FROM = './snapshots/DAVIS_{}_prototypical_MODES_train_max_109000.pth'.format(VERSION)
# RESTORE_FROM = './snapshots/DAVIS_{}_train_on_pascal_1000.pth'.format(VERSION)
#RESTORE_FROM = './snapshots/Pascal_train_similarityloss_bg_50000.pth'
SNAPSHOT_DIR = './snapshots/'
WEIGHT_DECAY = 0.0005
FOR_BAC = 0
WARP = 0
COMBINE = 0
TRACKING = 0
# all three of above have to be made true.
COMBINE = 0 # for naive tracking
DISPLAY = 0
MEASURE = 1
TRACK_BASIC = 0
###########################################################################################
PROTOTYPICAL_SINGLE_MODE = False # If False, then it uses NUMBER_OF_CLUSTERS modes
number_of_clusters = 50
NUMBER_OF_CLUSTERS_train = 10
BG_Factor = 4
CC_Outlier_Removal = True
Num_FIX_Iterations = 2
ONLINE_UPDATE = True
Update_Frequency = 5 # Every "Update_Frequency" frame we do an online update.
Mode_Update_Simularity_Threshold = 0.5
MODES_ADDED = 10
global NUMBER_OF_CLUSTERS
###########################################################################################
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="DeepLab-ResNet Network")
parser.add_argument("--batch-size", type=int, default=BATCH_SIZE,
help="Number of images sent to the network in one step.")
parser.add_argument("--data-dir", type=str, default=DATA_DIRECTORY,
help="Path to the directory containing the PASCAL VOC dataset.")
parser.add_argument("--data-list", type=str, default=DATA_LIST_PATH,
help="Path to the file listing the images in the dataset.")
parser.add_argument("--ignore-label", type=int, default=IGNORE_LABEL,
help="The index of the label to ignore during the training.")
parser.add_argument("--input-size", type=str, default=INPUT_SIZE,
help="Comma-separated string with height and width of images.")
parser.add_argument("--is-training", action="store_true",
help="Whether to updates the running means and variances during the training.")
parser.add_argument("--learning-rate", type=float, default=LEARNING_RATE,
help="Base learning rate for training with polynomial decay.")
parser.add_argument("--momentum", type=float, default=MOMENTUM,
help="Momentum component of the optimiser.")
parser.add_argument("--not-restore-last", action="store_true",
help="Whether to not restore last (FC) layers.")
parser.add_argument("--num-classes", type=int, default=NUM_CLASSES,
help="Number of classes to predict (including background).")
parser.add_argument("--num-steps", type=int, default=NUM_FT_STEPS,
help="Number of training steps.")
parser.add_argument("--power", type=float, default=POWER,
help="Decay parameter to compute the learning rate.")
parser.add_argument("--random-mirror", action="store_true",
help="Whether to randomly mirror the inputs during the training.")
parser.add_argument("--random-scale", action="store_true",
help="Whether to randomly scale the inputs during the training.")
parser.add_argument("--restore-from", type=str, default=RESTORE_FROM,
help="Where restore model parameters from.")
parser.add_argument("--snapshot-dir", type=str, default=SNAPSHOT_DIR,
help="Where to save snapshots of the model.")
parser.add_argument("--weight-decay", type=float, default=WEIGHT_DECAY,
help="Regularisation parameter for L2-loss.")
parser.add_argument("--gpu", type=int, default=1,
help="choose gpu device.")
parser.add_argument("--cluster-num", type=int, default=number_of_clusters,
help="num of clusters.")
return parser.parse_args()
args = get_arguments()
def flip(x, dim):
if x.is_cuda:
return torch.index_select(x, dim,
torch.arange(x.size(dim) - 1, -1, -1).long().to(torch.device('cuda:{}'.format(1))))
else:
return torch.index_select(x, dim, torch.arange(x.size(dim) - 1, -1, -1).long())
def lr_poly(base_lr, iter, max_iter, power):
return base_lr * ((1 - float(iter) / max_iter) ** (power))
def adjust_learning_rate(optimizer, i_iter):
"""Sets the learning rate to the initial LR divided by 5 at 60th, 120th and 160th epochs"""
lr = lr_poly(args.learning_rate, i_iter, args.num_steps, args.power)
optimizer.param_groups[0]['lr'] = lr
optimizer.param_groups[1]['lr'] = lr * 2
def adjust_learning_rate_step(optimizer):
"""Sets the learning rate to the initial LR divided by 5 at 60th, 120th and 160th epochs"""
optimizer.param_groups[0]['lr'] = 0.2 * optimizer.param_groups[0]['lr']
optimizer.param_groups[1]['lr'] = 0.2 * optimizer.param_groups[1]['lr']
def getBB(mask, margin):
if mask.max() == 0:
return np.zeros_like(mask)
coords = cv2.boundingRect(mask.astype(np.uint8))
H, W = mask.shape
xmin = (coords[1] - margin) if (coords[1] - margin) > 0 else 0
ymin = (coords[0] - margin) if (coords[0] - margin) > 0 else 0
xmax = (coords[1] + coords[3] + margin) if (coords[1] + coords[3] + margin) < H else (H - 1)
ymax = (coords[0] + coords[2] + margin) if (coords[0] + coords[2] + margin) < W else (W - 1)
bb = np.zeros_like(mask)
bb[xmin:xmax, ymin:ymax] = 1
return bb
def main():
NUMBER_OF_CLUSTERS = args.cluster_num
# copy_as = colors[1:]
# np.random.shuffle(copy_as)
# colors[1:] = copy_as
"""Create the model and start the training."""
