-
Notifications
You must be signed in to change notification settings - Fork 2
/
data_loader.py
262 lines (209 loc) · 9.59 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
from torch.utils.data import Dataset
from torchvision import datasets, transforms
import torch
import numpy as np
import random
import math
import os
import pickle
global_attack_mode = None
class cifar10_EC(Dataset):
def __init__(self, father_set, **kwargs):
self.dataset = father_set
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
return (self.dataset[idx], 2)
class femnist_EC(Dataset):
def __init__(self, father_set, **kwargs):
self.dataset = father_set
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
return (self.dataset[idx], 1)
class OwnCifar10(datasets.CIFAR10):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.non_iid_id = []
self.test = False
def __len__(self):
if self.test == False:
return len(self.non_iid_id)
else:
return super().__len__()
def __getitem__(self, idx):
if self.test == False:
temp_list = list(super().__getitem__(self.non_iid_id[idx]))
else:
temp_list = list(super().__getitem__(idx))
return tuple(temp_list)
class SubCifar10(Dataset):
def __init__(self, father_set, **kwargs):
self.non_iid_id = []
self.father_set = father_set
def __len__(self):
return len(self.non_iid_id)
def __getitem__(self, idx):
return self.father_set.__getitem__(self.non_iid_id[idx])
class General_Dataset(Dataset):
""" An abstract Dataset class wrapped around Pytorch Dataset class """
def __init__(self, data, targets, users_index = None, transform = None):
self.data = data
self.targets = targets
self.transform = transform
if users_index != None:
self.users_index = users_index
def __len__(self):
return len(self.data)
def __getitem__(self, item):
img = self.data[item]
label = self.targets[item]
if self.transform != None:
img = self.transform(img)
return (img, label)
class SubTiny(Dataset):
def __init__(self, father_set, **kwargs):
self.non_iid_id = []
self.father_set = father_set
def __len__(self):
return len(self.non_iid_id)
def __getitem__(self, idx):
return self.father_set.__getitem__(self.non_iid_id[idx])
def load_imagenet(path, transform = None):
imagenet_list = torch.load(path)
data_list = []
targets_list = []
for item in imagenet_list:
data_list.append(item[0])
targets_list.append(item[1])
targets = torch.LongTensor(targets_list)
return General_Dataset(data = data_list, targets=targets, transform=transform)
class Fede_Dataset(Dataset):
""" An abstract Dataset class wrapped around Pytorch Dataset class """
def __init__(self, data, targets, users_index = None, transform = None):
self.data = data
self.targets = targets
self.transform = transform
if users_index != None:
self.users_index = users_index
def __len__(self):
return len(self.data)
def __getitem__(self, item):
img = self.data[item]
label = self.targets[item]
if self.transform != None:
img = self.transform(img)
return img, label
def load_femnist(path, train = True, transform = None):
femnist_dict = None
if train == True:
with open(path, "rb") as f:
femnist_dict = pickle.load(f)
else:
femnist_dict = torch.load(path)
training_data = femnist_dict['training_data']
targets = femnist_dict['targets']
user_idx = femnist_dict['user_idx']
for i in range(len(training_data)):
training_data[i] = torch.tensor(training_data[i].reshape(1,28,28)).float()
targets = torch.LongTensor(targets)
return Fede_Dataset(data = training_data, targets=targets, users_index = user_idx, transform=transform)
class SubFedeMnist(Dataset):
def __init__(self, id, father_set, **kwargs):
self.id = id
self.father_set = father_set
def __len__(self):
return len(self.id)
def __getitem__(self, index):
temp_list = list(self.father_set.__getitem__(self.id[index]))
return tuple(temp_list)
def load_dataset(dataset_name, path):
if dataset_name == 'cifar10':
transforms_list = []
transforms_list.append(transforms.ToTensor())
if global_attack_mode == 'edge_case':
transforms_list.append(transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)))
mnist_transform = transforms.Compose(transforms_list)
train_dataset = OwnCifar10(root = path, train=True, download=True, transform=mnist_transform)
