diff --git a/notebooks/compare_scenarios.ipynb b/notebooks/compare_scenarios.ipynb
index 17a0a67..5b54102 100644
--- a/notebooks/compare_scenarios.ipynb
+++ b/notebooks/compare_scenarios.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 26,
+ "execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
@@ -15,7 +15,7 @@
},
{
"cell_type": "code",
- "execution_count": 27,
+ "execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
@@ -37,7 +37,7 @@
},
{
"cell_type": "code",
- "execution_count": 38,
+ "execution_count": 19,
"metadata": {},
"outputs": [
{
@@ -52,10 +52,10 @@
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
"/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_82.5mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
+ "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.06_GH_0export_endogenousmp_1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
+ "/tmp/ipykernel_133889/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
" elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/tmp/ipykernel_3456950/4222013225.py:30: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.\n",
+ "/tmp/ipykernel_133889/2661492241.py:34: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.\n",
" df = pd.concat([df, new_row], ignore_index=True)\n",
"/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
@@ -65,8 +65,8 @@
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
"/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_90mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
+ "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.08_BI_0export_endogenousmp_1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
+ "/tmp/ipykernel_133889/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
" elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
"/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
@@ -76,8 +76,8 @@
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
"/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_0export_endogenousmp_1.2ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
+ "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.06_GH_endogenousexport_50mp_1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
+ "/tmp/ipykernel_133889/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
" elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
"/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
@@ -87,8 +87,8 @@
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
"/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_77.5mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
+ "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.08_BI_endogenousexport_60mp_1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
+ "/tmp/ipykernel_133889/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
" elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
"/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
@@ -98,8 +98,8 @@
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
"/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_87.5mp_1.1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
+ "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.06_BI_0export_endogenousmp_1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
+ "/tmp/ipykernel_133889/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
" elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
"/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
@@ -109,8 +109,8 @@
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
"/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_70mp_1.2ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
+ "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.06_DE_0export_endogenousmp_1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
+ "/tmp/ipykernel_133889/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
" elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
"/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
@@ -120,8 +120,8 @@
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
"/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_120mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
+ "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.06_BI_endogenousexport_40mp_1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
+ "/tmp/ipykernel_133889/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
" elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
"/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
@@ -131,8 +131,8 @@
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
"/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_100mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
+ "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.06_BI_endogenousexport_30mp_1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
+ "/tmp/ipykernel_133889/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
" elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
"/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
@@ -142,8 +142,8 @@
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
"/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_120mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
+ "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.06_BI_endogenousexport_60mp_1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
+ "/tmp/ipykernel_133889/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
" elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
"/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
@@ -153,8 +153,8 @@
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
"/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_75mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
+ "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.08_BI_endogenousexport_30mp_1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
+ "/tmp/ipykernel_133889/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
" elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
"/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
@@ -164,8 +164,8 @@
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
"/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_77.5mp_1.2ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
+ "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.08_BI_endogenousexport_50mp_1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
+ "/tmp/ipykernel_133889/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
" elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
"/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
@@ -175,8 +175,8 @@
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
"/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_70mp_1.1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
+ "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.08_BI_endogenousexport_40mp_1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
+ "/tmp/ipykernel_133889/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
" elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
"/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
@@ -186,2500 +186,804 @@
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
"/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
" attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_0export_endogenousmp_1.2ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_0export_endogenousmp_1.1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_75mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_90mp_0.9ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_120mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_82.5mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_100mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_82.5mp_0.9ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_90mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_82.5mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_85mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_72.5mp_1.1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_90mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_75mp_1.2ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_72.5mp_0.9ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_77.5mp_1.2ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_90mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_75mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_90mp_1.1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_90mp_1.1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_82.5mp_1.2ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_72.5mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_77.5mp_1.1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_75mp_0.8ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_90mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_100mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_85mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_70mp_0.8ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_77.5mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_0export_endogenousmp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_82.5mp_1.1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_85mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_70mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_87.5mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_72.5mp_1.2ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_77.5mp_1.1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_0export_endogenousmp_0.9ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_77.5mp_1.1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_70mp_1.2ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_75mp_1.1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_80mp_0.8ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_82.5mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_77.5mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_77.5mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_77.5mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_77.5mp_0.8ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_100mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_87.5mp_0.9ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_87.5mp_0.8ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_87.5mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_110mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_120mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_75mp_0.8ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_82.5mp_0.8ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_100mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_87.5mp_1.2ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_85mp_0.8ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_100mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_72.5mp_0.9ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_85mp_1.1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_77.5mp_0.8ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_70mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_85mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_90mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_70mp_0.8ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_90mp_0.8ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_87.5mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_75mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_0export_endogenousmp_0.9ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_80mp_0.9ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_77.5mp_0.9ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_72.5mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_110mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_0export_endogenousmp_1.2ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_77.5mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_72.5mp_0.8ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_75mp_1.1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_82.5mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_90mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_80mp_0.8ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_70mp_0.9ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_110mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_80mp_1.1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_82.5mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_87.5mp_0.8ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_87.5mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_80mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_110mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_110mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_75mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_0export_endogenousmp_0.8ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_70mp_1.1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_80mp_1.2ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_85mp_1.2ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_80mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_77.5mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_90mp_1.2ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_75mp_0.9ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_80mp_0.9ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_75mp_1.1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_120mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_80mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_0export_endogenousmp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_82.5mp_0.9ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_87.5mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_0export_endogenousmp_0.8ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_70mp_1.2ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_110mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_72.5mp_0.8ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_80mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_75mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_75mp_0.9ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_87.5mp_0.8ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_85mp_0.9ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_85mp_0.8ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_90mp_0.9ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_72.5mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_120mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_80mp_1.2ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_110mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_87.5mp_1.2ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_70mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_72.5mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_0export_endogenousmp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_87.5mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_90mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_70mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_70mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_120mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_75mp_0.9ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_0export_endogenousmp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_72.5mp_1.1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_87.5mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_80mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_0export_endogenousmp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_77.5mp_0.9ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_87.5mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_85mp_1.2ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_90mp_1.1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_75mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_72.5mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_72.5mp_1.2ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_72.5mp_0.8ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_82.5mp_0.9ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_85mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_120mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_85mp_1.2ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_0export_endogenousmp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_77.5mp_0.8ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_82.5mp_1.2ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_75mp_1.2ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_80mp_1.1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_75mp_1.2ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_82.5mp_1.1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_72.5mp_1.1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_82.5mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_85mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_82.5mp_0.8ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_82.5mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_90mp_0.8ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_85mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_90mp_1.2ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_87.5mp_1.1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_75mp_0.8ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_0export_endogenousmp_0.8ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_82.5mp_1.1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_85mp_1.1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_75mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_100mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_70mp_1.1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_80mp_0.9ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_100mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_70mp_0.8ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_87.5mp_0.9ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_72.5mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_72.5mp_1.2ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_77.5mp_0.9ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_85mp_1.1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_80mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_70mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_72.5mp_0.9ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_110mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_70mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_90mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_100mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_72.5mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_80mp_1.2ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_85mp_0.9ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_0export_endogenousmp_1.1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_80mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_80mp_1.1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_87.5mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_85mp_0.9ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_87.5mp_1.2ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_82.5mp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_85mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_70mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_82.5mp_0.8ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_90mp_1.2ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_70mp_0.9ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_110mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_80mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_85mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_75mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_80mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_77.5mp_1.2ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_70mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_77.5mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_0export_endogenousmp_1.1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_0export_endogenousmp_0.9ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_90mp_0.9ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_72.5mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_0export_endogenousmp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_85mp_0.8ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_80mp_0.8ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_0export_endogenousmp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_endogenousexport_72.5mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_87.5mp_1.1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_77.5mp_1.0ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_DE_endogenousexport_87.5mp_0.9ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_BI_0export_endogenousmp_0.7ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
- " elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
- " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
- "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.071_GH_endogenousexport_120mp_1.3ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
- "/tmp/ipykernel_3456950/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
+ "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.06_BI_endogenousexport_50mp_1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n",
+ "/tmp/ipykernel_133889/2532945177.py:12: FutureWarning: DataFrame.groupby with axis=1 is deprecated. Do `frame.T.groupby(...)` without axis instead.\n",
" elec_demand = elec_demand.groupby(elec_demand.columns, axis=1).sum()\n"
]
}
],
"source": [
- "# Define the path to the networks\n",
- "path = \"/home/cpschau/Code/dev/BRIGHT/submodules/pypsa-earth-sec/results/241031_electrolyzer_cc_sensitivity/postnetworks\"\n",
+ "# Define the path to the networks\n",
+ "path = \"/home/cpschau/Code/dev/BRIGHT/submodules/pypsa-earth-sec/results/241115_ir_sensitivity/postnetworks\"\n",
+ "\n",
+ "# Initialize an empty DataFrame\n",
+ "df = pd.DataFrame(columns=[\"scenario\", \"mp_EUR_per_MWh\", \"ecc\", \"ir\", \"exp_qty_TWh\", \"total_cost_bnEUR\", \"elec_price_EUR_per_MWh\", \"elec_costs_bnEUR\"])\n",
+ "\n",
+ "# Parse the networks and fill the DataFrame\n",
+ "for f in os.listdir(path):\n",
+ " if f.endswith(\"ecc.nc\"):\n",
+ " scenario = f.split(\"_\")[-4]\n",
+ " mp = f.split(\"_\")[-2].strip(\"mp\")\n",
+ " ecc = f.split(\"_\")[-1].strip(\"ecc.nc\")\n",
+ " ir = f.split(\"_\")[-5]\n",
+ " n = pypsa.Network(f\"{path}/{f}\")\n",
+ " \n",
+ " # Calculate the necessary variables\n",
+ " exp_qty_TWh = calc_exp_qty(n) # Replace with the actual function to calculate exported hydrogen quantity\n",
+ " total_cost_bnEUR = n.objective / 1e9\n",
+ " if total_cost_bnEUR < 0:\n",
+ " breakpoint()\n",
+ " elec_price_EUR_per_MWh, elec_costs_bnEUR = calc_elec_price(n) # Replace with the actual function to calculate electricity price and costs\n",
+ " \n",
+ " # Append the data to the DataFrame\n",
+ " new_row = pd.DataFrame([{\n",
+ " \"scenario\": scenario,\n",
+ " \"mp_EUR_per_MWh\": mp,\n",
+ " \"ir\": ir,\n",
+ " \"ecc\": ecc,\n",
+ " \"exp_qty_TWh\": exp_qty_TWh,\n",
+ " \"total_cost_bnEUR\": total_cost_bnEUR,\n",
+ " \"elec_price_EUR_per_MWh\": elec_price_EUR_per_MWh,\n",
+ " \"elec_costs_bnEUR\": elec_costs_bnEUR\n",
+ " }])\n",
+ " df = pd.concat([df, new_row], ignore_index=True)\n",
+ "\n",
+ "# Drop rows with GH scenario & 0.12 interest rate & 1 ecc\n",
+ "df = df.drop(df[(df[\"scenario\"] == \"GH\") & (df[\"ir\"] == \"0.12\") & (df[\"ecc\"] == \"1\")].index)\n",
+ "\n",
+ "# Function to check if reference system exists\n",
+ "def reference_system_exists(row):\n",
+ " return not df[(df[\"scenario\"] == row[\"scenario\"]) & \n",
+ " (df[\"mp_EUR_per_MWh\"] == \"endogenous\") & \n",
+ " (df[\"ecc\"] == row[\"ecc\"]) & \n",
+ " (df[\"ir\"] == row[\"ir\"])].empty\n",
+ "\n",
+ "# Filter rows where reference system exists\n",
+ "df = df[df.apply(reference_system_exists, axis=1)]\n",
+ "\n",
+ "# Calculate system savings and electricity savings dependent variables\n",
+ "df[\"system_savings_bnEUR\"] = df.apply(lambda x: max(df[(df[\"scenario\"] == x[\"scenario\"]) & (df[\"mp_EUR_per_MWh\"] == \"endogenous\") & (df[\"ecc\"] == x[\"ecc\"]) & (df[\"ir\"] == x[\"ir\"])][\"total_cost_bnEUR\"].values[0] - x[\"total_cost_bnEUR\"], 0), axis=1)\n",
+ "df[\"system_savings_EUR_per_TWh\"] = df.apply(lambda x: max(x[\"system_savings_bnEUR\"] / x[\"exp_qty_TWh\"] * 1e9, 0) if x[\"exp_qty_TWh\"] != 0 else 0, axis=1)\n",
+ "\n",
+ "df[\"elec_savings_bnEUR\"] = df.apply(lambda x: max(df[(df[\"scenario\"] == x[\"scenario\"]) & (df[\"mp_EUR_per_MWh\"] == \"endogenous\") & (df[\"ecc\"] == x[\"ecc\"]) & (df[\"ir\"] == x[\"ir\"])][\"elec_costs_bnEUR\"].values[0] - x[\"elec_costs_bnEUR\"], 0), axis=1)\n",
+ "df[\"elec_savings_EUR_per_TWh\"] = df.apply(lambda x: max(x[\"elec_savings_bnEUR\"] / x[\"exp_qty_TWh\"] * 1e9, 0) if x[\"exp_qty_TWh\"] != 0 else 0, axis=1)\n",
+ "\n",
+ "df[\"ir\"] = df[\"ir\"].astype(float)\n",
+ "df[\"ecc\"] = df[\"ecc\"].astype(float)\n",
+ "# Cast mp to int if possible\n",
+ "df[\"mp_EUR_per_MWh\"] = df[\"mp_EUR_per_MWh\"].astype(int, errors=\"ignore\")\n",
+ "df.set_index([\"scenario\", \"mp_EUR_per_MWh\", \"ecc\", \"ir\"], inplace=True)\n",
+ "df = df.sort_index(ascending=True).sort_index(axis=1, ascending=True).reset_index()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " scenario \n",
+ " mp_EUR_per_MWh \n",
+ " ecc \n",
+ " ir \n",
+ " elec_costs_bnEUR \n",
+ " elec_price_EUR_per_MWh \n",
+ " elec_savings_EUR_per_TWh \n",
+ " elec_savings_bnEUR \n",
+ " exp_qty_TWh \n",
+ " system_savings_EUR_per_TWh \n",
+ " system_savings_bnEUR \n",
+ " total_cost_bnEUR \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " BI \n",
+ " 30 \n",
+ " 1.0 \n",
+ " 0.06 \n",
+ " 0.011331 \n",
+ " 0.152143 \n",
+ " 8.773490e+04 \n",
+ " 0.036963 \n",
+ " 421.297727 \n",
+ " 9.009054e+05 \n",
+ " 0.379549 \n",
+ " 95.678398 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " BI \n",
+ " 30 \n",
+ " 1.0 \n",
+ " 0.08 \n",
+ " 0.010471 \n",
+ " 0.140594 \n",
+ " 5.199450e+11 \n",
+ " 0.044510 \n",
+ " 0.000086 \n",
+ " 1.374004e+12 \n",
+ " 0.117623 \n",
+ " 97.415216 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " BI \n",
+ " 40 \n",
+ " 1.0 \n",
+ " 0.06 \n",
+ " 0.025242 \n",
+ " 0.338918 \n",
+ " 2.432454e+04 \n",
+ " 0.023052 \n",
+ " 947.674767 \n",
+ " 7.987461e+06 \n",
+ " 7.569515 \n",
+ " 88.488433 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " BI \n",
+ " 40 \n",
+ " 1.0 \n",
+ " 0.08 \n",
+ " 0.028723 \n",
+ " 0.385652 \n",
+ " 3.311443e+04 \n",
+ " 0.026259 \n",
+ " 792.972015 \n",
+ " 5.406546e+06 \n",
+ " 4.287240 \n",
+ " 93.245599 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " BI \n",
+ " 50 \n",
+ " 1.0 \n",
+ " 0.06 \n",
+ " 0.081401 \n",
+ " 1.092945 \n",
+ " 0.000000e+00 \n",
+ " 0.000000 \n",
+ " 1480.629432 \n",
+ " 1.410885e+07 \n",
+ " 20.889982 \n",
+ " 75.167966 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " BI \n",
+ " 50 \n",
+ " 1.0 \n",
+ " 0.08 \n",
+ " 0.037082 \n",
+ " 0.497883 \n",
+ " 1.370105e+04 \n",
+ " 0.017900 \n",
+ " 1306.466947 \n",
+ " 1.147338e+07 \n",
+ " 14.989593 \n",
+ " 82.543245 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " BI \n",
+ " 60 \n",
+ " 1.0 \n",
+ " 0.06 \n",
+ " 0.142800 \n",
+ " 1.917334 \n",
+ " 0.000000e+00 \n",
+ " 0.000000 \n",
+ " 1626.949224 \n",
+ " 2.230642e+07 \n",
+ " 36.291414 \n",
+ " 59.766534 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " BI \n",
+ " 60 \n",
+ " 1.0 \n",
+ " 0.08 \n",
+ " 0.106296 \n",
+ " 1.427200 \n",
+ " 0.000000e+00 \n",
+ " 0.000000 \n",
+ " 1503.721679 \n",
+ " 1.956716e+07 \n",
+ " 29.423561 \n",
+ " 68.109277 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " BI \n",
+ " endogenous \n",
+ " 1.0 \n",
+ " 0.06 \n",
+ " 0.048294 \n",
+ " 0.648427 \n",
+ " 0.000000e+00 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0.000000e+00 \n",
+ " 0.000000 \n",
+ " 96.057948 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " BI \n",
+ " endogenous \n",
+ " 1.0 \n",
+ " 0.08 \n",
+ " 0.054982 \n",
+ " 0.738220 \n",
+ " 0.000000e+00 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0.000000e+00 \n",
+ " 0.000000 \n",
+ " 97.532838 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " DE \n",
+ " endogenous \n",
+ " 1.0 \n",
+ " 0.06 \n",
+ " 0.050519 \n",
+ " 0.558493 \n",
+ " 0.000000e+00 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0.000000e+00 \n",
+ " 0.000000 \n",
+ " 82.429608 \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " GH \n",
+ " 50 \n",
+ " 1.0 \n",
+ " 0.06 \n",
+ " 0.075720 \n",
+ " 1.076782 \n",
+ " 0.000000e+00 \n",
+ " 0.000000 \n",
+ " 1420.058060 \n",
+ " 1.370841e+07 \n",
+ " 19.466736 \n",
+ " 67.985693 \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " GH \n",
+ " endogenous \n",
+ " 1.0 \n",
+ " 0.06 \n",
+ " 0.069296 \n",
+ " 0.985435 \n",
+ " 0.000000e+00 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0.000000e+00 \n",
+ " 0.000000 \n",
+ " 87.452429 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " scenario mp_EUR_per_MWh ecc ir elec_costs_bnEUR \\\n",
+ "0 BI 30 1.0 0.06 0.011331 \n",
+ "1 BI 30 1.0 0.08 0.010471 \n",
+ "2 BI 40 1.0 0.06 0.025242 \n",
+ "3 BI 40 1.0 0.08 0.028723 \n",
+ "4 BI 50 1.0 0.06 0.081401 \n",
+ "5 BI 50 1.0 0.08 0.037082 \n",
+ "6 BI 60 1.0 0.06 0.142800 \n",
+ "7 BI 60 1.0 0.08 0.106296 \n",
+ "8 BI endogenous 1.0 0.06 0.048294 \n",
+ "9 BI endogenous 1.0 0.08 0.054982 \n",
+ "10 DE endogenous 1.0 0.06 0.050519 \n",
+ "11 GH 50 1.0 0.06 0.075720 \n",
+ "12 GH endogenous 1.0 0.06 0.069296 \n",
+ "\n",
+ " elec_price_EUR_per_MWh elec_savings_EUR_per_TWh elec_savings_bnEUR \\\n",
+ "0 0.152143 8.773490e+04 0.036963 \n",
+ "1 0.140594 5.199450e+11 0.044510 \n",
+ "2 0.338918 2.432454e+04 0.023052 \n",
+ "3 0.385652 3.311443e+04 0.026259 \n",
+ "4 1.092945 0.000000e+00 0.000000 \n",
+ "5 0.497883 1.370105e+04 0.017900 \n",
+ "6 1.917334 0.000000e+00 0.000000 \n",
+ "7 1.427200 0.000000e+00 0.000000 \n",
+ "8 0.648427 0.000000e+00 0.000000 \n",
+ "9 0.738220 0.000000e+00 0.000000 \n",
+ "10 0.558493 0.000000e+00 0.000000 \n",
+ "11 1.076782 0.000000e+00 0.000000 \n",
+ "12 0.985435 0.000000e+00 0.000000 \n",
+ "\n",
+ " exp_qty_TWh system_savings_EUR_per_TWh system_savings_bnEUR \\\n",
+ "0 421.297727 9.009054e+05 0.379549 \n",
+ "1 0.000086 1.374004e+12 0.117623 \n",
+ "2 947.674767 7.987461e+06 7.569515 \n",
+ "3 792.972015 5.406546e+06 4.287240 \n",
+ "4 1480.629432 1.410885e+07 20.889982 \n",
+ "5 1306.466947 1.147338e+07 14.989593 \n",
+ "6 1626.949224 2.230642e+07 36.291414 \n",
+ "7 1503.721679 1.956716e+07 29.423561 \n",
+ "8 0.000000 0.000000e+00 0.000000 \n",
+ "9 0.000000 0.000000e+00 0.000000 \n",
+ "10 0.000000 0.000000e+00 0.000000 \n",
+ "11 1420.058060 1.370841e+07 19.466736 \n",
+ "12 0.000000 0.000000e+00 0.000000 \n",
+ "\n",
+ " total_cost_bnEUR \n",
+ "0 95.678398 \n",
+ "1 97.415216 \n",
+ "2 88.488433 \n",
+ "3 93.245599 \n",
+ "4 75.167966 \n",
+ "5 82.543245 \n",
+ "6 59.766534 \n",
+ "7 68.109277 \n",
+ "8 96.057948 \n",
+ "9 97.532838 \n",
+ "10 82.429608 \n",
+ "11 67.985693 \n",
+ "12 87.452429 "
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df#query(\"exp_qty_TWh == '0'\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#drop df entries where mp_EUR_per_MWh % 10 is not 0 for numeric values or mp_EUR_per_MWH is not endogenous for string values\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " scenario \n",
+ " mp_EUR_per_MWh \n",
+ " ecc \n",
+ " ir \n",
+ " elec_costs_bnEUR \n",
+ " elec_price_EUR_per_MWh \n",
+ " elec_savings_EUR_per_TWh \n",
+ " elec_savings_bnEUR \n",
+ " exp_qty_TWh \n",
+ " system_savings_EUR_per_TWh \n",
+ " system_savings_bnEUR \n",
+ " total_cost_bnEUR \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " BI \n",
+ " 60 \n",
+ " 1.0 \n",
+ " 0.06 \n",
+ " 0.142800 \n",
+ " 1.917334 \n",
+ " 0.000000e+00 \n",
+ " 0.000000 \n",
+ " 1626.949224 \n",
+ " 2.230642e+07 \n",
+ " 36.291414 \n",
+ " 59.766534 \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " GH \n",
+ " 50 \n",
+ " 1.0 \n",
+ " 0.06 \n",
+ " 0.075720 \n",
+ " 1.076782 \n",
+ " 0.000000e+00 \n",
+ " 0.000000 \n",
+ " 1420.058060 \n",
+ " 1.370841e+07 \n",
+ " 19.466736 \n",
+ " 67.985693 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " BI \n",
+ " 60 \n",
+ " 1.0 \n",
+ " 0.08 \n",
+ " 0.106296 \n",
+ " 1.427200 \n",
+ " 0.000000e+00 \n",
+ " 0.000000 \n",
+ " 1503.721679 \n",
+ " 1.956716e+07 \n",
+ " 29.423561 \n",
+ " 68.109277 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " BI \n",
+ " 50 \n",
+ " 1.0 \n",
+ " 0.06 \n",
+ " 0.081401 \n",
+ " 1.092945 \n",
+ " 0.000000e+00 \n",
+ " 0.000000 \n",
+ " 1480.629432 \n",
+ " 1.410885e+07 \n",
+ " 20.889982 \n",
+ " 75.167966 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " DE \n",
+ " endogenous \n",
+ " 1.0 \n",
+ " 0.06 \n",
+ " 0.050519 \n",
+ " 0.558493 \n",
+ " 0.000000e+00 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0.000000e+00 \n",
+ " 0.000000 \n",
+ " 82.429608 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " BI \n",
+ " 50 \n",
+ " 1.0 \n",
+ " 0.08 \n",
+ " 0.037082 \n",
+ " 0.497883 \n",
+ " 1.370105e+04 \n",
+ " 0.017900 \n",
+ " 1306.466947 \n",
+ " 1.147338e+07 \n",
+ " 14.989593 \n",
+ " 82.543245 \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " GH \n",
+ " endogenous \n",
+ " 1.0 \n",
+ " 0.06 \n",
+ " 0.069296 \n",
+ " 0.985435 \n",
+ " 0.000000e+00 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0.000000e+00 \n",
+ " 0.000000 \n",
+ " 87.452429 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " BI \n",
+ " 40 \n",
+ " 1.0 \n",
+ " 0.06 \n",
+ " 0.025242 \n",
+ " 0.338918 \n",
+ " 2.432454e+04 \n",
+ " 0.023052 \n",
+ " 947.674767 \n",
+ " 7.987461e+06 \n",
+ " 7.569515 \n",
+ " 88.488433 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " BI \n",
+ " 40 \n",
+ " 1.0 \n",
+ " 0.08 \n",
+ " 0.028723 \n",
+ " 0.385652 \n",
+ " 3.311443e+04 \n",
+ " 0.026259 \n",
+ " 792.972015 \n",
+ " 5.406546e+06 \n",
+ " 4.287240 \n",
+ " 93.245599 \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " BI \n",
+ " 30 \n",
+ " 1.0 \n",
+ " 0.06 \n",
+ " 0.011331 \n",
+ " 0.152143 \n",
+ " 8.773490e+04 \n",
+ " 0.036963 \n",
+ " 421.297727 \n",
+ " 9.009054e+05 \n",
+ " 0.379549 \n",
+ " 95.678398 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " BI \n",
+ " endogenous \n",
+ " 1.0 \n",
+ " 0.06 \n",
+ " 0.048294 \n",
+ " 0.648427 \n",
+ " 0.000000e+00 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0.000000e+00 \n",
+ " 0.000000 \n",
+ " 96.057948 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " BI \n",
+ " 30 \n",
+ " 1.0 \n",
+ " 0.08 \n",
+ " 0.010471 \n",
+ " 0.140594 \n",
+ " 5.199450e+11 \n",
+ " 0.044510 \n",
+ " 0.000086 \n",
+ " 1.374004e+12 \n",
+ " 0.117623 \n",
+ " 97.415216 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " BI \n",
+ " endogenous \n",
+ " 1.0 \n",
+ " 0.08 \n",
+ " 0.054982 \n",
+ " 0.738220 \n",
+ " 0.000000e+00 \n",
+ " 0.000000 \n",
+ " 0.000000 \n",
+ " 0.000000e+00 \n",
+ " 0.000000 \n",
+ " 97.532838 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " scenario mp_EUR_per_MWh ecc ir elec_costs_bnEUR \\\n",
+ "6 BI 60 1.0 0.06 0.142800 \n",
+ "11 GH 50 1.0 0.06 0.075720 \n",
+ "7 BI 60 1.0 0.08 0.106296 \n",
+ "4 BI 50 1.0 0.06 0.081401 \n",
+ "10 DE endogenous 1.0 0.06 0.050519 \n",
+ "5 BI 50 1.0 0.08 0.037082 \n",
+ "12 GH endogenous 1.0 0.06 0.069296 \n",
+ "2 BI 40 1.0 0.06 0.025242 \n",
+ "3 BI 40 1.0 0.08 0.028723 \n",
+ "0 BI 30 1.0 0.06 0.011331 \n",
+ "8 BI endogenous 1.0 0.06 0.048294 \n",
+ "1 BI 30 1.0 0.08 0.010471 \n",
+ "9 BI endogenous 1.0 0.08 0.054982 \n",
+ "\n",
+ " elec_price_EUR_per_MWh elec_savings_EUR_per_TWh elec_savings_bnEUR \\\n",
+ "6 1.917334 0.000000e+00 0.000000 \n",
+ "11 1.076782 0.000000e+00 0.000000 \n",
+ "7 1.427200 0.000000e+00 0.000000 \n",
+ "4 1.092945 0.000000e+00 0.000000 \n",
+ "10 0.558493 0.000000e+00 0.000000 \n",
+ "5 0.497883 1.370105e+04 0.017900 \n",
+ "12 0.985435 0.000000e+00 0.000000 \n",
+ "2 0.338918 2.432454e+04 0.023052 \n",
+ "3 0.385652 3.311443e+04 0.026259 \n",
+ "0 0.152143 8.773490e+04 0.036963 \n",
+ "8 0.648427 0.000000e+00 0.000000 \n",
+ "1 0.140594 5.199450e+11 0.044510 \n",
+ "9 0.738220 0.000000e+00 0.000000 \n",
+ "\n",
