-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.bright.yaml
633 lines (588 loc) · 21 KB
/
config.bright.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
logging_level: INFO
tutorial: false
results_dir: results/
summary_dir: results/
costs_dir: data/ #TODO change to the equivalent of technology data
run:
name: 0917_integrate_enertile_flh_classes
name_subworkflow: "" # scenario name of the pypsa-earth subworkflow
shared_cutouts: true # set to true to share the default cutout(s) across runs
# Note: value false requires build_cutout to be enabled
foresight: overnight
# option to disable the subworkflow to ease the analyses
disable_subworkflow: false
scenario:
simpl: # only relevant for PyPSA-Eur
- ""
clusters: # number of nodes in Europe, any integer between 37 (1 node per country-zone) and several hundred
- 11
planning_horizons: # investment years for myopic and perfect; or costs year for overnight
- 2030
ll:
- "v2.0"
opts:
- "Co2L"
sopts:
- "144H"
demand:
- "AB"
policy_config:
hydrogen:
temporal_matching: "no_res_matching" #either "h2_yearly_matching", "h2_monthly_matching", "no_res_matching"
spatial_matching: false
additionality: false # RE electricity is equal to the amount required for additional hydrogen export compared to the 0 export case ("reference_case")
allowed_excess: 1.0
is_reference: false # Whether or not this network is a reference case network, relevant only if additionality is _true_
remove_h2_load: false #Whether or not to remove the h2 load from the network, relevant only if is_reference is _true_
path_to_ref: "" # Path to the reference case network for additionality calculation, relevant only if additionality is _true_ and is_reference is _false_
re_country_load: false # Set to "True" to force the RE electricity to be equal to the electricity required for hydrogen export and the country electricity load. "False" excludes the country electricity load from the constraint.
clustering_options:
alternative_clustering: true
countries: ['BR']
demand_data:
update_data: true # if true, the workflow downloads the energy balances data saved in data/demand/unsd/data again. Turn on for the first run.
base_year: 2019
other_industries: false # Whether or not to include industries that are not specified. some countries have has exageratted numbers, check carefully.
aluminium_year: 2019 # Year of the aluminium demand data specified in `data/AL_production.csv`
enable:
retrieve_cost_data: true # if true, the workflow overwrites the cost data saved in data/costs again
fossil_reserves:
oil: 2000 #TWh Maybe reduntant
export:
h2export: [0] # Yearly export demand in TWh
store: false # [True, False] # specifies wether an export store to balance demand is implemented
store_capital_costs: "no_costs" # ["standard_costs", "no_costs"] # specifies the costs of the export store. "standard_costs" takes CAPEX of "hydrogen storage tank type 1 including compressor"
export_profile: "ship" # use "ship" or "constant"
ship:
ship_capacity: 0.4 # TWh # 0.05 TWh for new ones, 0.003 TWh for Susio Frontier, 0.4 TWh according to Hampp2021: "Corresponds to 11360 t H2 (l) with LHV of 33.3333 Mwh/t_H2. Cihlar et al 2020 based on IEA 2019, Table 3-B"
travel_time: 288 # hours # From Agadir to Rotterdam and back (12*24)
fill_time: 24 # hours, for 48h see Hampp2021
unload_time: 24 # hours for 48h see Hampp2021
custom_data:
renewables_enertile: ["onwind", "onwind_rest", "solar"]
renewables: ["onwind", "onwind2", "onwind3", "solar"] # ['csp', 'rooftop-solar', 'solar']
energy_totals: true
elec_demand: false
heat_demand: false
industry_demand: false
industry_database: true
transport_demand: false
water_costs: false
h2_underground: false
add_existing: false
custom_sectors: false
gas_network: false # If "True" then a custom .csv file must be placed in "resources/custom_data/pipelines.csv" , If "False" the user can choose btw "greenfield" or Model built-in datasets. Please refer to ["sector"] below.