test_dataset = OwnCifar10(root = path, train=False, download=True, transform=mnist_transform)
train_dataset.test = True
test_dataset.test = True
train_dataset.targets, test_dataset.targets = torch.LongTensor(train_dataset.targets), torch.LongTensor(test_dataset.targets)
return train_dataset, test_dataset
elif dataset_name == 'tiny':
transforms_list = []
transforms_list.append(transforms.ToTensor())
mnist_transform = transforms.Compose(transforms_list)
train_dataset = load_imagenet(os.path.join(path, 'tiny-imagenet-pt', 'imagenet_train.pt'), transform=mnist_transform)
test_dataset = load_imagenet(os.path.join(path, 'tiny-imagenet-pt', 'imagenet_val.pt'), transform=mnist_transform)
return train_dataset, test_dataset
elif dataset_name == 'femnist':
transforms_list = []
if global_attack_mode == 'edge_case':
transforms_list.append(transforms.Normalize((0.1307,), (0.3081,)))
train_dataset = load_femnist(os.path.join(path, 'femnist_training.pickle'), train = True, transform = None)
test_dataset = load_femnist(os.path.join(path, 'femnist_test.pt'), train = False, transform = None)
return train_dataset, test_dataset
elif dataset_name == 'fashionmnist':
transforms_list = []
transforms_list.append(transforms.ToTensor())
mnist_transform = transforms.Compose(transforms_list)
train_dataset = datasets.FashionMNIST(root = path, train=True, download=True, transform=mnist_transform)
test_dataset = datasets.FashionMNIST(root = path, train=False, download=True, transform=mnist_transform)
return train_dataset, test_dataset
def distribution_data_dirchlet(dataset, n_classes = 10, num_of_agent = 10):
if num_of_agent == 1:
return {0:range(len(dataset))}
N = dataset.targets.shape[0]
net_dataidx_map = {}
idx_batch = [[] for _ in range(num_of_agent)]
for k in range(n_classes):
idx_k = np.where(dataset.targets == k)[0]
np.random.shuffle(idx_k)
proportions = np.random.dirichlet(np.repeat(0.5, num_of_agent))
proportions = proportions / proportions.sum()
proportions = (np.cumsum(proportions) * len(idx_k)).astype(int)[:-1]
idx_batch = [idx_j + idx.tolist() for idx_j, idx in zip(idx_batch, np.split(idx_k, proportions))]
for j in range(num_of_agent):
np.random.shuffle(idx_batch[j])
net_dataidx_map[j] = idx_batch[j]
return net_dataidx_map
def synthetic_real_word_distribution(dataset, num_agents):
num_user = len(dataset.users_index)
u_train = dataset.users_index
user = np.zeros(num_user+1,dtype=np.int32)
for i in range(1,num_user+1):
user[i] = user[i-1] + u_train[i-1]
no = np.random.permutation(num_user)
batch_idxs = np.array_split(no, num_agents)
net_dataidx_map = {i:np.zeros(0,dtype=np.int32) for i in range(num_agents)}
for i in range(num_agents):
for j in batch_idxs[i]:
net_dataidx_map[i]=np.append(net_dataidx_map[i], np.arange(user[j], user[j+1]))
return net_dataidx_map
def split_femnist(train_dataset, num_of_agent):
net_dataidx_map = synthetic_real_word_distribution(train_dataset, num_of_agent)
random.shuffle(net_dataidx_map)
boring_list = []
train_loader_list = []
for index in range(num_of_agent):
tempSet = SubFedeMnist(id = net_dataidx_map[index], father_set = train_dataset)
boring_list.append(tempSet)
train_loader_list.append(torch.utils.data.DataLoader(tempSet, batch_size = 64, shuffle = True))
return train_loader_list
def split_train_data(train_dataset, num_of_agent = 10, non_iid = False, n_classes = 10):
if non_iid == False:
average_num_of_agent = math.floor(len(train_dataset) / num_of_agent)
train_dataset_list = torch.utils.data.random_split(train_dataset, [average_num_of_agent] * num_of_agent)
random.shuffle(train_dataset_list)
train_loader_list = []
for index in range(num_of_agent):
train_loader_list.append(torch.utils.data.DataLoader(train_dataset_list[index], batch_size = 256, shuffle = True))
else:
net_dataidx_map = distribution_data_dirchlet(train_dataset, n_classes = n_classes, num_of_agent = num_of_agent)
train_loader_list = []
for index in range(num_of_agent):
temp_train_dataset = SubCifar10(train_dataset)
temp_train_dataset.non_iid_id = net_dataidx_map[index]
train_loader_list.append(torch.utils.data.DataLoader(temp_train_dataset, batch_size = 256, shuffle = True))
return train_loader_list