-
Notifications
You must be signed in to change notification settings - Fork 0
/
tempCodeRunnerFile.cpp
281 lines (233 loc) · 9.41 KB
/
tempCodeRunnerFile.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
// BPlusTree.cpp
#include "BPlusTree.h"
// Constructor definition
template <typename TKey, typename TValue>
BPlusTree<TKey, TValue>::BPlusTree() {
root = std::make_shared<BPlusTreeNode<TKey, TValue>>(true);
}
// Insert method definition
template <typename TKey, typename TValue>
void BPlusTree<TKey, TValue>::insert(const TKey& key, const TValue& value) {
// Split root if full
if (root.keys.size() == 2 * ORDER - 1) {
auto newRoot = std::make_shared<BPlusTreeNode<TKey, TValue>>(); // Declare pointer newRoot
newRoot->children.push_back(root) // New root has the old root as first child
splitInternal(newRoot); // Split the full root
root = newRoot; // Update the root to the new root
}
// Traverse the tree to find appropriate leaf node
auto leaf = root;
while (!leaf->isLeaf) {
int i = 0;
while (i < leaf->keys.size() && key >= leaf->keys[i]) i++;
leaf = std::dynamic_pointer_cast<BPlusTreeNode<TKey, TValue>>(leaf->children[i]);
}
// Insert the key-value pair into the found leaf node
int i = 0;
while (i < leaf->keys.size() && key >= leaf->keys[i]) i++;
leaf->keys.insert(leaf->keys.begin() + i, key);
leaf->values.insert(leaf->values.begin() + i, value);
// Split leaf if full
if (leaf->keys.size() == 2 * ORDER - 1) {
splitLeaf(leaf);
}
}
// Search method definition
template <typename TKey, typename TValue>
std::optional<TValue> BPlusTree<TKey, TValue>::search(const TKey& key) const {
// Traverse to the leaf that contains the key
auto current = root;
while (!current->isLeaf) {
int i = 0;
while (i < current->keys.size() && key >= current->keys[i]) i++;
current = std::dynamic_pointer_cast<BPlusTreeNode<TKey, TValue>>(current->children[i]);
}
// Binary search in leaf
int left = 0, right = current->keys.size() - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
TKey midKey = current->keys[mid];
if (midKey == key) {
return current->values[mid];
} else if (midKey < key) {
left = mid + 1;
} else {
right = mid - 1;
}
}
return std::nullopt;
}
// Remove method definition
template <typename TKey, typename TValue>
bool BPlusTree<TKey, TValue>::remove(const TKey& key) {
// Traverse to the leaf that might contain the key
auto current = root;
while (!current->isLeaf) {
int i = 0;
while (i < current->keys.size() && key >= current->keys[i]) i++;
current = std::dynamic_pointer_cast<BPlusTreeNode<TKey, TValue>>(current->children[i]);
}
// Search for the key
int i = 0;
while (i < current->keys.size() && current->keys[i] != key) i++;
if (i == current->keys.size()) return false; // key not found
current->keys.erase(current->keys.begin() + i);
current->values.erase(current->values.begin() + i);
// Need to handle underflow
}
// In-order traversal display method definition
template <typename TKey, typename TValue>
void BPlusTree<TKey, TValue>::display() const {
std::function<void(std::shared_ptr<BPlusTreeNode<TKey, TValue>>, int)> printNode;
printNode = [&](std::shared_ptr<BPlusTreeNode<TKey, TValue>> node, int level) {
if (node == nullptr) return;
std::cout << "Level" << level << ": ";
for (const auto& key : node->keys) {
std::cout << key << " ";
}
std::cout << std::endl;
if (!node.isLeaf) {
for (const auto& child : node->children) {
printNode(child, level + 1)
}
}
};
printNode(root, 0);
}
// findMin method definition
template <typename TKey, typename TValue>
std::optional<TValue> BPlusTree<TKey, TValue>::findMin() const {
auto current = root;
while (!current->isLeaf) {
current = std::dynamic_pointer_cast<BPlusTreeNode<TKey, TValue>>(current->children[0]);
}
if (!current->values.empty()) {
return current->values[0];
}
return std::nullopt;
}
// findMax method definition
template <typename TKey, typename TValue>
std::optional<TValue> BPlusTree<TKey, TValue>::findMax() const {
auto current = root;
while (!current->isLeaf) {
current = std::dynamic_pointer_cast<BPlusTreeNode<TKey, TValue>>(current->children[current->children.size() - 1]);
}
if (!current->values.empty()) {
return current->values[current->values.size() - 1];
}
return std::nullopt;
}
// rangeSearch method definition
template <typename TKey, typename TValue>