rename_industry_carriers: {"Electricity": "electricity", "Biofuels": "solid biomass", "Heat": "low-temperature heat", "Natural Gas": "gas", "Coal": "coal", "Hydrogen": "hydrogen", "Oil": "oil"}
costs: # Costs used in PyPSA-Earth-Sec. Year depends on the wildcard planning_horizon in the scenario section
version: v0.6.2
lifetime: 25 #default lifetime
# From a Lion Hirth paper, also reflects average of Noothout et al 2016
discountrate: [0.071] #, 0.086, 0.111]
# [EUR/USD] ECB: https://www.ecb.europa.eu/stats/exchange/eurofxref/html/eurofxref-graph-usd.en.html # noqa: E501
USD2013_to_EUR2013: 0.7532
# Marginal and capital costs can be overwritten
# capital_cost:
# onwind: 500
marginal_cost:
solar: 0.01
onwind: 0.015
offwind: 0.015
hydro: 0.
H2: 0.
battery: 0.
emission_prices: # only used with the option Ep (emission prices)
co2: 0.
lines:
length_factor: 1.25 #to estimate offwind connection costs
industry:
St_primary_fraction: 0.9 # fraction of steel produced via primary route versus secondary route (scrap+EAF); today fraction is 0.6
# 2020: 0.6
# 2025: 0.55
# 2030: 0.5
# 2035: 0.45
# 2040: 0.4
# 2045: 0.35
# 2050: 0.3
DRI_fraction: 0.5 # fraction of the primary route converted to DRI + EAF
# 2020: 0
# 2025: 0
# 2030: 0.05
# 2035: 0.2
# 2040: 0.4
# 2045: 0.7
# 2050: 1
H2_DRI: 1.7 #H2 consumption in Direct Reduced Iron (DRI), MWh_H2,LHV/ton_Steel from 51kgH2/tSt in Vogl et al (2018) doi:10.1016/j.jclepro.2018.08.279
elec_DRI: 0.322 #electricity consumption in Direct Reduced Iron (DRI) shaft, MWh/tSt HYBRIT brochure https://ssabwebsitecdn.azureedge.net/-/media/hybrit/files/hybrit_brochure.pdf
Al_primary_fraction: 0.2 # fraction of aluminium produced via the primary route versus scrap; today fraction is 0.4
# 2020: 0.4
# 2025: 0.375
# 2030: 0.35
# 2035: 0.325
# 2040: 0.3
# 2045: 0.25
# 2050: 0.2
MWh_CH4_per_tNH3_SMR: 10.8 # 2012's demand from https://ec.europa.eu/docsroom/documents/4165/attachments/1/translations/en/renditions/pdf
MWh_elec_per_tNH3_SMR: 0.7 # same source, assuming 94-6% split methane-elec of total energy demand 11.5 MWh/tNH3
MWh_H2_per_tNH3_electrolysis: 6.5 # from https://doi.org/10.1016/j.joule.2018.04.017, around 0.197 tH2/tHN3 (>3/17 since some H2 lost and used for energy)
MWh_elec_per_tNH3_electrolysis: 1.17 # from https://doi.org/10.1016/j.joule.2018.04.017 Table 13 (air separation and HB)
NH3_process_emissions: 24.5 # in MtCO2/a from SMR for H2 production for NH3 from UNFCCC for 2015 for EU28
petrochemical_process_emissions: 25.5 # in MtCO2/a for petrochemical and other from UNFCCC for 2015 for EU28
HVC_primary_fraction: 1. # fraction of today's HVC produced via primary route
HVC_mechanical_recycling_fraction: 0. # fraction of today's HVC produced via mechanical recycling
HVC_chemical_recycling_fraction: 0. # fraction of today's HVC produced via chemical recycling
HVC_production_today: 52. # MtHVC/a from DECHEMA (2017), Figure 16, page 107; includes ethylene, propylene and BTX
MWh_elec_per_tHVC_mechanical_recycling: 0.547 # from SI of https://doi.org/10.1016/j.resconrec.2020.105010, Table S5, for HDPE, PP, PS, PET. LDPE would be 0.756.
