-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtrainmeshreg.py
361 lines (339 loc) · 14.3 KB
/
trainmeshreg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import argparse
from datetime import datetime
import os
import pickle
from matplotlib import pyplot as plt
import torch
from tqdm import tqdm
from libyana.exputils.argutils import save_args
from libyana.exputils.monitoring import Monitor
from libyana.modelutils import modelio
from libyana.modelutils import freeze
from libyana.randomutils import setseeds
from libyana.datautils import concatloader
from meshreg.datasets import collate
from meshreg.models.meshregnet import MeshRegNet
from meshreg.netscripts import epochpass
from meshreg.netscripts import reloadmodel, get_dataset
plt.switch_backend("agg")
def main(args):
setseeds.set_all_seeds(args.manual_seed)
# Initialize hosting
dat_str = "_".join(args.train_datasets)
now = datetime.now()
split_str = "_".join(args.train_splits)
exp_id = (
f"checkpoints/{dat_str}_{split_str}_mini{args.mini_factor}/{now.year}_{now.month:02d}_{now.day:02d}/"
f"{args.com}_frac{args.fraction:.1e}"
f"lr{args.lr}_mom{args.momentum}_bs{args.batch_size}_"
f"_lmbeta{args.mano_lambda_shape:.1e}"
f"_lmpr{args.mano_lambda_pose_reg:.1e}"
f"_lmrj3d{args.mano_lambda_recov_joints3d:.1e}"
f"_lovr3d{args.obj_lambda_recov_verts3d:.1e}"
f"seed{args.manual_seed}"
)
if args.no_augm:
exp_id = f"{exp_id}_no_augm"
if args.block_rot:
exp_id = f"{exp_id}_block_rot"
if args.freeze_batchnorm:
exp_id = f"{exp_id}_fbn"
# Initialize local checkpoint folder
print(f"Saving experiment logs, models, and training curves and images at {exp_id}")
save_args(args, exp_id, "opt")
monitor = Monitor(exp_id, hosting_folder=exp_id)
img_folder = os.path.join(exp_id, "images")
os.makedirs(img_folder, exist_ok=True)
result_folder = os.path.join(exp_id, "results")
result_path = os.path.join(result_folder, "results.pkl")
os.makedirs(result_folder, exist_ok=True)
pyapt_path = os.path.join(result_folder, f"{args.pyapt_id}__{now.strftime('%H_%M_%S')}")
with open(pyapt_path, "a") as t_f:
t_f.write(" ")
loaders = []
if not args.evaluate:
for train_split, dat_name in zip(args.train_splits, args.train_datasets):
train_dataset, _ = get_dataset.get_dataset(
dat_name,
split=train_split,
meta={"version": args.version, "split_mode": args.split_mode},
use_cache=args.use_cache,
mini_factor=args.mini_factor,
no_augm=args.no_augm,
block_rot=args.block_rot,
max_rot=args.max_rot,
center_idx=args.center_idx,
scale_jittering=args.scale_jittering,
center_jittering=args.center_jittering,
fraction=args.fraction,
mode="strong",
sample_nb=None,
)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=int(args.workers / len(args.train_datasets)),
drop_last=True,
collate_fn=collate.meshreg_collate,
)
loaders.append(train_loader)
loader = concatloader.ConcatDataloader(loaders)
if args.evaluate or args.eval_freq != -1:
val_dataset, _ = get_dataset.get_dataset(
args.val_dataset,
split=args.val_split,
meta={"version": args.version, "split_mode": args.split_mode},
use_cache=args.use_cache,
mini_factor=args.mini_factor,
no_augm=True,
block_rot=args.block_rot,
max_rot=args.max_rot,
center_idx=args.center_idx,
scale_jittering=args.scale_jittering,
center_jittering=args.center_jittering,
sample_nb=None,
)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=int(args.workers),
drop_last=False,
collate_fn=collate.meshreg_collate,
)
model = MeshRegNet(
mano_center_idx=args.center_idx,
mano_lambda_joints2d=args.mano_lambda_joints2d,
mano_lambda_joints3d=args.mano_lambda_joints3d,
mano_lambda_recov_joints3d=args.mano_lambda_recov_joints3d,
mano_lambda_recov_verts3d=args.mano_lambda_recov_verts3d,
mano_lambda_verts2d=args.mano_lambda_verts2d,
mano_lambda_verts3d=args.mano_lambda_verts3d,
mano_lambda_shape=args.mano_lambda_shape,
mano_use_shape=args.mano_lambda_shape > 0,
mano_lambda_pose_reg=args.mano_lambda_pose_reg,
obj_lambda_recov_verts3d=args.obj_lambda_recov_verts3d,
obj_lambda_verts2d=args.obj_lambda_verts2d,