SEED = 5
torch.manual_seed(SEED)
torch.cuda.manual_seed_all(SEED)
np.random.seed(SEED)
H, W = map(int, args.input_size.split(','))
input_size = (H, W)
cudnn.enabled = True
gpu = args.gpu
device = torch.device('cuda:{}'.format(gpu))
# Create network.
emb_size = (128, H, W)
model_base = ResNetUpsampled_Deeplab(emb_size)
# For a small batch size, it is better to keep
# the statistics of the BN layers (running means and variances)
# frozen, and to not update the values provided by the pre-trained model.
# If is_training=True, the statistics will be updated during the training.
# Note that is_training=False still updates BN parameters gamma (scale) and beta (offset)
# if they are presented in var_list of the optimiser definition.
if RESTORE_FROM == 'random':
print('\nProceeding with random initialization...\n')
elif RESTORE_FROM == './dataset/MS_DeepLab_resnet_pretrained_COCO_init.pth':
saved_state_dict = torch.load(args.restore_from)
new_params = model_base.state_dict().copy()
for i in saved_state_dict:
# Scale.layer5.conv2d_list.3.weight
i_parts = i.split('.')
# print i_parts
if i_parts[0] == 'Scale':
i_parts = i_parts[1:]
if args.num_classes == 21 or not i_parts[0] == 'layer5':
new_params['.'.join(i_parts[0:])] = saved_state_dict[i]
model_base.load_state_dict(new_params)
else:
saved_state_dict = torch.load(args.restore_from, map_location={'cuda:3' : 'cuda:{}'.format(gpu), 'cuda:2' : 'cuda:{}'.format(gpu), 'cuda:1' : 'cuda:{}'.format(gpu), 'cuda:0' : 'cuda:{}'.format(gpu)})
model_base.load_state_dict(saved_state_dict)
# model.float()
# model.eval() # use_global_stats = True
model_base.eval()
cudnn.benchmark = True
if not os.path.exists(args.snapshot_dir):
os.makedirs(args.snapshot_dir)
testloader = data.DataLoader(
DavisSiameseMAMLSet(args.data_dir, args.data_list, all_frames=True, crop_size=input_size, mean=IMG_MEAN),
batch_size=args.batch_size, shuffle=False, num_workers=0, pin_memory=True)
fin = open('logs/test_{}_'.format(VERSION) + str(datetime.now().time()), 'w+')
for i_iter, batch in enumerate(testloader):
support_x, support_y, query_x, query_y, name = batch
# if name[0] not in ['dogs-jump','dog','cows','camel']:#''dog', 'dogs-jump', 'drift-chicane', 'drift-straight', 'soapbox']:
# continue
nFrames = len(query_x)
#########################################################
### Reading the first frame:
###################
img_s = support_x[0]
lab_s = support_y[0]
supp_image, supp_label, size = read_image_label(img_s, lab_s, mean=IMG_MEAN, mirror=False, scale=False, rotate=False)
if VERSION == '2016':
supp_label[supp_label > 0] = 1 # Single object segmentation
last_seen = np.zeros((supp_label.max(), supp_label.shape[1], supp_label.shape[2]))
for l in range(supp_label.max()):
last_seen[l] = (supp_label == (l+1)).astype(np.float)
supp_label = cv2.resize(supp_label[0], (emb_size[2], emb_size[1]), interpolation=cv2.INTER_NEAREST)[np.newaxis, :, :]
supp_image = torch.from_numpy(supp_image)
supp_label = torch.from_numpy(supp_label)