MWh_elec_per_tHVC_chemical_recycling: 6.9 # Material Economics (2019), page 125; based on pyrolysis and electric steam cracking
chlorine_production_today: 9.58 # MtCl/a from DECHEMA (2017), Table 7, page 43
MWh_elec_per_tCl: 3.6 # DECHEMA (2017), Table 6, page 43
MWh_H2_per_tCl: -0.9372 # DECHEMA (2017), page 43; negative since hydrogen produced in chloralkali process
methanol_production_today: 1.5 # MtMeOH/a from DECHEMA (2017), page 62
MWh_elec_per_tMeOH: 0.167 # DECHEMA (2017), Table 14, page 65
MWh_CH4_per_tMeOH: 10.25 # DECHEMA (2017), Table 14, page 65
hotmaps_locate_missing: false
reference_year: 2015
solar_thermal:
clearsky_model: simple
orientation:
slope: 45.
azimuth: 180.
existing_capacities:
grouping_years_power: [1960, 1965, 1970, 1975, 1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2020, 2025, 2030]
grouping_years_heat: [1980, 1985, 1990, 1995, 2000, 2005, 2010, 2015, 2019] # these should not extend 2020
threshold_capacity: 10
default_heating_lifetime: 20
conventional_carriers:
- lignite
- coal
- oil
- uranium
sector:
gas:
spatial_gas: true # ALWAYS TRUE
network: false # ALWAYS FALSE for now (NOT USED)
network_data: GGIT # Global dataset -> 'GGIT' , European dataset -> 'IGGIELGN'
network_data_GGIT_status: ['Construction', 'Operating', 'Idle', 'Shelved', 'Mothballed', 'Proposed']
hydrogen:
network: true
network_limit: 10000 #GWkm
network_routes: greenfield # "gas or "greenfield". If "gas" -> the network data are fetched from ["sector"]["gas"]["network_data"]. If "greenfield" -> the network follows the topology of electrical transmission lines
gas_network_repurposing: true # If true -> ["sector"]["gas"]["network"] is automatically false
underground_storage: true
hydrogen_colors: false
set_color_shares: false
blue_share: 0.40
pink_share: 0.05
coal:
shift_to_elec: true # If true, residential and services demand of coal is shifted to electricity. If false, the final energy demand of coal is disregarded
international_bunkers: false #Whether or not to count the emissions of international aviation and navigation
oil:
spatial_oil: true
district_heating:
potential: 0.3 #maximum fraction of urban demand which can be supplied by district heating
#increase of today's district heating demand to potential maximum district heating share
#progress = 0 means today's district heating share, progress=-1 means maxumzm fraction of urban demand is supplied by district heating
progress: 1
#2020: 0.0
#2030: 0.3
#2040: 0.6
#2050: 1.0
district_heating_loss: 0.15
reduce_space_heat_exogenously: true # reduces space heat demand by a given factor (applied before losses in DH)
# this can represent e.g. building renovation, building demolition, or if
# the factor is negative: increasing floor area, increased thermal comfort, population growth
reduce_space_heat_exogenously_factor: 0.29 # per unit reduction in space heat demand
# the default factors are determined by the LTS scenario from http://tool.european-calculator.eu/app/buildings/building-types-area/?levers=1ddd4444421213bdbbbddd44444ffffff11f411111221111211l212221
# 2020: 0.10 # this results in a space heat demand reduction of 10%
# 2025: 0.09 # first heat demand increases compared to 2020 because of larger floor area per capita
# 2030: 0.09
# 2035: 0.11
# 2040: 0.16
# 2045: 0.21
# 2050: 0.29
tes: true
tes_tau: # 180 day time constant for centralised, 3 day for decentralised
decentral: 3
central: 180
boilers: true
oil_boilers: false
chp: true
micro_chp: false
solar_thermal: true
heat_pump_sink_T: 55 #Celsius, based on DTU / large area radiators; used un build_cop_profiles.py
time_dep_hp_cop: true #time dependent heat pump coefficient of performance
solar_cf_correction: 0.788457 # = >>>1/1.2683
bev_plug_to_wheel_efficiency: 0.2 #kWh/km from EPA https://www.fueleconomy.gov/feg/ for Tesla Model S
bev_charge_efficiency: 0.9 #BEV (dis-)charging efficiency
transport_heating_deadband_upper: 20.
transport_heating_deadband_lower: 15.
