forked from IIITKalyaniFOSC/test_1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_data.py
66 lines (48 loc) · 2.68 KB
/
create_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import cv2
import numpy as np
import matplotlib.pyplot as plt
import glob
def show_images(images, cmap=None):
cols = 2 # Displaying the images side by side
rows = (len(images)+1)//cols # Deciding the number of rows (essentially the height)
# of the images
plt.figure(figsize=(15, 12)) # Creating the figure upon which the images shall be drawn
# For the following loop, assume two images: image1 and image2
for i, image in enumerate(images): # enumerate serves to attach a key to each image, 0:image1 and 1:image2
plt.subplot(rows, cols, i+1) # creating 2 subplots upon the figure generated above. Upon these subplots, we will draw our images.
# use gray scale color map if there is only one channel
cmap = 'gray' if len(image.shape)==2 else cmap
plt.imshow(image, cmap=cmap) # Draw the image
plt.xticks([]) # Label the x-axis with Nothing (i.e. empty list denoted by [])
plt.yticks([]) # Label the y-axis with Nothing (i.e. empty list denoted by [])
plt.tight_layout(pad=0, h_pad=0, w_pad=0) # Finalizing the padding of the images in the layout
plt.show() # Display the images.
def select_rgb_white_yellow(image):
# White and yellow masking combined
# white color mask
lower = np.uint8([120, 120, 120])
upper = np.uint8([255, 255, 255])
white_mask = cv2.inRange(image, lower, upper)
# yellow color mask
lower = np.uint8([190, 190, 0])
upper = np.uint8([255, 255, 255])
yellow_mask = cv2.inRange(image, lower, upper)
# combine the mask
mask = cv2.bitwise_or(white_mask, yellow_mask)
masked = cv2.bitwise_and(image, image, mask = mask)
return masked
def convert_gray_scale(image):
# It is easier for CNNs to understand a single channel image rather than several channel images.
# Hence we convert the 3 channel RGB images to single channel greyscale images
return cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# Loading the images to create the data for the CNN
# glob.glob(PATH_TO_IMAGES) serves to load the path of the images and save those paths in the variable 'path'
# plt.imread() serves to read those images.
# [plt.imread()] serves to project the read images into a list which is then stored into the variable 'test_images'
test_images = [plt.imread(path) for path in glob.glob('understand_site/*.jpg')]
# Merging the white and the yellow masks
white_yellow_images = list(map(select_rgb_white_yellow, test_images))
# Converting the RGB images to single channel greyscale images
gray_images = list(map(convert_gray_scale, white_yellow_images))
# Uncomment this line during testing to determine if the greyscales are being converted fine enough
# show_images(gray_images)