# supp_label[supp_label > 0] = 1 #Single object segmentation; we ignore other labels and reduce everything to one.
supp_label = supp_label.long()
cls1 = np.unique(supp_label[supp_label >= 0].numpy())
instance_num = cls1.max()
#########################################################
model = copy.deepcopy(model_base)
model.to(device)
#########################################################
### Compute a total loss for the rest of the video frames:
###################
nCls = cls1.shape[0]
mean_ious_seq = np.zeros(nCls)
mean_ious_seq_len = np.zeros(nCls)
video_loss = 0
video_loss_neg = 0
if 0:
print('----------------------------------------------------------------')
optimizer = optim.SGD([{'params': get_1x_lr_params_NOscale(model), 'lr': args.learning_rate},
{'params': get_10x_lr_params(model), 'lr': args.learning_rate}],
lr=args.learning_rate, momentum=args.momentum, weight_decay=0.0005)#args.weight_decay)
optimizer.zero_grad()
NUM_FT_STEPS = 10
for ft_iter in range(NUM_FT_STEPS):
img_q = query_x[0][0]
lab_q = query_y[0][0]
query_image, query_label, _ = read_image_label(img_q, lab_q, mean=IMG_MEAN, mirror=False, scale=False, rotate=False)
if VERSION=='2016':
query_label[query_label > 0] = 1 # Single object segmentation
gt = query_label[0].copy().astype(np.int16)
query_label = cv2.resize(query_label[0], (emb_size[2], emb_size[1]), interpolation=cv2.INTER_NEAREST)[np.newaxis, :, :]
inmax = np.abs(query_image[0]).max(0)
gt[inmax == 0] = -1
inmax = cv2.resize(inmax, (emb_size[2], emb_size[1]), interpolation=cv2.INTER_NEAREST)
query_label = query_label.astype(np.int16)
query_label[0][inmax == 0] = -1 #To remove the void regions made by rotation augmentation
query_label = torch.from_numpy(query_label).long()
query_image = torch.from_numpy(query_image)
cls2 = np.unique(query_label[query_label >= 0].numpy())
if len(list(set(cls2)-set(cls1))) > 0: continue # Skip the query frame if it has more labels than the support frame
query_label_resh = query_label.view(-1).to(device)
embeddings = model(query_image.to(device))
embeddings = embeddings.view(1, emb_size[0], -1)
if PROTOTYPICAL_SINGLE_MODE:
####################################################################################
### Prototypical networks, using one single prototype for each instance (inc. bg):
supp_label_resh = supp_label.view(1, -1)
prototypes = torch.stack([torch.mean(embedding_reference_resh[:, (supp_label_resh == float(l))[0]], dim=-1) for l in cls1])
prototypes = prototypes.unsqueeze(0).to(device)
DO_NORMALIZATION = 0
if DO_NORMALIZATION:
prototypes = prototypes / torch.norm(prototypes, dim=-1).view(prototypes.size()[0], prototypes.size()[1], 1)
embeddings = embeddings / torch.norm(embeddings, dim=1).view(embeddings.size()[0], 1, embeddings.size()[-1])
y = torch.matmul(prototypes, embeddings)
y = F.softmax(y, dim=1)
y = y[0].permute(1, 0)
loss = F.cross_entropy(y, query_label_resh, ignore_index=-1, size_average=True) / float(NUM_FT_STEPS)
output_probs = y.cpu().data.numpy().copy()
####################################################################################
else:
####################################################################################
### Prototypical networks, using multiple modes/clusters to represent parts of each instance (inc. bg)
### Using max-pool approach
cluster_map = mapr.copy()
modes = []
for l in cls1:
cc = 0
for c in range(N_CLUSTERS):
indices = (cluster_map == (N_CLUSTERS * l + c))
idx = np.where(indices.reshape(-1) > 0)[0]
if indices.size > 0:
cc += 1
cluster_embeddings = embedding_reference_resh[:, idx]
cluster_mean_embedding = cluster_embeddings.mean(dim=1)
modes.append(cluster_mean_embedding)
### If number of computed clusters within an object is less than N_CLUSTERS,
### then fill/replicate the rest of N_CLUSTER embeddings with previous clusters of that object:
for j in range(N_CLUSTERS - cc):
modes.append(modes[l * N_CLUSTERS + j])
modes = torch.stack(modes, dim=0).unsqueeze(0).to(device)
DO_NORMALIZATION = 1
if DO_NORMALIZATION:
modes = modes / torch.norm(modes, dim=-1).view(modes.size()[0], modes.size()[1], 1)
embeddings = embeddings / torch.norm(embeddings, dim=1).view(embeddings.size()[0], 1, embeddings.size()[-1])
### Computing the similarity
y = torch.matmul(modes, embeddings)
y = F.softmax(y, dim=1)
y = y[0].permute(1, 0)