+ " exp_qty_TWh system_savings_EUR_per_TWh system_savings_bnEUR \\\n",
+ "6 1626.949224 2.230642e+07 36.291414 \n",
+ "11 1420.058060 1.370841e+07 19.466736 \n",
+ "7 1503.721679 1.956716e+07 29.423561 \n",
+ "4 1480.629432 1.410885e+07 20.889982 \n",
+ "10 0.000000 0.000000e+00 0.000000 \n",
+ "5 1306.466947 1.147338e+07 14.989593 \n",
+ "12 0.000000 0.000000e+00 0.000000 \n",
+ "2 947.674767 7.987461e+06 7.569515 \n",
+ "3 792.972015 5.406546e+06 4.287240 \n",
+ "0 421.297727 9.009054e+05 0.379549 \n",
+ "8 0.000000 0.000000e+00 0.000000 \n",
+ "1 0.000086 1.374004e+12 0.117623 \n",
+ "9 0.000000 0.000000e+00 0.000000 \n",
+ "\n",
+ " total_cost_bnEUR \n",
+ "6 59.766534 \n",
+ "11 67.985693 \n",
+ "7 68.109277 \n",
+ "4 75.167966 \n",
+ "10 82.429608 \n",
+ "5 82.543245 \n",
+ "12 87.452429 \n",
+ "2 88.488433 \n",
+ "3 93.245599 \n",
+ "0 95.678398 \n",
+ "8 96.057948 \n",
+ "1 97.415216 \n",
+ "9 97.532838 "
+ ]
+ },
+ "execution_count": 22,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.sort_values(\"total_cost_bnEUR\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/tmp/ipykernel_133889/1549884946.py:4: SettingWithCopyWarning: \n",
+ "A value is trying to be set on a copy of a slice from a DataFrame.\n",
+ "Try using .loc[row_indexer,col_indexer] = value instead\n",
+ "\n",
+ "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+ " df_copy[\"mp_EUR_per_MWh\"] = df_copy[\"mp_EUR_per_MWh\"].astype(float)\n"
+ ]
+ },
+ {
+ "ename": "IndexError",
+ "evalue": "too many indices for array: array is 1-dimensional, but 2 were indexed",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)",
+ "Cell \u001b[0;32mIn[30], line 19\u001b[0m\n\u001b[1;32m 17\u001b[0m pivot_table \u001b[38;5;241m=\u001b[39m pivot_table\u001b[38;5;241m.\u001b[39msort_index(ascending\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\u001b[38;5;241m.\u001b[39msort_index(axis\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m, ascending\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[1;32m 18\u001b[0m sns\u001b[38;5;241m.\u001b[39mheatmap(pivot_table, annot\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, cmap\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mviridis\u001b[39m\u001b[38;5;124m\"\u001b[39m, cbar_kws\u001b[38;5;241m=\u001b[39m{\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mlabel\u001b[39m\u001b[38;5;124m'\u001b[39m: variable}, ax\u001b[38;5;241m=\u001b[39maxs[i], vmin\u001b[38;5;241m=\u001b[39mvmin, vmax\u001b[38;5;241m=\u001b[39mvmax)\n\u001b[0;32m---> 19\u001b[0m \u001b[43maxs\u001b[49m\u001b[43m[\u001b[49m\u001b[43mi\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mj\u001b[49m\u001b[43m]\u001b[49m\u001b[38;5;241m.\u001b[39mset_title(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mvariable\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00mdf_copy\u001b[38;5;241m.\u001b[39mecc\u001b[38;5;241m.\u001b[39mvalues[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m * 1350 €/kW\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mElectrolysis CAPEX\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mInterest rate: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mir\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 20\u001b[0m axs[i, j]\u001b[38;5;241m.\u001b[39mset_xlabel(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mScenario\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 21\u001b[0m axs[i, j]\u001b[38;5;241m.\u001b[39mset_ylabel(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mGlobal Hydrogen\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mMarket Price (€/MWh)\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
+ "\u001b[0;31mIndexError\u001b[0m: too many indices for array: array is 1-dimensional, but 2 were indexed"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAACV8AAAYvCAYAAACd8x2LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC4zklEQVR4nOzde5iVZbk/8O/iKKCMeGBG8gCeUBTNraZAiYaKthHNFE1T3JlaHgkRzzt1J2ys0Mrd2Txm2K60dr9SsAAlEsVToaaimEGOWCKCwgAz6/cHOTaB5ixnfBn8fK7rvZz1PM/7ru/y6lpdIzf3XSqXy+UAAAAAAAAAAADQLO2KDgAAAAAAAAAAANAWKb4CAAAAAAAAAACogOIrAAAAAAAAAACACii+AgAAAAAAAAAAqIDiKwAAAAAAAAAAgAoovgIAAAAAAAAAAKiA4isAAAAAAAAAAIAKKL4CAAAAAAAAAACoQIeiA7SGhtodi44AAAAAAAAA0Cra1TxVdARa2Lr0Z9z+9wXQPDpfAQAAAAAAAAAAVEDxFQAAAAAAAAAAQAXWy7GDAAAAAAAAANBWNKSh6AiNdHABaB7fmwAAAAAAAAAAABVQfAUAAAAAAAAAAFABYwcBAAAAAAAAoED15XVn7KAiAoDm0fkKAAAAAAAAAACgAopWAQAAAAAAAKBADSkXHQGACul8BQAAAAAAAAAAUAHFVwAAAAAAAAAAABUwdhAAAAAAAAAACtSQhqIjAFAhna8AAAAAAAAAAAAqoPgKAAAAAAAAAACgAsYOAgAAAAAAAECB6svloiMAUCGdrwAAAAAAAAAAACqg+AoAAAAAAAAAAKACxg4CAAAAAAAAQIEaYuwgQFul8xUAAAAAAAAAAEAFdL4CAAAAAAAAgALV63wF0GbpfAUAAAAAAAAAAFABxVcAAAAAAAAAAAAVMHYQAAAAAAAAAArUYOwgQJul8xUAAAAAAAAAAEAFFF8BAAAAAAAAAABUwNhBAAAAAAAAAChQfdnYQYC2SucrAAAAAAAAAACACii+AgAAAAAAAAAAqICxgwAAAAAAAABQoIaiAwBQMZ2vAAAAAAAAAAAAKqDzFQAAAAAAAAAUqD7loiMAUCGdrwAAAAAAAAAAACqg+AoAAAAAAAAAAKACxg4CAAAAAAAAQIHqTR0EaLN0vgIAAAAAAAAAAKiA4isAAAAAAAAAAIAKGDsIAAAAAAAAAAVqKDoAABXT+QoAAAAAAAAAAKACiq8AAAAAAAAAAAAqYOwgAAAAAAAAABSoPqWiIwBQIZ2vAAAAAAAAAAAAKqDzFQAAAAAAAAAUqKFcdAIAKqXzFQAAAAAAAAAAQAUUXwEAAAAAAAAAAFTA2EEAAAAAAAAAKFB9SkVHAKBCOl8BAAAAAAAAAM12zz335LDDDkuvXr1SKpVyxx13vOXZ0047LaVSKddcc02T9bq6upx11lnZbLPN0q1btwwfPjzz589vcmbRokU54YQTUlVVlaqqqpxwwgl55ZVXWv4DAVRA8RUAAAAAAAAA0GyvvfZadt9991x77bVve+6OO+7IrFmz0qtXrzX2Ro0aldtvvz2TJk3KjBkzsnTp0gwbNiz19fWNZ4477rg88sgjufPOO3PnnXfmkUceyQknnNDinwegEsYOAgAAAAAAAECB2urYwUMPPTSHHnro255ZsGBBzjzzzNx1113593//9yZ7ixcvznXXXZebb745Bx54YJLklltuyVZbbZW77747Q4cOzRNPPJE777wz9913X/bZZ58kyXe/+90MGDAgTz75ZPr27ds6Hw7gHdL5CgAAAAAAAABIsnoM4Kuvvtrkqqurq+hZDQ0NOeGEE3Leeedll112WWP/wQcfzMqVK3PwwQc3rvXq1Su77rprZs6cmST53e9+l6qqqsbCqyTZd999U1VV1XgGoEiKrwAAAAAAAACgQA3l0jpzjR8/PlVVVU2u8ePHV/S5JkyYkA4dOuTss89e635tbW06deqUHj16NFmvrq5ObW1t45mePXuucW/Pnj0bzwAUydhBAAAAAAAAACBJcuGFF2b06NFN1jp37tzs5zz44IP56le/moceeiilUvPGKpbL5Sb3rO3+fz4DUBSdrwAAAAAAAACAJKsLrbp3797kqqT46t57783ChQuz9dZbp0OHDunQoUP+9Kc/5dxzz03v3r2TJDU1NVmxYkUWLVrU5N6FCxemurq68cyLL764xvNfeumlxjMARVJ8BQAAAAAAAAAFqk9pnblaygknnJDf//73eeSRRxqvXr165bzzzstdd92VJNlzzz3TsWPHTJkypfG+F154IXPmzMnAgQOTJAMGDMjixYtz//33N56ZNWtWFi9e3HgGoEjGDgIAAAAAAAAAzbZ06dLMnTu38fW8efPyyCOPZJNNNsnWW2+dTTfdtMn5jh07pqamJn379k2SVFVV5eSTT865556bTTfdNJtssknGjBmT/v3758ADD0yS7LzzzjnkkENyyimn5Nvf/naS5NRTT82wYcManwNQJMVXAAAAAAAAAECzzZ49OwcccEDj69GjRydJRo4cmRtuuOEdPePqq69Ohw4dMmLEiCxbtixDhgzJDTfckPbt2zee+cEPfpCzzz47Bx98cJJk+PDhufbaa1vugwC8C6VyuVwuOkRLa6jdsegIAAAAAAAAAK2iXc1TRUeghT3wfO+iIzTae+vnio4A0Ka0KzoAAAAAAAAAAABAW6T4CgAAAAAAAAAAoAIdig4AAAAAAAAAAO9nDeVS0REAqJDOVwAAAAAAAAAAABXQ+QoAAAAAAAAAClQfna8A2iqdrwAAAAAAAAAAACqg+AoAAAAAAAAAAKACxg4CAAAAAAAAQIHqy/qmALRVvsEBAAAAAAAAAAAqoPgKAAAAAAAAAACgAsYOAgAAAAAAAECBGvRNAWizfIMDAAAAAAAAAABUQPEVAAAAAAAAAABABYwdBAAAAAAAAIAC1adUdAQAKqTzFQAAAAAAAAAAQAV0vgIAAAAAAACAAtWX9U0BaKt8gwMAAAAAAAAAAFRA8RUAAAAAAAAAAEAFjB0EAAAAAAAAgAI1pFR0BAAqpPMVAAAAAAAAAABABQovvnrggQdy/PHHp0+fPunSpUu6du2aPn365Pjjj8/s2bOLjgcAAAAAAAAAALBWhY4dvOOOOzJixIgMGTIk55xzTqqrq1Mul7Nw4cJMnjw5gwYNyo9+9KMcfvjhRcYEAAAAAAAAgFZTX3zfFAAqVCqXy+Wi3nzXXXfNpz71qVxwwQVr3Z8wYUJuuummPPbYY816bkPtji0RDwAAAAAAAGCd067mqaIj0MJ+OW/XoiM0+lifOUVHAGhTCi2fnTt3bo488si33D/iiCPyzDPPvIeJAAAAAAAAAAAA3plCi6+222673HHHHW+5/7Of/SzbbrvtexcIAAAAAAAAAN5j9eV268wFQPN0KPLNr7jiihx77LGZPn16Dj744FRXV6dUKqW2tjZTpkzJ5MmTM2nSpCIjAgAAAAAAAAAArFWhxVef+MQncs899+SrX/1qJk6cmNra2iRJTU1NBgwYkOnTp2fAgAFFRgQAAAAAAACAVtVQ7NAqAN6FQouvkmTAgAEKrAAAAGhRDzyafP+HyWNPJS/9rZSvf7GcAz/y1ufvfzgZOaq0xvr/u6mcbbdpvZxPPZP811eTPzyRVHVPRhyWnD4yKf09yoO/T77y7eTZ55Ply5NeNavPnDSi9TIBAAAAAPDOFV58BQAAAC1t2bKk7/bJxz+WnHPpO7/vl7eUs2HXN19vsnHlGRa8kBx4bClPTC+vdX/pa8nJY5IPfTD50beT5+YnF41PunZJ/uOY1We6bJAc//Fkx+2SrhskD/4huewrq38eMbzybAAAAAAAtIx1uvjqoosuSm1tbb7//e8XHQUAAIA2ZL99V1/NtenGSfeN3nr/p79MrvthMr82+UBN8qkjk+M+XlnG/5uS1K1Ixl+YdOqU7Lht8qc/Jzf8aHVnq1Ip6bfj6usNH9gimXJPMvv3iq8AAABgfVJfXrMjNwBtwzo9OHbBggV57rnnio4BAADA+8SRn0k+8vHkPz6fzHqo6d6P/i+55nvJOack/++mZNQpyde+n9xxZ2Xv9chjyd67ry68esOgvZOFfy1lQe3a73n8qb/f98HK3hMAAAAAgJa1Tne+uvHGG//lmbq6utTV1TVZ61jXkM6d1+m6MgAAANYhm2+aXD6mnF36JitWJD+fnPzH6OTGr64ukEqSb92UnH96cvB+q19vuUXyzHPJbT9Pjjik+e/515dXd8/6R5ttsvqfL/1t9fPfsP9RycuvJPX1yRknJUcPa/77AQAAAADQ8tbp4qt3Yvz48bn88subrP3nuZvkC2M2LSgRAAAAbU2frVdfb9hj16R2YXL9pNXFVy+/krywsJRLrirnP7/85rlV9clG3d58PWxk8sKLq38ul1f/c89/KMzaojr5xT/8PaPSP00UeOOef16/5evJ668njzyeTPxOss0Hkn8/sKKPCgAAAKyD6tftoVUAvI3Ci69ee+213HrrrZk5c2Zqa2tTKpVSXV2dQYMG5ZOf/GS6dev2tvdfeOGFGT16dJO1jov+rTUjAwAA8D6w+y7J/01e/XNDw+p/XnFestvOTc+1b//mz9+ekKxatfrnF/+ajDwn+en33tzv8A+/hW+2yeruV//ob4ve3PtHb3TB2nG71WeuvUHxFQAAAADAuqDQ4qvHH388Bx10UF5//fUMHjw4W2+9dcrlchYuXJjzzjsvl112WSZPnpx+/fq95TM6d+6czp07N1lreF1VMAAAAO/OE0+vHkeYrC6Gqt68nD//JTnsoLe+5x/HCHb4e1HWNluu/ewHd0mu+W6yYmXSqePqtd/OTnpuVl5jHOE/KpdX3wMAAAAAQPEKLb4644wzst9+++XGG29Mp06dmuytWLEiJ510Us4444xMnTq1oIQAAAC0Ra+9njy/4M3X819YXUxV1T3pVb16dN+LLyUTLl69f+P/ri6c2r5PsnJl8n9TksnTS/nqf5Ubn3HGScm4ryUbdks+sk+yckUy58nk1SXJScc0P+OwA5Nv3JhcND459VPJn+Yn37klOX3km2MHf3B70qtn0meb1a8f+n1y/W3J8UdW9u8FAAAAWDc1lDUYAWirCi2+mjVrVmbPnr1G4VWSdOrUKRdddFE+9KEPFZAMAACAtuyxJ5ORo0qNryf8z+qfjziknPEXJi/9LXlh4ZvnV65MvvTN1QVZG3ROtu+dfGtCOYP3ffPM0cOSLp2T709KvvytpOsGyQ7bJiceVVnGjTZMrvtycsU1ydGnJd03TE4asfp6Q7khmfjdZMELq8cbbtUrGX1qcszwyt4TAAAAAICWVSqXy+V/fax1fOADH8g3vvGNHH744Wvdv+OOO3LGGWdkwYIFa91/Kw21O7ZEPAAAAAAAAIB1Truap4qOQAu7de4+RUdodNz2s4qOANCmFNr56pRTTsnIkSNzySWX5KCDDkp1dXVKpVJqa2szZcqUjBs3LqNGjSoyIgAAAAAAAAAAwFoVWnx12WWXpUuXLpk4cWLGjh2bUmn1GIhyuZyamppccMEFGTt2bJERAQAAAAAAAAAA1qrQsYP/aN68eamtrU2S1NTUpE+fPhU/y9hBAAAAAAAAYH1l7OD65+an9y06QqMTdriv6AgAbUqhna/+UZ8+fd5VwRUAAAAAAAAAAMB7qV2Rb/7www9n3rx5ja9vueWWDBo0KFtttVU+/OEPZ9KkSQWmAwAAAAAAAAAAeGuFFl+dfPLJee6555Ik3/ve93Lqqadmr732ysUXX5y99947p5xySr7//e8XGREAAAAAAAAAWlVD2q0zFwDNU+jYwSeffDLbbbddkuQb3/hGrrnmmpx66qmN+3vvvXeuvPLKfPrTny4qIgAAAAAAAAAAwFoVWnzVpUuXvPTSS9l6662zYMGC7LPPPk3299lnnyZjCQEAAAAAAABgfVNf1nEKoK0q9Bv80EMPzTe/+c0kyeDBg/PjH/+4yf6PfvSjbL/99kVEAwAAAAAAAAAAeFuFdr6aMGFCBg0alMGDB2evvfbKV77ylUybNi0777xznnzyydx33325/fbbi4wIAAAAAAAAAACwVoV2vurVq1cefvjhDBgwIHfeeWfK5XLuv//+TJ48OVtuuWV++9vf5mMf+1iREQEAAAAAAACgVTWktM5cADRPqVwul4sO0dIaancsOgIAAAAAAABAq2hX81TREWhh33vqI0VHaPSZHe8tOgJAm1Jo5ysAAAAAAAAAAIC2qkPRAQAAAAAAAADg/ay+rG8KQFvlGxwAAAAAAAAAAKACiq8AAAAAAAAAAAAqYOwgAAAAAAAAABSoXt8UgDbLNzgAAAAAAAAAAEAFdL4CAAAAAAAAgAI1lEtFRwCgQjpfAQAAAAAAAAAAVEDxFQAAAAAAAAAAQAWMHQQAAAAAAACAAtXrmwLQZvkGBwAAAAAAAAAAqIDiKwAAAAAAAAAAgAoYOwgAAAAAAAAABWoo65sC0Fb5BgcAAAAAAAAAAKiA4isAAAAAAAAAAIAKGDsIAAAAAAAAAAWqT6noCABUSOcrAAAAAAAAAACACuh8BQAAAAAAAAAFaijrmwLQVvkGBwAAAAAAAAAAqIDiKwAAAAAAAAAAgAoYOwgAAAAAAAAABapPqegIAFRI5ysAAAAAAAAAAIAKKL4CAAAAAAAAAACogLGDAAAAAAAAAFCghrK+KQBtlW9wAAAAAAAAAACACii+AgAAAAAAAAAAqICxgwAAAAAAAABQoHpjBwHaLN/gAAAAAAAAAAAAFdD5CgAAAAAAAAAK1JBS0REAqJDOVwAAAAAAAAAAABVQfAUAAAAAAAAAAFABYwcBAAAAAAAAoED1ZX1TANoq3+AAAAAAAAAAQLPdc889Oeyww9KrV6+USqXccccdjXsrV67M+eefn/79+6dbt27p1atXTjzxxPzlL39p8oy6urqcddZZ2WyzzdKtW7cMHz488+fPb3Jm0aJFOeGEE1JVVZWqqqqccMIJeeWVV96DTwjwrym+AgAAAAAAAACa7bXXXsvuu++ea6+9do29119/PQ899FAuvfTSPPTQQ/npT3+ap556KsOHD29ybtSoUbn99tszadKkzJgxI0uXLs2wYcNSX1/feOa4447LI488kjvvvDN33nlnHnnkkZxwwgmt/vkA3olSuVwuFx2ipTXU7lh0BAAAAAAAAIBW0a7mqaIj0MIu/v2RRUdodOVuP63ovlKplNtvvz1HHHHEW5554IEH8qEPfSh/+tOfsvXWW2fx4sXZfPPNc/PNN+eYY45JkvzlL3/JVlttlV/+8pcZOnRonnjiifTr1y/33Xdf9tlnnyTJfffdlwEDBuSPf/xj+vbtW1FegJai8xUAAAAAAAAAkGT1GMBXX321yVVXV9ciz168eHFKpVI23njjJMmDDz6YlStX5uCDD24806tXr+y6666ZOXNmkuR3v/tdqqqqGguvkmTfffdNVVVV4xmAIim+AgAAAAAAAIAC1afdOnONHz8+VVVVTa7x48e/68+4fPnyXHDBBTnuuOPSvXv3JEltbW06deqUHj16NDlbXV2d2traxjM9e/Zc43k9e/ZsPANQpA5FBwAAAAAAAAAA1g0XXnhhRo8e3WStc+fO7+qZK1euzLHHHpuGhoZ84xvf+Jfny+VySqVS4+t//PmtzgAURfEVAAAAAAAAAJBkdaHVuy22+kcrV67MiBEjMm/evPzmN79p7HqVJDU1NVmxYkUWLVrUpPvVwoULM3DgwMYzL7744hrPfemll1JdXd1iOQEqZewgAAAAAAAAABSooVxaZ66W9Ebh1dNPP5277747m266aZP9PffcMx07dsyUKVMa11544YXMmTOnsfhqwIABWbx4ce6///7GM7NmzcrixYsbzwAUSecrAAAAAAAAAKDZli5dmrlz5za+njdvXh555JFssskm6dWrV4466qg89NBD+cUvfpH6+vrU1tYmSTbZZJN06tQpVVVVOfnkk3Puuedm0003zSabbJIxY8akf//+OfDAA5MkO++8cw455JCccsop+fa3v50kOfXUUzNs2LD07dv3vf/QAP9E8RUAAAAAAAAA0GyzZ8/OAQcc0Ph69OjRSZKRI0fmsssuy89//vMkyQc/+MEm902dOjX7779/kuTqq69Ohw4dMmLEiCxbtixDhgzJDTfckPbt2zee/8EPfpCzzz47Bx98cJJk+PDhufbaa1vxkwG8c6VyuVwuOkRLa6jdsegIAAAAAAAAAK2iXc1TRUeghY159JiiIzT68u63FR0BoE1pV3QAAAAAAAAAAACAtkjxFQAAAAAAAAAAQAU6FB0AAAAAAAAAAN7P6suloiMAUCGdrwAAAAAAAAAAACqg8xUAAAAAAAAAFKhB5yuANkvnKwAAAAAAAAAAgAoovgIAAAAAAAAAAKiAsYMAAAAAAAAAUKCGsr4pAG2Vb3AAAAAAAAAAAIAKKL4CAAAAAAAAAACogLGDAAAAAAAAAFCg+pSKjgBAhXS+AgAAAAAAAAAAqIDiKwAAAAAAAAAAgAoYOwgAAAAAAAAABWooGzsI0FbpfAUAAAAAAAAAAFABna8AAAAAAAAAoEANZX1TANoq3+AAAAAAAAAAAAAVUHwFAAAAAAAAAABQAWMHAQAAAAAAAKBADSkVHQGACul8BQAAAAAAAAAAUAHFVwAAAAAAAAAAABUwdhAAAAAAAAAAClRfNnYQoK3S+QoAAAAAAAAAAKACiq8AAAAAAAAAAAAqYOwgAAAAAAAAABSooaxvCkBb5RscAAAAAAAAAACgAutl56v/XVpVdAQAAAAAAACAVnFM0QFocQ3lUtERAKiQzlcAAAAAAAAAAAAVUHwFAAAAAAAAAABQgfVy7CAAAAAAAAAAtBUNMXYQoK3S+QoAAAAAAAAAAKACiq8AAAAAAAAAAAAqYOwgAAAAAAAAABSooWzsIEBbpfMVAAAAAAAAAABABXS+AgAAAAAAAIACNZT1TQFoq3yDAwAAAAAAAAAAVEDxFQAAAAAAAAAAQAWMHQQAAAAAAACAAjWUS0VHAKBCOl8BAAAAAAAAAABUQPEVAAAAAAAAAABABYwdBAAAAAAAAIACNcTYQYC2SucrAAAAAAAAAACACii+AgAAAAAAAAAAqICxgwAAAAAAAABQoIaysYMAbZXOVwAAAAAAAAAAABXQ+QoAAAAAAAAACqTzFUDbpfMVAAAAAAAAAABABRRfAQAAAAAAAAAAVMDYQQAAAAAAAAAokLGDAG2XzlcAAAAAAAAAAAAVUHwFAAAAAAAAAABQAWMHAQAAAAAAAKBAxg4CtF06XwEAAAAAAAAAAFRA8RUAAAAAAAAAAEAFjB0EAAAAAAAAgAI1xNhBgLZK5ysAAAAAAAAAAIAK6HwFAAAAAAAAAAVqKOt8BdBW6XwFAAAAAAAAAABQAcVXAAAAAAAAAAAAFTB2EAAAAAAAAAAKZOwgQNul8xUAAAAAAAAAAEAFFF8BAAAAAAAAAABUwNhBAAAAAAAAACiQsYMAbZfOVwAAAAAAAAAAABVQfAUAAAAAAAAAAFABYwcBAAAAAAAAoEDGDgK0XTpfAQAAAAAAAAAAVEDnKwAAAAAAAAAoUFnnK4A2S+crAAAAAAAAAACACii+AgAAAAAAAAAAqICxgwAAAAAAAABQoIYYOwjQVul8BQAAAAAAAAAAUAHFVwAAAAAAAAAAABUwdhAAAAAAAAAACtRQNnYQoK3S+QoAAAAAAAAAAKACOl8BAAAAAAAAQIHKOl8BtFk6XwEAAAAAAAAAAFRA8RUAAAAAAAAAAEAFjB0EAAAAAAAAgAI1GDsI0GbpfAUAAAAAAAAAAFABxVcAAAAAAAAAAAAVMHYQAAAAAAAAAApUNnYQoM3S+QoAAAAAAAAAaLZ77rknhx12WHr16pVSqZQ77rijyX65XM5ll12WXr16pUuXLtl///3z2GOPNTlTV1eXs846K5tttlm6deuW4cOHZ/78+U3OLFq0KCeccEKqqqpSVVWVE044Ia+88korfzqAd0bxFQAAAAAAAADQbK+99lp23333XHvttWvdv+qqqzJx4sRce+21eeCBB1JTU5ODDjooS5YsaTwzatSo3H777Zk0aVJmzJiRpUuXZtiwYamvr288c9xxx+WRRx7JnXfemTvvvDOPPPJITjjhhFb/fADvRKlcLpeLDtHSbpu7d9ERAAAAAAAAAFrFMds/UHQEWtiH7ryo6AiN7j9kXEX3lUql3H777TniiCOSrO561atXr4waNSrnn39+ktVdrqqrqzNhwoScdtppWbx4cTbffPPcfPPNOeaYY5Ikf/nLX7LVVlvll7/8ZYYOHZonnngi/fr1y3333Zd99tknSXLfffdlwIAB+eMf/5i+ffu++w8N8C7ofAUAAAAAAAAAJFldIPXqq682uerq6pr9nHnz5qW2tjYHH3xw41rnzp0zePDgzJw5M0ny4IMPZuXKlU3O9OrVK7vuumvjmd/97nepqqpqLLxKkn333TdVVVWNZwCKpPgKAAAAAAAAAApULq871/jx41NVVdXkGj9+fLM/U21tbZKkurq6yXp1dXXjXm1tbTp16pQePXq87ZmePXuu8fyePXs2ngEoUoeiAwAAAAAAAAAA64YLL7wwo0ePbrLWuXPnip9XKpWavC6Xy2us/bN/PrO28+/kOQDvBZ2vAAAAAAAAAIAkqwutunfv3uSqpPiqpqYmSdboTrVw4cLGblg1NTVZsWJFFi1a9LZnXnzxxTWe/9JLL63RVQugCIqvAAAAAAAAAKBADSmtM1dL6dOnT2pqajJlypTGtRUrVmT69OkZOHBgkmTPPfdMx44dm5x54YUXMmfOnMYzAwYMyOLFi3P//fc3npk1a1YWL17ceAagSMYOAgAAAAAAAADNtnTp0sydO7fx9bx58/LII49kk002ydZbb51Ro0Zl3Lhx2WGHHbLDDjtk3Lhx6dq1a4477rgkSVVVVU4++eSce+652XTTTbPJJptkzJgx6d+/fw488MAkyc4775xDDjkkp5xySr797W8nSU499dQMGzYsffv2fe8/NMA/UXwFAAAAAAAAADTb7Nmzc8ABBzS+Hj16dJJk5MiRueGGGzJ27NgsW7Ysp59+ehYtWpR99tknkydPzkYbbdR4z9VXX50OHTpkxIgRWbZsWYYMGZIbbrgh7du3bzzzgx/8IGeffXYOPvjgJMnw4cNz7bXXvkefEuDtlcrlcrnoEC3ttrl7Fx0BAAAAAAAAoFUcs/0DRUeghf3bLy8pOkKjhz72xaIjALQp7YoOAAAAAAAAAAAA0BYpvgIAAAAAAAAAAKhAh6IDAAAAAAAAAMD7WUO5VHQEACqk8xUAAAAAAAAAAEAFdL4CAAAAAAAAgAKVy0UnAKBSOl8BAAAAAAAAAABUQPEVAAAAAAAAAABABYwdBAAAAAAAAIAClculoiMAUCGdrwAAAAAAAAAAACqg+AoAAAAAAAAAAKAChRdfPfDAAzn++OPTp0+fdOnSJV27dk2fPn1y/PHHZ/bs2UXHAwAAAAAAAIBWVS6X1pkLgObpUOSb33HHHRkxYkSGDBmSc845J9XV1SmXy1m4cGEmT56cQYMG5Uc/+lEOP/zwImMCAAAAAAAAAACsoVQul8tFvfmuu+6aT33qU7ngggvWuj9hwoTcdNNNeeyxx5r13Nvm7t0S8QAAAAAAAADWOcds/0DREWhh/X/+haIjNPrD8MuLjgDQphQ6dnDu3Lk58sgj33L/iCOOyDPPPPMeJgIAAAAAAACA91ZDubTOXAA0T6HFV9ttt13uuOOOt9z/2c9+lm233fa9CwQAAAAAAAAAAPAOdSjyza+44ooce+yxmT59eg4++OBUV1enVCqltrY2U6ZMyeTJkzNp0qQiIwIAAAAAAABAqyqXi04AQKUKLb76xCc+kXvuuSdf/epXM3HixNTW1iZJampqMmDAgEyfPj0DBgwoMiIAAABt0HNzVmXGT1bkhbn1WfJyOZ+8pEt2HtDxLc//6bFVmXx9Xf46vyEr68rZuGe77HVIxwz8eOdWzfnic/X5xTeXZ8FT9emyUSl7HdIp+3+yU0qlUqG5AAAAAAB4ZwotvkqSAQMGKLACAACgRa1YXk5Nn3b5twM7ZtK4Zf/yfKcNStlnWKfU9GmXjhuU8vxjq/Lza5en0wal7HVop4oyLHqxIVd/emmu+H/d17q//PVybrz49fTZrX2GXd0tf1vQkNuvXpZOGySDjuzcarkAAAAAAGg5hRdfAQAAQEvbca+O2XGvNzpd/eviqy22a58ttmvf+LpHdac8PnNV/vRYffY69M1zD01ZkRk/XpFXXmzIxtXtsu9hnfKhYZUVQf1+6sqsWlnOx0d3SYeOpVT3bp+/LmjIzDtWZODHV3e/eqe5AAAAgLatXC4VHQGACrUrOsDbueiii/LpT3+66BgAAAC8z7zwTH3+/ER9evd/s/Bp9p0r8uub6nLgiZ1z1rc2zIEnds6vb6nLw3evqOg9/vzH+vTetUM6dHzzP67usGeHLPlbOa+8WH7HuQAAAAAAKM463flqwYIF+fOf//y2Z+rq6lJXV9dkbWVdQzp2XqfrygAAAFgHffnEJXltcTkNDckBx3XOnkPf7Go1fVJdhp68QfoNWt1Rq0dNuyz8c0Nm/2pl9jiw+d2vli5qyMY9m/7u2m3j1YVYSxY1pEfNm3tvlwsAAAAAgOKs08VXN9544788M378+Fx++eVN1j5x1hY5+uwPtFYsAAAA1lMnX9UtK5aX8+c/1mfKDXXZZIt22W3/jnltcUMWv1TOz762LD//+ptjDBvqk87d3uxc9fXPLc3ihQ1JkvLfm1d98ROvNu5X9WyXs765YePr0j9PFCivff2tcgEAAADrB2MHAdqudbr46p248MILM3r06CZrP//zAQWlAQAAoC17o9tUde/2WfpKOVNvrctu+3dMeXU9VYaf1SVb9m068q/dPzSvOuHyrqlftfrnV//WkOsveD2f+/qbxVbt/+G38A17tMvSRU3HC762ePXrDTdu2hHrrXIBAAAAAFCswouvXnvttdx6662ZOXNmamtrUyqVUl1dnUGDBuWTn/xkunXr9rb3d+7cOZ07d26yZuQgAAAA71o5qV/592KoHu3SfdNSFtU2ZPcD3rro6R/HCLb7e43Wpr3W/jvqVju1z903Ls+qleV06Lj6b7fOfWhVNtq0lI2r3+Zvu/5DLgAAAAAAilVoldLjjz+eHXfcMWPHjs2iRYuy9dZbZ8stt8yiRYty3nnnpW/fvnn88ceLjAgAAEAbVLesnBeeqc8Lz9QnSRbVNuSFZ+rzyt9HAk65YXl+8pU3xwfO+sWK/HHWyvxtQX3+tqA+D01Zkd/+tC67/UOh1QHHd869/1uX3/2sLn9dUJ8Xn/v7udvrKsq42/4d06FjKbdfvSwvPlefx2euzD0/qsvAIzql9Pe5g+8kFwAAAND2ldehC4DmKbTz1RlnnJH99tsvN954Yzp16tRkb8WKFTnppJNyxhlnZOrUqQUlBAAAoC36y9P1uf7C1xtf3/m9uiR1+eCQjjlydJcsebmcxS81NO6XG5K7b6zLotqGtGufbLJFuxx00gbZ69A3i5z2HNopHTuXMuMndZn8/bp02iDp2bt9Bhze9PfZd2qDbqWMvLJrfvGN5fn2qNeywYalDPx45wz8+JvPeye5AAAAAAAoTqlcLhdWvNq1a9fMnj07/fr1W+v+nDlz8qEPfSivv/76Wvffym1z926JeAAAAAAAAADrnGO2f6DoCLSwHX/yX0VHaPTUJy4tOgJAm1Lo2MEePXrk6aeffsv9uXPnpkePHu9hIgAAAAAAAAAAgHem0LGDp5xySkaOHJlLLrkkBx10UKqrq1MqlVJbW5spU6Zk3LhxGTVqVJERAQAAAAAAAAAA1qrQ4qvLLrssXbp0ycSJEzN27NiUSqUkSblcTk1NTS644IKMHTu2yIgAAAAAAAAA0LrKRQcAoFKFFl8lyfnnn5/zzz8/8+bNS21tbZKkpqYmffr0KTgZAAAAAAAAAADAWyu8+OoNffr0ycYbb5wbb7wxTz/9dHr16pUTTzwxW221VdHRAAAAAAAAAAAA1tCuyDfv1atX/va3vyVJ5s2bl1122SUTJkzI008/nW9961vp379//vjHPxYZEQAAAAAAAABaVblcWmcuAJqn0OKr2tra1NfXJ0kuuuii9O3bN88880wmT56cuXPn5iMf+UguvfTSIiMCAAAAAAAAAACs1TozdnDWrFn53ve+l65duyZJOnfunEsuuSRHHXVUwckAAAAAAAAAoPWUy0UnAKBShXa+SpJSaXXbwrq6ulRXVzfZq66uzksvvVRELAAAAAAAAAAAgLdVeOerIUOGpEOHDnn11Vfz1FNPZZdddmnce/7557PZZpsVmA4AAAAAAAAAAGDtCi2++sIXvtDk9RsjB9/wf//3f/nIRz7yXkYCAAAAAAAAgPdUuVwqOgIAFVqniq/+2Ze+9KX3KAkAAAAAAAAAAEDztCs6AAAAAAAAAAAAQFtUaOcrAAAAAAAAAHjfM3YQoM3S+QoAAAAAAAAAAKACiq8AAAAAAAAAAAAqYOwgAAAAAAAAABSoXC46AQCV0vkKAAAAAAAAAACgAjpfAQAAAAAAAECRdL4CaLN0vgIAAAAAAAAAAKiA4isAAAAAAAAAAIAKVDx28Ne//nV+/etfZ+HChWloaGiy9/3vf/9dBwMAAAAAAACA94NyuVR0BAAqVFHx1eWXX54rrrgie+21V7bYYouUSv6PAAAAAAAAAAAAeH+pqPjqW9/6Vm644YaccMIJLZ0HAAAAAAAAAACgTaio+GrFihUZOHBgS2cBAAAAAAAAgPefctEBAKhUu0pu+sxnPpNbb721pbMAAAAAAAAAAAC0Ge+489Xo0aMbf25oaMh3vvOd3H333dltt93SsWPHJmcnTpzYcgkBAAAAAAAAAADWQe+4+Orhhx9u8vqDH/xgkmTOnDlN1kul0rtPBQAAAAAAAADvE+WyP2cHaKvecfHV1KlTWzMHAAAAAAAAAABAm9KuOYe/973v5dlnn22tLAAAAAAAAADw/lNehy4AmuUdd75KknPOOSfLly/PBz7wgRxwwAE54IAD8tGPfjRbb711a+UDAAAAAAAAAABYJzWr+OqVV17Jfffdl+nTp2fq1Kk544wzsnz58myzzTb56Ec/2liQ1atXr9bKCwAAAAAAAAAAsE4olcvlihsHrly5Mvfdd1+mTp2aadOmZdasWamrq8uqVataMmOz3TZ370LfHwAAAAAAAKC1HLP9A0VHoIX1vmlC0REaPXfi+UVHAGhT2r2bm+vr67NixYrU1dU1Fl316dOnpbIBAAAAAAAAAACss5o1dnD58uWZOXNmpk2blt/85jeZPXt2tt122+y3334588wzM3jwYCMHAQAAAAAAAACA94VmFV9tvPHGqa6uzvDhw3POOedk8ODB6dmzZ2tlAwAAAAAAAID1X7noAABUqlnFV7vvvnseeeSRTJ8+PaVSKe3atcv++++fTTfdtLXyAQAAAAAAAAAArJPaNefwrFmz8vLLL+eqq65Kly5dctVVV2WLLbbIrrvumjPPPDP/+7//m4ULF7ZWVgAAAAAAAAAAgHVGszpfJUm3bt1yyCGH5JBDDkmSLFmyJPfee2+mTJmSU045JUuXLs2qVataPCgAAAAAAAAArJeMHQRos5pdfPWGhoaGPPDAA5k2bVqmTp2a3/72t3nttdeyzTbbtGQ+AAAAAAAAAICKvfjiixkzZkx+/etfZ+HChSmXm1a71dfXF5QMWB80q/jqgQceyNSpUzNt2rTMmDEjS5cuzZZbbpn9998/X/va13LAAQekd+/erRQVAAAAAAAAANZD5VLRCdZrJ510Up5//vlceuml2WKLLVIq+fcNtJxmFV/ts88+2WKLLbL//vtn4sSJ2X///bP99tu3VjYAAAAAAAAAgHdlxowZuffee/PBD36w6CjAeqhZxVdPPPFE+vbt21pZAAAAAAAAAABa1FZbbbXGqEGAltKuOYcVXgEAAAAAAABAyyqX151rfXTNNdfkggsuyHPPPVd0FGA91KzOV9tuu+07Ovfss89WFAYAAAAAAAAA4N3q0aNHSqVS4+vXXnst2223Xbp27ZqOHTs2Ofvyyy+/1/GA9Uiziq+ee+65bLPNNjnuuOPSs2fP1soEAAAAAAAAAFCxa665pugIwPtEs4qvJk2alOuvvz4TJ07MoYcemk9/+tP52Mc+lnbtmjW9EAAAAAAAAAB4w3o67q9II0eOLDoC8D7RrKqpESNG5Fe/+lXmzp2bPffcM5///Oez5ZZb5oILLsjTTz/dWhkBAAAAAAAAAJrlwx/+cP7zP/8zU6dOzfLly4uOA6ynKmpZ9YEPfCAXX3xxnn766fzwhz/MrFmzstNOO2XRokUtnQ8AAAAAAAAA1m/l0rpzrUf69u2bW2+9NUOGDEmPHj2y//7754orrsi9996blStXFh0PWE9UPC9w+fLlueWWW3L55Zdn1qxZOfroo9O1a9eWzAYAAAAAAAAAUJHrrrsuc+fOzfPPP59vf/vb2W677XLjjTdm8ODB2XjjjXPQQQdl/PjxRccE2rhSuVxu1vTYWbNm5brrrsttt92W7bbbLp/+9Kdz/PHHp0ePHq2Vsdlum7t30REAAAAAAAAAWsUx2z9QdARa2Dbf+1LRERr96TPnFR2h1f35z3/Ot7/97Xz961/P0qVLU19fX3QkoA3r0JzDu+yySxYuXJjjjjsu9957b3bbbbfWygUAAAAAAAAA7wulZrVMoRLPPPNMpk2b1ni98sorGTBgQAYPHlx0NKCNa1bx1RNPPJFu3brlpptuys033/yW515++eV3HQwAAAAAAAAAoFLXX399pk6dmmnTpmXx4sUZNGhQBg8enDPOOCN77bVXOnRoVskEwFo165vk+uuvb60cAAAAAAAAAAAt5uSTT87WW2+diy++OJ/+9KfTsWPHoiMB66FmFV+NHDmyWQ//4Q9/mOHDh6dbt27Nug8AAAAAAAAA3jeMHWwV//M//5Pp06fnsssuywUXXJAPf/jD2X///TN48ODsueeeKZVKRUcE1gPtWvPhp512Wl588cXWfAsAAAAAAAAA4D22atWqXHLJJenTp0+6dOmSbbfdNldccUUaGhoaz5TL5Vx22WXp1atXunTpkv333z+PPfZYk+fU1dXlrLPOymabbZZu3bpl+PDhmT9/fotk/NznPpdJkyblhRdeyG9/+9t87GMfy/33359hw4alR48e+fd///d8+ctfbpH3At6/WrX4qlxWngsAAAAAAAAA65sJEybkW9/6Vq699to88cQTueqqq/KlL30pX//61xvPXHXVVZk4cWKuvfbaPPDAA6mpqclBBx2UJUuWNJ4ZNWpUbr/99kyaNCkzZszI0qVLM2zYsNTX17do3n79+uVzn/tcbrvttjz00EM588wzM2PGjJx//vkt+j7A+0+zxg4CAAAAAAAAAC2s3PbG3/3ud7/L4Ycfnn//939PkvTu3Ts//OEPM3v27CSrm7Vcc801ufjii3PkkUcmSW688cZUV1fn1ltvzWmnnZbFixfnuuuuy80335wDDzwwSXLLLbdkq622yt13352hQ4e2SNYXX3wx06ZNa7yeeuqpdOrUKfvss08OOOCAFnkP4P2rVTtfAQAAAAAAAABtR11dXV599dUmV11d3RrnPvzhD+fXv/51nnrqqSTJo48+mhkzZuRjH/tYkmTevHmpra3NwQcf3HhP586dM3jw4MycOTNJ8uCDD2blypVNzvTq1Su77rpr45l344wzzki/fv3Sq1evnHjiifnDH/6Qo446KlOmTMmiRYsybdq0fOELX3jX7wO8v+l8BQAAAAAAAABFKhcd4E3jx4/P5Zdf3mTtC1/4Qi677LIma+eff34WL16cnXbaKe3bt099fX2uvPLKfPKTn0yS1NbWJkmqq6ub3FddXZ0//elPjWc6deqUHj16rHHmjfvfjYceeihHHHFEDjjggAwaNChdu3Z9188E+GeKrwAAAAAAAACAJMmFF16Y0aNHN1nr3LnzGuduu+223HLLLbn11luzyy675JFHHsmoUaPSq1evjBw5svFcqdR0pGK5XF5j7Z+9kzPvxM4775wLL7wwG2200bt+FsBbafbYwfr6+kyfPj2LFi36l2e32WabdOzYsaJgAAAAAAAAAMB7q3PnzunevXuTa23FV+edd14uuOCCHHvssenfv39OOOGEfP7zn8/48eOTJDU1NUmyRgerhQsXNnbDqqmpyYoVK9aoP/jHM+/GjTfemGXLlr3r5wC8nWYXX7Vv3z5Dhw7NK6+88i/PzpkzJ1tttVUluQAAAAAAAADg/aG8Dl3v0Ouvv5527ZqWHLRv3z4NDQ1Jkj59+qSmpiZTpkxp3F+xYkWmT5+egQMHJkn23HPPdOzYscmZF154IXPmzGk8826Uy+vQPEdgvVXR2MH+/fvn2WefTZ8+fVo6DwAAAAAAAACwjjvssMNy5ZVXZuutt84uu+yShx9+OBMnTsynP/3pJKvHDY4aNSrjxo3LDjvskB122CHjxo1L165dc9xxxyVJqqqqcvLJJ+fcc8/Npptumk022SRjxoxJ//79c+CBB7ZIzpYYXwjwdioqvrryyiszZsyY/Nd//Vf23HPPdOvWrcl+9+7dWyQcAAAAAAAAALDu+frXv55LL700p59+ehYuXJhevXrltNNOy3/+5382nhk7dmyWLVuW008/PYsWLco+++yTyZMnZ6ONNmo8c/XVV6dDhw4ZMWJEli1bliFDhuSGG25I+/btWyTnjjvu+C8LsF5++eUWeS/g/alUrqDP3j+2DvzHL6lyuZxSqZT6+vqWSVeh2+buXej7AwAAAAAAALSWY7Z/oOgItLDe3/hy0REaPXf6mKIjtJh27drlmmuuSVVV1dueGzly5HuUCFgfVdT5aurUqS2dAwAAAAAAAACgRR177LHp2bNn0TGA9VhFxVeDBw9u6RwAAAAAAAAAAC3mX40bBGgJ7f71kbW7995786lPfSoDBw7MggULkiQ333xzZsyY0WLhAAAAAAAAAGC9Vy6tO9d6pFwuN+v8/Pnz09DQ0EppgPVVRcVXP/nJTzJ06NB06dIlDz30UOrq6pIkS5Ysybhx41o0IAAAAAAAAABAczU0NDRr5GC/fv3y3HPPtV4gYL1UUfHVF7/4xXzrW9/Kd7/73XTs2LFxfeDAgXnooYdaLBwAAAAAAAAArO9K5XXnej9rbqcsgKTC4qsnn3wy++233xrr3bt3zyuvvPJuMwEAAAAAAAAAAKzzKiq+2mKLLTJ37tw11mfMmJFtt932XYcCAAAAAAAAAABY11VUfHXaaaflnHPOyaxZs1IqlfKXv/wlP/jBDzJmzJicfvrpLZ0RAAAAAAAAANZf5XXoAqBZOlRy09ixY7N48eIccMABWb58efbbb7907tw5Y8aMyZlnntnSGQEAAAAAAAAAWlWpVCo6AtAGVVR8lSRXXnllLr744jz++ONpaGhIv379suGGG7ZkNgAAAAAAAACA90S5rPUX0HwVjR18Q9euXVNdXZ1evXopvAIAAAAAAAAA1jk33HBDXn/99X957vHHH88222zzHiQC1icVFV+tWrUql156aaqqqtK7d+9ss802qaqqyiWXXJKVK1e2dEYAAAAAAAAAgIpceOGFqampycknn5yZM2e+5bmtttoq7du3fw+TAeuDioqvzjzzzHznO9/JVVddlYcffjgPP/xwrrrqqlx33XU566yzWjojAAAAAAAAAEBF5s+fn1tuuSWLFi3KAQcckJ122ikTJkxIbW1t0dGA9UCpXMHQ0qqqqkyaNCmHHnpok/Vf/epXOfbYY7N48eIWC1iJ2+buXej7AwAAAAAAALSWY7Z/oOgItLBtv/aVoiM0evbsc4uO0KoWLlyYW265JTfccEP++Mc/5pBDDsnJJ5+cww47LO3aVdS/Bnifq+ibY4MNNkjv3r3XWO/du3c6der0bjMBAAAAAAAAALS4nj17ZtCgQRkwYEDatWuXP/zhDznppJOy3XbbZdq0aUXHA9qgDpXcdMYZZ+S//uu/cv3116dz585Jkrq6ulx55ZU588wzWzRgJc6fckzREQAAAAAAAABaxTHbF52AFlcuFZ1gvffiiy/m5ptvzvXXX59nn302RxxxRH7xi1/kwAMPzLJly3LJJZdk5MiR+dOf/lR0VKCNqaj46uGHH86vf/3rbLnlltl9992TJI8++mhWrFiRIUOG5Mgjj2w8+9Of/rRlkgIAAAAAAAAANNNhhx2Wu+66KzvuuGNOOeWUnHjiidlkk00a97t06ZJzzz03V199dYEpgbaqouKrjTfeOJ/4xCearG211VYtEggAAAAAAAAAoKX07Nkz06dPz4ABA97yzBZbbJF58+a9h6mA9UVFxVfXX3/9Ozr329/+NnV1dY2jCQEAAAAAAACAf1IuOsD6bfDgwfm3f/u3NdZXrFiRSZMm5cQTT0ypVMo222xTQDqgrWvXmg8/9NBDs2DBgtZ8CwAAAAAAAACAt/Qf//EfWbx48RrrS5YsyX/8x38UkAhYn7Rq8VW5rDwXAAAAAAAAAChOuVxOqVRaY33+/PmpqqoqIBGwPqlo7CAAAAAAAAAA0EL0NWkVe+yxR0qlUkqlUoYMGZIOHd4skaivr8+8efNyyCGHFJgQWB8ovgIAAAAAAAAA1jtHHHFEkuSRRx7J0KFDs+GGGzbuderUKb17984nPvGJgtIB6wvFVwAAAAAAAABQoJLOV63iC1/4QpKkd+/eOeaYY7LBBhsUnAhYH7Vq8dXaZqYCAAAAAAAAALxXRo4cWXQEYD3WqsVX5bLyXAAAAAAAAACgOD169HjHzWNefvnlVk4DrG9atPhq+fLlufbaazNmzJgkyZIlS1ry8QAAAAAAAACw/tHXpFVdcsklufLKKzN06NAMGDAgSfK73/0ud911Vy699NJssskmBScE2rJmF1/99a9/zaxZs9KxY8cMGTIk7du3z8qVK/ONb3wj48ePz6pVqxqLrwAAAAAAAAAAijRz5sxcccUVOfPMMxvXzj777Fx77bW5++67c8cddxQXDmjz2jXn8MyZM7PDDjvksMMOy6GHHpqBAwfm8ccfzy677JKvf/3rueSSS/L888+3VlYAAAAAAAAAgGa56667csghh6yxPnTo0Nx9990FJALWJ80qvrr00kszdOjQ/P73v88555yTBx54IMOGDcsll1ySp59+OmeeeWa6du3aWlkBAAAAAAAAYP1TXoeu9dCmm26a22+/fY31O+64I5tuumkBiYD1SbPGDj766KOZPn16dtlll3zxi1/MV7/61UyYMCFHH310a+UDAAAAAAAAAKjY5ZdfnpNPPjnTpk3LgAEDkiT33Xdf7rzzznzve98rOB3Q1jWr+Orll1/O5ptvniTp2rVrunbtmj322KNVggEAAAAAAAAAvFsnnXRSdt5553zta1/LT3/605TL5fTr1y+//e1vs88++xQdD2jjmlV8VSqVsmTJkmywwQYpl8splUp5/fXX8+qrrzY517179xYNCQAAAAAAAADrq9J6Ou5vXbLPPvvkBz/4wdue+e///u989rOfzcYbb/zehALWC80qviqXy9lxxx2bvP7HzldvFGTV19e3XEIAAAAAAAAAgFY2bty4jBgxQvEV0CzNKr6aOnVqa+UAAAAAAAAAgPencqnoBGR1wxmA5mpW8dXgwYNbKwcAAAAAAAAAAECb0qziq+eff36t61VVVamqqmqRQAAAAAAAAAAAAG1Bs4qvevfunVJp7e0ON99884wdOzajR49ukWAAAAAAAAAA8L5g2h1Am9Ws4quHH354reuvvPJK7r///lx55ZXp2rVrPvvZz7ZIOAAAAAAAAAAAgHVVs4qvdt9997fcGzx4cLbYYot8+ctfVnwFAAAAAAAAALQpH/nIR9KlS5eiYwBtTLOKr/6VgQMH5tlnn23JRwIAAAAAAADAeq1k7GCrq6+vz+23354nnngipVIpO+20U4444oh06PBm2cQvf/nLAhMCbVWLFl8tWrQoG2+8cUs+EgAAAAAAAACgYnPmzMnhhx+e2tra9O3bN0ny1FNPZfPNN8/Pf/7z9O/fv+CEQFvWrqUetGLFilx11VXZd999W+qRAAAAAAAAAADvymc+85nssssumT9/fh566KE89NBD+fOf/5zddtstp556atHxgDauWZ2vjjzyyLWuL168OHPmzEmHDh1y7733tkgwAAAAAAAAAHhfMHawVT366KOZPXt2evTo0bjWo0ePXHnlldl7770LTAasD5pVfFVVVbXW9a222ipHHXVUjj/++HTv3r1FggEAAAAAAAAAvFt9+/bNiy++mF122aXJ+sKFC7P99tsXlApYXzSr+Or6669vrRwAAAAAAAAA8L5U0vmqVY0bNy5nn312Lrvssuy7775Jkvvuuy9XXHFFJkyYkFdffbXxrIYzQHM1q/hq4cKF6dmz51vur1q1Kg899FA+9KEPvetgAAAAAAAAAADv1rBhw5IkI0aMSKlUSpKUy6sr3g477LDG16VSKfX19cWEBNqsZhVfbbHFFnnhhRcaC7B23nnn3HXXXdl6662TJH/7298yYMAAX0YAAAAAAAAAwDph6tSpRUcA1mPNKr56o/LzDfPnz8+qVave9gwAAAAAAAAA8Db8MXurGjx4cNERgPVYu5Z+4Bst+gAAAAAAAAAAinbppZeudYLX4sWL88lPfrKARMD6pMWLrwAAAAAAAAAA1hU33XRTBg0alGeeeaZxbdq0aenfv3+ee+654oIB64VmFV+VSqUsWbIkr776ahYvXpxSqZSlS5fm1VdfbbwAAAAAAAAAgGYor0PXeuj3v/99evfunQ9+8IP57ne/m/POOy8HH3xwTjrppMyYMaPoeEAb16E5h8vlcnbccccmr/fYY48mr40dBAAAAAAAAADWFVVVVZk0aVIuvvjinHbaaenQoUN+9atfZciQIUVHA9YDzSq+mjp1amvlAAAAAAAAAABoFV//+tdz9dVX55Of/GQefPDBnH322bn11luz++67Fx0NaOOaVXw1ePDgZj38v//7v/PZz342G2+8cbPuAwAAAAAAAID3i9J6Ou5vXXHooYfm/vvvz0033ZSjjjoqy5Yty+jRo7Pvvvvm8ssvz9ixY4uOCLRh7Vrz4ePGjcvLL7/cmm8BAAAAAAAAAPCWVq1alT/84Q856qijkiRdunTJN7/5zfz4xz/O1VdfXXA6oK1r1eKrcll5LgAAAAAAAABQnClTpuSZZ57Jpz71qQwYMCALFixIkrz88sv50Y9+VHA6oK1r1eIrAAAAAAAAAIAi/eQnP8nQoUPTpUuXPPzww6mrq0uSLFmyJOPHjy84HdDWKb4CAAAAAAAAANZbX/ziF/Otb30r3/3ud9OxY8fG9YEDB+ahhx4qMBmwPuhQdAAAAAAAAAAAeF8rFx1g/fbkk09mv/32W2O9e/fueeWVV977QMB6RecrAAAAAAAAAGC9tcUWW2Tu3LlrrM+YMSPbbrttAYmA9UmrFl995CMfSZcuXVrzLQAAAAAAAAAA3tJpp52Wc845J7NmzUqpVMpf/vKX/OAHP8iYMWNy+umnFx0PaOMqHjtYX1+f22+/PU888URKpVJ22mmnHHHEEenQ4c1H/vKXv2yRkAAAAAAAAACwvioZO9iqxo4dm8WLF+eAAw7I8uXLs99++6Vz584ZM2ZMzjzzzKLjAW1cRcVXc+bMyeGHH57a2tr07ds3SfLUU09l8803z89//vP079+/RUMCAAAAAAAAAFTqyiuvzMUXX5zHH388DQ0N6devXzbccMOiYwHrgYqKrz7zmc9kl112yezZs9OjR48kyaJFi3LSSSfl1FNPze9+97sWDQkAAAAAAAAA6y2dr94TXbt2zV577VV0DGA9U1Hx1aOPPtqk8CpJevTokSuvvDJ77713i4UDAAAAAAAAAABYV7Wr5Ka+ffvmxRdfXGN94cKF2X777d91KAAAAAAAAAAAgHVdRcVX48aNy9lnn50f//jHmT9/fubPn58f//jHGTVqVCZMmJBXX3218QIAAAAAAAAA3kZ5HboAaJaKxg4OGzYsSTJixIiUSqUkSbm8+lv4sMMOa3xdKpVSX1/fEjkBAAAAAAAAAADWKRUVX02dOrWlcwAAAAAAAAAAALQpFRVfDR48OMuXL8/vf//7LFy4MA0NDU32hw8f3iLhAAAAAAAAAGB9VzLuD6DNqqj46s4778yJJ56Yv/71r2vsGTUIAAAAAAAAAAC8H7Sr5KYzzzwzRx99dF544YU0NDQ0uRReAQAAAAAAAAAA7wcVdb5auHBhRo8enerq6pbOAwAAAAAAAADvL8YOArRZFXW+OuqoozJt2rQWjgIAAAAAAAAAANB2VNT56tprr83RRx+de++9N/3790/Hjh2b7J999tktEg4AAAAAAAAA1nclna8A2qyKiq9uvfXW3HXXXenSpUumTZuWUqnUuFcqlRRfAQAAAAAAAAAA672Kiq8uueSSXHHFFbngggvSrl1FkwsBAAAAAAAAAADatIqKr1asWJFjjjlG4RUAAAAAAAAAvFvGDgK0WRVVT40cOTK33XZbS2cBAAAAAAAAAABoMyrqfFVfX5+rrroqd911V3bbbbd07Nixyf7EiRNbJBwAAAAAAAAAAMC6qqLiqz/84Q/ZY489kiRz5sxpslcqld59KgAAAAAAAAB4vzB2EKDNqmjs4NSpU9/y+s1vftPSGQEAAAAAAACAdcyCBQvyqU99Kptuumm6du2aD37wg3nwwQcb98vlci677LL06tUrXbp0yf7775/HHnusyTPq6upy1llnZbPNNku3bt0yfPjwzJ8//73+KAAVq6j4CgAAAAAAAAB4/1q0aFEGDRqUjh075le/+lUef/zxfOUrX8nGG2/ceOaqq67KxIkTc+211+aBBx5ITU1NDjrooCxZsqTxzKhRo3L77bdn0qRJmTFjRpYuXZphw4alvr6+gE8F0HwVjR0EAAAAAAAAAFpGqQ2OHZwwYUK22mqrXH/99Y1rvXv3bvy5XC7nmmuuycUXX5wjjzwySXLjjTemuro6t956a0477bQsXrw41113XW6++eYceOCBSZJbbrklW221Ve6+++4MHTr0Pf1MAJXQ+QoAAAAAAAAASLJ6DOCrr77a5Kqrq1vj3M9//vPstddeOfroo9OzZ8/sscce+e53v9u4P2/evNTW1ubggw9uXOvcuXMGDx6cmTNnJkkefPDBrFy5ssmZXr16Zdddd208A7CuU3wFAAAAAAAAAEUqrzvX+PHjU1VV1eQaP378GpGfffbZfPOb38wOO+yQu+66K5/97Gdz9tln56abbkqS1NbWJkmqq6ub3FddXd24V1tbm06dOqVHjx5veQZgXWfsIAAAAAAAAACQJLnwwgszevToJmudO3de41xDQ0P22muvjBs3Lkmyxx575LHHHss3v/nNnHjiiY3nSqVSk/vK5fIaa//snZwBWFfofAUAAAAAAAAAJFldaNW9e/cm19qKr7bYYov069evydrOO++c559/PklSU1OTJGt0sFq4cGFjN6yampqsWLEiixYtesszAOs6xVcAAAAAAAAAUKR1YNxg4/UODRo0KE8++WSTtaeeeirbbLNNkqRPnz6pqanJlClTGvdXrFiR6dOnZ+DAgUmSPffcMx07dmxy5oUXXsicOXMazwCs64wdBAAAAAAAAACa5fOf/3wGDhyYcePGZcSIEbn//vvzne98J9/5zneSrB43OGrUqIwbNy477LBDdthhh4wbNy5du3bNcccdlySpqqrKySefnHPPPTebbrppNtlkk4wZMyb9+/fPgQceWOTHA3jHCi2+euCBB3LNNddk5syZqa2tTalUSnV1dQYOHJjPf/7z2WuvvYqMBwAAAAAAAACsxd57753bb789F154Ya644or06dMn11xzTY4//vjGM2PHjs2yZcty+umnZ9GiRdlnn30yefLkbLTRRo1nrr766nTo0CEjRozIsmXLMmTIkNxwww1p3759ER8LoNlK5XK5GY0DW84dd9yRESNGZMiQIRk6dGiqq6tTLpezcOHCTJ48Ob/+9a/zox/9KIcffnizn937m19uhcQAAAAAAAAAxXvuc2OKjkAL23Xs1UVHaDTnqs8XHQGgTSms89Ull1ySK664IhdccMEae6NGjcqECRNy0UUXVVR8BQAAAAAAAAAA0NraFfXGc+fOzZFHHvmW+0cccUSeeeaZ9zARAAAAAAAAAADAO1dY8dV2222XO+644y33f/azn2Xbbbd97wIBAAAAAAAAQBHK69AFQLMUNnbwiiuuyLHHHpvp06fn4IMPTnV1dUqlUmprazNlypRMnjw5kyZNKioeAAAAAAAAAADA2yqs+OoTn/hE7rnnnnz1q1/NxIkTU1tbmySpqanJgAEDMn369AwYMKCoeAAAAAAAAADwnijpOAXQZhVWfJUkAwYMUGAFAABAi5px/CnZsnvVGus3zXk4/3nvr9d6zwm7fDAj+++RLTfqngVLl+R/HrwvP33q8VbN2XeTzXLFR4Zk9541eWX58tz6+O/ztQd/17g/tM8O+dQuu6ffZj3TqX37PP3y33LN7Jm558/PtWouAAAAAADeuUKLrwAAAKClDf/JLWlfKjW+3nGTzfKD4SPyy2eeWuv5T+2ye8bu+5FcOG1yHl1Ymw9W12T84KFZXLc8v/7TsxVl2HKj7pnxqVPT+5tfXuv+hh075ZbDjs7vFjyf4T/5QfpU9ciXP3pIXl+1Mt97dHaSZJ9eW2bG/D/lS7Nm5NUVy3P0Trvme4d+PB//6Q/y2F8XVpQLAAAAAICWtc4WX1100UWpra3N97///aKjAAAA0Ia8vHxZk9ef671dnlu8KPf95c9rPf/xHfvl1sd/n18882SS5M9LFmeP6l757B4falJ8dXTfXXPaHntnq42qMn/J4lz/h4dzy2OPVJTxiB13Tuf27TPmN3dmRUN9nnr5r9n2oR75zG57NhZfXfHbqU3u+dKsGTmo9/YZss12iq8AAABgfWPsIECb1a7oAG9lwYIFee6554qOAQAAQBvWsV27HLHDzvnRH+e85ZlO7dunbtWqJmvLV63K7j23SId2q39tPnbn/hmzz4fzpVkzMmTS9blq1oyc+6FB+UTfXSrKtUd1r8z6y/ysaKhvXLvnz8+lZsONsuVGa45MTJJSkm4dO+WVuuUVvScAAAAAAC1vne18deONN76jc3V1damrq2uyVl65KqWO6+xHAwAA4D1ycJ8d0r3zBvnx2xRf3fPn53Lszv0zed7czPnri+m/eXWO3mnXdGrfPj026JKXXn8tZ+05IFfOnJa75j2dJJm/ZHF26LFpjuu3W37y5GPNzrV5126Zv2Rxk7WXXn8tSdKza9c19pLklA/una4dO+b//b1DFwAAAAAAxWvzFUrjx4/P5Zdf3mSt6mMHZeNhBxeUCAAAgHXFMTvtmmnPz8vCvxc2rc3XZt+Xzbt0y+1HHpdSqZS/vv5afvLkY/nsHh9KQ7mcTTbokg9s1D0T9h+a8fu/+btmh1K7vLrizb8MNPmYk/KBjbonSUopJUke+8zZjfsLlryag2+74c03/qdxAqVSaW3LSZLh2++UUXsNzCm/uj1/W/b6O/z0AAAAQJth7CBAm1Vo8dVrr72WW2+9NTNnzkxtbW1KpVKqq6szaNCgfPKTn0y3bt3+5TMuvPDCjB49usla/xu+0VqRAQAAaCM+sGH3DNpym3z2rp+97bm6+lUZO+2uXHTPlGzWpWsWvv5ajuu3W5asqMvLy17Ppl26JkkumD45j7z4QpN768tv/pfR//h/P20cU1jTbcPcdsSx+diPbmrcX9XQ0PjzS6+/ls27Nv2dd7O/v89Lrzctrhq2Xd9M2H9oTp/8f/ntguff6ccHAAAAAOA9UFjx1eOPP56DDjoor7/+egYPHpytt9465XI5CxcuzHnnnZfLLrsskydPTr9+/d72OZ07d07nzp2brBk5CAAAwNE77Zq/LXs9v/nTs+/o/KqGhtS+tjRJctj2O+U3f3o25SR/XfZ6Xli6JFt3r8rPnn7iLe9fsPTVxp/ry6sLrf706itrPfvwi3/Jeft8JB3btcvKvxdlfWTL3qlduqTJyMHh2++Uqw4YmrOn/L9Mff6dfQ4AAAAAAN47hVUpnXHGGdlvv/1y4403plOnTk32VqxYkZNOOilnnHFGpk6dWlBCAAAA2qpSkqN22jU/efKxJt2pkmTsPh9JdbcNc+5vfpUk6VPVI7v3rMkjC19IVecN8pnd9sqOm2zWuJ8k18yemcsGfTRLV6zItOfnpVP79tlt85p079w51/3+wWbn+9nTT+ScvQbmyx89NP/z0Kz0qdo4p//bPvnag79rPDN8+53ylY8emst/OzUPv/iXbP73zljL61dlyYoVFfxbAQAAANZVpaIDAFCxwoqvZs2aldmzZ69ReJUknTp1ykUXXZQPfehDBSQDAACgrfvwlttky42650d/nLPGXs+u3fKBDbs3vm5XKuWU3ffKthtvkpUNDbnvL8/nE7ffmvlL3uxkddsTf8iyVStz2u5754IB+2XZypV58uW/5vsVFF4lyZIVK/Kp//vfXPGRIfm/T3wqi+uW57rfz873Hp3deOa4frunY/v2+eJ+B+aL+x3YuP7jP87JmKl3VvS+AAAAAAC0rFK5/E9/Bfg98oEPfCDf+MY3cvjhh691/4477sgZZ5yRBQsWNPvZvb/55XcbDwAAAAAAAGCd9NznxhQdgRa22+evLjpCo99f/fmiIwC0KYV1vjrllFMycuTIXHLJJTnooINSXV2dUqmU2traTJkyJePGjcuoUaOKigcAAAAAAAAAAPC2Ciu+uuyyy9KlS5dMnDgxY8eOTam0eoptuVxOTU1NLrjggowdO7aoeAAAAAAAAAAAAG+rsOKrJDn//PNz/vnnZ968eamtrU2SVFdXZ9ttty0yFgAAAAAAAAC8Z0rlohMAUKlCi6/e0KdPn/Tp0ydJ0qlTpzz66KPZeeedC04FAAAAAAAAAADw1gorvho9evRa1+vr6/Pf//3f2XTTTZMkEydOfC9jAQAAAAAAAAAAvCOFFV9dc8012X333bPxxhs3WS+Xy3niiSfSrVu3lEqlYsIBAAAAAAAAwHvF2EGANquw4qsrr7wy3/3ud/OVr3wlH/3oRxvXO3bsmBtuuCH9+vUrKhoAAAAAAAAAAMC/1K6oN77wwgtz22235XOf+1zGjBmTlStXFhUFAAAAAAAAAIpTXocuAJqlsOKrJNl7773z4IMP5qWXXspee+2VP/zhD0YNAgAAAAAAAAAAbUJhYwffsOGGG+bGG2/MpEmTctBBB6W+vr7oSAAAAAAAAAAAAP9S4cVXbzj22GPz4Q9/OA8++GC22WabouMAAAAAAAAAwHuiZNwfQJu1zhRfJcmWW26ZLbfcsugYAAAAAAAAAAAA/1K7ogMAAAAAAAAAAAC0RetU5ysAAAAAAAAAeN8xdhCgzdL5CgAAAAAAAAAAoAKKrwAAAAAAAAAAACpg7CAAAAAAAAAAFKhk7CBAm6XzFQAAAAAAAAAAQAV0vgIAAAAAAACAIul8BdBm6XwFAAAAAAAAAABQAcVXAAAAAAAAAAAAFTB2EAAAAAAAAAAKVDJ2EKDN0vkKAAAAAAAAAACgAoqvAAAAAAAAAAAAKmDsIAAAAAAAAAAUydhBgDZL5ysAAAAAAAAAAIAKKL4CAAAAAAAAAACogLGDAAAAAAAAAFAkYwcB2iydrwAAAAAAAAAAACqg8xUAAAAAAAAAFKik8xVAm6XzFQAAAAAAAAAAQAUUXwEAAAAAAAAAAFTA2EEAAAAAAAAAKJKxgwBtls5XAAAAAAAAAAAAFVB8BQAAAAAAAAAAUAFjBwEAAAAAAACgQKWyuYMAbZXOVwAAAAAAAAAAABVQfAUAAAAAAAAAAFABYwcBAAAAAAAAoEimDgK0WTpfAQAAAAAAAAAAVEDnKwAAAAAAAAAoUEnnK4A2S+crAAAAAAAAAACACii+AgAAAAAAAAAAqICxgwAAAAAAAABQJGMHAdosna8AAAAAAAAAAAAqoPgKAAAAAAAAAACgAsYOAgAAAAAAAECBSsYOArRZOl8BAAAAAAAAAABUQOcrAAAAAAAAACiSzlcAbZbOVwDw/9m79yit63r/+69rQAZEGBRiBhQVj1GYJla3omWimKVtOuGpbR7KPCIiYmS/HXqbpN2pqeVOE7HSrbtSM2ObpIUp5laSPMDPyhOajCgQJ3FQ57r/cDVrT4DJR4aLcT8ea11rNd/r+73mfbFa/oFP3x8AAAAAAAAAKCC+AgAAAAAAAAAAKODYQQAAAAAAAACooYpjBwE6LZuvAAAAAAAAAAAACoivAAAAAAAAAAAACjh2EAAAAAAAAABqybGDAJ2WzVcAAAAAAAAAAAAFxFcAAAAAAAAAAAAFHDsIAAAAAAAAADVUcewgQKdl8xUAAAAAAAAAAEABm68AAAAAAAAAoJaqVl8BdFY2XwEAAAAAAAAAABQQXwEAAAAAAAAAABRw7CAAAAAAAAAA1FDFqYMAnZbNVwAAAAAAAAAAAAXEVwAAAAAAAAAAAAUcOwgAAAAAAAAAteTYQYBOy+YrAAAAAAAAAOBtmTx5ciqVSsaOHdt2rVqtZtKkSRk4cGB69OiRfffdN4899li751paWnLqqaemX79+6dmzZz75yU/mueee28DTA5QTXwEAAAAAAAAAxR544IFceeWVed/73tfu+oUXXpiLLrool19+eR544IE0NTXlgAMOyLJly9ruGTt2bG6++ebccMMNueeee7J8+fIcfPDBef311zf01wAoIr4CAAAAAAAAgBqqtG48r3W1fPnyHHnkkbnqqquy+eabt12vVqu55JJLcvbZZ+fTn/50hg4dmmuvvTYvv/xyrr/++iTJkiVLcvXVV+fb3/529t9//7z//e/Pj3/84zzyyCP59a9/vb7+eAE6lPgKAAAAAAAAAEjyxjGAS5cubfdqaWlZ6/0nn3xyPvGJT2T//fdvd/2pp55Kc3NzRo4c2Xatvr4+H/nIRzJz5swkyaxZs/Lqq6+2u2fgwIEZOnRo2z0AGzvxFQAAAAAAAADUUnXjeU2ePDkNDQ3tXpMnT17j2DfccEP+8Ic/rPH95ubmJEljY2O7642NjW3vNTc3p1u3bu02Zv3jPQAbu661HgAAAAAAAAAA2DhMnDgx48aNa3etvr5+tfueffbZnHbaabnjjjvSvXv3tX5epVJp93O1Wl3t2j96K/cAbCxsvgIAAAAAAAAAkrwRWvXu3bvda03x1axZs7JgwYIMGzYsXbt2TdeuXTNjxoxceuml6dq1a9vGq3/cYLVgwYK295qamrJq1aosXrx4rfcAbOzEVwAAAAAAAABQQ5XqxvN6q0aMGJFHHnkks2fPbnvtscceOfLIIzN79uxst912aWpqyvTp09ueWbVqVWbMmJG99torSTJs2LBssskm7e6ZP39+Hn300bZ7ADZ2jh0EAAAAAAAAANZJr169MnTo0HbXevbsmb59+7ZdHzt2bM4///zsuOOO2XHHHXP++edn0003zRFHHJEkaWhoyHHHHZczzjgjffv2zRZbbJHx48dnl112yf7777/BvxNACfEVAAAAAAAAALDeTZgwIStXrsxJJ52UxYsX50Mf+lDuuOOO9OrVq+2eiy++OF27ds3o0aOzcuXKjBgxIlOnTk2XLl1qODnAW1epVqvrsDiwc9j2iv+v1iMAAAAAAAAAdIinTxxf6xFYz4Z/duP5d9z3/tT/vwDWRV2tBwAAAAAAAAAAAOiMxFcAAAAAAAAAAAAFutZ6AAAAAAAAAAD436xSrfUEAJSy+QoAAAAAAAAAAKDAO3Lz1Y4n31/rEQAAAAAAAAA6xom1HoD1zuYrgE7L5isAAAAAAAAAAIAC4isAAAAAAAAAAIAC78hjBwEAAAAAAACgs6g4dhCg07L5CgAAAAAAAAAAoID4CgAAAAAAAAAAoIBjBwEAAAAAAACglqrOHQTorGy+AgAAAAAAAAAAKGDzFQAAAAAAAADUUMXiK4BOy+YrAAAAAAAAAACAAuIrAAAAAAAAAACAAo4dBAAAAAAAAIBacuwgQKdl8xUAAAAAAAAAAEAB8RUAAAAAAAAAAEABxw4CAAAAAAAAQA1VHDsI0GnZfAUAAAAAAAAAAFBAfAUAAAAAAAAAAFDAsYMAAAAAAAAAUEutzh0E6KxsvgIAAAAAAAAAAChg8xUAAAAAAAAA1JLFVwCdls1XAAAAAAAAAAAABcRXAAAAAAAAAAAABRw7CAAAAAAAAAA1VHHsIECnZfMVAAAAAAAAAABAAfEVAAAAAAAAAABAAccOAgAAAAAAAEAtVZ07CNBZ2XwFAAAAAAAAAABQQHwFAAAAAAAAAABQwLGDAAAAAAAAAFBDFacOAnRaNl8BAAAAAAAAAAAUsPkKAAAAAAAAAGrJ5iuATsvmKwAAAAAAAAAAgALiKwAAAAAAAAAAgAKOHQQAAAAAAACAGqpUnTsI0FnZfAUAAAAAAAAAAFBAfAUAAAAAAAAAAFDAsYMAAAAAAAAAUEuttR4AgFI2XwEAAAAAAAAAABQQXwEAAAAAAAAAABRw7CAAAAAAAAAA1FClWq31CAAUsvkKAAAAAAAAAACggM1XAAAAAAAAAFBLFl8BdFo2XwEAAAAAAAAAABQQXwEAAAAAAAAAABRw7CAAAAAAAAAA1FLVuYMAnZXNVwAAAAAAAAAAAAXEVwAAAAAAAAAAAAUcOwgAAAAAAAAANVRx6iBAp2XzFQAAAAAAAAAAQAGbrwAAAAAAAACglqpWXwF0VjZfAQAAAAAAAAAAFBBfAQAAAAAAAAAAFHDsIAAAAAAAAADUUKW11hMAUMrmKwAAAAAAAAAAgALiKwAAAAAAAAAAgAKOHQQAAAAAAACAWqpWaz0BAIVsvgIAAAAAAAAAACggvgIAAAAAAAAAACjg2EEAAAAAAAAAqCWnDgJ0WjZfAQAAAAAAAAAAFLD5CgAAAAAAAABqqFK1+gqgs7L5CgAAAAAAAAAAoID4CgAAAAAAAAAAoIBjBwEAAAAAAACglhw7CNBp2XwFAAAAAAAAAABQQHwFAAAAAAAAAABQwLGDAAAAAAAAAFBLrbUeAIBSNl8BAAAAAAAAAAAUEF8BAAAAAAAAAAAUcOwgAAAAAAAAANRQpVqt9QgAFLL5CgAAAAAAAAAAoIDNVwAAAAAAAABQSzZfAXRaNl8BAAAAAAAAAAAUEF8BAAAAAAAAAAAUcOwgAAAAAAAAANSSYwcBOi2brwAAAAAAAAAAAAqIrwAAAAAAAAAAAArUPL564IEHcuSRR2bw4MHp0aNHNt100wwePDhHHnlkHnzwwVqPBwAAAAAAAAAdq3UjegGwTmoaX91yyy0ZPnx4Fi1alNNOOy1TpkzJD37wg5x22mlZvHhxhg8fnp///Oe1HBEAAAAAAAAA+AeTJ0/OBz7wgfTq1Sv9+/fPqFGj8vjjj7e7p1qtZtKkSRk4cGB69OiRfffdN4899li7e1paWnLqqaemX79+6dmzZz75yU/mueee25BfBeBtqVSr1WqtfvnQoUPz+c9/Pl/5ylfW+P4FF1yQH/7wh6v9w/efOaDuc+tjPAAAAAAAAICNzvTWn9R6BNazA9//9VqP0OZXD53zlu772Mc+lsMOOywf+MAH8tprr+Xss8/OI488kjlz5qRnz55J3vh3/t/4xjcyderU7LTTTjnvvPNy99135/HHH0+vXr2SJCeeeGJ+8YtfZOrUqenbt2/OOOOMLFq0KLNmzUqXLl067HsCrC81ja+6d++ehx9+ODvttNMa33/88cez66675pVXXlmnzxVfAQAAAAAAAO9U4qt3no/t9m+1HqHN7bPPLXruxRdfTP/+/TNjxox8+MMfTrVazcCBAzN27NicddZZSd7YctXY2JgLLrggX/7yl7NkyZK8613vyo9+9KMceuihSZLnn38+gwYNyrRp03LggQeut+8F0FFqeuzg9ttvn1tuuWWt7//85z/Pdtttt+EGAgAAAAAAAID/xVpaWrJ06dJ2r5aWln/63JIlS5IkW2yxRZLkqaeeSnNzc0aOHNl2T319fT7ykY9k5syZSZJZs2bl1VdfbXfPwIEDM3To0LZ7ADZ2XWv5y88999wcdthhmTFjRkaOHJnGxsZUKpU0Nzdn+vTpueOOO3LDDTfUckQAAAAAAAAA6Fi1O7BqNZMnT84557Q/evDrX/96Jk2atNZnqtVqxo0bl7333jtDhw5NkjQ3NydJGhsb293b2NiYZ555pu2ebt26ZfPNN1/tnr8/D7Cxq2l89ZnPfCZ33313vvOd7+Siiy5q+4dnU1NT9txzz8yYMSN77rlnLUcEAACgk6vrUpejJo3Ofkfsky2a+mTR/MW549rf5rrzfpbqm/zF5ibduubz//a5jDhyn2ze1CcvPbcw159/U351zW/e1jzvGtQvp15+XHbbb2hWrVyVu/7jnlw5/kd57dXXkiSN27wrP37qe6s9N/Ggb+TBX81+W78bAAAA4J+ZOHFixo0b1+5afX39mz5zyimn5OGHH84999yz2nuVSqXdz9VqdbVr/+it3AOwsahpfJUke+65p8AKAACADnPYWaNy8JcPyIVHfzfPPPZsdtpj+4yfclJWLHk5N186ba3Pfe3Gcdm8sSHf/uIVef4vzenTvyFduta9rVnq6uryjdsm5m8vLs3p+/yf9O7bKxOmnpJKpZLvjpnS7t4J+5+Tpx97ru3nZYuWv63fDQAAAPBW1NfX/9PY6n869dRTc+utt+buu+/OVltt1Xa9qakpyRvbrQYMGNB2fcGCBW3bsJqamrJq1aosXry43farBQsWZK+99nq7XwVgg3h7f2sMAAAAG7kh/89OmXnrg/nvaX/IC8+8mN/97PeZdccfs9Ow7df6zB4H7pb3feQ9OfsTk/PQnY/khWdezOMP/CVz7vtTu/sOPHrfXP3Yxfnly9fl6jmX5JATR77pLMNGvi9bv2erXPCvl+aJ2U/noTsfyffHX5uPf3FENu3Vo929Sxcuz+IX/tb2+vtmLAAAAOAdqFrdeF5veeRqTjnllNx000256667Mnjw4HbvDx48OE1NTZk+fXrbtVWrVmXGjBltYdWwYcOyySabtLtn/vz5efTRR8VXQKdR881Xb+arX/1qmpubM2XKlH9+MwAAAKzBo/f+3xz85QOy5Y4D8tc/z89279smQ/d+d644fepan9nzk3vkTw8+kdET/iX7f/7DeWXFK7nvFw9m6v+5MateWZUkOeiLI/KFSaNz+alX5y8PPZ0d3r9tTr/yhLyyoiXTfzhjjZ/7nj13ztOPzsvC+Yvbrj34qz+mW/du2XHYdvnjbx9ru37uz8/KJt03yfN/np+fXfLL/O5nv18/fyAAAAAA68HJJ5+c66+/Pj//+c/Tq1evNDc3J0kaGhrSo0ePVCqVjB07Nueff3523HHH7Ljjjjn//POz6aab5ogjjmi797jjjssZZ5yRvn37Zosttsj48eOzyy67ZP/996/l1wN4yzbq+Oqvf/1rnn322Te9p6WlJS0tLe2utVZfT12lS0eOBgAAQCdx4wW3pGfDppky95K0vt6aui51ueZr/5Hf3HDvWp8ZMLgxQ/d+d1a98momffpbaejXK6d+94vptcVm+fZxVyRJPv+1z+b743+Ye27+7yRJ89MLsvV7tsonjj9grfHV5k198rcXlrS7tvxvK7Kq5dVs0dQnSbJy+Su5YtzUPHbv46m2tmbPT34gZ99wer519OW587rfrYc/EQAAAIC374or3vg7kn333bfd9WuuuSZHH310kmTChAlZuXJlTjrppCxevDgf+tCHcscdd6RXr15t91988cXp2rVrRo8enZUrV2bEiBGZOnVqunTx7/yBzmGjjq+uvfbaf3rP5MmTc84557S7NjhDsn3e21FjAQAA0Inse+heGXHkPpl85Hfy9GPPZYfdts2JFx+dhc8vXmskVVdXSbWaTP78pXl56ctJku+fcW3+z0/OyGUnX50em3VP/637ZdwPTszpV57Q9lyXrnVZseSN+7/xy69ml32GJEleeObFfGmXcUneWMn/jyqVStv1pQuX5aZLftn23p9mPZnNNu+Z0Wf+i/gKAAAA3qnW4bi/jcWa/o7jH1UqlUyaNCmTJk1a6z3du3fPZZddlssuu2w9Tgew4WzU8dVbMXHixIwbN67dtU81HF2bYQAAANjofOnCf82NF9yS3944M0ny9KPz0n+bfjnsK59aa3y1cP7ivPTXRW3hVZLMm/vX1NXV5V1bbZEVS1cmSS4+/t/zf+//S7tnW19vTZJc9KV/T32PbkmS1159LUmyuPlvefcHd2h3/2Z9emaTbl2z+B82Yv1Pc3//pxx03Ih1+doAAAAAAGwANY+vVqxYkeuvvz4zZ85Mc3NzKpVKGhsbM3z48Bx++OHp2bPnmz5fX1+f+vr6dtccOQgAAMDfdd+0Pq2t7f9LzNbXW1NXV1nrM4/NfDwf/tye6d6ze15Z8UqSZMudBuT111vz4nOLsuqVVXnxuYUZsF1j7rr+njV+xsLnF612bc59j+fwr346WzT1yaLmvyVJho3cNateWZU/z3pyrfPs8P7BWTR/8T/7qgAAAAAAbGB1tfzlc+bMyU477ZQJEyZk8eLF2XrrrbPVVltl8eLFOfPMM7Pzzjtnzpw5tRwRAACATu73v5iVI7766Xzw47uncZt3ZfioD+Yzpx+Se2/577Z7jj3/iEyYekrbz3ddf0+WLlyWM6eclK2HbJVd9hmS4y/81/zqmruy6pVVSZIfnfOfOewrn8qnxnw8W+44INsO3ToHHr1vPnP6wWudZdYdD2fenOdy1g9Pzfa7bZv37zc0x3/rXzPtB3fm5WVvbNM64KiP5KOH752t371lttppYD57xiEZderHc8vl/9VBf0IAAABAzbVuRC8A1kml+lYOYu0gH/3oR9PU1JRrr7023bp1a/feqlWrcvTRR2f+/Pn5zW9+s06fe0Dd59bnmAAAAHRiPTbrnqP/38MyfNQH06d/QxY+vyi/ueHe/Pjcn7YdB3jmlJPTuO27Mn6/SW3PDdp5YE6+9Li8d/jOWbpwWe7+yX255ms3tMVXSfLRw/fO6PGfzNbv2SqvrGjJ04/My03f+WW7sOsfvWtQv4z57hez235Ds2rlqtz1H/fkyvE/zKur3pjlgKM+kkMnjEr/bfql9fXW/PVP83PTd36ZO6/7XYf8+QAAAND5TG/9Sa1HYD372HvPrvUIbW5/7Bu1HgGgU6lpfLXpppvmwQcfzHve8541vv/oo4/mgx/8YF5++eV1+lzxFQAAAAAAAPBOJb565znoPV+t9Qht/mvO+bUeAaBTqemxg5tvvnn+/Oc/r/X9v/zlL9l888034EQAAAAAAAAAAABvTdda/vIvfelL+cIXvpCvfe1rOeCAA9LY2JhKpZLm5uZMnz49559/fsaOHVvLEQEAAAAAAAAAANaopvHVpEmT0qNHj1x00UWZMGFCKpVKkqRaraapqSlf+cpXMmHChFqOCAAAAAAAAAAdq1qt9QQAFKppfJUkZ511Vs4666w89dRTaW5uTpI0NTVl8ODBNZ4MAAAAAAAAAABg7epqPcDcuXNzzTXXZNWqVdlzzz2z+eab58ILL8yxxx6bu+66q9bjAQAAAAAAAAAArFFNN1/dfvvt+Zd/+Zdsttlmefnll3PzzTfnqKOOyq677ppqtZoDDzwwv/rVr7LffvvVckwAAAAAAAAA6Ditjh0E6Kxquvnq3HPPzZlnnpmFCxfmmmuuyRFHHJEvfelLmT59en79619nwoQJ+eY3v1nLEQEAAAAAAAAAANaopvHVY489lqOPPjpJMnr06Cxbtiyf+cxn2t4//PDD8/DDD9doOgAAAAAAAADYAKrVjecFwDqpaXz1P9XV1aV79+7p06dP27VevXplyZIltRsKAAAAAAAAAABgLWoaX2277bb5y1/+0vbzfffdl6233rrt52effTYDBgyoxWgAAAAAAAAAAABvqmstf/mJJ56Y119/ve3noUOHtnv/v/7rv7Lffvtt6LEAAAAAAAAAYMNx3B9Ap1XT+OqEE0540/e/8Y1vbKBJAAAAAAAAAAAA1k1Njx0EAAAAAAAAAADorGq6+QoAAAAAAAAA/tdz7CBAp2XzFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHHDgIAAAAAAABALbU6dhCgs7L5CgAAAAAAAAAAoIDNVwAAAAAAAABQS9XWWk8AQCGbrwAAAAAAAAAAAAqIrwAAAAAAAAAAAAo4dhAAAAAAAAAAaqlarfUEABSy+QoAAAAAAAAAAKCA+AoAAAAAAAAAAKCAYwcBAAAAAAAAoJZaHTsI0FnZfAUAAAAAAAAAAFBAfAUAAAAAAAAAAFDAsYMAAAAAAAAAUEtVxw4CdFY2XwEAAAAAAAAAABSw+QoAAAAAAAAAasnmK4BOy+YrAAAAAAAAAACAAuIrAAAAAAAAAACAAo4dBAAAAAAAAIBacuwgQKdl8xUAAAAAAAAAAEAB8RUAAAAAAAAAAEABxw4CAAAAAAAAQC21ttZ6AgAK2XwFAAAAAAAAAABQQHwFAAAAAAAAAABQwLGDAAAAAAAAAFBL1WqtJwCgkM1XAAAAAAAAAAAABWy+AgAAAAAAAIBasvkKoNOy+QoAAAAAAAAAAKCA+AoAAAAAAAAAAKCAYwcBAAAAAAAAoJZaHTsI0FnZfAUAAAAAAAAAAFBAfAUAAAAAAAAAAFDAsYMAAAAAAAAAUEPVamutRwCgkM1XAAAAAAAAAAAABWy+AgAAAAAAAIBaaq3WegIACtl8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUMCxgwAAAAAAAABQS1XHDgJ0VjZfAQAAAAAAAAAAFBBfAQAAAAAAAAAAFHDsIAAAAAAAAADUUmtrrScAoJDNVwAAAAAAAAAAAAXEVwAAAAAAAAAAAAUcOwgAAAAAAAAAtVSt1noCAArZfAUAAAAAAAAAAFDA5isAAAAAAAAAqKFqa2utRwCgkM1XAAAAAAAAAAAABcRXAAAAAAAAAAAABRw7CAAAAAAAAAC1VK3WegIACtl8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUMCxgwAAAAAAAABQS62OHQTorGy+AgAAAAAAAAAAKCC+AgAAAAAAAAAAKODYQQAAAAAAAACopWprrScAoJDNVwAAAAAAAAAAAAVsvgIAAAAAAACAGqq2Vms9AgCFbL4CAAAAAAAAAAAoIL4CAAAAAAAAAAAo4NhBAAAAAAAAAKilamutJwCgkM1XAAAAAAAAAAAABcRXAAAAAAAAAAAABRw7CAAAAAAAAAA1VG2t1noEAArZfAUAAAAAAAAAAFBAfAUAAAAAAAAAAFDAsYMAAAAAAAAAUEvV1lpPAEAhm68AAAAAAAAAAAAKVKrVarXWQwAAAEBn1dLSksmTJ2fixImpr6+v9TgAAAAAAGxA4isAAAB4G5YuXZqGhoYsWbIkvXv3rvU4AAAAAABsQI4dBAAAAAAAAAAAKCC+AgAAAAAAAAAAKCC+AgAAAAAAAAAAKCC+AgAAgLehvr4+X//611NfX1/rUQAAAAAA2MAq1Wq1WushAAAAAAAAAAAAOhubrwAAAAAAAAAAAAqIrwAAAAAAAAAAAAqIrwAAAAAAAAAAAAqIrwAAAAAAAAAAAAqIrwAAAAAAAAAAAAqIrwAAAGAdHH300alUKm2vvn375mMf+1gefvjhtnsqlUpuueWW2g0JAAAAAMAGIb4CAACAdfSxj30s8+fPz/z583PnnXema9euOfjgg2s9FgAAAAAAG5j4CgAAANZRfX19mpqa0tTUlN122y1nnXVWnn322bz44ou1Hg0AAAAAgA1IfAUAAABvw/Lly3Pddddlhx12SN++fWs9DgAAAAAAG1DXWg8AAAAAnc1tt92WzTbbLEmyYsWKDBgwILfddlvq6vw3TgAAAAAA/5v4W2EAAABYRx/96Ecze/bszJ49O/fff39GjhyZgw46KM8880ytRwMAAAAAYAOy+QoAAADWUc+ePbPDDju0/Txs2LA0NDTkqquuynnnnVfDyQAAAAAA2JBsvgIAAIC3qVKppK6uLitXrqz1KAAAAAAAbEA2XwEAAMA6amlpSXNzc5Jk8eLFufzyy7N8+fIccsghNZ4MAAAAAIANSXwFAAAA6+j222/PgAEDkiS9evXKu9/97vzkJz/JvvvuW9vBAAAAAADYoCrVarVa6yEAAAAAAAAAAAA6m7paDwAAAAAAAAAAANAZia8AAAAAAAAAAAAKiK8AAAAAAAAAAAAKiK8AAAAAAAAAAAAKiK8AAAAAAAAAAAAKiK8AAAAAAAAAAAAKiK8AAAAAAAAAAAAKiK8AAABgIzF16tT06dOn1mMAAAAAAPAWVarVarXWQwAAAADJypUrs2zZsvTv37/WowAAAAAA8BaIrwAAAGAj8Oqrr2aTTTap9RgAAAAAAKwDxw4CAADwjvTTn/40u+yyS3r06JG+fftm//33z4oVK5IkU6ZMyXvf+97U19dnwIABOeWUU9qeW7JkSY4//vj0798/vXv3zn777Zc//vGPbe9PmjQpu+22W370ox9l2223TUNDQw477LAsW7as7Z7bb789e++9d/r06ZO+ffvm4IMPzhNPPNH2/tNPP51KpZL//M//zL777pvu3bvnxz/+8RqPHbziiiuy/fbbp1u3btl5553zox/9qIP+xAAAAAAAWFfiKwAAAN5x5s+fn8MPPzzHHnts5s6dm9/+9rf59Kc/nWq1miuuuCInn3xyjj/++DzyyCO59dZbs8MOOyRJqtVqPvGJT6S5uTnTpk3LrFmzsvvuu2fEiBFZtGhR2+c/8cQTueWWW3Lbbbfltttuy4wZM/LNb36z7f0VK1Zk3LhxeeCBB3LnnXemrq4un/rUp9La2tpuzrPOOitjxozJ3Llzc+CBB672PW6++eacdtppOeOMM/Loo4/my1/+co455pj85je/6aA/OQAAAAAA1oVjBwEAAHjH+cMf/pBhw4bl6aefzjbbbNPuvS233DLHHHNMzjvvvNWeu+uuu/KpT30qCxYsSH19fdv1HXbYIRMmTMjxxx+fSZMm5Vvf+laam5vTq1evJMmECRNy99135/e///0a53nxxRfTv3//PPLIIxk6dGiefvrpDB48OJdccklOO+20tvumTp2asWPH5m9/+1uSZPjw4Xnve9+bK6+8su2e0aNHZ8WKFfnlL39Z/OcDAAAAAMD6YfMVAAAA7zi77rprRowYkV122SWf+9znctVVV2Xx4sVZsGBBnn/++YwYMWKNz82aNSvLly9P3759s9lmm7W9nnrqqXbHBm677bZt4VWSDBgwIAsWLGj7+YknnsgRRxyR7bbbLr17987gwYOTJPPmzWv3+/bYY483/R5z587N8OHD210bPnx45s6d+9b+IAAAAAAA6FBdaz0AAAAArG9dunTJ9OnTM3PmzNxxxx257LLLcvbZZ+fOO+980+daW1szYMCA/Pa3v13tvT59+rT970022aTde5VKpd2RgoccckgGDRqUq666KgMHDkxra2uGDh2aVatWtXuuZ8+e//S7VCqVdj9Xq9XVrgEAAAAAUBs2XwEAAPCOVKlUMnz48Jxzzjl56KGH0q1bt0yfPj3bbrvtWiOs3XffPc3NzenatWt22GGHdq9+/fq9pd+7cOHCzJ07N1/72tcyYsSIDBkyJIsXLy76DkOGDMk999zT7trMmTMzZMiQos8DAAAAAGD9svkKAACAd5z7778/d955Z0aOHJn+/fvn/vvvz4svvpghQ4Zk0qRJOeGEE9K/f/8cdNBBWbZsWe69996ceuqp2X///bPnnntm1KhRueCCC7Lzzjvn+eefz7Rp0zJq1Kh/ekxgkmy++ebp27dvrrzyygwYMCDz5s3LV77ylaLvceaZZ2b06NHZfffdM2LEiPziF7/ITTfdlF//+tdFnwcAAAAAwPolvgIAAOAdp3fv3rn77rtzySWXZOnSpdlmm23y7W9/OwcddFCS5JVXXsnFF1+c8ePHp1+/fvnsZz+b5I1tWdOmTcvZZ5+dY489Ni+++GKampry4Q9/OI2NjW/pd9fV1eWGG27ImDFjMnTo0Oy888659NJLs++++67z9xg1alS+853v5Fvf+lbGjBmTwYMH55prrin6LAAAAAAA1r9KtVqt1noIAAAAAAAAAACAzqau1gMAAAAAAAAAAAB0RuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAuIrAAAAAAAAAACAAh0aX91999055JBDMnDgwFQqldxyyy3/9JkZM2Zk2LBh6d69e7bbbrv8+7//e0eOCAAAAAAAAAAAUKRD46sVK1Zk1113zeWXX/6W7n/qqafy8Y9/PPvss08eeuihfPWrX82YMWPys5/9rCPHBAAAAAAAAAAAWGeVarVa3SC/qFLJzTffnFGjRq31nrPOOiu33npr5s6d23bthBNOyB//+Mfcd999a3ympaUlLS0tbT+3trZm0aJF6du3byqVynqbHwAAAAAAAAAA6Jyq1WqWLVuWgQMHpq5u/e2r6rrePmk9uO+++zJy5Mh21w488MBcffXVefXVV7PJJpus9szkyZNzzjnnbKgRAQAAAAAAAACATurZZ5/NVltttd4+b6OKr5qbm9PY2NjuWmNjY1577bW89NJLGTBgwGrPTJw4MePGjWv7ecmSJdl6663z7LPPpnfv3h0+MwAAAAAAAAAAsHFbunRpBg0alF69eq3Xz92o4qskqx0V+PdTEdd2hGB9fX3q6+tXu967d2/xFQAAAAAAAAAA0GZtDVKp9XeA4XrQ1NSU5ubmdtcWLFiQrl27pm/fvjWaCgAAAAAAAAAAYHUbVXy15557Zvr06e2u3XHHHdljjz2yySab1GgqAAAAAAAAAACA1XVofLV8+fLMnj07s2fPTpI89dRTmT17dubNm5ckmThxYo466qi2+0844YQ888wzGTduXObOnZspU6bk6quvzvjx4ztyTAAAAAAAAAAAgHXWtSM//MEHH8xHP/rRtp/HjRuXJPnCF76QqVOnZv78+W0hVpIMHjw406ZNy+mnn57vfve7GThwYC699NJ85jOf6cgxAQAAAAAAAAAA1lmlWq1Waz3E+rR06dI0NDRkyZIl6d27d63HAQAAAAAAAAAAaqyjmqIOPXYQAAAAAAAAAADgnUp8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUEB8BQAAAAAAAAAAUKDD46vvfe97GTx4cLp3755hw4bld7/73Zvef91112XXXXfNpptumgEDBuSYY47JwoULO3pMAAAAAAAAAACAddKh8dWNN96YsWPH5uyzz85DDz2UffbZJwcddFDmzZu3xvvvueeeHHXUUTnuuOPy2GOP5Sc/+UkeeOCBfPGLX+zIMQEAAAAAAAAAANZZh8ZXF110UY477rh88YtfzJAhQ3LJJZdk0KBBueKKK9Z4/+9///tsu+22GTNmTAYPHpy99947X/7yl/Pggw+u9Xe0tLRk6dKl7V4AAAAAAAAAAAAdrcPiq1WrVmXWrFkZOXJku+sjR47MzJkz1/jMXnvtleeeey7Tpk1LtVrNCy+8kJ/+9Kf5xCc+sdbfM3ny5DQ0NLS9Bg0atF6/BwAAAAAAAAAAwJp0WHz10ksv5fXXX09jY2O7642NjWlubl7jM3vttVeuu+66HHrooenWrVuamprSp0+fXHbZZWv9PRMnTsySJUvaXs8+++x6/R4AAAAAAAAAAABr0qHHDiZJpVJp93O1Wl3t2t/NmTMnY8aMyb/9279l1qxZuf322/PUU0/lhBNOWOvn19fXp3fv3u1eAAAAAAAAAAAAHa1rR31wv3790qVLl9W2XC1YsGC1bVh/N3ny5AwfPjxnnnlmkuR973tfevbsmX322SfnnXdeBgwY0FHjAgAAAAAAAAAArJMO23zVrVu3DBs2LNOnT293ffr06dlrr73W+MzLL7+curr2I3Xp0iXJGxuzAAAAAAAAAAAANhYdeuzguHHj8oMf/CBTpkzJ3Llzc/rpp2fevHltxwhOnDgxRx11VNv9hxxySG666aZcccUVefLJJ3PvvfdmzJgx+eAHP5iBAwd25KgAAAAAAAAAAADrpMOOHUySQw89NAsXLsy5556b+fPnZ+jQoZk2bVq22WabJMn8+fMzb968tvuPPvroLFu2LJdffnnOOOOM9OnTJ/vtt18uuOCCjhwTAAAAAAAAAABgnVWq77Dz/JYuXZqGhoYsWbIkvXv3rvU4AAAAAAAAAABAjXVUU9Shxw4CAAAAAAAAAAC8U4mvAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACoivAAAAAAAAAAAACnR4fPW9730vgwcPTvfu3TNs2LD87ne/e9P7W1pacvbZZ2ebbbZJfX19tt9++0yZMqWjxwQAAAAAAAAAAFgnXTvyw2+88caMHTs23/ve9zJ8+PB8//vfz0EHHZQ5c+Zk6623XuMzo0ePzgsvvJCrr746O+ywQxYsWJDXXnutI8cEAAAAAAAAAABYZ5VqtVrtqA//0Ic+lN133z1XXHFF27UhQ4Zk1KhRmTx58mr333777TnssMPy5JNPZosttnhLv6OlpSUtLS1tPy9dujSDBg3KkiVL0rt377f/JQAAAAAAAAAAgE5t6dKlaWhoWO9NUYcdO7hq1arMmjUrI0eObHd95MiRmTlz5hqfufXWW7PHHnvkwgsvzJZbbpmddtop48ePz8qVK9f6eyZPnpyGhoa216BBg9br9wAAAAAAAAAAAFiTDjt28KWXXsrrr7+exsbGdtcbGxvT3Ny8xmeefPLJ3HPPPenevXtuvvnmvPTSSznppJOyaNGiTJkyZY3PTJw4MePGjWv7+e+brwAAAAAAAAAAADpSh8VXf1epVNr9XK1WV7v2d62tralUKrnuuuvS0NCQJLnooovy2c9+Nt/97nfTo0eP1Z6pr69PfX39+h8cAAAAAAAAAADgTXTYsYP9+vVLly5dVttytWDBgtW2Yf3dgAEDsuWWW7aFV0kyZMiQVKvVPPfccx01KgAAAAAAAAAAwDrrsPiqW7duGTZsWKZPn97u+vTp07PXXnut8Znhw4fn+eefz/Lly9uu/elPf0pdXV222mqrjhoVAAAAAAAAAABgnXVYfJUk48aNyw9+8INMmTIlc+fOzemnn5558+blhBNOSJJMnDgxRx11VNv9RxxxRPr27Ztjjjkmc+bMyd13350zzzwzxx577BqPHAQAAAAAAAAAAKiVrh354YceemgWLlyYc889N/Pnz8/QoUMzbdq0bLPNNkmS+fPnZ968eW33b7bZZpk+fXpOPfXU7LHHHunbt29Gjx6d8847ryPHBAAAAAAAAAAAWGeVarVarfUQ69PSpUvT0NCQJUuWpHfv3rUeBwAAAAAAAAAAqLGOaoo69NhBAAAAAAAAAACAdyrxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFQAAAAAAAAAAQAHxFfD/t3e/sVWX5+PHr9JK61zaRZAKjhFc1BGbaSgRwXSJf6hBw0KyBIyJFeceNMMR6DRaSfwXk2Zmbtl0oEbQmCBpnH/mg0ZplkxQeDCa1hglm1Fm0bUjZbFFtxWB83uw0O+vtmz0oqct7vVKzoNze38+vY5PbitvPgcAAAAAAAAAgATxFQAAAAAAAAAAQIL4CgAAAAAAAAAAIEF8BQAAAAAAAAAAkCC+AgAAAAAAAAAASBBfAQAAAAAAAAAAJIivAAAAAAAAAAAAEsRXAAAAAAAAAAAACeIrAAAAAAAAAACABPEVAAAAAAAAAABAgvgKAAAAAAAAAAAgQXwFAAAAAAAAAACQIL4CAAAAAAAAAABIEF8BAAAAAAAAAAAkiK8AAAAAAAAAAAASxFcAAAAAAAAAAAAJ4isAAAAAAAAAAIAE8RUAAAAAAAAAAECC+AoAAAAAAAAAACBBfAUAAAAAAAAAAJAgvgIAAAAAAAAAAEgQXwEAAAAAAAAAACSIrwAAAAAAAAAAABLEVwAAAAAAAAAAAAniKwAAAAAAAAAAgATxFQAAAAAAAAAAQIL4CgAAAAAAAAAAIEF8BQAAAAAAAAAAkCC+AgAAAAAAAAAASBBfAQAAAAAAAAAAJIivAAAAAAAAAAAAEsRXAAAAAAAAAAAACeIrAAAAAAAAAACABPEVAAAAAAAAAABAgvgKAAAAAAAAAAAgQXwFAAAAAAAAAACQIL4CAAAAAAAAAABIEF8BAAAAAAAAAAAkiK8AAAAAAAAAAAASxFcAAAAAAAAAAAAJ4isAAAAAAAAAAIAE8RUAAAAAAAAAAECC+AoAAAAAAAAAACBBfAUAAAAAAAAAAJAgvgIAAAAAAAAAAEgQXwEAAAAAAAAAACSIrwAAAAAAAAAAABLEVwAAAAAAAAAAAAniKwAAAAAAAAAAgATxFQAAAAAAAAAAQIL4CgAAAAAAAAAAIEF8BQAAAAAAAAAAkCC+AgAAAAAAAAAASBBfAQAAAAAAAAAAJIivAAAAAAAAAAAAEsRXAAAAAAAAAAAACeIrAAAAAAAAAACABPEVAAAAAAAAAABAgvgKAAAAAAAAAAAgQXwFAAAAAAAAAACQIL4CAAAAAAAAAABIEF8BAAAAAAAAAAAkiK8AAAAAAAAAAAASxFcAAAAAAAAAAAAJ4isAAAAAAAAAAIAE8RUAAAAAAAAAAECC+AoAAAAAAAAAACBBfAUAAAAAAAAAAJAgvgIAAAAAAAAAAEgQXwEAAAAAAAAAACSIrwAAAAAAAAAAABLEVwAAAAAAAAAAAAniKwAAAAAAAAAAgATxFQAAAAAAAAAAQIL4CgAAAAAAAAAAIEF8BQAAAAAAAAAAkCC+AgAAAAAAAAAASCh6fLVp06aYP39+VFRURG1tbezateuUrnvrrbeirKwsLr/88uIOCAAAAAAAAAAAkFDU+Kq1tTXWr18fGzdujM7Ozqirq4vly5dHd3f3f7yuv78/Ghoa4tprry3meAAAAAAAAAAAAGklhUKhUKybL168OBYuXBibN28eWluwYEGsXLkyWlpaTnrdTTfdFBdddFGUlpbGK6+8El1dXSfdOzg4GIODg0PvBwYGYu7cudHf3x+VlZXj8jkAAAAAAAAAAIAz18DAQFRVVY17U1S0J18dOXIkOjo6or6+fth6fX197N69+6TXPfPMM/HBBx/E/ffff0o/p6WlJaqqqoZec+fOPa25AQAAAAAAAAAATkXR4qu+vr44duxYVFdXD1uvrq6O3t7eUa95//3345577olt27ZFWVnZKf2c5ubm6O/vH3odOHDgtGcHAAAAAAAAAAD4b06tcDoNJSUlw94XCoURaxERx44di5tvvjkefPDBuPjii0/5/uXl5VFeXn7acwIAAAAAAAAAAIxF0eKrmTNnRmlp6YinXB08eHDE07AiIg4fPhx79+6Nzs7OuOOOOyIi4vjx41EoFKKsrCx27NgR11xzTbHGBQAAAAAAAAAAGJOife3g9OnTo7a2Ntrb24ett7e3x9KlS0fsr6ysjHfeeSe6urqGXo2NjXHJJZdEV1dXLF68uFijAgAAAAAAAAAAjFlRv3awqakpbrnllli0aFEsWbIknnrqqeju7o7GxsaIiGhubo5PPvkknnvuuZg2bVrU1NQMu37WrFlRUVExYh0AAAAAAAAAAGCyFTW+Wr16dRw6dCgeeuih6OnpiZqammhra4t58+ZFRERPT090d3cXcwQAAAAAAAAAAICiKCkUCoXJHmI8DQwMRFVVVfT390dlZeVkjwMAAAAAAAAAAEyyYjVF08btTgAAAAAAAAAAAP9DxFcAAAAAAAAAAAAJ4isAAAAAAAAAAIAE8RUAAAAAAAAAAECC+AoAAAAAAAAAACBBfAUAAAAAAAAAAJAgvgIAAAAAAAAAAEgQXwEAAAAAAAAAACSIrwAAAAAAAAAAABLEVwAAAAAAAAAAAAniKwAAAAAAAAAAgATxFQAAAAAAAAAAQIL4CgAAAAAAAAAAIEF8BQAAAAAAAAAAkCC+AgAAAAAAAAAASBBfAQAAAAAAAAAAJIivAAAAAAAAAAAAEsRXAAAAAAAAAAAACeIrAAAAAAAAAACABPEVAAAAAAAAAABAgvgKAAAAAAAAAAAgQXwFAAAAAAAAAACQIL4CAAAAAAAAAABIEF8BAAAAAAAAAAAkiK8AAAAAAAAAAAASxFcAAAAAAAAAAAAJ4isAAAAAAAAAAIAE8RUAAAAAAAAAAECC+AoAAAAAAAAAACBBfAUAAAAAAAAAAJAgvgIAAAAAAAAAAEgQXwEAAAAAAAAAACSIrwAAAAAAAAAAABLEVwAAAAAAAAAAAAniKwAAAAAAAAAAgATxFQAAAAAAAAAAQIL4CgAAAAAAAAAAIEF8BQAAAAAAAAAAkCC+AgAAAAAAAAAASBBfAQAAAAAAAAAAJIivAAAAAAAAAAAAEsRXAAAAAAAAAAAACeIrAAAAAAAAAACABPEVAAAAAAAAAABAgvgKAAAAAAAAAAAgQXwFAAAAAAAAAACQIL4CAAAAAAAAAABIEF8BAAAAAAAAAAAkiK8AAAAAAAAAAAASxFcAAAAAAAAAAAAJ4isAAAAAAAAAAIAE8RUAAAAAAAAAAECC+AoAAAAAAAAAACBBfAUAAAAAAAAAAJAgvgIAAAAAAAAAAEgQXwEAAAAAAAAAACSIrwAAAAAAAAAAABLEVwAAAAAAAAAAAAniKwAAAAAAAAAAgATxFQAAAAAAAAAAQIL4CgAAAAAAAAAAIEF8BQAAAAAAAAAAkCC+AgAAAAAAAAAASBBfAQAAAAAAAAAAJIivAAAAAAAAAAAAEsRXAAAAAAAAAAAACeIrAAAAAAAAAACABPEVAAAAAAAAAABAgvgKAAAAAAAAAAAgQXwFAAAAAAAAAACQIL4CAAAAAAAAAABIEF8BAAAAAAAAAAAkiK8AAAAAAAAAAAASxFcAAAAAAAAAAAAJ4isAAAAAAAAAAIAE8RUAAAAAAAAAAECC+AoAAAAAAAAAACBBfAUAAAAAAAAAAJAgvgIAAAAAAAAAAEgQXwEAAAAAAAAAACSIrwAAAAAAAAAAABLEVwAAAAAAAAAAAAniKwAAAAAAAAAAgATxFQAAAAAAAAAAQIL4CgAAAAAAAAAAIEF8BQAAAAAAAAAAkCC+AgAAAAAAAAAASBBfAQAAAAAAAAAAJIivAAAAAAAAAAAAEsRXAAAAAAAAAAAACeIrAAAAAAAAAACABPEVAAAAAAAAAABAgvgKAAAAAAAAAAAgQXwFAAAAAAAAAACQIL4CAAAAAAAAAABIEF8BAAAAAAAAAAAkiK8AAAAAAAAAAAASxFcAAAAAAAAAAAAJ4isAAAAAAAAAAIAE8RUAAAAAAAAAAECC+AoAAAAAAAAAACBBfAUAAAAAAAAAAJAgvgIAAAAAAAAAAEgQXwEAAAAAAAAAACSIrwAAAAAAAAAAABLEVwAAAAAAAAAAAAniKwAAAAAAAAAAgATxFQAAAAAAAAAAQIL4CgAAAAAAAAAAIEF8BQAAAAAAAAAAkCC+AgAAAAAAAAAASBBfAQAAAAAAAAAAJIivAAAAAAAAAAAAEsRXAAAAAAAAAAAACeIrAAAAAAAAAACABPEVAAAAAAAAAABAgvgKAAAAAAAAAAAgQXwFAAAAAAAAAACQIL4CAAAAAAAAAABIEF8BAAAAAAAAAAAkiK8AAAAAAAAAAAASxFcAAAAAAAAAAAAJ4isAAAAAAAAAAIAE8RUAAAAAAAAAAECC+AoAAAAAAAAAACBBfAUAAAAAAAAAAJAgvgIAAAAAAAAAAEgQXwEAAAAAAAAAACSIrwAAAAAAAAAAABKKHl9t2rQp5s+fHxUVFVFbWxu7du066d6XXnopli1bFuedd15UVlbGkiVL4vXXXy/2iAAAAAAAAAAAAGNW1PiqtbU11q9fHxs3bozOzs6oq6uL5cuXR3d396j7d+7cGcuWLYu2trbo6OiIq6++OlasWBGdnZ3FHBMAAAAAAAAAAGDMSgqFQqFYN1+8eHEsXLgwNm/ePLS2YMGCWLlyZbS0tJzSPS699NJYvXp13HfffaP+88HBwRgcHBx6PzAwEHPnzo3+/v6orKw8vQ8AAAAAAAAAAACc8QYGBqKqqmrcm6KiPfnqyJEj0dHREfX19cPW6+vrY/fu3ad0j+PHj8fhw4fj3HPPPemelpaWqKqqGnrNnTv3tOYGAAAAAAAAAAA4FUWLr/r6+uLYsWNRXV09bL26ujp6e3tP6R6PPvpofP7557Fq1aqT7mlubo7+/v6h14EDB05rbgAAAAAAAAAAgFNRVuwfUFJSMux9oVAYsTaa7du3xwMPPBC/+93vYtasWSfdV15eHuXl5ac9JwAAAAAAAAAAwFgULb6aOXNmlJaWjnjK1cGDB0c8DevLWltb4/bbb48XXnghrrvuumKNCAAAAAAAAAAAkFa0rx2cPn161NbWRnt7+7D19vb2WLp06Umv2759e6xZsyaef/75uPHGG4s1HgAAAAAAAAAAwGkp6tcONjU1xS233BKLFi2KJUuWxFNPPRXd3d3R2NgYERHNzc3xySefxHPPPRcR/w6vGhoa4le/+lVceeWVQ0/NOvvss6OqqqqYowIAAAAAAAAAAIxJUeOr1atXx6FDh+Khhx6Knp6eqKmpiba2tpg3b15ERPT09ER3d/fQ/ieffDKOHj0aa9eujbVr1w6t33rrrfHss88Wc1QAAAAAAAAAAIAxKSkUCoXJHmI8DQwMRFVVVfT390dlZeVkjwMAAAAAAAAAAEyyYjVF08btTgAAAAAAAAAAAP9DxFcAAAAAAAAAAAAJ4isAAAAAAAAAAIAE8RUAAAAAAAAAAECC+AoAAAAAAAAAACBBfAUAAAAAAAAAAJAgvgIAAAAAAAAAAEgQXwEAAAAAAAAAACSIrwAAAAAAAAAAABLEVwAAAAAAAAAAAAniKwAAAAAAAAAAgATxFQAAAAAAAAAAQIL4CgAAAAAAAAAAIEF8BQAAAAAAAAAAkCC+AgAAAAAAAAAASBBfAQAAAAAAAAAAJIivAAAAAAAAAAAAEsRXAAAAAAAAAAAACeIrAAAAAAAAAACABPEVAAAAAAAAAABAgvgKAAAAAAAAAAAgQXwFAAAAAAAAAACQIL4CAAAAAAAAAABIEF8BAAAAAAAAAAAkiK8AAAAAAAAAAAASxFcAAAAAAAAAAAAJ4isAAAAAAAAAAIAE8RUAAAAAAAAAAECC+AoAAAAAAAAAACBBfAUAAAAAAAAAAJAgvgIAAAAAAAAAAEgQXwEAAAAAAAAAACSIrwAAAAAAAAAAABLEVwAAAAAAAAAAAAniKwAAAAAAAAAAgATxFQAAAAAAAAAAQIL4CgAAAAAAAAAAIEF8BQAAAAAAAAAAkCC+AgAAAAAAAAAASBBfAQAAAAAAAAAAJIivAAAAAAAAAAAAEsRXAAAAAAAAAAAACeIrAAAAAAAAAACABPEVAAAAAAAAAABAgvgKAAAAAAAAAAAgQXwFAAAAAAAAAACQIL4CAAAAAAAAAABIEF8BAAAAAAAAAAAkiK8AAAAAAAAAAAASxFcAAAAAAAAAAAAJ4isAAAAAAAAAAIAE8RUAAAAAAAAAAECC+AoAAAAAAAAAACBBfAUAAAAAAAAAAJAgvgIAAAAAAAAAAEgQXwEAAAAAAAAAACSIrwAAAAAAAAAAABLEVwAAAAAAAAAAAAniKwAAAAAAAAAAgATxFQAAAAAAAAAAQIL4CgAAAAAAAAAAIEF8BQAAAAAAAAAAkCC+AgAAAAAAAAAASBBfAQAAAAAAAAAAJIivAAAAAAAAAAAAEsRXAAAAAAAAAAAACeIrAAAAAAAAAACABPEVAAAAAAAAAABAgvgKAAAAAAAAAAAgQXwFAAAAAAAAAACQIL4CAAAAAAAAAABIEF8BAAAAAAAAAAAkiK8AAAAAAAAAAAASxFcAAAAAAAAAAAAJ4isAAAAAAAAAAIAE8RUAAAAAAAAAAECC+AoAAAAAAAAAACBBfAUAAAAAAAAAAJAgvgIAAAAAAAAAAEgQXwEAAAAAAAAAACSIrwAAAAAAAAAAABLEVwAAAAAAAAAAAAniKwAAAAAAAAAAgATxFQAAAAAAAAAAQIL4CgAAAAAAAAAAIEF8BQAAAAAAAAAAkCC+AgAAAAAAAAAASBBfAQAAAAAAAAAAJIivAAAAAAAAAAAAEsRXAAAAAAAAAAAACeIrAAAAAAAAAACABPEVAAAAAAAAAABAgvgKAAAAAAAAAAAgQXwFAAAAAAAAAACQIL4CAAAAAAAAAABIEF8BAAAAAAAAAAAkiK8AAAAAAAAAAAASxFcAAAAAAAAAAAAJ4isAAAAAAAAAAIAE8RUAAAAAAAAAAECC+AoAAAAAAAAAACBBfAUAAAAAAAAAAJAgvgIAAAAAAAAAAEgQXwEAAAAAAAAAACSIrwAAAAAAAAAAABLEVwAAAAAAAAAAAAniKwAAAAAAAAAAgATxFQAAAAAAAAAAQIL4CgAAAAAAAAAAIEF8BQAAAAAAAAAAkCC+AgAAAAAAAAAASBBfAQAAAAAAAAAAJIivAAAAAAAAAAAAEsRXAAAAAAAAAAAACeIrAAAAAAAAAACABPEVAAAAAAAAAABAgvgKAAAAAAAAAAAgQXwFAAAAAAAAAACQIL4CAAAAAAAAAABIEF8BAAAAAAAAAAAkiK8AAAAAAAAAAAASxFcAAAAAAAAAAAAJ4isAAAAAAAAAAIAE8RUAAAAAAAAAAECC+AoAAAAAAAAAACBBfAUAAAAAAAAAAJAgvgIAAAAAAAAAAEgQXwEAAAAAAAAAACSIrwAAAAAAAAAAABKKHl9t2rQp5s+fHxUVFVFbWxu7du36j/vfeOONqK2tjYqKirjwwgvjiSeeKPaIAAAAAAAAAAAAY1bU+Kq1tTXWr18fGzdujM7Ozqirq4vly5dHd3f3qPv3798fN9xwQ9TV1UVnZ2fce++9sW7dunjxxReLOSYAAAAAAAAAAMCYlRQKhUKxbr548eJYuHBhbN68eWhtwYIFsXLlymhpaRmx/+67745XX3019u3bN7TW2NgYb7/9duzZs2fUnzE4OBiDg4ND7/v7++Nb3/pWHDhwICorK8fx0wAAAAAAAAAAAGeigYGBmDt3bnz66adRVVU1bvctG7c7fcmRI0eio6Mj7rnnnmHr9fX1sXv37lGv2bNnT9TX1w9bu/7662PLli3xxRdfxFlnnTXimpaWlnjwwQdHrM+dO/c0pgcAAAAAAAAAAL5qDh06dGbEV319fXHs2LGorq4etl5dXR29vb2jXtPb2zvq/qNHj0ZfX1/Mnj17xDXNzc3R1NQ09P7TTz+NefPmRXd397j+iwKAr7oTpbenRwLA2DhDASDHGQoAOc5QAMg58W1655577rjet2jx1QklJSXD3hcKhRFr/23/aOsnlJeXR3l5+Yj1qqoq/7EBAAmVlZXOUABIcIYCQI4zFABynKEAkDNt2rTxvd+43u3/M3PmzCgtLR3xlKuDBw+OeLrVCeeff/6o+8vKymLGjBnFGhUAAAAAAAAAAGDMihZfTZ8+PWpra6O9vX3Yent7eyxdunTUa5YsWTJi/44dO2LRokVx1llnFWtUAAAAAAAAAACAMStafBUR0dTUFE8//XRs3bo19u3bFxs2bIju7u5obGyMiIjm5uZoaGgY2t/Y2BgfffRRNDU1xb59+2Lr1q2xZcuWuPPOO0/5Z5aXl8f9998/6lcRAgAn5wwFgBxnKADkOEMBIMcZCgA5xTpDSwqFQmFc7/glmzZtikceeSR6enqipqYmfvnLX8b3vve9iIhYs2ZN/OUvf4k//OEPQ/vfeOON2LBhQ7z77rsxZ86cuPvuu4diLQAAAAAAAAAAgKmi6PEVAAAAAAAAAADAV1FRv3YQAAAAAAAAAADgq0p8BQAAAAAAAAAAkCC+AgAAAAAAAAAASBBfAQAAAAAAAAAAJJyR8dWmTZti/vz5UVFREbW1tbFr167/uP+NN96I2traqKioiAsvvDCeeOKJCZoUAKaWsZyhL730UixbtizOO++8qKysjCVLlsTrr78+gdMCwNQx1t9DT3jrrbeirKwsLr/88uIOCABT1FjP0MHBwdi4cWPMmzcvysvL49vf/nZs3bp1gqYFgKljrGfotm3b4rLLLouvfe1rMXv27Ljtttvi0KFDEzQtAEwNO3fujBUrVsScOXOipKQkXnnllf96zXg0RWdcfNXa2hrr16+PjRs3RmdnZ9TV1cXy5cuju7t71P379++PG264Ierq6qKzszPuvffeWLduXbz44osTPDkATK6xnqE7d+6MZcuWRVtbW3R0dMTVV18dK1asiM7OzgmeHAAm11jP0BP6+/ujoaEhrr322gmaFACmlswZumrVqvj9738fW7ZsiT/96U+xffv2+M53vjOBUwPA5BvrGfrmm29GQ0ND3H777fHuu+/GCy+8EH/84x/jRz/60QRPDgCT6/PPP4/LLrssHn/88VPaP15NUUmhUChkBp4sixcvjoULF8bmzZuH1hYsWBArV66MlpaWEfvvvvvuePXVV2Pfvn1Da42NjfH222/Hnj17JmRmAJgKxnqGjubSSy+N1atXx3333VesMQFgysmeoTfddFNcdNFFUVpaGq+88kp0dXVNwLQAMHWM9Qx97bXX4qabbooPP/wwzj333IkcFQCmlLGeoT//+c9j8+bN8cEHHwytPfbYY/HII4/EgQMHJmRmAJhqSkpK4uWXX46VK1eedM94NUVn1JOvjhw5Eh0dHVFfXz9svb6+Pnbv3j3qNXv27Bmx//rrr4+9e/fGF198UbRZAWAqyZyhX3b8+PE4fPiw/wEOwP+U7Bn6zDPPxAcffBD3339/sUcEgCkpc4a++uqrsWjRonjkkUfiggsuiIsvvjjuvPPO+Oc//zkRIwPAlJA5Q5cuXRoff/xxtLW1RaFQiL/97W/x29/+Nm688caJGBkAzljj1RSVjfdgxdTX1xfHjh2L6urqYevV1dXR29s76jW9vb2j7j969Gj09fXF7NmzizYvAEwVmTP0yx599NH4/PPPY9WqVcUYEQCmpMwZ+v7778c999wTu3btirKyM+rXbgAYN5kz9MMPP4w333wzKioq4uWXX46+vr748Y9/HH//+99j69atEzE2AEy6zBm6dOnS2LZtW6xevTr+9a9/xdGjR+P73/9+PPbYYxMxMgCcscarKTqjnnx1QklJybD3hUJhxNp/2z/aOgB81Y31DD1h+/bt8cADD0Rra2vMmjWrWOMBwJR1qmfosWPH4uabb44HH3wwLr744okaDwCmrLH8Hnr8+PEoKSmJbdu2xRVXXBE33HBD/OIXv4hnn33W068A+J8zljP0vffei3Xr1sV9990XHR0d8dprr8X+/fujsbFxIkYFgDPaeDRFZ9RfwZ05c2aUlpaOqLoPHjw4okQ74fzzzx91f1lZWcyYMaNoswLAVJI5Q09obW2N22+/PV544YW47rrrijkmAEw5Yz1DDx8+HHv37o3Ozs644447IuLff5BcKBSirKwsduzYEddcc82EzA4Akynze+js2bPjggsuiKqqqqG1BQsWRKFQiI8//jguuuiios4MAFNB5gxtaWmJq666Ku66666IiPjud78b55xzTtTV1cXDDz/sm4AA4CTGqyk6o558NX369KitrY329vZh6+3t7bF06dJRr1myZMmI/Tt27IhFixbFWWedVbRZAWAqyZyhEf9+4tWaNWvi+eefjxtvvLHYYwLAlDPWM7SysjLeeeed6OrqGno1NjbGJZdcEl1dXbF48eKJGh0AJlXm99Crrroq/vrXv8Znn302tPbnP/85pk2bFt/85jeLOi8ATBWZM/Qf//hHTJs2/I99S0tLI+L/nt4BAIw0Xk3RGRVfRUQ0NTXF008/HVu3bo19+/bFhg0boru7e+ixmc3NzdHQ0DC0v7GxMT766KNoamqKffv2xdatW2PLli1x5513TtZHAIBJMdYzdPv27dHQ0BCPPvpoXHnlldHb2xu9vb3R398/WR8BACbFWM7QadOmRU1NzbDXrFmzoqKiImpqauKcc86ZzI8CABNqrL+H3nzzzTFjxoy47bbb4r333oudO3fGXXfdFT/84Q/j7LPPnqyPAQATbqxn6IoVK+Kll16KzZs3x4cffhhvvfVWrFu3Lq644oqYM2fOZH0MAJhwn3322dBfio2I2L9/f3R1dUV3d3dEFK8pOqO+djAiYvXq1XHo0KF46KGHoqenJ2pqaqKtrS3mzZsXERE9PT1D/9IiIubPnx9tbW2xYcOG+M1vfhNz5syJX//61/GDH/xgsj4CAEyKsZ6hTz75ZBw9ejTWrl0ba9euHVq/9dZb49lnn53o8QFg0oz1DAUA/m2sZ+jXv/71aG9vj5/85CexaNGimDFjRqxatSoefvjhyfoIADApxnqGrlmzJg4fPhyPP/54/PSnP41vfOMbcc0118TPfvazyfoIADAp9u7dG1dfffXQ+6ampoj4vz/fLFZTVFLwrEkAAAAAAAAAAIAxO+O+dhAAAAAAAAAAAGAqEF8BAAAAAAAAAAAkiK8AAAAAAAAAAAASxFcAAAAAAAAAAAAJ4isAAAAAAAAAAIAE8RUAAAAAAAAAAECC+AoAAAAAAAAAACBBfAUAAAAAAAAAAJAgvgIAAAAAAAAAAEgQXwEAAAAAAAAAACSIrwAAAAAAAAAAABL+HwtbXnOOW4JbAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "variables = [\"exp_qty_TWh\", \"total_cost_bnEUR\"]#, \"system_savings_bnEUR\", \"system_savings_EUR_per_TWh\", \"elec_price_EUR_per_MWh\", \"elec_savings_bnEUR\"]\n",
"\n",
- "# Initialize an empty DataFrame\n",
- "df = pd.DataFrame(columns=[\"scenario\", \"mp_EUR_per_MWh\", \"ecc\", \"exp_qty_TWh\", \"total_cost_bnEUR\", \"elec_price_EUR_per_MWh\", \"elec_costs_bnEUR\"])\n",
+ "df_copy = df.query(\"mp_EUR_per_MWh != 'endogenous' and ecc == 1.0 and scenario == 'BI' and ir == 0.08\")\n",
+ "df_copy[\"mp_EUR_per_MWh\"] = df_copy[\"mp_EUR_per_MWh\"].astype(float)\n",
+ "#df_copy = df_copy.loc[(df_copy['mp_EUR_per_MWh'] <= 90) & (df_copy['mp_EUR_per_MWh'] >= 75)]\n",
"\n",
- "# Parse the networks and fill the DataFrame\n",
- "for f in os.listdir(path):\n",
- " if f.endswith(\"ecc.nc\"):\n",
- " scenario = f.split(\"_\")[-4]\n",
- " mp = f.split(\"_\")[-2].strip(\"mp\")\n",
- " ecc = f.split(\"_\")[-1].strip(\"ecc.nc\")\n",
- " n = pypsa.Network(f\"{path}/{f}\")\n",
- " \n",
- " # Calculate the necessary variables\n",
- " exp_qty_TWh = calc_exp_qty(n) # Replace with the actual function to calculate exported hydrogen quantity\n",
- " total_cost_bnEUR = n.objective / 1e9\n",
- " elec_price_EUR_per_MWh, elec_costs_bnEUR = calc_elec_price(n) # Replace with the actual function to calculate electricity price and costs\n",
- " \n",
- " # Append the data to the DataFrame\n",
- " new_row = pd.DataFrame([{\n",
- " \"scenario\": scenario,\n",
- " \"mp_EUR_per_MWh\": mp,\n",
- " \"ecc\": ecc,\n",
- " \"exp_qty_TWh\": exp_qty_TWh,\n",
- " \"total_cost_bnEUR\": total_cost_bnEUR,\n",
- " \"elec_price_EUR_per_MWh\": elec_price_EUR_per_MWh,\n",
- " \"elec_costs_bnEUR\": elec_costs_bnEUR\n",
- " }])\n",
- " df = pd.concat([df, new_row], ignore_index=True)\n",
+ "scenarios = df_copy[\"scenario\"].unique()\n",
"\n",
- "# Calculate system savings and electricity savings dependent variables\n",
- "df[\"system_savings_bnEUR\"] = df.apply(lambda x: max(df[(df[\"scenario\"] == x[\"scenario\"]) & (df[\"mp_EUR_per_MWh\"] == \"endogenous\") & (df[\"ecc\"] == x[\"ecc\"])][\"total_cost_bnEUR\"].values[0] - x[\"total_cost_bnEUR\"], 0), axis=1)\n",
- "df[\"system_savings_EUR_per_TWh\"] = df.apply(lambda x: max(x[\"system_savings_bnEUR\"] / x[\"exp_qty_TWh\"] * 1e9, 0) if x[\"exp_qty_TWh\"] != 0 else 0, axis=1)\n",
+ "fig, axs = plt.subplots(len(variables), len(df_copy['ir'].unique()), figsize=(30, 20))\n",
"\n",
- "df[\"elec_savings_bnEUR\"] = df.apply(lambda x: max(df[(df[\"scenario\"] == x[\"scenario\"]) & (df[\"mp_EUR_per_MWh\"] == \"endogenous\") & (df[\"ecc\"] == x[\"ecc\"])][\"elec_costs_bnEUR\"].values[0] - x[\"elec_costs_bnEUR\"], 0), axis=1)\n",
- "df[\"elec_savings_EUR_per_TWh\"] = df.apply(lambda x: max(x[\"elec_savings_bnEUR\"] / x[\"exp_qty_TWh\"] * 1e9, 0) if x[\"exp_qty_TWh\"] != 0 else 0, axis=1)\n",
+ "for i, variable in enumerate(variables):\n",
+ " vmin = df_copy[variable].min()\n",
+ " vmax = df_copy[variable].max()\n",
+ " \n",
+ " for j, ir in enumerate(df_copy['ir'].unique()):\n",
+ " pivot_table = df_copy[df_copy[\"ir\"] == ir].pivot(index=\"mp_EUR_per_MWh\", columns=\"scenario\", values=variable)\n",
+ " pivot_table = pivot_table.sort_index(ascending=False).sort_index(axis=1, ascending=False)\n",
+ " if len(df_copy['ir'].unique()) == 1:\n",
+ " sns.heatmap(pivot_table, annot=True, cmap=\"viridis\", cbar_kws={'label': variable}, ax=axs[i], vmin=vmin, vmax=vmax)\n",
+ " axs[i].set_title(f\"{variable}\\n{df_copy.ecc.values[0]} * 1350 €/kW\\nElectrolysis CAPEX\\nInterest rate: {ir}\")\n",
+ " axs[i].set_xlabel(\"Scenario\")\n",
+ " axs[i].set_ylabel(\"Global Hydrogen\\nMarket Price (€/MWh)\")\n",
+ " else:\n",
+ " sns.heatmap(pivot_table, annot=True, cmap=\"viridis\", cbar_kws={'label': variable}, ax=axs[i, j], vmin=vmin, vmax=vmax)\n",
+ " axs[i, j].set_title(f\"{variable}\\n{df_copy.ecc.values[0]} * 1350 €/kW\\nElectrolysis CAPEX\\nInterest rate: {ir}\")\n",
+ " axs[i, j].set_xlabel(\"Scenario\")\n",
+ " axs[i, j].set_ylabel(\"Global Hydrogen\\nMarket Price (€/MWh)\")\n",
"\n",
- "df[\"ecc\"] = df[\"ecc\"].astype(float)\n",
- "# Cast mp to int if possible\n",
- "df[\"mp_EUR_per_MWh\"] = df[\"mp_EUR_per_MWh\"].astype(int, errors=\"ignore\")\n",
- "df.set_index([\"scenario\", \"mp_EUR_per_MWh\", \"ecc\"], inplace=True)\n",
- "df = df.sort_index(ascending=True).sort_index(axis=1, ascending=True).reset_index()\n",
- "\n"
+ "plt.tight_layout()\n",
+ "plt.show()"
]
},
{
"cell_type": "code",
- "execution_count": 41,
+ "execution_count": null,
"metadata": {},
"outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/tmp/ipykernel_133889/2926664420.py:4: SettingWithCopyWarning: \n",
+ "A value is trying to be set on a copy of a slice from a DataFrame.\n",
+ "Try using .loc[row_indexer,col_indexer] = value instead\n",
+ "\n",
+ "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+ " df_copy[\"mp_EUR_per_MWh\"] = df_copy[\"mp_EUR_per_MWh\"].astype(float)\n"
+ ]
+ },
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAC68AAA+WCAYAAAB9ji+9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3QUVR/G8WfTG6RCQu+9CiidUKR3BKnSkV4UBcUCVpBXxQaI0quICIoiIFWkCAhIF5BeQu+QPu8fgQ1LCumZhO/nnD26M/fO/nYz7JOZ3LljMQzDEAAAAAAAAAAAAAAAAAAAAAAAqcguvQsAAAAAAAAAAAAAAAAAAAAAAGR+DF4HAAAAAAAAAAAAAAAAAAAAAKQ6Bq8DAAAAAAAAAAAAAAAAAAAAAFIdg9cBAAAAAAAAAAAAAAAAAAAAAKmOwesAAAAAAAAAAAAAAAAAAAAAgFTH4HUAAAAAAAAAAAAAAAAAAAAAQKpj8DoAAAAAAAAAAAAAAAAAAAAAINUxeB0AAAAAAAAAAAAAAAAAAAAAkOoYvA4AAAAAAAAAAAAAAAAAAAAASHUMXoeN27dva9iwYcqZM6dcXFxUvnx5fffddwnqW7t2bVksljgfQUFBCdrOmDFjNHPmzATXfPPmTb3xxhsqWrSo3NzclCtXLrVr10779+9P1vvbuXOnnn32WXl4eMjLy0tt2rTRsWPHElyXJC1YsEDVqlWTu7u7PDw81KBBA61atSrWthUqVNDQoUMlRX2WpUuXjnfbpUuXVokSJWIsX7JkiSwWi6pWrRpj3Zw5c2SxWPTzzz8n6n0AgFkkJ6ckad26dapfv76yZ88uDw8PlS1bVl988YUiIiISvA1yipwCgPgkN6tWrlyp6tWry9XVVZ6enmrevHmsmREfsoqsAoDY3Lp1SyNGjFCDBg2ULVs2WSwWjRkzJlHbuHjxorp37y4/Pz+5ubmpatWqWrNmTaK2QU6RUwAQl+Rm1ZkzZzRs2DAFBgbKy8tLFoslUZnzAFlFVgFAbJKbUz/++KM6duyowoULy9XVVfnz51fnzp115MiRRNVBTpFTABCX5GbV6tWrVb9+feXMmVPOzs7Knj276tatq+XLlyeqDrKKrAISgsHrsNGmTRvNmjVLo0eP1m+//aann35aHTt21Pz58x/bd9KkSdqyZYvNY82aNXJ0dFSVKlUUEBAQZ99ly5bFCDrDMDR37lxt3rw53tdt3ry5PvvsM/Xp00e//vqrxo0bp927d6tq1ao6efJkkt7foUOHVLt2bYWGhur777/X9OnTdfjwYdWsWVOXLl167GchRQVx586dVaRIEc2fP18//fSTKlasqNatW+vGjRs2bY8fP65du3bpueeeS9C2JalOnTo6dOhQjIsC1q9fL3d3d+3YsUO3bt2Ksc7Ozk61atVK8OsAgJkkJ6dWr16tZ599VuHh4fr222+1dOlS1a5dW0OHDtXLL78cb19yipwCgIRKTlb99NNPaty4sbJnz67Fixfr66+/1pEjR1SzZk39999/8fYlq8gqAHicK1eu6JtvvlFISIhatWqV6P4hISGqV6+e1qxZo88//1w//fST/P391ahRI23YsCHevuQUOQUACZHcrDp69KjmzZsnJycnNWnSJFF9ySqyCgAeJ7k59dFHH+nu3bt64403tGLFCr3//vvatWuXKlSo8NjJK8gpcgoAEiK5WXXlyhWVKlVKEyZM0KpVqzRlyhQ5OjqqadOmmjt3brx9ySqyCkg0A7jv119/NSQZ8+fPt1lev359I2fOnEZ4eHiitzlz5kxDkjF16tR42x06dMjo1KmT0bBhQ6NDhw5Gv379jBo1ahiDBg0yzp49G2e/I0eOGJKMN99802b55s2bDUnGp59+mqT3165dO8PPz8+4ceOGddmJEycMR0dHY8SIEY9931u3bjUsFkuMugzDMPbs2WPcvXvXZtn48eON7NmzGxEREYZhGEZgYKBRqlSpeF9j8eLFhiRjwYIFNsvLli1rDB061HB0dDSWL19us65gwYJGxYoVH1s/AJhRcnOqc+fOhrOzs3H79m2b5Q0aNDCyZs0ab19yipwCgIRIblYVK1bMKFu2rBEZGWldduLECcPJycno1KlTvH3JKrIKAB4nMjLSmjGXLl0yJBmjR49OcP+JEycakozNmzdbl4WFhRklS5Y0nnnmmXj7klPkFAAkRHKz6sH3rGEYxvbt2w1JxowZMxLUl6wiqwDgcZKbUxcuXIix7OzZs4ajo6PRq1evePuSU+QUACREcrMqNqGhoUauXLmMmjVrxtuOrCKrgMRi5nVYLVmyRB4eHmrXrp3N8h49eujcuXP666+/Er3NadOmycPDQ+3bt4+3XbFixTRv3jwNGDBAP/74oxYsWKBPPvlEX375pXLmzBlnP0dHR0mSp6enzXIvLy9JkouLi3VZQt9feHi4fvnlFz333HPKmjWrtV2+fPlUp04dLVmyJN73Eh4errlz58rJyUkvvfSSwsPDrY/IyEiVKVNGrq6uNn0WL16s1q1by84u7n+SS5YskZubm3r37q3w8HDVrl1bFotF69evt7a5cuWK9u7dq6ZNm6pixYpat26ddd3p06d17Ngx1alTJ976AcCskptTjo6OcnJyivEd7OXlZZMXsSGnyCkASIjkZNWVK1f077//qnHjxrJYLNbl+fLlU+nSpbV06VJFRETE2Z+sIqsA4HEsFotNxiTWkiVLVKxYMZvb1To4OKhLly7atm2bzp49G2dfcoqcAoCESG5Wxfc9+zhkFVkFAI+T3JzKnj17jGU5c+ZU7ty5dfr06Xj7klPkFAAkRHKzKjaOjo7y8vKSg4NDvO3IKrIKSCwGr8Nq3759KlGiRIywKVu2rHV9Yhw5ckQbN25Uhw4d5OHh8di2Xbt21aRJk9S6dWt17NhRL7/8soYMGaLz58/H2S9fvnxq2bKlJkyYoHXr1un27ds6dOiQhgwZorx586pDhw6Jfn///fef7t27Z13+aNujR48qODg41np2794tR0dHffXVVwoJCZGvr68cHR2tj6+//jpGnzNnzmjbtm3x3jZkwoQJateunUaNGqWpU6fKwcFBPj4+Klu2rE1IbdiwQfb29qpWrZoCAwNtwu1BOwIMQEaV3Jzq16+fQkNDNWTIEJ07d07Xr1/XnDlztGTJEo0YMSLevuQUOQUACZGcrAoNDZUkOTs7x1jn7Oysu3fv6r///ouzP1lFVgFAatu3b1+c3+2S4r3NPTlFTgGA2ZFVZBUApIdjx47p5MmTKlWqVLztyClyCgDSUmRkpMLDw3Xu3DmNHj1ahw8f1vDhw+PtQ1aRVUBiMXgdVleuXJGPj0+M5Q+WXblyJVHbmzZtmiSpV69ej2178OBBtW/fXitWrFDx4sVVuXJlbdy4UU8//bSOHz8eb99FixapadOmqlu3rrJkyaISJUro4sWL2rBhg7y9va3tEvr+Hvw3rraGYejatWux1pI7d25t375dOXLkULVq1bR9+3abR/fu3WP0Wbx4sby8vGINlsjISA0ePFivvfaaZs2apTfffNNmfZ06dXT48GFryK9fv16VKlWSu7u7AgMDtXPnTt28edO6zt7eXjVr1oy1dgAwu+TmVOXKlbV27VotWbJEuXLlkre3t3r06KEPPvjgsQda5BQ5BQAJkZys8vf3l4+PjzZt2mSz/Pr169aTbfH1J6vIKgBIbcnJOXKKnAIAsyOryCoASGvh4eHq1auXPDw89NJLL8XblpwipwAgLTVp0kSOjo7KlSuXPvvsMy1cuFBNmzaNtw9ZRVYBicXgddiI79YhibmtSHh4uGbNmqVSpUqpSpUqj23fokWLGCFnsVj0wgsvqFq1avH27d+/vxYvXqwJEyZow4YNWrhwoZycnFS3bl2dPHkywe/h0XVJ+Sz8/PxUvnx5OTk5ydPTU+XLl7c+KlasKDc3txh9Fi9erJYtW8a4Kiw4OFitWrXSvHnztGrVKnXu3DlG3weh9+Aqq/Xr16t27dqSpBo1akiS/vjjD+u6SpUqKUuWLHG+LwAwu+Tk1N9//63WrVurYsWKWrZsmdauXavXX39db775pt577714+5JT5BQAJFRSs8rOzk4DBw7UmjVr9N577+nixYs6evSounTport371rbxIWsIqsAIC0kNefIKXIKAMyOrCKrACAtGYahXr16aePGjZo9e7by5MkTb3tyipwCgLT05Zdfatu2bfrpp5/UsGFDtW/fXgsWLIi3D1lFVgGJ5fD4JnhS+Pr6xjpD0tWrVyXFfjVSXJYvX66goCCNHDky0XWMGTMmwW1XrFihadOmadGiRWrbtq11eYMGDZQ/f36NGTNGM2bMkJTw9+fr6ysp9tmirl69KovFIi8vr1jr2b17t5566ilJ0smTJ+Xo6Ghdt337dlWqVMmmfVBQkDZt2qQRI0bE2NbFixd1+vRpPfvss3GGeGBgoOzs7LRu3To1aNBA+/bt0/jx4yVJWbJk0VNPPaX169erbNmyOn78uNq3bx/rdgAgI0huTg0cOFD+/v5asmSJ7O3tJUUdCNjZ2WnMmDHq3LmzChYs+Ng6yKko5BQAxJTcrHr77bd1+/Ztvf/++3r77bclSU2bNlWPHj00depU5cqVK0F1kFVRyCoASFkpde6QnIpCTgGAeZFVUcgqAEgdhmGod+/emjt3rmbNmqWWLVsmqj85FYWcAoDUU6RIEev/t2jRQo0bN9bAgQPVvn37eCdaeoCsikJWAfFj5nVYlSlTRgcPHlR4eLjN8r1790qSSpcuneBtTZs2TU5OTnrhhRdStMZH7d69W5L09NNP2yz38vJS4cKFtW/fPuuyhL6/QoUKydXV1br80baFCxeWi4tLrPU8uHVImzZt5OTkpD///FPbt2/X33//HSO8JGnJkiVyd3dX/fr1Y6zLmzevli1bpvXr16tNmzYKDg6O0cbT09MaUuvXr5ednZ2qV69uXR8YGKh169Zp3bp1khTr7UkAIKNIbk7t3r1bFStWtA5cf+Dpp59WZGSkDh48mLIFi5wipwA8aZKbVQ4ODvr000915coV7dmzR+fOndMvv/yiU6dOqUCBAsqdO3eK10xWkVUAkFBlypSJ87tdSty5w4Qip8gpADA7soqsAoDEeDBwfcaMGZo6daq6dOmSqq9HTpFTAJASnnnmGV27dk2XLl1K8W2TVWQVnlwMXodV69atdfv2bS1evNhm+axZs5QzZ05Vrlw5QdsJCgrS8uXL1apVK+uVTKklZ86ckqStW7faLL9y5YoOHz5sM7gjoe/PwcFBzZs3148//qhbt25Z2506dUrr1q1TmzZt4qzHz89PlSpVUv/+/RUaGqq//vpLlSpVUoUKFaxtjh8/rpCQEElRtw1p1qyZnJ2dY91egwYNtHLlSv3xxx9q1qyZ7ty5E6NNnTp1dOTIEc2fP18VK1a0uTVIYGCgdu/eraVLl8rR0dEm3AAgo0luTuXMmVM7duxQRESEzfItW7ZIUqoMCCSnyCkAT5aUOqby8PBQmTJllCNHDu3cuVNr1qzR0KFDU6NkskpkFQAkVOvWrXXo0CH99ddf1mXh4eGaO3euKleubM2UlEROkVMAYHZkFVkFAAllGIb69OmjGTNmaMqUKerRo0eqvyY5RU4BQHIZhqENGzbIy8srVcYBklVkFZ5gBvCQ+vXrG97e3sY333xjrF271ujTp48hyZg7d65Nu549exr29vbGiRMnYmxj3LhxhiRj1apVqV7vrVu3jHz58hne3t7Gxx9/bKxdu9aYN2+eUb58ecPe3t5Yt26dTfuEvr+DBw8aHh4eRq1atYzly5cbP/74o1G6dGkjZ86cxsWLFxNU28CBAw17e3ujX79+xrJly4w1a9YYo0ePNry8vIwbN24Yly9fNhwcHIwffvghRt/AwECjVKlS1ufbt283fH19jWrVqhnXr1+3afvrr78akgyLxWK8+uqrNuuuXbtm2NnZGRaLxahevXqC6gYAM0tOTn3xxReGJKNx48bG0qVLjVWrVhkjR440HBwcjGeffTZV6iWnyCkAT57kZNW6deuM8ePHGytWrDB+++0345133jHc3NyMpk2bGuHh4alSL1lFVgF4sixfvtxYtGiRMX36dEOS0a5dO2PRokXGokWLjDt37ljbxZZTwcHBRqlSpYw8efIY8+bNM37//XejdevWhoODg7F+/fpUqZecIqcAPHmSk1WGYVjbfvTRR4YkY+DAgdZlqYGsIqsAPFmSk1ODBg0yJBk9e/Y0tmzZYvPYuXNnqtRLTpFTAJ48ycmqFi1aGG+99ZaxePFiY/369cb8+fONBg0aGJKMiRMnpkq9ZBVZhScXg9dh49atW8aQIUOMgIAAw8nJyShbtqyxYMGCGO26detmSDKOHz8eY13RokWN/PnzG5GRkWlQsWGcP3/eGDRokFG4cGHDxcXFyJkzp9G0aVNjy5YtMdom9P0ZhmHs2LHDqFevnuHm5mZkzZrVaNWqlXH06NEE1xUZGWksWLDAqF69uuHj42O4ubkZ9erVM37//XfDMAxj6tSphpubm80vBg88GmCGYRj79u0zAgICjAoVKhiXLl2yLr9586bh4OBgSDJ++eWXGNsqX768Icl44403Elw7AJhVcnNq8eLFRo0aNQw/Pz/D3d3dKFWqlPHee+8Zt2/fTrWaySlyCsCTJTlZtWnTJqNy5cpG1qxZDWdnZ6N06dLGxx9/bISGhqZqzWQVWQXgyZEvXz5DUqyPhzMprmOqoKAgo2vXroaPj4/h4uJiVKlSxfq9nFrIKXIKwJMluVkVV9/UnM+LrCKrADw5kpNT8fXNly9fqtVMTpFTAJ4sycmqjz76yHj66acNb29vw97e3vD19TUaNmwY6/dnSiKryCo8mSyGYRiJm6sdQEpo0qSJXF1dY9zKBAAAMyCnAABmR1YBAMyMnAIAmB1ZBQAwM3IKAGB2ZBWQPAxeBwAAAAAAAAAAAAAAAAAAAACkOrv0LgAAAAAAAAAAAAAAAAAAAAAAkPkxeB0AAAAAAAAAAAAAAAAAAAAAkOoYvA4AAAAAAAAAAAAAAAAAAAAASHUMXs9kZs6cKYvFEudj/fr11rb58+dX9+7dU62WSZMmaebMmamy7TFjxshisaTKtk+cOCGLxZKite/Zs0c9evRQgQIF5OLiIg8PD1WoUEHjx4/X1atXY+1ToUIFWSwWffzxx7Guf/Rn7eDgoNy5c6tHjx46e/astd369evj3ScevM/Lly/L399fNWvWVGRkpM1rhYaGqly5cipQoIBu3bqVMh8KgCcSOZV85BQ5BSB1kVXJR1aRVQBSDzmVfOQUOQUgdZFVyUdWkVUAUg85lXzkFDkFIHWRVclHVpFVyBgc0rsApI4ZM2aoePHiMZaXLFkyzWqYNGmS/Pz8UjUkU0OOHDm0ZcsWFSpUKEW29+2332rAgAEqVqyYXn31VZUsWVJhYWHasWOHvv76a23ZskVLliyx6bN7927t2rVLkjRt2jS98sorcW7/wc/63r17+uOPPzR27Fht2LBBe/fulbu7u7Xdhx9+qDp16sTo/+B9+vn5acqUKWrdurUmTJig4cOHW9uMHj1ae/fu1Zo1a5QlS5ZkfR4AIJFTyUFOkVMA0gZZlXRkFVkFIPWRU0lHTpFTANIGWZV0ZBVZBSD1kVNJR06RUwDSBlmVdGQVWYUMwkCmMmPGDEOSsX379se2zZcvn9GtW7dUq6VUqVJGYGBggtqGhoYaYWFhCd726NGjjYyw+27evNmwt7c3GjVqZAQHB8dYHxISYvz0008xlg8cONCQZDRt2tSQZGzatClGm7h+1m+99ZYhyZg7d65hGIaxbt06Q5KxaNGiBNXcpUsXw8XFxThw4IDNexg8eHCC+gNAfMgpcyGnACAmsspcyCoAsEVOmQs5BQAxkVXmQlYBgC1yylzIKQCIiawyF7IKSD12KT4aHhnazZs39corr6hAgQJycnJSrly5NGzYMN25c8emXWRkpL788kuVL19erq6u8vLyUpUqVfTzzz9Lirotyf79+7VhwwbrLSry588vKfpWFnPmzNHw4cOVK1cuOTs76+jRo5Kk6dOnq1y5cnJxcZGPj49at26tgwcPxlt3r1695OPjo7t378ZYV7duXZUqVcr6fNGiRapcubI8PT3l5uamggULqmfPntb1sd065NKlS3rxxReVJ08eOTs7K1u2bKpevbpWr14db10ffvihLBaLvvnmGzk7O8dY7+TkpBYtWtgsCw4O1vz581WxYkVNmDDB+pkkVJUqVSRJJ0+eTHCfh33xxRfy8fFRt27ddPPmTXXr1k0FCxbUuHHjkrQ9AEhJ5BQ5RU4BMDuyiqwiqwCYGTlFTpFTAMyOrCKryCoAZkZOkVPkFACzI6vIKrIKGYVDeheA1BEREaHw8HCbZRaLRfb29nH2uXv3rgIDA3XmzBmNGjVKZcuW1f79+/X2229r7969Wr16tSwWiySpe/fumjt3rnr16qV3331XTk5O2rlzp06cOCFJWrJkidq2bStPT09NmjRJkmJ8gb/++uuqWrWqvv76a9nZ2Sl79uwaO3asRo0apY4dO2rs2LG6cuWKxowZo6pVq2r79u0qUqRIrLUPHTpU06dP1/z589W7d2/r8gMHDmjdunWaOHGiJGnLli1q37692rdvrzFjxsjFxUUnT57U2rVr4/08X3jhBe3cuVMffPCBihYtquvXr2vnzp26cuVKnH0iIiK0du1aVaxYUXny5Il3+w/78ccfde3aNfXs2VNFihRRjRo1tHDhQn322Wfy8PB4bP8Hvwhky5bNZnlkZGSMfUKSHBxsvwa8vb317bffqmnTpqpQoYKOHz+ujRs3ys3NLcHvAQAeh5yKQk5FI6cAmA1ZFYWsikZWATATcioKORWNnAJgNmRVFLIqGlkFwEzIqSjkVDRyCoDZkFVRyKpoZBUynfSe+h0p68HtJGJ72Nvb27R99NYhY8eONezs7GLciuKHH34wJBnLly83DMMw/vjjD0OS8cYbb8RbS1y3DnlwK4tatWrZLL927Zrh6upqNGnSxGb5qVOnDGdnZ6NTp07WZbHdOiQwMNAoX768zbL+/fsbWbNmNW7dumUYhmF8/PHHhiTj+vXrcdZ9/PhxQ5IxY8YM6zIPDw9j2LBh8b7fRwUFBRmSjA4dOiSqX926dQ0XFxfj2rVrhmFE/0ynTZtm0+7B8q1btxphYWHGrVu3jF9++cXIli2bkSVLFiMoKMgwjOjPO67H6dOnY62jQYMGhiRj0KBBiaofAOJDTpFT5BQAsyOryCqyCoCZkVPkFDkFwOzIKrKKrAJgZuQUOUVOATA7soqsIqvwpGDm9Uxq9uzZKlGihM2yB1dOxeWXX35R6dKlVb58eZurdBo2bCiLxaL169ercePG+u233yRJAwcOTFaNzz33nM3zLVu26N69e+revbvN8jx58qhu3bpas2ZNvNsbOnSo2rRpo02bNql69eq6efOm5syZox49elivWnr66aclSc8//7x69eql6tWrK1euXI+t9ZlnntHMmTPl6+urZ599VhUrVpSjo2Mi3m3CHD9+XOvWrVPHjh3l5eUlSWrXrp2GDBmi6dOn29zi5IEHtwp5oEyZMpo8ebL8/f1tln/00UeqW7dujP6PtpOkf/75R+vWrZOdnZ02bNig0NBQOTk5JeOdAYAtcoqcIqcAmB1ZRVaRVQDMjJwip8gpAGZHVpFVZBUAMyOnyClyCoDZkVVkFVmFzM4uvQtA6ihRooQqVapk86hYsWK8fS5cuKA9e/bI0dHR5pElSxYZhqHLly9Lki5duiR7e3sFBAQkq8YcOXLYPH9wG45Hl0tSzpw5471NhyS1bNlS+fPnt94mZObMmbpz545N0NaqVUtLly5VeHi4unbtqty5c6t06dJasGBBvNteuHChunXrpqlTp6pq1ary8fFR165dFRQUFGcfPz8/ubm56fjx4/Fu+2HTp0+XYRhq27atrl+/ruvXryssLEwtWrTQpk2bdOjQoRh9Zs+ere3bt2vXrl06d+6c9uzZo+rVq8doV7BgwRj7RKVKlWIEcVhYmLp166acOXPqxx9/1L59+/Tee+8l+D0AQEKQU+TUo8gpAGZDVpFVjyKrAJgJOUVOPYqcAmA2ZBVZ9SiyCoCZkFPk1KPIKQBmQ1aRVY8iq5DZMPM6rPz8/OTq6qrp06fHuV6SsmXLpoiICAUFBcUaNgn16NVgvr6+kqTz58/HaHvu3Dnr68fFzs5OAwcO1KhRo/TJJ59o0qRJqlevnooVK2bTrmXLlmrZsqVCQkK0detWjR07Vp06dVL+/PlVtWrVWLft5+enzz77TJ999plOnTqln3/+Wa+99pouXryoFStWxNrH3t5e9erV02+//aYzZ84od+7c8dYfGRmpmTNnSpLatGkTa5vp06dr/PjxNsse/LKSUt59913t2bNHq1evVt26ddWvXz+NGzdOrVu3VoUKFVLsdQAgscgpckoipwCYG1lFVklkFQDzIqfIKYmcAmBuZBVZJZFVAMyLnCKnJHIKgLmRVWSVRFYh42DmdVg1a9ZM//33n3x9fWO9Sid//vySpMaNG0uSJk+eHO/2nJ2dde/evQS/ftWqVeXq6qq5c+faLD9z5ozWrl2revXqPXYbvXv3lpOTkzp37qx///1XgwYNire+wMBAffTRR5KkXbt2JajOvHnzatCgQapfv7527twZb9vXX39dhmGoT58+Cg0NjbE+LCxMy5YtkyStXLlSZ86c0cCBA7Vu3boYj1KlSmn27Nk2t3VJaTt27NC4ceM0YMAA621Gxo8fr9y5c6t79+6xvgcASCvkFDlFTgEwO7KKrCKrAJgZOUVOkVMAzI6sIqvIKgBmRk6RU+QUALMjq8gqsgoZCTOvZ1L79u2L9YuuUKFCypYtW6x9hg0bpsWLF6tWrVp66aWXVLZsWUVGRurUqVNatWqVhg8frsqVK6tmzZp64YUX9P777+vChQtq1qyZnJ2dtWvXLrm5uWnw4MGSpDJlyui7777TwoULVbBgQbm4uKhMmTJx1uzl5aW33npLo0aNUteuXdWxY0dduXJF77zzjlxcXDR69OjHvm8vLy917dpVkydPVr58+dS8eXOb9W+//bbOnDmjevXqKXfu3Lp+/bo+//xzOTo6KjAwMNZt3rhxQ3Xq1FGnTp1UvHhxZcmSRdu3b9eKFSvivErqgapVq2ry5MkaMGCAKlasqP79+6tUqVIKCwvTrl279M0336h06dJq3ry5pk2bJgcHB40aNUo5c+aMsa2+fftqyJAh+vXXX9WyZcvHfhaPOnLkiLZu3Rpjee7cuZU7d26FhISoW7duypcvnzXUJcnDw0PTp09XvXr19N5773EbEQApgpwipx5FTgEwG7KKrHoUWQXATMgpcupR5BQAsyGryKpHkVUAzIScIqceRU4BMBuyiqx6FFmFTMdApjJjxgxDUpyPb7/91to2X758Rrdu3Wz6375923jzzTeNYsWKGU5OToanp6dRpkwZ46WXXjKCgoKs7SIiIowJEyYYpUuXtrarWrWqsWzZMmubEydOGA0aNDCyZMliSDLy5ctnGIZhrFu3zpBkLFq0KNb3MHXqVKNs2bLW7bZs2dLYv3+/TZvRo0cbce2+69evNyQZ48aNi7Hul19+MRo3bmzkypXLcHJyMrJnz240adLE2Lhxo7XN8ePHDUnGjBkzDMMwjODgYKNfv35G2bJljaxZsxqurq5GsWLFjNGjRxt37tyJtYZH7d692+jWrZuRN29ew8nJyXB3dzeeeuop4+233zYuXrxoXLp0yXBycjJatWoV5zauXbtmuLq6Gs2bNzcMI/pnvX379nhf+8HnHdfjjTfeMAzDMF599VXDzs7O5rN42IABAwwHBwfj77//TtB7BoDYkFPk1KPIKQBmQ1aRVY8iqwCYCTlFTj2KnAJgNmQVWfUosgqAmZBT5NSjyCkAZkNWkVWPIquQWVkMwzAEZCLDhw/X5MmTdfr0afn6+qZ3OQAA2CCnAABmR1YBAMyMnAIAmB1ZBQAwM3IKAGB2ZBXwZHBI7wKAlLJ161YdPnxYkyZNUt++fQkvAICpkFMAALMjqwAAZkZOAQDMjqwCAJgZOQUAMDuyCniyMPM6Mg2LxSI3Nzc1adJEM2bMkIeHR3qXBACAFTkFADA7sgoAYGbkFADA7MgqAICZkVMAALMjq4AnC4PXAQAAAAAAAAAAAAAAAAAAAACpzi69CwAAAAAAAAAAAAAAAAAAAAAAZH4MXgcAAAAAAAAAAAAAAAAAAAAApDoGrwP3bd68WWPGjNH169dTfNsnTpyQxWJJ0GPHjh2yWCz66KOPYmynZcuWslgsmjJlSox19erVk6+vrwzDkCTlz59fzZo1S/H3AgBIP2QVAMDMyCkAgNmRVQAAMyOnAABmR1YBAMyMnAIyFgavA/dt3rxZ77zzTqoEWI4cObRlyxabx1NPPaWCBQvGWF6mTBl5enpq3bp1NtuIjIzUxo0b5e7uHmNdaGiotmzZotq1a8tisaR4/QAAcyCrAABmRk4BAMyOrAIAmBk5BQAwO7IKAGBm5BSQsTikdwHAk8DZ2VlVqlSxWZY1a1aFhobGWC5JtWrV0rp16xQeHi4Hh6h/pv/884+uXbumV155RXPmzLFp/9dff+nevXuqU6dO6r0JAECmRlYBAMyMnAIAmB1ZBQAwM3IKAGB2ZBUAwMzIKSDlMfM6UszChQtVtWpVubu7y8PDQw0bNtSuXbus6//88085OjrqlVdesek3c+ZMWSwWTZs2zbrMYrFo0KBBmjJliooWLSpnZ2eVLFlS3333XaLrunnzpvr06SNfX195eHioUaNGOnz4sCwWi8aMGSNJGjNmjF599VVJUoECBay38Vi/fr169eolHx8f3b17N8a269atq1KlSiW6psepU6eObt++rR07dliXrV+/Xjlz5lTv3r114cIFHThwwGbdg36PWrFihSpUqCBXV1cVL15c06dPT/F6ASCjIKtSDlkFACmPnEo55BQApA6yKuWQVQCQ8siplENOAUDqIKtSDlkFACmPnEo55BSQAAaQAj744APDYrEYPXv2NH755Rfjxx9/NKpWrWq4u7sb+/fvt7YbN26cIcn46aefDMMwjH379hlubm5Gly5dbLYnyciTJ49RsmRJY8GCBcbPP/9sNGrUyJBkLFq0KMF1RUZGGnXq1DGcnZ2NDz74wFi1apUxevRoo2DBgoYkY/To0YZhGMbp06eNwYMHG5KMH3/80diyZYuxZcsW48aNG8Y///xjSDK+/fZbm23v37/fkGRMnDgxSZ9ZYGCgUapUqVjX7dq1y5BkfPjhh9ZlzZs3Nzp27GgYhmEEBATYvG6dOnWMbNmyGZGRkdZl+fLlM3Lnzm2ULFnSmD17trFy5UqjXbt2hiRjw4YNSaoZADIysirxyCoASDvkVOKRUwCQtsiqxCOrACDtkFOJR04BQNoiqxKPrAKAtENOJR45BSQPg9eRbKdOnTIcHByMwYMH2yy/deuWERAQYDz//PPWZZGRkUaTJk0MLy8vY9++fUbJkiWN4sWLG7dv37bpK8lwdXU1goKCrMvCw8ON4sWLG4ULF05wbb/99pshyfj8889tln/wwQc2AWYYhvG///3PkGQcP348xnYCAwON8uXL2yzr37+/kTVrVuPWrVsJrufRbcYVYJGRkYaPj4/RoEEDwzAMIyIiwvDy8jK+/vprwzAM4/nnnzfatm1rGIZhhISEGK6urjafs2FEBZiLi4tx8uRJ67J79+4ZPj4+Rt++fZNUMwBkVGQVWQUAZkZOkVMAYHZkFVkFAGZGTpFTAGB2ZBVZBQBmRk6RU0B6sEvgBO14wkRERCg8PNz6iIyMjLPtypUrFR4erq5du9r0cXFxUWBgoPW2FlLULUFmz56tLFmyqFKlSjp+/Li+//57ubu7x9huvXr15O/vb31ub2+v9u3b6+jRozpz5kyC3se6deskSZ07d7ZZ3qlTpwT1f2Do0KHavXu3Nm3aJCnqdiRz5sxRt27d5OHhkahtJYTFYlFgYKA2bdqksLAw7d69W9evX1ft2rUlyfq5GoahrVu36t69e7HeNqR8+fLKmzev9bmLi4uKFi2qkydPpnjNAJDWyCpbZBUAmAs5ZYucAgDzIatskVUAYC7klC1yCgDMh6yyRVYBgLmQU7bIKcB8GLyOWBUqVEiOjo7Wx7vvvhtn2wsXLkiSnn76aZs+jo6OWrhwoS5fvmzT3tfXVy1atFBwcLAaNWqkMmXKxLrdgICAOJdduXIlQe/jypUrcnBwkK+v72O3HZ+WLVsqf/78mjhxoiRp5syZunPnjgYOHJio7SRGnTp1dOfOHW3fvl3r1q2Tv7+/ihUrJikqwC5fvqz9+/dbQzq2AHv0fUuSs7Oz7t27l2p1A0BaIatskVUAYC7klC1yCgDMh6yyRVYBgLmQU7bIKQAwH7LKFlkFAOZCTtkipwDzcUjvAmBOy5YtU0hIiPV5zpw542zr5+cnSfrhhx+UL1++x277999/1+TJk/XMM89oyZIlWrx4sZ577rkY7YKCguJcFtsXc2x8fX0VHh6uK1eu2PSJbdvxsbOz08CBAzVq1Ch98sknmjRpkurVq2cNlNTwIJDWr1+vLVu2KDAw0LquZMmS8vPz07p167R+/XrlyJEjVWsBADMiq2yRVQBgLuSULXIKAMyHrLJFVgGAuZBTtsgpADAfssoWWQUA5kJO2SKnAPNh5nXEqkyZMqpUqZL1EV+ANWzYUA4ODvrvv/9s+jz8eOD8+fPq0qWLAgMDtXnzZrVo0UK9evXS8ePHY2x3zZo11iu7pKjbmSxcuFCFChVS7ty5E/Q+HoTAvHnzbJbPnz8/RltnZ2dJivPKpN69e8vJyUmdO3fWv//+q0GDBiWohqQqVaqUsmXLprVr12rjxo3W24ZIUbcWqVWrllasWKGtW7fGeuUVAGR2ZFVMZBUAmAc5FRM5BQDmQlbFRFYBgHmQUzGRUwBgLmRVTGQVAJgHORUTOQWYCzOvI9ny58+vd999V2+88YaOHTumRo0aydvbWxcuXNC2bdvk7u6ud955RxEREerYsaMsFovmz58ve3t7zZw5U+XLl1f79u31559/ysnJybpdPz8/1a1bV2+99Zbc3d01adIkHTp0SN99912Ca2vQoIFq1aqlESNG6M6dO6pUqZI2bdqkOXPmxGj74BYmn3/+ubp16yZHR0cVK1ZMWbJkkSR5eXmpa9eumjx5svLly6fmzZsn85OLn8ViUe3atfXDDz/IMAybq6+kqNuHDBs2TIZhEGAA8BhkVeogqwAgZZBTqYOcAoCUQ1alDrIKAFIGOZU6yCkASDlkVeogqwAgZZBTqYOcAh7DAFLI0qVLjTp16hhZs2Y1nJ2djXz58hlt27Y1Vq9ebRiGYbzxxhuGnZ2dsWbNGpt+mzdvNhwcHIyhQ4dal0kyBg4caEyaNMkoVKiQ4ejoaBQvXtyYN29eouu6fv260bNnT8PLy8twc3Mz6tevbxw6dMiQZIwePdqm7euvv27kzJnTsLOzMyQZ69ats1m/fv16Q5Ixbty4RNfxqMDAQKNUqVLxtpk0aZIhyciWLVuMdbt37zYkGZKMI0eOxFifL18+o2nTprG+bmBgYJLrBoCMjKxKHLIKANIWOZU45BQApD2yKnHIKgBIW+RU4pBTAJD2yKrEIasAIG2RU4lDTgHJYzEMw0jxEfFAMlksFg0cOFBfffVVqr7G6NGjNWbMmAT3GT58uCZPnqzTp0/L19c31WoDAJgfWQUAMDNyCgBgdmQVAMDMyCkAgNmRVQAAMyOnADyOQ3oXAGQEW7du1eHDhzVp0iT17duX8AIAmA5ZBQAwM3IKAGB2ZBUAwMzIKQCA2ZFVAAAzI6cA82HwOjKs8PDweNfb2dnJzs4uRV6ratWqcnNzU7NmzfT+++/HWB8ZGanIyMh4t+HgwD83AHjSkFUAADMjpwAAZkdWAQDMjJwCAJgdWQUAMDNyCniyWQzDMNK7CCApLBZLvOu7deummTNnpkkt3bt316xZs+Jtwz81AHjykFUAADMjpwAAZkdWAQDMjJwCAJgdWQUAMDNyCniyMXgdGdaOHTviXe/n56f8+fOnSS0nTpzQ5cuX421TqVKlNKkFAGAeZBUAwMzIKQCA2ZFVAAAzI6cAAGZHVgEAzIycAp5sDF4HAAAAAAAAAAAAAAAAAAAAAKQ6u/QuAAAAAAAAAAAAAAAAAAAAAACQ+TF4HQAAAAAAAAAAAAAAAAAAAACQ6hzSuwAz2ns6d3qXkCmUcnRL7xIyje0hYeldQqZQOd/xJPeNDCqagpXEzy7gcJq9FjKuCn0npHcJmcLOKS+ldwmZQpmX2R9Twt5Pk74/pmVOSWQVHq9x0ZHpXUKmcLeYX3qXkCk4Xw5O7xIyhVVb3kpWf46pYDYNPbqldwmZgsXRMb1LyBwiItK7gkxhxc0ZSe7LMRXMpoFjh/QuAUAKWxX2XbL6c0wFs6lv3z69S8gUQhtWTO8SMgX7kMj0LiFTWLvmtST35ZgKZlPfrl16lwBEszC/dEr4PWJhkvuSU+bEvwwAAAAAAAAAAAAAAAAAAAAAQKpj5nUASIBIpd3V2lxVBABIrLTMKYmsAgAkHsdUAAAz45gKAGB2HFMBAMyMYyoAgJmRU+bE5wQAAAAAAAAAAAAAAAAAAAAASHXMvA4ACRBhpN0VWHwxAwASKy1zSiKrAACJxzEVAMDMOKYCAJgdx1QAADPjmAoAYGbklDkx8zoAAAAAAAAAAAAAAAAAAAAAINUxeB0AAAAAAAAAAAAAAAAAAAAAkOqYoR4AEiBSRnqXAABAnMgpAIDZkVUAADMjpwAAZkdWAQDMjJwCAJgZOWVOzLwOAAAAAAAAAAAAAAAAAAAAAEh1zLwOAAkQqcj0LgEAgDiRUwAAsyOrAABmRk4BAMyOrAIAmBk5BQAwM3LKnJh5HQAAAAAAAAAAAAAAAAAAAACQ6ph5HQASIMIw0rsEAADiRE4BAMyOrAIAmBk5BQAwO7IKAGBm5BQAwMzIKXNi5nUAAAAAAAAAAAAAAAAAAAAAQKpj5nUASIBIcQUWAMC8yCkAgNmRVQAAMyOnAABmR1YBAMyMnAIAmBk5ZU7MvA4AAAAAAAAAAAAAAAAAAAAASHUMXgeABIiQkWaPxPrjjz/UvHlz5cyZUxaLRUuXLrVZbxiGxowZo5w5c8rV1VW1a9fW/v37bdqEhIRo8ODB8vPzk7u7u1q0aKEzZ87YtLl27ZpeeOEFeXp6ytPTUy+88IKuX7+e6HoBACkvLXMqsVlFTgEAJI6pJLIKAMyMYypyCgDMjpwipwDAzDimIqsAwMzIKXPmFIPXASCDu3PnjsqVK6evvvoq1vXjx4/Xp59+qq+++krbt29XQECA6tevr1u3blnbDBs2TEuWLNF3332nP//8U7dv31azZs0UERFhbdOpUyft3r1bK1as0IoVK7R792698MILqf7+AAAZGzkFADA7sgoAYGbkFADAzMgpAIDZkVUAADN7knPKYhhG4qekyuT2ns6d3iVkCqUc3dK7hExje0hYepeQKVTOdzzJfS+dy5WClcQvW86zSe5rsVi0ZMkStWrVSlLU1Vc5c+bUsGHDNHLkSElRV1v5+/vro48+Ut++fXXjxg1ly5ZNc+bMUfv27SVJ586dU548ebR8+XI1bNhQBw8eVMmSJbV161ZVrlxZkrR161ZVrVpVhw4dUrFixZL3ppFoFfpOSO8SMoWdU15K7xIyhTIvsz+mhL2fJn1/TMuckpKeVeTUk6Nx0ZHpXUKmcLeYX3qXkCk4Xw5O7xIyhVVb3kpWf46pyCqzaejRLb1LyBQsjo7pXULm8NAfEZB0K27OSHJfjqnIKbNp4NghvUsAkMJWhX2XrP4Z4ZiKnHqy1Ldvn94lZAqhDSumdwmZgn1IZHqXkCmsXfNakvtyTEVWmU19u3bpXQIQzcL80inh94iFSe5LTpkzp/iXAQCZ2PHjxxUUFKQGDRpYlzk7OyswMFCbN2+WJP39998KCwuzaZMzZ06VLl3a2mbLli3y9PS0BpgkValSRZ6entY2AAAkFjkFADA7sgoAYGbkFADAzMgpAIDZkVUAADPL7DnlkG6vDAAZSEQa3qQiJCREISEhNsucnZ3l7Oyc6G0FBQVJkvz9/W2W+/v76+TJk9Y2Tk5O8vb2jtHmQf+goCBlz549xvazZ89ubQMASD9pmVNSymUVOQUATw6OqcgqADAzjqnIKQAwu4x4TEVOAcCTg2MqsgoAzIycMmdOMfM6AJjM2LFj5enpafMYO3ZssrZpsVhsnhuGEWPZox5tE1v7hGwHAJD5pHRWkVMAgJTEMRUAwOw4pgIAmBk5BQAwO7IKAGBm5FTCMHgdAEzm9ddf140bN2wer7/+epK2FRAQIEkxrpK6ePGi9aqsgIAAhYaG6tq1a/G2uXDhQoztX7p0KcbVXQCAzC+lsoqcAgCkBo6pAABmxzEVAMDMyCkAgNmRVQAAMyOnEobB6wCQAJFp+HB2dlbWrFltHkm5vb0kFShQQAEBAfr999+ty0JDQ7VhwwZVq1ZNklSxYkU5OjratDl//rz27dtnbVO1alXduHFD27Zts7b566+/dOPGDWsbAED6ScucSsmsIqcA4MmREXNKIqsA4EnBMRU5BQBmR06RUwBgZhxTkVUAYGbklDlzyiHdXhkAkCJu376to0ePWp8fP35cu3fvlo+Pj/Lmzathw4bpww8/VJEiRVSkSBF9+OGHcnNzU6dOnSRJnp6e6tWrl4YPHy5fX1/5+PjolVdeUZkyZfTss89KkkqUKKFGjRqpT58+mjJliiTpxRdfVLNmzVSsWLG0f9MAgAyDnAIAmB1ZBQAwM3IKAGBm5BQAwOzIKgCAmT3JOcXgdQBIgAgZ6V1CnHbs2KE6depYn7/88suSpG7dumnmzJkaMWKE7t27pwEDBujatWuqXLmyVq1apSxZslj7TJgwQQ4ODnr++ed179491atXTzNnzpS9vb21zbx58zRkyBA1aNBAktSiRQt99dVXafQuAQDxIafIKQAwO7KKrAIAMyOnyCkAMDuzZhU5BQCQzJtTElkFACCnJHPmlMUwDPP+ZNLJ3tO507uETKGUo1t6l5BpbA8JS+8SMoXK+Y4nue/pszlSsJL45cl1Ps1eCxlXhb4T0ruETGHnlJfSu4RMoczL7I8pYe+nSd8f0zKnJLIKj9e46Mj0LiFTuFvML71LyBScLwendwmZwqotbyWrP8dUMJuGHt3Su4RMweLomN4lZA4REeldQaaw4uaMJPflmApm08CxQ3qXACCFrQr7Lln9OaaC2dS3b5/eJWQKoQ0rpncJmYJ9SGR6l5AprF3zWpL7ckwFs6lv1y69SwCiWezSu4JM4feIhUnuS06ZEzOvA0ACRHCZDwDAxMgpAIDZkVUAADMjpwAAZkdWAQDMjJwCAJgZOWVOGf6yju3bt6tz584qUKCAXF1d5ebmpgIFCqhz587asWNHepcHAHjCkVMAADMjpwAAZkdWAQDMjJwCAJgdWQUAMDNyCgCeXBl65vWlS5fq+eefV7169TR06FD5+/vLMAxdvHhRq1atUvXq1fX999+rZcuW6V0qgAyOG40hKcgpAGmFnEJSkFMA0hJZhaQgqwCkFXIKSUFOAUhLZBWSgqwCkFbIKSQFOQUgrZBT5mQxDCPDTopfunRpdenSRa+99lqs6z/66CPNnj1b+/fvT9R2957OnRLlPfFKObqldwmZxvaQsPQuIVOonO94kvseO5MjBSuJX8Hc59PstZC6UiunJKlC3wnJLQ+Sdk55Kb1LyBTKvMz+mBL2fpr0/TEtc0oiqzKL1MypxkVHJrc8SLpbzC+9S8gUnC8Hp3cJmcKqLW8lqz/HVEiK1Myqhh7dklseJFkcHdO7hMwhIiK9K8gUVtyckeS+HFMhKVIzpxo4dkhueQBMZlXYd8nqzzEVkiI1s6q+ffvklgdJoQ0rpncJmYJ9CEPSUsLaNbF/VyQEx1RIilTNKbt2yS0PSDkWu/SuIFP4PWJhkvuSU+aUof9lHD16VG3atIlzfatWrfTff/+lYUUAMqsIWdLsgcyDnAKQVtIyp8iqzIOcApCWyCkkBVkFIK1wTIWkIKcApCVyCklBVgFIKxxTISnIKQBphZwypww9eL1QoUJaunRpnOt/+uknFSxYMO0KAgDgIeQUAMDMyCkAgNmRVQAAMyOnAABmR1YBAMyMnAKAJ5tDeheQHO+++646dOigDRs2qEGDBvL395fFYlFQUJB+//13rVq1St99l7xbsAGAJEUa6V0BMiJyCkBaIaeQFOQUgLREViEpyCoAaYWcQlKQUwDSElmFpCCrAKQVcgpJQU4BSCvklDll6MHrzz33nP744w99/vnn+vTTTxUUFCRJCggIUNWqVbVhwwZVrVo1TWq5d1f6bqaT/vrTXjevW5S/cKR6DghV4eKRcfYJC5UWzXXUH6sddP2aRb5+htp0ClO9xuGpVufJYxZN+8pZRw/ZySOLofrNwtW2S5gs9+9WsHWjvVYtc9SJ/+wUFiblyRep57uGqfzTEalWU0Jt/0eavkDaf1i6dMWiL9839GzN1H3NVRukL6ZJp85JeXNKQ3tL9WtFr1+wVPruJ+ls1K6nwvmlAd2kWlVSt67HuXdXWjzLXn9vstPN61K+woa69I9QwWKxfxMf/Meisa86xlg+bmqocuZNvTpPH7do9lf2OvavRR5ZpDpNI9Syc6R1f9z+p0Vrl9nr1DGLwsKkXPkMtX4hQmUrkSjIGMyUU21rlVW7wLLK4ZtVknTs/BV988tf2rz/xGP7liuUU98Ob6f/zl1Wx/fnpWqdhXP6amTHuiqVP0A37wRr8cY9+vbXv6zr6z5VWG1rlVWxPNnk6GCvY+evaMqyrdpy4GSq1oWU9Xy1smpfraxy+kTtj/8FXdHXq/7Sn4dOxNmnQ/Vy6lijnHL6eOr8tZv6dvU2LdtxMFXrLJLDV6Pa1FXpvAG6cTdYP2zZo69XRe+P9coUVvtqZVUsVzY5Odjrv6ArmrRyqzb/y/6IjMFMOSVJpSsVUNvetVS4VG75+mfVuwNmacvqA3G2986WRX1ea6oipXIrZ35f/Tx7s6Z8uCzV68xfNEAD3m6pomXz6NaNu/rtu780f+Ia6/pqDUqpaceqKlQihxydHHTyyAXN/XK1dv55ONVr69y2smpVK6K8uXwVEhqmfYfOacrMDTp99lqC+pcukUufj+2g4ycvq/fQWalaa8F8fhra71mVKBKgm7eDtWzFP5r13Rbr+ppVi6hV4/IqXDC7HB3tdeLUFc2Yv0nbd51I1boeKFM+r9p1rqoixXLIN1sWjRn5vTb/8W+c7V95s4UaNC0XY/mJY5f0YuevU63O/IWya9DwRipWMqdu3bynX5fu1LzpG63rqwcWV/M2FVWwiH/U/njskuZM26C//zqWajUBKclsWZXS2g9vpuotKipP0RwKDQ7Tga1HNO3t73XmSJC1jYu7s3q9+7yqNqugrD4eunDqsn6a/Lt+mbo2HSs3t/YvNVaPt5/Tksm/a8qohZKk6s0qqEn3WipcPp88fbNoQM13dGzf6XSu1Fya9qqjZr3qKHteP0nSqUNnNe+jn7Xj970x2g75rJua9Kytr1+br6WTfk/rUgHTyKw5ZWdvp65vt1XdjjXkHeClq+evadXsDZr/4RIZRtzn5h2dHNT5zedUr1NUv8tnrmrBuCVaOXN92hVvUmVqFFe74c1VpEIB+eb00ZjnPtbmn3fYtHnhrbZq0ruuPLw9dGjbUX01ZLpOHjiTThWbR1L3x7odq6vdKy2Uq3CA7ty4qx2r/tE3I+bq1tXbaVg9kP4ya1Y9rMPIVur1YUf9+PlyTX459vNZNVo/o2b96qtQufxydHbQyf1nNOfdH7Rj1T9pXG3ydX6+smpVK6q8ue+f/zt4TlOmb9Dps1fj7FOmZC717RmovLl95eLsoKCLN7Xst3+0aOmOOPukhIL5/TS0f32VKBqgm7eCtey3fzRrwWbr+prViqhV06eiz/+dvKwZ8zZp+84TqVqXJHXsWEU1axRT3rw+CgkJ1/4DZ/XtN+t1+kzcn6OPj7v696urokUDlCuXj5Ys2aGJk9bE2T6lFCiQTUMG11fx4jl061awlv2yW3PmbLKur1mjqJq3eEqFC/lbP8dZs/7Ujh3HU702ILkya051eK2VarSurDzFcynkXqgObP5XU1+bpzOHz8XZJyqrGqpQ+Yey6p3vM2RWpZRm/Rqoeb8G8s+fTZJ0cv8ZzX1vkbav2B1nH0cnB3V5u53qda55/7j0iuZ/+KNWzliXRlWbzwtvt1XX0e1sll0Nuq72ufrG2adupxp6/pUWylXk/vHUyn805dU5HE8hxWXoweuSVLVqVVME1eRPnHXqhJ2GvBYib19Df6x20LsjXDRh+j35+sV+8uST95x145pFA4aHKCCXoRvXLYpIxhjxi0EWDejiph9W34l1/d070nsjXVSqfKTGTbync2fsNPF/znJ2MdSiXdSA+YN77VW2YoQ69QyVu4ehtSsdNO4tZ334ZbAKFol7IH5auHdPKlZYat1EGvpW8re35DdpyQpp9uexr9+1T3r5HWlIT+nZmtLqjdLLY6S5X0nlSka1CcgmvdxXypsr6vlPK6RBb0iLp0pFCiS/xqSaNsFeZ09Y1HdEuLx9DW1aY6+PRjpo7NQw+fjF3e+j6aFydYt+ntUz6TVcCpKGd3XS7FWhsa6/d0ca/5qDSpSL1DtfRuj8Wenbjx3k7CI1bhu1r/27106lK0aqXU9Dbh6GNq6014S3HTT6i3DlL8wAdmQMZsmpi9dv64slf+r0xeuSpOZVS2rCgBbq+P48HTt/Jc5+Hi5OerdHQ20/dEo+Wd3ibJcQOXyz6tcPe6lC3wmxrnd3cdKkYc9px7+n9cLY+crn760x3RroXkiY5q7eKUmqUCSX/jp4Sl8t3aRb90LUslopfTawpbqOW6B/T19KVn1IOxeu39Znv/6pU5evS5JaVCqpL3q2ULtP5um/CzH3x+erldXQptU15vvV2n/qgkrn9deY5+vr5t0QbTiQtMF3Ob2zauVbvVTm5Tj2R2cnfdP3OW07elodJ8xXvmzeer9jA90NCdPsDVH7Y8VCubTl8Cl9vjxqf2z1TCl91aulOn2+QIfOsj8iYzBLTkmSi5uTjh06r1U/7tBbX3V9bHtHJwfduHpH3329Vq2710iRGrLn8tasda+pcdGRsa53c3fWBzN6a89f/2noc18qVwE/DR/3vILvherH+wOGy1QqqF2bjmjWpyt0++Y91X+uksZ83U0vtZuo/w7GfWIyJZQrnUdLft2lQ0eCZG9np95da+rjd9up24AZCg4Ji7evu5uTRr3URDv/OSlvL/dk1RGQPasWTuurwOb/i3W9m6uTPn7vee3ec0p9J89V7lzeen1YY90LDtP39/9oVq5Ubu3YfVLfztmoW7eD1eTZMhr7Vhv1f2Wujhy7mKz6EsLFxVHHjlzQyl/+0ehx7R7bftKElZr20B+r7O3t9PWcF7VxbdwXYDyOf4Cn5iwZogZV34t1vZubk8Z93ln//H1Cg3tOU648vnrlrRYKvhemxQu2SpLKPJVXf287pulfr9XtWyFq2Kyc3v1fBw3pPV3/HQ6KdbuA2Zgpq1Ja2RrFtOybNTq887js7e3UfXRbffjTq+pT6XWF3I06n9JvXCeVq1VC43tP0YWTl1WhXmkNntBVV85f05Zfd6XzOzCfok/lV+NutWIMTHdxd9L+v45q409/a9gX3dKpOnO7fPaqpo/5QeeOXZAkPduxukYvGKJBNUbr5KHo32GqNn1KxSoV1OVzCbs4DsjsMmNOtX+1hZq++Kz+13OyTh44o6IVC2r41H66c/Oeln75W5z93lgwTN7+nvr0xSk6998FeWXPKnsH+zSs3Lxc3F10bM9JrZy1XqMXDY+x/vlXWqjNsCb6uNdknT1yXp1eb6Nxv41Sz1Iv697t4HSo2DySsj+Wql5Mr84YqCmvzNbWX/6Wby4fDf2qt16e8qLeafdpGr8DIP1lxqx6oGilQmrSp57++yf+CWXK1Cyhnb/v1fQ3vtOd63fUsHttvfvTCA2u+ob+230ibYpNIeVK59GSX3bp0OHzsre3U+9utfTxB+3Ure/0OM//BQeHacmyXfrv+EUFB4epTKncGj64gYKDw7RsRdIGRQZkz6qFM/spsMn4WNe7uTrp4/ef1+49p9V32Jyo838vN4k6/7dku/W97Nh1Qt/O/EO37oSoSf3SGjv6OfV/aU6qn/8rVzavfvp5p/49dF529nbq1auWxo9vrx49pyo4OPbP0dHRQddv3NPceVvU9rmnU6QOf39PLZjfX3XrjYt1vZubk/43vr127z6l/gNmKU9uH40Y0VTBwWFatGibJKls2Tz6++8TmjZtg27fDlGjRmX0wfttNXDQbB09eiFF6gRSU2bMqbK1SunnSSv17/ajsnewV4/3O2rcyjfVu9RLCr4bEmufMrVKaufqfzT9jflRWdWjjt79+TUNrvJ6hsuqlHL5zBVNe32ezh6N+ltGg2619c7Skepf4dU4L/R9c+HL8vb31Ce9J+vc0SB5ZfeUvYNdWpZtSsf3ndbIBtF/a4qMiHsMaKnqxTRi5kB9/fKs6OOpSX308rd99c5zn6RFuXiCZPjB62YQEhI1Y/nId0NUsmzUP+723cK0fbO9Vv3soI49Y/5yu2ubvQ7ssdfEOXeVJWrSUWUPiDkYd+0KB/30vaMunrcoW4ChJq3C1Khl0mZm37jGQaGhFg16NUSOTlLeAhE6fyZMv/zgqOZtw2WxSD0G2A407twrTNs3O+jvrfbpPni9VpX4ZzQPDZM+nyr9slq6dTtq8PjwvtIzTyXt9Wb/IFWrKL3YJer5i/miZn+fvUj6ZHTUsjrVbfsM6xM1E/s/B9Jv8HpoiLRjo52GvROu4mWj9qk2XSO0c3PULOZte8R9hURWL8ndI+5t/7HSTr9+b6/LQZKfv1S/VYSebZG0/WLzWjuFhUp9XomQo5OUu4AUdCZCKxbbq9FzUbOvd+lvW2u7nhHaucWi3VstaT54PUKWNH09IKX9scd2gO/EnzarbWA5lSkYEO/g9Te6PKsV2w4pMtJQ7fKFYqxvUa2kujWopJx+njp35aa+W7tLizbsSVKNjZ8pLmdHe42etUph4RH679wV5c3urS7PVrQOXv/4+w02fb5aukmB5QqpVtmCDF7PQB4dcP7lb5vVvno5lc0fEOvg9eYVS2jRlr1auTtq1uIzV2+obP4c6lm3ks22Wj1dUj3qVlIuH0+du3pT8zbu0sLNSdsfm1YsLidHe725YJXCIiJ0NOiK8mfzVtfaFa2D18cvtd0fv1i+SXVKF1LtUgXTfPA6OYXMYMcf/2pHPDNbP+ri2Wua8kHUTOsNnqsUZ7v6bSqpbZ9ABeT21oWz1/TT7E36df7WJNVYp8VTcnJ20Kcjv1dYWIROHrmgXPnXqXWPmtbB64/O/j7r05WqWq+UKtctkeqD10eM+cHm+bjPftPP8wapaGF/7dkf/4x9wwc20OoNBxQZaahGlSIx1jeuV1odn3tGAf6eCrp4Qz8u26mly3cnqc76tUvKydFeYz/7TWHhETp+6rLy5PLW860qWQevfzXVdhaMb+dsVPUqhVXtmUJpMnh9+9b/tH3rfwluf/dOiO7eiT7pXK1WMXlkcdXKX23/ANigaTk936WaAnJ46ULQdS39fpuW/fh3kmqs27CMnJwc9PH7PyssLEInjl1S7rw+eq5jZevg9a8/W2XTZ8bX61S1ZjFVqVEkzQevk1VATG+0tj3Z/0n/qfr+xFcq8lQB7dsUlYklKhfW7/P/1J6NhyRJv81Yr6Y966hIhQIMXn+Ei7uzRnzTW58Pna2OrzSzWbdmYdT3on8e3/QoLUP465FBK7Pe+1HNetdR8acLWQev++bw0oCPu+jN1p/o3UUvpUeZqYacAqKVqFJUW5b9rW2/ReXMhZOXVLt9NRWtWDDOPpUalFPZWiXUregQ3bp2x9oPUbav3K3tK3fHub71kMZaMHapNi2NGsz3v56TtPDsFNXtWF2/fpv6M7qaWVL2xxLPFNGFE5e09KsVkqSgE5f069TVen54izSpObWQVYAtF3dnvT5nkCb0/UadR7WOt+2jM7JPf/M7VW1RSVWbVcxwAwJHvP3I+b9Pl+vn7waraBF/7dkX+/m/I8cu2pxPC7p4QLWqFVXZ0rltBq83rl9aHZ+rrIAATwVduKEff/5bS3/dnaQ669cpKScnB439dHnU+b+Tl5Un11Y937qSdfD6V9/Y3lHs21kbVb1KEVWrXDjVz/+99vr3Ns/Hj/9VS34cqqJFArRnb+x36bpw4YYmTlwtSWrcqGyc227UsIzat6+sHDm8FBR0Qz8u2aGff07a8fuz9UrJyclBH43/Ner834nLyp3bR+3aPm0dvP7o7O/Tpv2h6tWKqGrVwmk6eJ2cAqKNavKBzfOPe07SDxenqUjFgtq7MfY7i09+aabN8+lvLFDVFk+ravNKGS6rUsrWX2z/djLjzQVq1q+BSlQpGuvg9UoNy6tsYEl1LTRIt65FzRDOcWmUyPAIXbtwI0FtS1QuogsnLtoeT32zWs+/2jw1S0x15JQ5ZepLS0aNGqWePXum+utERkiRkRY5OtkOpnVykg7ui31WiR1b7FWoaKR+WuioF9u7anA3V82a4qSQhy6w+v1XBy2Y4aiOPUL12fR76tQzVN/NdNL6VUm75uDfA3YqWTZqoPAD5SpF6OoVO10Miv0faGSkFHxX8shi/lmu3xgXNVv6J29LS6dLDWtLfUZIJ5J4V8V/9kvVHrlgtvrT0q79sbePiJB+XSPdDZbKl0raa6aECOv+aLvc0Vk6vD/+L+K3+jtqcAdHjRvhoAO7bduuW26nH2bYq22PcI2bGqa2PcO1eJa9Nq5K2tfI0YMWFStr2NRZppKha1csuhzHGIrISOneXYvcsyTpJQHTSaucepSdxaIGlYrK1clBe46dj7Ndi2ollTubp775JfYBfq1rlNbAltU18afNem70LE1cukn9W1RTsyolk1RX2YI59PfhswoLj75wZcuBE8ru7aGcvllj7WOxSG4ujrp558megSgjs7NY1Kh81P74z4nY90cnB3uFhtlevBcSFq4yeQPkYBeVQ89VKa3BTarri+Wb1fKjWfp8+SYNalxNLSolbX8sly+H/v7vrMIeui3Opn9PyN/TQ7l84t4f3Z0ddeMu+yMyh/TKqZTU6Pln1O2lhpo1YYVebPyJZn66Ql2HNtCzrSskaXvFn8qrvduOKSws+rth58bD8vP3lH9u71j7WCwWubo769aNu0l6zeTwcHeWJN26Ff/3UuN6pZUrh5fNbXsf1qxBWfV+oaa+nbNRXQdM17ezN6pn5xpqWDdpBz6liufUP/tO22T+9p0nlM03iwL8Y7/9k8USNWPTzce8F7No1Ly8dm0/potB0ScDG7d4Sj361tGMr9epd8fJmj55nbq9WFv1m8T9x674lCiTW3t2nbTZH3f8dUx+2bIqIIdXrH0slqgZm27dvJek1wTMJjNk1cPcs7pKkvWPK5K0f8thVWnylHxzROVMuVrFlauwv/5evTddajSzgf/rrG2r9mrXhtj/CIiEs7OzKPC5Z+Ts5qyD26Iu5rJYLHr1mxf1wxcrbGZiBxC3jJpT+zcdUvk6pZWrSA5JUsGyeVW6ejHr4OHYVG1eUYf/PqZ2r7TQ/BOTNH3/BPX5qIucXBzTquwMK6BAdvnm8Nbfq6MnYAgLDdeePw6qZNWi6ViZOSRlfzyw9bD8cvvo6UblJUle2T1Vs01l/fXbzrQoGchQMmpWSdLgr3rpr+W7tGtN4o+NLBaL3LK46tbV249vbHIJPf/3sCIFs6tUiZza/dAg7WYNy6p311r6dvYf6tp3mr6d9Yd6vlBTDesl8fxfiZz6Z+8j5//+Pq5sfgk5/5f2563c73+OyX3tpk3KqWfPWpo+/Q917/Gtpk3boB49aqlBg9JJ2l7Jkrn0zz+nbc7/bd9xXH5+WRQQEPfn6OrK+T9kDhk5px7m7hl1h/vE5E5myqqUYGdnp9rtq8nF3VkHthyOtU3VFpV0eMd/en5ESy04PUUzDn2uF//3gpxcnGJt/yTJWSRA352erNlHv9So+UMVUCB7nG0PbDksv9y+eqZxeUlRx1O1nqusbcuZSAUpL1PPvH727FmdPh37VZEpydVNKloyQj/MdVLuvCHy9Da0aZ29jhyyU45csQ/6vnDeokP77OToZOjVd0J064ZF337hpNs3nTTw1ajZzxfPdVS3vqGqUjPqF1H/HBE6czJMq35xUO0GiZ99/fo1O2X3t50l28vbuL/OIv8cMWtdtshRwcEWVQtM2mzvaeXU2aiB4+t/kLL7RS3r2UHauE1aslx66cXEb/PyVcnvkfEnft5Ryx92+D+p40ApJFRyc5W+fF8qnD9JbyNFuLpJhUtG6qd59sqZN1yeXtKWdXY6dsgi/1yx9/HyMdRjWLgKFDEUFiZtWm2nj0Y66PX/Rc/e/tM8e3XsG6Gna0Q9z5bD0LmTEVq33E41GyR+9vUbVy3y87fd5zwf2h+zxbI//vaDnUKCpcq10v4uAFyBhdSQVjn1QOGcvpo5soOcHB10LyRUw79epuPnr8baNk92Lw1uXUO9/ve9IiJjz7LeTSvr0x/+0NpdRyVJ567cVIEcPnquVhn9svVAouvz9XTX+Ss3bZZduRk10M/P013nHlknSS/UryhXJ0et+jv2AxSYV5Ecvpo7pIOcHBx0NzRUw2Ys07ELse+Pm/49qTZVymjtvv904MxFlcztr9bPlJKjg7283F11+dYd9a1fWR///IfW7I3aH89evalC/j5qV7WMft6R+P3RL6u7zl19ZH+8dX9/zOKus1dj7o/dakftjw9miE9L5BRSQ1rnVGroOKCevh33izaviroC9cKZa8pbyF+N21fR6iWJ/6O1j18WXTh7zWbZtSu3JEnefll04cy1GH3a9KwpF1dH/bE8aXeCSI6Bvepoz/4zOn7qcpxtcuXw0ovdamnwawvizPyuHapq0vR12rjliCQp6MIN5c/jqxaNymnl2jiu7o2Hj7e7gh6Z4eHq9ajZGX29Yq6TpPatnpaLs6PW/Znw2fnTi4+vh56uUlhjxyyxWd65R01N+fJ3bdoQNXty0PnrylfAT01aVdDvSdg/fHzcdeG87Wd17f6JbG9fdwWdvx6jT9tOVaP2xzWJz8bkIquQGjJDVj3sxbGdtG/zvzp54Kx12aRX5mrYVz01/8hnCg8LV2Skoc8GTtf++9/JiBLY5mkVLpdXQ+q+n96lZGj5S+bWhNVvyMnFUfduh+i9zl/p1L9RA9Wff6mJIiIi9NPk39O5ytRBTiE1ZNScWvi/n+Xu6aZp+z5RZESk7OztNPOthVq/MPaLXaWoAdilqxdTaHCY3mn3ibL6ZtHgL3spi4+7Pu0zJQ2rz3h8ArwkKcYseNcv3lD2vH7pUJG5JGV/PLDlsD7q+pXemD9UTi6OcnB00Oafd2ji0JlpV3gqIKuQGjJqVtVuX01FniqggZVHJal/25ebycXdWRsWbUnhytLewD51tWffaR0/Gff5vwcWze4vL09X2dvZaeb8Tfp1ZfT5qK4dq2nS1HXauPmh8395/dSicXmtXJPU83+2f0e5ej3qbyy+sZwblKT2bZ6Ri4uj1m1M+/N/A/rX0569p3XixOM/x/h06VJNX3+9Vhv/jPo7UVDQDeXL56fmzcpr1ap9id6ej4+7goIeOf93/y43sa2TpOfbPSMXVyetv38OMq2QU0gNGTWnHtXvk27au/GgTuxP+HtpO7x5VFZ9H/fvvU+C/KXz6ovNH9w/VxWsd9r8T6cOxj6LbY4C/ipdo7hCg8M0ps3/5OmXRYMn9lYWHw990mtyGlduHoe2HdX47hN15vB5eft7qfOo1vr8z/fUu8zwWC+OOLDlsMa98KXeWDDsoeOp7fpqyIx0qD7lkFPmlKkHr8+aNeuxbUJCQhTy8HTnkkJDDDk5J26HHfJaiCZ97KwXO7jJzs5QwSKRqlE3QsePxD4rdaRhkcUiDX09RO4eUcu69QvVJ+86q/eQUAXfky5fstOkT5z19afR/SIiJDf36OfDernq8oWoWh8MM+jSzM263s/f0GfToq+otDzyth70ie3d/rnWXt/PcdTId4LlGfskgqZx4LBkGBY17mI72CI0VPK6PznquQtS827R68IjpPBwqWKj6GXN60tjhkc/j+3zenRZ/rzSj1OlW7elVX9Ir38ozf4ifQew9x0RrqmfOGhoRyfZ2RnKX8RQ1TqROnE09v0xRx4pR57oAeFFSkbo6iWLfvvBXsXLhuvmdenqJYumfWqv6ROi7yYQGSG5PrQ/vt7HIXp/vP+j6NMiemYVP39DY7+NvhAixudrxL5cihqAv2SOvYa9E66sJt8fgYRKSE5JsWdVZES47OwTF+MnLlxTx/fnysPNRfWeKqx3uzdU708WxRjAbmex6MNejfX1sq06dfF6rNvy8nBVDp+sertrfb3V5Vnrcnt7O92+F13rotFdlcMn6nYJlvv/uP/8fKB1/fmrt9TundnW54Zh+z3+4Pvg0eWS1PDpYurbrKpemvSzrqXDLAxInuMXr6ntJ3OVxcVF9csV1vsdG6rHxEWxDmCf8vtW+WVx09yhHWSRRVdu39VP2w+oZ92nFWlEytvdVTm8s+qd9vU15vmH9kc7O90Ojt4fl4zoqpzeD27fEbVz/TU2en88d+2WWo9/aH9UHPujYu6PjZ8qpv4Nqmro9J919Tb7IzKHZOVUZLjs7NL3cNPT213Zc3pp2IdtNfT956zL7R3sdOehmYi+/vVlZc/pJSk6q37c9a51/cVz19WvafRB2aORZIn+coghsGk5dRlcX+8MmKUbV+8k8x0lzrB+z6pg/mwaPHJ+nG3s7Cx6+9VmmjF/k86ciznwXpI8s7rKP1tWjRjSSK8Mamhdbm9vpzt3on/uMyf2kH+2qIOvBx/Jb98Pta6/cOmmug+MPrH16Mdl0YPj2pgfZL1axdW9UzW98f5SXU+HGewTq0HTcrp9O1ibH/oDkaeXm7IHeOrlUc310mvNrMujPsfo/fGbef3kf3/WpAef409rRlrXXwi6oRc7f219HjOrbI/HHla7fim90KuWRo/8Xtevmf9zBBIiWVllRMjOEvsdE9PDwE9fUIHSuTW8vu1thVv1b6DiTxfS2+0m6OKpKypTo5gGTeiqq0HXtWt92l+IYkZ+ubzVb2xHjXruU4WFmHsCDrM7c+S8BtQYLQ9PN9VoUUnDv+6tEY3HycnVUS3719egmmPSu0QgQ8moOVX7+aqq16mmxr3wpU4cOKNC5fKr/ydddeX8Nf0+549Y+9jZ2ckwpHFdv9Td+7N8Tnl1tt5a+JK+GjxdocFhafkWMqYYB5uxnxN90iRlf8xbIpcGTOimee8v1o7f98gnwEt9PuqsoZN669MXuZgCeFhGzKpsuX01YEI3vdboQ4WFJD5f6nSophdGt9Xo1h/r+qWYk9RkJMMGPKuCBbJp8CvzEtR+8Kvz5ebqqJLFcurFHoE6e+661mw4GHX+L3tWjRjaSK8Mief83+Se8s/+yPm/xcOs6y9cvKnu/adbnyfmb371Akuoe+dqeuPdJWl+/m/IkPoqWDC7hgydm6zteHq6yt/fU6+80kTDhze2Lre3t9Pthz7H6dN6yf+R2ed//eVl6/9fuHBDPXtNsz6P829VsfyaULdOCXXtWkNvvb1Y169z/g8ZX0bMqUcN/qqXCpTNq5dqvpXgPnU6VNcLo9tpdKvxGT6rkuvMv+fU76lX5eHlphrPVdGrMwdpeO3RsQ5gt7OzyDCksV2+0N37kyROGT5Lby0ari8HTlNocGhal28K21fstv7/iX2ndXDLYc068oUadA3U4s9+jdE+b4lcGvhZd819b7F2rPpHvjm8o46nJvfm4nSkuEw9eD0hxo4dq3feecdmWb9hWTTg5ayJ2k5ATkPvfhqs4HvSvbsWefsa+vQ9Z2UPiH2GaG+fSPn4WawD1yUpd95IGYZFVy9Z5Ooe9Ztmv5dDVKS47TbsHhp//MaHwQq//zeZq5ctGj3cVf+bEj1gyuGhn7CXd6SuXbUdFXzjWtTzBzNeP7Bpnb0mfeKs4W+FqGzFtJ/lOrEiDcne3tAP39h+PlLUbOiSlN03apD5A7//EfUY/2b0Mo+HBmL7+UiXHhk/d+Wa5PvIwGknRylf7qj/L11c2ntImvOD9M4ryXtPyeGfU3rjk3CF3JPu3ZW8fKWvPrBXtoCEn+gsXCJSm9ZE/SL34MCn57AIFYpnfxz+frgi7u+P165Y9OErjnp/cvRJg4fH2Xr6GLp+zXZ/vHn9/v7oZVvn1vV2mvapvQa9Ga7SFdLnZG2kwRVYSD+xZVVAhQbKUalRHD1iFx4RqdOXbki6oYMnL6hU/gB1qvuUPpi3xqadm4uTSuUPULE82TWyQx1JUQPa7ews2jZpqAZ+/qP+O3dFkvT+nNXad/y8Tf+HZ20d8uUSOdhHfVFk8/LQ1FeeV8f3o0/+hEdEf6dcuXFHvlkf+iKW5JMl6oKsBzOwP9CgUlG93bW+Rk75VdsOnUrU5wBzCI+I1OnLUfvjgTMXVDpPgLrUekrvLloTo21IWITeXvi73l20Rr5Z3HTp5h21rVpGt4NDdO3OPfm4R+0n73y/WntO2e6PkQ/tjwO+jd4f/T09NGPg82r7Sez74+Wbd+SX5ZH90eP+/njLdn9sWL6o3mlfX8Nn/aqtR9JnfySnkJ5iy6lCPtVUxLdGOlUUxWIX9e/iizcX69A/trNZREZG/3t/u8902TtE/d7r559V4+f108CWn1vXRzx0a9url2/J2++hgzhJXj5Rzx/MwP5ArSZlNezDtvpw6Dzt3nw0Bd5Rwg19sZ6qP1NIg1//TpeuxH1LSTdXJxUvkkOFC/praL+oi38eZP6apcP1ytuLdOL+rO3/+3KlDh6OO/NHjlksB4eo71g/Xw99Mbajeg+NPrEcHh79mV+9dkc+XtEXXUuS9/3nVx/5o0qdGsU0YkgjjR73s/7+52SCP4P01LBZOa1ZscfmPT8YVP7Z2F906KEZlSUpMiL6c3xz+ALr5+ibLYs+mdRN/bt9Y11v8zlevSNvn0f2R++o7Lr+yMUSgfVK6uVRzfX+Gz9o1/bjyXl7SUZWIT3FllUFHcuqsFP59CnoEQM+7qKqTZ7S8IYf6vJDFxM5uTiq+5i2erfjF9q28h9J0vH9p1WwTF61HdqYwev3FSmXT97Zs+qrddF/BLR3sFfpakXUok9dNffvZ3NcgLiFh0Xo/LGLkqQju06oaIX8atW/vk4dPievbFk058DH1rb2Dvbq80EHte7fQN3KvJpeJacYcgrpKdacspRSIfvS6VJPn3Fd9N3/ftL676Nmoz2x77T88/qpw4iWcQ4Wvhp0TZfPXrUOXJekU4fOys7OTn65fXXuaFCa1J4RXQ26LknyDvCy/r8keWXz1PWLMWdTfdIkZX/sMLKV9m8+rEWf/iJJOr73lILvhmjC+nc08+2FNp9zRkJWIT3FllUFVFKFLGmfVUUqFpC3v5cmbR9rXWbvYK8ytUqo5cCGauLaOc7f/wOfr6qXv+2n99pP0K41e9Oq5FQxtF89Va9cWINHLIj3/N/DHsx2fuzEZXl7u6t75+pas+Gg7O6fR/3fFyt18P6dlx6wOf83+gfr31j8fLPoi/Ed1XvQTOv6h//GcvXaHfl42/6NxdszjvN/tYprxNBGGj32J/29O23P/w0eVF/VqhbRsJfm6fLlW4/vEI8Hn+Mnn/6mgwdtP8eH98nXX18k+wfnUf2y6LMJndXnxehB/xGPnP/z8X7k/J9X1Of6YAb2B2rXLq5XXmmid95dqp070/48KjmF9BR7TpVQIZVKp4qiDPyip6o0r6ThgaN1+WzsdyB/VODz1fTy1P567/lPM3xWpYTwsHCd+y/qePLw38dUrFIhtR7aRJ/3+yZG2yvnHxyXRufMqYNRx6XZcvvoLMelkqTguyE6vu+UchUJiHV9x9fuH099skxS1PHUvTvB+uyPdzXzLY6nkLIy/OD1O3fuaP78+dq8ebOCgoJksVjk7++v6tWrq2PHjnJ3d4+3/+uvv66XX37ZZtmRiyWSXI+Lq+Tiauj2LWn3Dnu90Cf2q3aKl4rUlj8cdO+e5Hp/cPW5M3ayszPkk82Qs7Pk4xepC+ftVKteRKzbkKRs/tG/5Nrfv2AsR67YD8aKlYzU/OlOCguTHO9Phv3P3/by8Y1U9ocGNf+51l6TPnbWsDdCVLFK3K9tJiWKSBERFl25ZqhSudjbODhEDzKXogahOzvbLntYuVLS5h1S9+ejl23eLj31uN9tDCnUJJOIOLtGPe7ckvbtsFP73gn/eZ48aicvn6j9wtNb8vYzdPG8VK1e3H38/KP/384+qq9/rtjbFi5haNEMO4WHSQ7398d9f0dd+OH3UD5uWWenqZ/Ya8Dr4SpfmT80IuNJbk5JsWdVrZeTf0WjxSI5OsS82vhOcIjNbOiS1C6wnJ4unkcjpvyis5dvKDg0XBeu3VIuP0/9ti3u286dvxp9oif8/omZqAH0Me05dl6DWlWXg72d9QRXlZL5dPHabZ27En1FccOni2l01wYaNXW5/tyXPoOvkDqc7OO/+j08MlIXbkSdhG38VDH9ceC4DEO6cvuuLly/pdy+nvp1Zzz747Xo/THi/kDBqAH0Mf1z8ryGNrHdH6sVy6cLN27r7NXo/bHxU8X0bocGGjlnuTYeZH9ExpNaOdWuwjtxtE4716/c1uWgGwrI46t1y3bH2e7iuevW/4+4/+/9/KkrsbY9tOuUur3cUA6O9goPi/rdukKNIrp84YYunIkebBjYtJxeGttOH708X9vXp+3tWYf2raeaVYto6OvfxXr73YfduRtiMxu6JLVqWl5Plc2r0WN/1vkLNxQcEqaLl28pZ4CXVm84GOe2Ljw0+8eDz/Hs+euxtt1/6Jz6dK0pBwc762DsSk/l16Urt2xqrleruEYOaaR3P/5FW3cci/e9mEXZp/IpVx5frVi2yGb59Wt3dOniTeXI5a218dwi+OJDt/p98Ieqcw/tWw87uPeMevSrY/M5VnymoC5fuqmghz772vVLafgbzTX27SXalsYXUgApIbWy6rkcA1Kr5EQZ+MkLqta8ol5tPFYXHrnNu4OjvRydHGIMvIiMjJTl0dkbnmC7/ziovtXetlk2/KseOn0kSN9//hsD15PDYpGjs4PWfLdZu9bZXizxwZLhWvPdZv0+9890Kg4wh9TKqTY+vVKr5MdydnOS8Wj2RMSfPfs3H1bN56rIxd1ZwfdnFs1dJIciIiJ1+Uzsx1eIEnT8oq6cv6YK9crov90nJEX9DlC2VglNGxX3nbSeFEnZH51dnWwG/j3oIyn2W/8CmVxqZVVrr56pVXK8dq3Zpz5lbWeRe2Vaf53+96wWjv85zt//63SopuFT++vDzp9r2/JdaVFqqhna/9mo83+vPf78X1wsFsnRMepvMteu3406/5fDU6vjuUj6wsVEnP87eE59utWyPf9XIb8uXX7k/F9gCY0c1kjvjl+mrdvT9vzfkMH1VaNGUb308nwFBSX/grFr1+7q0qWbypHDS2vWJPRzjNpfzz10jvphBw6cVa9egbafY6X8unz5lk3NdeuU0KuvNtH7H/ysv/76L9nvBUhLqZZTnt1TqeKEGfRlL1Vv9YxeqTNaQScuJqhPnQ7VNXzaAH3Y6TNtW74zlSvMmCwWi5ycHGNdt3/zv6rVrqpc3F0UfP+Ot7mKRh2XXjqTsIsHngSOTg7KWzyX9m2M/e+Xzm7ONhN7SdHHUxaOp5DCMvTg9QMHDqh+/fq6e/euAgMDlTdvXhmGoYsXL+rVV1/VmDFjtGrVKpUsWTLObTg7O8vZ2dlmmdONxP9D273dXoYh5cwTqaBzFs35xkk580SqTqOoaajnTXXUlcsWDXktajB7jXrh+mGeoyb+z1ntu4Xq1o2oPnUahutBOc93DdP0iU5yczP01DMRCguV/jtsrzu3peZtE38L3Bp1w7VojqMmjndWm06hOn/WTkvmO6rtC6HWczV/rrXXlx85q8eAUBUpET1Tu5OTYTNLfHq4c1c69dAEdWfOSwePSJ5ZpQJ5pOb1Db32oTRioFSyiHTturR1l1S0oBRYJfGv17Wt9MIQ6dv5Ur3q0ppN0pa/pblfRbeZ8I1Us7KUI3tUfcvXStt2S9+MT+67TZ49OyySIeXIbejCOYu++9ZeAbkN1WwYFSbfT7PXtStS3xFRYbPiRztl8zeUK7+h8DCLNq+x0/Y/7TT47ehR+K1fiNDcSfZydZfKPh2p8DCLjh+26M4tqXHbxM/OX7VupJbOtdc3H9urRYdIBZ2Vli2wV6suEdb9ccs6O30z3l6d+0eoUAlD1+//LuHkLLk9/vfTFBUhAhiJlxI5JcWeVXb2iYvwQa2qa9O+Ewq6dkvuzo5q+HQxVSyaW4O+WGJdn93LQ2/PXCnDkHVm9Qeu3bqr0LBwm+VTlm3Vqx1q605wqDbtOy4nB3uVzO+vLG4umrc68QdTK7Yd0ovNquid7g01/bdtypvdSz0bP6Nvf9lqbdPw6WJ6t0dDfbxwvfYePy/frFGzNISEhuv2E3qbp4xoSJPq+vPgCQVdvyV3F0c1Kl9MTxfOrf7fRO2PQ5tWV/asHnpjwUpJUr5sXiqTN0B7TgYpq5uzugZWVOEAX70xf6V1m5NWbtVrrWvrdnCo/jwUtT+Wyu2vrG4umr0h8fvj8p2H1L9BFX3QsaG+Xb1NebN5qXe9Z/T1quj9sfFTxfRBp4b6aMl6/XPyvHzv3ykgJCzt90dyCkmRqjlll/hDTRc3J+XM52t97p/bRwVL5NCt6/d06fx1dR/eSL7+WfXJiO+tbQqWyHG/r7M8fdxVsEQOhYdG6NR/UScC5375u/q92UJ3bwdrxx//ytHJQUVK55aHp6uWzNiY6BrXLdutToOe1cvj2mnh1+uUK7+f2verq/kTV1vbBDYtp1fGt9fXH/ysQ7tPWWdqDwkO193bwYl+zcR4qf+zqlerhN74YInu3QuTz/1ZeG7fDVFoaNQxZJ+uNZXNN4s+nLBchiEdP2U7UPLa9bsKDY2wWT5zwSYNebGe7twN0V9/H5eTo72KFQ5QFg8Xff/TjkTXuXrDAXXrWE2vD2usud//pdw5vdWlXRXN+m6ztU29WsU16qUm+vLbtTpw6Lz1vYSEhunO3dT/jnVxdVTO3D7W5wE5vVSwiL9u3bynSxduqmf/uvLNlkX/e/cnm36NmpfXwX1ndOLYpRjbnDN1gwa83Eh37oRo+5ajcnRyUNHiOZQli4sWf/dXomtcu2qfuvSqpVfeaqnvZv2pXHl81LFbdc2dHr1v165fSiPebqnJE1bq4L4z8va5/zmGhOvunZC4Np0qyCokRapmlQluGzxoQlfVaVdFYzp8rnu3guWdPeq24Xdu3lVocJju3grWPxsPqs8H7RUaHKoLpy6rbI3ierZjdX3z+oJ0rt487t0O0clHZrULvhuqm1dvW5d7eLkre24f+ebwkiTlvj+z0LWLN3TtoYEDT7Lubz+n7b/v0eWzV+Xq4arA555R2ZrF9WabT3Tr6h3deuSuHhFhEbp28YbOZJJZq8gpJEVmzamtv+5Ux9da6eKpyzp54IwKl8+vNsOaauXM9dY2Pd/vIN9cPvpfj0mSpLUL/lTnUW30ytT+mv3uInn6ZlGfcV20cuY6hQabZLafdOTi7qychaNn7QkokF0Fy+XTrau3den0FS354jd1fK2Vzh0N0tmj59VhZGuF3A3R2gWb0rFqc0jK/rj115166es+ata3vnas+kc+ObzU/5NuOrTtqK6ej/3i4IyArEJSZMasunc7WCf2295lMfhOsG5euW1d3vODjvLL5aPx3SdKihq4PmLmQE0aNksHtx6Rt3/UsVfIvVCbu4ZkBC8NqK96tUvojXeX6N69UOvs5rfvPHT+r3stZfP10IefLJcktWr2lC5evKmT9wfulS2VS+3bPKMfl/1t3e7MeZs0pG893bkbqr92HIs6/1fk/vm/JUk4/7f+gLp1qqbXX26iuQu3Rp3/a19Vs+Y/dP4vsIRGDW+iL6esiTr/5/3gvFXqn/8bOqSB6tUrqTffWqy7d0Plff+17zz0OfbuFSg/vywa99Ev1n6FCmWXJLm6OsrT002FCmVXeHiETp6M+vvprNl/atDA+rp7N1Tbtv0nR0cHFSsaII8sLvrhh+2JrnPN2gPq2rW6Ro5oqnnztyh3Lh916lhVc+ZGf45165TQa68101cTV+vAgXPW9xIaGq47aXj+j5xCUmTGnJKkwRN7q27HGhrdarzu3gqWt7+XJOnOjbsKvf835J4fdpJfTh+N7x41CK1Oh+oaMWuQJg2bcT+rovpEZdXd2F4m0+v5QUdt+22XLp2+ItcsrqrTobrK1i6lUY0/iFr/yGe4dv6f6vzmc3p1+gDNGvO9PP2y6MXxL2jljLXWz/1J9OL4Ltr6y9+6eOqyvLJ7qtMbbeSW1VWrZm+QFPP3pq2//K2XpryoZv3qa8fKf+Sbw1v9P+2mg38d0RWOp5DCMvTg9YEDB6pWrVqaNWuWnJycbNaFhoaqe/fuGjhwoNatW5fqtdy9I82b5qQrly3yyGKoSs0IdewRKof7n/C1qxZdvhg9C4Crq/T2R8Ga9pWzRg5wVZashqoFRqhDj+gvy2ebhMvZ2dBP3ztqzrdOcnGR8haIVNM2STvR5+4hvfVRsKZ+GfWa7lkMNWsbZjMQftUvjoqIsGjql86a+mV039oNwjRoRPp+ke//V+o2LPqL5KOJUf/fqpGhsa9LH7wmfT1bGj9Rung5alB7+VJSYOWkvd5TpaVP3pY+nyZ9OU3Kk1P6ZIxU7qHfiS5fk0Z+KF26ImVxl4oWihq4Xv3pZLzRFHDvjkWLptvr6mXJPYv0dI1Ite0RYd0fr1+VrlyM/iwjwqUF3zro2uWogeG58hka/n6Yyj0TfWV67caRcnKWli+y08Kp9nJ2kXLnN9SwddJm53dzl0aMC9fsL+01epCD3LJIjZ6LUKPnogfCr/vVThERFs3+ykGzH7pooEb9CL34asa4KwCebGbKKZ8sbnqvR0P5ebrr9r1QHTl7WYO+WKK/Dp6SJPl5uivAJ0uitrl00z4Fh4apa4NKGtqmhu6Fhuvo2cuavyZpVwHfDg7VgM8W67VOdTV3VCfdvBuieat3au5DA+Gfq1lGjvb2er1TPb3eKfpWED9v3q8xs1Yl6XWR9nyzuOnDzg2VLau7bt0L1ZHzl9X/myXacjhqf8yWxV05vKP3RzuLnboGVlT+7N4Kj4jU9qOn9cIXC3XuWvQgkx//2qfgsDB1r11JLzeP2h+PnL+sOX8kfX98ccpivdGmrr57qZNu3gvR7A07bQbCt6satT++2bae3mwbvT/+tG2/3vyO/RHmZ6ackqQipXNr/Ny+1ud9RzWXJP3+4w59+toi+WTLouz3B5w9MPGnYdb/L1omt+q0eEoXzlxV97ofSZJWLtqukHthatu7lnqNaKLgu6E6cThIS2clbYbQu7eD9UaPqRowuqW++HGwbt+4px9nbNSPDw0WbtKhshwc7TVoTGsNGtPauvzB+0hNrZo8JUn6YmxHm+VjP1uuFWv2S5J8fTyUPVviMv/XVXsVEhKuDq2fVr8egQoODtOxk5f1w09/P75zLO7cDdUrb32vYf2e1ZQJL+j27WB9v3SHvl8a/Yew5o3KycHBXi/1r6+X+te3Lv9tzT6N++y3JL1uYhQtnlMfT+pqfd5vaANJ0qpf/9HH7/8sH18PZffPatPHzd1ZNeqU0OQJKxWbFct2KyQkXO06V1XvgfUUHBymE/9d1JKFiR+4Lkl374TotaHzNHh4I301vbdu3bqnxQv+0uIF0RdaNW1VQQ4O9hr8ahMNfrWJdfmD9wGYndmyKqU17xP1O+THK0bZLP+477f6fV5UVo3tNlk932mnkdP6KYu3uy6evqyZ7/ygX6auTfN6M7Kqjctp+KTomSFHTY/6nWPuuJ819yO+DyXJO3tWjfjmRXkHeOruzXs6vu+03mzzSYwZ1wFEy6w5NXHoDHV753kN/rKnvLJ76sq5a1r+7WrNfX+xtY1PDm9lz+NnfR58J0SvNf5AAz/rrq+2fqhbV25rww9bNPPthenxFkynaMVC+nhN9F1C+n0cdayxavYGfdxrsr7/+Gc5uzpp0Jc9lcXbXYe2HdXrTT7UvVS+ADojSMr++PvsDXLL4qIW/RvoxfFddOf6He1ev19TX2cmezx5MmtWPY5vDi9lzxM9SUbTPs/KwdFBQyb20pCJ0Xc3WTVrvf7Xc3J6lJhkrZrdP/83/pHzf58u14rVUXf78/V2V/Zs0eet7CwW9eleSzkCPBURYejc+ev6ZsYG/fzbbmubX1fuUUhImDo894z69bx//u/EZf2wNPED16X75//e/F7DBtTXlM+7Rp3/W7Jd3y+JHsDdvPH9838DG+ilgQ2sy3/7fa/GTUjd838tW1aQJH02obPN8o/G/6qVK/dKUtT5v+y25/++/Sb6uLJYsRx69tlSCgq6oU6do/aj5cv3KDg4XO2fr6wX+9RWcHCYjh+/pMWLk/g53gnRqyMWauiQBvp6cnfduhWsH37YrkWLtlnbNGv2lBwc7DVsaEMNG9rQunzFyr0aP/7XJL0ukFYya0616B/1b/GT9bZ3Kf5fj4laNWu9JMk3wFvZ80b/Dtv0xfr3s6qPhkzsY12+auZ6/a/nxNQv2oS8/L00cvZg+eTw1p0bd3V8z0mNavyBdq7eIynmZxh8J1ivNXhPA7/opYnbx+nmlVv6Y9EWzXjzu/R6C6bgl9tXo+YNUVa/rLpx6aYO/nVEQ6q9qYv3J7F69PemVbM2yNXDVS0HNFTf/72gO9fvaNe6/Zr62rz0egvIxCyGYWTY+6a6ublpx44dcV5htW/fPj3zzDO6ezdxVyDtPZ07Jcp74pVydEvvEjKN7SHMTJISKuc7nuS+20/lT7lCHuPpvCfS7LWQulIrpySpQt8JyS0PknZOeSm9S8gUyrzM/pgS9n6a9P0xLXNKIqsyi9TMqcZFRya3PEi6W8zv8Y3wWM6XGfCRElZteStZ/TmmQlKkZlY19OiW3PIgyeIY+216kUgRTNKQElbcnJHkvhxTISlSM6caOHZIbnkATGZVWPIGzXBMhaRIzayqb98+ueVBUmjDiuldQqZgH5L4O8UjprVrXktyX46pkBSpmlN27ZJbHpByLHaPb4PH+j0i6RfIk1PmlKH/ZXh7e+vIkSNxrj969Ki8vb3TsCIAAKKRUwAAMyOnAABmR1YBAMyMnAIAmB1ZBQAwM3IKAJ5sDuldQHL06dNH3bp105tvvqn69evL399fFotFQUFB+v333/Xhhx9q2LBh6V0mgEwg0rCkdwnIgMgpAGmFnEJSkFMA0hJZhaQgqwCkFXIKSUFOAUhLZBWSgqwCkFbIKSQFOQUgrZBT5pShB6+PGTNGrq6u+vTTTzVixAhZLFE7mWEYCggI0GuvvaYRI0akc5UAgCcVOQUAMDNyCgBgdmQVAMDMyCkAgNmRVQAAMyOnAODJlqEHr0vSyJEjNXLkSB0/flxBQUGSpICAABUoUCCdKwOQmUSIK7CQNOQUgLRATiGpyCkAaYWsQlKRVQDSAjmFpCKnAKQVsgpJRVYBSAvkFJKKnAKQFsgpc8rwg9fPnz+vyZMn688//9T58+dlb2+vAgUKqFWrVurevbvs7e3Tu0QAwBOMnAIAmBk5BQAwO7IKAGBm5BQAwOzIKgCAmZFTAPDkskvvApJjx44dKlGihJYtW6bg4GAdPnxYFSpUkLu7u1555RXVrFlTt27dSu8yAQBPKHIKAGBm5BQAwOzIKgCAmZFTAACzI6sAAGZGTgHAky1DD14fNmyYXnrpJe3atUubN2/WrFmzdPjwYX333Xc6duyY7t27pzfffDO9ywSQCUQYdmn2QOZBTgFIK2mZU2RV5kFOAUhL5BSSgqwCkFY4pkJSkFMA0hI5haQgqwCkFY6pkBTkFIC0Qk6ZU4b+pHbu3KkXXnjB+rxTp07auXOnLly4IG9vb40fP14//PBDOlYIAHiSkVMAADMjpwAAZkdWAQDMjJwCAJgdWQUAMDNyCgCebA7pXUByZM+eXefPn1fBggUlSRcuXFB4eLiyZs0qSSpSpIiuXr2aniUCyCQiM/a1Pkgn5BSAtEJOISnIKQBpiaxCUpBVANIKOYWkIKcApCWyCklBVgFIK+QUkoKcApBWyClzytA/lVatWqlfv35asWKF1q1bp86dOyswMFCurq6SpH///Ve5cuVK5yoBAE8qcgoAYGbkFADA7MgqAICZkVMAALMjqwAAZkZOAcCTLUPPvP7+++/r/Pnzat68uSIiIlS1alXNnTvXut5isWjs2LHpWCGAzCJClvQuARkQOQUgrZBTSApyCkBaIquQFGQVgLRCTiEpyCkAaYmsQlKQVQDSCjmFpCCnAKQVcsqcMvTgdQ8PDy1cuFDBwcEKDw+Xh4eHzfoGDRqkU2UAAJBTAABzI6cAAGZHVgEAzIycAgCYHVkFADAzcgoAnmwZevD6Ay4uLuldAoBMLsKwS+8SkIGRUwBSGzmF5CCnAKQFsgrJQVYBSG3kFJKDnAKQFsgqJAdZBSC1kVNIDnIKQGojp8yJnwoAAAAAAAAAAAAAAAAAAAAAINVlipnXASC1RcqS3iUAABAncgoAYHZkFQDAzMgpAIDZkVUAADMjpwAAZkZOmRMzrwMAAAAAAAAAAAAAAAAAAAAAUh0zrwNAAkRwrQ8AwMTIKQCA2ZFVAAAzI6cAAGZHVgEAzIycAgCYGTllTvxUAAAAAAAAAAAAAAAAAAAAAACpjsHrAAAAAAAAAAAAAAAAAAAAAIBU55DeBQBARhBhcK0PAMC8yCkAgNmRVQAAMyOnAABmR1YBAMyMnAIAmBk5ZU78VAAAAAAAAAAAAAAAAAAAAAAAqY6Z1wEgASK51gcAYGLkFADA7MgqAICZkVMAALMjqwAAZkZOAQDMjJwyJ34qAAAAAAAAAAAAAAAAAAAAAIBUx8zrAJAAEYYlvUsAACBO5BQAwOzIKgCAmZFTAACzI6sAAGZGTgEAzIycMidmXgcAAAAAAAAAAAAAAAAAAAAApDpmXgeABIjgWh8AgImRUwAAsyOrAABmRk4BAMyOrAIAmBk5BQAwM3LKnPipAAAAAAAAAAAAAAAAAAAAAABSHTOvA0ACRBpc6wMAMC9yCgBgdmQVAMDMyCkAgNmRVQAAMyOnAABmRk6ZEz8VAAAAAAAAAAAAAAAAAAAAAECqY+Z1AEiACK71AQCYGDkFADA7sgoAYGbkFADA7MgqAICZkVMAADMjp8yJnwoAAAAAAAAAAAAAAAAAAAAAINUx8zoAJECEYUnvEgAAiBM5BQAwO7IKAGBm5BQAwOzIKgCAmZFTAAAzI6fMiZnXAQAAAAAAAAAAAAAAAAAAAACpjsHrAAAAAAAAAAAAAAAAAAAAAIBU55DeBQBARhDJtT4AABMjpwAAZkdWAQDMjJwCAJgdWQUAMDNyCgBgZuSUOTF4PRYtf3g5vUvIFCJdI9O7hEzDEmZJ7xIyheOD07sCIOUsfOt/6V1CplC1E1mVErJdCEvvEgCYjBF0Mb1LyBTc7txN7xIAINMyQkLSu4RMwQjlWCBFGBybArBlRBrpXQIAAPHjd9gU4bRie3qXkDlYGJAGADAxfm8CYsXgdQBIgAiDA14AgHmRUwAAsyOrAABmRk4BAMyOrAIAmBk5BQAwM3LKnPipAAAAAAAAAAAAAAAAAAAAAABSHTOvA0ACRMqS3iUAABAncgoAYHZkFQDAzMgpAIDZkVUAADMjpwAAZkZOmRMzrwMAAAAAAAAAAAAAAAAAAAAAUh0zrwNAAkQYXOsDADAvcgoAYHZkFQDAzMgpAIDZkVUAADMjpwAAZkZOmRM/FQAAAAAAAAAAAAAAAAAAAABAqmPmdQBIgAiu9QEAmBg5BQAwO7IKAGBm5BQAwOzIKgCAmZFTAAAzI6fMiZ8KAAAAAAAAAAAAAAAAAAAAACDVMfM6ACRApGFJ7xIAAIgTOQUAMDuyCgBgZuQUAMDsyCoAgJmRUwAAMyOnzImZ1wEAAAAAAAAAAAAAAAAAAAAAqY6Z1wEgASK41gcAYGLkFADA7MgqAICZkVMAALMjqwAAZkZOAQDMjJwyJ34qAAAAAAAAAAAAAAAAAAAAAIBUx+B1AAAAAAAAAAAAAAAAAAAAAECqc0jvAgAgI4g0uNYHAGBe5BQAwOzIKgCAmZFTAACzI6sAAGZGTgEAzIycMid+KgAAAAAAAAAAAAAAAAAAAACAVMfM6wCQABGypHcJAADEiZwCAJgdWQUAMDNyCgBgdmQVAMDMyCkAgJmRU+bEzOsAAAAAAAAAAAAAAAAAAAAAgFTHzOsAkACRBtf6AADMi5wCAJgdWQUAMDNyCgBgdmQVAMDMyCkAgJmRU+bETwUAAAAAAAAAAAAAAAAAAAAAkOqYeR0AEiBClvQuAQCAOJFTAACzI6sAAGZGTgEAzI6sAgCYGTkFADAzcsqcmHkdAAAAAAAAAAAAAAAAAAAAAJDqmHkdABIg0uBaHwCAeZFTAACzI6sAAGZGTgHA/9m776gmsjYM4E8SOkrvWEDEhr2LWBGw994Ve+917XXtu66r7qeia9e1rK6uXbGvvfeOFLGgKL3k+wMNRkBJIMkkeX7ncI6Zknm5hnlykzt3SOiYVUREJGTMKSIiEjLmlDDxf4WIiIiIiIiIiIiIiIiIiIiIiIiIiIiIVI4zrxMRZUMKr8AiIiIBY04REZHQMauIiEjImFNERCR0zCoiIhIy5hQREQkZc0qY+L9CRERERERERERERERERERERERERERERCrHwetEREREREREREREREREREREREREREREpHIGmi4gJxITE2FkZCR7/PjxYyxduhQPHz6Es7Mz+vfvjwoVKmiwQiLSFakQaboE0kLMKSJSF+YUKYtZRUTqwqwiZTCniEhdmFOkDOYUEakTs4qUwawiInVhTpEymFNEpC7MKWHS6pnXTU1NERkZCQC4du0aSpcujeDgYLi6uuLGjRvw9vbGhQsXNFwlERHpK+YUEREJHbOKiIiEjDlFRERCxpwiIiKhY1YREZGQMaeIiPSbVs+8LpVKZf+eNGkSGjZsiG3btkEkSrtSomfPnpgyZQr+/fdfTZVIRDoiRarV1/qQhjCniEhdmFOkLGYVEakLs4qUwZwiInVhTpEymFNEpE7MKlIGs4qI1IU5RcpgThGRujCnhEmrB69/7dq1a9iyZYsswABg6NChCAgI0GBVREREaZhTREQkdMwqIiISMuYUEREJGXOKiIiEjllFRERCxpwiItI/Wj14XSQSyUJLIpHAwsJCbr2FhQU+fPigidKISMekSkU/3ojoG8wpIlIX5hQpi1lFROrCrCJlMKeISF2YU6QM5hQRqROzipTBrCIidWFOkTKYU0SkLswpYdLq+fClUimKFCkCGxsbhIWF4ebNm3LrHz58CCcnJw1VR0RE+o45RUREQsesIiIiIWNOERGRkDGniIhI6JhVREQkZMwpIiL9ptUzrwcFBck99vDwkHt8/vx5tGjRQuV1DK1aDUOrVZNb9jomBlX+WJnp9vbm5phYsxZKOjjAzdoa665exYzgEyqvs6itHabWrYsyTk54Hx+PzTduYOl/52XrAwoXRqfSZVDc3h5GEgkevn2LX86fw6nnz1Ve2xfDKnpjWEVvuWWvY2NQ6c/lmW5f1SU/tjRtl2G575Y1ePz+nUpqBICiNnaY7uOLMg5OeJ8Qj013buDXy+dk6wPcPdHZqwxK2DqkteW7t1hy6SxOvnymspq+NrRyNQyr8k07xsSg8poVmW5f0dkVY71rwMPaBqaGBgj9+BGbbl3HmmtXVFpnUVs7TKtVF2Uc016Tm27dwNKLX70mPQqjc8my8q/JC2dx8oX6XpNfpGj3tT6kIULJqS9iY4ENQcY4d9oAH96LUKhwKvoMjEeRYqlZ7nP8iAF2bDVCeKgYZuZSVKiUgp5942Fhqbo6nz0RY8VSYzy4J0GevFI0aJyE9l0S8eUOYWdPGWD/HkM8eSxGUpIIBQqmomO3BFSolKK6oj7r2rQyalXyREEXGyQkJuPmwzD8vvkkXoRHfXe/Vn5l0dq/LJztLRDx5iPW/f0f/j11R6W1euS3w8judVHCwwnRn+Kx++gNrNmVfo6tVakwWtYrC8+C9jAykOBJ6Fus3nEW/91Q/zn2ax06VEUNn6IoUMAGCQnJuH0nFP/74wRCXqou1wGgRo2i6NGjBlycrRAW/h5rVp/E6TMPNF5XdjGnSFlCy6rc1iiwDhoH1oFDATsAwIt7odj48x5cOpz2AejI5YHw6+Qjt8/di48x3Hem2msVsrXnp8Ixv22G5XvXnsTvE7fDu0EZNOxcHYVL54elTR4M9J+LJ7dDNVCp8Nk6WaLnhGaoWLcEjEwMEfokEktGbsKjmyEAACu7vOg5sRnK1ywGc0tT3Dr/CMsn/YWwp681XHnOMatIGbqeU6V8iqHNyCbwLO8OWxcbTG21AGf3XAIASAwk6D69HSo3KAtndwfEfIjFlWO3sHrCZrz7Qf9D36S1Y2N4lnOHrYs1prZe9E07tkHl+l/aMS6tHSduxrvw95otXGD0/fXInCJl6HpOfdF+bHMEzu6Anb/sx/IR6zLdxsbJCn0XdIFn+UJw9XTC7qUHstxWX2WnHQGgaX9/NBtYH45u9oh88Qab5uzCkfUn1Vip8Ni6WKPX3E6oXL8sjEyNEPogHAt7r8DDK08z3X70mv7w71Y7w/Jnt0PQu/QoFVerOswqUoauZlWpGsXRZlRTFKlQCLYuNpjSYh7O/n3xu/vU7eiDtqObwdXTGTEfYnHpwDWsHP0nPr77pKaqhaf9uObwaVEF+Yu5IiEuEXfO3seqcRvx8kFYlvuMXjMQ/t1rZ1j+7HYIepcaocJqhavL5NboOqWN3LJ3Ee/RzrVvlvsYGhmg86RW8O1UA9ZOVnjz8i02zdmFg0EnVFyt6jCnSBm6mlNfNOnvjzajmsHW2QrPbr/E8uFBuHX6Xqbb8vyaOUUzn+2YUeN+/mjSzx+ObvYAgOe3X2LDjO24eOBaptvrahsyp4RJqwevd+vW7bvrJ0+erKZKgPtv3qDLjr9kj1Ol0iy3NZJI8DYuFssu/Iee5SvkyvFdLSxwKrAXCi1elOn6PEZG+LNVK5wPCUHzTRvhbm2Nef4BiE1KwuorlwEAlV3z4fSL51hw5jSiExLQ2ssL/2vWHC03b8Kd1+r7ovz+uzfovHeb7HHKd9ryizqbV+NTYoLs8dv4OKWPny+vBU536gO3FQsyXZ/H0AgbGrfBudAXaLpjI9ytrLGgTn3EJiVh1Y20L3SqOOfD6ZfPMf+/04hOjEeboiWxqkELtNi5EbffRipdmyLuv32Dzru3yx6npmbdjrFJSfjzxjXce/sasUlJqOTiill1/BCXlITNt29mud/3uOa1wOnuveG+dGGm6/MYGmF9s9Y4FxqCZlvTXpPz69VHXHISVl39/Jp0yYfTIc8x/9yptNdkiZL4X+MWaLFtE+68UU87EuWEkHIKAJYuNMHzp2KMHB8PG9tUHD9iiJ/GmOH31TGws894jrh9U4LFP5ugV/8EVK6WjLdvxFi2xBi/LjTBT9PjlarhVYQIgZ3y4J+jHzNdHxsD/DTGFKXLpmDR77EIeynG4nkmMDaRomXbJADArRsSlK2Qgq6BCTDPI8WRA4aY8ZMpFv4WCw/PrAfi54ZyxfNhx+FruPs4AhKJGP3aVseSca3RcUwQ4hOSM92nRb0y6N/OB3NWHcbdJxEo4eGEcb388TEmHqevPFGqDic7C+z6tTeqdcz8HGtmaoRfxrfG5Tsh6PnTRuR3tsakvvURl5CEzfvTzrHliuXDhZvPsWLrKXyMTUDjWiUxf1QL9Jq0CQ+ea+4cW6Z0Afy95wru3wuHWCJGYGBNzJvXDj16rkJ8fJJSzxkQUAoB/qUwYuSmTNeXKOGCyZOaYU3QSZw+/QA+PkUweXIzDBm6AffuhausLiIhEFpW5bY3oe+wZupfCHvyCgBQr0N1TNk8BIN8puD5vbQvYS4evoFF/VfL9klKUv3FUNpmaMMFEEvSb6dXsJgL5mwZhFP/XAUAmJgZ4c7FJzj1z1UMW9BRU2UKXh5LUyzcPRzXzz7EpM7L8f7NR7i42SEmOr3/OnlNbyQnpWB6zz8Q8ykeLfvUwewtg9C39iwkxCVqsHoizdD1nDIxN8GTG89xcN0JTNk+Um6dsZkRPMu5YeOsnXhy4znyWJuj/8JumL5rFAZVnaihioXJxNz4czsGY8q24XLrjM2M4FnWHRtn78KTGy+Qx8oc/Rd2wfSdozCo2k8aqliY+HokUpyu5xQAFKnogYa9ffH4+vcnOzA0NsSH19HYNGcXWg1tqKbqtEd227FxPz/0nN0Bi/v+gfsXH6NY5cIYvrIPPkV9wvl/VDvZkFDlsTLHklPTcf3EHUxoNAfvI6Ph4uGIT+9js9xn2bC1WDU+/XNAiYEEK6/Ow8m/zme5D5Gu0tWs+tIHOLT2OKbsGP3D7b2qF8OYdYOxYsRanN97GbauNhi6vDdG/K8/prWar4aKhal0TS/s+f0g7l98BImBBD1mdsDcgz+hl9dwxMcmZLrPsmFBWDV+o+yxxECMldcW4ORf5zLdXl88vRWCsf4zZI9TU77/feVPW4fB2sEKC3uvRNijCFg5WEBiIFF1mUSCo6s5BQC12nqj/+IeWDrwf7h95j4a9fXD7P0TEeg1HK9D3mTYnufXzCma+WzHjN68fIvV4zci9FEEAMC/W21M2z0W/cuPxvM7LzNszzYkddLqwetCkpKaijexWX9Q8rXQ6GjMOHECANDGq2SW27Uu4YU+FSsiv6UlXkZHY93Vq9hw47pS9TUrVgzGEglGHzqIxJQUPHj7Fu7W1gisUEE2eP3b2d8XnDmDeh4e8C3kodbB6ympqXgdl722/OJtXCyiEzPvQAFAm6Il0bdsJeTPa4mXHz8g6NZVbLh9Tan6mnsWh7FEglHHDyAxNQUPot6gkKU1epWpIBu8Pv3scbl95l84DT+3wvB181Db4HVFXpN33kTKDQYPvR+NAA9PVHLJJzd4vXVxL/QtXwn5LSzx8mM01l6/gg03lXxNFi0OYwMJRh/+3I7v3sLd6gICy1aQDV6fceqE3D4Lzp2Gn7sHfN0LqX3weqpU9OONiAQsIQE4c9IAk2bEoWTptEF5nbol4vwZA/y71xBdemYcDHX/rhgOjlI0bZk2MNfJOQUNGidhx1Yjue0OH0ibnf1VuBiOTqlo0iIJjZopN5j3xFFDJCWKMHxMPAyNADf3VIS+TMTuv4zQok0SRCKgz0D58323Xon476wBLpwzgIenagd1Df95p9zjmSsP4t+VA1DM3RHX7mU+w2wDnxLYfewGjp6/DwAIi/yAkoWd0blJZbnB641qeaFz40pwtrdExJtobDtwBTuPKHeODaheHEaGEsxccQBJySl48vItCjhdQIeGFWSD15esPyG3z4qtp1Gjggd8yhfS6OD1ceO3yT2eN28fdu0ciiKeTrjxeVZaAwMxevasiXq+XjA3N8azZ2/wx/9O4Pr1F0ods1XLSrh0+Sk2b077Amvz5vMoU7oAWreqhJmz9mS7Lk1iThFl7r8D8ufRdTN2onGvOihWyUM2eD0pIRlRkdGaKE9rfPhmBqq2g7wQ9vQ1bp57BAA4tiNtlguHfDZqr02btBngh9dh77F4RPqHfpFf3cHDtZA9ildwR986s/DiQdqHiMvGb8PmG3NQu3kFHNys3R8MMquIMrp48BouHryW6brY6DiMazBbbtmyYUH47dxs2Oe3xeuQt2qoUDtcPHgdFw9m3neKjY7DuIZz5JYtG7YOv52byXb8hr6/HplTRBmZmBtj/PpBWNz3D3Sa8P3ZDl89f43fh6fNJl4/kxna9Jki7VivUw3s++MIgrelvfePeBqJ4lU80W50M70dvN5uTFO8DnmLBYHpd2h+9fz731nGRsch9quLhL2bVUQea3McXHtCVWWqBbOKKN3FA9eynC00M8WreuLVs0jsXvovACDiWST2/XEYbUc3U1GF2mFCw1lyjxf0/B1/Ra6GZ4VCuHnqbqb7xEbHIjY6fQyCd7NKaefYoOOZbq8vUpNTEPXqQ7a2rRhQBqVrlkDXwoPxMSoGwI+zTRswp4jktRreGAfWHMO/q48BAJYPX4uK/mXQpL8/1kzIOOEaz6+ZUzTz2Y4Znf/nstzjoJ82o3E/fxSvWiTTweu62obMKWHS6fnwJ0yYgJ49e6rlWG7W1jjXuw+Cewbil4YNkd/SMkfP165kKYysXh0Lz56B37q1WHDmNIZ7e6NliRJKPV85Zxf8F/oSiSnpswiefPYMTnnyIJ+FRab7iJA2O/b7eOVm11WWm6U1/uvSD6c69sbSeo2RP++P23Jf66640KUfNjZug2ou+eXWtS9eCqMq+2D+hdPw3RqEeRdOY2Sl6mhVxEup+so5uuC/sJdITP2qLUOewck8L/JlUasIgLma29LNyhrne/TFya698GtAI+S3yP5rsoSdAyo4pb1mvmjvVQqjqvpgwfnTqLcxCPPPncKIKtXRsphyr8nyzs5pr8mv2/H5Mzjlyfvd16S5kRE+JKj3NUmkKurMqZQUIDVVBEP5cecwMgJu38r8Sv7iXil480aEi/9JIJUCUe9EOHPSABWrpM8wfmCfIdavMUbXnolYHhSDroGJ2BBkjKMHlbs+7u4dCUqWSZars3zFZLx7K8ariMzfTKamAnFxIuSx+PGdOnJbHjNjAED0p6zPS4aGEiQmyc/KnpCYjBIeTpBI0t6KNa1TCn3b+mDFttPoMDoIy7eeQp821dGwhnLn2FKezrh69yWSktPPsf/deAZ7m7xwts/iHCsCzEyMEB0jrHOsufnnNv6Y/oXTmNGNUNIrH2bM/Bu9e69BcPA9/Dy3LVxdrZU6RokSLrh86ZncskuXnsLLy1Whuoh0kTqzStXEYhFqtaoMYzNj3L3wWLa8tE8xbHn8C1ZdmYOhv3aHpV1eDVYpfAaGEtRpWQmHtnLGOkVV9S+JhzdeYMLKnth8fTZ+OzgG9Tt6y9YbGqW9f0r66m4uqalSJCcmw6uyR4bnIyLdyqnsMLcwQ2pqKmK+M9Mo/Zi5JdsxN/D1SPRj2p5Tg38LxH/7r+LqUeXuzkppFGlHQ2NDJH5zh7+EuEQUrVxYb2djrdakIh5cfoJJW4djW/gfWH5pLhr0qqvQc9TvWRdXj95E5IuMM1wS6Tttz6rsunP2Puzy2aJyg3IAACsHS9RsVQ0X9uvnhUFZMbc0AwB8/GYii++p37Murh7hOdbF0wlbQpbjz0dLMWHTUDi5O2S5bbUmFfHg0hO0Hd0Um18sR9DdxegzrzOMTAzVWDGRdtDWnDIwNECRCoVw+ZD8ZAuXD9+AV7Wi2XoOnl9zB9tRnlgsRu123jAxN8adcw+ytQ/bkFRJp2deDw0NRUiI6mfCvBYRjlEHDuBpVBTszM0wsHIV/NWuPQL+XKf0YOXBVapg9slgHHyUNpPdy+hoFLaxRYdSpbHzzh2Fn8/e3Awvo+VnE/wyK7e9uXmGdQDQq0JFmBoaYv+D+0r8Bsq59iocI47tx9MPUbAzNcPgCtWws0VH+G0NwvtMBixHxnzCuOCDuPn6FYwlErQo4oWNTdqi/Z6tuBCeNvB6cPlqmHXuBA4+fQgAePnxAzytbdGxRGnseHBb4Rrtzczx8qP8VbOv49KuiHUwM8uwDgB6l6kEM0ND7Husnra89iocIw//i6fvo2BnZoZBFatiR+sO8N+09ruvybM9+sDG1BQGIjF+uXAOW++kf5g6qFJVzDodjIOP01+Tnta26FiyDHbeU+I1aZbxdffmcztmtg4AeperCDMDQ+x7qL7X5Bepun2tD2mIunIKAMzMgGIlUrBlgxHyF4iHlbUUJ48Z4ME9MVxcMx/0XdwrFaPGx2PeDFMkJgIpKSJU8U5Cv8HpM59v3WCEwH4J8K6RNsjKyTkZL54n4t9/jOAbkJzp837P+3ciODjJ30rPyjqtvqh3Ijg5Z6x113ZDxMeJUKOW4sfLqSGda+PavZd48jLrWeb+u/EMTWqXQvClR7j/NBLF3B3RuHZJGBpIYJXXFG/fx6BHi6pYuiEYwRfTzrHhr6Ph7mqL5r5lsP+U4udYG0tzhL+RP4+++5B2jrW1Mkf464zn2I6NKsLU2FA2Q7xQDOjvixs3Q/DsWVpnyMXZCnXrlkC79svw9m3aB6jbtl9ApUqFUL9+KaxefVLhY9jY5MG7z7NbfPEuKgbW1ubZrkvTmFOkKurMKlVxK5EPi49MhJGJIeI+JWBGp9/w4n7arOsXD9/Eqd0X8erFWzgVtEPXn1ri53/GYHDNaUhKVH+uaINq9Usjj4UpDm/j4HVFORWwQ6MuPtj5v+PY+ushFClXEP2mt0JSYjKO/nUBIY9e4VXIW3Qf3wRLx25BfGwiWvSpCxtHS9g4ZH7xmTZhVpEq6EJOZZehsSECZ3fA8S1nEMsLKJVmaGyIwFntcXzLWbZjDuji65E5RaqgzTlVu503PMu5Y2CVCZouRasp2o6XD11Hg8C6OPv3RTy88hRFKhRC/R61YWhkAEu7vHgX8V6l9QqRcyEHNOnnhx2L92HTnF0oVrkwBi7pgaSEZBxZ/+PPAW2crFC5flnM7vyrGqpVLWYVqYI2Z5Ui7px7gLmdf8XELcNhZGIIA0MDnP37In4bvEbTpQlKv4XdcPPUXTy7nb3XhI2TFSo3KIfZnX5RcWXCdu/CI8zrvgwvH4TD2tEKnSa0wC+nZ6BXqZGZXgjgXMgBJX2KIjEhEVNbLYClXV4M/i0QeW3yYGGvFRr4DXIHc4pUQVtzytIuLyQGEkS9ei+3POrVe1g7Wf1wf55fcwfbMZ1byQL49eysz9+VxmNay/l4cTfjrOvf0qU2ZE4Jk04PXl+3bt0Pt0lISEBCQoLcMmlyMkQG2W+a4GfPZP++/xa4EhaGEz0D0apECay+ovjVujampnCxsMBcP3/MrucnW24gFuPjV7Ue6NoVrnnTvsAWidJmo705cJBsfejHaNT/88/03+ub8X4iiDJdDgBNihbF0GrV0HfP33gbp74vIE6EPJX9+z6AK6/CcbJjL7Qq6oXVNy5n2P7Jhyg8+RAle3zlVTiczfOid5mKuBD+EjYmpnDNa4GfawVgTi1/2XYGIjGiE9Pb8lDb7ult+bldbgcOka0P/RgN/21rs6z7S/tn1pZNCxfDsIre6H1gF97Gq2cmouDnz2T/vv8WuBIehuCuvdCqmBdWX8vYjl+03bEF5oZGKOfkjDHVauDZ+/fY+/Beejv6+mNO3W9ek1+148GO3TK8Jm/1HSxbH/oxGgGb0v8upZBvsO++Jj2LYWgVb/TZt1utr0kiVcpOTgGZZ1VighRGxord1mbk+Dj8Mt8E3drlgVgshYdnKmrVTcbjh5m/SXvxTIw/lhmjfZcElK+YgnfvRAhaaYxli40xdHQCPrwX4XWkGL8uMMHShen7paQA5ubpf8gDepoh8lXaMb4sbd0oj2y9g2Mqfl+Tfn789rf6ck4QZfLrBh8zwKY/jTFpepxskLu6jOrui8IF7NB32pbvbhe08zxsLc2xalpHQCRC1IcY7Au+jS5NKyM1NRVWeU3hZGeBCX38Ma53+jlWIhYjJi79/33jvG5wspPPqqNr0s+xEW+i0WnMV6+pb06m38sqv2rFENjSG2MX7UZUtHDOsUOG+KFQIQcMGbpBtszT0xFisQh/rusjt62hoQTRn2t3cLBA0JpesnUSiRgSiRj7/hkhW3b4yG0sWXIw/QkytJdidRHpKmX7VKnSFIhFwpgV7uXDcAzwmYI8lmbwaVoRI1f0wpgGc/HifhhO7rwg2+753VA8vPoM624vQOWAMjizN+v3zfosoH01XDp+B+9eZbwQir5PJBbh4Y0XWDd3LwDg8e2XKFjECY26+uDoXxeQkpyKmb1XY9jCjth+Zx5SklNw9dR9XDyq+EXXRPoiJ30qIWXVj0gMJJi4cQhEYjGWDuLgCmWlteNgiMQiLB0cpOlytBZfj0TZp605ZZ/PFgMWd8O4+rORlJD04x0oU8q044aZO2DtZIVfz86ESCRC1KsPOLQuGO3GNENqSuqPn0AHicRiPLj0GGt+SvsM9vG1ZyhYIh+a9PXL1uB1/2618el9DM7uvqjqUom0krZmlaIKFM+Hgb/0wIYZf+HSwWuwdbZG73ldMHRFHyzqtVzT5QnC4N8C4V66AIbXmJTtffy78xwLABcPXJP9+9mtENw99wDrHv4K/661sGPJvgzbi8UiSKXAnM5LEfv5e62Vo9Zj0rbhWDpodYa7sBDpM23PqQzj9EQiSDP7sv4bPL/mDrZjupf3w9Cv3GjksTKDT6uqGL12EEbWnvLDAexsQ1I1nR68nh1z5szBtGnT5JZZ+fvDun6A0s8Zl5yM+2/ewM3KWqn9xZ9HS004chjXwiPk1qVI0z+c6rlrFwzFaUHrmCcPtrRti8Yb0gdRJaWmyP79OiYW9uZmcs9la2YKAHgTKz/TaKMiRTDXzx+D9v2DMy9eKPU75Ja45CTce/ca7pbZb8urkWFo4VkCQHpbjjt5CNdehcttl/LVG4Ie+3fCQJw2sNLJPA+2NmuPhtvTB/4np6a3++vYGNibys/EameS1rav4+QHpzf2KIqfawVgwOG9OBOqubaMS07G/bdv4GZl9d3tvsx2fv/tG9iZmmFYlWrY+/CerB3HHzuEa6++85rcuxMGn1+TTuZ5sKVVOzTasl62Pvnr12RsDOzN5NvR1jStHb/MwP5FI8+i+NnXHwMP7MWZEM20Y4pUsUHCRLkps6waNDwPhozIq9DzOLtIMXdxHOLjgNhYEWxspfh5hgkcM5nNHAC2bzZCca8UtGqX9iGJuwdgYpKAscPM0KVnomxw76AR8ShaPEVuX/FX4+GnzolD8ufJa9++EWP8CDP8+kf63/nX14tZ2UgRFSX/9/bhfdrjbwennzxugF8XmGDc5DiUrSB/fFUb0a0ufCp4oP/0LXj9g9snJiQlY9YfBzF39WHYWJrhbVQMmvmWRkxsAt5/jINV3rRz35xVh3Dn0Tfn2K/yZ+S8nTCQpJ1j7a3z4PfJ7dBt/Ffn2JT0Nnj3IQY2lvLnWGsLM9m6r/lWLYoJffwx8Ze9uHhLs7n/tcGD/OBdzRPDhm/EmzcfZctFYhFSUlLRr99aufYBgLi4tNfqmzcf0btP+iCKGjWKomaNopg1e49sWWxsouzf7959go1N+gUVAGBtZY6ob2Zj/15dmsacIk3KLKc8jMqgsHE5DVUkLzkpBeFPIgEAD68+Q5Hybmje3w+/Dsv4oee7Vx8QGfIWLh6O6i5TKzi4WqNsjaKY2WuVpkvRSu8io/HigXzWhzx6heoNy8oeP7oZgkH+P8MsrwkMDQ3w4d0nLN47Eg9vCCejlcWsIk3KLKsKibzgISmpoYqyT2IgwU+bh8LR3QFj/GbozCzX6pbWjkPg6GaPMf6z2I5K0uXXI3OKNCmznHJHCXiINJNTnhXcYe1ohd8vzpEtkxhIUKpmcTQbGICGpp2QmqreSSS0kTLtmBifhIW9VmBJv//B2tES78Kj0LBPPcREx+KDgD6HUqd34VF4cTdUbtmLe6Go0bJKtvav36M2jmw4heQk9X5+rArMKtKkzLOqODzgpaGKFNNhXAvcPnMf2xekfUfw9OYLxMUkYMmpGVj702a9vLPF1wb+2hNVm1TEyFpT8Cb0Xbb3q9+jLo5sOInkJN7B8mvxsQl4eusFXD2dMl3/Nvw93oS+kw1cB4AXd0MhFothn88Wod98V6gtmFOkSULLqQ9vPiIlOQU238yybuVgifevPvxwf55fcwfbMV1yUjLCHqfly4PLT1C0ogdaDG2IX/r98d39dKkNmVPCpNXz4S9cuBDPnz/P0XOMHz8eHz58kPuxquebo+c0kkjgYWODyJiMA56y401sLMI/fkR+S0s8//Be7ufL4GIACPv4UbY89GPa8q+3DfuY/kHW1fAwVHbNB8OvRhPWKOiGiE+f5J6zSdGimB9QH8P+3Y/jT9NnQdcUI7EEha1sERmb/bb0snWUbf8mLhbhnz6iQF5LPI9+L/fz8mP6G4LQT9Gy5aGfPrflV9t+WQYAV1+FobLLN22Z3w0RMR/lnrNp4WJYUKc+hh7dh+MvnijdBrnBSKz4a1IkEsHo8yBJWTtaWn33NRn61WvyZSavydCvXpNXwsMztmOBgoj49FH+NelZDAvqBWDoof04/kzzr0kiReRGTgGZZ1W/gXl+vGMWTEwBG1spPn0Erlw0QFXvzN9oJiTID0IHALE47QsVqRSwtpHC1i4VEeFiuLhK5X6cvhoQ7+CYvtzBMW2w8dfbOjimb1u8RApu3TBA0leTCly9ZAAb21Q4OqVvF3zMAEvmmWDUhHhUqqreLx5Gdq+L2pUKY9CsbQh/nf1ZZ1NSUvH63SekSqXwq1YUZ64+gVQKREXHIvLtR7g6WOHlq/dyP18/f8Sbj+nL36Qt/3rbiK++wLr5MBxli+eDgST9P7By6YJ4/e6j3HP6VSuGSf0CMGXZfpy9Jpxz7JDBfqhRowhGjtqMiAj5DvyjR68gkYhhZW2GsLD3cj9fBpunpkrllr9/H4uEhOQMy764cycMFSq4yR2nQkU33L4t/8XY9+oi0laq6lMVMiqdSxWqgEgEQ+PMr+POa2MOe1cbvPvmVo6Uxq9dVXx48xEXOBO4Uu5cfIJ831wY4VrIAZGZfCkY+zEeH959gou7PTzLFMD5gzfVVSaRoKiyT+UuLp4LFarWl4HCroWdMS5gZqa3G6cf+zJw3bWwE8bVn812VBJfj0QZqTSnRJrLqatHb6F36VHoV36s7Of+xcc4tuk0+pUfy4Hr2ZSTdkxJTsGb0HdITZWiTltv/LfvSrZmaNRFt8/eR74iznLL8nk649Xz1z/ct3StEnD1dMaBNcdVVR6R4Kk0q1AsFypUD2Mzowzn3S93tBB97zasemDQ0kD4tKiCMb7TEPEsMtv7yc6xq4+psDrtZGhkgALFXPEu/H2m62+fvQ9bF2uYmBvLlrkWcU77HvHlWzVVSSQMuppTyUnJeHD5Ccr7yX9XVr5eadw+d/+7+/L8mjvYjt8nEolgZGT43W3YhqQOWj14ffTo0fDw8ICfnx+2bt2KxMTEH+/0DWNjY1hYWMj9iAwUm5B+fI2aqOyaD/ksLFDGyQnLGjdGHiMj7LiT9oX+6Oo+WBBQX26f4vb2KG5vD3MjQ9iYmqK4vT0K29jI1v9y/hz6V6qM7uXKwd3KCkVt7dC6hBcCy5dX+HcEgD337iExJQXzA+qjiK0t/D0KY0Dlylh9+bJsmyZFi2JBQH3MDg7G1fBw2JmZwc7MDHmNjJQ6pjImVK2FKs75kC+vJco6OOF3/6ZpbXk/rS3HVK6BhXUayLbvWao8/N0Kw83SCp7WthhTuQYaehTBultXZdssuXQWA8pVQY9S5eFuaY2iNnZoU7QkAktXUKrGvx/dRWJKChbUaYAi1nYIcCuMAeWqYNX19LZsWrgYFtZpgJnngnH1VRjsTc1gb6q+tpxQvRaquKS9Jss6OuH3hk2Qx8gIO+99fk1W88FCv/TXZJdSZeHrVghullZws7RC6+Je6FWuInbfvyvb5pf/zqF/hcroXqYc3K2s016Txb0QWFa5dtzzIK0d59erjyI2tvAvVBgDKlbB6mtfvSY9i2GhX33MOh2MqxFhGnlNEuVEbuQUkHlWGRkr/mHa5YsSXL4gQUS4CFcvSTB+pBlc86eiXv20keJrVxlh4VwT2faVqybj7CkD7N9jiIgwEe7ckuCPZSYoUiwFtnZpH/J17JqIvzYb4e8dhggNEeHZEzEOHzDAru3ff6OblVp1k2BoKMWSeSZ49lSMs6cNsG2zEZq3Tp/pPfiYARbNNUFgvwQUK5GCqHciRL0TIUYN35uP6uGLgOrFMeW3/YiNS4SNpRlsLM1gbJj+3qF/Ox9M7p9+js3vZI2A6sWRz8kKJTycMH1wIxTKZ4flW0/Ltlm14xy6Nq2MtvXLIb+TNTzy26FRLS+0b6jcOfbQmbtISkrBpH71USifLWpVLIxuzapg8/70c6xftWKY3L8+ft0QjFsPw2S/i7mpZs+xQ4f4o149L8yctQexsYmwtjaHtbU5jIzS2vjlyygcPnIL48Y2Rg2fInByskTRok5o374KqlQupNQxd+68hIoV3dG+fRXkz2+D9u2roEJ5N/y1I/32Vz+qi0hbqapPpelbMX7RfXIreFXzhGMBW7iVyIduk1qidI1iOLbtHEzMjdFrZjsUr+wBxwK2KO1TFNO2DsOHtx9xdu8VTZcuOCKRCH7tquLI9gsZblefx8oMhbxcUbBI2mxC+TwcUcjLFdb2it0lRtft/t9xFCvvhnaD/eHsZofazSugQSdv/LP2lGwbn8ZlUapaYTgVsEVV/1KYvXkgzh24gSsn72mwciLNUWWfSghZZWJujEJlCqJQmYIAACd3BxQqUxD2+W0hlogxaetwFKnggbndlkIsEcPa0RLWjpYwMNR87UKSoR3d7L9px6EoUr4Q5nZbxnb8Dr4eiRSnqzkV9ykez26HyP3Ex8Qj+u0nPLsdAgDoOasDxqwdKLefR5mC8ChTEKZ5TGBpbwGPMgVRoLirJn4FQVCmHV09neHbyQeuhZ1QtJIHJmwaCreS+bFm4hZN/Roat2PJfhSv6okO45rDxcMRdTpUR8Pevtiz/JBsm8xejwDQoGcd3D3/UNbeRPpIV7PKxNwEHmXc4FHGDUDae1ePMm6wz28HAOg5uyPGrB0k2/78P5fh07IyGvfzh5O7A7y8i2LgLz1w97+HeBsepYlfQRAGL+sF3041MKfTL4j9GA9rRytYO1rByCT9e6Jv2/KLBj19cff8A55jAfSZ1xmlaxaHk5s9ilUujEnbR8DMwhSH/gwGkDGnjm06jei3HzF6zQAUKO6KUjWKo8/PnXAw6DgS45OyOgyRTtLVnAKAHYv/QYNAXwT0qIMCxVzRb1E3OBSwwz8r0t7H8vyaPYpm/hdsx3Q9Z3VASZ9icCxoD7eSBdBjZgeUru2Fo5vSvptiG5Imaf1om1WrVmH37t3o0qULLCws0LlzZ/Tq1QslS6rvdopOefPgl4YNYW1qindxcbgWHo5WWzbLZj63NzeHS175L+33de4i+3cpRyc0K14cLz98QM01qwEA227dQnxSMnpXrIixPjUQl5yM+2/eIOiKcoMoPiYmouuOHZhWty7+7tgJHxLisfrKZay+kj6IrUOp0jCUSDDd1xfTfdNnn//r9m2MOXRQqeMqyjlPXvxarzGsTUzxLj4WV1+Fo8WuTbKZzx3MzeGa10K2vaFEggnVasHJPA/ik5PxIOotuu/fgRMv0meP3XrvJuKSk9C3bCWMq1oTcUlJuP/uDdbcuJzh+NnxMTERnf/Zjuk+vtjbqnNaW964hFU3Lsm26ViiDAwlEsysUQ8za9STLf/r/i2MOn5AqeMqwilPHvwS0OjzazIWVyPC0XLbJtnM5w7m5nDJk96OYpEIo71rIL+FJZJTU/Hiw3vMO3sKm25dl22z9U5aO/YpXwnjqn9ux7dvsOaa8q/JLn//hem1fLGn3ed2vHYZq66m/790LJn2mpxRux5m1P6qHe/ewugj6nlNfpHK24eQkoSQU1/ExoiwbpUx3rwRIW9eKbxrJKNrzwR8uWYr6q0YryPTX+v16icjLi4B/+w2xOoVxjDPI0Xpsino3jtBtk1AoyQYm0ixc5sRgv5nDBMTwM09BU1bKffhinkeYOa8OCz/1RjD+5shT14pmrdORIs26c/37z+GSEkRYfmvJlj+a/q+vv5JGD42XqnjZlcrv7IAgN8nt5NbPmPFAew/mXaBkK2VORxtvzrHikXo2KgiCjhbIzklFZfvhKDP1M2IeJM+A/reEzeRkJiETo0rYWCHmohPSMLjkDfY+q9y59iYuEQMnfMXRnb3xZqZnfExJh6b91+WG7ze3Lc0DAwkGN2zHkb3TD/H7gu+hZkr1XuO/VqzZmkX6i1Z3Elu+c/z9uHg51ln583bj86dvdGvX13Y2eVFdHQc7twJxX//KXenk9t3QjFj5t/o2aMmenSvibCwKMyY8Tfu3QtXqC5NYk5RTggpq3KbtYMFxvzRB9ZOloiNjsPTWyH4qeVCXD1+B0YmhnD3yod6HbxhbmmGdxHvcePUPczuvhxxn1SbJ9qoXI2icMxng0Nbz2VYV9W/FEYu7ix7PH55DwDAhoX7sXHRv2qrUegeXH+BGb3+h+7jmqLjsPqICHmLlVN24viu9L6kjYMl+kxpCSu7vHgXGY2jf13A5iWq70OqA7OKlKXLOVWkggcWHJ0se9xvQVcAwKE/g7F++l/wbloRALDi8jy5/Ub5TseNk3fUV6jAFalQCAuOTJI97rcg7XPXQ38GY/2MHfBu8rkdL82V229UvRm4cfIuKI2+vx6ZU6QsXc6p77F1toJDflu5ZSuupJ8filT0gG9HH0Q8i0QXj8HqLk9rfNuOEokYrYc3Rr6iLkhJSsG1E7cx1GdStmYZ11UPLj3G1FYLETirAzpPaoWIp6+xfMQ6HNuUPjFIZq9HMwtT+LSsgt+Hr1VzxarDrCJl6WJWFalYCAuPT5M97r+oOwDg0NoTmN9zGWydrOFQwE62/tC6EzDNa4JmA+uj74KuiHkfg6vHbmHVuI3qLl1QmvYPAAAsPDFNbvn8HstwaN0JAMjQlgBgZmEGn1ZV8PuwILXUKXR2+WwxYeMQWNhZ4MPraNz97yGGeP+EyBdvAGTMqfiYBIwLmIWBv/bAsgtzEP32I05uP4+gSdp9sRpzipSlizkFAMHbzsLCNg86T2oNG2drPLsVgomNZqefG3h+zRZFMx9gO37LytEKY/8cDBtna8R8iMXTG88xocEsXDlyA4D+vBaZU8IkkmrxfebEYjEiIiLg4OCAyMhIrF27FkFBQXjw4AEqVKiA3r17o3379sibV7HZ3gotXqSiivVLqmnqjzeibBEl8QSaG54OHqn0vkOvdsjFSr7vl3Kbs71tcnIypk6dio0bNyIiIgLOzs7o3r07fvrpJ4jFaTfXkEqlmDZtGv744w9ERUWhSpUqWLZsGby8vGTPk5CQgFGjRmHz5s2Ii4uDr68vfv/9d+TLly/Xfz99oqqcAoCHL11UULH+6TpG+fMCpTN9xZkgcsOxo+OU3ledOQUwq3SJqrKqvkUPFVWsX0R582i6BCKZf0OX5mh/9qlIGarsU/kbtldBxXpIpNU39hQOKT9HzQ2HkpQf7CHUPhVzSthUmVN+knY/3oiItMrhlK052p99KlKGSrNK3EYFFRMpiX3TXJGTrGKfipTBnCIiRRxO3a70vkLNKUC/s0pn3sE5ODhgzJgxuHv3Lk6cOIESJUpg+PDhcHZ21nRpRKQDUqVitf0o4ueff8aKFSvw22+/4e7du5g3bx7mz5+PpUvTB5bMmzcPixYtwm+//YaLFy/CyckJfn5++Ph5Jn4AGDZsGHbt2oUtW7bg9OnT+PTpExo3boyUlJRca0N9x5wiIlVSZ04xq3QXs4qIVIk5RTnFnCIiVRJqn4o5pT2YU0SkakLMKYBZpU2YVUSkSuxTUU4xp4hIlYSaU4B+Z5VWD14XiTKfjbpGjRpYu3YtwsLCsHjxYjVXRUSkPufOnUOzZs3QqFEjuLm5oXXr1vD398elS5cApF15tWTJEkycOBEtW7ZEyZIlsW7dOsTGxmLTpk0AgA8fPmD16tVYuHAh6tWrh3LlymHDhg24efMmjhw5oslfT+sxp4iImFVCx6wiIn3HnBI25hQR6TvmlLAxp4iImFVCx6wiIn3HnBI25hQRkX5nlVYPXpdKpd9db2Fhgd69e6upGiLSZSkQqe0nISEB0dHRcj8JCQmZ1uXj44OjR4/iwYMHAIDr16/j9OnTaNiwIQDg6dOniIiIgL+/v2wfY2Nj1KpVC2fPngUAXL58GUlJSXLbuLi4oGTJkrJtSDnMKSJSF3XmFLNKtzCriEhdmFOkDOYUEamLUPtUzClhY04RkToJMacAZpXQMauISF3YpyJlMKeISF2EmlOAfmeVVg9eT01NhYODg6bLICLKVXPmzIGlpaXcz5w5czLdduzYsejQoQOKFSsGQ0NDlCtXDsOGDUOHDh0AABEREQAAR0dHuf0cHR1l6yIiImBkZARra+sstyHlMKeISFcxq3QHs4qIdBFzSncwp4hIV2U3q5hTwsacIiJdxT6V7mBWEZGuYp9KNzCniEhXsU+VPQaaLoCISBukSjO/XZEqjB8/HiNGjJBbZmxsnOm2W7duxYYNG7Bp0yZ4eXnh2rVrGDZsGFxcXNCtWzfZdt/ebkkqlWZ5CyZFtiEiImFQZ04BzCoiIlIc+1RERCRkQu1TMaeIiOgL9qmIiEjI2KciIiIhE2pOAfqdVVo987pUKsXSpUvRrVs3bNu2DQCwfv16lChRAsWKFcOECROQnJys4SqJiBRjbGwMCwsLuZ+sAmz06NEYN24c2rdvj1KlSqFLly4YPny47GotJycnAMhwFVVkZKTsiiwnJyckJiYiKioqy21IOcwpItJVzCrdwawiIl3EnNIdzCki0lXZzSrmlLAxp4hIV7FPpTuYVUSkq9in0g3MKSLSVexTZY9WD16fOXMmJk6ciJiYGAwdOhQ///wzhg8fjk6dOqFbt25YtWoVZsyYoekyiUgHpErFavtRRGxsLMRi+X0kEglSU1MBAO7u7nBycsLhw4dl6xMTExEcHAxvb28AQIUKFWBoaCi3TXh4OG7duiXbhpTDnCIidVFnTjGrdAuziojUhTlFymBOEZG6CLVPxZwSNuYUEamTEHMKYFYJHbOKiNSFfSpSBnOKiNRFqDkF6HdWGWi6gJxYu3Yt1q5di5YtW+L69euoUKEC1q1bh06dOgEAihUrhjFjxmDatGkarpSISDWaNGmCWbNmoUCBAvDy8sLVq1exaNEi9OzZE0DaLUOGDRuG2bNnw9PTE56enpg9ezbMzMzQsWNHAIClpSUCAwMxcuRI2NrawsbGBqNGjUKpUqVQr149Tf56Wo85RUTErBI6ZhUR6TvmlLAxp4hI3zGnhI05RUTErBI6ZhUR6TvmlLAxp4iI9DurtHrwenh4OCpWrAgAKFOmDMRiMcqWLStbX758eYSFhWmoOiLSJakQabqETC1duhSTJk3CgAEDEBkZCRcXF/Tt2xeTJ0+WbTNmzBjExcVhwIABiIqKQpUqVXDo0CHkzZtXts3ixYthYGCAtm3bIi4uDr6+vli7di0kEokmfi2dwZwiInURak4BzCqhY1YRkboINauYU8LGnCIidWFOkTKYU0SkTswqUgaziojUhTlFymBOEZG6CDWnAP3OKpFUKpVqughlFSpUCL///jvq16+Phw8folixYtiyZQvatGkDANi/fz8GDhyIp0+fKva8ixepoly9k2qaqukSdIYoSbgnUG3ydPBIpfftdal77hXyA6sqrlXbsUi1VJVTAPDwpUtul6uXuo5R/rxA6UxfJWm6BJ1w7Og4pfdVZ04BzCpdoqqsqm/RQxXl6h1R3jyaLoFI5t/QpTnan30qUoYq+1T+hu1zu1z9JFLsFqiUBSk/R80Nh5K2KL0v+1SkDFXmlJ+kXW6XS0Qadjhla472Z5+KlKHSrBK3ye1yiZTHvmmuyElWsU9FymBOEZEiDqduV3pf5pQwafXM6x07dkTXrl3RrFkzHD16FGPHjsWoUaPw9u1biEQizJo1C61bt9Z0mUREpKeYU0REJHTMKiIiEjLmFBERCRlzioiIhI5ZRUREQsacIiLSb1o9eH3atGkwNTXF+fPn0bdvX4wdOxalS5fGmDFjEBsbiyZNmmDGjBmaLpOIdECKlLPfk+KYU0SkLswpUhaziojUhVlFymBOEZG6MKdIGcwpIlInZhUpg1lFROrCnCJlMKeISF2YU8Kk1YPXJRIJJk6cKLesffv2aN+et/0lIiLNY04REZHQMauIiEjImFNERCRkzCkiIhI6ZhUREQkZc4qISL9p9eB1IiJ1SZWKNV0CERFRlphTREQkdMwqIiISMuYUEREJHbOKiIiEjDlFRERCxpwSJv6vEBEREREREREREREREREREREREREREZHKceZ1IqJsSJWKNF0CERFRlphTREQkdMwqIiISMuYUEREJHbOKiIiEjDlFRERCxpwSJs68TkREREREREREREREREREREREREREREQqx5nXiYiyIRW8AouIiISLOUVERELHrCIiIiFjThERkdAxq4iISMiYU0REJGTMKWHizOtEREREREREREREREREREREREREREREpHKceZ2IKBtSpbwCi4iIhIs5RUREQsesIiIiIWNOERGR0DGriIhIyJhTREQkZMwpYeLM60RERERERERERERERERERERERERERESkcpx5nYgoG1KlvNaHiIiEizlFRERCx6wiIiIhY04REZHQMauIiEjImFNERCRkzClh4v8KEREREREREREREREREREREREREREREakcZ14nIsqGVKlI0yUQERFliTlFRERCx6wiIiIhY04REZHQMauIiEjImFNERCRkzClh4szrRERERERERERERERERERERERERERERKRyHLxORERERERERERERERERERERERERERERCpnoOkCiIi0QSp4+xAiIhIu5hQREQkds4qIiISMOUVERELHrCIiIiFjThERkZAxp4SJM68TERERERERERERERERERERERERERERkcpx5nUiomxIlfIKLCIiEi7mFBERCR2zioiIhIw5RUREQsesIiIiIWNOERGRkDGnhIkzrxMRERERERERERERERERERERERERERGRynHmdSKibOAVWEREJGTMKSIiEjpmFRERCRlzioiIhI5ZRUREQsacIiIiIWNOCRNnXiciIiIiIiIiIiIiIiIiIiIiIiIiIiIilePM60RE2cArsIiISMiYU0REJHTMKiIiEjLmFBERCR2zioiIhIw5RUREQsacEibOvE5EREREREREREREREREREREREREREREKseZ1zPh9k+ipkvQCdFuRpouQWcYR0s1XYJuGKz8rrwCi4RmSLmmmi5BJ1g6vdN0CTpBlJii6RL0HnOKhCY1Lk7TJegEUSL7pqQ7mFUkNNJUftaSO9gXIN3AnCLBkaZqugKidCLOhSYEzCoiou/geyeNY04REZGQMaeEiZ82EBEREREREREREREREREREREREREREZHKceZ1IqJsSAWvwCIiIuFiThERkdAxq4iISMiYU0REJHTMKiIiEjLmFBERCRlzSpg48zoRERERERERERERERERERERERERERERqRxnXiciyoZUKa/AIiIi4WJOERGR0DGriIhIyJhTREQkdMwqIiISMuYUEREJGXNKmDjzOhERERERERERERERERERERERERERERGpHAevExEREREREREREREREREREREREREREZHKGWi6ACIibcDbhxARkZAxp4iISOiYVUREJGTMKSIiEjpmFRERCRlzioiIhIw5JUyceZ2IiIiIiIiIiIiIiIiIiIiIiIiIiIiIVI4zrxMRZQOvwCIiIiFjThERkdAxq4iISMiYU0REJHTMKiIiEjLmFBERCRlzSpg48zoRERERERERERERERERERERERERERERqRxnXiciygZegUVERELGnCIiIqFjVhERkZAxp4iISOiYVUREJGTMKSIiEjLmlDBx5nUiIiIiIiIiIiIiIiIiIiIiIiIiIiIiUjnOvE5ElA1SXoFFREQCxpwiIiKhY1YREZGQMaeIiEjomFVERCRkzCkiIhIy5pQwceZ1IiIiIiIiIiIiIiIiIiIiIiIiIiIiIlI5zrxORJQNqeAVWEREJFzMKSIiEjpmFRERCRlzioiIhI5ZRUREQsacIiIiIWNOCRNnXiciIiIiIiIiIiIiIiIiIiIiIiIiIiIilePM60RE2ZAq5RVYREQkXMwpIiISOmYVEREJGXOKiIiEjllFRERCxpwiIiIhY04JE2deJyIiIiIiIiIiIiIiIiIiIiIiIiIiIiKV4+B1IiIiIiIiIiIiIiIiIiIiIiIiIiIiIlI5A00XQESkDaS8fQgREQkYc4qIiISOWUVERELGnCIiIqFjVhERkZAxp4iISMiYU8LEmdeJiIiIiIiIiIiIiIiIiIiIiIiIiIiISOU48zoRUTak8gosIiISMOYUEREJHbOKiIiEjDlFRERCx6wiIiIhY04REZGQMaeEiTOvExEREREREREREREREREREREREREREZHKceZ1IqJskPIKLCIiEjDmFBERCR2zioiIhIw5RUREQsesIiIiIWNOERGRkDGnhIkzrxMRERERERERERERERERERERERERERGRynHmdSKibEjlFVhERCRgzCkiIhI6ZhUREQkZc4qIiISOWUVERELGnCIiIiFjTgmT1s+8fvHiRXTq1Anu7u4wNTWFmZkZ3N3d0alTJ1y6dEnT5RERkZ5jThERkdAxq4iISMiYU0REJGTMKSIiEjpmFRERCRlziohIf2n1zOu7d+9G27Zt4evri6FDh8LR0RFSqRSRkZE4dOgQqlevjm3btqFZs2aaLpWItJxUqukKSBsxp4hIXZhTpCxmFRGpC7OKlMGcIiJ1YU6RMphTRKROzCpSBrOKiNSFOUXKYE4Rkbowp4RJqwev//TTT5g+fTrGjRuXYd2wYcPw888/Y8KECQwxIiLSCOYUEREJHbOKiIiEjDlFRERCxpwiIiKhY1YREZGQMaeIiPSbWNMF5MSjR4/QsmXLLNc3b94cjx8/VmNFRKSrUiFS2w/pDuYUEamLOnOKWaVbmFVEpC7MKVIGc4qI1IV9KlIGc4qI1Ik5RcpgVhGRurBPRcpgThGRujCnhEmrB697eHhg9+7dWa7/+++/UahQIfUVRERE9BXmFBERCR2zioiIhIw5RUREQsacIiIioWNWERGRkDGniIj0m4GmC8iJ6dOno3379ggODoa/vz8cHR0hEokQERGBw4cP49ChQ9iyZYumyyQiHSCV8qooUhxziojUhTlFymJWEZG6MKtIGcwpIlIX5hQpgzlFROrErCJlMKuISF2YU6QM5hQRqQtzSpi0evB6q1atcPLkSfzyyy9YtGgRIiIiAABOTk6oVq0agoODUa1aNQ1XSURE+oo5RUREQsesIiIiIWNOERGRkDGniIhI6JhVREQkZMwpIiL9ptWD1wGgWrVqgg6qDh2qooZPURQoYIOEhGTcvhOK//1xAiEv36n0uDVqFEWPHjXg4myFsPD3WLP6JE6feaDxun6kVe3SaF27DJztLAAAT8LeYtWe8zh761mm29cpXxita5dBkQL2MDSQ4EnYW/zx9zmcv/1cpXV6uNphTKe68HJ3QnRMPHYG38Cqvec1XhcAdGleGbWqeKKgqw0SEpNx834Ylm88iRdhUVnuM3FgABrWLplh+dOQN+g8Yp3Kai1UwA4jAuuiRGEnRH+Kx9+HbyDor/R2rFW5MFoElEVhN3sYGUjw9OVbrN52Fheuq74diXKL0HMqJzqNbozOYxrLLXsX+QGdvMbKHuf3dELPyS1QyrsIRGIRXtwLw+xe/8Pr0KzPSUJWsoIbWnevAc8SLrB1sMC0oRtw7tjdLLf3KlcQPYcHIL+7PYxNDBEZ/h77t1/ArvVnVVqnm6cjBkxogqIl8+Hjhzjs/+sCNq04Lltf3bcEGrWrgkJFnWFoJMGLx5HY8PtRXD77SKV1fVGyojtaB9ZE4ZKusHWwwPQBf+Lc0TtZbm9tnxe9xzaCZ0lXuBS0xZ71Z7Fy9j8qr9OtiCMGTGqGIqXz4+OHWPy79QI2LTsqW+/t54VGHarCo7gzDI0M8PzhK2z47QiunH6o8tqIcpMuZ1Upn2JoM7IJPMu7w9bFBlNbLcDZPZcAABIDCbpPb4fKDcrC2d0BMR9iceXYLayesBnvwrUzp1SlpE8xtBneCJ7l3GHrYo2pbRbh3N7LsvUH4zdmut//xm/CX4v3qatMwftRO1o5WCBwVgdU8C0Fcysz3Dp9D8uGr0PY41carJpI83Q5pwCg/djmCJzdATt/2Y/l2fgMxsu7KBYen4Jnt0LQr8LYH26vL7LbjnU7+qDtqKZw9XRCzIdYXDp4HStHr8fHd5/UWK3w2LpYo9fcTqhcvyyMTI0Q+iAcC3uvwMMrTzPdvnStElh4bEqG5T1LDEfI/TBVl0skKLqaU6VqFEebUU1RpEIh2LrYYEqLeTj798Xv7mNoZIDOk9vAt1MNWDtZ4c3Lt9g0eycOBh3/7n66qv245vBpUQX5i7kiIS4Rd87ex6pxG/HyQdbnSZ8WldG4XwA8yrrB0NgAz2+/xPpp23Dp0HU1Vi4sXSa3RtcpbeSWvYt4j3aufTPdPq0N/eBR5qs2nP6XXrchka5kVZP+/mgzqhlsna3w7PZLLB8ehFun72W6rVf1Yug9txPyF3OFsZkxXj1/jX1/HMbOJZl/TlW7nTcmbh6OM7svYGrL+ar8NQRF0bxXtF31ReN+/mjSzx+ObvYAgOe3X2LDjO24eOBalvvwfRNROn3MKRsnK/Rd0A2eFQrB1dMJu5f+i+XD18pt06CXL/y61IJbyfwAgIeXn2DNxM24f1E93+cLiSJt+zUv76JYeGJa2ueo5UeroVLhUjTzR68ZCP/utTMsf3Y7BL1LjVBhpaRvtH7wutCVKV0Af++5gvv3wiGWiBEYWBPz5rVDj56rEB+fpNRzBgSUQoB/KYwYuSnT9SVKuGDypGZYE3QSp08/gI9PEUye3AxDhm7AvXvhKqsrN0RGfcJvO04jJDJtsEhjby8sHNwMnaZtwJOwtxm2L1ckH/678xzLdp7Gx9gENPHxwuIhzdF91ibcf/FaqRqcbS2wd14vVAxclOl6cxMjLBvZCpfvhaDbzI0o4GiNKT0DEJeQhI2HLqusruwq65UPOw9ew91HEZBIxOjToToW/9QanYYHIT4hOdN9lgQdx/KNp2SPJWIx1i3oimPnHmS6fXY42Vtgx++9Ub3NwkzXm5kaYcmk1rhyKwSB4zaigLM1Jg6sj7j4JGz5J60dy5bIhwvXn2PFplP4FJOARnVKYt64Fug9fhMePotUujZlpPL2IUSZenY3FBNa/yJ7nJqSKvu3s5sdFvwzCgc3nsWGef8gJjoO+Ys4ITGLc5E2MDE1wtMH4Ti8+zImLen0w+3j4xKxd/N5PH0Qgfi4RHiVL4ghk5ojPi4J//71/S/8suLoYoV1B0ejfqmJma43MzfG7D964MaFJxjS4XfkK2iHETNbIT42ETv/PAMgbRD+lXOPsPaXQ/j0MR7+zctj6m9dMKzjCjz+/F5BlUzMDPHkfjgO7byESb91+eH2hkYG+BAVgy3Lj6NFd59cqcHB1Rrrjo1Fg6LjMl1vZm6MWWt64cZ/jzG09W9wdbPDyLlt0toxKC0zS1Vyx9WzD7Fu8UF8io6DX8uKmLq8G4a3/R2P76p3wAZziihzJuYmeHLjOQ6uO4Ep20fKrTM2M4JnOTdsnLUTT248Rx5rc/Rf2A3Td43CoKqZn2P1lYmZMZ7cfIFDfwZj8tbhGda3LzhA7nGlgDIYvqI3Tu++oK4StcKP2nHKthFISU7B1DaLEBsdh5ZDG2DuvxPQu+wYJMQmaKDi3MWsIsqoSEUPNOzti8fZvEjfzMIUY9YOwNVjt2DtYKni6rRHdtvRq3pRjFk7ECtGrMP5fy7D1tUGQ3/vjRH/64tprTL//Eof5LEyx5JT03H9xB1MaDQH7yOj4eLhiE/vY3+4b/diwxAbnb7dh9fRqixVpZhTRPJMzI3x5MZzHFp7HFN2ZO9L/p+2joC1oyUW9lqOsEcRsHKwhMRArOJKhat0TS/s+f0g7l98BImBBD1mdsDcgz+hl9dwxGfx/r5UzRK4cuQ61kzchJj3MQjoUQfT94zD4Krj8fjaM/X+AgLy9FYIxvrPkD3++jPob5WqURxXDt/Emolb0tqwe21M/3sMBlebqPVtyKwifVarrTf6L+6BpQP/h9tn7qNRXz/M3j8RgV7D8TrkTYbt42Pi8feyA3hy4zniYxJQ0qcYhq7og/iYBOz/3xG5bR0K2KHP/K64cTLrCXZ0laJ5r0i76pM3L99i9fiNCH2UNmO0f7famLZ7LPqXH43nd15muo8uvm9iTpE+UzSnDI0N8eFNNDbN3oFWwxpn8oxAmVpeOL7lNO6cfYDE+ES0HdMsrT9RcgTehml2Ylp1UrRtvzCzMMOYdYNw9ehNWDtaqa9ggVI085cNC8Kq8ekTV0kMxFh5bQFO/nVOlWWqFHNKmHR68PqECRMQERGBNWvWaKyGceO3yT2eN28fdu0ciiKeTrhxMwQAYGAgRs+eNVHP1wvm5sZ49uwN/vjfCVy//kKpY7ZqWQmXLj/F5s1pM1hv3nweZUoXQOtWlTBz1p5s16UJp64/kXv8+64zaFWnDEoVcs508PqiLSfkt995BrXKeqBGGQ+5QeJNqnuha/2KcLG3RPibaGw5ehV/HVduloX6VYvB2FCCqWsOIik5BY9D36KAozU6+VeQDV7Pbl2qMHLWTrnHs38/iH2rB6BoIUdcvxua6T4xsYmIiU2UPa5RqTDymptg3/Fbcts1rO2FTs0qwdnBEhGvo7F9/xXsUnK2Cv8axWFkKMGsZQeQlJyCpyFvkd/lAto3qSAbvP7L2hNy+6zcfBo1KnnAp2IhtQ9eJ1IFIeRUTqWkpCIqMvMvp7tNaIaLR25hzfT081LE86w7ENrg0ukHuHQ6+xf2PL4XLjcY/FXYe1T39ULJ8gXlBq/7NS+PNj1qwMnVGq/C3uPvjefwz9b/lKqxTqMyMDIywMKfdiApKQXPH0XC1c0OLbv6yAavr5y3X26ftb8eRrU6xVGldjG1DF6/dPIBLp3MfjtGhkZh5ay9AAD/VhWz3M6vZQW07lULTvms8So0Cn+vP4t9m85nuf331GlaFkbGBlg0bntaOz58BVc3O7To4SMbvP7t7O/rFh9ENd8SqFK3uNoHrxOpirZn1cWD13Dx4LVM18VGx2Fcg9lyy5YNC8Jv52bDPr8tXodk7H/oq0uHrn93lrqoVx/kHldrXAHXg+8g4qlq+z7a5nvt6FrYCSWqeqJPuTF4/rnf9tuQIGwNWY467arhQNAJNVZKpD20OadMzI0xfv0gLO77BzpNaJGtfYat6INjm88gNSUV1ZtVUnGF2kGRdixexROvnkVi928HAAARz15j3x9H0HZ0E3WUKljtxjTF65C3WBC4XLbs1fPsZfj7yA+I+fDjQe5E+kqbc+rigWvfnS30WxUDyqJ0rRLo6jEIH6PS7maR3XOJrprQcJbc4wU9f8dfkavhWaEQbp7K/E6O3862uGbiZlRrWgnVmlTU+oHXOZGanJKh35mVb+/AsuanLajWtCKqNa6g121IlBVtyapWwxvjwJpj+Hf1MQBp58uK/mXQpL8/1kzIOOHf42vP5P7mXz1/DZ8WVVDKp7jcIGuxWIzxG4biz6nbUMqnOMytzFT+uwiJonmf3XbVN+f/uSz3OOinzWjczx/FqxbJdPA63zcRZZ+u5tSr56/x+7AgAED9HnUzfc65XX6Ve7y490rUaFUV5XxL4sj6k7n8GwiXom37RdrnqKc/f45aWV3lCpaimR8bHSs3YYV3s0rIY23OO4RQrtPuS/d+IDQ0FM+ePdN0GXLMzY0BANEf42TLxoxuhJJe+TBj5t/o3XsNgoPv4ee5beHqaq3UMUqUcMHlS8/kll269BReXq4K1aVpYpEI/pWLwtTIADceZ28AmEiUNjN6dEy8bFnzmqUwoGV1/L7rDNr8tBbLdp5Gv+beaORdQqm6Snu44Mr9l0hKTpEtO3/7GRys88DFziLbdamLudnn/9tP2T9247olcenmc7x681G2rIlvKfTt4IM/Np9Gp+FBWLnpFHq3r44GtZRrx5JFnHHtjnw7/nftGext8sLZIet2NDU1Uuh3yS1Sqfp+SH8IMacU5erugA035yLo0kyM+yMQTgXtAAAikQiV/Eoh9HEkZm4bjM135mHxgbGo1qCMhivWLI9izihetgBufpXT9VtVRPfBflj362H0bvYL1v5yCF0H1UO9puWUOkbxMgVw8/IzJCWln18vn3kIO0cLOGbx3kIkEsHU3BgfPwjnfYCi6rephG7DA7Bu8UH0abgIaxcdRNchfqjXvLxSz1esbEHcvPhUrh2vnH4IO0dLOOb7QTtmY4bC3KbOnGJW6RddyCpFmFuYITU1FTEa+DvWFVYOFqjcoCwOrg3WdClaxdDYEACQmJB+J7TUVCmSEpPh5V1UU2XlKuYUqYI259Tg3wLx3/6ruHr0Zra2D+heGy6FHLF++l8qrky7KNKOd849gF0+W1RuUBYAYOVgiZqtquDC/qsqrlLYqjWpiAeXn2DS1uHYFv4Hll+aiwa9Mv/i9FvLL/+MLS9XYN6hn1CmtpeKK1Ut9qlIFbQ5pxRVrWlFPLj0GG3HNMPmkJUIuvcL+szvAiMTI02XJhjmlmkDIj+++5TtfUQiEczymiq0jy5y8XTClpDl+PPRUkzYNBRO7g7Z3leX2pA5RaqgDVllYGiAIhUK4fI3EwJcPnwDXtWy95mJR1k3lPAuihsnb8st7zy5Nd6/jsaBNcdyrV59klW76jOxWIza7bxhYm6MO1nc5V5X3zexT0WqoC85lR3GZkYwMDTQife12aVs2wZ0rw0XD0esn7Zd1SXqjfo96+LqkZuIfKG9k1Uyp4RJp2deX7du3Y83UrMB/X1x42YInj1L+2N2cbZC3bol0K79Mrx9mxYw27ZfQKVKhVC/fimsXq341VI2NnnwLipGbtm7qBhYW5tnuy5N8nC1Q9CE9jAyNEBcQiJGL9uLp+HZu+VJZ/+KMDE2xOGL92XLejWugiVbg3H8yiMAQNibaBRysUXLWqWx76zit/+ytTRD2Bv5WYbffr7ayNbSPMO6rOpSlyHdauP63Zd4ms2ZI22tzFG1nDum/bJPbnn31lWx9M9gBF9Ia8fwyGi45bNFM78y+DdYiXa0Mkf4N7cSjvqQ9rq1sTJHeCYzOXdoUhGmxoY4elb97UikCkLMKUXcv/IUCwatRejjV7Cyt0CHEQ2xcP9o9POZDgNDCczymKDtkACsm7MHa6bvQoW6XvhpbV+Ma7EYN88+1HT5arX+yBhYWptDIhFj4/JjOLDzkmxdx7518L8F/+LM0bRz6avQKBTwcEDDNpVwZI/igyis7fLgVdh7uWVRn99j2NjlwavQqAz7tOpWHSamRjh5MHsDZ4SowwBf/G/uPpw9nPYh6auXUShQ2BEN2lXBkd1XFH6+zNoq6m3aRV3Wdnnx6mXGdmzZswZMTA1x8t8bSvwGRMKk7VmlCENjQwTO7oDjW84gVkAX9Wobv841EfcxHqd3X/zxxiQTcj8MEc9fo+f0dvhl0GrExySg5dCGsHW2ho2TlabLIxIsbc2p2u284VnOHQOrTMjW9q6FnRA4uwOG15qK1JRUFVenPRRtxzvnHmBul6WYuHkYjEwMYWBogLN7LuK3IUEqrlTYnAs5oEk/P+xYvA+b5uxCscqFMXBJDyQlJGc5k9e78Cgs6rsSDy8/haGxAep1rol5h3/CqLrTs5xNmEgfaWtOKcPZ3RElfYohMT4JU1vOh6VdXgxe1gt5bfJg4Vd3dtBn/RZ2w81Td/Hsdvbvftx6ZBOYmBsjeNtZFVYmbPcuPMK87svw8kE4rB2t0GlCC/xyegZ6lRqZrYE7rUc0TmvD7dp7e3siVdKGrLK0ywuJgQRRr97LLY969R7WP/jMZNOLFbC0t4DEQIL107bJZm0FAC/voqjfsy76lRutgqp12/faVV+5lSyAX8/OgpGJIeI+xWNay/l4cTfjrOsA3zcRKULXc0oRveZ2wpvQd7hyRHu/z1eUMm3rWtgJgXM6YXjNyfwcNZfYOFmhcoNymN3pF02XQjpIpwevZ0dCQgISEhLklqWmJkMszv2mGTLED4UKOWDI0A2yZZ6ejhCLRfhzXR+5bQ0NJYiOThsw4eBggaA1vWTrJBIxJBIx9v0zQrbs8JHbWLLkYPoTfHMJh0ikWF2a9DziHTpO24C8psaoW8ETUwMD0OfnbT8cwB5QuSj6NKuGkUv/RtTnwSZWeUzhZGuBSd39MbGbn2xbiUSMT7Hp/+9bp3eFs23abN+iz411ctkg2frwt9FoN/nP9IN9c4WMCGn7ZHblTGZ1qcuIQF94FLBD/0lbsr1Pw9pe+BSTgJMXH8mWWVmYwsnOAuP7+2Nsv6/aUSxGzFftuGFRNzjaf27Hz21yeP1g2fpXr6PR+atbNkq/bbAvL9RM2rFe9WLo2cYb4+btxvto9Q8mkkq/80dEpGKZZpU0BWKRREMVpbl09KuZFO6G4e6lJ1hzcQbqtauK4F1pg7PPHbiO3SuPAgCe3HqJEpUKoWG3mno3eH1Ut//B1MwIxUrnR89hAQh78RYn/r0BS2szODhbYdi0Fhg6tblse4lEjJhP6f/nK3cNgYOLFYD08+uu/ybL1keGvUffFl/dOizD+4Csc6p2g9Lo3N8X04ZuwId3MRk30AKW1uZwcLHCsFmtMHRGS9lyiYEYMR/T79ax4p/h6e34uU12XpkmWx8Z9h79Gi+WPc4QUxBlvgJArUZl0HlQPUwb8KdG2pE5RZok1JxShMRAgokbh0AkFmPpIGHfflLoArrVwrEtZ5D01Qzi9GMpySmY0X4JRqzogx0R/0NKcgquHruFCwrcxlHomFWkSULKKvt8thiwuBvG1Z+drXOlWCzC+A1D8Oe07Qh9GK6GCrWDou0IAAWKu2Lgku7YMGMHLh26Dltna/T+uROGLu+FRb1Xqrhi4RKJxXhw6THW/JT2+eHja89QsEQ+NOnrl+Xg9ZcPwvHyQfrr8e75h7DPb4s2Ixtr7eB15hRpkpBySllisQhSKTCn86+yW4uvHLkOk7aPxNKBq5EYn6jhCjVr8G+BcC9dAMNrTMr2PnXaV0eXKW0wpfk8vH+dcbIfffH1re2f3QrB3XMPsO7hr/DvWgs7luzLekcAddp7o8uU1pjSYoFOtCGzijRJCFmV8WtlUcbvmr8xouZkmOQxQfGqnug1pxPCHkXg+JYzMM1jgrHrh2BxnxWIfvvxu89BGWXVrvrs5f0w9Cs3GnmszODTqipGrx2EkbWnZDqAXVffNzGnSJO0Naeyq+3opqjd3gej6kzRy+9estu2YrEY4zcOxZ9Tt/Fz1Fzk3702Pr2PwVktn7SKOSVMOjV4PSkpCfv27cPDhw/h7OyMFi1awNw869nGAWDOnDmYNm2a3DI3N1+4F6qXq7UNHuQH72qeGDZ8I968Se8AicQipKSkol+/tUhJlb/iJy4uLXDevPmI3n3SB1DUqFEUNWsUxazZe2TLYmPT38C+e/cJNjZ55J7L2socUVEZB1JlVZcmJaek4mXkewDA3eevUMLdER3qlcfs9Uey3MevUhFM6u6PsSv+wYW7L2TLxeK0E8/MdYdx62mE3D6pX7X30F92wUCS9qbFwSoP/hjbFh2npQ/mT05Jkf377YdY2H6+veMXNhamAIB30fJtnFVd6jC8Z134VPTAwClb8FqB28Y0qlsSB0/eQXJyevt8GeD384pDuP0o63YcOXsnDAzS2tHeJg+WTWuH7qPXy9YnJ3/Vju9jYGsl//dpbZHWru8+yLejr3dRjO/vj58W7cWlm+ptR6LcpExOAZlnlYdpBXiaV1RVqUpJiE3EszthcC3kgOh3n5CclIIXD+Q7BSEPIlCiamENVag5X2bwfvbwFaxt86Bz/7o48e8NiD7n1C/TduPeDflZl1JT0ztckwb8CYmBGABg52iB+UG9MaD1b7L1KV+ds6PefIK1XV6557KySXudfZmB/YuaAaUwbFoLzB65BVfPP87pr6kxX9rx10k7ce/6t+2Y3jaT+wRB8jmn7BwtMG9DXwxsnj7oP+WrnHr35hOs7b9pR9u091cZ2rFBaQyb1Qqzh27EtXOPQKTNcqtPVUjkBQ9JSVWWmmskBhL8tHkoHN0dMMZvBmddz4GS1Ysif1EXzO68VNOlaKVHV59hQJUJMLMwhaGRAT68+YhfTk7DgytPNV0akWDkZp/KHSXgIVJ/VnlWcIe1oxV+vzhHtkxiIEGpmsXRbGAAGpp2kusLmOY1RdFKHihczg2Dfu0JIO39r1gsxoGETRhXfxauHde/W7Qr2o4A0GFcc9w++wDbF+4FADy9+QJxMfFYcnI61k7aincR79X5KwjGu/AovLgbKrfsxb1Q1GhZRaHnuXf+IXw71cjN0oi0Tu7mVHF4wEtVpea6t+FReBP6TjYACwBe3A2FWCyGfT4bhH7zvYI+GfhrT1RtUhEja03Bm9Ds3WW4VltvjFjVHzPaLsLVo/ozs2J2xMcm4OmtF3D1dPrudrXaVsOI//XDjHaL2YZEX9HGrPrw5iNSklMy3JnOysES7199+O6+Ec8iAQDPbr2AtaMlukxpi+NbzsDFwwnO7g6YsWecbNsv3zMcSNyCHsWGIvzJq9z9RXRIVu2qz5KTkhH2OO39zoPLT1C0ogdaDG2IX/r9kWFbvm8iypq+5VR2tB7ZBB3Gt8RYv+l4qmfjpRRtW9O8JihaqTAKl3PHoKWBAL76HDVxC8YFzMS147fUUbpOqd+jLo5sOInkpGRNl0I6SKsHr3t7e2P//v2wsrLC69ev4evri/v376NgwYIICQnBxIkTcfbsWbi6umb5HOPHj8eIESPkljVt9msWWytnyGA/+PgUwfARmxARIX/yfPToFSQSMayszXDzZua3DUpNlSIs7L3s8fv3sUhISJZb9rU7d8JQoYIb/tqRfsVLhYpuuH1b/kuI79UlJCKRCIaGWV8NF1C5KCb1CMDEP/bhzA35L/XfRcfi1buPcLW3xIH/7mX5HBFfXVGd8vm2IV8G0H/rxuMwDGzpAwOJGMmft63q5YbIqE8Ie5M+c8P36lK1EYF1UbNyYQyasg3hkdmfTaJciXzI72yNvcfkP8iL+hCLyLcf4eJohUOns27HV28ytmNoFl/83XoQjr4dfGBgIJYNlK9cpiBev/soV3O96sUwYYA/pizZj3MaHLTBK7BIGbmRU0DmWdWm0EhVlq4UQyMDFCjihNvnHyI5KQUPrj5DPg9HuW1cPRwRGfJWQxUKg0gkgqFR2luw929j8PrVBzjns8Hxfdez3Ccy/L3s319ubxUekvmXXXevv0D3of4wMJDILhoq710Yb15FywbRA2kzrg+f3hJzx27FhVP3c/pradT7t5/wJuIDnPLb4Pjea1luF/nVe6cvORX+IvPX471rz9FteH0YGEqQnPS5HX088ebVB7x6md6OtRqVwfDZrfHziM24GKy5dmROkbJU1adqaROo6tJzxZeB666FnTHab3q2bjlOWQvoXhsPLj/BEz37ADW3xX6+05SLhyM8KxTCuul/abii3MGsImWosk/VwqqnKkvP0tWjt9C79Ci5ZaNW90fI/VBsnbcnw4Dr2Oi4DNs36e+PsnW8MKPtYkQ8jVR5zUKkaDsCgLGZsdwFq0B6/0r0vdtW6rjbZ+8jXxFnuWX5PJ3x6vlrhZ7Ho5wb3oZH/XhDgWJOkTJUmlOW3VVYee67ffY+arapBhNzE8THpN0Fz7WIM1JSUvH6ZfYGbOuiQUsDUb15ZYyqM0U20O9H6rSvjpGrB2B2xyW4sP+KiivUPoZGBihQzBW3TmX9XVWd9t4Yuao/Znf6BRf2X1VjdarFrCJl6EJWJScl48HlJyjvVxpndl+QLS9frzTO7sn+DKAikQiGxmnfzby4F4repeR/n+4z2sMsryl+HxaE13r+PZYivm5XSicSiWBkZJjpOl1938ScImUwp76vzaim6DSxFcbXn4kHl5/ktFSto2jbxkbHZcj3JgMCULZOScxos1BvP0fNidK1SsDV0xkHVh/TdCk5xpwSJrGmC8iJ8+fPIzExbcbxiRMnQiKR4Pnz53jw4AFevnyJfPnyYfLkyd99DmNjY1hYWMj9iMW59+Z66BB/1KvnhZmz9iA2NhHW1uawtjaH0edBay9fRuHwkVsYN7YxavgUgZOTJYoWdUL79lVQpXIhpY65c+clVKzojvbtqyB/fhu0b18FFcrLD2b/UV2aMqBldZT1dIWzrQU8XO0woEV1VCiaDwfOp91udmBLH0wLrC/bPqByUUwLrI8l24Jx63E4bC3MYGthBnNTI9k2f+w5hx4NK6N9vXIo4GgFD1c7NKnuhU7+5ZWq8cB/95CYnIKpPevDw9UWtcsVRo+GlbHx0GWF6lKVkb184V+jOKb+sh+x8YmwsTKDjZWZ3P9tv44++GlQ/Qz7NvYthdsPwvA0kw75mm3n0KVFZbRpWA75na1RqIAdGtb2QrvGFZSq8/Dpu0hKTsHEgfXhnt8WNSsXRteWVbBlb3o71qteDJMG1cfSdcG4/TBM9ruYm6m+HYlyQ27kFJBFVgngtsG9prZCKW9POBawRdHybpi4pg/M8prgyNbzAIAdyw6jZvOKqN/ZB87u9mgSWBtVAkphX1CwhitXnompEQoVdUahomlf7Du5WqNQUWfYO1kCAHoM9ceoWa1l2zdpXwVVahWDSwFbuBSwhV/z8mjVzQfH9l2TbbPx92NoG1gTzTpVg2tBW7h5OsKveXm07FpdqRqP77+OpMRkjJzVCgULO8C7bgm071UbO/88LdumdoPSGDWrNf634F/cux4Ca9s8sLbNA7M8xkodU1EmZkYoVMwZhYqltaNjPhsUKuYMe+e0duw+IgAjf24rt8+X7U3MjWBpY45CxZxRwMNBtn7D0iNo26c2mnWtDlc3O7gVcYRfywpo0d1HqRqP772GpMRkjJjTBgU9HeFdzwvt+tbBrqD0dqzVqAxG/dwW//t5H+5dfwFruzywtlNfOxLlBpX1qQSQUwBgYm6MQmUKolCZggAAJ3cHFCpTEPb5bSGWiDFp63AUqeCBud2WQiwRw9rREtaOljD4zsWz+sjE3BiFShdEodKf29HNHoVKp7XjF2Z5TVGzZWUcCDqhoSqF70ftWKNlZZSuWRxO7vao1rgC5uwfj3N7LuHKEc4SSPpLF/tUcZ/i8ex2iNxPfEw8ot9+wrPbaXcR6jmrA8asHQgAkEqlGbZ/H/kBSfFJafvGJnzvcDpL0XYEgPP/XIZPi8po3M8PTu4O8PIuioFLeuDufw+1etB1Tu1Ysh/Fq3qiw7jmcPFwRJ0O1dGwty/2LD8k2+bbtmwxpCG8m1WEa2EnFCyRDz1ndUDNVlWx5/eDmvgViDRGF3PqCxNzE3iUcYNHGTcAaX0pjzJusM9vBwDoObsjxqwdJNv+2KbTiH77EaPXDECB4vlQqkZx9JnXBQeDjiExPjGzQ+i8wct6wbdTDczp9AtiP8bD2tEK1o5WMDJJ/37j23as0746xqwbhJWj1uHu+YeyfcwszDI7hF7oM69zWj/JzR7FKhfGpO0jYGZhikN/pn3G/G1G1WnvjTFrB2LlqPWf2zCtn2/2+Q7KRPpGV7Jqx+J/0CDQFwE96qBAMVf0W9QNDgXs8M+KtPes355Pmw4IQNXGFeBa2AmuhZ0Q0L022oxsiqMbTwEAkhKSMvQnYt7HIvZjHJ7dDtGbmUUVzfsftau+6jmrA0r6FINjQXu4lSyAHjM7oHRtLxzdlNYufN9ElDV9zSkAsvOvaR4TWNpZwKOMGwoUzydb33Z0U3Sf0R4LAn9HxLPXsr6BibmJ2n4vIVCkbfk5atYUzfwvGvT0xd3zD2SftxLlNp25BDI4OBiLFi2Ck1PabeJsbW0xa9Ys9OjRQ6N1NWuWNkB6yeJOcst/nrcPBw+mfQE9b95+dO7sjX796sLOLi+io+Nw504o/vtPuaumbt8JxYyZf6Nnj5ro0b0mwsKiMGPG37h3L1yhujTB1sIc03vVh52lOT7FJeLhy9cYsngn/ruTNnOfnZU5nGzyyrZvWas0DAwkGNfZF+M6+8qW7z1zG9PWpH1Z8vepW4hPTEbX+hUxpHUNxCUm49HLN9h8WLkZK2LiEjFw4Q6M7VwXf07qhI8x8dh4+LLc4PXs1KUqLQPKAgCWTWsnt3zWsgPYfyLtNtK21uZwtLOQW29uZoTaVTyxJOh4ps+799hNxCcmoWPTShjQuSbiE5Lw+MUbbNunZDvGJmLYjL8wMtAXq+d2xseYeGzZexlb/klvx2Z+ae04qnc9jOpdT7Z8/4lbmLVMvV+GpfIKLMohoeZUTti5WGHsykBY2OTBh7efcO/yEwyvPw+Rn2cFOLv/Gn4bvQlth9ZHv9lt8fLxK8zs8Qdu//dYw5Urr4iXK+YF9ZI97jumEQDg8N9XsPCnHbCxzwuHzwOwgbTbUPUY6g8nV2ukpKQiPOQd1iw5iP3b0y8oO7DzEuLjE9G6ew0EjqiPhLhEPH34CrvXn1WqxthPCZjQJwgDJzbB0i0D8Ck6Hjv/PIOdf6bfsrFhm0owMJRg0E9NMeinprLlX34PVfMsmQ/z1veRPe47oXHa8XdexqLx22FjbwEHZyu5fZb9PVT27yIl86FOk3J49TIK3X1/BgAc/OsiEuIT0TqwFgJHN0B8bCKePYjA7nXK3aoy9lMCJvZchQGTm+PXHYPw6UMcdgadws6g9A9hG7arktaOU5pj0JTmsuVffg91Yk5RbtDFrCpSwQMLjqZ/sNlvQVcAwKE/g7F++l/wbloRALDi8jy5/Ub5TseNk3fUV6jAFalQCPMP/SR73G9+FwDAofUnsbD3SgBArbZVAZEIx7cpl1/64EftaONkjb7zOsPKwRLvIt7jyMZT2DR7l6bKzXXMKsopXcyprNg6W8HhqwuESDnftuOhdcEwzWOKZgMC0Hd+F8S8j8HV47exatxGDVapeQ8uPcbUVgsROKsDOk9qhYinr7F8xDoc25R+4e63bWloZIA+87rAztUGCXGJeH47BBMbz8GFf69p4DfIHcwpyildy6kiFQth4fFpssf9F3UHABxaewLzey6DrZM1HArYydbHx8RjnP8MDPw1EMsuzkX02484uf0cgn7aou7SBaNp/wAAwMIT0+SWz++xDIfWnQCADO3YqI8fDAwNMGRZbwxZ1lu2/Eu76yO7fLaYsHEILOws8OF1NO7+9xBDvH9C5Is3ADJmVKPe9T63YSCGLEu/K9yhdScwv+dytdefm5hVlFPanFXB287CwjYPOk9qDRtnazy7FYKJjWannwu+OZ+KxCL0nN0RTu4OSE1ORdjjCKwavxH7Vh7W1K8gSIrmPds1c1aOVhj752DYOFsj5kMsnt54jgkNZuHKkRsAMr4+dfV9E3OKckqfcgoAVlydL/t3kYoe8O1UAxHPItGlUNqFmU36B8DI2BBT/pK/8+Cf07Zh/TT1fg+tScq0LWWkaOYDgJmFGXxaVcHvw4LUWarKMKeESSSVSjPeQ1VLiMVivHr1Cvb29nB0dMTx48dRokQJ2frnz5+jaNGiiI+PV+h56/rOze1S9VK0G2fHzi3G0Vr7ZyooZ7aPVHpfr7+n5l4hP3C7mfqORaqlqpwCgAb2/XKzVL0ldeKAkNwgSkzRdAk64d/7yr8HVWdOAcwqXaKqrPI3bJ/bpeolkYQzwJNwHIzP2eBO9qlIGarsU/lJ2v14IyLSKodTtiq9L/tUpAyV5pS4TW6WSpQzIq2+kbdg5CSnAPapSDnMKiJSxOFU5QfEsk9FymBOEZEimFO6R2Mzr4eEhODZs2eIjY2Fvb09vLy8YGxsrPDzdO/eHcbGxkhKSsLz58/lQiw8PBxWVla5WDUR6SvtvcyHlMWcIiJtwpzST8wqItImzCr9w5wiIm3CnNI/zCki0jbMKv3DrCIibcKc0j/MKSLSJswpYVLr4PXnz59jxYoV2Lx5M0JCQvD1pO9GRkaoUaMG+vTpg1atWkEs/vFV/N26dZP9u1mzZvj06ZPc+h07dqBs2bK5Vj8REek25hQREQkds4qIiISMOUVERELGnCIiIqFjVhERkZAxp4iIKDeJpFL1XFcwdOhQBAUFwd/fH02bNkXlypXh6uoKU1NTvHv3Drdu3cKpU6ewefNmGBgYICgoCJUqVcrRMWNiYiCRSGBiYqLQfnV95+bouJQm2s1I0yXoDONoXv6TG85sH6n0viV2T829Qn7gTnP1HYvSaVNOAUAD+345OjalkTrZaroEnSBKTNF0CTrh3/vKvwdVZ04BzCpN0aas8jdsn6PjUhqRRKLpEohkDsZvzNH+7FPpPm3KKQDwk7TL0bGJSHgOp2xVel/2qXSf1uUUb3FPQiL68cAj+rGc5BTAPpU+YFYRkaYdTt2u9L7sU+k+5hQRaRpzSveobeZ1IyMjPH78GPb29hnWOTg4oG7duqhbty6mTJmC/fv34/nz5zkOMXNz8xztT0T0hVQq0nQJpGLMKSLSZswp/cCsIiJtxqzSfcwpItJmzCndx5wiIm3HrNJ9zCoi0mbMKd3HnCIibcacEia1XSo/f/78TAMsMw0bNkTr1q2zte3SpUvRrVs3bNu2DQCwfv16lChRAsWKFcOECROQnJysdM1ERKQ/mFNERCR0zCoiIhIy5hQREQkZc4qIiISOWUVERELGnCIiotymtpnXVWHGjBmYP38+/P39MXToUDx9+hTz58/H8OHDIRaLsXjxYhgaGmLatGmaLpWItByvwCJlMKeISF2YU6QsZhURqQuzipTBnCIidWFOkTKYU0SkTswqUgaziojUhTlFymBOEZG6MKeESSOD11+9eoVRo0bh6NGjiIyMhFQqlVufkpKSredZu3Yt1q5di5YtW+L69euoUKEC1q1bh06dOgEAihUrhjFjxjDEiIhIIcwpIiISOmYVEREJGXOKiIiEjDlFRERCx6wiIiIhY04REVFu0Mjg9e7du+PFixeYNGkSnJ2dIRIpd2VDeHg4KlasCAAoU6YMxGIxypYtK1tfvnx5hIWF5UbJRKTnpD/ehHQIc4qItA1zSv8wq4hI2zCr9Atzioi0DXNKvzCniEgbMav0C7OKiLQNc0q/MKeISNswp4RJI4PXT58+jVOnTskFjjKcnJxw584dFChQAA8fPkRKSgru3LkDLy8vAMDt27fh4OCQCxUTEZE+YU4REZHQMauIiEjImFNERCRkzCkiIhI6ZhUREQkZc4qIiHKDRgav58+fP8MtQ5TRsWNHdO3aFc2aNcPRo0cxduxYjBo1Cm/fvoVIJMKsWbPQunXrXKiYiPSdVKrclaKknZhTRKRtmFP6h1lFRNqGWaVfmFNEpG2YU/qFOUVE2ohZpV+YVUSkbZhT+oU5RUTahjklTBoZvL5kyRKMGzcOK1euhJubm9LPM23aNJiamuL8+fPo27cvxo4di9KlS2PMmDGIjY1FkyZNMGPGjNwrnIiI9AJzioiIhI5ZRUREQsacIiIiIWNOERGR0DGriIhIyJhTRESUG0TS3LgUKhusra0hEqVfwRATE4Pk5GSYmZnB0NBQbtt3796po6Qs1fWdq9Hj64poNyNNl6AzjKPV8meq885sH6n0vkX+Ut8b4getJ6ntWJROm3IKABrY99N0CTpB6mSr6RJ0gigxRdMl6IR/7yv/HlSdOQUwqzRFm7LK37C9Ro+vK0QSiaZLIJI5GL8xR/uzT6X7tCmnAMBP0k7TJRBRLjucslXpfdmn0n1al1PiNpougSidSKzpCnRCTnIKYJ9KHzCriEjTDqduV3pf9ql0H3OKiDSNOaV71Dbz+pIlS9R1KCIiIoUxp4iISOiYVUREJGTMKSIiEjLmFBERCR2zioiIhIw5RUREuU1tg9e7deumrkMREeU6qVT0441IqzGniEibMaf0A7OKiLQZs0r3MaeISJsxp3Qfc4qItB2zSvcxq4hImzGndB9zioi0GXNKmNQ2eB0AfHx8ULduXdSpUwfVqlWDiYmJOg9PRET0XcwpIiISOmYVEREJGXOKiIiEjDlFRERCx6wiIiIhY04REVFuEqvzYEWLFsWmTZvg6+sLa2tr1K5dG9OnT8epU6eQlJSkzlKIiBQilarvhzSHOUVE2kqdOcWs0ixmFRFpK+aUfmBOEZG2Yp9KPzCniEibMaf0A7OKiLQV+1T6gTlFRNqKOSVMah28vnr1ajx69AgvXrzAypUr4eHhgXXr1qFWrVqwsrKCn58f5syZo86SiIiIZJhTREQkdMwqIiISMuYUEREJGXOKiIiEjllFRERCxpwiIqLcJJJKFR/r//79e1y4cAGRkZFITU2VW9e1a1eFiwgJCcHKlSuxdOlSfPr0CSkpKQo/R26q6ztXo8fXFdFuRpouQWcYR/OSnNxwZvtIpfctvG1mLlbyfY/a/qS2Y+kqXc8pAGhg30/TJegEqZOtpkvQCaJEzf9N6IJ/7yv/HlSdOQUwq3KDrmeVv2F7jR5fV4gkEk2XQCRzMH5jjvZnn0q76HpOAYCfpJ2mSyCiXHY4ZavS+7JPpX1yM6sEmVPiNpougSidSK1zoemsnOQUwD6VttGLPhWzikjnHE7drvS+7FNpH/apiEjbMKd0j4GiO+zduxedOnVCTEwM8ubNC5FIJFsnEomyHWCPHz/GiRMnZD/v379HtWrVUKtWLUVLIiJSOalU9OONSBCYU0Skj5hT2oVZRUT6iFmlPZhTRKSPmFPaJTeyijlFRNqGWaU92KciIn3EnNIu7FMRkb5hTgmTwoPXR44ciZ49e2L27NkwMzNTaN+goCAcP34cJ06cwIcPH1C9enXUqlULAwcORMWKFWFgoHA5REREcphTREQkdMwqIiISMuYUEREJnbJZxZwiIiJ1YJ+KiIiEjn0qIiISAoVTIzQ0FEOGDFG4owUAgYGBKFCgACZOnIiePXvC0NBQ4ecgItIIXoGlNZhTRKSXmFNahVlFRHqJWaU1mFNEpJeYU1pF2axiThGRVmNWaQ32qYhILzGntAr7VESkd5hTgiRWdIeAgABcunRJqYMtW7YMVatWxdSpU+Hg4IAmTZpg4cKFuHTpEqRSqVLPSURE9DXmFBERCR2zioiIhIw5RUREQqdsVjGniIhIHdinIiIioWOfioiIhEDhmdcbNWqE0aNH486dOyhVqlSGq6iaNm2a5b79+/dH//79AQB37txBcHAwTpw4gfnz5yM+Ph7Vq1dHnTp1MGrUKEXLIiJSKb7P1h7MKSLSR8wp7cKsIiJ9xKzSHswpItJHzCntomxWMaeISJsxq7QH+1REpI+YU9qFfSoi0jfMKWESSRW89EksznqydpFIhJSUFIWLCAsLw++//46lS5fi06dPSj1HbqrrO1ejx9cV0W5Gmi5BZxhH8wyaG85sH6n0voU2z87FSr7vSYcJajuWLtKHnAKABvb9NF2CTpA62Wq6BJ0gStT834Qu+Pe+8u9B1ZlTALMqp/Qhq/wN22v0+LpCJJFougQimYPxG3O0P/tU2kMfcgoA/CTtNF0CEeWywylbld6XfSrtkttZJcicErfRdAlE6UQK38ibMpGTnALYp9ImetOnYlYR6ZzDqduV3pd9Ku3CPhURaSPmlO5ReOb11NTUHB/01atXOHHihOznwYMHMDIyQpUqVVCnTp0cPz8RUa7j9QNagzlFRHqJOaVVmFVEpJeYVVqDOUVEeok5pVVymlXMKSLSSswqrcE+FRHpJeaUVmGfioj0DnNKkBQevP61+Ph4mJiYZHv7gQMH4vjx47h//z4MDAxQqVIltG7dGnXq1IG3t7dCz0VERPQjzCkiIhI6ZhUREQkZc4qIiIROkaxiThERkbqxT0VERELHPhUREWmKwvd5S0lJwYwZM+Dq6oo8efLgyZMnAIBJkyZh9erV3933ypUraN68OQ4cOICoqCicPn0aM2bMQN26dRlgRCRoUqlIbT+KCg0NRefOnWFrawszMzOULVsWly9f/qp2KaZOnQoXFxeYmpqidu3auH37ttxzJCQkYPDgwbCzs4O5uTmaNm2Kly9f5rjdNIE5RUT6SJ05xazKOWYVEekj5pT2YE4RkT4Scp+KOZWRslnFnCIibSbUnAKYVd9in4qI9BH7VNqFfSoi0jdCzilAf7NK4cHrs2bNwtq1azFv3jwYGRnJlpcqVQqrVq367r7nzp3D7Nmz4efnBzMzM8WrJSIiOVFRUahevToMDQ3x77//4s6dO1i4cCGsrKxk28ybNw+LFi3Cb7/9hosXL8LJyQl+fn74+PGjbJthw4Zh165d2LJlC06fPo1Pnz6hcePGSElJ0cBvlTPMKSIiYWFWZcSsIiISDuZURswpIiLhYE5lTtmsYk4REeU+ZlVG7FMREQkHcypz7FMREQmHPmeVSCqVShXZoXDhwli5ciV8fX2RN29eXL9+HYUKFcK9e/dQrVo1REVFZbnvyZMns3WMmjVrKlJSrqvrO1ejx9cV0W5GP96IssU4WqE/U8rCme0jld7XfcOcXKzk+552Hp/tbceNG4czZ87g1KlTma6XSqVwcXHBsGHDMHbsWABpV1o5Ojri559/Rt++ffHhwwfY29tj/fr1aNeuHQAgLCwM+fPnx/79+xEQEJDzX0qN9CGnAKCBfT9Nl6ATpE62mi5BJ4gShftmV5v8e1/596DqzCmAWZVT+pBV/obtNXp8XSGSSDRdApHMwfiNOdqffSrtoQ85BQB+knaaLoGIctnhlK1K7yvUPhVzKnPKZpVW5ZS4jaZLIEonUnguNMpETnIKYJ9Km+hNn4pZRaRzDqduV3pf9qm0C/tURKSNdDGnAP3OKgNFdwgNDUXhwoUzLE9NTUVSUtJ3961duzZEorRp8bMaMy8SiQQ92p+ISNUSEhKQkJAgt8zY2BjGxsYZtt2zZw8CAgLQpk0bBAcHw9XVFQMGDEDv3r0BAE+fPkVERAT8/f3lnqtWrVo4e/Ys+vbti8uXLyMpKUluGxcXF5QsWRJnz54VbIBlhTlFRKR6zKqcYVYREakWcypnmFNERKqX3axiTmVO2axiThERZQ/7VDnDPhURkeqxT5Uz7FMREakW+1TZo/Cl8l5eXpmO8t++fTvKlSv33X2tra2RP39+TJo0CQ8fPkRUVFSGn3fv3ilaEhGRykmlIrX9zJkzB5aWlnI/c+ZkfgXYkydPsHz5cnh6euLgwYPo168fhgwZgj///BMAEBERAQBwdHSU4AkDUAABAABJREFU28/R0VG2LiIiAkZGRrC2ts5ym9zw6tUrdOnSBS4uLjAwMIBEIpH7yS3MKSLSR+rMKWZVzjGriEgfMadyjjlFRKQ6Qu1TMacyp2xWMaeISJsJMacAZlVm2KciIn3EPlXOsU9FRKQ6Qs0pQL+zSuGZ16dMmYIuXbogNDQUqamp2LlzJ+7fv48///wT//zzz3f3DQ8Px65du7BmzRrMmzcPDRs2RGBgIOrXry+7MouISN+NHz8eI0aMkFuW2ZVXQNqVrxUrVsTs2bMBAOXKlcPt27exfPlydO3aVbbdt+dYqVT6w/NudrZRRPfu3fHixQtMmjQJzs7OKjvvM6eIiFSPWZUzzCoiItViTuUMc4qISPWym1XMqcwpm1XMKSKi7GGfKmfYpyIiUj32qXKGfSoiItVinyp7FB683qRJE2zduhWzZ8+GSCTC5MmTUb58eezduxd+fn7f3dfIyAjt2rVDu3btEBISgqCgIAwaNAgJCQno1q0bpk2bBgMDhUsiItIpWd0mJDPOzs4oUaKE3LLixYtjx44dAAAnJycAaVdYOTs7y7aJjIyUXZHl5OSExMREREVFyV2BFRkZCW9v7xz9Ll87ffo0Tp06hbJly+bac2aGOUVEpHrMqpxhVhERqRZzKmeYU0REqpfdrGJOZU7ZrGJOERFlD/tUOcM+FRGR6rFPlTPsUxERqRb7VNkjVmangIAABAcH49OnT4iNjcXp06fh7++v0HPkz58fkydPxpEjR1CkSBHMnTsX0dHRypRDRKR6UjX+KKB69eq4f/++3LIHDx6gYMGCAAB3d3c4OTnh8OHDsvWJiYkIDg6WhVOFChVgaGgot014eDhu3bqVqwGWP39+SKUK/oJKYk4Rkd5RZ04xq3IFs4qI9A5zKseYU0REKiTQPhVzKms5zSrmFBFpHQHmFMCsygr7VESkd9inyjH2qYiIVEigOQXod1Zp5HKnhIQE7NixA2vWrMG5c+fQqFEj7Nu3DzY2NpooJwPjJ5GaLkEnWCXZaroEnSGJSdR0CSRQw4cPh7e3N2bPno22bdviwoUL+OOPP/DHH38ASLtlyLBhwzB79mx4enrC09MTs2fPhpmZGTp27AgAsLS0RGBgIEaOHAlbW1vY2Nhg1KhRKFWqFOrVq5drtS5ZsgTjxo3DypUr4ebmlmvPqwpCzykASCjrpukSdILh6duaLkEnfGhRVtMlkIAxq1RD6FklTVXfB6y6TJqarOkSiHQec0o1hJ5TAABpqqYrIEonUmqOGdIDzCnV0IacEhsZaboEnZCayO9WcgXfN9F3MKtUQxuyiu9hc8fhlK2aLkEn+InbaLoEEijmlGpoRU4REWkJfc4qhQevW1tbQyQSZVguEolgYmKCwoULo3v37ujRo0eGbS5cuICgoCBs2bIF7u7u6N69O7Zt28bwIiItkPG8JwSVKlXCrl27MH78eEyfPh3u7u5YsmQJOnXqJNtmzJgxiIuLw4ABAxAVFYUqVarg0KFDyJs3r2ybxYsXw8DAAG3btkVcXBx8fX2xdu1aSCSSHNX3bWbExMTAw8MDZmZmMDQ0lNv23bt3OTpWVsf8gjlFRLpNmDkFMKuyc8wvmFVEpNuEmVXMqR8f8wvmFBHpNuaUMjSRU5kd94sfZRVzioi0G7NKGexTERGpC3NKGexTERGpizBzCtDvrBJJFZzHffHixZg1axYaNGiAypUrQyqV4uLFizhw4ACGDx+Op0+fYv369Vi6dCl69+4tt69YLEaBAgXQrVs3VKhQIctjNG3aVKFfIrc1cB+h0ePriqT8nHk9t3Dm9dxx8PI0pfd1+/PnXKzk+551Hau2Y6naunXrsr1tt27dcuWY+pBTAFDXb66mS9AJnHk9d0Rz5vVccW7TSKX3VWdOAcyqnNKHrPKTtNPo8Yko9+V0JjD2qZTDnFIdzspGgsJZK3NFTrKKfSrlaCKnAOWzSptyKsCk0483oh/izOskJIdTt+dof/aplMM+lerw87/cwZnXcwf7+LkjJ1nFPpVy2KdSHZ4XiHQPc0ozVJlVCs+8fvr0acycORP9+vWTW75y5UocOnQIO3bsQOnSpfHrr79m6GwBwIsXLzBjxowsn18kEiElJUXRsoiIVEuhy3zoi9zsQGUXc4qI9BJzSmnMKiIiNWFWKYU5RUSkJswppWgip4CcZRVzioi0FrNKKexTERGpCXNKKexTERGpCXNKaarMKoWndDl48CDq1auXYbmvry8OHjwIAGjYsCGePHmSYZvU1NQf/jDAiIh0i4+PDyZPnozjx48jPj5e5cdjThERkaKYVUREJGTMKSIiEjJ15xSgfFYxp4iI9BP7VEREJGTsUxERkdCpKqsUHrxuY2ODvXv3Zli+d+9e2NjYAABiYmKQN2/eDNtMmDABFy5cUKJMIiINk6rxR8cULVoUmzZtgq+vL6ytrVG7dm1Mnz4dp06dQlJSUq4fjzlFRHpJnTnFrMoxZhUR6SXmlNKYU0REasA+ldLUnVOA8lnFnCIircacUhr7VEREasA+ldLYpyIiUgPmVI6oKqsMFN1h0qRJ6N+/P44fP47KlStDJBLhwoUL2L9/P1asWAEAOHz4MGrVqpVh37CwMDRu3BgSiQRNmjRBs2bNUK9ePRgbGyv9CxARkbCtXr0aAPDy5UscO3YMwcHBWLduHaZOnQpTU1N4e3ujbt26GD9+fK4cjzlFRESKYlYREZGQMaeIiEjI1J1TgPJZxZwiItJP7FMREZGQsU9FRERCp6qsEkmlUoXH+p85cwa//fYb7t+/D6lUimLFimHw4MHw9vb+4b5SqRSnT5/G3r17sWfPHoSGhsLPzw9NmzZF48aNYWdnp2g5ua6B+whNl6ATkvLbaroEnSGJSdR0CTrh4OVpSu/rFjQvFyv5vmc9xqjtWJoUEhKClStXYunSpfj06VOu3j5K13MKAOr6zdV0CTrB8PRtTZegE6JblNV0CTrh3KaRSu+rzpwCmFW5Qdezyk/STtMlEFEuO5yyNUf7s0+V+5hTOeMnbqPpEojSiRS+QSplIidZxT5V7lNlTgHKZ5W25FSASSdNl6ATUhP53QoJx+HU7Tnan32q3Mc+Vc7w87/ckdPPWygN+/i5IydZxT5V7mOfKmd4XiDSPcwp4clpVik88zoAVK9eHdWrV1dmV4hEItSoUQM1atTAvHnzcPfuXezduxf/+9//0LdvX1SpUgVNmzZFhw4d4OrqqtQxiIhImB4/fowTJ07Ift6/f49q1aplOrtETjCniIhIWcwqIiISMuYUEREJmbpyClA+q5hTRET6jX0qIiISMvapiIhI6HIzq5QavJ6SkoLdu3fj7t27EIlEKFGiBJo2bQqJRKLwcxUvXhzFixfHmDFj8Pr1a+zZswd79uwBAIwaNUqZ8oiIcp3i96igL4KCgnD8+HGcOHECHz58QPXq1VGrVi0MHDgQFStWhIGBUlH0XcwpItI3zKmcYVYREakes0p5zCkiItVjTilPEzkF5F5WMaeISFswq5THPhURkeoxp5THPhURkeoxp3JGVVml8F6PHj1Cw4YNERoaiqJFi0IqleLBgwfInz8/9u3bBw8Pj+/uHxISgvz582dYHhMTg7i4OAQGBiIwMFDRsoiISKACAwNRoEABTJw4ET179oShoaFKj8ecIiIiRTGriIhIyJhTREQkZOrOKSBnWcWcIiLSP+xTERGRkLFPRUREQqeqrBIrusOQIUPg4eGBkJAQXLlyBVevXsWLFy/g7u6OIUOGfHffVatWYfz48ZmuS0lJQdOmTREUFKRoSUREJGDLli1D1apVMXXqVDg4OKBJkyZYuHAhLl26BKkKLm1jThERkaKYVUREJGTMKSIiEjJ15xSgfFYxp4iI9BP7VEREJGTsUxERkdCpKqsUHrweHByMefPmwcbGRrbM1tYWc+fORXBw8Hf3Xbp0Kfr06QMAaNSoEaKiomTrLCwssGDBAixZskTRkoiIVE+qxh8d079/f2zZsgXh4eE4c+YMGjZsiAsXLqBx48awtrZGo0aNsGDBglw7HnOKiPSSOnOKWZVjzCoi0kvMKaUxp4iI1IB9KqWpO6cA5bOKOUVEWo05pTT2qYiI1IB9KqWxT0VE9H/27js8inJhw/izaYSehBY6hN6lKr333kGqIE2QXgVFQEBBBBS7UpReFD2KNEUUAekd6R1C7yWQcv6IBkJC2L6z2ft3Xbk+Mzuz++58nL333czMOgGdsomjWmXxwetJkiTR7du34yy/c+eO/Pz8Etz22LFjyp49uyTpzz//1PXr19W4ceOYmIWEhOjIkSOWDgkA4CYKFiyoXr16adGiRdqxY4f69OmjDRs2aNiwYXZ7DDoFALAFrQIAGBmdAgAYmTM6JVnfKjoFAGBOBQAwMuZUAACjs2erfCzdoEGDBurevbu+/vprlSlTRpL0999/q2fPnmrUqFGC22bLlk179uyJCVlUVJR+++03Xb9+XYGBgVqzZo1y5sxp8ZMAAIeLMrl6BG7v4sWL+v3332N+Dh8+LD8/P7344ouqWrWq3R6HTgHwSHTKLmgVADgQrbIZnQIAB6JTNnNWpyTrW0WnALg1WmUz5lQA4EB0ymbMqQDAgeiUXdi7VRYfvP7hhx+qU6dOKlu2rHx9fSVJ4eHhatSokaZPn57gth06dNCgQYOUI0cOSZLJFP2P4saNG/r44481YsQIvj4EABKZ3r17a926dTp06JB8fHxUunRptWjRQlWrVlW5cuXk7+9v18ejUwAAS9EqAICR0SkAgJE5u1OS9a2iUwDgmZhTAQCMjDkVAMDoHNUqiw5ej4qK0s2bN7VgwQKdP39eBw8eVFRUlAoWLKjcuXM/d/tBgwZp165dKlasmEwmkxo0aKB79+6pdOnSSpkypd5//3116dLFqicCAI5kinL1CNzXjh071KRJE1WtWlXly5dXsmTJHPZYdAqAp6JTtqFVAOB4tMp6dAoAHI9OWc+ZnZJsaxWdAuDOaJX1mFMBgOPRKesxpwIAx6NTtnFUqyw+eD1Pnjzav3+/8uTJY9YE60l+fn5atGiRRo0apTJlyqhmzZo6duyYZs2apRYtWsjPz8+i+wMAGF+BAgU0YsQIpUyZ0uGPRacAANagVQAAI6NTAAAjc2anJNtaRacAwDMxpwIAGBlzKgCA0TmqVV4WrezlpTx58ujq1as2PWiRIkXUvXt3DR06VD179lSVKlUIGABji3LiTyIzZ84c3b9/3ymPRacAeCxndopW2YRWAfBYdMpqdAoAnIA5ldWc2SnJPq2iUwDcEp2yGnMqAHAC5lRWY04FAE5Ap2ziqFZZdPC6JE2aNElDhgzRvn37bHrg6dOnK3PmzJo+fboyZcoU5/aoqET4/0UA8EDOfj2nUwAAS9EqAICR0SkAgJG54vXcHq2iUwDgOZhTAQCMjDkVAMDoHPWabvHB6+3bt9eWLVtUrFgxJU2aVEFBQbF+nqVAgQKaP3++Hj58mOD9HzlyRL169dJ7771n6dAAwHGiTM77SYRMJuc9LzoFwCM5s1O0yma0CoBHolM2oVMA4GDMqWzizE5J1rWKTgFwe3TKJsypAMDBmFPZhDkVADgYnbKZI1rlY+kG06ZNs+qBPv74Yw0bNky9e/dWrVq1VKpUKWXKlEn+/v66fv26Dhw4oA0bNujAgQPq06ePXnvtNaseBwBgPHnz5n1uxK5du2aXx6JTAABr0CoAgJHRKQCAkTmzU5J1raJTAODZmFMBAIyMORUAwOgc0SqLD17v1KmTpZtIkqpVq6atW7dq48aNWrRokebPn6+TJ0/q/v37Sps2rYoXL66OHTuqffv2CggIsOoxAMBh+EYjm4wZM0apU6d2ymPRKQAeiU7ZjFYBgIPRKpvQKQBwMDplE2d2SrKuVXQKgNujVTZhTgUADkanbMKcCgAcjE7ZzBGtMuvg9Vu3bpl9h6lSpUrw9nLlyqlcuXJm3x8AwP21adNG6dOnd9j90ykAgK1oFQDAyOgUAMDIHN0pyX6tolMA4JmYUwEAjIw5FQDA6BzRKrMOXg8ICHjuJd//ExERYdOAAMCQOAPLaub2wxZ0CoDHo1M2oVUA4AS0ymp0CgCcgE5ZzRmdkmgVANAq6zGnAgAnoFNWY04FAE5Ap2ziqFaZdfD6unXrYv775MmTGj58uDp37qyyZctKkjZt2qQ5c+Zo4sSJDhkkAMB9RUVZ9g7g7NmzypQpk7y8vMzehk4BAGxBqwAARkanAABG5oxOSbQKAGA95lQAACNjTgUAMDpHtcqsg9crV64c899jx47VBx98oLZt28Ysa9SokYoUKaIvvvhCnTp1smigAIDELTIy0qL1CxYsqF27dikkJMTsbegUAMAWtAoAYGR0CgBgZM7olESrAADWY04FADAy5lQAAKNzVKssOw1L0WdalSpVKs7yUqVKacuWLZbenU0ePnwY6/djx46pf//+ql+/vl599VVt377dqeMBkIhFOfHHw1l6ttbT6BQAj+TMTtEqWgUA1qBTTkOnAMAKzKmcxtZOScZpFZ0C4FR0ymmYUwGAFZhTOQ1zKgCwAp1yKnNbZfHB61mzZtVnn30WZ/nnn3+urFmzWnp3NkmaNKkuXbokSdq1a5eKFi2q9evXK3PmzNqzZ4/KlSvn9AkgAMC16BQAwOhoFQDAyOgUAMDojNIqOgUAiI9ROiXRKgBA/IzSKjoFAJ7Nx9INpk6dqubNm2vVqlV66aWXJEmbN2/WsWPHtGzZMrPv59ixY5o1a5aOHTum6dOnK3369Fq5cqWyZs2qQoUKmXUfTx6h/+abb6pevXpavHixTCaTJKlLly4aPXq0fvnlFwueIQDEI8rk6hHATHQKgEeiU26FVgHwSLTKbdApAB6JTrkVe7SKTgFwO7TKbTCnAuCR6JRbYU4FwOPQKUOy+Mrr9erV0+HDh9WoUSNdu3ZNV69eVePGjXX48GHVq1fPrPtYv369ihQpor///lvfffed7ty5I0nas2ePRo8ebemQJEWfgdW/f/+YgElSv379tHPnTqvuDwDgnugUAMDoaBUAwMjoFADA6GxtFZ0CADgScyoAgNExpwIAGIHFV16Xor8+ZMKECVY/6PDhw/XOO+9o4MCBSpkyZczyqlWravr06Wbfj8lkiomWt7e3UqVKFev2VKlS6ebNm1aPEwD+Y4p6/jqwjycnI9aiUwA8DZ1yLloFAJajVc5DpwDAcnTKeezRKcm2VtEpAO6IVjkPcyoAsBydch7mVABgOTrlXOa2yuIrr+fIkUNjx47VmTNnLB7Uf/bu3aumTZvGWZ4uXTpdvXrV7PuJiopS3rx5FRQUpPPnz2vv3r2xbj9y5IiCg4OtHicAwPme/Gooa9ApAICj0SoAgJHRKQCAkdnaKcn2VtEpAEBCmFMBAIyMORUAwOjMbZXFV14fNGiQZs+erbFjx6pq1arq2rWrmjZtqiRJkph9HwEBAbpw4YJy5swZa/nOnTuVOXNms+9n1qxZsX7PlStXrN83b94cbywBwGKcgWWz2bNnq1WrVkqWLFmC6x04cECZMmWy+nHoFACPRKfsglbRKgAORKtsRqfoFAAHolM2c1anJNtbRacAuCVaZTPmVLQKgAPRKZsxp6JTAByITtmFvVtlirLylKzdu3dr5syZWrBggcLDw/Xyyy+rS5cuKlGixHO3HTp0qDZt2qQlS5Yob9682rFjhy5evKiOHTuqY8eOGj16tDVDspu6OQe69PH/kzR5EnUcWFdlaxdWQJqUOrb/rD4fu1yH90Sf+VaudhHVe7mschfOotRBKdS73vs6fvC8i0f92KOsaSzepkixrGrVpqzy5AtW2rQp9dYbS7Rxw+EEt6lWs5Baty2rzFmCdPdumLb+fUxffPKrbt26b+3QnytnSDr16V9b+Qtk0u1bD/TTjzs0d86GmNsrVMqnho1LKFeeDPL19dGpE5f1zaw/tW3rcasez/vuQ4vWL1w8u1p2LK88BTIqTbpUenvQAm36/Z9nrl+0ZA5N/uKVOMtfbf6Rzpy8YvF4zZUjd3r1Hlpf+Qpl1u1b97Xiu22a9+X6mNvLVy2gBi1KKyRfsHx9vXXq+GXN/WKdtm86ZtXjrdo+xuqx5vxoitXbWurE64Oc9ljOlDFjRt29e1ctW7ZU165dVa5cOYc+XmLulCRVq/muReu3bfOSKlbIp2xZgxQWFq79B87py69+15mz1565TVBQcvXqUU158wQrc+Ygfb98mz7+9Fdbh/5cOXOkU9/Xayp/voy6ffuB/vfzLn0796+Y2ytWyKuGDYord64M8vX11slTVzTn2w3atu2ExY/lu2G/PYduldaDG6p8k1LKmjejHt5/pAN/H9HXIxfq7JHQeNfv+9Erqv9qNX02ZK6+n7HKyaON362mL1i0fsdGZVS5dB5lzxSksIfh2nvkvD5Z8IdOX7ie4Ha1yudX+wallTU4UHfuhWnznpP6aN563brzwIbRJyxX1rQa1LmaCuYK1q07D7T81z2a+f3mmNsrl86tZjVeUJ7s6eTn463j567q62Ub9feeUxY/1qb51r/+O7NTEq2yl8TcqprerV36+E9qM6yJuk5oq++mr9CnA+fEu06FpmXUoGdN5SqWQ75JfHRq/1l9O3aptq3e7eTRGkeHt1qo4+iWsZZdC72h1pl7xLt+0coFNeW3uP/uuhQcoDOHjDNPNZJvj32k4Bzp4yz/8ZNV+uj1mS4YUcLWRCyyaXvmVLajU/ZV06vl81dykCIVC6jl4EbKWzJEaTIFaXTTSdr4w9Znrl+0ckFNWRf3M40uBfp59GuspftRkqq9XEGthjRW5jwZdffmPW1buUufD/lGt6/dcdKon8Fk8RekOoS7v2+ypVXMqWzn7E5J1rfKHTpV27+dq4cgSSpcIb9aDqivPMVzKk2mQL3d8gNt+t/2mNtXPZgX73ZfjpivpVN/dtYwnynyoWV/W7GHhr1qqeXgxkqTMUAn95/VpwNmad+G+P8+Y2njq7Qup5ELBuiv5Vv0drPJdh+7ETXoWUsNe9ZShhzpJEmn9p/V3HFLtHXlrnjXN/L7pjWRS2zanjmV7ZhT2ZcrP/+z9DOVQuXzqdvEdsqaP5OSJEuii6cu6+cv1uq76SucMdwE2fp5C6K50xxfMu7c1JZWMaeyHXMq+7L364Il7/MlqWilguoxpZNyFMqiq+eva/HkH/TT52tirVOh2YvqPLaNMubKoAvHLmrWqAX6a/mWmNstfS/c77PuatC9pj4ZMEvfG6Bx8XHFfuwwuqU6jm4Va5troTfUOlO3eB/THfbj81iyn4fM7K1anavEWX5y/xl1KxJ9DG2FpmXUdkQzZcodLG9fb50/EqqlH/xPa+f+4cinEQedcj17t8rqT8WLFSum6dOn69y5cxo9erS++uorlS5dWsWKFdPMmTMTvPT7+PHjlS1bNmXOnFl37txRwYIFValSJZUrV06jRo2ydkiJTr93W6l4hbx6f+B89aozWTv+PKwJ3/ZUmgypJUn+yfx0YNtJzZrk+g8A7cXf30/Hj13UjGnmHYxXuEgWDXujkX75eZde7fS5xr21TPnyZ9TAofWtHkOG4NRa+8fIZ96eLJmf3pvysq5euaPe3WdpxvRVatnmJbVo/WLMOkWKZdP2bSc0cugivdbta+3aeUrj3m2l3HkyWD0uS/gn9dXxw6H6+D3LItql6YdqU2tyzM+50+Z/nc/TMmQMSPBg8WTJk2jixx119fJtvd7xC30yaYWaty+n5u0fv6gVKZFdO/4+pjf7zlWf9p9rz7YTGjP1ZeXKx9cCuaOzZ89q7ty5un79uqpWrar8+fPrvffeU2ho/Afo2opOxVasaDb98OMO9en7rYYMXyRvby9Nere1/P19n7mNr6+Pbty8r7nzN+nY8Ut2GUeGDKn125rhz7w9WTI/TX6vta5evaNefeboo4/XqFWLMmrZokzMOkWLZNX2HSc1YuRi9ew9W7t2n9L4sS2UO5dzXmPtrWjF/PrfZ2vVv/IYjWjwnry9vTThp2FKkizume1lG5ZU/tK5dOX8s086cAfFC2TRsjW71O2t+eo3cal8vEyaNryF/JM8+0uBiubLrLd61dX/ft+nl4fO1sgPf1KBkGC90a2W1eMITpsqwQPGkyX10/QRLXT5+l11GTVPU+b8ppfrl1LbeiUfP5f8WbRl7ykNmvSdOo+aqx0Hzmjy4KbKmz3uB+cwPlqV+OQtlUv1ulXXsd0Jn1BSpGIB7VizVyMbvKvepUdo9+/7NfaHocr1Qg7nDNSgTuw7o1aZusf8dC82+LnbdM7fP9Y2545ccMJI3VOfF9+Ita+G1npHkrR+6ebnbAlPRacSD//kSXR8zynNeP1ri7brnK+vWmXsFvNz7hknvHoKS/djofL5NXTO61o58zd1KzxQ41p9oLylc2ngl70cPFL3wPsm2MrZnZKsbxWdMp9/siQ6vve0Ph4wO97b22R/LdbPlO6fKzIyUhueOFDAk1RuVU69pr6iBROWqVeJodq34aAmrBipdFnTJridOY1Pny2tuk/uqD1/HHDU8A3pytmr+nrEPPUuPVy9Sw/XrnX7NGb5MGUvmCXB7XjfhPgwp0o8LP1M5cHdMP3wyUoNrPK2uhYaqPkTvlPnca1Vr1t1Zw4biRRzU9gLcyrjsvR9fnCO9Hrn5xHat+GgepUYqgUTv9Nr07uoQrPHx5UVeCmvRi0coLVz16vnC4O1du56jVo0QPnL5I5Zx5L3wuUal1aBMnl05ZxxjyNw1X6UpBP7TseaH3QvGv8xAu6wH5/H0v38cf9ZsfZN26w9dOvqbf2xdFPMOreu3dH8Cd+pX7mR6lFssFbNXqfBM19TqVrFnPW0YBD2btWzjxB6jkePHun777/XrFmztGbNGr300kvq2rWrzp8/r5EjR2rt2rWaP39+vNv6+vpq3rx5GjdunHbs2KHIyEgVL15cefLksXY48XrjjTcUGhqqmTONd8Wy5/FL4qsKdYpqTPeZ2rcl+mrd86avUtlahVW/fTl9M+UX/fZ99NUt0mcOdOVQ7Wrr38e09W/zr6pdoFBmXQy9qeXLtkmSQi/c1M8/7lSrl8vGWq923aJq9XJZZQwOUGjoDS1ftk0/Lt8e310+V/WaheXn56PJE/+nR48idPLEZWXJGqQWrV7U0kV/S5I+/Sj2WV4zv/xd5Srk1Uvl8ujokYtWPa4ltm08qm0bj1q83Y1rd3U3gavX1mr4glp2qqDgTAG6eOGGli/8Wz8tSfis4WepVreo/JL4aMrb3+vRowidOnZJmbOnUbN2ZbVs7kZJ0mdTVsbaZtbHv6ps5fx6qVI+HTvEB43uxtvbW40aNVKjRo106dIlzZ07V7Nnz9abb76pOnXqqGvXrmrYsKG8vOxztTE6FdvwNxbH+n3S+z/r+6X9lDdPsPbsPRPvNhcv3tTHn6yVJNWtU/SZ912ndhG1bvXiv6+xN/Xd8m368X87rRpnjWqF5Ofno/cm/xz9GnvyirJkDlLL5qW1ZGn0H72evvr71zP/UPmyeVS2bG4dPeb411h7G9k49lWSpvT4UovPfKI8xXNo31+HYpanyRSo3lM7amTDSRr7vXufpTngve9i/f7O56v0y+evKX/ODNr1z7l4tymcO6MuXL6lJaui/21duHxLy3/do/YNS8dar37lQmrfoLQypkut0Cu3tHjlDn231rorANYuX0B+vt5657OVehQeoeNnrypb8Ba1rVdSC1ZEv4+Y9u3vsbb5bNEGVSyZSxVKhOjwKfuc9AHnoVVxufOcyj95Eo34to+m9vhC7d5I+Gsln76y6MxRC1W2USmVbVBSx3addOAojS0yPELXL960aJsbl27q7s17DhpR4nLzyu1Yv7cZVkLnjoZqz3rPOhgF5qNTcblrp7au3PXMKyQlhNfY2CzdjwVeyqOLJy9p+Ue/SJJCT17Sz1+sUashjR00QvfB+ybYg7M7JVnfKjplvm2rdyf4zQpPzxfKNiip3esPKPTEZUcPzZCaD2iglTN/0y9f/yZJ+nTAbJWqVUwNe9XSzDfif98kPb/xXl5eGjG3n755e7GKVCig5AEJfz13YrL5p9h/y5s1aoEa9KylAi/l1akDZ5+5He+bEB/mVHG5a6ss/Uzl2K6Tsd6rXjx1WRWavqgiFfJrxZeO/8ZhJG7MTWEvzKniMkqnLH2f36BnTV0+fUWf/nsS8Ol/zilvqVxqOaiRNnwXfVxZs371tX3NHi18d7kkaeG7y1W0UiE161dfE9pNl2T+e+E0mYLU56OuGlHnHb3z0wh7P327cdV+lKTI8Ehdv3gjwfG5y358Hkv3871b93Tv1uO5U7nGpZUiMLlWzVoXs+zp91jff7hCNTtWVqEK+Q3xbYxwHnu3yuKD13fs2KFZs2ZpwYIF8vb2VocOHTR16lTlz58/Zp1atWqpUqVKz72vkJAQhYSEWDoEs507d05nzsR/QJ7Reft4ydvHW4/CwmMtf/jgkQqVyumiURnP/n1n9cqrVVTmpVzasvmYAgKTq2KV/Pp70+MDt+s1eEEdu1TSjGmrdPRIqHLnCdbAIfV0/8FDrVm51+LHLFgos/bsPq1HjyJilm3bclyv9qim4IypFXoh7sEdJlP01YRv3372geFG8Mn8nvJN4qPTxy9rwdfrtXvbyZjb6jYtqQ49qujj91bo6KELyp0vo/qPaqQH9x9q7U+Wh6hAkSzau/1UrP24fdNRdX29pjJkCtDF8zfibGMymZQ0uZ9u37xvzdOzienZFz+AFdKnT6/y5cvr0KFDOnz4sPbu3avOnTsrICBAs2bNUpUqVay+bzplnuTJo6/qfeu2bf97ql+3mDp1qqCPZqzRkaMXlSd3Bg0cUFcPHjzS6jX7LL6/ggUza/eeM7FeG7ZuO6Fur1ZRcHBqhYbG/xqbNJmfbtv4XIwieaqkkqTb1+/GLDOZTBr6dU8tnfqzTh2M/+Bud5bi36vM30rgBKq9h8+rR6vyKvtCTm3adUKBqZKp2ot5tHHn8Zh1GlUtoldblNOU2b/q8MlLypsjvUa8WksPwh5pxZ+WHwhYJE9G7Tx4Vo/CH/97/HvPSb3WtqIypkulC5dvxdnGZJKS+fvp1l3nNp9O2R+tiubOc6rXZ3TV3yt2aueve597ENbTTCaTkqVM6vKvaXW1THmCtfDMp3oYFq5/thzVzJELFHoi4RNzPt3+nvz8fXX6wFnNm/C9dv++30mjdW8+vt6q3q6Clk1NPN+s9jRaZV90Kpo7d8oan+6Y/Pg1dvwyXmMtdGDjIb3yTluVqVtcW37ZqYD0qVWpeVltWbHD1UNzOd430Sl7c2SnJPu1ik7ZV0D6VCpT9wW9/+rnrh6KS/j4+ihvyRAtem95rOXb1+xRobL5Etz2eY1v/1YL3bh8Sytn/qYiFQrYe+huw8vLS5VaviT/5El0YNPhBNdNjO+baJV9MaeKlhhaZc1nKrleyKGCZfNq9luLHDgyIH6JdW5Kp+yLOVU0I3TKmvf5BV7Kq+1r9sRatm3VbtXpUk3ePt6KCI9QwbJ5tWzaT7HXWb1LzfrVj/c+n/Ve2GQyadg3r2vJ+z8meHKnq7l6P2bKE6yFZz+P/nvX30c0c+T8WH/vcpf9+Dy2zEv/U6dLNe1cu1eXTl955jrFqxVWlnyZ9NXwebYM16nolP3Zo1UWH7xeunRp1axZU59++qmaNGkiX1/fOOsULFhQbdq0eeZ9tGjRQqVKldLw4cNjLZ88ebK2bNmiJUuWWDqseM2ZM+f5KxnU/bthOrD9hNq+XlOnj17UjSu3VblRCeV7IZvOn3z2i4OnObDvnCaO+0Gj3m4qPz8f+fh4a+OGw5oxbVXMOu07VdDnH6/Vhj+ir14beuGmsudIqwaNSlh18HpgmhS6+NQB6tevRR9gGBiUIt6D11u2fkn+/r5a/5sxr6B37cptTXvnRx05eF6+vt6qXr+Y3v20k4Z0n619O6O/KvjlVyvpi6mr9Ne6g5Kki+dvKFtIOtVvVsqqg9cD06aIc4D69avR+zEoTdzbJKl5+3Ly9/fT+jXu/yGjp7p48aK+/fZbzZo1S8ePH1eTJk30008/qUaNGrp//75GjRqlTp066dSphL+iOiF0yjyv9ayuPXvP6KSNTWnfvpw++/w3/bkheoIUGnpT2bOlVcP6L1h18HpQUPI4B6hfv/Hva0Ng3NskqVWLMvL399Pv6/+x4hkYT/f32mnfX4diTYpaDWqgiPAILf94tQtH5jh921fRrn/O6vjZq89cZ++R83r74xUa93oDJfH1lo+Pt/7YdlRT5vwWs84rTV/SR3PXa/3W6JPYLly+pZyZ06hJ9WJWHbwelDq5LlyJfYD6tZvR/x7TBCSP9+D1l+uXUtIkvvp186E4t8E90KrY3HVOVaV1OeUpnlO9X3zDqu1bDGwg/+RJtH7JpuevnEj9s+WoJnX+WGcPX1BghgC1e6Oppm8Yp1eLDIr34LRrF67rgx6f68j2E/JN4qMa7Stp0ppRGlxtrPb+edAFz8C9lGtSWikCkmv1nPWuHgoMjk7F5q6dstS1Czf0QffPdGT7cfkm8VWNDpU0ae1bGlz1bV5jLXBg02G92/5DjVw4QH7+vvLx9dHGH7ZqxuvudZVJe+N9E+zJGZ2SbG8VnXKMmu0r6f7tB9qw3Lpva3V3qdOmlLePd5yr+V2/eEOBwQHxbmNO4wuVy6c6XaqpZ/EhDn4GxpWjcDZ9uHG8/Px9df/OA41pNlmnD8Z/QAnvm/A8zKliSwytsuQzlfmnPlHqdKnk7eOtb8csibkiKeBMzE2REOZUsRmhU9a8zw8KDtC2eNb38fVR6rQpdS00etunv8nq+sWbce7zee+FWw9rrMjwCH3/4Qprn6JTuHI//vP3EU3qNOPfv3elVruRzTX9r/F6tfCAmL93uct+fB5r9vOTgoIDVKZu8VhXrf9PslTJtPDs5/JN4qPIiEh92Psr7Vi7J557QWJnz1ZZfPD68ePHlT179gTXSZ48uWbNmvXM29evX6/Ro0fHWV6nTh29//77lg7JJmFhYQoLC4u1LDIqXF4mi3eN3b0/cL4GTGqjeX+/rYjwCB3df06//7hTuQtldvXQDCNb9rTq3a+W5s7eoK1bjitNmhTq/lo19R9cV1Pe+1mpUydT+gypNWhYAw0c8visKm9vL9194oqoX83prgwZUkf/Yor+P/9b+fiDwIsXb+rVTl/E/B6lp07HMf27UVTc03SqVi+oDq9U1Og3lujGDWN+ReHZU1d19tTjAwYP7j2rdBlSq0WHctq385RSByRT+uAADXirsfqPahSznre3l+7eefy/ny8W91b6jNH70fTvPln+5+M/fF26cFPdW30c8/vTuyuB3agqtQurQ48qenvgAt184mrEcB8NGzbUqlWrlDdvXnXr1k0dO3ZUUFBQzO1JkybVoEGDNHXqVJseJ7F1SnpGqyLD5eVlXav6vl5TITnTq++AuTaNK3XqpMqQPrUGD6ynQQPqxiz39vbSnbuPxzvzy66PX2P/9fOPA2P+++LFm+rS7euY36OeehEw/bc8njFUq1pAHTtU0Jujlxn2NdYSvad2Us4iWTWo+riYZbmL51CT3rXUu9ybLhyZ4wzuXF25s6VVjzELE1wvR+YgDehUTbO+36TNu08qbWBy9Xm5soZ1qaEJX65WQMqkCk6bSm90r6Xh3WrGbOft5aW79x//e5w3qZOC06aSJJn+/df168zXY24PvXJL7YY+8UHI0/8e/41VfK2qWTa/ujYrp2EfLNf1W4njmwA8Da2yTvxzqgh5mbydOo7/pMuSRq9N7aThdSboUdgji7ev2qacOoxuodFN39eNeE5S8RRPftXtyX1ndHDTYc058qFqdaysZdPiXsnq7OELOnv4QszvBzcfUbqsadRyUAMOEDBD3S7VtGXlLl29cN3VQ4GB0SnrGa1Vljp7+LzOHj4f8/vBzYeVLksatRzUiNdYC2QrkEW9p7+iueOWatuqXUqTMVDdJnVQv8+664NXP3X18FyC902wJ2d1SrK9VXTKMWp3qqzfFv5l1etJYhL37x6mOJ93/ud5jU+awl/Dvu2rqd0/062rtx05bEM7e+i8ehYfohQByVSh+UsaMruPBlUZHe8B7LxvQkKYU1nPyK2y5DOVgZVHyz+Fvwq8lEevTnhZ54+Fat3CjU4YJfAYc1M8C3Mq6zmjU5a8z49e34y/McdZJ+6yhN4L5ykRoqZ96+u1kkMtfj6u4or9GPvvXYr+e9fRGarVqYqWTf3JLffj81i6n/9Tq3MV3blxVxvjOSn9/u376ll8iJKm8Ffx6oXVc0onXTh+UXvWG/NCvnAMe7fK4qPenhcvc9y5c0d+fn5xlvv6+urWLcs/5D579qwCAgKUIkWKWMsfPXqkTZs2Jfg1JhMnTtSYMWNiLcuV+iXlCSxr8Tjs7cLpqxra5mMlSeqnZCmS6Prl2xr+UQeFnrnm6qEZRtv25bR/71ktXrhZknTi+CU9+OChpn3cSbO+Wq/IyOgX3g8m/6x/DpyPtW1kZGTMf78xdKF8fKLftKRNm1IffNRBPbp+FXN7eHhEzH9fv3pHQUGx/60FBiaLvu2pg6qrVCugQcMaaNxb32nH9pM2Plvn+mfvWVWrV1SSZPKKjv+0d37Uob3nYq0X8cR+HNV3bsx+TJM+pd7/sotea/tZzO2x9uOVOwpKE3s/BgQlj77tqSs5Vq5ZSAPeaqzxwxZr55bjtj4160SZnr8OEpQ+fXqtX79eZcs++/U1Y8aMOnHihE2Pk9g6JcXfqhw5qytnrhoWj+X13jVV7qU86j9onq5cse0PHl7/TgymTP1FB/95+jX28RvfESOXyNvHS1L0a+y0Ke3UrefjqwdEhD9+Hbl27W6c19iAgH9fG55+ja2cX4MH1tOYccu1Y6dtZ5cbwWsfdFDZBsU1qMZ4XTn3+EPWIuXzKSB9Ks09PC1mmbePt7q9+7Ka9KmtTvkHxnNv7mFgp2qqUDKXeo1dqMvP+Yr5jo1e1N7D5zTvp22SpGNnruh+2K/6fHQbfb7kr5h/cxO/Wq0DR0NjbftkqwZN+k4+3tGtSheYQp+81VqdRnwbc3t4xONWXbt5V0Gpk8e6r8BUyWJue1L1l/Lpje61NHL6/7R132mznr9d0Sm7oFX2m1PlVEHlMhW2eBz2kKdkTgVmCNAnWyfGLPP28VaRSgXUuHdt1UvaLlannlS5VVkN/LKnxrWeqp2/Wv4tTYnZg3thOrHvtDLnCTZ7m382H1H1dhUdOKrEIX22tCpevYjGtJji6qE4Fq2yGZ2y75wqpwoolwpZPBaj+OdvXmMt1XZ4U+3/65CWvP+jJOnE3tO6fzdM0/4cp9mjFuha6A3XDtAFeN/0BDplM2d1SrK9Ve7QqRDvwsrtU9TisbhK4fL5lDVfJk1o/5Grh+IyN6/cVkR4hIKeuppdQPrUuvHUlQAT8mTjM+UKVsac6TXux8dXtPzv7zUrHy7UK/n76cLxi7YP3uDCH4Xr/LHoz/sObz+ufKVyqWm/epre84vnbBkt0bxvolU2Y05l7zmV6z7/+4+ln6mEnrwsKfpCDYHpA9ThrZYcvA6nS7RzUzplM+ZUxvzsz5r3+ddCbygoODDO+uGPwmNOSr0eGvdK2AHpU8e5inhC74ULV8yvgPSpNO/U4xNfvH281eP9TmrWr746hPS25ik7hKv345Me3AvTib2nlTlPRklyq/34PLbOS+u8Uk1r5/6h8EfhcW6LioqK+bd4bPdJZSuQRW2HN3Wfg9fplF3Yu1Ve5j5wYGCggoKCnvtjjsKFC2vRokVxli9cuFAFCxY0d0i6cOGCypQpo+zZsysgIECdOnXSnTuPD3y6du2aqlatmuB9jBgxQjdv3oz1kyugtNljcIaw+w91/fJtpUiVVCUr5dfmtftcPSTD8Pf3jXNmUMS/f1AxSbpx/a4uX7qljBkDdf7c9Vg/oRcevyhfungrZvnFf1+sn1z30sXHb64O7D+nIsWyysfn8f98SpYO0ZXLt2PdZ9XqBTVkRENNGLtcf28+6oin71C58gXr2r8Htt64dleXL95UxsxBOn/2Wqyfi+dvxGxzKfRmzPJL/+6LJ9e9FPp4/xzce1aFS2SPOdhdkkq+lFtXLt2KdZ9VahfWoLeb6t2Ry7RlwxHHPmk4VOXKlVWiRIk4yx8+fKhvvvlGUvTZftZOlBJrp6T4W5U9ZxWzx/Gfvn1qqmKFvBo0dIFCQ83/g8mzXL9xT5cv31LGjAE6f/5GrJ8n7//ipVsxyy/++3r65LoXLz3xGnvgnIoWif0aW6pUDl25cjvWfVarWkDDhtTX+Ik/6u8tx2x+Lq7We2pHlW9cSkPrTNTFU5dj3bZ2/l/qWXqker04KubnyvlrWjr1Z41sOMlFI7bdoM7VVKV0bvUZv1gXzLhCn38SHz1xDLqkxyeimSRdv3VPl67eVub0ATp78UasnyfvP/TK7cfLr0Qvf3Ld0CdO6th75IJeKJBFPt6P/z2WKZpdl6/djnWfNcvm15s9a2v0xyu0cZftHxjBdWiV/eZUOU0FzB6Dve38dZ+6FR2sniWGxfwc2npMv83foJ4lhj3zAKyqbcppyMzXNLH9h9qyYqeTR218vn4+ypY/s65duGH2NrmK5+BK4mao3bmKbly6qb9/3uHqocDg6JR951Q5ld/scRhRrhdy6qoFr8mQkiTzi/M+IDLi3zmFyTP/eMH7JtiTozsl2a9V7tCpEG/3OsGqducqOrz9uI7vdcEJ/QYR/ihch7cfV4masU86KFGjqPZvOmT2/TzZ+NP/nFO3IgPVs/iQmJ9NP27T7nX71bP4EF0+czXhO0ukTCaT/Px8zV6f9034D3MqO8+pXPj5339s+UzFZJJ8k1j3DceALZib4lmYUxnzsz9r3ucf3HxYJWrEXr9krWI6vO24Iv696OeBTYdV8ul1ahbTgY0Jzx2efC+89ts/1KPY4FjzhSvnrmnJ+z9qRJ3xFj1PRzPSfvT181G2Apl17d+/X7nTfnweW+alRSsXVOY8GbXy69/MezCTSb5JzJ+XIXGwd6vMfjc+bdq0mP+OiopSr169NHbsWKVPn97cu4jx5ptvqnnz5jp27JiqVasmSfr111+1YMECLVmyxOz7GT58uLy9vfX333/rxo0bGjFihKpUqaI1a9YoMDAwZqwJSZIkiZIkSRJrmZfJGJOUEpXyySSTzh6/pEw50qrriIY6e/ySVi/ZIklKkTqZ0mcKUJoMqSVJWUKi/39x/fJtXbfxarqu4p/UV5kzP34jlDFjgHLlzqDbt+7r0qVb6tq9itKmTan3JvxPkrTpryMaOLSeGjYuoW1bjisoTQq99npNHTxwTlevRr+h+WbWn+rdr5bu3QvTls3H5Ofnrbz5MipFSn8tW7zF4jH+tna/OnSuqKEjGmr+3I3KnCVIL7cvp2/nbIhZp2r1gho2spE++XCNDh44p8B/ryj+MCxcd++GPeuu7cY/qZ8yZX28H4MzBSokb7Bu37qvy6E39UqfGkqbLqUmj/5ektS07UsKvXBDp45dkq+vt6rVK6aKNQpp7OCFMfcx94vf1WtIXd27G6atfx2Rr5+38hbIpBSpkuq7eZssHuNvK/eoXbfKGjymiRbM/FOZswWpTZeKmvfl+ph1qtQurCFjm+nT93/RP3vPKvDfK7WHhT3SvTuO34+xPP/bU/Acr7zyiurUqROnG7dv39Yrr7yijh072nT/ibVT0jNa5WVZq/q9XkvVqxXUqNHLdO/eQwUGRr8u3b0bpocPo8+afLVLZaVNm1LvTvopZrtcuaL3X9KkvkqdOply5Uqv8EcROnU6+g8jc77doD6v1dS9ew+1Zcsx+fr6KF++YKVI4a+ly+J+ldDz/PrbAXXsUF7DhtTXvAWblCVzkF5uW1bfzn185YtqVQto+NAGmvHJWh04eD7muTwMC9fde05+bbCDPtM6qWrrsnq75TTdv/NAgf92/e7Ne3r44JFuX7uj209dlTz8UYSuX7yps0dC47tLwxv8SnXVKpdfw6b8oHv3HyoodfTVzO/ee6iwf8/i7dW6gtIFpdDYT1dKkjbsOK4Rr9ZU0xrF9Peek0obkFz9OlTV/qMXdOVG9FXQv1q2SQM7VdXd+2HatOuk/Hy9lT8kg1Im99fCFdstHufqvw6qa7OyerNnHc354W9lDQ5Up8YvauZ3j7tXs2x+vdWrjqZ+s077jpyPeS5hD8N19/5Dm/aTReiUXdAqe86pXPeVwffvPNDJ/WdiLXtw94FuXb0Ts7zL+LZKmzlIkzp/LCn6AKyhs3vrk/5zdHDzkZjX4rD7D3Xv1n3nPgGD6D6pvTb/tF2XTl9RQPrUenlkMyVLlVSrv4l+v/70Pmzat54unrqkU/vPysfPR9XbVVSl5i8l/quJ28hkMql25ypa8836mD9SJVq0ymZ0ys5zKhe2yj+5vzLnfvxNFsE50ytXsRy6de2OLp+5oi4TXlbaTEGa1HmGJKlpv3q6ePKyTu0/E/0a276SKrV4SWOaT3bVUzAES/fj5p+2a8AXPdSgZ62Yr2bvNbWzDv59xGNPtuJ90xPolM0c3SnJfq2iU+bzT55EmXI98VqbI51CimbX7et3Yg6cTpYyqSo1K6Mvhs131TANY9nUnzTsm9d1eNsxHdx0WPW611D6bGn102erJcnixj8KexTndfrujXuSFGd5YtVlfFtt+WWnLp+5qqQpk6pqm/IqWqWQ3qgbfRCJR71volU2Y06VuFqV0GcqT7+HbdSrli6duaIz/36LcOEK+dVyUEMtn7HS6eNG4sPc9F90ymbMqYzbKUvf5//02Ro16l1HPaZ00i9frlWBsnlVp0s1TXh5Wsx9fv/hz/pg/Vi1HtpYG3/YqnKNS6tEjSIaUPHNmHWe9144/uMIwnUt9LrOHj5vt+dvL67aj90nd9Dm//33965Uenlk8+i/d835XZL77cfnsXQ//6dul+o6uPlwvHPNNsOb6PC24zp/LFS+fj4qU6+EanaopA9f+9Ipz8ku6JRd2LtVZh/51qlTp1i/v/7662revLlCQkIsekBJatSokZYvX64JEyZo6dKlSpo0qYoWLaq1a9eqcuXKZt/P2rVr9f3336tUqVKSpIoVK6p169aqVq2afv31V0nufWZi8pT+emVIfaUNDtDtm/e0YeUezXl/hSLCoydfL9UopEHvt41Zf8SM6P/nz522SvOmr3LJmG2VL19GTfmwQ8zvvV6vKUla9ctuTZ74k4LSpFD6f/8gIkmrV+5RsmR+atyslHr0rqE7dx5o146T+vKzdTHr/PLzLoWFPVKrNi+pW89qevDgkU4cv6Tvllh+UKUUfaDnsEHz9fqAOvrkiy66feeBli7eoqWL/o5Zp0GjEvLx8VbfgXXUd2CdmOX/PQ9Hy1swkyZ/8UrM7z0HRY9h9f92asrbyxWUNoXSBT/ejz6+3urev5bSpEulh2GPdOr4ZY3qO1db/3p8pfOVy3co7MEjtehQXl371lTY/Yc6cfSSvl9g+YHrknTvTphG9P5GfYbV14xvu+v27QdaNneTlj1xgGq9ZqXk4+Ot14c30OvDG8Qs/+95wL1ERUXF+5p89uxZpU6dOp4tLEOnEta4UfSZb9OmtIu1/L3JP2vV6uiv9w5Kk0Lp06eKdfuXn3WJ+e98eTOqRvVCCg29qZc7RH9l0opf9ujBg3C1bvWiur9aJfo19uRlLftum1XjvHsvTEOGLVK/12vps4876/btB1q6dKuWLH18slGD+sXl4+Ot/n1rq3/f2jHLV67eq0mTf7bqcV2pYY8akqT314yMtfz9bl9ozdw/XTEkh2te8wVJ0idvtY61fNxnK7Xij/2SpDQByZUhzeN/jyv+2K9k/n5qUesF9W1XWbfvhWn7/tP6ZMHjffS/3/cq7OEjtWtQWr3bVtKDsEc6duaKFv1i3ZVs795/qH4Tl2pQ5+qa+U573b77QAtWbNeCJw6Eb1K9qHx8vDWkSw0N6VIjZvnP6/fpnc/d8/2YJ6NViW9O9SxpMgYofdY0Mb/X71ZDPr4+6vtxV/X9uGvM8tVzftfkLp/GdxeJXtosafTGvL5KlTaVbl6+pYN/H1HfcqN06fQVSXH3oa+fj7pP6qC0mYMUdv+hTu0/o5ENJmrLL7tc9AzcQ4kaRZQhezqtnPW7q4cCN0CnEk+n8pYK0ZR1j7/KuNcHnSVJq2f/rsldPlaa4EClz5Y25nZfPx91n9wx9mts/Qna8otnX/Ha0v24es7vSprSX41711GP9zvq7o272vnbPn01fJ6zh+5WeN8Eczm6U5L9WkWnzJe3ZIgmrx4V83vPydF/v1n97R+a0u1zSVLlVi9JJpPWLd4Y7314kvWLNypVmhRq/2YLBWUM1Ml90c2OmUfReIsFZAjQsG9eV1DGQN29eU8n9pzSG3XHa8faPZLYp7AMc6rE1aqEPlN5+j2syctLXca/rOCc6RQZHqnzxy7qqzfm6+fP1zpxxEismJvCXphTGbdTlr7PDz15SaPqT1TPDzqp0Wu1dfX8dX3Sb6Y2fPf4uLIDmw5rfNtp6jyujTqNbaMLx0I1vs1U/bPlaMw6z3sv7G5ctR/TZk6jN+b3e/z3rs2H1bfsyJjHTWws3c+SlCxVMlVo/qI+6T8r3vv0T+6vvh+/qrRZ0ijs/kOd+eec3u3wkdbzOYDHsXerTFHmnKIUj5QpU2r37t1WTbbsJUWKFNq5c6fy5MkTsyw8PFwtW7bU8ePHNXfuXL3wwguKiIiw6H7r5hxo76F6pEdPTAhhG++7TrxyayK2avuY56/0DCFTP7DjSBJ2fEDieg0qXry4TCaTdu/erUKFCsnH5/F5UxERETpx4oTq1KmjxYsX2/VxE3OnJKlazXftOVSP5bthv6uHkCjcavqCq4eQKGyaP8jqbZ3ZKYlW2UtiblVN79bPXwmAW1kTEfdrYC3BnMp6dMoxc6qaXi3tOVTANiYvV48gUbClVcyprOeqTkmub5UjO1Xbv93zV8JzRT7kbyswjjWR5l+FND7MqazHnMpBcyo+/7MLWz9vQTTm+PZhS6uYU1mPORWf/QEwD51yHUe1yuwrrxtRSEiI9uzZEytiPj4+WrJkiVq2bKkGDRoksDUAwBmaNGkiSdq1a5dq166tFClSxNzm5+enHDlyqHnz5i4anWPRKQBwD7SKVgGAkdEpOgUARkan6BQAGB2tolUAYGR0ik4BgNE5qlVOO3g9KChIhw8fVtq0aRUYGJjg13pcu3bNrPusW7euvvjiizhP/L+QNW/eXGfPnrVp3AAgSSarvqMCkjR69GhJUo4cOdS6dWv5+/u7eETxo1MA3Bmdsg2tolUAHI9WWY9O0SkAjkenrEen6BQA56BV1qNVtAqA49Ep69EpOgXA8eiUbRzVKrMPXh84MPal7B8+fKjx48crderUsZZ/8EH8l9ifOnWqUqZMKUmaNm2ahcOM3/jx43Xv3r14b/Px8dF3331HxADAIDp16uTQ+6dTAABb0arYaBUAGAudio1OAYCxOLpTkm2tolMAAOZUsdEqADAW5lSx0SkAMB57t8rsg9d37twZ6/dy5crp+PHjsZYldFbVfwMPDw+XJNWuXVvBwcFmDzQ+Pj4+SpUq1TNv9/b2Vvbs2W16DACQJHEGls2ed/btk8w9E/dJdAqAR6NTdkGr4qJVAOyGVtmMTsVFpwDYDZ2ymaM7JdnWKjoFwO3RKpsxp4qLVgGwGzplM+ZUcdEpAHZDp+zC3q0y++D1devWmbtqwg/o46NevXrp4MGDdrm/jz76SNu2bVP9+vXVqlUrffvtt5o4caIiIyPVrFkzjR07Vj4+Zj9NAICDjBo1SuPHj1ft2rVVtmxZSdKmTZu0atUqvfnmmwoKCrLp/ukUAMBWtIpWAYCR0Sk6BQBG5uhOSfZpFZ0CAM/FnIpWAYCRMaeiUwBgdPZulUte3V988UXt3LnT5rOjxo0bp8mTJ6tWrVrq16+fTpw4ocmTJ2vAgAHy8vLS1KlT5evrqzFjxthp5AA8Fmdg2Wzjxo0aO3as+vTpE7Osb9++mjFjhtauXavly5e7bnBPoVMA3A6dsgtaRasAOBCtshmdolMAHIhO2YxO0SkADkarbEaraBUAB6JTNqNTdAqAA9Epu7B3q1xy8Pprr72mQYMG6ezZsypZsqSSJ08e6/aiRYuadT+zZ8/W7Nmz1axZM+3evVslS5bUnDlz1K5dO0lS/vz5NXToUCIGAAawatUqvffee3GW165dW8OHD3fBiJ6NTgGAZ6JVtAoAjIxO0SkAMDI6RacAwOhoFa0CACOjU3QKAIzO3q1yycHrrVu3lhR91P1/TCaToqKiZDKZFBERYdb9XLhwQaVKlZIkFStWTF5eXnrhhRdibi9RooTOnz9vv4ED8FgmzsCyWZo0afT9999ryJAhsZYvX75cadKkcdGo4kenALgbOmUftIpWAXAcWmU7OkWnADgOnbIdnaJTAByLVtmOVtEqAI5Dp2xHp+gUAMehU/Zh71a55OD1EydO2OV+goODdeDAAWXLlk1HjhxRRESEDhw4oEKFCkmS9u/fr/Tp09vlsQAAthkzZoy6du2q33//XWXLlpUkbd68WStXrtRXX33l4tHFRqcAwDPRKloFAEZGp+gUABgZnaJTAGB0tIpWAYCR0Sk6BQBGZ+9WOf3g9du3b+vw4cN69OiRypQpo7Rp01p9Xy+//LI6duyoxo0b69dff9WwYcM0ePBgXb16VSaTSePHj1eLFi3sOHoAgLU6d+6sAgUK6MMPP9R3332nqKgoFSxYUH/99ZdefPFFVw8vBp0CAM9Fq2gVABgZnaJTAGBkdIpOAYDR0SpaBQBGRqfoFAAYnb1bZdbB63v27DH7DosWLZrg/dStW1ehoaGKiopSqlSptHTpUtWoUcPs+3/SmDFjlDRpUm3evFk9evTQsGHDVLRoUQ0dOlT37t1Tw4YNNW7cOKvuGwBiiTK5egSJwosvvqh58+YluM67776rnj17KiAgwOz7pVMAPB6dshtaRasAOAitsgs6RacAOAidsgtHdUqyT6voFAC3RqvsgjkVrQLgIHTKLphT0SkADkKn7MaerTJFRUVFPe8Bvby8ZDKZ9KxV/7vNZDIpIiLimfdTr149Xb9+XVOmTJG/v7/GjBmjQ4cO6Z9//nneEJyqbs6Brh5CovAoaxpXDyHR8L770NVDSBRWbR9j9ba5J02140gSdnToAKc9lhGlSpVKu3btUkhIiNnbeFqnJKlazXddPYREwXfDflcPIVG41fQFVw8hUdg0f5DV2zqzUxKtolXPV9O7tauHAMDO1kQssml75lTOQ6fMU9OrpauHADxm8nL1CBIFW1rFnMp5rOmUZJ9WuVOnavu3c/UQEoXIh/xtBcaxJnKJTdszp3Ie5lTm4fM/+7D18xZEY45vH7a0ijmV8zCnMg+vC0DiQ6fch7mtMuvK6ydOnLDLoLZt26YVK1aoVKlSkqSZM2cqffr0unPnjlKkSGGXxwAAh3juaT6wFzPOqYqDTgHweHTKqWgVAFiBVjkNnQIAK9App7GmU5J9WkWnALg1WuU0zKkAwAp0ymmYUwGAFeiUU5nbKrMOXs+ePbtNg/nPlStXlC1btpjf06RJo2TJkuny5ctEDABgNToFADA6WgUAMDI6BQAwOnu0ik4BAByFORUAwOiYUwEAjMasg9fjc+DAAZ0+fVoPn/rKvUaNGj1zG5PJpNu3b8vf31+SYr5u5Pbt27p161bMeqlSpbJ2WADgECbOwHI7dAqAJ6FT7olWAfAktMr90CkAnoROuSdLW0WnALgzWuV+mFMB8CR0yj0xpwLgKeiUMVl88Prx48fVtGlT7d27VyaTKeYS7yaTSZIUERHxzG2joqKUN2/eOMuKFy8e898mkynB+wAAICF0CgBgdLQKAGBkdAoAYHTWtopOAQCcgTkVAMDomFMBAIzA4oPX+/Xrp5w5c2rt2rUKCQnRli1bdPXqVQ0aNEjvv/9+gtuuW7fO6oECgEtxBpbboFMAPBKdciu0CoBHolVug04B8Eh0yq1Y2yo6BcCt0Sq3wZwKgEeiU26FORUAj0OnDMnig9c3bdqk3377TenSpZOXl5e8vLxUoUIFTZw4UX379tXOnTufuW3lypVtGiwAIPGrWLGikiZNavX2dAoA4Gi0CgBgZHQKAGBktnZKsr5VdAoAYA7mVAAAI2NOBQAwOnNbZfHB6xEREUqRIoUkKW3atDp//rzy5cun7Nmz69ChQ5aPFADcgIkzsOwiIiJC33//vQ4ePCiTyaT8+fOrSZMm8vF5nKMVK1bY/Bh0CoCnoVP2Q6sAwDFolX3QKQBwDDplH87o1H+PQ6sAeBpaZR/MqQDAMeiUfTCnAgDHoFP2Y89WWXzweuHChbVnzx6FhIToxRdf1KRJk+Tn56cvvvhCISEhlt4dAMBD7Nu3T40bN1ZoaKjy5csnSTp8+LDSpUunH3/8UUWKFLHL49ApAIC1aBUAwMjoFADAyJzVKYlWAQCsw5wKAGBkzKkAAEZn71Z5WTqAUaNGKTIyUpL0zjvv6NSpU6pYsaJWrFihDz/80NK7AwD3EOXEn0Tq1VdfVaFChXT27Fnt2LFDO3bs0JkzZ1S0aFF1797dbo9DpwB4JGd2ilbZjFYB8Eh0ymZ0CgAciDmVzZzVKYlWAfBQdMpmzKkAwIGYU9mMORUAOBCdsgt7t8riK6/Xrl075r9DQkJ04MABXbt2TYGBgTKZTBYPAADgGXbv3q1t27YpMDAwZllgYKDGjx+v0qVL2+1x6BQAwFq0CgBgZHQKAGBkzuqURKsAANZhTgUAMDLmVAAAo7N3qyy+8vqTzpw5o7NnzyooKMiieHXp0kW3b9+Os/zu3bvq0qWLLUMCAMfg7Cub5cuXTxcvXoyz/NKlS8qdO7dDHpNOAfAYnClsF7QKAByITtmMTgGAAzGnspkrOiVZ1yo6BcAt0SmbMacCAAdiTmUz5lQA4EB0yi7s3SqLD14PDw/Xm2++qdSpUytHjhzKnj27UqdOrVGjRunRo0dm3cecOXN0//79OMvv37+vb775xtIhAQDcwIQJE9S3b18tXbpUZ8+e1dmzZ7V06VL1799f7733nm7duhXzYws6BQCwFq0CABgZnQIAGJmzOiXZ3io6BQCeiTkVAMDImFMBAIzO3q3ysXQAffr00ffff69JkyapbNmykqRNmzbp7bff1pUrV/TZZ589c9tbt24pKipKUVFRun37tvz9/WNui4iI0IoVK5Q+fXpLhwQAcAMNGjSQJLVq1SrmjN2oqOjTzRo2bBjzu8lkUkREhNWPQ6cAANaiVQAAI6NTAAAjc1anJOtbRacAwLMxpwIAGBlzKgCA0dm7VRYfvL5gwQItXLhQdevWjVlWtGhRZcuWTW3atElwshUQECCTySSTyaS8efPGud1kMmnMmDGWDgkAHM6UiL/Sw1nWrVvnlMehUwA8EZ2yD1oFAI5Dq2xHpwDAceiU7ZzVKcn6VtEpAO6MVtmOORUAOA6dsh1zKgBwHDplH/ZulcUHr/v7+ytHjhxxlufIkUN+fn4Jbrtu3TpFRUWpWrVqWrZsmYKCgmJu8/PzU/bs2ZUpUyZLhwQAcAOVK1d2yuPQKQCAtWgVAMDI6BQAwMic1SnJ+lbRKQDwbMypAABGxpwKAGB09m6VxQev9+7dW+PGjdOsWbOUJEkSSVJYWJjGjx+vPn36JLjtf4M/ceKEsmXLFnPpeABA4vfmm2/q7bfflre3d6zlN2/eVM+ePbVgwQK7PA6dAgBYi1YBAIyMTgEAjMxZnZKsbxWdAgDPxpwKAGBkzKkAAEZn71aZdfB6s2bNYv2+du1aZcmSRcWKFZMk7d69Ww8fPlT16tXNetDs2bPrzz//1Oeff67jx49ryZIlypw5s7799lvlzJlTFSpUsOhJAACM75tvvtGaNWs0b9485cqVS5L0+++/q2PHjsqcObNN902nAAD2QKsAAEZGpwAARubITkn2bRWdAgDPxJwKAGBkzKkAAEZn71aZdfB66tSpY/3evHnzWL9nzZrVogddtmyZOnTooHbt2mnHjh0KCwuTJN2+fVsTJkzQihUrLLo/AHC4KFcPwP3t2bNHPXr00AsvvKAPPvhAhw8f1vTp0zV8+HCNHj3apvumUwA8Hp2yC1oFAA5Eq2xGpwDAgeiUzRzZKcm+raJTANwSrbIZcyoAcCA6ZTPmVADgQHTKLuzdKrMOXp81a5bFd5yQd955R5999pk6duyohQsXxiwvV66cxo4da9fHAgAYQ+rUqbVw4UKNHDlSPXr0kI+Pj3755RezrzKREDoFALAHWgUAMDI6BQAwMkd2SrJvq+gUAHgm5lQAACNjTgUAMDp7t8rL2oFcvnxZGzZs0F9//aXLly9btO2hQ4dUqVKlOMtTpUqlGzduWDskAHAYU5TzfhKzjz76SFOnTlXbtm0VEhKivn37avfu3Q55LDoFwJM4s1O0yn5oFQBPQqfsg04BgGMwp7IPZ3ZKsr5VdAqAO6JT9sGcCgAcgzmVfTCnAgDHoFP2Y89WWXzw+t27d9WlSxdlzJhRlSpVUsWKFZUpUyZ17dpV9+7dM+s+MmbMqKNHj8ZZvmHDBoWEhFg6JACAG6hbt67efvttffPNN5o3b5527typSpUq6aWXXtKkSZPs9jh0CgBgLVoFADAyOgUAMDJndUqyvVV0CgA8E3MqAICRMacCABidvVtl8cHrAwcO1Pr16/W///1PN27c0I0bN/TDDz9o/fr1GjRokFn30aNHD/Xr109///23TCaTzp8/r3nz5mnw4MF67bXXLH4SAOBwUU78SaTCw8O1d+9etWjRQpKUNGlSffrpp1q6dKmmTp1qt8ehUwA8kjM7RatsRqsAeCQ6ZTM6BQAOxJzKZs7qlGR7q+gUALdEp