ICE_lower_degree_factor: 0.375 #in per cent increase in fuel consumption per degree above deadband
ICE_upper_degree_factor: 1.6
EV_lower_degree_factor: 0.98
EV_upper_degree_factor: 0.63
bev_avail_max: 0.95
bev_avail_mean: 0.8
bev_dsm_restriction_value: 0.75 #Set to 0 for no restriction on BEV DSM
bev_dsm_restriction_time: 7 #Time at which SOC of BEV has to be dsm_restriction_value
v2g: true #allows feed-in to grid from EV battery
bev_dsm: true #turns on EV battery
bev_energy: 0.05 #average battery size in MWh
bev_availability: 0.5 #How many cars do smart charging
transport_fuel_cell_efficiency: 0.5
transport_internal_combustion_efficiency: 0.3
industry_util_factor: 0.7
biomass_transport: true # biomass transport between nodes
biomass_transport_default_cost: 0.1 #EUR/km/MWh
solid_biomass_potential: 2000 # TWh/a, Potential of whole modelled area
biogas_potential: 100 # TWh/a, Potential of whole modelled area
efficiency_heat_oil_to_elec: 0.9
efficiency_heat_biomass_to_elec: 0.9
efficiency_heat_gas_to_elec: 0.9
dynamic_transport:
enable: false # If "True", then the BEV and FCEV shares are obtained depening on the "Co2L"-wildcard (e.g. "Co2L0.70: 0.10"). If "False", then the shares are obtained depending on the "demand" wildcard and "planning_horizons" wildcard as listed below (e.g. "DF_2050: 0.08")
land_transport_electric_share:
Co2L2.0: 0.00
Co2L1.0: 0.01
Co2L0.90: 0.03
Co2L0.80: 0.06
Co2L0.70: 0.10
Co2L0.60: 0.17
Co2L0.50: 0.27
Co2L0.40: 0.40
Co2L0.30: 0.55
Co2L0.20: 0.69
Co2L0.10: 0.80
Co2L0.00: 0.88
land_transport_fuel_cell_share:
Co2L2.0: 0.01
Co2L1.0: 0.01
Co2L0.90: 0.01
Co2L0.80: 0.01
Co2L0.70: 0.01
Co2L0.60: 0.01
Co2L0.50: 0.01
Co2L0.40: 0.01
Co2L0.30: 0.01
Co2L0.20: 0.01
Co2L0.10: 0.01
Co2L0.00: 0.01
land_transport_fuel_cell_share: # 1 means all FCEVs HERE
BU_2030: 0.00
BI_2030: 0.00
GH_2030: 0.20
DE_2030: 0.00
AP_2030: 0.004
NZ_2030: 0.02
DF_2030: 0.01
AB_2030: 0.01
BU_2050: 0.00
AP_2050: 0.06
NZ_2050: 0.28
DF_2050: 0.08
BI_2035: 0.001
GH_2035: 0.039
DE_2035: 0.00
BI_2040: 0.002
GH_2040: 0.099
DE_2040: 0.00
BI_2045: 0.010
GH_2045: 0.197
DE_2045: 0.00
BI_2050: 0.039
GH_2050: 0.336
DE_2050: 0.00
land_transport_electric_share: # 1 means all EVs # This leads to problems when non-zero HERE
BU_2030: 0.00
BI_2030: 0.002
GH_2030: 0.002
DE_2030: 0.005
AP_2030: 0.075
NZ_2030: 0.13
DF_2030: 0.01
AB_2030: 0.01
BU_2050: 0.00
AP_2050: 0.42
NZ_2050: 0.68
DF_2050: 0.011
BI_2035: 0.014
GH_2035: 0.031
DE_2035: 0.053
BI_2040: 0.044
GH_2040: 0.092
DE_2040: 0.152
BI_2045: 0.066
GH_2045: 0.197
DE_2045: 0.332
BI_2050: 0.090
GH_2050: 0.320
DE_2050: 0.593
co2_network: true
co2_sequestration_potential: 200 #MtCO2/a sequestration potential for Europe
co2_sequestration_cost: 10 #EUR/tCO2 for sequestration of CO2
hydrogen_underground_storage: false
shipping_hydrogen_liquefaction: false
shipping_average_efficiency: 0.4 #For conversion of fuel oil to propulsion in 2011
shipping_hydrogen_share: #1.0
BU_2030: 0.00
BI_2030: 0.00
GH_2030: 0.00
DE_2030: 0.00
AP_2030: 0.00
NZ_2030: 0.10
DF_2030: 0.05
AB_2030: 0.05
BU_2050: 0.00
BI_2050: 0.24
GH_2050: 0.248
DE_2050: 0.254
AP_2050: 0.25
NZ_2050: 0.36
DF_2050: 0.12
gadm_level: 1
h2_cavern: true
marginal_cost_storage: 0
methanation: true
helmeth: true
dac: true
SMR: true
SMR CC: true
cc_fraction: 0.9
cc: true
space_heat_share: 0.6 # the share of space heating from all heating. Remainder goes to water heating.