### Extracting the maximum probability cluster of each class (To be used for evaluation, not in the loss):
output_probs = torch.stack([y[:, l*N_CLUSTERS:(l+1)*N_CLUSTERS].max(1)[0] for l in cls1], dim=-1).cpu().data.numpy().copy()
y_parts = []
for l in cls1:
y_part = y[:, l*N_CLUSTERS:(l+1)*N_CLUSTERS]
### Taking argmax of the probabilities of the clusters of the correct class for each sample and
### selecting the one with maximum score and computing the loss only for that cluster in each class:
ymaxidx = y_part.max(1)[1].unsqueeze(1).long()
ymaxidx_oh = 0 * torch.LongTensor(ymaxidx.size()[0], N_CLUSTERS).to(device)
ymaxidx_oh.scatter_(1, ymaxidx, 1)
y_part = y_part[ymaxidx_oh.byte()]
y_parts.append(y_part)
y = torch.stack(y_parts, dim=1)
y = y / (y.sum(1).unsqueeze(1))
loss = F.cross_entropy(y, query_label_resh, ignore_index=-1, size_average=True) / 1#float(NUM_FT_STEPS)
# '''
####################################
### Computing the negative loss:
ql_oh = 0 * torch.LongTensor(query_label_resh.size()[0], cls1.shape[0]).to(device)
ql_oh.scatter_(1, query_label_resh.unsqueeze(1), 1)
### Negative loss is computed only for incorrect classes: (1-ql_oh)
loss_neg = -(1-y).clamp(min=1e-12).log() * (1-ql_oh).float()
loss_neg = loss_neg.sum(1).mean() / 1#float(NUM_FT_STEPS)
loss = loss + loss_neg
video_loss_neg += loss_neg.data
####################################################################################
# '''
loss.backward()
video_loss += loss.data
####################
### Computing the accuracy:
output = np.argmax(output_probs, axis=1).reshape(emb_size[1:])
output = cv2.resize(output, (gt.shape[1], gt.shape[0]), interpolation=cv2.INTER_NEAREST)
M = np.zeros((nCls, nCls))
for i in range(M.shape[0]):
outg = output[gt==i]
for j in range(M.shape[1]):
M[i, j] = (outg==j).astype(np.float).sum()
for i in range(M.shape[0]):
den = (M[i, :].sum() + M[:, i].sum() - M[i, i])
if (gt==i).astype(np.float).sum()!=0:
mean_ious_seq[i] += M[i, i] / den
mean_ious_seq_len[i] += 1
#########################################################
# adjust_learning_rate(optimizer, i_iter)
optimizer.step()
print('{}: 1st frame: FT_iter_{}, mean-loss = {:.04f}, mean-neg-loss = {:.04f}, mean-iou = {:.04f}'.format(name[0], ft_iter, video_loss, video_loss_neg, np.mean(mean_ious_seq[1:] / mean_ious_seq_len[1:])))
mean_ious_seq *= 0
mean_ious_seq_len *= 0
video_loss = 0
video_loss_neg = 0
#########################################################
### Computing the instance prototypes in the first frame:
###################
embedding_reference = model(supp_image.to(device))
supp_label_resh = supp_label.view(1, -1)
embedding_reference_resh = embedding_reference.view(emb_size[0], -1)
embedding_reference_resh /= torch.norm(embedding_reference_resh, dim=0).view(1, embedding_reference_resh.size()[-1])
selected_pixels_list = [np.where(supp_label_resh.numpy() == l)[1] for l in cls1]
if PROTOTYPICAL_SINGLE_MODE:
N_CLUSTERS = min([1] + [np.sum(supp_label.numpy()[0] == l) for l in cls1])
else:
## If number of pixels in the object is less than NUMBER_OF_CLUSTERS, N_CLUSTERS should be the lower value.
N_CLUSTERS = min([NUMBER_OF_CLUSTERS_train] + [np.sum(supp_label.numpy()[0] == l) for l in cls1])
modes, mapr, class_labels_indcs = clustering(embedding_reference_resh.cpu().data.numpy(),
(supp_image[0].numpy().transpose(1, 2, 0) + IMG_MEAN).astype('uint8'),
selected_pixels_list, emb_size, nclusters=N_CLUSTERS,
method='kmeans', pca_comps=None)
modes_numpy = modes.copy()
#########################################################
# pdb.set_trace()
print('----------------------------------------------------------------')
#########################################
### Garbage Collection
del embeddings, embedding_reference, embedding_reference_resh, y, y_part, y_parts
gc.collect()
torch.cuda.empty_cache()
#########################################
mean_ious_seq *= 0
mean_ious_seq_len *= 0
with torch.no_grad():
embedding_reference = model(supp_image.to(device))
supp_label_resh = supp_label.view(1, -1)
embedding_reference_resh = embedding_reference.view(emb_size[0], -1)
embedding_reference_resh /= torch.norm(embedding_reference_resh, dim=0).view(1, embedding_reference_resh.size()[-1])
selected_pixels_list = [np.where(supp_label_resh.numpy() == l)[1] for l in cls1]
if PROTOTYPICAL_SINGLE_MODE:
N_CLUSTERS = min([1] + [np.sum(supp_label.numpy()[0] == l) for l in cls1])
else:
## If number of pixels in the object is less than NUMBER_OF_CLUSTERS, N_CLUSTERS should be the lower value.
N_CLUSTERS = min([NUMBER_OF_CLUSTERS] + [np.sum(supp_label.numpy()[0] == l) for l in cls1])
modes, mapr, class_labels_indcs = clustering(embedding_reference_resh.cpu().data.numpy(),
(supp_image[0].numpy().transpose(1, 2, 0) + IMG_MEAN).astype('uint8'),
selected_pixels_list, emb_size, nclusters=N_CLUSTERS,
bg_factor=BG_Factor, method='kmeans', pca_comps=None)
modes_mean = modes.mean(1)
number_of_modes = np.zeros(nCls).astype(np.int16)
number_of_modes[0] = N_CLUSTERS * BG_Factor
for i in range(1, nCls):
number_of_modes[i] = N_CLUSTERS
# pdb.set_trace()
nanidx = np.where(np.isnan(modes_mean))[0]
for x in nanidx:
clsnan = (x - number_of_modes[0]) // N_CLUSTERS
cc = 0
if clsnan >= 0:
base = clsnan * N_CLUSTERS + number_of_modes[0]
else:
base = 0
while np.isnan(modes_mean[base + cc]):
cc += 1
modes[x, :] = modes[base + cc, :]
cumsum_modes = np.cumsum(number_of_modes)
cumsum_modes = np.hstack([0, cumsum_modes])
base_modes = []
for i in range(nCls):
class_modes = modes[cumsum_modes[i]:cumsum_modes[i+1], :]
base_modes.append(class_modes)
modes_base_list = copy.deepcopy(base_modes)
for idx in tqdm(range(0, nFrames), total=nFrames, desc='Evaluating the video:{}'.format(name[0]), ncols=120,
leave=False):
img_q = query_x[idx][0]
lab_q = query_y[idx][0]
if 1:
query_image, query_label, size = read_image_label(img_q, lab_q, mean=IMG_MEAN, mirror=False,
scale=False, rotate=False)
# pdb.set_trace()
if VERSION == '2016':
query_label[query_label > 0] = 1 # Single object segmentation
query_label = torch.from_numpy(query_label)
else:
query_image, size = read_image_only(img_q, lab_q, RESIZE=input_size, mean=IMG_MEAN, mirror=False, scale=False,
rotate=False)
query_image = torch.from_numpy(query_image)
embeddings = model(query_image.to(device))
##########################################
### Prototypical networks, using multiple modes/clusters to represent parts of each instance (inc. bg)
### Using max-pool approach
modes_list = copy.deepcopy(modes_base_list)
modes_numpy = np.vstack(modes_list)
modes = torch.from_numpy(modes_numpy).unsqueeze(0).to(device)
modes = modes / torch.norm(modes, dim=-1).view(modes.size()[0], modes.size()[1], 1)
embeddings = embeddings.view(1, emb_size[0], -1)
embeddings = embeddings / torch.norm(embeddings, dim=1).view(embeddings.size()[0], 1, embeddings.size()[-1])
y = torch.matmul(modes, embeddings.view(1, emb_size[0], -1))
y = F.softmax(y, dim=1)
y = y[0].permute(1, 0)
if 1:
output_probs = torch.stack([y[:, cumsum_modes[l]:cumsum_modes[l+1]].max(1)[0] for l in cls1], dim=-1)
else:
topk = torch.topk(y, 20, dim=1)
y = torch.zeros_like(y).scatter_(1, topk[1], y)
output_probs = torch.stack([y[:, cumsum_modes[l]:cumsum_modes[l+1]].sum(1) for l in cls1], dim=-1)
output_cluster_labels = torch.stack([y[:, :].max(1)[1]], dim=-1).cpu().data.numpy().copy()
##########################################
#########################################
##### COMBINING PROP AND SIAM
# output_indices = output_probs.max(1)
output_cluster_labels_n = output_cluster_labels.reshape(emb_size[1:])
######################
### Apply CRF
# output_probs = F.softmax(output_probs, dim=1)
output_probs = output_probs / (output_probs.sum(1).unsqueeze(1))
output_probs = output_probs.transpose(1, 0).view(1, cls1.shape[0], emb_size[1], emb_size[2])
output_probs = F.interpolate(output_probs, (query_image.shape[2], query_image.shape[3]), mode='bilinear', align_corners=True)
output_probs = output_probs.cpu().data.numpy()
#############################################################################################
#############################################################################################
#############################################################################################
#############################################################################################
#############################################################################################
### Naive Outlier Removal Using Connected Components:
if CC_Outlier_Removal:
for cc_iter in range(Num_FIX_Iterations):
output = np.argmax(output_probs[0], axis=0)
for l in range(nCls-1):
mask = (output == (l+1)).astype(np.uint8)
ret, thresh = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
comps_num, comps_labels, comps_stats, comp_cents = cv2.connectedComponentsWithStats(thresh, connectivity=4, ltype=cv2.CV_32S)
filt = np.ones_like(mask).astype(np.float)
for cc in range(1, comps_num):
if comps_stats[cc, -1] < 10:
filt[comps_labels == cc] = 0.1
continue
overlap = (comps_labels == cc).astype(np.float) * last_seen[l].astype(np.float)
if overlap.sum() == 0:
filt[comps_labels == cc] = 0.1
# pdb.set_trace()
output_probs[0][l+1] *= filt
#############################################################################################
#############################################################################################
#############################################################################################
#############################################################################################
#############################################################################################
if os.path.isdir('output_probs_{}'.format(VERSION)) != True:
os.mkdir('output_probs_{}'.format(VERSION))
if os.path.isdir('output_images_{}'.format(VERSION)) != True:
os.mkdir('output_images_{}'.format(VERSION))
if os.path.isdir('output_probs_{}/{}'.format(VERSION, name[0])) != True:
os.mkdir('output_probs_{}/{}'.format(VERSION, name[0]))
np.save('output_probs_{}/{}/{:05}.npy'.format(VERSION, name[0], idx), output_probs.astype(np.float16))
# output = np.argmax(output_probs, axis=1).reshape(emb_size[1:])
if 0:#idx != 0 and idx != (nFrames-1):
flow_dir = os.path.join(DATA_DIRECTORY, 'Flows', '480p', name[0])
flow = flo.readFlow(os.path.join(flow_dir, '%05d.flo' % (idx)))
output = apply_crf(output_probs, query_image, IMG_MEAN, flow_2=flow, crf_niter=1)
else:
output = apply_crf(output_probs, query_image, IMG_MEAN, flow_2=None, crf_niter=0)
######################
# output_cluster_labels =
output1 = output
if idx != 0:
if WARP or FOR_BAC:
output1 = combine(output1, warp_label, bbox, idx)
if DISPLAY:
show_frame(output1, idx, bbox)
else:
if COMBINE == 2:
bbox = gen_bbox(prev_output, range(instance_num), True)
output1 = combine(output1, prev_output, bbox, idx)
if DISPLAY:
image = cv2.imread(img_q)
show_frame_new(image, output1, idx, bbox)
elif TRACK_BASIC == 1:
state = predict_state(idx, state)
output1, bbox = update_output(idx, state, output1, prev_output)
state, bbox1 = update_state(idx, state, output1)
if DISPLAY:
image = cv2.imread(img_q)
show_frame_new(image, output1, idx, bbox)
elif DISPLAY == 1:
bbox = gen_bbox(prev_output, range(instance_num), True)
output1 = cv2.resize(output1, (prev_output.shape[1], prev_output.shape[0]),
interpolation=cv2.INTER_NEAREST)
output_cluster_labels_n = cv2.resize(output_cluster_labels_n,
(prev_output.shape[1], prev_output.shape[0]),
interpolation=cv2.INTER_NEAREST)
if DISPLAY:
image = cv2.imread(img_q)
# show_frame_new(image,output1,idx,bbox)
output_cluster_labels_d =output_cluster_labels_n
indi = output_cluster_labels_d < cumsum_modes[1]
output_cluster_labels_d = output_cluster_labels_d - cumsum_modes[1] +1
output_cluster_labels_d[indi] = 0
show_clusters(name, output_cluster_labels_d, image, output1, idx, bbox)
#########################################
####################
### Computing the accuracy:
gt = query_label.numpy()[0]
if (output.shape[0] != gt.shape[0]) or (output.shape[1] != gt.shape[1]):
output = cv2.resize(output1, (gt.shape[1], gt.shape[0]), interpolation=cv2.INTER_NEAREST)
if MEASURE:
M = np.zeros((nCls, nCls))
for i in range(M.shape[0]):
outg = output[gt == i]
for j in range(M.shape[1]):
M[i, j] = (outg == j).astype(np.float).sum()
if idx != 0:
for i in range(M.shape[0]):
den = (M[i, :].sum() + M[:, i].sum() - M[i, i])
if (gt == i).astype(np.float).sum() != 0:
mean_ious_seq[i] += M[i, i] / den
mean_ious_seq_len[i] += 1
PALETTE = np.loadtxt('../davis-2017/data/palette.txt', dtype=np.uint8).reshape(-1, 3)
if size[0] != 480 or size[1] != 854:
sz = size[:-1][::-1]
output = cv2.resize(output, sz, interpolation=cv2.INTER_NEAREST)