std::vector<TValue> BPlusTree<TKey, TValue>::rangeSearch(const TKey& lowerBound, const TKey& upperBound) const {
std::vector<TValue> result;
auto current = root;
// Traverse to the leaf that contains the lower bound
while (!current->isLeaf) {
int i = 0;
while (i < current->keys.size() && lowerBound >= current->keys[i]) i++;
current = std::dynamic_pointer_cast<BPlusTreeNode<TKey, TValue>>(current->children[i]);
}
// Iterate through the tree and collect values in the range
while (current != nullptr) {
for (int i = 0; i < current->keys.size(); i++) {
if (current->keys[i] >= lowerBound && current->keys[i] <= upperBound) {
result.push_back(current->values[i]);
}
}
if (!current->keys.empty() && current->keys.back() > upperBound) break;
current = current->next;
}
return result;
}
// Private splitLeaf method definition
template <typename TKey, typename TValue>
void BPlusTree<TKey, TValue>::splitLeaf(std::shared_ptr<BPlusTreeNode<TKey, TValue>> leaf) {
auto newLeaf = std::make_shared<BPlusTreeNode<TKey, TValue>>(true);
int mid = (2 * ORDER - 1) / 2
// Move half the keys and values to the new leaf
newLeaf->keys.assign(leaf->keys.begin() + mid, leaf->keys.end());
newLeaf->values.assign(leaf->values.begin() + mid, leaf->values.end());
// Adjust current leaf
leaf->keys.resize(mid);
leaf->values.resize(mid);
// Link the new leaf
newLeaf->next = leaf->next;
leaf->next = newLeaf;
// Insert new leaf to the parent
insertInternal(newLeaf->keys[0], leaf, newLeaf);
};
// Private splitInternal method definition
template <typename TKey, typename TValue>
void BPlusTree<TKey, TValue>::splitInternal(std::shared_ptr<BPlusTreeNode<TKey, TValue>> internal) {
auto child = internal->children.back(); // last child of the internal node
if (child->isLeaf) {
splitLeaf(child); // split it as a leaf node if the child is a leaf
return;
}
// Not a child; split as internal node
auto newInternal = std::make_shared<BPlusTreeNode<TKey, TValue>>();
int mid = (2 * ORDER - 1) / 2;
// Move second half of the keys to the new internal node
newInternal->keys.assign(child->keys.begin() + mid + 1, child->keys.end());
TKey upKey = child->keys[mid];
// Move second half of the children to the new internal node
newInternal->children.assign(child->children.begin() + mid + 1, child->children.end());
// Adjust the last child
child->keys.resize(mid);
child->children.resize(mid + 1);
// Insert the new upKey and the newInternal
internal->keys.push_back(upKey);
internal->children.push_back(newInternal);
// If the internal node (parent) is now overfull (has 2*ORDER-1 keys), split it too
if (internal->keys.size() == 2 * ORDER - 1) {
if (internal == root) {
auto newRoot = std::make_shared<BPlusTreeNode<Key, Value>>();
newRoot->children.push_back(root);
splitInternal(newRoot);
root = newRoot;
} else {
// Recursively split the parent
auto parent = getParent(root, internal);
insertInternal(upKey, parent, newInternal);
}
}
};
template <typename TKey, typename TValue>
std::shared_ptr<BPlusTreeNode<TKey, TValue>> BPlusTree<TKey, TValue>::getParent(std::shared_ptr<BPlusTreeNode<TKey, TValue>> current, std::shared_ptr<BPlusTreeNode<TKey, TValue>> child) {
if (current->isLeaf || current == root) return nullptr;
// Traverse the current node's children to find the parent of 'child'
for (auto& c : current->children) {
if (c == child) {
return current;
} else if (!c->isLeaf) {
auto parent = getParent(c, child);
if (parent) return parent;
}
}
return nullptr;
};
// Private insertInternal method definition
template <typename TKey, typename TValue>
void BPlusTree<TKey, TValue>::insertInternal(const TKey& key, std::shared_ptr<BPlusTreeNode<TKey, TValue>> node, std::shared_ptr<BPlusTreeNode<TKey, TValue>> child) {
// Find the correct position in the internal node to insert the new key
int pos = 0;
while (pos < node->keys.size() && key > node->keys[pos]) pos++;
// Insert the key at the found position
node->keys.insert(node->keys.begin() + pos, key);
node->children.insert(node->children.begin() + pos + 1, child);
// Split if overfull
if (node->keys.size() == 2 * ORDER - 1) {
if (node == root) {
auto newRoot = std::make_shared<BPlusTreeNode<Key, Value>>();
newRoot->children.push_back(root);
splitInternal(newRoot);
root = newRoot;
} else {
// Recursively split the node's parent if it's not the root
auto parent = getParent(root, node);
splitInternal(parent);
}
}
};