obj_lambda_verts3d=args.obj_lambda_verts3d,
obj_trans_factor=args.obj_trans_factor,
obj_scale_factor=args.obj_scale_factor,
mano_fhb_hand="fhbhands" in args.train_datasets,
)
model.cuda()
# Initalize model
if args.resume is not None:
opts = reloadmodel.load_opts(args.resume)
model, epoch = reloadmodel.reload_model(args.resume, opts)
model.cuda()
if args.evaluate:
args.epochs = epoch + 1
else:
epoch = 0
if args.freeze_batchnorm:
freeze.freeze_batchnorm_stats(model) # Freeze batchnorm
model_params = filter(lambda p: p.requires_grad, model.parameters())
if args.optimizer == "adam":
optimizer = torch.optim.Adam(model_params, lr=args.lr, weight_decay=args.weight_decay)
elif args.optimizer == "sgd":
optimizer = torch.optim.SGD(
model_params, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay
)
if args.resume is not None:
reloadmodel.reload_optimizer(args.resume, optimizer)
if args.lr_decay_gamma:
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_decay_step, gamma=args.lr_decay_gamma)
fig = plt.figure(figsize=(10, 10))
save_results = {}
save_results["opt"] = dict(vars(args))
save_results["train_losses"] = []
save_results["val_losses"] = []
for epoch_idx in tqdm(range(epoch, args.epochs), desc="epoch"):
if not args.freeze_batchnorm:
model.train()
else:
model.eval()
if not args.evaluate:
save_dict, avg_meters, _ = epochpass.epoch_pass(
loader,
model,
train=True,
optimizer=optimizer,
scheduler=scheduler,
epoch=epoch_idx,
img_folder=img_folder,
fig=fig,
display_freq=args.display_freq,
epoch_display_freq=args.epoch_display_freq,
lr_decay_gamma=args.lr_decay_gamma,
)
monitor.log_train(epoch_idx + 1, {key: val.avg for key, val in avg_meters.average_meters.items()})
monitor.metrics.save_metrics(epoch_idx + 1, save_dict)
monitor.metrics.plot_metrics()
save_results["train_losses"].append(save_dict)
with open(result_path, "wb") as p_f:
pickle.dump(save_results, p_f)
modelio.save_checkpoint(
{
"epoch": epoch_idx + 1,
"network": "correspnet",
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": scheduler,
},
is_best=True,
checkpoint=exp_id,
snapshot=args.snapshot,
)
if args.evaluate or (args.eval_freq != -1 and epoch_idx % args.eval_freq == 0):
val_save_dict, val_avg_meters, _ = epochpass.epoch_pass(
val_loader,
model,
train=False,
optimizer=None,
scheduler=None,
epoch=epoch_idx,
img_folder=img_folder,
fig=fig,
display_freq=args.display_freq,
epoch_display_freq=args.epoch_display_freq,
lr_decay_gamma=args.lr_decay_gamma,
)
save_results["val_losses"].append(val_save_dict)
monitor.log_val(
epoch_idx + 1, {key: val.avg for key, val in val_avg_meters.average_meters.items()}
)
monitor.metrics.save_metrics(epoch_idx + 1, val_save_dict)
monitor.metrics.plot_metrics()
if args.evaluate:
print(val_save_dict)
break
if __name__ == "__main__":
# torch.multiprocessing.set_start_method("forkserver")
parser = argparse.ArgumentParser()
parser.add_argument("--com", default="debug/", help="Prefix for experimental results")
# Dataset params
parser.add_argument(
"--train_datasets",
choices=["syntho3d", "syntho3dv2", "ho3dv2", "fhbhands"],
default=["fhbhands"],
nargs="+",
)
parser.add_argument(
"--val_dataset", choices=["ho3dv2", "fhbhands"], default="fhbhands",
)
parser.add_argument("--train_splits", default=["train"], nargs="+")
parser.add_argument("--val_split", default="test", choices=["test", "train", "val", "trainval"])
parser.add_argument(
"--split_mode",
default="objects",
choices=["objects", "paper"],
help="HO3D possible splits, 'paper' for hand baseline, 'objects' for photometric consistency",
)
parser.add_argument(
"--mini_factor", type=float, default=1, help="Work on fraction of the datase for debugging purposes"
)
parser.add_argument("--fraction", type=float, default=1, help="Fraction of data with full supervision")
parser.add_argument("--use_cache", action="store_true")
parser.add_argument("--no_augm", action="store_true", help="Prevent all data augmenation")