if os.path.isdir('output_images_{}/{}'.format(VERSION, name[0])) != True:
os.mkdir('output_images_{}/{}'.format(VERSION, name[0]))
imwrite_indexed('output_images_{}/{}/{:05}.png'.format(VERSION, name[0], idx), output.astype(np.uint8),
PALETTE)
##########################################
prev_output = output
####################################################################################
for l in range(nCls-1):
mask = (output == (l + 1)).astype(np.uint8)
if idx == 0:
mask = (gt == (l + 1)).astype(np.uint8)
if (mask.shape[0] != gt.shape[0]) or (mask.shape[1] != gt.shape[1]):
last_seen[l] = cv2.resize(mask, (gt.shape[1], gt.shape[0]), interpolation=cv2.INTER_NEAREST).copy()
else:
last_seen[l] = mask.copy()
if mask.sum() == 0:
# last_seen[l] = getBB(mask=last_seen[l], margin=60).astype(np.float)
last_seen[l] += 1
####################################################################################
####################################################################################
### ONLINE Adaptation:
####################################################################################
if ONLINE_UPDATE and idx % Update_Frequency == 0 and idx != 0:
output_small = cv2.resize(output, (emb_size[2], emb_size[1]), interpolation=cv2.INTER_NEAREST)
N_CLUSTERS_ADAPT = min([MODES_ADDED] + [np.sum(output_small == l) for l in cls1])
if N_CLUSTERS_ADAPT <= 1:
print(N_CLUSTERS_ADAPT)
continue
# if name[0] == 'bmx-trees' and idx == 70:
# pdb.set_trace()
modes, mapr, class_labels_indcs = clustering_morph(embeddings[0].cpu().data.numpy(),
(query_image[0].numpy().transpose(1, 2, 0) + IMG_MEAN).astype('uint8'),
output_small, nCls, emb_size, nclusters=N_CLUSTERS_ADAPT,
bg_factor=1, method='kmeans', pca_comps=None)
modes_mean = modes.mean(1)
number_of_modes_temp = np.zeros(nCls).astype(np.int16)
number_of_modes_temp[0] = N_CLUSTERS_ADAPT * 1
for i in range(1, nCls):
number_of_modes_temp[i] = N_CLUSTERS_ADAPT
nanidx = np.where(np.isnan(modes_mean))[0]
for x in nanidx:
clsnan = (x - number_of_modes_temp[0]) // N_CLUSTERS_ADAPT
cc = 0
if clsnan >= 0:
base = clsnan * N_CLUSTERS_ADAPT + number_of_modes_temp[0]
else:
base = 0
while np.isnan(modes_mean[base + cc]):
cc += 1
modes[x, :] = modes[base + cc, :]
c = -1
for i in range(nCls):
if not i in class_labels_indcs:
continue
base_modes = modes_base_list[i]
modes_correlation = np.matmul(modes, base_modes.transpose(1, 0))
c += 1
for j in range(c*N_CLUSTERS_ADAPT, (c+1)*N_CLUSTERS_ADAPT):
if modes_correlation[j, :].max() > Mode_Update_Simularity_Threshold:
base_modes = np.vstack([base_modes, modes[j, :]])
number_of_modes[i] += 1
modes_base_list[i] = base_modes
cumsum_modes = np.cumsum(number_of_modes)
cumsum_modes = np.hstack([0, cumsum_modes])
####################################################################################
####################
### Computing the accuracy:
if MEASURE:
mean_ious_seq = mean_ious_seq[1:] / mean_ious_seq_len[1:]
mean_ious_seq = [round(mean_ious_seq[i], 3) for i in range(mean_ious_seq.shape[0])]
print('{}: Total: mean-IoU = {}.\n'.format(name[0], mean_ious_seq))
for iou in mean_ious_seq:
fin.write('{}\n'.format(iou))
####################
#########################################
### Garbage Collection
del model, embeddings, y
gc.collect()
torch.cuda.empty_cache()
#########################################
#########################################################
if TRACKING:
############### TRACKING PART
frame_cnt += nFrames
#########################################################
end = timeit.default_timer()
print(end - start, 'seconds')
fin.close()
def save_frame(bbox, th, do_pause, dir_name='', vis=True):
result = prob_to_label(combine_prob(pred_prob[th]))
result_show = np.dstack((colors[result, 0], colors[result, 1], colors[result, 2])).astype(np.uint8)
temp = cv2.resize(frames, frame_0.shape[-2::-1]) * 0.3 + result_show * 0.7
for i in range(instance_num):
temp = cv2.rectangle(temp, (bbox[i, 0], bbox[i, 1]), (bbox[i, 2], bbox[i, 3]), (0, 255, 0), 5)
cv2.imshow('Result', temp.astype(np.uint8))
if do_pause:
cv2.waitKey()
else:
cv2.waitKey(100)
return