airport_sizing_factor: 3
min_part_load_fischer_tropsch: 0.9
conventional_generation: # generator : carrier
OCGT: gas
#Gen_Test: oil # Just for testing purposes
# snapshots are originally set in PyPSA-Earth/config.yaml but used again by PyPSA-Earth-Sec
snapshots:
# arguments to pd.date_range
start: "2013-01-01"
end: "2014-01-01"
inclusive: "left" # end is not inclusive
# atlite:
# cutout: ./cutouts/africa-2013-era5.nc
build_osm_network: # TODO: To Remove this once we merge pypsa-earth and pypsa-earth-sec
force_ac: true # When true, it forces all components (lines and substation) to be AC-only. To be used if DC assets create problem.
solving:
#tmpdir: "path/to/tmp"
options:
formulation: kirchhoff
clip_p_max_pu: 1.e-2
load_shedding: false
noisy_costs: true
skip_iterations: true
track_iterations: false
min_iterations: 4
max_iterations: 6
solver:
name: gurobi
threads: 25
method: 2 # barrier
crossover: 0
BarConvTol: 1.e-6
Seed: 123
AggFill: 0
PreDual: 0
GURO_PAR_BARDENSETHRESH: 200
#FeasibilityTol: 1.e-6
mem: 30000 #memory in MB; 20 GB enough for 50+B+I+H2; 100 GB for 181+B+I+H2
plotting:
map:
boundaries: [-11, 30, 34, 71]
color_geomap:
ocean: white
land: whitesmoke
costs_max: 10
costs_threshold: 0.2
energy_max: 20000
energy_min: -20000
energy_threshold: 15
vre_techs:
- onwind
- offwind-ac
- offwind-dc
- solar
- ror
renewable_storage_techs:
- PHS
- hydro
conv_techs:
- OCGT
- CCGT
- Nuclear
- Coal
storage_techs:
- hydro+PHS
- battery
- H2
load_carriers:
- AC load
AC_carriers:
- AC line
- AC transformer
link_carriers:
- DC line
- Converter AC-DC
heat_links:
- heat pump
- resistive heater
- CHP heat
- CHP electric
- gas boiler
- central heat pump
- central resistive heater
- central CHP heat
- central CHP electric
- central gas boiler
heat_generators:
- gas boiler
- central gas boiler
- solar thermal collector
- central solar thermal collector
tech_colors:
SMR CC: "darkblue"
gas for industry CC: "brown"
process emissions CC: "gray"
CO2 pipeline: "gray"
onwind: "dodgerblue"
onwind2: "dodgerblue"
onwind3: "dodgerblue"
onwind4: "dodgerblue"
onshore wind: "#235ebc"
offwind: "#6895dd"
offshore wind: "#6895dd"
offwind-ac: "c"
offshore wind (AC): "#6895dd"
offwind-dc: "#74c6f2"
offshore wind (DC): "#74c6f2"
wave: '#004444'
hydro: '#3B5323'
hydro reservoir: '#3B5323'
ror: '#78AB46'
run of river: '#78AB46'
hydroelectricity: 'blue'
solar: "orange"
solar PV: "#f9d002"
solar thermal: coral
solar rooftop: '#ffef60'
OCGT: wheat
OCGT marginal: sandybrown
OCGT-heat: '#ee8340'
gas boiler: '#ee8340'
gas boilers: '#ee8340'
gas boiler marginal: '#ee8340'
gas-to-power/heat: 'brown'
gas: brown
natural gas: brown
SMR: '#4F4F2F'
oil: '#B5A642'
oil EOP: '#B5A677'
