-
Notifications
You must be signed in to change notification settings - Fork 2
/
boringtest.sh
56 lines (40 loc) · 1.95 KB
/
boringtest.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#!/bin/sh
#you can control the resources and scheduling with '#SBATCH' settings
# (see 'man sbatch' for more information on setting these parameters)
# The default partition is the 'general' partition
#SBATCH --partition=general
# The default Quality of Service is the 'short' QoS (maximum run time: 4 hours)
#SBATCH --qos=short
# The default run (wall-clock) time is 1 minute
#SBATCH --time=4:00:00
# The default number of parallel tasks per job is 1
#SBATCH --ntasks=1
# The default number of CPUs per task is 1, however CPUs are always allocated per 2, so for a single task you should use
#SBATCH --cpus-per-task=1
# The default memory per node is 1024 megabytes (1GB)
#SBATCH --mem=32GB
#SBATCH --gres=gpu:a40:1
# Set mail type to 'END' to receive a mail when the job finishes (with usage statistics)
#SBATCH --mail-type=END
# Measure GPU usage of your job (initialization)
previous=$(/usr/bin/nvidia-smi --query-accounted-apps='gpu_utilization,mem_utilization,max_memory_usage,time' --format='csv' | /usr/bin/tail -n '+2')
# Use this simple command to check that your sbatch settings are working (it should show the GPU that you requested)
/usr/bin/nvidia-smi
#Job name
#SBATCH --job-name=start
#Output file
#SBATCH --output=/home/nfs/yanqiqiao/backdoor-attacks-against-federated-learning-masteroutputs/%x.%j.out
module use /opt/insy/modulefiles
module load cuda/11.1 cudnn/11.1-8.0.5.39 miniconda/3.9
module list
# Your job commands go below here
#echo "Sourcing Ablation venv"
conda activate attack
echo -ne "Executing script "
echo $1
echo -ne "Running on node "
hostname
echo "Standard output:"
srun python main.py --attack_mode='trigger_generation' --possibility=1 --aggregation='median' --wandb_run_name="trigger_scratch_10_1_median" --using_clip=True --trigger_norm=4 --server_lr=1
# Measure GPU usage of your job (result)
/usr/bin/nvidia-smi --query-accounted-apps='gpu_utilization,mem_utilization,max_memory_usage,time' --format='csv' | /usr/bin/grep -v -F "$previous"