def show_frame(result, th, bbox):
result_show = np.dstack((colors[result, 0], colors[result, 1], colors[result, 2])).astype(np.uint8)
temp = cv2.resize(frames, frame_0.shape[-2::-1]) * 0.3 + result_show * 0.7
for i in range(instance_num):
temp = cv2.rectangle(temp, (bbox[i, 0], bbox[i, 1]), (bbox[i, 2], bbox[i, 3]), (0, 255, 0), 5)
temp1 = cv2.resize(frames, frame_0.shape[-2::-1])
showim = np.concatenate((temp1, temp), axis=1)
cv2.imshow('result', showim.astype(np.uint8))
cv2.waitKey(250)
def show_frame_new(supp_image, result, th, bbox):
result_show = np.dstack((colors[result, 0], colors[result, 1], colors[result, 2])).astype(np.uint8)
temp = supp_image * 0.3 + result_show * 0.7
for i in range(instance_num):
temp = cv2.rectangle(temp, (bbox[i, 0], bbox[i, 1]), (bbox[i, 2], bbox[i, 3]), (0, 255, 0), 5)
showim = np.concatenate((supp_image, temp), axis=1)
cv2.imshow('result', showim.astype(np.uint8))
cv2.waitKey(25)
# k = cv2.waitKey(0)
# if k == ord('a'): # Esc key to stop
# return
def show_clusters(name, output_cluster_labels_n, supp_image, result, th, bbox):
# read_file = os.path.join('output_images_2017_64', str(name[0]), '%05d.png' % th)
# im = Image.open(read_file)
# annotation = np.atleast_3d(im)[...,0]
# aph = np.array(im.getpalette()).reshape((-1,3))
# #result = cv2.imread(read_file)
# result=annotation
# indic = result > 0
# result_show1 = np.dstack((colors[result, 0], colors[result, 1], colors[result, 2])).astype(np.uint8)
# #result_show = np.dstack((colors[output_cluster_labels_n, 0], colors[output_cluster_labels_n, 1],colors[output_cluster_labels_n, 2])).astype(np.uint8)
# # supp_image_mod = supp_image
# # supp_image_mod[indic] = supp_image_mod[indic]*0.3
# # temp1 = supp_image_mod + result_show1 * 0.7
# temp1 = supp_image * 0.3 + result_show1 * 0.7
# # for i in range(instance_num):
# # temp = cv2.rectangle(temp, (bbox[i, 0], bbox[i, 1]), (bbox[i, 2], bbox[i, 3]), (0, 255, 0), 5)
# #showim = np.concatenate((supp_image, temp, temp1), axis=1)
# dest_dir = 'output_images_val/' + str(name[0])
# if os.path.isdir(dest_dir) != True:
# os.mkdir(dest_dir)
# dest = os.path.join(dest_dir, '%05d.png' % th)
# cv2.imwrite(dest, temp1)
# # dest1 = dest_dir + '/' + str(th) + 'o.jpg'
# # cv2.imwrite(dest1, temp1)
# # cv2.imshow('result', result.astype(np.uint8))
# # # cv2.waitKey(25)
# # k = cv2.waitKey(0)
# # if k == ord('a'): # Esc key to stop
# return
indic = result > 0
result_show1 = np.dstack((colors[result, 0], colors[result, 1], colors[result, 2])).astype(np.uint8)
result_show = np.dstack((colors[output_cluster_labels_n, 0], colors[output_cluster_labels_n, 1],
colors[output_cluster_labels_n, 2])).astype(np.uint8)
supp_image_mod = supp_image.copy()
supp_image_mod[indic] = supp_image_mod[indic]*0.3
temp = supp_image_mod + result_show * 0.7
temp1 = supp_image_mod + result_show1 * 0.7
# for i in range(instance_num):
# temp = cv2.rectangle(temp, (bbox[i, 0], bbox[i, 1]), (bbox[i, 2], bbox[i, 3]), (0, 255, 0), 5)
showim = np.concatenate((supp_image, temp, temp1), axis=1)
cv2.imshow('result', showim.astype(np.uint8))
cv2.waitKey(25)
# dest_dir = 'figures/' + str(th) + '.jpg'
# cv2.imwrite(os.path.join('figures', '%05d.jpg' % (th)), showim)
# k = cv2.waitKey(0)
# if k == ord('a'): # Esc key to stop
# return
# plt.imshow(showim.astype(np.uint8))
# plt.show()
def combine(output, warp_label, bbox, th):
if COMBINE == 2 or TRACK_BASIC:
output = cv2.resize(output, (warp_label.shape[1], warp_label.shape[0]), interpolation=cv2.INTER_NEAREST)
new_output = np.zeros(warp_label.shape, dtype=int)
for i in range(instance_num):
new_output[bbox[i, 1]:bbox[i, 3], bbox[i, 0]:bbox[i, 2]] = output[bbox[i, 1]:bbox[i, 3],
bbox[i, 0]:bbox[i, 2]]
return new_output
if COMBINE == 1:
output = cv2.resize(output, (warp_label.shape[1], warp_label.shape[0]), interpolation=cv2.INTER_NEAREST)
new_output = np.zeros(warp_label.shape, dtype=int)
for i in range(instance_num):
new_output[bbox[i, 1]:bbox[i, 3], bbox[i, 0]:bbox[i, 2]] = output[bbox[i, 1]:bbox[i, 3],
bbox[i, 0]:bbox[i, 2]]
pred_prob[th] = label_to_prob(new_output, instance_num)
return new_output
if __name__ == '__main__':
main()