parser.add_argument("--block_rot", action="store_true", help="Prevent rotation during data augmentation")
parser.add_argument("--max_rot", default=0, type=float, help="Max rotation for data augmentation")
parser.add_argument("--version", default=3, type=int, help="Version of synthetic HO3D dataset to use")
parser.add_argument("--center_idx", default=9, type=int)
parser.add_argument(
"--center_jittering", type=float, default=0.1, help="Controls magnitude of center jittering"
)
parser.add_argument(
"--scale_jittering", type=float, default=0, help="Controls magnitude of scale jittering"
)
# Model parameters
parser.add_argument("--resume")
parser.add_argument(
"--freeze_batchnorm",
action="store_true",
help="Freeze batchnorm layer values" "to ImageNet initialized values",
)
# Training parameters
parser.add_argument("--evaluate", action="store_true", help="Only evaluation run")
parser.add_argument("--manual_seed", type=int, default=0)
parser.add_argument("--batch_size", type=int, default=8, help="Batch size")
parser.add_argument("--workers", type=int, default=0, help="Number of workers for multiprocessing")
parser.add_argument("--pyapt_id")
parser.add_argument("--epochs", type=int, default=10000)
parser.add_argument("--lr_decay_step", type=float, default=100)
parser.add_argument(
"--lr_decay_gamma",
type=float,
default=1,
help="Learning rate decay" "factor, if 1, no decay is effectively applied",
)
parser.add_argument("--lr", type=float, default=0.00005, help="Learning rate")
parser.add_argument("--momentum", type=float, default=0.9)
parser.add_argument("--optimizer", choices=["adam", "sgd"], default="adam")
parser.add_argument("--weight_decay", type=float, default=0)
# Loss parameters
parser.add_argument("--criterion2d", choices=["l2", "l1", "smooth_l1"], default="l2")
parser.add_argument(
"--mano_lambda_verts3d", type=float, default=0, help="Weight for 3D vertices supervision"
)
parser.add_argument(
"--mano_lambda_joints3d", type=float, default=0, help="Weight for 3D joints supervision, centered"
)
parser.add_argument(
"--mano_lambda_recov_joints3d",
type=float,
default=0.5,
help="Weight for 3D vertices supervision in camera space",
)
parser.add_argument(
"--mano_lambda_recov_verts3d",
type=float,
default=0,
help="Weight for 3D joints supervision, in camera space",
)
parser.add_argument(
"--mano_lambda_joints2d", type=float, default=0, help="Weight for 2D joints supervision"
)
parser.add_argument(
"--mano_lambda_verts2d", type=float, default=0, help="Weight for 2D vertices supervision"
)
parser.add_argument(
"--mano_lambda_shape", type=float, default=5e-07, help="Weight for hand shape regularization"
)
parser.add_argument(
"--mano_lambda_pose_reg", type=float, default=5e-06, help="Weight for hand pose regularization"
)
parser.add_argument(
"--obj_lambda_recov_verts3d",
type=float,
default=0.5,
help="Weight for object vertices supervision, in camera space",
)
parser.add_argument("--obj_lambda_verts3d", type=float, default=0)
parser.add_argument("--obj_lambda_verts2d", type=float, default=0)
parser.add_argument(
"--obj_trans_factor", type=float, default=100, help="Multiplier for translation prediction"
)
parser.add_argument(
"--obj_scale_factor", type=float, default=0.0001, help="Multiplier for scale prediction"
)
# Evaluation params
parser.add_argument(
"--eval_freq", type=int, default=10, help="How often to evaluate, 1 for always -1 for never"
)
# Weighting params
parser.add_argument(
"--display_freq", type=int, default=500, help="How often to generate visualizations (training steps)"
)
parser.add_argument(
"--epoch_display_freq", type=int, default=1, help="How often to generate visualizations (epochs)"
)
parser.add_argument(
"--snapshot", type=int, default=100, help="How often to save intermediate models (epochs)"
)
args = parser.parse_args()
args.train_datasets = tuple(args.train_datasets)
args.train_splits = tuple(args.train_splits)
for key, val in sorted(vars(args).items(), key=lambda x: x[0]):
print(f"{key}: {val}")
main(args)