oil boiler: '#B5A677'
lines: k
transmission lines: k
H2: m
H2 electrolysis: m
H2 liquefaction: m
hydrogen storage: m
battery: slategray
battery storage: slategray
home battery: '#614700'
home battery storage: '#614700'
Nuclear: r
Nuclear marginal: r
nuclear: r
uranium: r
Coal: k
coal: k
industry coal emissions: '#444444'
Coal marginal: k
Lignite: grey
lignite: grey
Lignite marginal: grey
CCGT: '#ee8340'
CCGT marginal: '#ee8340'
heat pumps: '#76EE00'
heat pump: '#76EE00'
air heat pump: '#76EE00'
ground heat pump: '#40AA00'
power-to-heat: 'red'
resistive heater: pink
Sabatier: '#FF1493'
methanation: '#FF1493'
power-to-gas: 'purple'
power-to-liquid: 'darkgreen'
helmeth: '#7D0552'
DAC: 'deeppink'
co2 stored: '#123456'
CO2 sequestration: '#123456'
CC: k
co2: '#123456'
co2 vent: '#654321'
agriculture heat: '#D07A7A'
agriculture oil: '#1e1e1e'
agriculture machinery oil: '#1e1e1e'
agriculture machinery oil emissions: '#111111'
agriculture electricity: '#222222'
solid biomass for industry co2 from atmosphere: '#654321'
solid biomass for industry co2 to stored: '#654321'
solid biomass for industry CC: '#654321'
gas for industry co2 to atmosphere: '#654321'
gas emissions: '#654321'
gas for industry co2 to stored: '#654321'
Fischer-Tropsch: '#44DD33'
kerosene for aviation: '#44BB11'
naphtha for industry: '#44FF55'
land transport oil: '#44DD33'
rail transport oil: '#44DD33'
water tanks: '#BBBBBB'
hot water storage: '#BBBBBB'
hot water charging: '#BBBBBB'
hot water discharging: '#999999'
# CO2 pipeline: '#999999'
CHP: r
CHP heat: r
CHP electric: r
PHS: g
Ambient: k
Electric load: b
Heat load: r
heat: darkred
rural heat: '#880000'
central heat: '#b22222'
decentral heat: '#800000'
low-temperature heat for industry: '#991111'
process heat: '#FF3333'
heat demand: darkred
electric demand: k
Li ion: grey
district heating: '#CC4E5C'
retrofitting: purple
building retrofitting: purple
BEV charger: grey
V2G: grey
land transport EV: grey
electricity: k
gas for industry: '#333333'
solid biomass for industry: '#555555'
industry electricity: '#222222'
industry new electricity: '#222222'
process emissions to stored: '#444444'
process emissions to atmosphere: '#888888'
process emissions: '#222222'
oil emissions: '#666666'
industry oil emissions: '#666666'
land transport oil emissions: '#666666'
land transport fuel cell: '#AAAAAA'
biogas: '#800000'
solid biomass: '#DAA520'
today: '#D2691E'
shipping: '#6495ED'
shipping oil: "#6495ED"
shipping oil emissions: "#6495ED"
electricity distribution grid: 'y'
solid biomass transport: green
H2 for industry: "#222222"
H2 for shipping: "#6495ED"
biomass EOP: "green"
biomass: "green"
high-temp electrolysis: "magenta"