2zGnAoAHIg5lc2YUwGAA9Epu7B3q3ws3WDZsmVaunSpqlSpErOsXr16Spo0qVq1aqVPP/30ufcxdOhQ3bx5U1WrVtWDBw9UqVIlJUmSRIMHD1afPn0sHZLdRV664uohJAo+t++4egiJR2QiflWDx1izZo3+/PNPDR06VMeOHdPSpUuVOXNmXbt2TYsXL7bb43hCpyTJ+7edrh5CohDp6gEkEikWbXH1EBKH+a4eAGiVHUXxCgsA9kangESM905IBJzVKcn2VrlDpyIfPnT1EAAg0WFOZWe8h7WLml4tXT0EAAbBnAoAYHT2bpXFV16/d++eMmTIEGd5+vTpzf6aq4cPH2r8+PG6cuWKtmzZos2bN+vy5csaN26crlzhwHEABsTZVzZbtmyZateuraRJk2rnzp0KCwuTJN2+fVsTJ0602+PQKQAeiTOF7YJWAYAD0Smb0SkAcCDmVDZzVqck21tFpwC4JTplM+ZUAOBAzKlsxpwKAByITtmFvVtl8cHrZcuW1ejRo/XgwYOYZffv39eYMWNUtmxZs+6jVatWioyMVLJkyVSqVCmVKVNGKVKk0MWLF2Od1QUASDzeeecdffbZZ/ryyy/l6+sbs7xcuXLasWOH3R6HTgEArEWrAABGRqcAAEbmrE5JtreKTgGAZ2JOBQAwMuZUAACjs3erfCzdYPr06apTp46yZMmiYsWKyWQyadeuXfL399eqVavMuo8LFy6oa9eumjVrVqxl1apVU6FChSwdEgDADRw6dEiVKlWKszxVqlS6ceOG3R6HTgEArEWrAABGRqcAAEbmrE5JtreKTgGAZ2JOBQAwMuZUAACjs3erLL7yeuHChXXkyBFNnDhRL7zwgooWLap3331XR44cMTtAK1as0JYtWzRgwABJ0rlz51SlShUVKVJEixcvtnRIAOBwpijn/SRWGTNm1NGjR+Ms37Bhg0JCQuz2OHQKgCdyZqdole1oFQBPRKdsR6cAwHGYU9nOWZ2SbG8VnQLgjuiU7ZhTAYDjMKeyHXMqAHAcOmUf9m6VxVdel6SkSZOqW7du1mwqSUqTJo1WrVqlChUqSJJ+/vlnlShRQvPmzZOXl8XH0wMA3ECPHj3Ur18/zZw5UyaTSefPn9emTZs0ePBgvfXWW3Z9LDoFALAGrQIAGBmdAgAYmTM7JdnWKjoFAJ6JORUAwMiYUwEAjM7erTLr4PUff/zR7Dts1KiRWetlyZJFa9asUYUKFVSzZk19++23MplMZj8OADhVIj4rylmGDh2qmzdvqmrVqnrw4IEqVaqkJEmSaPDgwerTp49N902nAHg8OmUXtAoAHIhW2YxOAYAD0SmbObJTkv1bRacAuB1aZTPmVADgQHTKZsypAMCB6JRd2LtVpqioqOf+v8bcs6JMJpMiIiLivS0wMDDeSN27d09JkiSRt7d3zLJr166Z9XiOUjt5R5c+fmJhSurv6iEkHpG8gtrDymtfWr1tgTen2nEkCTs4boDTHssV7t27pwMHDigyMlIFCxZUihQpbL5PT+uUJNX0bu3qIQCwszURi6ze1pmdkmiVNTytVTW9Wrr08QHY35rIJTZtz5zKfuiUfdAqIPGxpVXMqezHEZ2SbG8VnQLgasypjIM5lX3QKiDxYU5lDMyp7INOAYkPnTIOe7XKrCuvR0ZGWnXnT5o2bZrN9wEArmLi/AG7SZYsmUqVKmXX+6RTADwdnbIvWgUA9ker7IdOAYD90Sn7cUSnJNtbRacAuDtaZT/MqQDA/uiU/TCnAgD7o1P2Za9WmXXwuj106tRJkhQeHq558+apdu3aCg4OdtbDAwCQIDoFADA6WgUAMDI6BQAwMjoFADA6WgUAMDI6BQCwN7MPXr9//75+/fVXNWjQQJI0YsQIhYWFxdzu7e2tcePGyd/fP+EH9PFRr169dPDgQSuHDAAuwBlYhkenAHg0OuUWaBUAj0arDI9OAfBodMot2KNVdAqA26JVhsecCoBHo1NugTkVAI9FpwzJ7IPXv/nmG/30008xAZsxY4YKFSqkpEmTSpL++ecfZcqUSQMGDHjufb344ovauXOnsmfPbuWwAQCIjU4BAIyOVgEAjIxOAQCMzl6tolMAAEdgTgUAMDrmVAAAIzH74PV58+bFidP8+fMVEhIiSZo7d64+/vhjsyZbr732mgYNGqSzZ8+qZMmSSp48eazbixYtau6wAMA5OAPL8OgUAI9Gp9wCrQLg0WiV4dEpAB6NTrkFe7WKTgFwS7TK8JhTAfBodMotMKcC4LHolCGZffD64cOHlTdv3pjf/f395eXlFfN7mTJl1Lt3b7Puq3Xr1pKkvn37xiwzmUyKioqSyWRSRESEucMCAEASnQIAGB+tAgAYGZ0CABidvVpFpwAAjsCcCgBgdMypAABGYvbB6zdv3pSPz+PVL1++HOv2yMhIhYWFmXVfJ06cMPdhAcAQTJyBZXh0CoAno1PugVYB8GS0yvjoFABPRqfcg71aRacAuCNaZXzMqQB4MjrlHphTAfBUdMqYzD54PUuWLNq3b5/y5csX7+179uxRlixZzLqv7Nmzm/uwAACYhU4BAIyOVgEAjIxOAQCMzl6tolMAAEdgTgUAMDrmVAAAIzH74PV69erprbfeUv369eXv7x/rtvv372vMmDGqX7++RQ9+4MABnT59Wg8fPoy1vFGjRhbdDwA4HGdgGR6dAuDR6JRboFUAPBqtMjw6BcCj0Sm3YO9W0SkAboVWGR5zKgAejU65BeZUADwWnTIksw9ef+ONN7R48WLly5dPffr0Ud68eWUymfTPP/9oxowZCg8P1xtvvGHWfR0/flxNmzbV3r17ZTKZFBUV/a/DZDJJkiIiIqx4KgAAT0anAABGR6sAAEZGpwAARmevVtEpAIAjMKcCABgdcyoAgJF4mbtihgwZtHHjRhUoUEDDhw9X06ZN1aRJE40YMUIFCxbUhg0blCFDBrPuq1+/fsqZM6cuXryoZMmSaf/+/frjjz9UqlQp/f7779Y+FwCAB6NTAACjo1UAACOjUwAAo7NXq+gUAMARmFMBAIyOORUAwEjMPnhdknLmzKmVK1fq8uXL2rx5szZv3qzLly9r5cqVCgkJMft+Nm3apLFjxypdunTy8vKSl5eXKlSooIkTJ6pv374WPwkAcLgoJ/7YYOLEiTKZTOrfv//joUdF6e2331amTJmUNGlSValSRfv374+1XVhYmF5//XWlTZtWyZMnV6NGjXT27FnbBuMCdAqAx3Jmp2xolad3SqJVADyYG3RKolV0CoDHYk7lNuzRKjoFwC25QackWsWcCoDHYk7lNphTAfBIdMqQLDp4/T9BQUEqU6aMypQpo6CgIIu3j4iIUIoUKSRJadOm1fnz5yVJ2bNn16FDh6wZEgB4vK1bt+qLL75Q0aJFYy2fNGmSPvjgA82YMUNbt25VcHCwatasqdu3b8es079/f33//fdauHChNmzYoDt37qhBgwZu+3VOdAoAjIdOxUarAMB4aNVjdAoAjIdOxWZLq+gUADgGrXqMORUAGA+dio05FQAYiyd2yqqD121VuHBh7dmzR5L04osvatKkSfrrr780duxYi844BgBnMUU578cad+7cUbt27fTll18qMDAwZnlUVJSmTZumkSNHqlmzZipcuLDmzJmje/fuaf78+ZKkmzdv6uuvv9aUKVNUo0YNFS9eXHPnztXevXu1du1ae+w+t0OnALgbZ3bKmlbRKfujVQDcjZE7JdEqe6NTANwNcyrPQqcAuCMjd0qiVfZGqwC4G+ZUnoVOAXA3dMqYXHLw+qhRoxQZGSlJeuedd3Tq1ClVrFhRK1as0IcffuiKIQGAYYSFhenWrVuxfsLCwhLcpnfv3qpfv75q1KgRa/mJEycUGhqqWrVqxSxLkiSJKleurI0bN0qStm/frkePHsVaJ1OmTCpcuHDMOp6GTgFAwixtFZ2yP1oFAM/GnMr16BQAJIw5lWvRKQBIGHMq16NVAJAw5lSuRacAIGF0yjw+rnjQ2rVrx/x3SEiIDhw4oGvXrikwMFAmk8kVQwKAhFl5pQlrTJw4UWPGjIm1bPTo0Xr77bfjXX/hwoXasWOHtm7dGue20NBQSVKGDBliLc+QIYNOnToVs46fn1+sM7f+W+e/7T0NnQLgdpzYKcmyVtEpx6BVANwOcyqPQqcAuB3mVB6FTgFwS8ypPAqtAuB2mFN5FDoFwO3QKUNyycHr8QkKCnL1EADAEEaMGKGBAwfGWpYkSZJ41z1z5oz69eun1atXy9/f/5n3+fQEISoq6rmTBnPW8SR0CgAeM7dVdMq5aBUARGNOZUx0CgAeY05lPHQKAB5jTmVMtAoAHmNOZTx0CgAeo1PmcerB6126dDFrvZkzZzp4JABgGZMTz8BKkiTJMz8EfNr27dt16dIllSxZMmZZRESE/vjjD82YMUOHDh2SFH2WVcaMGWPWuXTpUsxZWcHBwXr48KGuX78e6yysS5cuqVy5cvZ4Sm6DTgFwV87slGR+q+iU/dEqAO6KOZVnoFMA3BVzKs9ApwC4M+ZUnoFWAXBXzKk8A50C4K7olDF5OfPBZs+erXXr1unGjRu6fv36M38AAOapXr269u7dq127dsX8lCpVSu3atdOuXbsUEhKi4OBgrVmzJmabhw8fav369TGBKlmypHx9fWOtc+HCBe3bt8/wEbM3OgUA9kWn7I9WAYB90Sr7olMAYF90yr7oFADYH62yL1oFAPZFp+yLTgGAfXl6p5x65fWePXtq4cKFOn78uLp06aL27dvb/LUhW7du1bRp07Rx40aFhobKZDIpQ4YMKleunAYMGKBSpUrZafQAPJqTz8AyV8qUKVW4cOFYy5InT640adLELO/fv78mTJigPHnyKE+ePJowYYKSJUuml19+WZKUOnVqde3aVYMGDVKaNGkUFBSkwYMHq0iRIqpRo4bTn5Mr0SkAbotOeQxaBcBt0SqPQKcAuC065RHoFAC3Rqs8Aq0C4LbolEegUwDcFp0yJKdeef2TTz7RhQsXNGzYMP3vf/9T1qxZ1apVK61atUpRUZb/C1m+fLnKly+va9euqV+/fpo5c6a++uor9evXT9evX1f58uX1ww8/OOCZAID7GDp0qPr376/XXntNpUqV0rlz57R69WqlTJkyZp2pU6eqSZMmatWqlcqXL69kyZLpf//7n7y9vV04cuejUwDgfHTKMrQKAJyPVpmPTgGA89Ep89EpAHANWmU+WgUAzkenzEenAMD5EnOnTFHW1MNOTp06pdmzZ+ubb77Ro0ePdODAAaVIkcLs7QsXLqz27dtr+PDh8d7+3nvv6ZtvvtH+/fstGlft5B0tWh/xMyX1d/UQEo9Ig57+42ZWXvvS6m2LDJxqx5EkbO8HA5z2WEiYUTslSTW9W1u8DQBjWxOxyOptndkpiVYZiVFbVdOrpUXrAzC+NZFLbNqeOZVnMmqnJFoFJEa2tIo5lWeiUwCciTkVrEGrADgTcypYik4BcCY6lfg49crrTzOZTDKZTIqKilJkZKTF2x89elTNmjV75u1NmjTRsWPHbBkiAMCD0SkAgNHRKgCAkdEpAICR0SkAgNHRKgCAkdEpAIAtnH7welhYmBYsWKCaNWsqX7582rt3r2bMmKHTp09bdPaVJOXKlUvLly9/5u0//PCDQkJCbBwxAMCT0CkAgNHRKgCAkdEpAICR0SkAgNHRKgCAkdEpAIC9+DjzwV577TUtXLhQ2bJl0yuvvKKFCxcqTZo0Vt/f2LFj1aZNG61fv161atVShgwZZDKZFBoaqjVr1mj16tVauHChHZ8BAE9lcvUA4BR0CoC7olOeg1YBcFe0yjPQKQDuik55BjoFwJ3RKs9AqwC4KzrlGegUAHdFp4zJFBUVFeWsB/Py8lK2bNlUvHhxmUzP/ifx3XffmX2fmzZt0vTp07Vp0yaFhoZKkoKDg1W2bFn169dPZcuWtXictZN3tHgbR2g9uIHKNyqlrHkz6uGDRzqw+Yi+fnORzh4JjVln0OfdVKt9xVjbHdxyVP2rjnX2cOMwJfV39RDiaN2vjl55s5m+/2ytPh+1WJIUkC6lur7VXCWqFlTyVMm0b9NhfTJioc4fv+Ti0T4h0mn/MzVL6/519cpb/+7HNxZJkvyTJ1GXt5qpbP3iShWYXBfPXNUPn/+qn2etd/FoH1t57Uurty06cKodR5KwPR8McNpjITZ36ZQk1fRubdV2jtBmWBN1ndBW301foU8Hznnu+oXK5dOUdaN1ct8Z9Sw5zAkjNK40mQL16rvtVKbOC/JL6qdzhy9oSrfPdGTHiXjXDwoOUI/3OyhPiRBlzhOs5R+tNGufeyovby91HN1S1V6uoKDgAF27cF2r56zXvPHfyYlvgc22JmKR1ds6s1MSrXIld2lVTa+WFm9jT0UqFlDLwY2Ut2SI0mQK0uimk7Txh63PXD/69bWT8pT87/X1F306YLbzBmxQlu5HSfL181H7t1qqeruKCgwO0JWzVzV/wndaNWudk0ZtLA161lLDnrWUIUc6SdKp/Wc1d9wSbV2565nbNHqtthr3rqMMOdLr0ukrmj9hmdZ++4eTRvxsayKX2LQ9cyrP4C6dkpzfqoa9aqnl4MZKkzFAJ/ef1acDZmnfhn/iXbdC0zJq0LO2cr2QQ75JfHRq/1l9O2axtq3eHWu95KmTqcv4tirf9EWlDEyu0BOX9Pngb7Tll53OeEouYcl+lKSilQqqx5ROylEoi66ev67Fk3/QT5+vibn9/d/eVrEqheJs9/fPOzSq4USHPAd3YU3DXM2WVjGn8gx06jF7v55mL5hFnca0Vp6SIQrOkV6fDJil76eviHM/aTIFRX8WVrf448/CXv1UR3Ycd8jzdDRX7Mc2w5uoQtMXlTV/ZoXdf6gDGw/pq+HzdPbweYc9T1ezZm5qxHkVcyqYw1NaZe/XT0mq0OxFdR7bRhlzZdCFYxc1a9QC/bV8i9mP6+3jrVfeaaMydUsoOCS97t28px1r9+rrEfN09cJ1SVKG7Ok098Qn8Y5xXKsp+mPpZqv3iT24Yr+a06UOo1uqSuvySpc1jcIfhuvI9uOaNWqB/tly1P47wUks3dfP+8zU28dbbUc0Vc2OlZU2c5DOHDqvr4bP07ZVu5z0jKIxp8Lz0Kn4GaVTTxv/8xsqU7e4We+fHcGI+/Fp/T7rrgbda8aZe8X3meG6hX9pwsvTLNwLrpFYP4umU4mPU6+83rFjxwTjZY2yZctaHSqjK1ohv/73xVod3n5C3j5e6jy6pSb8OFTdSg5X2L2HMettXb1bU3p+FfN7+MNwVwzX8PIWz666HSvp+L4zsZaP/uY1hYdHaEyHj3Xv9gM161VTE5cNUPfyo2PtZ0TLWzyH6naKux97jG+lYhXya3KPr3Tx9FWVqFZQfSa309XQG9r8y+5n3JsbMd4xjnAAOmW5vKVyqV636jq2+5RZ6ydLlVRDZ7+mnb/tU2D61A4enbGlCEiuaX+O1e7fD+iN+hN149ItZcqVQXdu3HvmNr5JfHXz8i3Nn/i9mver58TRuqc2QxurQY8amvTKJzq1/6zylgrR4K976e7Ne/r+o19cPTz7olMeg1aZxz95Eh3fc0qrZ6/T6GVDnru+bxJf3bxyS/MnLFPz/g2cMEL3YOl+lKRRiwYqMENqTXn1U50/GqqA9Knl7ePl4JEa15WzV/X1iHk6dzT6Q/danapozPJh6lViiE4dOBtn/QY9a6nLhJc1tfvnOrT1qPKXya0BX/TUnet3tfmn7c4evn3RKo9Ap+JXuVU59Zr6ij7q/aX2/3VI9XvU1IQVI9W10ABdPnMlzvpFKhXUjrW7NXPkfN29cVe1X6mqsT8O1+svjdCxXSclST6+Pnpv9Zu6cemWxrWcostnrypd1rS6f/u+k5+d81i6H4NzpNc7P4/QL1/9qvc6fKhC5fPp9Y+76cblW9rw3d+SpDHN35eP3+OPyFOlSaHPd72vP5ZuctrzMipLG+b26JRHoFPRHPF6miRZEl04cUl/LN2knh90jvdxUwQk17QN47R73X69UW+Cbly6+e9nYXcd+XQdxlX7sWilQvrxk1U6tPXovwewtNW7q0bp1UID9OBemCOfsstYOjdNtPMqWuURPKFVjnj9LPBSXo1aOECz31qov77fovJNy2jUogEaUPHNmAOkn/e4SZIlUe7iIZr7zlId331KKQOTq9fUzhr7wzD1LjNcknT5zFW1ytgt1vjqd6+hVkMaa8svuxy7457DVfvVnC6dPXxBM17/WheOX1SSpH5qPqCB3l31pjrleV03r9xy3k6yE0v3tfT8z0xfeaeNqrerpKndP9Ppf86pVO0X9PZ3Q9Sv/MiYzwEMj055BDpl7E49qVn/+pILL+Zm1P34pHKNS6tAmTy6cu5avM/h5y/Xas5bjy8+F3bfPY4h5LPoZ6BThuTUg9dnz57tzIdzeyObvB/r9yk9v9TiUx8rT/Gc2vfXoZjlj8LCdf3iTWcPz634J0+ioZ+9qukDvlXbQY8P9sucK70KlM6lHuVH69ShC5KkGUPmaeE/U1S1WRmtnLvBVUM2JP/kSTT081c1vf83ajuofqzbCpTOpbULN2rPX4clSb/M+VP1OlVW3uI5EsfB6/AIdMoy/smTaMS3fTS1xxdq90ZTs7bp/1l3/bbgL0VGRKp849IOHqGxtR7aSJfPXNX7XT+NWXbx1OUEt7l46rI+GRB9pfU6nas4cniJQoGyebTxx23asiL6bN+Lpy6rapvyylsqxMUjA6xHq8yzdeUui64KevHUZX3Sf5Ykqc4r1Rw0Kvdj6X4sVfsFFa1cUB1z9dHt63ckPb9tid3TB0bMGrVADXrWUoGX8sZ74F+N9pX08xdrtX7xRklS6IlLKvBSXrUe2sS9D7KAx6BT8Ws+oIFWzvxNv3z9myTp0wGzVapWMTXsVUsz35gfZ/2nv/1j5sgFKtuotMo2LBXzB4M6XaoqZVAK9Ss/ShHhEZKkS6fj/yN5YmHpfmzQs6Yun74Ssz9P/3NOeUvlUstBjWL+6PVfr/5TpU05PbgXpj+WcPC6pQ0D3AGdiuaI19PD247p8LZjkqSuE9vF+7ithzX597Owx1esdef5gqv24xv1xsf6/f0un2jppa+Vp2SI9v550F5Pz1AsnZsyr4I784RWOeL1s1m/+tq+Zo8WvrtckrTw3eUqWqmQmvWrrwntppv1uPdu3dPw2uNiPfaMvjP18ZZ3lS5rWl0+c0WRkZG6fvFGrHXKNymj3xdv1IO7D+y1i6ziqv1qTpfWLYh9zMVnA+eobtfqCimaTTt/22e3feAslu5rcz4zrdG+kuZP+C7m6rU/fbZapWoVU4uBDfVex48c/IwA89EpY3fqPyFFs6v5gAbqU2aEFl/40q77x1xG3Y//SZMpSH0+6qoRdd7ROz+NiPc5hN0Li9N9d8Bn0XAnifryZ2+88Ya6dOni6mHYTfJUSSXF/aNK0Yr5tejkDH29a5L6z+ii1OlSumJ4htb7vbbasmavdv4R+4M7Xz9fSdLDsMdXq4+MjFL4owgVejG3U8foDnpPellb1uzRzvVxPwDdv/moXqrzgtJkDJAkFa2QT5lzZdD2X/c7eZSOYYpy3g88h7t36vUZXfX3ip3a+etes9av3bmKMoVk0Ldjlzp4ZO6hbMNSOrz9uN5cNECLL3yhT7e9q7qvcsCkPe3bcEjFqxVW5jwZJUVP1AuXz+fUr65yFmd2ilZ5FndvFZyrbKNSOrztmFoNbawFZz7XrH+mq/vkDvLz93P10AzBy8tLVVqXk3/yJDqw6XC86/gm8dXDB7Gv3hF2/6Hylcktbx9vZwzTYegUHMEdOuXj66O8JUO0/amvWd2+Zo8Klc1n1n2YTCYlS5lUt689/kywbMNSOrDpsF7/+FUtvvClvtgzRW1HNJWXV+L8uNea/VjgpbzavmZPrGXbVu1W3lIhz3xNrdulun5ftDHRXrnWWuY0zN0xp4IjGLFTzno9jU/0Z2HH9OaigVoc+pU+3T5JdV+tbvmTMABX7senJU+dTJJivU/wdIl1XkWn4AjObpWjXj8Lls2r7Wti3+e21btUsFw+qx9Xin6NjYyM1N1nfEtInhIhyl08p1Z+/esz78MZXLVf4/O8Lvn4+qhe9xq6c+Ou2d/qbCTW7GtzPjONbtejWNs9vP9QhSvkt/+TcBDmVHAEOmV5p5Ik9dMb8/trxutfu+zAa6PvR5PJpGHfvK4l7/+Y4AUaqr1cUUsvfa0v936g7pM7KGkK/+c8c9fjs+hno1PG5NQrrzvbuXPndObMGVcPw266v/uy9v11SKcOnItZtm31Hv353RZdPHNFwdnTqdNbzTVpxQj1Kf+WHj0MT+DePEflpqWVu2h29a05Ps5tZ46E6uLpK3plVFN9OGiuHtwLU7NeNRWUIbWCMqR2wWiNq3Kz0spdLJv6Vo+7HyXp0+EL1G9aR83bP1nhj8IVGRml6f2+0f6/jzp5pID7cOdOVWldTnmK51TvF98wa/3MuYPVdUJbDaj8tiIjIh08OveQMSS9GvasqWVTf9b8id8rf5nc6j3tFT0KC9fab/9w9fAShUWTflDy1Mk088AHioyIlJe3l2aNWqR1Cze6emiA23DnVsH5MubMoMIV8uvhg0d6u9lkpU6bUq9//KpSBqXQlCe+acTT5CicTR9uHC8/f1/dv/NAY5pN1umD8X8gun31LtXtWl0bl2/VkR3HlbdkiOq8UlW+fj5KnTalroXecO7gAYNzh06lTptS3j7ecf5YdP3iDQUGB5h1Hy0GNZR/8iQxVw+VpOCQDHqhWmH9On+DRtafqMx5gvX6jFfl7eOtueMS3wnD1uzHoOAAbYtnfR/f+F9T85XOrZxFsmnKq57brKdZ0jAAcRmxU854PX2W6M/CamnZ1J80f+J30Z+FTe+iR2GP3O6zMFfux6f1nNJJe/88qJP7jfVvzZWYVwHmc3arHPX6GRgcEOeb6q9fvBlzn9Y8rm8SX706sZ1+m79B927fj3edOl2r6dSBsy4/wdNV+zU+z+rSi/VLaOSCAUqSzE/XLtzQsFrjdOvqbXOfomFYs6/N+cx026rdaj6ggfb+cUDnj11U8epFVLZxaXl5u89BgYAj0CnLO9Vzamcd2HRIm37c9ryn6zBG34+thzVWZHiEvv9wxTOfw6/z/1ToiUu6HnpDOQpnVZcJ7RRSNEecq98bDZ9Fw90k6oPX58yZ89x1wsLCFBYW+0o6kVER8jIZ68z73h90VM7CWTWoxjuxlq9f9nfMf586cE5Hdp7QNwenqkydF/SXC0NkFGkzBarn+NZ6o+U0PQqLezB/RHiExr3ymQZM66Slx6YpIjxCO9cf1JY15l1F2FOkzRyonhPa6I3mU+Pdj5LUuEd1FSgVotFtP9KlM1dVuFxe9Z7cTtcu3oz3Su1uh7Oi4ADmdEoyXqvSZUmj16Z20vA6E/Qo7NFz1/fyMmnE3L76ZswSnTtywQkjdA8mLy8d3nZMM0ctlCQd23VS2QtmUcMeNd3uD3ZGVaV1OVVvV0ET23+kk/vPKPcLOdTrg066euGa1nyTyPYxnYKDJKY5FRzPy8ukqChpYvsPde/WPUnS54Pm6M0lg/RR76/jXPnOU5w9dF49iw9RioBkqtD8JQ2Z3UeDqoyO9+C/ueOWKTA4QB9uGi+TyaTrF29q9Zzf1XpoE/c/AZBWwQHcaU4V9dT/Bkwmk6KeXhiPqm3Kq8PolhrdZJJuXL4Vs9zLy6Qbl25pWvfPFRkZqSM7jitNpiC1HNwoUf/BwNL9+PRtJpMp3vuRog88ObH3tA5t5UIM/7GkYW6PTsEBjNwpR76ePkvMZ2EjF0j697OwQlnVsGdtt/0szBX78Umvz+iqnEWzaUDFN627g0Qq0c6raBUcwFWtcsjrZ5x14i4z93G9fbw1ckF/mbxM+qj3V/GOyc/fT9XaVtC8d4wz/3LVfv1PQl3avW6/ehYfotRpU6putxoatWig+r40ItY8151Ysq/N+cz0k/6zNOCLHvr64HQpKkrnj13U6tnrVKtzVUc/FfuhU3AAOmVZp8o2LKXiVQurZ4mhzxyrMxlxP+YpEaKmfevrtZIJ76Nfvnr8rSon95/RuSOh+mTbe8pdPKeO7jyR4LZGwGfR8aBThpSoD143x8SJEzVmzJhYy0J8iiq3XzEXjSiu197voLL1i2tQrfG6cv56guteC72pS6evKHPuDE4anbHlKZZdgelTacavI2OWeft4q3DZPGr0alU1zPSaju4+rd5VxylZyqTy9fPWzat3NG3VCB3ZddJ1AzeYmP24blTMMm8fbxUuF70fm+Xoq86jmmpch09iDvw/ceCcchXJquZ9aiWOg9cBF4qvVTlVULlMhV0ynjwlcyowQ4A+2ToxZpm3j7eKVCqgxr1rq17SdoqMfPzOL2nKpMpXOpdyF8+hPh9Gf62XycskLy8vrQybr+F1xmvXuv1Ofx6udu3CdZ0+eC7WstP/nFPFZi+6aESJT7f32mnRez/o90XRZwWf3HdG6bOlU5thTRLfweuAC8XfqQLKpUIuGhFc5eqF67py7lrMH2Ek6fTBc/Ly8lK6LEE6dzTUhaNznfBH4Tp/LPq5H95+XPlK5VLTfvU0vecXcdZ9+OChpnT9VNN6fKHADKl17cIN1eteQ3dv3dPNK+53NSrAKFzZqptXbisiPEJBT13ZJiB9at146kpBT6vcqpwGftVL41p9oJ2/xr7QwrULN/795rvHB2CdPnhWaTIGysfXR+GPEtc3MlqzH6+F3lBQcGCc9cMfhce5wl+SpH6q2rq85oxeZNdxuztLGgbAes7slKNfTxMS/VlY7JNfTh88p4rNXjL7PozClfvxP70/7KKXGpbSoMqjdeXcNYu3T8yYVwH2Z69WOer183po3KuJBqRPHXN1Vkse19vHW6MWDVRwzvQaUn3MM6+6XqnFS0qSLIkh/tbgqv36pOd16cG9MJ0/Fqrzx0J18O8jmn3oQ9XpWk0L311u/hM1AGv2tTmfmd68cktvN5ss3yS+SpUmpa6ev6ZX322n0BOXHPl0gESDTkV7oVphZcyVQcuvz461zVtLB2vfnwc1uNrbz37ydmTk/Vi4Yn4FpE+leacef/Oit4+3erzfSc361VeHkN7xju/IjuN69DBcmfNkNPTB63wWDXfj9gev3717V/Pnz9fGjRsVGhoqk8mkDBkyqHz58mrbtq2SJ0+e4PYjRozQwIEDYy1rHtzLkUO2SO8pHVSuUUkNqTNRF09dee76KYNSKF2WIL7y7l+7/jyoHhXejrVs0EeddeZIqBZ/uDLWwZX/BT1TSHrleSG7vpn4gzOHami7/jioHuVHx1o26KNXdObIBS3+cKW8vb3k6+ejyKfO0oqMiJTJy+TMoToOZ2DBSrZ2Soq/VU0DujhqyM+189d96lZ0cKxlg7/upTOHzmnRpB9jvbZK0r1b9+Os37BXLb1QtZDGtZrqsR+87N94SFnyZoy1LEuejLp46rKLRpT4+CdLEm+bvBJLm55Ep2ADR8ypmqbu7MARw6j2bzykSi3Lyj+5vx7cfSBJypw3oyIiInX5LAdT/MdkMsnPzzfBdSLCI2L+0Fe1dXn9/dMOs66KYWhuPny4jsPmVE5qVfijcB3eflwlahbVX8u3xCwvUaOoNv649ZnbVW1TXoO+fk0TXp6mLSt2xLl9/8Z/VLVthVhXzcmSN5Ounr+WKP9YYM1+PLj5sF5qUCrWspK1iunwtuOKCI+Itbxyq3LyTeKjtXNdf+CJkZnTMLdFp2Ald+uUo19PE7L/r0PKkjdTrGVZ8rrnZ2Gu3I+S1OejrirfpIwGVx2t0JOe+dmqORLdvMqNhw7XMlKrHPX6eWDTYZWsUVTfTfv58To1i+nAxkMWPe5/BwRmzhOsIdXG6Pa1O898LnW6VNOmH7fp5hXXXzncVfv1P1Z1yWSSbxL3m1tYs68t+cz0UdgjXT1/Td4+3qrQ7CX9sWSj456MvdEpWIlO2a9TC99dHuuK4ZL05d4P9NnA2dr8v+2W7AqbGHk/rv32D+1cG/vA7IkrR2nt3D+0ata6Zz6nHIWyytfPR9cuJHzRYVfjs+gE0ClD8nL1AGxx4MAB5c2bV0OHDtX169eVLVs2ZcmSRdevX9eQIUOUL18+HThwIMH7SJIkiVKlShXrxyhfb99naidVa1NO777yqe7feaDADKkVmCG1/Pyj38T7J0+ibhPaqECZ3MqQLa2KVsyvsUsG6ObVO/rrR+dFx8ju3wnTqX/Ox/p5cC9Mt67d0al/zkuSKjYqqaLl8yo4e1q9VLeYJi7tr00rdmnH7wn/2/Ek9++E6dTB87F+HtwL063rd3Xq4Hndu/1AezYc0qtjWqho+bzKkC2tarYtp+qty2rjTztdPXzAZezRKcl4rbp/54FO7j8T6+fB3Qe6dfWOTu4/I0nqMr6ths6OPis1Kioqzvo3Lt3UowePore9F5bQwyVay6atUIGX8qjt8CbKlCuDqrYtr3rdquvHT1fHrPPkfvxPrmLZlatYdiVN4a/U6VIpV7HsylYgs7OH7xY2/7RdL49oqjL1iitD9nQq36S0mg+or7+WP3tiBniaxDqn8k/ur1zFcihXsRySpOCc6ZWrWA6ly5pWktRlwssaOrtPrG3+Wz9pCn+lTptKuYrlULYCWZw9dEOxdD/+Nn+Dbl29rSEzX1O2AllUpGIBdZ/UQatm/aaHDx664im4XJfxbVW4Qn5lyJ5OOQpn0yvvtFXRKoX06/w/o29/ah9mzpNR1dtVVObcwcpXOrfemN9fOQpn1cyR8131FACXSixzqmVTf1LdrtVV+5WqypY/s3p+0Enps6XVT59Fv/d/+rWgapvyGjqnjz4fPEcHNx9RYIYABWYIULJUyWLW+d+nq5UqTUq9Nv0VZc6TUWXqlVDbEU314yernPa8nM3S/fjTZ2uUPnta9ZjSSdnyZ1btV6qqTpdqWjLlxzj3XadLNf21fGuCB6d4muc1DID7dsoRr6c+vj4xcwdfPx+lzZxGuYrlUKZcwY8fd9pP0Z+FjWiqTLmCVbVtBdXrVkM/frLSYc/VkVy1H1//+FVVb1dRE9tN173bD2LeJ/j5+znvyTuZpXNT5lXAY0ZslSNeP7//8GeVrFVMrYc2VtZ8mdR6aGOVqFFE303/2ezH9fL20ltLBilvqRC92/5DeXl7xbzG+vjGviZkplzBKlKpgH75OvYBgq7kqv36vC75J0uiLuPbqsCLeZQ+W1rlLp5TA7/sqXRZgvTHkk1O2jv2Zem+Nucz0/xlcqtC0zIKzplehSvk18RfRsrLy6RFk7jgIhI3OmXfTl2/eCPOcRmSdOn0Faef9GrU/Xj72p04+yj8UbiuhV7X2cPRxxFmDMmg9m+2UN6SIcqQPZ3K1C2uNxcP1JEdx7X/r9gncBkRn0XDnbj1ldd79+6tSpUqac6cOfLzi/2hzMOHD9W5c2f17t1b69Y9+8wYI2vYvbok6f1VI2Mtf7/HF1ozd4MiIyKVo1BW1Xi5gpKnTqZroTe0+4+DmtDxY92/88AVQ3ZLQRlSq/u4lgpIl0rXLt7Ur4s2af6Un5+/IWKZ+OoXeuWtZhr6+atKGZhcl85c1Zzxy/XzrPWuHppdmDgDC1ZI7J1KSJqMAUqfNY2rh2Foh7cd09vNp6jr+LZq/2ZzhZ64rE8HztFv8zfErBPffvxsx6SY/85bKpeqv1xBoScvqUOu1502dncxo+8sdR7bWn1ndFVA+tS6ev6afv5ireaOW+rqodkdnYK1Emur8pYK0ZR1j78istcHnSVJq2f/rsldPlaa4EClz5Y21jaf7Zz8xPa5VL1dxejX12d8RaAnsHQ/Prj7QMNrjVPvD7vq463v6tbV2/pjySbNGrXQ2UM3jIAMARr2zesKyhiouzfv6cSeU3qj7njtWLtHkuLsQ29vL7UY2FBZ8mVSxKMI7Vq3T/3Kj3LLq1E+jVbBGomlU+sXb1SqNCnU/s0WCsoYqJP7zmhk/Qm6dDr6Wxaffi2o372mfHx91Pfjbur7cbeY5f+9/krS5bNXNbz2O+r1QSd9sft9XTl3Td9/uEKL3ku8f9i2dD+GnrykUfUnqucHndTotdq6ev66Puk3Uxu++zvW/WbOk1FFKhbQsFrjnPp8jO55DUts6BSs4a6dcsTraZpMgbHmVK0GN1KrwY20+/f9MV9Nf3jbMb3dbLK6Tmin9m+2UOiJS/p0wOxYn4W5E1ftx0a9akuSpvz+eK4mSZNf+Vir5/zumCfrYpbOTRPrvIpWwRpGbJUjXj8PbDqs8W2nqfO4Nuo0to0uHAvV+DZT9c+Wo2Y/brosaVSucWlJ0ue73o815kFVR2vP+scHT9bpUlVXzl3T9tW77b+DrOSq/fq8LkVERCprvsyqubSKUqVNqdtXb+vQ1mMaUOktnTpw1pG7xGEs3dfmfGbq5++nzuPaKmNIet2/80BbVuzUex0/0t2b95z+/KxFp2ANOuWYThmBUfejOcIfhqt4tSJq2ree/FP46/KZq9qyYoe+HbNEkZGRdtg7jsVn0fGjU8ZkinLj70dLliyZtm3bpoIFC8Z7+759+1SmTBndu2fZG7rayTvaY3gez5TU39VDSDwi3fZ/poay8tqXVm/7wutT7TiShO36aIDTHguO5ahOSVJN79a2Dg+AwayJWGT1ts7slESrEhNHtaqmV0t7DA+AgayJXGLT9sypYA2HzqloFZDo2NIq5lSwBp0CYAnmVHAFWgXAEsyp4Gx0CoAl6FTi4+XqAdgiMDBQR44ceebtR48eVWBgoBNHBCDRinLiDxINOgXAaZzZKVqVqNAqAE5Dp2AFOgXAaZhTwQp0CoBT0SlYgVYBcBrmVLACnQLgNHTKkHxcPQBbdOvWTZ06ddKoUaNUs2ZNZciQQSaTSaGhoVqzZo0mTJig/v37u3qYAAAPRacAAEZHqwAARkanAABGRqcAAEZHqwAARkanAMCzufXB62+//baSJk2qDz74QEOHDpXJZJIkRUVFKTg4WMOHD9fQoUNdPEoAgKeiUwAAo6NVAAAjo1MAACOjUwAAo6NVAAAjo1MA4Nnc+uB1SRo2bJiGDRumEydOKDQ0VJIUHBysnDlzunhkABITE1/pASvRKQDOQKdgC1oFwBloFaxFpwA4A52CtegUAGehVbAWrQLgDHQK1qJTAJyBThmT2x+8/p+cOXMSLgCAYdEpAIDR0SoAgJHRKQCAkdEpAIDR0SoAgJHRKQDwPF6uHoCtPvroI3Xq1EmLFy+WJH377bcqWLCg8ufPrzfeeEPh4eEuHiGARCHKiT9IVOgUAKdwZqdoVaJDqwA4BZ2ClegUAKdgTgUr0SkATkOnYCVaBcApmFPBSnQKgFPQKUNy6yuvjxs3TpMnT1atWrXUr18/nThxQpMnT9aAAQPk5eWlqVOnytfXV2PGjHH1UAEAHohOAQCMjlYBAIyMTgEAjIxOAQCMjlYBAIyMTgGAZ3Prg9dnz56t2bNnq1mzZtq9e7dKliypOXPmqF27dpKk/Pnza+jQoUQMgM1MnBUFK9ApAM5Cp2AtWgXAWWgVrEGnADgLnYI16BQAZ6JVsAatAuAsdArWoFMAnIVOGZOXqwdgiwsXLqhUqVKSpGLFisnLy0svvPBCzO0lSpTQ+fPnXTQ6AICno1MAAKOjVQAAI6NTAAAjo1MAAKOjVQAAI6NTAODZ3Prg9eDgYB04cECSdOTIEUVERMT8Lkn79+9X+vTpXTU8AIlJlBN/kGjQKQBO48xO0apEhVYBcBo6BSvQKQBOw5wKVqBTAJyKTsEKtAqA0zCnghXoFACnoVOG5OPqAdji5ZdfVseOHdW4cWP9+uuvGjZsmAYPHqyrV6/KZDJp/PjxatGihauHCQDwUHQKAGB0tAoAYGR0CgBgZHQKAGB0tAoAYGR0CgA8m1sfvD5mzBglTZpUmzdvVo8ePTRs2DAVLVpUQ4cO1b1799SwYUONGzfO1cMEkBhwVhSsQKcAOA2dgpVoFQCnoVWwAp0C4DR0ClagUwCcilbBCrQKgNPQKViBTgFwGjplSKaoqCj+X/OU2sk7unoIiYIpqb+rh5B4RPI/U3tYee1Lq7ct0WOqHUeSsB2fD3DaY8F91fRu7eohALCzNRGLrN7WmZ2SaBWer6ZXS1cPAYCdrYlcYtP2zKlgNLQKSHxsaRVzKhgNnQISH+ZUSGxoFZD4MKdCYkKngMSHTiU+bn3ldQBwFhPnDwAADIxOAQCMjlYBAIyMTgEAjI5WAQCMjE4BAIyMThmTl6sHAAAAAAAAAAAAAAAAAAAAAABI/LjyOgCYgzOwAABGRqcAAEZHqwAARkanAABGR6sAAEZGpwAARkanDIkrrwMAAAAAAAAAAAAAAAAAAAAAHI6D1wEAAAAAAAAAAAAAAAAAAAAADufj6gEAgDswRfH9IQAA46JTAACjo1UAACOjUwAAo6NVAAAjo1MAACOjU8bEldcBAAAAAAAAAAAAAAAAAAAAAA7HldcBwBycgAUAMDI6BQAwOloFADAyOgUAMDpaBQAwMjoFADAyOmVIXHkdAAAAAAAAAAAAAAAAAAAAAOBwXHkdAMxg4gwsAICB0SkAgNHRKgCAkdEpAIDR0SoAgJHRKQCAkdEpY+LK6wAAAAAAAAAAAAAAAAAAAAAAh+PK6wBgDs7AAgAYGZ0CABgdrQIAGBmdAgAYHa0CABgZnQIAGBmdMiSuvA4AAAAAAAAAAAAAAAAAAAAAcDiuvA4AZjBxBhYAwMDoFADA6GgVAMDI6BQAwOhoFQDAyOgUAMDI6JQxceV1AAAAAAAAAAAAAAAAAAAAAIDDceV1ADAHZ2ABAIyMTgEAjI5WAQCMjE4BAIyOVgEAjIxOAQCMjE4ZEldeBwAAAAAAAAAAAAAAAAAAAAA4HAevAwAAAAAAAAAAAAAAAAAAAAAczsfVAwAAd2Di60MAAAZGpwAARkerAABGRqcAAEZHqwAARkanAABGRqeMiSuvAwAAAAAAAAAAAAAAAAAAAAAcjiuvA4A5OAMLAGBkdAoAYHS0CgBgZHQKAGB0tAoAYGR0CgBgZHTKkLjyOgAAAAAAAAAAAAAAAAAAAADA4bjyejwiH4S5egiJgunhQ1cPAbAbE2dgwWiiIl09AgAGQqdgOCbOk7YLem8XPrlyunoIEK0CABgbnQIAGB2tAgAYGZ0CABgZnTImjigAAAAAAAAAAAAAAAAAAAAAADgcV14HAHNEcQoWAMDA6BQAwOhoFQDAyOgUAMDoaBUAwMjoFADAyOiUIXHldQAAAAAAAAAAAAAAAAAAAACAw3HldQAwg4kTsAAABkanAABGR6sAAEZGpwAARkerAABGRqcAAEZGp4yJK68DAAAAAAAAAAAAAAAAAAAAAByOK68DgDk4AwsAYGR0CgBgdLQKAGBkdAoAYHS0CgBgZHQKAGBkdMqQuPI6AAAAAAAAAAAAAAAAAAAAAMDhuPI6AJjBFOnqEQAA8Gx0CgBgdLQKAGBkdAoAYHS0CgBgZHQKAGBkdMqYuPI6AAAAAAAAAAAAAAAAAAAAAMDhOHgdAAAAAAAAAAAAAAAAAAAAAOBwPq4eAAC4hShXDwAAgATQKQCA0dEqAICR0SkAgNHRKgCAkdEpAICR0SlD4srrAAAAAAAAAAAAAAAAAAAAAACH48rrAGAGE2dgAQAMjE4BAIyOVgEAjIxOAQCMjlYBAIyMTgEAjIxOGRNXXgcAAAAAAAAAAAAAAAAAAAAAOBxXXgcAc0RxChYAwMDoFADA6GgVAMDI6BQAwOhoFQDAyOgUAMDI6JQhceV1AAAAAAAAAAAAAAAAAAAAAIDDceV1ADCDiROwAAAGRqcAAEZHqwAARkanAABGR6sAAEZGpwAARkanjIkrrwMAAAAAAAAAAAAAAAAAAAAAHI4rrwOAOTgDCwBgZHQKAGB0tAoAYGR0CgBgdLQKAGBkdAoAYGR0ypC48joAAAAAAAAAAAAAAAAAAAAAwOG48joAmMHEGVgAAAOjUwAAo6NVAAAjo1MAAKOjVQAAI6NTAAAjo1PGxJXXAQAAAAAAAAAAAAAAAAAAAAAOx8HrAAAAAAAAAAAAAAAAAAAAAACH83H1AADALUTx/SEAAAOjUwAAo6NVAAAjo1MAAKOjVQAAI6NTAAAjo1OGxJXXAQAAAAAAAAAAAAAAAAAAAAAOx5XXAcAMJk7AAgAYGJ0CABgdrQIAGBmdAgAYHa0CABgZnQIAGBmdMia3Pnj94cOH8vPzi/n92LFj+uijj3TkyBFlzJhRvXr1UsmSJV04QgCAJ6NTAACjo1UAACOjUwAAo6NVAAAjo1MAACOjUwDg2bxcPQBbJE2aVJcuXZIk7dq1S0WLFtX69euVOXNm7dmzR+XKldOWLVtcPEoAiUKUE3+QaNApAE7jzE7RqkSFVgFwGjoFK9ApAE7DnApWolUAnIZOwQp0CoDTMKeCFegUAKehU4bk1ldej4p6/P/pN998U/Xq1dPixYtlMpkkSV26dNHo0aP1yy+/uGqIAAAPRqcAAEZHqwAARkanAABGR6sAAEZGpwAARkanAMCzufXB60/atWuXFi5cGBMwSerXr59q167twlEBSCxMnBUFG9EpAI5Ep2APtAqAI9Eq2IpOAXAkOgV7oFUAHIlWwVZ0CoAj0SnYik4BcCQ6ZUxerh6ALUwmU0y0vL29lSpVqli3p0qVSjdv3nTF0AAAoFMAAMOjVQAAI6NTAACjo1UAACOjUwAAI6NTAODZ3PrK61FRUcqbN69MJpPu3LmjvXv3qkiRIjG3HzlyRMHBwS4cIYBEI5JTsGA5OgXAaegUrESrADgNrYIV6BQAp6FTsBKtAuA0tApWoFMAnIZOwQp0CoDT0ClDcuuD12fNmhXr91y5csX6ffPmzWratKkzh2SzDm+1UMfRLWMtuxZ6Q60z93jutoXK5dOUdaN1ct8Z9Sw5zFFDdAte3l7q+FYLVWtbQYHBAbp24bpWf7Ne8yd8r6ioZ78YVWtbXi0HN1Lm3MG6e/Oetq3erS+GztXta3ecOHpjKlIhv1oOaqg8JXIqTaYgvd38fW38cVusdTq82UL1Xq2mFIEp9M+Wo5rRd6ZOHTjrohEDrpeYOtWwVy21HNxYaTIG6OT+s/p0wCzt2/DPM9f39fNR+7daqnq7igoMDtCVs1c1f8J3WjVrXcw6TfvVU8OetZU+W1rdvHJLfy7brK9HzNejsEfOeEouV6RiAbUc3Eh5S4YoTaYgjW46SRt/2PrM9Ss0LaMGPWsr1ws55JvER6f2n9W3YxZr2+rdThy18TToWUsNe9ZShhzpJEmn9p/V3HFLtHXlrnjXL1q5oKasGxNneZcC/XTm0HlHDhUwpMTUqmdpM6yJuk5oq++mr9CnA+fEu07RygU15bfRcZZ3KTggUb82WNr3opUKqseUTspRKIuunr+uxZN/0E+fr4m5vVanKhoyq3ec7eolfTmm722GN1GFpi8qa/7MCrv/UAc2HtJXw+fp7GH32c+FS+dUi1crK3ehLEqTIZXG9pqjTWv3O/Qxy9curI79aytjtjS6cPqq5nywUhvXPH7MVj2qqnytwsoSkl4Pwx7pwI6Tmjn5F507cdmh4wIczaidsvfrpyRVaPaiOo9to4y5MujCsYuaNWqB/lq+xaLHDUifWt3eba+StYoqeUBy7f3joD7u+7XOHQ2VJGXInk5zT3wS7xjHtZqiP5ZutnaX2IUr9uu3xz9WcI70ce77x09W6qM+X8vbx1uvvNNGZeqWUHBIet27eU871u7V1yPm6eqF6/Z78i5k6dxUkqq9XEGthjRW5jwZoz9DXblLnw/5hs9Q4ZGM2Cojdsrc19N63WqoWtsKyl0ip5KnSqYmgZ109+Y9O+4d27hi35rzOv289wCJlTUNAzyNETsl2f75UKFy+TTl9zHRx0WUGGLzeNJlTavXZ3TVC9UK6+H9h/ptwQZ9MfhbhT8Kl/TsudSIuuO1bdUumx/fWkZsviR1GN1SVVqXV7qsaRT+MFxHth/XrFEL9M+WozHrvP/b2ypWpVCs+1238C9NeHmaDXvEeSzZ9+b+fc/T/24Kz2TUTsXHqK+5FZqWUf3uNZWnZIhSp02lnsWH6Njuk3Z97vZk1P1oTrvciSX7OSg4QD3e76Q8JUOUOU+wln/0iz4dMDvWOnVfra6aHSorR+GskqQj249r5sgFOrTVPfcPjMOtD17v1KlTgre/9dZbThqJfZ3Yd0bDao2L+T0yIvK52yRLlVRDZ7+m/7N33+FRlAsbxp9NJ7SEGnoHqdJEei9SpFpAQOmiSFVABAFFaRYQpSlVaYoUPQhIR2lKld57CSX0lhAy3x98rC4pbJIts8n9u65c52R2ZvPua5g7szs7u3PNXgVnSuvM4XmEV/s2VsMutfVZh4k6tf+sCpbJq3endNWdm/e0+OtlMW5TtFIh9Z3eTZPf+15blmxX+mzp1PObTuozuYs+evlLFz8C8wlIGaDju0/p95nrNGT+u9Fuf+W9xmreq4E+7zhR545c0GsDmmvksg/UoWgf3bt93w0jdjDegIUESCqdqvZKRb01pr2+7vad9m08pIZv1tHwpQPVsWhvXT5zJcZtBv3YR8GZ0+qLThN1/miogjKllbePl/X2mq9VVqcRrfV5x4nav+mQshfMYj3ZbVIsJxYmNQEp/XV89ymtmLFWQxY8/cnV4lWLaMeqfzRt4BzduX5H9drX0Me/vq/u5Qfo2K6Tzh+wSV05G6apA2ZbX4yr+0Z1fbS4v94q3TfON1C1K9RDd2/es35/4/JNp4/VqegUEiiptCo2BcvmU4POtXTsn1N2rd/umV66e/PfEyM8ft8Qh/j2PSR3Jn3y2wAtm7Jao9qOU9FKhdR9fGddv3xTGxb+ZV3vzo27av9MT5tt//sCS4mqRfXrhN91aOvR/z+BpZVG/j5InYr21v274c57wA4UkMJPxw9e0IoF2/Th+NcTfX+1m5dRneZl1b/N5Bhvf6ZkTg0Y21rfj12hTSv3qmKdYhrwVRu912qCDv1zRpJUvFxe/W/2Jh3efVbePl56o88L+nR6J71Z/3OF3zPJC1y0Cglgxk45Y/9ZuHxBDZrXWzMGz9PGRX+rUrNyGvRjb/Wu8qH1BRJ7fu5Hi/op8kGkBjcdrbs376lFn0YatXKwdR97+UyYXsnS2WZ8DbvU1it9m+jvZbucO3FP4a55fafcAHl5/3usmrtYDo1eOVjr52+WJPkH+it/qbya9cnPOv7PKaUOTqm3xrTTx7/0V7dy77tgZpwvvsemRSs9o34zu2tSnxna8r//fw51Ymf1+e4tfdTiMxeM2EnoFBLIbK0ya6fs3Z/6B/pp6++7tPX3Xeo0orVrJs1O7ppbe/bTT/sbIKmKb8M8Hq1CApitU48l5vmhwDSB6jfzHe1cvUfBmYMSPRYvLy99umSArl++qd5VPlSa9KnVb8Y7slgsGt9jms26/Wp/pJP7/n3dwZ1v3jRr8yXp7OEL+qb7VF04flH+KfzUoncjjfz9Q71RoLtuXPn3+dbfvlulmYN/tH4ffi/CmVPmMPGde3te30sSr5vSKSSAWTv1JDPvcwNSBmjfpkP64+fN6vPdW66blAQw8zza2y5PEN959vX31Y0rNzVn+AK16NUoxvt8tlpRrZ23Qfs3HVbE/Qi90q/Jo7/divVR2Pmrzn5IjkGnTMnr6avA1aIiH+raxRvWrxtXbj11m16TumjN3I3av/mwC0ZofoXLF9Tm/23X38t26uKpy/pz4V/avnK3CpbJG/s25Qro4snLWvzNcoWevKx9Gw/ptymrVLBMvli3SU62/r5LM4b8pI2LY75qRbMe9TV3xGJtXLxVJ/ed1WcdJsg/0F81W1Vy8UgBOFqL3o20fNoaLZu6RqcPntPE3jN0+cwVvfhW3RjXL1uvpEpUK6KBDUdo5+o9unjqsg5tPWrTqCIVCmnfxkNaO3eDLp66rO0rd2vtvI3Jap+7dfkuzfhwnjYs+vvpK0ua2HuGfvrsVx3edkznjoZq2sC5Onfkgiq8WNbJIzW3LUse9f7ckQs6d+SCpg+aq3u376tw+YJxbnf90g1du3jd+hUV9fQ3CwLwLAEp/TXgh3c05s1vdfuafS8kPdo3/PsVlYQ/Qi6+fW/UtY4un76iib1n6PTBc1o2dY1+n75GL7/b2GY9wzBs9q/XLl63uf2DBp9qxcx1OrX/rI7vPqXPO0xQ5lwZVSCOYzWz2fbHIX0/5ndtWrE3xtt9fL3VoV8D/fDnQC365xON+fkdFS+X8MfXtF0V7dh4RD9NXquzxy/rp8lrtWvzUTVtV8W6zocdp2rVwu06ffSiThy8oDHv/6TM2YJVoFj2BP9cADFzxv6zec+G2r5yt+aNXKwzh85r3sjF2rl6r5r3bGj3z81WIIuKVCiocW9/p8Pbjuns4fP6+u0pSpEqQDX+/7mZqKioaPvoSk3Lad1Pm3T/jnsvPOCueb1x5abNfJRvVEbnjoZq9/r9kqS7N+/q/XrD9Mf8zTp7+LwO/HVE3/SYpoJl8yljjgzOnRQXie+xaeHyBXTx5CUt/nqZQk9e0r6NB/XbtytVsKzntBxIyszaKXv3p4u+WqofRy3WgS3me63LXXP7tP20PX8DJFXxbRgA80jM80OPzovYoP2xtKJeu+qaum+Mfrs7W1P3j411P/1YmbollLNIdo1qO07Hdp3UztV7NPm9mWrQqZYCU6ewWfdm2G2b44fHV2Z3B7M2X5LWzt2gnav3KPTEJZ3af1aT+sxUyrSBylsip82Ywu+G28znfy8qYmbxnXt7Xt/jdVPA3My8z1016w/NGvazdqza47wJcBAzz6O97fIE8Z3ni6cua0Kv6Vr1wx+xfvLZyLbj9L+JK3Tsn5M6c+i8xnSeLIuXRaVqFXPmQ0EykKRPXv/ggw/UoUMHdw8j3rIWCNG8MxP1/dGv9cGcngrJE/2ja/+rXrvqypo3s374+GcXjdD89m08qJI1iilbgSySpLwlcqpYpUL6e9nOWLfZv+WwMmRPp+deKCnp0ccsVmn+vP5atsMVQ/ZoIXkyKX2WYG1ftdu67EFEpHb/cUBFKsR98qCnsBiu+0Ly4Qmd8vH1UcEyebX9iY+u275yt4pWKBTjNhUal9Xhbcf0Sr8mmntmsqYf/EpdPmsrvwA/6zp7NxxQgTJ5Vei5/JIe7UfK1S+lv5ayz7WXxWJRYOoUfCz7f3h5ean6qxUVkNL/qW/om7jjM807961Grxwc7aMpPZErO0WrkhdPaFVsun/TUX8t3amdq+1/wm7i9lGad3aSRq8YlCT2DbFJSN8Lly+o7St32yzb9vs/Klg2r7x9vK3LUqQK0KwTEzTn9CQN+/V95SuZO86xpEwbKMm9V6pytD4jX1GR0rk1svdsvf3il9qwbLc+mdZRWXMl7CTHwqVyaseGIzbLtv95WIVL5Yp1m8BUAZKkW9fN86IfnYIzuLpTztp/FqlQUNtX2t7nthW7VKRiIbt/rq+/ryQp4v6/n7YQFRWlBxGRKlapcIxjK1A6r/KXyqPlU1fH+bidzV3zGtM4arWuot+nr4lzvCnTBioqKkp3rt+Jc72kav+mQ8qQPb3K1S8l6dFzqFVbVNDfHn48zzEVnMWVrTJzp2LiSftTs7QqJgn5GwCeiU7BGczy3J+9zw/Va1ddWfNl1g8fzY/x9vqdaqn9J600fdBcdSzSW9MHzlG7j1uqzuvVYr3PIhUK6eTe0wq7cM26bNvv/8gvwC/ayfQf/9JfP4VO0dg/h6lKi/L2PjyH86Tm+/j6qEGX2rp9/U60T8es+VoV/Xxpqr7b86W6fNZWKf7/+SwzS+jfPf8V0+t7SeF1U46p4Axm6JQn7XPNzJPmMa52mZ2rfm/8A/3k4+vjUa/t0Slz8nH3AJzp3LlzOnPmjLuHES8H/z6q0e3G6+zhCwrOHKTWHzTTVxuGqVPxd2P8B58tf4g6Dm+l3tWGKuohVwx97MfPflXKtIGauvcLRT2Mkpe3l2Z8+KPW/bgp1m32bz6sUa9/o4FzesovwFc+vj7a9Os2je85w3UD91DpQoIkSdcu3rBZfv3SDWXKmTSuQgU4gyd0Km2G1PL28Y521dRrF68r+P//7T8pS57MKlb5GUXcf6ChzT9T2gyp1X18J6VOl0pfdJwoSVr34yalzZhGY/4cJovl0R/Rv078XT+OWuzcB5SEvPTuiwpI6a/1P8XetuQid7GcGrfpU/kF+Ore7fv6qPlnOn3gbIzrXr1wXV92maQj24/L199XtdtW1ehVg/VejaHa8+cBF48cMD9PaFVMqr9aUQVK5VG35z+wa/2rF67pyzcn68j2E/L191HtNlU1euUgvVfz4yS5b0hI39OFBGlbDOv7+PoobYbUuhp6XWcOntNn7cfrxJ7TCkyTQs16NNTYDZ+oa8n3dO5oaIz32/WLN7TnzwM6uc/zfs9ikiVnOlVr9KzaVhmuq5cefZTkgql/qEyVQqrToqxmfrk83vcZnCG1rofZfiLb9bBbSpcxdazbdPngRe3dekKnjlyM988DPImrO+Ws/WdwSFC051SuXbxhvU97fu6Zg+cUevKSOg5/TWO7fqv7d8LVok8jpc8SrHRZYh7bCx1r6tT+s27/JEd3zeuTKjZ9TqmCUmrFjHWxjtXX31edRrTWmjkbdPfWvac8sqRp/+bDGtlmnAbO6/3vc6i/bNU33ae5e2iAKbmyVWbu1JM8bX9qllbFJCF/AwDAY2Z57s+e54ey5Q9RxxGt1bvq4FjPi2gz6CVNfu976ycyhJ68pJxFsqthlzpa+f36GLcJDgnS9Sf2xbev31FE+APra+D3bt/XxD4ztG/jIRlRUarQ+DkNnNdbn7X7Rqtn/5mAR5w4ntD85xuW1sC5veUf6KerF66rf91huvmf57dWz/lToScu6VrodeUulkMdhrdW3hK59X69YfZOg1skZO6fFNPre7xuCsTMDJ3yhH2uJ/CEeXxauzyBq35vOo1srSvnrnrEFf9hbkn65PWZM2c+dZ3w8HCFh4fbLIsyHsrL4h3LFs61dfku6/8/ufeMDmw+rJlHxqnu69W0YOxvNut6eVk0YFYPff/RfJ07csHFIzW36q9UUK3Xqmhk2691cv9Z5Xs2t9764nWFXbimlT/8EeM2OQtn09tj3tDsTxZo28rdShcSpM6jWqvnhE76sstkFz8CD2U88dYhi2Q8uQyAlT2dkszRqmj/vC2WWP99e3lZZBjSiDbjrB/xN/ndmfpw/rv6uttURdyPUIlqRfTaBy30dbfvdOCvo8qWP0Rvj22vqxeuafYnC5z9cDxejZaV1HbIyxrSdLSuX77p7uG43dlD59W1VF+lCgpU5Rbl1XfGO3q3+pAYT2A/e/i8zh4+b/3+wJbDypg9vV5+t3GSPEEVSCxPPKbKmD293h7zht5/YbgehD94+gaSzh6+oLOH/z2mOrDliDLmSK+X322UpPcN8en7o/Vtb7NYLDb3c+CvIzrw179XCN+38ZAmbh+tJt3ra0LP6dHur/s3HZWnRE71rvJhAh+B+eQrkk1eXl6asqKvzXJfPx/d/P+roGfMEqTJy9613ubt4yVvH28t3PXvi3Nrft2pbwYvtH4fn/9Wbw9pqjyFQvReq4mJfTiA6bnrmMrR+8+Y7tRiib4srp/7MPKhPn7pC7075S0tujpDDyMfaseqPbFeDdsvwE81W1XW7E/M80mO7prXx+p3qKm/l+20ueLif3n7eGvg3F6yeFn0dbcpsY4rqctZOLu6fdVes4b9rG2/71L6LMHqPLqtek7qoi870R7gSe44pjJjp/7Lk/en7m5VTOL7NwAA/JcZXqey5/khLy8vDZjdU98P/SnW8yLSZkijTDkzqM+Ut9T7267W5d4+Xrpz49FzMp/+9oGKV3n0qRQXT11W5+J9JMX8evZ/9/E3w25p4X/O1Ti8/bhSBafUK32buOXk9cfM3Px/1u5T11J9lTZDatXvXFuDfuyjHuUHWF/TWjbl308AO7nvjM4dCdWEbaOUv1QeHd15ItbHYBbxnfvHYnt9j9dNgZiZoVOPmXmf60nMPI9Pa5cncebvzSt9G6t6y8p6r8YQu1+HBWKTpE9et8eIESP00Ucf2SzLoyLKZynmphHZun83XCf2nla2AiHRbkuROoUKPZdP+Uvl1jvjHn1MisXLIi8vLy0Pn6P3X/hUu9buc/WQTaHzyDaa99kvWvfTZkmP3giQOWcGtezXJNaT11v2b6p9mw5r/pdLJEkn9pzW/bvhGrPuI80Y/KOuhl531fA9zuO5CQ4JspmnoIxpdf3SjZg38jQe/McfPF/MrSqsfCrq9J9948otPYx8aL26xGNBmdJGuxLFY2EXrunKuavWE9cl6fSBc/Ly8lLG7Ol07mio2n3cUqtm/aFlUx99HPvJvacVkNJfvSa/qTmfLvToAy5nq/ZKRfWZ8paGvfKldq7mnaySFPkgUuePPbqi7+Htx1WobD4169lAX3X91q7tD/51RLVaV3HmEJ2PfzNwI7MdUxUok0fBmYM0YesI6zJvH28Vr1pYTbrVU4MUrRUV9fR/Mwe3JIF9QywS0verodeVLiQ42vqRDyJjvfKEYRg6tO2osuXPEu22buM6qPyLZfVutSG6cu5qwh6ICXl5eelh5EN1bzYu2lXA7t999OR52KWb6tZ4rHV5pXrFVKlecY3uM9e67O7t+9b/f+3KLQVnsL3Ketp0qXTtSvRPZ3vrwyYqX6uI+r42UVdCTXYsRqvgRo46pnLW/vNaaPQr3wRlSmu9apC9P/fIjuPqWrqvAtMEytfPRzeu3NS4zcN1ZPuxaOOq+lJ5+Qf6a+X3MT9P5krumtf/ypQzg0rVLqGPWnwW48/z9vHWoB/7KCRPJvWt9ZFHXCXYWVq930z7Nh7S/M9/lfToOdR7d8I19s9hmjForuc+h0qn4EbJpVOS5+5PzdCquMTnbwB4MFoFN3LW61T2Pj+UInWACj2XX/lL5dE7X3eU9J/zIiLm6f16n1iv2j6myyQd/OuozfaPn6P5svMk+afwk/TodQXp0b74mXL5bdZPFZRSvn4+ce6PD2w5rPoda8XzETuGJzT//t1wnT8WqvPHQnXgryOacWicXuhYU/NGLo5xfEd2HNeDiEhlK5DF1CevJ2TuH4vr9b0k8bqpJ4wRSZYzz6fwhH2uJ/CEeYxvu8zI2b83L737oloNaK7+dT7WiT2nE31/LkWnTMnL3QNIjC+++EKnTp1K1H0MGDBAN27csPnKYynsoBEmnq+fj3I+k01XL1yPdtvdm/fUucR76lq6v/VryeRVOn3wnLqW7h/toCw58Q/0k/HECSlRD6Nk8Yr9V94/hV+0k1isJxv8/zu3ELPQE5cUduGaStcqbl3m4+utElULu/2jpwF3ckSnpFhapWccMMKni3wQqcPbj6t0nRI2y0vXLqF9mw/FuM2+TYeUPmuwAlIGWJdlK5hFDx9G6fLZR08++gf6y4iyPaEr6mGULBaL9d2yiK5Gy0rqO72bRrT+iqsnxcFiscjPz9fu9fOVzKOwGP7WApKDpHhMtXP13mjHSYe2HtOaORvUtXR/u05cl6R8pXLHeuVVT5eQvh/Yclila9uuX6buszq87bgeRj6M9Wfleza3robazuM7X3dU5WbPq1+tjxR68lICH4U5Hdt/Tt4+3gpKn1IXTofZfD0+2TzqYZTN8uthtxVx/4HNshtX71jv88DO0ypdqYDNzylduYAO7LT9t/vW4CaqWLeY3m/7rS6eTZq/u0h+zHZM5az95/7Nh1XmyXXqPKv9mw4l6OfevXlXN67cVLb8ISpYNp82/bI12jovdKipzb9u040r7r9ykLvm9b/qta+h65du6K/foh9nPT7RMluBEPWvM0y3rkZ/81By4h8Y+3OoHM8jOXLaMVUS7JQn70/N0Cp72PM3AIDkxWzHVP8Vn+eH7t68p87F+6hrqb7WryWTVz46L6JUXx3864iuX7qhy2fDlCVvZuuJZ4+/Ht9/2Pmr1mWXTl+RJO3ffEi5i+W0OcmrTN1nFXE/Qke2H491TPlL5dFVNz13aPbmx8hika9/7K/b5C6aQ75+Pm6bU3sldA6e9voer5siuTJzpx7zyH2uCXnkPD6lXWbkzN+bl99rrDaDXtIH9T/V4Tj+RgLiw6NPXu/bt6/y5cunOnXq6Mcff1RERES878Pf319p0qSx+XLXx9tLUpfRbVSiamGF5M6oZ8rl14fz+ygwTQqt+H69JKnDp63Ub0Y3SY+uYndy3xmbr+uXbujB/Qc6ue+M9apuydGW33ao1ftNVa5+KWXOlVGVmjyn5r0aauN/nqjr8ElL9Z3+ts02lZs9p0Zv1lFInkwqUrGg3h7TTgf/Pmr6gyRXCEjpr7zP5lLeZ3NJkkLyZFLeZ3MpY470kqRF45ap1ftNVanJc8pdNLvem/q2wu+Ga83cje4ctsNYDNd9IelwRKck97dqwZglqt+xluq1r6Gcz2RT1y/fUKacGbRk0gpJUofhr6nfjHes66+Zs0E3w26p77S3lbNwdhWvUlhdRrfV79PXKOL+oznYsmSbGnWtq+qvVlRI7kwqXbuE3vi4pTb/uk1RTzw5k1QFpAxQvmdzK9+zuSU92q/meza3MubIICn6vNZoWUn9Zr6jye/N1IEtRxScOUjBmYMUmCbQHcM3jQ6ftlKxys8oc66Myl0sp9p/0kolqhfV6jmPPqrzyXls1rOBKjZ5TtnyhyhXkezqMPw1VX2pvH4dv8xdD8EhXNkpWpW0JMVjqnu370c7Trp/575uht22XoHpv8dVktSsRwNVbFL2333Dp61UtUV5/Trhd3c9DKeLb9+XTFqpTLky6M0v3lDOZ7KpXvsaeqFDTc3/4lfrOm0Gv6SydZ+1Nu3dqW8pX8ncWjJppXWd7uM7qVbrKhrR+ivdvXXf2jO/AD/XPfhECgj0U97CWZS38KMrymfOnk55C2dRxixBOnfyitb8skPvjW6pinWLKXP2YBUsnl0vd6mu56ol7MnyX2ZuUOnKBfRyl+rKnjejXu5SXaUqFtDiGf9+LHW3oU1Vs0lpjX53ru7dua/gDKkUnCGV/PzN84F7dAoJYcZjKmfsPxeN+01l6j6rV/s1UY5CWfVqvyYqXbu4Fn71m90/V3p0NfUS1YooJE8mVWhcViNXfKhNi//W9pW7bR5D1nwhKl61sJZNXS2zcNe8So9OuK7XroZWfr8+2qdmeHl7afD8d1WwbF6NbDNOXt5e1nb5+JpnH5sY8T023bJkuyo3L6dGXesqJE8mFa1YSN2+aq8Dfx3x6Df+cUyFhDLbMZVZO2Xv/jQ4c5DyPZtb2fI/+jTiPMVzKt+zuZU6OFWC5sOR3DW3T9tPS/b/DZDU2DM3SQmdQkKY8ZhKsu/5of/uV+09L+KHj35Sy/ebqVmPBspWIItyF8upeu2qq0XvRrGOZfuK3Tq9/6z6f99d+UrmVqmaxdTls7ZaOmW19RNC6rxeTTVaVVbOZ7Ipe8GseundF9W0ewMt/sZ9ryuYtfkBgf7q8GkrFX6+gDLlzKD8pfKoz3ddlTF7Ov0xf7MkKUvezGrz4UsqWCavMufKqHL1S+nDn/royI7j2rfR/Cdkxnfu7Xl9Lym8bsoxFRLCrJ16kln3uZKUOjiV8j2bW7mKZJckZS+UVfmeza3gzEEOe/yOYtZ5tKddniS+8yzJelyVIlWA0mZIo3zP5lbOwtmtt7/St7HaDWupzztOUOjJy9aW/feClmZHp8zJ459hnzJlihYvXqy2bdsqTZo0atOmjTp16qRixdzzEfWJlSF7en0wu4fSZEijG5dv6sBfR9Sj4iDrO3/TZwlSpv8/WRixG99zut746BV1/7qDgjKlVdj5a1r63SrN+mSBdZ10WYKV6T9PYK38fr0CUweo8Vt11WV0G925fke71u3TlAFz3PEQTKdgmXz6fPVg6/ddP39dkrTi+/X6vONE/fT5r/JP4ad3vu6g1MEpdfDvoxrQYLju/efj7oHkKCl0av1Pm5QmfSq1+fAlpcsSrJN7z2hgw+H/tikkWJly/rs/vX/nvt6vO0zdxnXU+K0jdTPslv6Yv1nTB82zrjP7kwUyDEPthrVShmzpdOPyTW1Zsk3TBs51+eNzl4Jl8+qLtf9+fNlbX7aTJK2YsU6fdRgfbV4bdqkjH18f9RjfWT3Gd7Yuf7x+chWUOUj9v++udFmCdefGXZ3YfUof1P9UO1Y9enHuyXn09fNRl89eV4Zs6RR+L0Kn9j36ff572U53PQTA7ZJCq+LryeMqXz8fdRnd1nbf0GiE/l62y32DdLL49j305CUNajhCXb98Q43frqew89c0oec0bVj4l3WdVEEp1WvymwoOCdKdG3d1bOcJ9ak2RIe2/vupYI3fqidJ+mKd7Ud4ftZ+vFbMXOfER+w4BYpl1+jZXa3fvznwRUnSyoXb9GX/n/Tl+z+p1du11Pn9RkqfOY1uXb+rA7tOaeu6gwn6eQd2ntLI3nP0eq96atuzri6cCdOIXrN16J8z1nUata4oSTbjkqQv+v+oVQu3J+jnAmZhtk45Y/+5f/NhfdpqrNoNa6k3Pm6pC8dC9WnLMTr491G7f6706LmuN794Q8GZg3T1wjWt/GG9Zg/797mwx17oUENXzl3V9hX/OGOKEsRd8ypJpWsXV+ZcGbV82ppo48qYPb0qNnlOkjR51+c2t71bY4h2r9/vsDlwl/gem66YuU4pUgeoSbcX9Obnr+vO9TvauWavprw/29VDB0zDTK0ya6fs3Z826lpHrw95xXrbmD+GSTLH8YK75vZp+2nJ/r8Bkhp75gaAuTr1mD3PDz25X7XHsqlrdP9uhF55r7E6jWqj+3fCdXLP6WhvYP2vqKgoDWw0Qj3Gd9LYDZ8o4l6E1szdoG/f+95mvdYDWyhTrgyKehilc4cv6IuOE7R69p+x3KvzmbX5Dx9GKUehbKrzc3WlyZBat8Ju6dDWY+pddbBO7T8rSYqMiFSpmsXVrEcDBaQK0OUzYfp76Q798NF8jzhRO75zb8/re7xuiuTMjJ16kln3uZJUoXFZ9Z3+78WaBs3rLUn6/qOf9MNH8502Jwlh1nm0p12eJL7zLEmTdn5m/f8Fy+ZTrdZVFHryktrmffS79eJb9eTn76shP79ns50Zf8/gWSyGYXjsuf5eXl4KDQ1VpkyZdOnSJc2YMUPTp0/X4cOHVaZMGXXu3FktW7ZU6tSp43W/dbxfddKIkxeLFx9fBHNZ8WDe01eKRY26oxw4kritXdHfZT8LzuWsTklSHa+XnTBiAO60MirhB3au7JREq5ISjqlMzjD/izWewCdfHncPIUlYdmR0orbnmAoJwTEVgPjgmAru4LRjKjoFJDmJ6ZTEMRUShmMqAPHBMRVcjU4BiA86lfR4uXsAjpIpUyb169dPBw4c0Lp161SkSBH17t1bWbJkcffQAACgUwAA06NVAAAzo1MAALOjVQAAM6NTAAAzo1MAkPz4uHsAiWGxxHxl7ypVqqhKlSoaN26cfvzxRxePCkBSZPHcD6mAG9EpAK5Cp5BQtAqAq9AqJASdAuAqdAoJRasAuAqtQkLQKQCuQqeQEHQKgKvQKXPy6CuvG0/5pUqTJo06d+7sotEAgOuNGDFCzz33nFKnTq1MmTKpadOmOnTokM06hmFo6NChypo1q1KkSKHq1atr3759NuuEh4ere/fuypAhg1KmTKnGjRvr7NmzrnwoSRKdAgBaZXa0CkByR6fMjU4BSO7olPnRKgDJHa0yNzoFILmjU+ZGpwAgebfKo09ej4qKUqZMmdw9DADJQZQLv+Jh/fr16tatm7Zs2aKVK1cqMjJSdevW1Z07d6zrjB49Wl9++aW++eYbbd26VSEhIapTp45u3bplXadXr15atGiR5s2bpw0bNuj27dtq1KiRHj58GL8BwQadAuAyruwUrUpSaBUAl6FTSAA6BcBlTHpMRafMj1YBcBkTdkqiVWZHpwC4DMdUSAA6BcBlTNopKXm3ymI87W1MJta9e3e98sorqlKlikPvt473qw69v+TK4hXzx7sA7rLiwbwEb1uz1kgHjiRua1a/n+BtL1++rEyZMmn9+vWqWrWqDMNQ1qxZ1atXL/Xv31/So3daZc6cWaNGjdKbb76pGzduKGPGjPrhhx/06quP9n/nz59Xjhw5tHTpUtWrV88hjys5clanJKmO18sOv08A7rUyan6Ct3VlpyRalZRwTGVyRjyf3UCMfPLlcfcQkoRlR0YnanuOqZAQHFMBiI/kcExFp8zHacdUdApIchLTKYljKiQMx1QA4oNjKjrlanQKQHwkh05JyatVHn3l9fHjx6t69eoqWLCgRo0apdDQUHcPCUASZTEMl30lxo0bNyRJ6dKlkySdOHFCoaGhqlu3rnUdf39/VatWTZs2bZIkbd++XQ8ePLBZJ2vWrCpWrJh1HSQMnQLgKq7sFK1KWmgVAFehU0gIOgXAVTzlmIpOmQ+tAuAqntApiVaZDZ0C4CocUyEh6BQAV/GUTknJq1UeffK6JK1YsUINGjTQ559/rpw5c6pJkyZasmSJoqK4Qh0AzxQeHq6bN2/afIWHhz91O8Mw1KdPH1WuXFnFihWTJOsf95kzZ7ZZN3PmzNbbQkND5efnp+Dg4FjXQcLRKQBJEa1KWmgVgKSGTiUtdApAUpSQVtEp86JVAJIajqmSFjoFICnimCrpoFMAkiKOqezj8SevFy9eXGPHjtX58+c1a9YshYeHq2nTpsqRI4cGDhyoo0ePunuIAJICw3VfI0aMUNq0aW2+RowY8dQhvvPOO9q9e7fmzp0b7TaLxWL7cAwj2rJoD9mOdfB0dAqAS7iwU7Qq6aFVAFyCTiGB6BQAl/CAYyo6ZV60CoBLmLxTEq0yKzoFwCU4pkIC0SkALuEBnZKSX6s8/uT1x3x9ffXKK69o+fLlOn78uDp37qzZs2erUKFC7h4aAMTLgAEDdOPGDZuvAQMGxLlN9+7d9euvv2rt2rXKnj27dXlISIgkRXsX1aVLl6zvyAoJCVFERISuXbsW6zpIPDoFICmhVUkTrQKQVNCppIlOAUhK4tsqOuUZaBWApIJjqqSJTgFISjimSnroFICkhGMq+ySZk9f/K2fOnBo6dKhOnDih5cuXu3s4ABAv/v7+SpMmjc2Xv79/jOsahqF33nlHCxcu1Jo1a5QnTx6b2/PkyaOQkBCtXLnSuiwiIkLr169XxYoVJUllypSRr6+vzToXLlzQ3r17revAsegUAE9Hq5I+WgXAk9GppI9OAfB09raKTnkuWgXAk3FMlfTRKQCejmOqpI1OAfB0HFPZx8fdA0iMXLlyydvbO9bbLRaL6tSp48IRAUiyDMPdI4hRt27dNGfOHP3yyy9KnTq19V1WadOmVYoUKWSxWNSrVy8NHz5cBQoUUIECBTR8+HAFBgbqtddes67bsWNHvfvuu0qfPr3SpUun9957T8WLF1ft2rXd+fA8Hp0C4DIm7ZREq8yOVgFwGZO2ik6ZG50C4DJ0CglEqwC4DK1CAtApAC5Dp5AAdAqAy5i0U1LybpVHn7x+4sQJdw8BANxq4sSJkqTq1avbLJ8+fbratWsnSerXr5/u3bunt99+W9euXdPzzz+vFStWKHXq1Nb1x4wZIx8fH73yyiu6d++eatWqpRkzZsR5oICno1MAQKvMjlYBSO7olLnRKQDJHZ0yP1oFILmjVeZGpwAkd3TK3OgUACTvVlkMw8RvK3CTOt6vunsISYLFy+LuIQA2VjyYl+Bta1cb7sCRxG3V+g9c9rPguep4vezuIQBwsJVR8xO8rSs7JdEqPB3HVA5iRLl7BEmCT748T18JT7XsyOhEbc8xFcyGYyog6eGYCkkJnQKSnsR0SuKYCuZDq4Ckh2MqJCV0Ckh66FTS4+XuAQAAAAAAAAAAAAAAAAAAAAAAkj4fdw8AADwCH1IBADAzOgUAMDtaBQAwMzoFADA7WgUAMDM6BQAwMzplSlx5HQAAAAAAAAAAAAAAAAAAAADgdFx5HQDsYIly9wgAAIgdnQIAmB2tAgCYGZ0CAJgdrQIAmBmdAgCYGZ0yJ668DgAAAAAAAAAAAAAAAAAAAABwOq68DgD2MAx3jwAAgNjRKQCA2dEqAICZ0SkAgNnRKgCAmdEpAICZ0SlT4srrAAAAAAAAAAAAAAAAAAAAAACn48rrAGAP3oAFADAzOgUAMDtaBQAwMzoFADA7WgUAMDM6BQAwMzplSlx5HQAAAAAAAAAAAAAAAAAAAADgdJy8DgAAAAAAAAAAAAAAAAAAAABwOh93DwAAPIHF4PNDAADmRacAAGZHqwAAZkanAABmR6sAAGZGpwAAZkanzIkrrwMAAAAAAAAAAAAAAAAAAAAAnI4rrwOAPXgHFgDAzOgUAMDsaBUAwMzoFADA7GgVAMDM6BQAwMzolClx5XUAAAAAAAAAAAAAAAAAAAAAgNNx5XUAsEeUuwcAAEAc6BQAwOxoFQDAzOgUAMDsaBUAwMzoFADAzOiUKXHldQAAAAAAAAAAAAAAAAAAAACA03HldQCwg8Uw3D0EAABiRacAAGZHqwAAZkanAABmR6sAAGZGpwAAZkanzIkrrwMAAAAAAAAAAAAAAAAAAAAAnI4rrwOAPXgHFgDAzOgUAMDsaBUAwMzoFADA7GgVAMDM6BQAwMzolClx5XUAAAAAAAAAAAAAAAAAAAAAgNNx5XUAsAfvwAIAmBmdAgCYHa0CAJgZnQIAmB2tAgCYGZ0CAJgZnTIlTl6PiRHl7hEkCcZDd48AAAAAgFtwTAUTiTx2wt1DAAAAAAAAAAAAAAD8P05eBwB7cP4VAMDM6BQAwOxoFQDAzOgUAMDsaBUAwMzoFADAzOiUKXm5ewAAAAAAAAAAAAAAAAAAAAAAgKSPk9cBAAAAAAAAAAAAAAAAAAAAAE7n4+4BAIAnsBiGu4cAAECs6BQAwOxoFQDAzOgUAMDsaBUAwMzoFADAzOiUOXHldQAAAAAAAAAAAAAAAAAAAACA03HldQCwB+/AAgCYGZ0CAJgdrQIAmBmdAgCYHa0CAJgZnQIAmBmdMiWuvA4AAAAAAAAAAAAAAAAAAAAAcDquvA4A9uAdWAAAM6NTAACzo1UAADOjUwAAs6NVAAAzo1MAADOjU6bEldcBAAAAAAAAAAAAAAAAAAAAAE7HldcBwB68AwsAYGZ0CgBgdrQKAGBmdAoAYHa0CgBgZnQKAGBmdMqUuPI6AAAAAAAAAAAAAAAAAAAAAMDpuPI6ANgjyt0DAAAgDnQKAGB2tAoAYGZ0CgBgdrQKAGBmdAoAYGZ0ypS48joAAAAAAAAAAAAAAAAAAAAAwOm48joA2MFiGO4eAgAAsaJTAACzo1UAADOjUwAAs6NVAAAzo1MAADOjU+bEldcBAAAAAAAAAAAAAAAAAAAAAE7HldcBwB68AwsAYGZ0CgBgdrQKAGBmdAoAYHa0CgBgZnQKAGBmdMqUuPI6AAAAAAAAAAAAAAAAAAAAAMDpOHkdAAAAAAAAAAAAAAAAAAAAAOB0Pu4eAAB4hCg+PgQAYGJ0CgBgdrQKAGBmdAoAYHa0CgBgZnQKAGBmdMqUuPI6AAAAAAAAAAAAAAAAAAAAAMDpuPI6ANjD4B1YAAATo1MAALOjVQAAM6NTAACzo1UAADOjUwAAM6NTpsSV1wEAAAAAAAAAAAAAAAAAAAAATseV1wHAHrwDCwBgZnQKAGB2tAoAYGZ0CgBgdrQKAGBmdAoAYGZ0ypS48joAAAAAAAAAAAAAAAAAAAAAwOm48joA2IN3YAEAzIxOAQDMjlYBAMyMTgEAzI5WAQDMjE4BAMyMTpkSV14HAAAAAAAAAAAAAAAAAAAAADgdV14HAHtE8Q4sAICJ0SkAgNnRKgCAmdEpAIDZ0SoAgJnRKQCAmdEpU/L4K69v3bpVrVu3Vp48eZQiRQoFBgYqT548at26tbZt2+bu4QEAkjk6BQAwO1oFADAzOgUAMDtaBQAwMzoFADAzOgUAyZdHX3l98eLFeuWVV1SrVi317NlTmTNnlmEYunTpklasWKFKlSrpp59+UpMmTdw9VACezohy9wjggegUAJehU0ggWgXAZWgVEoBOAXAZOoUEolUAXIZWIQHoFACXoVNIADoFwGXolClZDMPw2GviFytWTG3atNH7778f4+2jRo3S999/r3379sXrfut4veyI4QEwmZVR8xO8bf08fRw4krgtO/Gly34WnMtZnZJoFZAUeUqnJFqVlHBMBcBeiemUxDEVEoZjKgDxwTEV3IFjKgD24pgK7sAxFYD44JgKrkanAMQHnUp6vNw9gMQ4evSomjdvHuvtTZs21bFjx1w4IgAA/kWnAABmR6sAAGZGpwAAZkerAABmRqcAAGZGpwAgefPok9fz5cunxYsXx3r7L7/8orx587puQACSLsNw3ReSDDoFwGVc2SlalaTQKgAuQ6eQAHQKgMtwTIUEolUAXIZOIQHoFACX4ZgKCUCnALgMnTIlH3cPIDE+/vhjtWzZUuvXr1fdunWVOXNmWSwWhYaGauXKlVqxYoXmzZvn7mECAJIpOgUAMDtaBQAwMzoFADA7WgUAMDM6BQAwMzoFAMmbR5+83qJFC/3xxx/66quv9OWXXyo0NFSSFBISogoVKmj9+vWqUKGCm0dpnxffqquX32ui9FmCdHLfWU3sPV17NxyMcd2+07qpbrvq0Zaf3HdGnYv3sX6fMm2gOnzaSpWaPa/UwSkVeuKSJr/3vf5ettNZD8Pt4jOPklTztcp6pW8TZSuQRXdu3NW25bs0ue/3unX1tiSp7hvV1Xd6t2jbNUjxmh6EP3Da4zCTRl3r6sWudZU5d0ZJ0ql9ZzVr2HxtXb7rqdsWrVhIX6z7SCf3nlHX0n2dPFIni+JdUYg/T+5UfPenJaoW0ZtfvKHcRbMr7Pw1/fTZL1oyeaXNOpWbP692H7dUlnyZdeHYRU0fNFcbF/9tvb14lcJ6+b3GKlgmr9JnTachzUZr0y9bnfYYXcHR81i5WTm1GtBcWfOHyNvXW+ePhOrnL/+nVbP+sK6TmP22J2r5flNVbva8cjyTTeH3IrR/0yFNeX+2zh4+H+s2JaoV0RdrP4q2vEPhnjpzKPbtTI1OIYHM2qqE7Msav11PTbq9oMy5M+nS6SuaM3yBVv3wR6zr2ytjjgzq/k1HlaxZTBH3IrRm7gZ9+94PinwQKUnKnCujZp2YEG27AfU/1bbfYx+vO7ij722HvKzXh7xis83V0Ot6NWtn6/cBKQPUaWRrVWzynNKkT62LJy9p0dfLtGTSCgc9cvdKyN84zvp9ditahQQwa6ckKUWqALUb1lKVmpZTUKa0OrrzhCb0mq7D22L+KGNn/g2alFr1JHe0KyHHGJ4mvvPq6+ejNoNfVq3WVRQcEqQrZ8M0Z/hC/T59rSTJ28dbrQY0U53XqylDtnQ6c+i8prw/2/S/XzboFBLIrK1KyL6scrNyatS1nvKVzC1ffx+d2ndWP3z0k7at+CfR4/HEVrmjQfb83LZDXlb1VyspY470ioyI1JHtxzV90Fwd/PuodZ0seTOry2evq1jlZ+Tr76Nty3fpmx7TdP3SDQfNjvPFZ/6LVnpGnUe2Vo5nssk/0F8XT13Wb9+u1MKxv1nXSRKv99EqJIBZO/Wklu83VcfhrbXwq980sfeMWNd72mv7CeWJnZLM2SpvH2+1/6SlytUvrZC8mXT3xl3tWLVHUwfMVtiFa9b78PRWxWfu04UE6c3P31CBMnmVrUCIFn+9LNrvOZ1CcmXmTqXPmk6dRrZWufql5JfCT+cOX9AXnSbqyI7jMa7Pc3/R0SnXcfRc29Mljzu/h06ZkkefvC5JFSpUMMUBVWJUe6Wi3hrTXl93+077Nh5SwzfraPjSgepYtLcun7kSbf3xvaZryoDZ1u+9fbw0edfn+uPnzdZlPr4+GrXiQ12/dFPDXv5Cl8+GKWOODLp3655LHpM7xHcei1Z6Rv1mdtekPjO05X/blT5bOvWc2Fl9vntLH7X4zLrenRt31f6ZnjbbeswBggNcORumqQNm69zRR38k1n2juj5a3F9vle6rU/vPxrpdYJpA9Zv5jnau3qPgzEEuGi1gPp7YqfjuT0NyZ9Invw3QsimrNartOBWtVEjdx3fW9cs3tWHhX5KkwuULatC83poxeJ42LvpblZqV06Afe6t3lQ+tL6wEpPTX8d2ntGLGWg1Z4OFveJFz5vHm1duaM3yhzhw8pwcRkSrfqIzem/a2rl+6YX0hMaH7bU9VompR/Trhdx3aevT/DzZbaeTvg9SpaG/dvxse57btCvXQ3Zv//m104/JNZw8XMCUztiq++7JGXeuqw/DXNKbLZB3aelTPlMuv3t921e1rd7RlyfYEj8PLy0ufLhmg65dvqneVD5UmfWr1m/GOLBaLxveYZrNuv9of6eS+f8eW2BfNHM1dfZekE3tPq3+dYdbvox5G2fyst8a8oWerF9PItuN08eRllan7rHqM76Sw81e1+ddtTpoR14nv3zjO+n0GPJUZOyVJfb57S7mL5dCo179W2PlrqtWmikavHKyORXsr7PzVWLdz9N+gSalVT3JXuxJzjOEJ4juvkjToxz4KzpxWX3SaqPNHQxWUKa28fbyst7f/pKVqta6qMV0m6fTBcypbr6SGLuyrnpUG6tiuky56ZID7mLFVCdmXFa9aRDtW/aNpA+fozvU7qte+hj7+9X11Lz8gUf+WPbFV7mqQPT/37OEL+qb7VF04flH+KfzUoncjjfz9Q71RoLtuXLmpgEB/jfx9kI7/c0p9az06eabdx69q2K/vq0eFD2R4wMeXx3f+79+5r1/GL9fx3ad0/064ilV+Rj0nddH9O+Fa+t0q63rJ/fU+JF9m7NR/FSybTw0619Gxf07GuZ69r+3Hlyd2SjJvq/wD/ZW/VF7N+uRnHf/nlFIHp9RbY9rp41/6q1u59yXJ41sV37n39ffVjSs3NWf4ArXo1SjW+6VTSK7M2KlUQSk1dsMw/bN2nz5oMFzXL91Q1nyZdfv6naduy3N/j9Ap13HGXEtP71JSO78H7uH19FXgbC16N9LyaWu0bOoanT54ThN7z9DlM1f04lt1Y1z/7s27unbxuvWrYNl8ShWc0nqlG0l6oUMNpU6XSkOajda+TYd06fQV7dt4UMd3n3LVw3K5+M5j4fIFdPHkJS3+eplCT17Svo0H9du3K1WwbF6b9QzDsJnvaxevu+DRmMeWJdv197KdOnfkgs4duaDpg+bq3u37Kly+YJzb9ZrURWvmbtD+LYddNFInMwzXfQFuFt/9aaOudXT59BVN7D1Dpw+e07Kpa/T79DV6+d3G1nWa92yo7St3a97IxTpz6LzmjVysnav3qnnPhtZ1ti7fpRkfztOGRX/H9GM8jjPmcff6/dq4+G+dPnhOF45f1KJxS3V89ykVrfyMdZ2E7rc91QcNPtWKmet0av9ZHd99Sp93mKDMuTKqQJm8T932+qUbNn2Piop66jam5cpO0Sq4QHz3ZbXbVNVv367S+p82KfTEJa37cZOWT1ujV/s1tVmvXrvqmrpvjH67O1tT94+NdZ/8WJm6JZSzSHaNajtOx3ad1M7VezT5vZlq0KmWAlOnsFn3Zthtm33K4ytemIW7+i5JUZFRNnNz44rtk7WFyxfUyu/Xaff6/bp46rKWfrdKx/45pYJl8zl+Itwgvn/j2Pv77HHoFJIQvwA/VWnxvL7rP0t7/jyg88dC9cNH8xV64tJT2/K0v0GTc6ue5K52JeYYwxPEd17L1iupEtWKaGDDEdq5eo8unrqsQ1uPav/mf5/zq92mquaOWKi/l+1U6IlLWjJphbb9vksv9XnRVQ8r8TimQhKTkH3ZxN4z9NNnv+rwtmM6dzRU0wbO1bkjF1ThxbI26yWHVrmrQfb83LVzN2jn6j0KPXFJp/af1aQ+M5UybaDylsgpSSpaqZAy586kz9qP18m9p3Vy72l93mGCnimXXyVrFnPSjDlWfOf/2K6TWjtvo07tP6uLpy5r9ew/tf33f1S8cmGb9Tz+9T46hSQoIGWABszqoTFdJun2tbhPCLT3tf3k0CnJvK26e/Ou3q83TH/M36yzh8/rwF9H9E2PaSpYNp8y5sggyfNbFd+5v3jqsib0mq5VP/yhOzfuxnq/dIpWwTxe7d9Ul8+E6fOOE3Ro61FdPHVZO9fs1YXjF5+6Lc/9PUKnXMcZcy09vUsed34PnTKlJH3y+gcffKAOHTq4exhx8vH1UcEyebX9iY9d3L5yt4pWKGTXfbzQoaZ2rtqjS6f/fbdMhRfLav/mw+o+vpN+uvCdvt39hVoNaCYvr6T5nzwh87h/0yFlyJ5e5eqXkiQFZUqrqi0q6O+lO2zWS5EqQLNOTNCc05M07Nf3la9kbqc8Bk/g5eWl6q9WVEBKf5sXqJ5Ur111Zc2XWT98NN+FowM8jxk7lZD9aeHyBbV95W6bZdt+/0cFy+aVt4+3JKlIhYLavtL2Pret2KUiFe1rnadx1jw+qVTNYspeKKv2/HEgxtvt3W8nJSnTBkqy753kE3d8pnnnvtXolYP1bPWizh4a4JHM0Cp79mW+/r6KuB9hsyz8XoQKlctv3YfW71RL7T9ppemD5qpjkd6aPnCO2n3cUnVerxbrzy5SoZBO7j1t81GB237/R34BftFO+vj4l/76KXSKxv45TFValE/ow3UKd/c9a4EQzTs7Wd8fG68P5vRSSJ5MNrfv23hQFV4sq/RZ00mSnq1eVNkLZtG2323vO7mw5/cZwCPu6pS3j5e8fbz1IIZ/q8UqPRPLVo/E9Tdocm7Vk9zdrv+KzzGG2SVkXis0LqvD247plX5NNPfMZE0/+JW6fNZWfgF+1nUetcv2ioAR9yJUrHLc/x6A5MAMx1RSwvZlFotFgalT2GyTHFrlrgYl5Of6+PqoQZfaun39jo798+jiVb7+vpJh2FwRL+L+Az18GOUR+2VHvG6ar2RuFalYSLv/2GeznNf7gOjc3anu33TUX0t3aOfqPU9d157X9pNDpyTPapX06O+QqKgo3fn/KxZ7cqsc0anY0CkgOnd1qsKLZXV4+zF9+GMf/RQ6RRO3j1b9TrXs2pbn/uiUKznzvBS6BFfwcfcAnOncuXM6c+aMu4cRp7QZUsvbxzvau1OuXbyu4JCgp26fLiRI5eqX0vDWX9ksD8mbWSVrFtPqORs0sOEIZSsQou7fdJK3j7dmDfvZgY/AHBIyj/s3H9bINuM0cF5v+QX4ysfXR5t+2apvuv/7sSpnDp7TZ+3H68Se0wpMk0LNejTU2A2fqGvJ93TuaKgTH5G55C6WU+M2fSq/AF/du31fHzX/TKcPnI1x3Wz5Q9RxRGv1rjpYUQ89+Aq2T+JdUXACM3YqIfvTdCFB2hbD+j6+PkqbIbWuhj7a9trFG0+sc8Ou1nkiZ82jJAWmCdS8s5Pl6++jqIdRGtdtinassj24iM9+O6np+sUb2vPnAZ3cF/u/rasXruvLLpN0ZPtx+fr7qnbbqhq9arDeqzFUe/6M+Y0Apken4CTubFV89mXbV+xS/Y61tGnxVh3ZcVwFy+TVC+1ryNfv331om0EvafJ731uvABB68pJyFsmuhl3qaOX362O83+CQIF1/ol+3r99RRPgDpfv//fm92/c1sc8M7dt4SEZUlCo0fk4D5/XWZ+2+0erZfzpuQhLBnX0/+NcRjX7jG509fEHBmdOq9cAW+mrjp+pUrLf1JJjxPaar97dvat7ZyYp8EKmoKENjOk/Svo0HE/vQPZI9v88eiVbBCdzVqXu372vfpkNqPeglnT5wTtcu3lCNVpX0zPP5de5IzM8X2fM3aHJu1ZPMdGxqzzGGp0jIvGbJk1nFKj+jiPsPNLT5Z0qbIbW6j++k1OlS6YuOEyU9eoGrRe9G2vPHfp0/dlGlahVXhSbPycvbgy6kQqfgJGZ5/i8h+7KX3n1RASn9tf6nTdZlyaFV7mpQfH7u8w1La+Dc3vIP9NPVC9fVv+4w3Qy7JUk6sOWI7t8JV6dRbTTtgzmyWCzqNKqNvL29lC5LcHymwi0S87rpnNOTlDZjGnn7eOuHj37SsqlrrLclidf7aBWcwJ2dqv5qRRUonVfdyr1v1/r2vLafHDoleUarHvP191WnEa21Zs4G3b11T5Jntyqx5/fEhk4BMXNXp7LkzaQXu9bVgjFLNGfEQj1TLr+6fdVBD8IfaNUPf8S4Dc/9/YtOuY6z5jpJdOlJdMqUkvTJ6zNnznzqOuHh4QoPD7dZFmU8lJfFtVcze/Lfh8VikWHHP5q67arr9vU72rR4q81yLy+Lrl+6qbFdJisqKkpHdhxX+qzp9PJ7jZPkyeuPxWcecxbOrm5ftdesYT9r2++7lD5LsDqPbquek7roy06PXng58NcRHfjriHWbfRsPaeL20WrSvb4m9JzutMdhNmcPnVfXUn2VKihQlVuUV98Z7+jd6kOinTzk5eWlAbN76vuhP+nckQtuGi3gOezplOSeVsW3S0/eZrFYot9PtHVi+EFJjDPm8d6te+paqq9SpApQqVrF1PWLN3Th+EXtXr/fuo69++2kpvs3HZWnRE71rvJhnOudPXxeZw+ft35/YMthZcyeXi+/29hzT14HnMSdx1Tx2ZfNGrZAwSFBGrf5U1ksFl27eEMrZq7Tq/2aKuphlNJmSKNMOTOoz5S31PvbrtbtvH28rB/V+ulvH6h4lUcfKX7x1GV1Lt5HUvR9s2S7P78ZdksLx/5mve3w9uNKFZxSr/RtYroTAt3R963Ld1n//8m90oHNhzXz6Deq+0Z1LRizRJLUtEd9FS5fUB82HqmLpy6rRNUi6j6+k8IuXLPryltJzdN+nwH8y53HVKNe/1rvTX1b8859q4eRD3VkxwmtmbNBBUrnjXH9p/0NSqti5u5jU3uPMTxNfObVy8siw5BGtBmnuzcf/S5OfnemPpz/rr7uNlUR9yM0odejN6JNPfCVZBg6f+yiVsxYq7rtajj7oQCmZ4bXqRKyL6vRspLaDnlZQ5qO1vXLNyUp2bXKXQ2y5+f+s3afupbqq7QZUqt+59oa9GMf9Sg/QNcv39SNKzc17JUv1GNCZzXtXl9GlKG1czfq8PbjHnU8kZDXTftUHayAVAEqXL6AOo1orfNHQ7V23kZJvN4HxMZdx1QZs6fX22Pb6/16n9hc1TQuT3ttP7l1SjJ3qyTJ28dbA+f2ksXLoq+7TbEuTwqtSuj5PbGhU0DM3NUpi5eXDm87pmkD50qSju06qVxFc+jFrvViPXmd5/6io1Ou4+i5pktwlSR98ro9RowYoY8++shmWR4VVj4VjWULx7px5ZYeRj60vhvqsaBMaaO9cyomL7SvqVWz/lDkg0ib5VcvXP//K9b9u9M8feCs0mcJlo+vT7T1PV1C5rHV+820b+Mhzf/8V0nSiT2nde9OuMb+OUwzBs2N8Wp2hmHo0LajypY/i6MfgqlFPojU+WOP3jl1ePtxFSqbT816NtBXXb+1WS9F6gAVei6/8pfKo3e+7ihJsnhZ5OXlpeUR8/R+vU+0a+1el4/fIZL4CbYwN1e2KiH706uh15UuJDja+pEPIq1X/LkWGv2dnUGZ0kZ7Z2xS4ax5lB616PE++dg/J5WzcHa1er+Zzcnr9u63k5Ju4zqo/Itl9W61Ibpy7mq8tz/41xHVal3FCSNzEToFN3JWp+KzL4u4H6EvOk7U2De/VXDmtLp64boadKmtOzfv6saVW0qbMY0kaUyXSTr411GbbR8/0fRl50nyT+Fn/dnSo349Uy6/zfqpglLK188nzoYd2HJY9Tva9xGSrmCmvt+/G64Te04rW4FHx1R+AX7q8OlrGtr8M+vHPJ/Yc1r5SubWy+82TpYnrz/t99lj0Sq4kTNadeH4Rb1bY4gCAv0VmCaFroZe18C5vRV64pLd9/Hfv0EtXo9eIEiurXqSGdqV2GMMM0rIvIZduKYr565aT1yXpNMHzsnLy0sZs6fTuaOhunHlpoY2/0y+/r5Kkz61ws5fVaeRreP178Ht6BTcyJnP/SVkX1btlYrqM+UtDXvlS5u/x5NLq9zVoPj83Pt3w3X+WKjOHwvVgb+OaMahcXqhY03NG7lY0qOPiH+jQHelSZ9aDyMf6s6Nu/rx/HcesV9OzOumoScfPb6Te08rOHNatR3yivXk9Sd55Ot9tApu5OhWFSiTV8GZgzRh2yjrMm8fbxWvWlhNur2gBgGv2ZznID39tf2oqEf/RpJ6pyTPaJW3j7cG/dhHIXkyqW+tj6xXs33MU1uV2PN77EWngPhxdKeuXrgW7UJKpw+cU5Xm5eN1P8n1uT865TrOPC/lvzyyS0+iU6bkQZ/b+XQPHjzQ4sWL9dlnn2nWrFm6c+fOU7cZMGCAbty4YfOVR8+4YLSPRD6I1OHtx1W6Tgmb5aVrl9C+zYfi3LZEtSLKViCLlv/nY+8e27fpoLLmD7G+M0aSshfMqrDzV5PcietSwubRP9DPehD72OM/CP47b0/K92xuXQ29lsgRezaLxSI/P99oy+/evKfOxfuoa6m+1q8lk1fq9MFz6lqqrw7+511ZQHKUkE5Jrm1VQvanB7YcVunatuuXqfusDm87roeRDyU9+jjHMk+uU+dZ7d8Ud+s8lbPmMUYWi3z9o++TbVeJeb+dVLzzdUdVbva8+tX6yPoiVXzlK5lHYReuO3ZggAcy8zGVPfuyh5EPdeXcVUVFRanGq5X015IdMgxD1y/d0OWzYcqSN7P1Bf7HX4/3G2Hnr1qXXTp9RZK0f/Mh5S6W0+ZJnzJ1n1XE/Qgd2X481nHkL5VHVy+Y55jBTH339fNRzsLZrPPj4+stXz8fGU+8IPnwYZS8vGI/LksOYvt9BpIzMx5T3b8brquh15UqKKXK1ntWm37d+vSN/t9//wZN7q16krvb5YhjDDNKyLzu23RI6bMGKyBlgHVZtoJZ9PBhlC6ftT0R9kH4A4WdvypvH29Vbl5em+Px7wFIKsx0TJWQfVmNlpXUd3o3jWj9lfXNpY8ll1a5q0GJeb0wtucHb4bd0p0bd1WyRjEFZUqjzb9ui/t+TCBR8/AfFotFvv5xX8ON1/uQHJnlmGrn6j3RXlM+tPWo1szeoK6l+kY7cV16+mv7yaVTkvlb9fiEwGwFQtS/zjDduno71sfiaa1yVKfsQaeQHJmlU/s2HlL2glltlmUvmEUXT12O1/0k1+f+6JTruPK8FLoEZ/DoK69XrFhRS5cuVVBQkC5fvqxatWrp0KFDypUrl86cOaOBAwdq06ZNypYtW6z34e/vL39/f5tljvooRnstGLNE/b/vrsPbjunA5sNq0KW2MuXMoCWTVkiSOgx/TRmyptPodt/YbFe/Qy0d2HJYJ/ediXaf/5u4Qk3eqa+3v2qvxV8vU7YCWdRqQDMt/nqZSx6TO8R3Hrcs2a7e376pRl3rWj9a7K0x7XTgryMK+/+Atxn8kg5uOaKzRy4oZZpANe1RX/lK5tbX70x12+N0tQ6fttLfy3bq8pkwpUidQjVaVlKJ6kX1Qf1PH93+n3k1DCPa7+P1Szf04P6DGH9PPUoMT5IAT+OITkmub1V896dLJq1U424v6M0v3tCy71apcIWCeqFDTQ1/baz1PheN+01frv9Yr/Zrok2/bFXFJs+pdO3iNh9XHJAyQNnyh1i/D8mTSfmeza2bV2/r8pkrTnu8zuKMeWz5flMd3nZc54+FytfPR+UalFadtlU17u3vrOs8bb+d1HQf30k1W1XWkKajdffWfQVnDpIk3blxVxH3IyRFn+tmPRvo4snLOrXvjHz8fFSrTVVVfam8PmrxmbseRuLRKSSQWY+p4vM3qCRlK5BFz5TLr4N/HVGq4FRq0buRchfLYXMM9cNHP+ntrzro7s17+nvZTvn6+6pQ2bxKFZxKC8YsiXEc21fs1un9Z9X/++76tt8PSpMulbp81lZLp6y2XoWhzuvVFPngoY7tPKGoKEPlXyyjpt0baMr7sxI1B47mrr53+ayttvxvuy6dvqKgTGn02sAWCkyTQitmrpMk3b11T/+s26fOo9sq/F6ELp26ohLViqhO22qa9K59Hwlqdk/7Gychv88eiVYhAcx8TFW27rOSxaKzh84ra/4QdRndVmcOndfv09dKStjfoMm9VU9yV7vsOcbwZPGd1zVzNqj1oBbqO+1tzRz6k9JmSK0uo9vq9+lrrPPxTLn8ypAtnY7uOqkM2dLp9SGvyMvLoh9H/+K2xxlvdAoJZNZjqoQ8X1KjZSX1m/mOJvSargNbjli3Cb8XYf30heTSKnc16Gk/NyDQX68NbK7Nv25T2IVrSpM+tRq/XU8Zs6fTH/M3W++nXrvqOn3gnK5fvqkiFQrq7bHttXDsbzp7+LwLZi/x4jv/jd+up0unr+jMwXOSpGKVn9HL7zbW4m/+fU00SbzeR6uQAGY9prp3+360147v3wnXzau3rMsT8tp+cumUZN5WeXl7afD8d5W/dB59+OJIeXl7Wf+muHX1tvVCi57cqoSc35Pv2dySpBSpApQ2Qxrleza3HkREWq/sTKeQXJm1UwvGLtFXGz9RqwHNtP6nzSpULr8adK6tsW9Otq7Dc39xo1Ou44y5tqdLHnd+D50yJY8+eX3Lli2KiHj0JNvAgQPl7e2tU6dOKSQkRGFhYWrcuLEGDx6sqVPN/Qfd+p82KU36VGrz4UtKlyVYJ/ee0cCGw63vokofEqxMOTPYbBOYJlCVWzyvCb2mx3ifl8+G6f16n+itL9/Qt/98rivnrmrRuKX6cZQHvWAQT/GdxxUz1ylF6gA16faC3vz8dd25fkc71+zVlPdnW9dJFZRSvSa/qeCQIN25cVfHdp5Qn2pDdGjr0Wg/P6kKyhyk/t93V7oswbpz465O7D6lD+p/qh2rdkuK+fcTwCOe2qn47k9DT17SoIYj1PXLN9T47XoKO39NE3pO04aFf1nX2b/5sD5tNVbthrXUGx+31IVjofq05Rgd/Pvf/WnBsnn1xdp/P87rrS/bSZJWzFinzzqMd/KjdjxnzGNAygD1GN9JGbKnV/i9CJ05eE4j236t9T9tsq7ztP12UtP4rXqSpC/W2X4U3Gftx1tPjHxyrn39fNTls9eVIVs6hd+L0Kl9j/7b/L1sp8vGDZiFWVsV379Bvb299FKfF5W9UFY9fPBQu9buVc9Kg2yugrFs6hrdvxuhV95rrE6j2uj+nXCd3HNaC7/6LdZxREVFaWCjEeoxvpPGbvhEEfcitGbuBn373vc267Ue2EKZcmVQ1MMonTt8QV90nKDVs/908Kwkjrv6niFben0wp6fSZEijG5dv6sCWw+pRYaD150rSp63GquPw1zRgVk+lTpdKF09d1vRBc61PrHm6p/2Nk5DfZyC5MGunJCkwbaA6Dn9NGbKn162rt7Vh4V+aNnCu9eo0CfkbNLm36knuapc9xxieLL7zev/Ofb1fd5i6jeuo8VtH6mbYLf0xf7OmD5pnXccvwE/thrVSlryZdO/2ff29dKdGvf617ty46/LHB7iaWVuVkOdLGnapIx9fH/UY31k9xne2Lv/vc3PJpVXuatDTfu7Dh1HKUSib6vxcXWkypNatsFs6tPWYelcdrFP7z1rvJ3uhbOowvPWj46uTlzRn+MJYT4Yxo/jOv8XLog7DX1NInkyKiozS+WOhmjJgtn6bvNK6Dq/3Ibkya6fskZDX9pNLpyTztipj9vSq2OQ5SdLkXZ/bjPndGkO0e/1+SZ7dqoSc3zNp578nrxYsm0+1WldR6MlLapu3myQ6heTLrJ06vO2Yhjb/TB2Ht1abD19S6IlLmth7htbM2WBdh+f+4kanXMcZc21Pl5La+T1wD4vhwZ857eXlpdDQUGXKlEmFChXSl19+qYYNG1pvX7dundq3b68TJ07E637reL3s6KECMIGVUfMTvG39kLcdOJK4LQud4LKfBedyVqckWgUkRZ7SKYlWJSUcUwGwV2I6JXFMhYThmApAfHBMBXfgmAqAvTimgjtwTAUgPjimgqvRKQDxQaeSHi93DyCxLBaLJOn69evKkyePzW158uTRhQsX3DEsAAAk0SkAgPnRKgCAmdEpAIDZ0SoAgJnRKQCAmdEpAEi+fNw9gMRq166d/P399eDBA506dUpFihSx3nbhwgUFBQW5b3AAgGSPTgEAzI5WAQDMjE4BAMyOVgEAzIxOAQDMjE4BQPLl0Sevv/7669Z3YDVp0kS3b9+2uX3BggUqWbKkG0YGIMkxDHePAB6ITgFwGTqFBKJVAFyGViEB6BQAl6FTSCBaBcBlaBUSgE4BcBk6hQSgUwBchk6ZkkefvD5jxow4bx86dKi8vb1dMxgAAJ5ApwAAZkerAABmRqcAAGZHqwAAZkanAABmRqcAIHnzcvcAEqN79+76888/Y709ZcqUCggIcOGIACRZUYbrvpBk0CkALuPKTtGqJIVWAXAZOoUEoFMAXIZjKiQQrQLgMnQKCUCnALgMx1RIADoFwGXolCl59Mnr48ePV/Xq1VWwYEGNGjVKoaGh7h4SAABWdAoAYHa0CgBgZnQKAGB2tAoAYGZ0CgBgZnQKAJI3jz55XZJWrFihBg0a6PPPP1fOnDnVpEkTLVmyRFFRUe4eGoAkxDCiXPaFpIVOAXAFV3aKViU9tAqAK9ApJBSdAuAKHFMhMWgVAFegU0goOgXAFTimQkLRKQCuQKfMyeNPXi9evLjGjh2r8+fPa9asWQoPD1fTpk2VI0cODRw4UEePHnX3EAEAyRidAgCYHa0CAJgZnQIAmB2tAgCYGZ0CAJgZnQKA5MvjT15/zNfXV6+88oqWL1+u48ePq3Pnzpo9e7YKFSrk7qEBSAqiDNd9IUmiUwCcypWdolVJFq0C4FR0ColEpwA4FcdUcABaBcCp6BQSiU4BcCqOqZBIdAqAU9EpU0oyJ6//V86cOTV06FCdOHFCy5cvd/dwAACwQacAAGZHqwAAZkanAABmR6sAAGZGpwAAZkanACB58HH3ABIjV65c8vb2jvV2i8WiOnXquHBEAJIsg3dFIf7oFACXoVNIIFoFwGVoFRKATgFwGTqFBKJVAFyGViEB6BQAl6FTSAA6BcBl6JQpefTJ6ydOnHD3EAAAiBWdAgCYHa0CAJgZnQIAmB2tAgCYGZ0CAJgZnQKA5M2jT14HAJeJinL3CAAAiB2dAgCYHa0CAJgZnQIAmB2tAgCYGZ0CAJgZnTIlL3cPAAAAAAAAAAAAAAAAAAAAAACQ9HHyOgAAAAAAAAAAAAAAAAAAAADA6XzcPQAA8AiG4e4RAAAQOzoFADA7WgUAMDM6BQAwO1oFADAzOgUAMDM6ZUpceR0AAAAAAAAAAAAAAAAAAAAA4HRceR0A7GBERbl7CAAAxIpOAQDMjlYBAMyMTgEAzI5WAQDMjE4BAMyMTpkTV14HAAAAAAAAAAAAAAAAAAAAADgdV14HAHsYhrtHAABA7OgUAMDsaBUAwMzoFADA7GgVAMDM6BQAwMzolClx5XUAAAAAAAAAAAAAAAAAAAAAgNNx5XUAsEcU78ACAJgYnQIAmB2tAgCYGZ0CAJgdrQIAmBmdAgCYGZ0yJa68DgAAAAAAAAAAAAAAAAAAAABwOq68DgD2MKLcPQIAAGJHpwAAZkerAABmRqcAAGZHqwAAZkanAABmRqdMiSuvAwAAAAAAAAAAAAAAAAAAAACcjiuvA4AdjCjD3UMAACBWdAoAYHa0CgBgZnQKAGB2tAoAYGZ0CgBgZnTKnLjyOgAAAAAAAAAAAAAAAAAAAADA6bjyOgDYw4hy9wgAAIgdnQIAmB2tAgCYGZ0CAJgdrQIAmBmdAgCYGZ0yJa68DgAAAAAAAAAAAAAAAAAAAABwOk5eBwAAAAAAAAAAAAAAAAAAAAA4nY+7BwAAnsCIMtw9BAAAYkWnAABmR6sAAGZGpwAAZkerAABmRqcAAGZGp8yJK68DAAAAAAAAAAAAAAAAAAAAAJyOK68DgD2MKHePAACA2NEpAIDZ0SoAgJnRKQCA2dEqAICZ0SkAgJnRKVPiyusAAAAAAAAAAAAAAAAAAAAAAKezGIZhuHsQiJ/w8HCNGDFCAwYMkL+/v7uH49GYS8dgHgE8if2CYzCPjsE8AngS+wXHYB4dg3kEEBP2DY7BPDoG8wjgSewXHIN5dAzmEUBM2Dc4BvPoGMwjgCexX3AM5tExmEe4Cyeve6CbN28qbdq0unHjhtKkSePu4Xg05tIxmEcAT2K/4BjMo2MwjwCexH7BMZhHx2AeAcSEfYNjMI+OwTwCeBL7BcdgHh2DeQQQE/YNjsE8OgbzCOBJ7Bccg3l0DOYR7uLl7gEAAAAAAAAAAAAAAAAAAAAAAJI+Tl4HAAAAAAAAAAAAAAAAAAAAADgdJ68DAAAAAAAAAAAAAAAAAAAAAJyOk9c9kL+/v4YMGSJ/f393D8XjMZeOwTwCeBL7BcdgHh2DeQTwJPYLjsE8OgbzCCAm7Bscg3l0DOYRwJPYLzgG8+gYzCOAmLBvcAzm0TGYRwBPYr/gGMyjYzCPcBeLYRiGuwcBAAAAAAAAAAAAAAAAAAAAAEjauPI6AAAAAAAAAAAAAAAAAAAAAMDpOHkdAAAAAAAAAAAAAAAAAAAAAOB0nLwOAAAAAAAAAAAAAAAAAAAAAHA6Tl4HAAAAAAAAAAAAAAAAAAAAADgdJ6+bWGhoqHr27Kn8+fMrICBAmTNnVuXKlTVp0iTdvXtXkpQ7d26NHTs22rZDhw5VyZIlXTtgE2rXrp0sFossFot8fX2VOXNm1alTR9OmTVNUVJR1vdy5c1vX++/XyJEj3Th6c/rvnFosFqVPn14vvPCCdu/ebV3HYrFo8eLF7hskAJegU45BqxyPVgF4jFYlHp1yPDoF4DE6lXh0yvHoFIDH6JRj0CrHo1UAHqNViUenHI9OAXiMTjkGrXI8WgWz4OR1kzp+/LhKlSqlFStWaPjw4dq5c6dWrVql3r1763//+59WrVrl7iF6jBdeeEEXLlzQyZMntWzZMtWoUUM9e/ZUo0aNFBkZaV3v448/1oULF2y+unfv7saRm9fjOb1w4YJWr14tHx8fNWrUyN3DAuBCdMqxaJXj0SoAtMpx6JTj0SkAdMpx6JTj0SkAdMqxaJXj0SoAtMpx6JTj0SkAdMqxaJXj0SqYgY+7B4CYvf322/Lx8dG2bduUMmVK6/LixYurRYsWMgzDjaPzLP7+/goJCZEkZcuWTaVLl1b58uVVq1YtzZgxQ506dZIkpU6d2roe4vbfOQ0JCVH//v1VtWpVXb58WRkzZnTz6AC4Ap1yLFrleLQKAK1yHDrleHQKAJ1yHDrleHQKAJ1yLFrleLQKAK1yHDrleHQKAJ1yLFrleLQKZsCV100oLCxMK1asULdu3WwC9l8Wi8XFo0paatasqWeffVYLFy5091A83u3btzV79mzlz59f6dOnd/dwALgAnXINWuU4tApIfmiV89Epx6FTQPJDp5yPTjkOnQKSHzrlGrTKcWgVkPzQKuejU45Dp4Dkh065Bq1yHFoFd+HkdRM6evSoDMNQoUKFbJZnyJBBqVKlUqpUqdS/f3/r8v79+1uXP/4aPny4q4ftcZ555hmdPHnS+n1M87hu3Tq3jc/MlixZYp2j1KlT69dff9WPP/4oLy92KUByQKdch1YlHK0Ckjda5Rp0KuHoFJC80SnXoFMJR6eA5I1OuQ6tSjhaBSRvtMo16FTC0SkgeaNTrkOrEo5WwQx83D0AxO7Jd1n9/fffioqKUuvWrRUeHm5d3rdvX7Vr185m3XHjxumPP/5wxTA9lmEYNnMc0zxmy5bNxaPyDDVq1NDEiRMlSVevXtWECRNUv359/f3338qVK5ebRwfAVeiU89GqhKNVACRa5Wx0KuHoFACJTjkbnUo4OgVAolOuQKsSjlYBkGiVs9GphKNTACQ65Qq0KuFoFcyAk9dNKH/+/LJYLDp48KDN8rx580qSUqRIYbM8Q4YMyp8/v82ydOnSOXeQScCBAweUJ08e6/cxzSNiljJlSpu5KlOmjNKmTavvvvtOn3zyiRtHBsAV6JTr0KqEo1VA8karXINOJRydApI3OuUadCrh6BSQvNEp16FVCUergOSNVrkGnUo4OgUkb3TKdWhVwtEqmAHX+Teh9OnTq06dOvrmm290584ddw8nSVqzZo327NmjFi1auHsoSYLFYpGXl5fu3bvn7qEAcAE65Rq0yrFoFZC80Crno1OORaeA5IVOOR+dciw6BSQvdMo1aJVj0SogeaFVzkenHItOAckLnXINWuVYtAruwJXXTWrChAmqVKmSypYtq6FDh6pEiRLy8vLS1q1bdfDgQZUpU8bdQ/QY4eHhCg0N1cOHD3Xx4kUtX75cI0aMUKNGjfT6669b17t165ZCQ0Nttg0MDFSaNGlcPWTTezynknTt2jV98803un37tl588UU3jwyAq9Apx6JVjkerANAqx6FTjkenANApx6FTjkenANApx6JVjkerANAqx6FTjkenANApx6JVjkerYAacvG5S+fLl086dOzV8+HANGDBAZ8+elb+/v4oUKaL33ntPb7/9truH6DGWL1+uLFmyyMfHR8HBwXr22Wc1btw4vfHGG/Ly+vfDBwYPHqzBgwfbbPvmm29q0qRJrh6y6T2eU0lKnTq1nnnmGc2fP1/Vq1d378AAuAydcixa5Xi0CgCtchw65Xh0CgCdchw65Xh0CgCdcixa5Xi0CgCtchw65Xh0CgCdcixa5Xi0CmZgMQzDcPcgAAAAAAAAAAAAAAAAAAAAAABJm9fTVwEAAAAAAAAAAAAAAAAAAAAAIHE4eR0AAAAAAAAAAAAAAAAAAAAA4HScvA4AAAAAAAAAAAAAAAAAAAAAcDpOXgcAAAAAAAAAAAAAAAAAAAAAOB0nrwMAAAAAAAAAAAAAAAAAAAAAnI6T1wEAAAAAAAAAAAAAAAAAAAAATsfJ6wAAAAAAAAAAAAAAAAAAAAAAp+PkdcBBqlevrl69erl7GAAAxIpWAQDMjE4BAMyMTgEAzI5WAQDMjE4BAMyOVgGuxcnrMJVLly7pzTffVM6cOeXv76+QkBDVq1dPmzdvdvfQnmrhwoUaNmyYu4cBAHAyWgUAMDM6BQAwMzoFADA7WgUAMDM6BQAwO1oFwF4+7h4A8F8tWrTQgwcPNHPmTOXNm1cXL17U6tWrdfXqVXcPLVYPHjyQr6+v0qVL5+6hAABcgFYBAMyMTgEAzIxOAQDMjlYBAMyMTgEAzI5WAbAXV16HaVy/fl0bNmzQqFGjVKNGDeXKlUvlypXTgAED1LBhQ+s6Xbp0UebMmRUQEKBixYppyZIl1vvYtGmTqlatqhQpUihHjhzq0aOH7ty5Y709d+7cGj58uDp06KDUqVMrZ86c+vbbb23G0b9/fxUsWFCBgYHKmzevPvzwQz148MB6+9ChQ1WyZElNmzZNefPmlb+/vwzDiPbRIdeuXdPrr7+u4OBgBQYGqn79+jpy5IiTZg8A4Aq0CgBgZnQKAGBmdAoAYHa0CgBgZnQKAGB2tApAfHDyOkwjVapUSpUqlRYvXqzw8PBot0dFRal+/fratGmTZs2apf3792vkyJHy9vaWJO3Zs0f16tVT8+bNtXv3bv3444/asGGD3nnnHZv7+eKLL1S2bFnt3LlTb7/9tt566y0dPHjQenvq1Kk1Y8YM7d+/X1999ZW+++47jRkzxuY+jh49qp9++kkLFizQrl27Ynw87dq107Zt2/Trr79q8+bNMgxDDRo0sIkhAMCz0CoAgJnRKQCAmdEpAIDZ0SoAgJnRKQCA2dEqAPFiACby888/G8HBwUZAQIBRsWJFY8CAAcY///xjGIZh/P7774aXl5dx6NChGLdt27at0aVLF5tlf/75p+Hl5WXcu3fPMAzDyJUrl9GmTRvr7VFRUUamTJmMiRMnxjqm0aNHG2XKlLF+P2TIEMPX19e4dOmSzXrVqlUzevbsaRiGYRw+fNiQZGzcuNF6+5UrV4wUKVIYP/30kx0zAQAwK1oFADAzOgUAMDM6BQAwO1oFADAzOgUAMDtaBcBePm48bx6IpkWLFmrYsKH+/PNPbd68WcuXL9fo0aM1ZcoUXbp0SdmzZ1fBggVj3Hb79u06evSoZs+ebV1mGIaioqJ04sQJFS5cWJJUokQJ6+0Wi0UhISG6dOmSddnPP/+ssWPH6ujRo7p9+7YiIyOVJk0am5+VK1cuZcyYMdbHceDAAfn4+Oj555+3LkufPr0KFSqkAwcOxG9SAACmQqsAAGZGpwAAZkanAABmR6sAAGZGpwAAZkerANjLy90DAJ4UEBCgOnXqaPDgwdq0aZPatWunIUOGKEWKFHFuFxUVpTfffFO7du2yfv3zzz86cuSI8uXLZ13P19fXZjuLxaKoqChJ0pYtW9SyZUvVr19fS5Ys0c6dOzVw4EBFRETYbJMyZco4x2IYRqzLLRZLnNsCAMyPVgEAzIxOAQDMjE4BAMyOVgEAzIxOAQDMjlYBsAdXXofpFSlSRIsXL1aJEiV09uxZHT58OMZ3YJUuXVr79u1T/vz5E/yzNm7cqFy5cmngwIHWZadOnUrQmCMjI/XXX3+pYsWKkqSwsDAdPnzY+i4wAEDSQasAAGZGpwAAZkanAABmR6sAAGZGpwAAZkerAMSEK6/DNMLCwlSzZk3NmjVLu3fv1okTJzR//nyNHj1aTZo0UbVq1VS1alW1aNFCK1eu1IkTJ7Rs2TItX75cktS/f39t3rxZ3bp1065du3TkyBH9+uuv6t69u91jyJ8/v06fPq158+bp2LFjGjdunBYtWhTvx1KgQAE1adJEnTt31oYNG/TPP/+oTZs2ypYtm5o0aRLv+wMAmAOtAgCYGZ0CAJgZnQIAmB2tAgCYGZ0CAJgdrQIQH5y8DtNIlSqVnn/+eY0ZM0ZVq1ZVsWLF9OGHH6pz58765ptvJEkLFizQc889p1atWqlIkSLq16+fHj58KEkqUaKE1q9fryNHjqhKlSoqVaqUPvzwQ2XJksXuMTRp0kS9e/fWO++8o5IlS2rTpk368MMPE/R4pk+frjJlyqhRo0aqUKGCDMPQ0qVLo310CQDAc9AqAICZ0SkAgJnRKQCA2dEqAICZ0SkAgNnRKgDxYTEMw3D3IAAAAAAAAAAAAAAAAAAAAAAASRtXXgcAAAAAAAAAAAAAAAAAAAAAOB0nrwMAAAAAAAAAAAAAAAAAAAAAnI6T1wEAAAAAAAAAAAAAAAAAAAAATsfJ6wAAAAAAAAAAAAAAAAAAAAAAp+PkdQAAAAAAAAAAAAAAAAAAAACA03HyOgAAAAAAAAAAAAAAAAAAAADA6Th5HQAAAAAAAAAAAAAAAAAAAADgdJy8DgAAAAAAAAAAAAAAAAAAAABwOk5eBwAAAAAAAAAAAAAAAAAAAAA4HSevAwAAAAAAAAAAAAAAAAAAAACcjpPXAQAAAAAAAAAAAAAAAAAAAABOx8nrAAAAAAAAAAAAAAAAAAAAAACn4+R1AAAAAAAAAAAAAAAAAAAAAIDTcfI6AAAAAAAAAAAAAAAAAAAAAMDpOHkdAAAAAAAAAAAAAAAAAAAAAOB0nLwOAAAAAAAAAAAAAAAAAAAAAHA6Tl4HAAAAAAAAAAAAAAAAAAAAADgdJ6/Dxu3bt9WrVy9lzZpVAQEBKlmypObNm2fXttWrV5fFYon1KzQ01K77GTp0qGbMmGH3mG/evKmBAweqYMGCCgwMVLZs2fTyyy9r3759iXp8O3bsUO3atZUqVSoFBQWpefPmOn78uN3jkqS5c+eqYsWKSpkypVKlSqW6detqxYoVMa5bunRp9ezZU9KjuSxWrFic912sWDEVLlw42vJFixbJYrGoQoUK0W774YcfZLFY9Ouvv8brcQCAWSSmU5K0du1a1alTR5kyZVKqVKlUokQJjRs3Tg8fPrT7PugUnQKAuCS2Vb///rsqVaqkFClSKG3atHrxxRdjbEZcaBWtAoCY3Lp1S/369VPdunWVMWNGWSwWDR06NF73cenSJbVr104ZMmRQYGCgKlSooNWrV8frPugUnQKA2CS2VWfPnlWvXr1UrVo1BQUFyWKxxKs5j9EqWgUAMUlspxYuXKhWrVopf/78SpEihXLnzq3WrVvryJEj8RoHnaJTABCbxLZq1apVqlOnjrJmzSp/f39lypRJNWvW1NKlS+M1DlpFqwB7cPI6bDRv3lwzZ87UkCFDtGzZMj333HNq1aqV5syZ89RtJ0yYoM2bN9t8rV69Wr6+vipfvrxCQkJi3fZ///tftNAZhqFZs2Zp06ZNcf7cF198UWPHjlXnzp3122+/aeTIkdq1a5cqVKigU6dOJejxHTx4UNWrV1dERIR++uknTZs2TYcPH1aVKlV0+fLlp86F9CjErVu3VoECBTRnzhz98ssvKlOmjJo1a1WLXokAAQAASURBVKYbN27YrHvixAnt3LlTLVq0sOu+JalGjRo6ePBgtDcFrFu3TilTptS2bdt069ataLd5eXmpatWqdv8cADCTxHRq1apVql27tiIjI/Xdd99p8eLFql69unr27Kk+ffrEuS2dolMAYK/EtOqXX35R/fr1lSlTJi1YsECTJk3SkSNHVKVKFR07dizObWkVrQKApwkLC9O3336r8PBwNW3aNN7bh4eHq1atWlq9erW++uor/fLLL8qcObNeeOEFrV+/Ps5t6RSdAgB7JLZVR48e1ezZs+Xn56cGDRrEa1taRasA4GkS26lRo0bp7t27GjhwoJYvX65PPvlEO3fuVOnSpZ968Qo6RacAwB6JbVVYWJiKFi2qMWPGaMWKFZo8ebJ8fX3VsGFDzZo1K85taRWtAuLNAP7fb7/9Zkgy5syZY7O8Tp06RtasWY3IyMh43+eMGTMMScaUKVPiXO/gwYPGa6+9ZtSrV89o2bKl0bVrV6Ny5crGO++8Y5w7dy7W7Y4cOWJIMgYNGmSzfNOmTYYk48svv0zQ43v55ZeNDBkyGDdu3LAuO3nypOHr62v069fvqY97y5YthsViiTYuwzCM3bt3G3fv3rVZNnr0aCNTpkzGw4cPDcMwjGrVqhlFixaN82csWLDAkGTMnTvXZnmJEiWMnj17Gr6+vsbSpUttbsubN69RpkyZp44fAMwosZ1q3bq14e/vb9y+fdtmed26dY00adLEuS2dolMAYI/EtqpQoUJGiRIljKioKOuykydPGn5+fsZrr70W57a0ilYBwNNERUVZG3P58mVDkjFkyBC7tx8/frwhydi0aZN12YMHD4wiRYoY5cqVi3NbOkWnAMAeiW3V4/2sYRjG1q1bDUnG9OnT7dqWVtEqAHiaxHbq4sWL0ZadO3fO8PX1NTp27BjntnSKTgGAPRLbqphEREQY2bJlM6pUqRLnerSKVgHxxZXXYbVo0SKlSpVKL7/8ss3y9u3b6/z58/rrr7/ifZ9Tp05VqlSp9Oqrr8a5XqFChTR79my9/fbbWrhwoebOnasvvvhCX3/9tbJmzRrrdr6+vpKktGnT2iwPCgqSJAUEBFiX2fv4IiMjtWTJErVo0UJp0qSxrpcrVy7VqFFDixYtivOxREZGatasWfLz81Pv3r0VGRlp/YqKilLx4sWVIkUKm20WLFigZs2aycsr9n+SixYtUmBgoDp16qTIyEhVr15dFotF69ats64TFhamPXv2qGHDhipTpozWrl1rve3MmTM6fvy4atSoEef4AcCsEtspX19f+fn5RdsHBwUF2fQiJnSKTgGAPRLTqrCwMB06dEj169eXxWKxLs+VK5eKFSumxYsX6+HDh7FuT6toFQA8jcVisWlMfC1atEiFChWy+bhaHx8ftWnTRn///bfOnTsX67Z0ik4BgD0S26q49rNPQ6toFQA8TWI7lSlTpmjLsmbNquzZs+vMmTNxbkun6BQA2COxrYqJr6+vgoKC5OPjE+d6tIpWAfHFyeuw2rt3rwoXLhwtNiVKlLDeHh9HjhzRn3/+qZYtWypVqlRPXff111/XhAkT1KxZM7Vq1Up9+vRRjx49dOHChVi3y5Url5o0aaIxY8Zo7dq1un37tg4ePKgePXooZ86catmyZbwf37Fjx3Tv3j3r8ifXPXr0qO7fvx/jeHbt2iVfX1998803Cg8PV/r06eXr62v9mjRpUrRtzp49q7///jvOjw0ZM2aMXn75ZX3wwQeaMmWKfHx8lC5dOpUoUcImUuvXr5e3t7cqVqyoatWq2cTt8XoEDICnSmynunbtqoiICPXo0UPnz5/X9evX9cMPP2jRokXq169fnNvSKToFAPZITKsiIiIkSf7+/tFu8/f31927d3Xs2LFYt6dVtAoAnG3v3r2x7tslxfkx93SKTgGA2dEqWgUA7nD8+HGdOnVKRYsWjXM9OkWnAMCVoqKiFBkZqfPnz2vIkCE6fPiw3n333Ti3oVW0CogvTl6HVVhYmNKlSxdt+eNlYWFh8bq/qVOnSpI6duz41HUPHDigV199VcuXL9czzzyj559/Xn/++aeee+45nThxIs5t58+fr4YNG6pmzZpKnTq1ChcurEuXLmn9+vUKDg62rmfv43v8v7GtaxiGrl27FuNYsmfPrq1btypLliyqWLGitm7davPVrl27aNssWLBAQUFBMYYlKipK3bt31/vvv6+ZM2dq0KBBNrfXqFFDhw8ftkZ+3bp1Klu2rFKmTKlq1appx44dunnzpvU2b29vValSJcaxA4DZJbZTzz//vNasWaNFixYpW7ZsCg4OVvv27fXpp58+9UCLTtEpALBHYlqVOXNmpUuXThs3brRZfv36deuTbXFtT6toFQA4W2I6R6foFACYHa2iVQDgapGRkerYsaNSpUql3r17x7kunaJTAOBKDRo0kK+vr7Jly6axY8fqxx9/VMOGDePchlbRKiC+OHkdNuL66JD4fKxIZGSkZs6cqaJFi6p8+fJPXb9x48bRImexWNS2bVtVrFgxzm3feustLViwQGPGjNH69ev1448/ys/PTzVr1tSpU6fsfgxP3paQuciQIYNKliwpPz8/pU2bViVLlrR+lSlTRoGBgdG2WbBggZo0aRLtXWH3799X06ZNNXv2bK1YsUKtW7eOtu3j6D1+l9W6detUvXp1SVLlypUlSX/88Yf1trJlyyp16tSxPi4AMLvEdGr79u1q1qyZypQpo//9739as2aNBgwYoEGDBmnYsGFxbkun6BQA2CuhrfLy8lK3bt20evVqDRs2TJcuXdLRo0fVpk0b3b1717pObGgVrQIAV0ho5+gUnQIAs6NVtAoAXMkwDHXs2FF//vmnvv/+e+XIkSPO9ekUnQIAV/r666/1999/65dfflG9evX06quvau7cuXFuQ6toFRBfPk9fBclF+vTpY7xC0tWrVyXF/G6k2CxdulShoaHq379/vMcxdOhQu9ddvny5pk6dqvnz5+ull16yLq9bt65y586toUOHavr06ZLsf3zp06eXFPPVoq5evSqLxaKgoKAYx7Nr1y6VKlVKknTq1Cn5+vpab9u6davKli1rs35oaKg2btyofv36RbuvS5cu6cyZM6pdu3asEa9WrZq8vLy0du1a1a1bV3v37tXo0aMlSalTp1apUqW0bt06lShRQidOnNCrr74a4/0AgCdIbKe6deumzJkza9GiRfL29pb06EDAy8tLQ4cOVevWrZU3b96njoNOPUKnACC6xLZq8ODBun37tj755BMNHjxYktSwYUO1b99eU6ZMUbZs2ewaB616hFYBgGM56rlDOvUInQIA86JVj9AqAHAOwzDUqVMnzZo1SzNnzlSTJk3itT2deoROAYDzFChQwPr/GzdurPr166tbt2569dVX47zQ0mO06hFaBcSNK6/Dqnjx4jpw4IAiIyNtlu/Zs0eSVKxYMbvva+rUqfLz81Pbtm0dOsYn7dq1S5L03HPP2SwPCgpS/vz5tXfvXusyex9fvnz5lCJFCuvyJ9fNnz+/AgICYhzP448Oad68ufz8/LRhwwZt3bpV27dvjxYvSVq0aJFSpkypOnXqRLstZ86c+t///qd169apefPmun//frR10qZNa43UunXr5OXlpUqVKllvr1atmtauXau1a9dKUowfTwIAniKxndq1a5fKlCljPXH9seeee05RUVE6cOCAYwcsOkWnACQ3iW2Vj4+PvvzyS4WFhWn37t06f/68lixZotOnTytPnjzKnj27w8dMq2gVANirePHise7bpfg9d2gvOkWnAMDsaBWtAoD4eHzi+vTp0zVlyhS1adPGqT+PTtEpAHCEcuXK6dq1a7p8+bLD75tW0SokX5y8DqtmzZrp9u3bWrBggc3ymTNnKmvWrHr++eftup/Q0FAtXbpUTZs2tb6TyVmyZs0qSdqyZYvN8rCwMB0+fNjm5A57H5+Pj49efPFFLVy4ULdu3bKud/r0aa1du1bNmzePdTwZMmRQ2bJl9dZbbykiIkJ//fWXypYtq9KlS1vXOXHihMLDwyU9+tiQRo0ayd/fP8b7q1u3rn7//Xf98ccfatSoke7cuRNtnRo1aujIkSOaM2eOypQpY/PRINWqVdOuXbu0ePFi+fr62sQNADxNYjuVNWtWbdu2TQ8fPrRZvnnzZklyygmBdIpOAUheHHVMlSpVKhUvXlxZsmTRjh07tHr1avXs2dMZQ6ZVolUAYK9mzZrp4MGD+uuvv6zLIiMjNWvWLD3//PPWpjgSnaJTAGB2tIpWAYC9DMNQ586dNX36dE2ePFnt27d3+s+kU3QKABLLMAytX79eQUFBTjkPkFbRKiRjBvAfderUMYKDg41vv/3WWLNmjdG5c2dDkjFr1iyb9Tp06GB4e3sbJ0+ejHYfI0eONCQZK1ascPp4b926ZeTKlcsIDg42Pv/8c2PNmjXG7NmzjZIlSxre3t7G2rVrbda39/EdOHDASJUqlVG1alVj6dKlxsKFC41ixYoZWbNmNS5dumTX2Lp162Z4e3sbXbt2Nf73v/8Zq1evNoYMGWIEBQUZN27cMK5cuWL4+PgYP//8c7Rtq1WrZhQtWtT6/datW4306dMbFStWNK5fv26z7m+//WZIMiwWi9G3b1+b265du2Z4eXkZFovFqFSpkl3jBgAzS0ynxo0bZ0gy6tevbyxevNhYsWKF0b9/f8PHx8eoXbu2U8ZLp+gUgOQnMa1au3atMXr0aGP58uXGsmXLjI8++sgIDAw0GjZsaERGRjplvLSKVgFIXpYuXWrMnz/fmDZtmiHJePnll4358+cb8+fPN+7cuWNdL6ZO3b9/3yhatKiRI0cOY/bs2cbKlSuNZs2aGT4+Psa6deucMl46RacAJD+JaZVhGNZ1R40aZUgyunXrZl3mDLSKVgFIXhLTqXfeeceQZHTo0MHYvHmzzdeOHTucMl46RacAJD+JaVXjxo2NDz/80FiwYIGxbt06Y86cOUbdunUNScb48eOdMl5aRauQfHHyOmzcunXL6NGjhxESEmL4+fkZJUqUMObOnRttvTfeeMOQZJw4cSLabQULFjRy585tREVFuWDEhnHhwgXjnXfeMfLnz28EBAQYWbNmNRo2bGhs3rw52rr2Pj7DMIxt27YZtWrVMgIDA400adIYTZs2NY4ePWr3uKKiooy5c+calSpVMtKlS2cEBgYatWrVMlauXGkYhmFMmTLFCAwMtPnD4LEnA2YYhrF3714jJCTEKF26tHH58mXr8ps3bxo+Pj6GJGPJkiXR7qtkyZKGJGPgwIF2jx0AzCqxnVqwYIFRuXJlI0OGDEbKlCmNokWLGsOGDTNu377ttDHTKToFIHlJTKs2btxoPP/880aaNGkMf39/o1ixYsbnn39uREREOHXMtIpWAUg+cuXKZUiK8eu/TYrtmCo0NNR4/fXXjXTp0hkBAQFG+fLlrftlZ6FTdApA8pLYVsW2rTOv50WraBWA5CMxnYpr21y5cjltzHSKTgFIXhLTqlGjRhnPPfecERwcbHh7exvp06c36tWrF+P+05FoFa1C8mQxDMOI37XaAThCgwYNlCJFimgfZQIAgBnQKQCA2dEqAICZ0SkAgNnRKgCAmdEpAIDZ0SogcTh5HQAAAAAAAAAAAAAAAAAAAADgdF7uHgAAAAAAAAAAAAAAAAAAAAAAIOnj5HUAAAAAAAAAAAAAAAAAAAAAgNNx8joAAAAAAAAAAAAAAAAAAAAAwOk4eR0AAAAAAAAAAAAAAAAAAAAA4HScvJ7EzJgxQxaLJdavdevWWdfNnTu32rVr57SxTJgwQTNmzHDKfQ8dOlQWi8Up933y5ElZLBaHjn337t1q37698uTJo4CAAKVKlUqlS5fW6NGjdfXq1Ri3KV26tCwWiz7//PMYb3/yv7WPj4+yZ8+u9u3b69y5c9b11q1bF+fvxOPHeeXKFWXOnFlVqlRRVFSUzc+KiIjQs88+qzx58ujWrVuOmRQAyRKdSjw6RacAOBetSjxaRasAOA+dSjw6RacAOBetSjxaRasAOA+dSjw6RacAOBetSjxaRavgGXzcPQA4x/Tp0/XMM89EW16kSBGXjWHChAnKkCGDUyPpDFmyZNHmzZuVL18+h9zfd999p7fffluFChVS3759VaRIET148EDbtm3TpEmTtHnzZi1atMhmm127dmnnzp2SpKlTp+q9996L9f4f/7e+d++e/vjjD40YMULr16/Xnj17lDJlSut6w4cPV40aNaJt//hxZsiQQZMnT1azZs00ZswYvfvuu9Z1hgwZoj179mj16tVKnTp1ouYDACQ6lRh0ik4BcA1alXC0ilYBcD46lXB0ik4BcA1alXC0ilYBcD46lXB0ik4BcA1alXC0ilbBQxhIUqZPn25IMrZu3frUdXPlymW88cYbThtL0aJFjWrVqtm1bkREhPHgwQO773vIkCGGJ/z6btq0yfD29jZeeOEF4/79+9FuDw8PN3755Zdoy7t162ZIMho2bGhIMjZu3Bhtndj+W3/44YeGJGPWrFmGYRjG2rVrDUnG/Pnz7RpzmzZtjICAAGP//v02j6F79+52bQ8AcaFT5kKnACA6WmUutAoAbNEpc6FTABAdrTIXWgUAtuiUudApAIiOVpkLrQKcx8vhZ8PDo928eVPvvfee8uTJIz8/P2XLlk29evXSnTt3bNaLiorS119/rZIlSypFihQKCgpS+fLl9euvv0p69LEk+/bt0/r1660fUZE7d25J/36UxQ8//KB3331X2bJlk7+/v44ePSpJmjZtmp599lkFBAQoXbp0atasmQ4cOBDnuDt27Kh06dLp7t270W6rWbOmihYtav1+/vz5ev7555U2bVoFBgYqb9686tChg/X2mD465PLly+rSpYty5Mghf39/ZcyYUZUqVdKqVaviHNfw4cNlsVj07bffyt/fP9rtfn5+aty4sc2y+/fva86cOSpTpozGjBljnRN7lS9fXpJ06tQpu7f5r3HjxildunR64403dPPmTb3xxhvKmzevRo4cmaD7AwBHolN0ik4BMDtaRatoFQAzo1N0ik4BMDtaRatoFQAzo1N0ik4BMDtaRatoFTyFj7sHAOd4+PChIiMjbZZZLBZ5e3vHus3du3dVrVo1nT17Vh988IFKlCihffv2afDgwdqzZ49WrVoli8UiSWrXrp1mzZqljh076uOPP5afn5927NihkydPSpIWLVqkl156SWnTptWECRMkKdoOfMCAAapQoYImTZokLy8vZcqUSSNGjNAHH3ygVq1aacSIEQoLC9PQoUNVoUIFbd26VQUKFIhx7D179tS0adM0Z84cderUybp8//79Wrt2rcaPHy9J2rx5s1599VW9+uqrGjp0qAICAnTq1CmtWbMmzvls27atduzYoU8//VQFCxbU9evXtWPHDoWFhcW6zcOHD7VmzRqVKVNGOXLkiPP+/2vhwoW6du2aOnTooAIFCqhy5cr68ccfNXbsWKVKleqp2z/+QyBjxow2y6OioqL9TkiSj4/tbiA4OFjfffedGjZsqNKlS+vEiRP6888/FRgYaPdjAICnoVOP0Kl/0SkAZkOrHqFV/6JVAMyETj1Cp/5FpwCYDa16hFb9i1YBMBM69Qid+hedAmA2tOoRWvUvWoUkx92XfodjPf44iZi+vL29bdZ98qNDRowYYXh5eUX7KIqff/7ZkGQsXbrUMAzD+OOPPwxJxsCBA+McS2wfHfL4oyyqVq1qs/zatWtGihQpjAYNGtgsP336tOHv72+89tpr1mUxfXRItWrVjJIlS9ose+utt4w0adIYt27dMgzDMD7//HNDknH9+vVYx33ixAlDkjF9+nTrslSpUhm9evWK8/E+KTQ01JBktGzZMl7b1axZ0wgICDCuXbtmGMa//02nTp1qs97j5Vu2bDEePHhg3Lp1y1iyZImRMWNGI3Xq1EZoaKhhGP/Od2xfZ86ciXEcdevWNSQZ77zzTrzGDwBxoVN0ik4BMDtaRatoFQAzo1N0ik4BMDtaRatoFQAzo1N0ik4BMDtaRatoFZILrryeRH3//fcqXLiwzbLH75yKzZIlS1SsWDGVLFnS5l069erVk8Vi0bp161S/fn0tW7ZMktStW7dEjbFFixY232/evFn37t1Tu3btbJbnyJFDNWvW1OrVq+O8v549e6p58+bauHGjKlWqpJs3b+qHH35Q+/btre9aeu655yRJr7zyijp27KhKlSopW7ZsTx1ruXLlNGPGDKVPn161a9dWmTJl5OvrG49Ha58TJ05o7dq1atWqlYKCgiRJL7/8snr06KFp06bZfMTJY48/KuSx4sWLa+LEicqcObPN8lGjRqlmzZrRtn9yPUn6559/tHbtWnl5eWn9+vWKiIiQn59fIh4ZANiiU3SKTgEwO1pFq2gVADOjU3SKTgEwO1pFq2gVADOjU3SKTgEwO1pFq2gVkjovdw8AzlG4cGGVLVvW5qtMmTJxbnPx4kXt3r1bvr6+Nl+pU6eWYRi6cuWKJOn/2Lvv+Kbq/Y/j74wm3aWDUsooey8BBWQpS3FcnFfFgQIOwKu4cSJOQLmiCPpzsMS99bpQHCxRNrL36oDSRXeb5Pz+KLQUyiq0OU1fz8cjDyU5ST5h5NVvcnKSnJwsm82mmJiYM5qxdu3apX59+Gs4jj5fkmJjY0/4NR2SNGjQIDVo0KD4a0Jmzpyp7OzsUqHt1auXvvrqK7lcLt1yyy2qW7eu2rRpow8//PCEt/3xxx9ryJAheuedd9StWzdFRETolltuUVJS0nGvExUVpcDAQO3YseOEt32k6dOnyzAMXXPNNUpPT1d6eroKCwv1r3/9S4sWLdLGjRuPuc7s2bO1dOlSrVy5UgkJCVqzZo26d+9+zHaNGjU65u9E586djwlxYWGhhgwZotjYWH3xxRdau3atnn322VN+DABwKugUnToanQJgNrSKVh2NVgEwEzpFp45GpwCYDa2iVUejVQDMhE7RqaPRKQBmQ6to1dFoFXwNR15HsaioKAUEBGj69OnHvVySatasKbfbraSkpDJjc6qO/jRYZGSkJCkxMfGYbRMSEorv/3isVqtGjRqlxx57TJMmTdK0adPUt29fNW/evNR2gwYN0qBBg5Sfn68lS5boxRdf1ODBg9WgQQN169atzNuOiorS5MmTNXnyZO3evVvffPONxowZo/379+vHH38s8zo2m019+/bVDz/8oL1796pu3bonnN/j8WjmzJmSpKuuuqrMbaZPn66JEyeWOu/wDytnyzPPPKM1a9bol19+UZ8+fXTXXXdp/PjxuvLKK9WxY8ezdj8AcLroFJ2S6BQAc6NVtEqiVQDMi07RKYlOATA3WkWrJFoFwLzoFJ2S6BQAc6NVtEqiVag6OPI6il122WXatm2bIiMjy/yUToMGDSRJAwcOlCS98cYbJ7w9p9Op3NzcU77/bt26KSAgQHPmzCl1/t69e/Xrr7+qb9++J72N4cOHy+Fw6MYbb9SmTZt09913n3C+3r17a8KECZKklStXntKc9evX1913363+/ftrxYoVJ9z20UcflWEYuv3221VQUHDM5YWFhfr2228lST/99JP27t2rUaNG6bfffjvm1Lp1a82ePbvU17qcbcuWLdP48eM1cuTI4q8ZmThxourWratbb721zMcAAJWFTtEpOgXA7GgVraJVAMyMTtEpOgXA7GgVraJVAMyMTtEpOgXA7GgVraJVqEo48rqPWrt2bZlPdI0bN1bNmjXLvM7o0aP1+eefq1evXrrvvvvUrl07eTwe7d69W3PnztUDDzygLl26qGfPnrr55pv13HPPad++fbrsssvkdDq1cuVKBQYG6j//+Y8kqW3btvroo4/08ccfq1GjRvL391fbtm2PO3ONGjX05JNP6rHHHtMtt9yiG264QSkpKRo3bpz8/f01duzYkz7uGjVq6JZbbtEbb7yhuLg4XX755aUuf+qpp7R371717dtXdevWVXp6ul599VX5+fmpd+/eZd5mRkaGLrzwQg0ePFgtWrRQSEiIli5dqh9//PG4n5I6rFu3bnrjjTc0cuRIderUSSNGjFDr1q1VWFiolStX6q233lKbNm10+eWX691335Xdbtdjjz2m2NjYY27rzjvv1D333KPvvvtOgwYNOunvxdG2bNmiJUuWHHN+3bp1VbduXeXn52vIkCGKi4srjrokBQcHa/r06erbt6+effZZvkYEwFlBp+jU0egUALOhVbTqaLQKgJnQKTp1NDoFwGxoFa06Gq0CYCZ0ik4djU4BMBtaRauORqvgcwz4lBkzZhiSjnt6++23i7eNi4szhgwZUur6WVlZxhNPPGE0b97ccDgcRlhYmNG2bVvjvvvuM5KSkoq3c7vdxiuvvGK0adOmeLtu3boZ3377bfE2O3fuNAYMGGCEhIQYkoy4uDjDMAzjt99+MyQZn376aZmP4Z133jHatWtXfLuDBg0y1q1bV2qbsWPHGsf76/v7778bkozx48cfc9n//vc/Y+DAgUadOnUMh8NhREdHG5dccomxYMGC4m127NhhSDJmzJhhGIZh5OXlGXfddZfRrl07IzQ01AgICDCaN29ujB071sjOzi5zhqOtWrXKGDJkiFG/fn3D4XAYQUFBxjnnnGM89dRTxv79+43k5GTD4XAYV1xxxXFvIy0tzQgICDAuv/xywzBK/qyXLl16wvs+/Pt9vNPjjz9uGIZhPPTQQ4bVai31e3GkkSNHGna73Vi+fPkpPWYAKAudolNHo1MAzIZW0aqj0SoAZkKn6NTR6BQAs6FVtOpotAqAmdApOnU0OgXAbGgVrToarYKvshiGYQjwIQ888IDeeOMN7dmzR5GRkd4eBwCAUugUAMDsaBUAwMzoFADA7GgVAMDM6BQAwOxoFVA92L09AHC2LFmyRJs3b9a0adN05513Ei8AgKnQKQCA2dEqAICZ0SkAgNnRKgCAmdEpAIDZ0SqgeuHI6/AZFotFgYGBuuSSSzRjxgwFBwd7eyQAAIrRKQCA2dEqAICZ0SkAgNnRKgCAmdEpAIDZ0SqgemHndQAAAAAAAAAAAAAAAAAAAABAhbN6ewAAAAAAAAAAAAAAAAAAAAAAgO9j53VIkqZNm6aZM2eW+/o5OTl6+umn9fvvv5f7Nnbu3CmLxXJGc1S0M3mchx/fyy+/fFZnatCggSwWS5mnCy64oHi7p59+WhaLRQcOHCjzdtq0aVNq+8PzHj5ZrVaFh4erb9++mjt37ll9DABwMnTq1NApOgXAO+jUqaFTdAqA99CqU0OraBUA76BTp4ZO0SkA3kOrTg2tolUAvINOnRo6RadgLnZvDwBzmDZtmqKionTrrbeW6/o5OTkaN26cJJV6IvQ1Zn2c3bt3LzOOoaGhZ3zb//nPfzR48GC53W5t3LhR48aN0yWXXKJff/1VvXr1OuPbB4BTQadOjVkfJ50C4Ovo1Kkx6+OkUwCqA1p1asz6OGkVAF9Hp06NWR8nnQJQHdCqU2PWx0mrAPg6OnVqzPo46RSqK3ZeB3xAjRo11LVr1wq57fr16xffdvfu3dW0aVP17t1b7777LhEDAJwSOgUAMDM6BQAwO1oFADAzOgUAMDtaBQAwMzqF6srq7QHgfQ0aNNC6dev0xx9/FH9VRIMGDYov3717t2666SZFR0fL6XSqZcuWmjRpkjwej6Sir5moWbOmJGncuHHFt3H401xbt27VbbfdpqZNmyowMFB16tTR5Zdfrn/++eeszJ+fn69nnnlGLVu2lL+/vyIjI3XhhRdq8eLFxdvk5eXp0UcfVcOGDeVwOFSnTh2NGjVK6enppW7r119/1QUXXKDIyEgFBASofv36uvrqq5WTk3PSx3mqPB6Pnn/+edWvX1/+/v7q3Lmz5s2bV2qbw1/1sW7dOt1www0KCwtTrVq1NHToUGVkZJTr9+ls6dy5syRp3759Xp0DQPVBp0rQqZOjUwAqG50qQadOjk4B8AZaVYJWnRytAlDZ6FQJOnVydAqAN9CqErTq5GgVgMpGp0rQqZOjUzATjrwOffnll7rmmmsUFhamadOmSZKcTqckKTk5Weeff74KCgr07LPPqkGDBvrf//6nBx98UNu2bdO0adNUu3Zt/fjjj7r44os1bNgwDR8+XJKKn/ATEhIUGRmp8ePHq2bNmkpNTdWsWbPUpUsXrVy5Us2bNy/37C6XSwMHDtSCBQs0evRo9enTRy6XS0uWLNHu3bt1/vnnyzAMXXHFFZo3b54effRR9ezZU2vWrNHYsWP1559/6s8//5TT6dTOnTt16aWXqmfPnpo+fbpq1Kih+Ph4/fjjjyooKDjp4zxVr7/+uuLi4jR58mR5PB5NnDhRAwcO1B9//KFu3bqV2vbqq6/Wddddp2HDhumff/7Ro48+KkmaPn16qe0Mw5DL5Trmvmw2mywWy2nNdzI7duyQJDVr1uys3i4AHA+dolOng04BqGx0ik6dDjoFwBtoFa06HbQKQGWjU3TqdNApAN5Aq2jV6aBVACobnaJTp4NOwVQMwDCM1q1bG7179z7m/DFjxhiSjL/++qvU+SNGjDAsFouxadMmwzAMIzk52ZBkjB079qT35XK5jIKCAqNp06bGfffdV3z+jh07DEnGjBkzTnnu2bNnG5KMt99++7jb/Pjjj4YkY+LEiaXO//jjjw1JxltvvWUYhmF89tlnhiRj1apVx72t03mcRzv8+GJjY43c3Nzi8w8ePGhEREQY/fr1Kz5v7NixZc48cuRIw9/f3/B4PMXnxcXFGZLKPD377LPH3GZycnKZ8x39d+DwvBMmTDAKCwuNvLw8Y9WqVUa3bt2M2rVrGzt27Djt3wMAKC86RafoFAAzo1N0ik4BMDtaRatoFQAzo1N0ik4BMDtaRatoFQAzo1N0ik6hKrIKPsntdsvlchWfDn/Vx+n69ddf1apVK5133nmlzr/11ltlGIZ+/fXXk96Gy+XSCy+8oFatWsnhcMhut8vhcGjLli3asGFDueY67IcffpC/v7+GDh16wsdweOYjXXvttQoKCir+6o4OHTrI4XDojjvu0KxZs7R9+/Yzmu14rrrqKvn7+xf/OiQkRJdffrnmz58vt9tdatt//etfpX7drl075eXlaf/+/aXO79Gjh5YuXXrMadiwYWc87yOPPCI/Pz/5+/urQ4cOWrt2rb799ttSXzEDAKeLTpV+DIdnPhKdOjV0CkBFoFOlH8PhmY9Ep04NnQJQUWhV6cdweOYj0apTQ6sAVAQ6VfoxHJ75SHTq1NApABWFVpV+DIdnPhKtOjW0CkBFoFOlH8PhmY9Ep04NnYKZsfO6j2rcuLH8/PyKT88880y5biclJUW1a9c+5vzY2Njiy0/m/vvv15NPPqkrrrhC3377rf766y8tXbpU7du3V25ubrnmOiw5OVmxsbGyWo//VzklJUV2u/2Yr/mwWCyKiYkpfgyNGzfWL7/8oujoaI0aNUqNGzdW48aN9eqrr57RjEeLiYkp87yCggJlZWWVOj8yMrLUrw9/rcvRv29hYWHq3LnzMacj/+zsdrskHRPKw1wul/z8/I45/95779XSpUu1cOFCvfzyyyosLNSgQYNO6c8eAI6HTpWgU0XoFAAzoVMl6FQROgXAbGhVCVpVhFYBMBM6VYJOFaFTAMyGVpWgVUVoFQAzoVMl6FQROgVfZPf2AKgY3377rfLz84t/fTg6pysyMlKJiYnHnJ+QkCBJioqKOultzJkzR7fccoteeOGFUucfOHBANWrUKNdch9WsWVMLFy6Ux+M5bsgiIyPlcrmUnJxcKmSGYSgpKUnnnntu8Xk9e/ZUz5495Xa7tWzZMk2ZMkWjR49WrVq1dP3115/RrIclJSWVeZ7D4VBwcPBZuY+y1KpVS5IUHx9f/P+HGYahxMREde7c+Zjr1a1bt/j87t27KyYmRjfddJPGjh2r119/vcLmBeDb6FQJOlWETgEwEzpVgk4VoVMAzIZWlaBVRWgVADOhUyXoVBE6BcBsaFUJWlWEVgEwEzpVgk4VoVPwRRx53Ue1bdu21CdxThYxp9NZ5qeh+vbtq/Xr12vFihWlzp89e7YsFosuvPDC4utLx34ySCr6pNPhyw/77rvvFB8ff1qPqSwDBw5UXl6eZs6cedxt+vbtK6kopkf6/PPPlZ2dXXz5kWw2m7p06aKpU6dKUvHjP9HjPFVffPGF8vLyin+dmZmpb7/9Vj179pTNZiv37Z5Mnz59ZLFY9PHHHx9z2Y8//qiDBw+qX79+J72dG2+8URdccIHefvtt7dq1qyJGBVAN0KkSdKoInQJgJnSqBJ0qQqcAmA2tKkGritAqAGZCp0rQqSJ0CoDZ0KoStKoIrQJgJnSqBJ0qQqfgizjyOiQVRe+jjz7Sxx9/rEaNGsnf319t27bVfffdp9mzZ+vSSy/VM888o7i4OH333XeaNm2aRowYoWbNmkmSQkJCFBcXp6+//lp9+/ZVRESEoqKi1KBBA1122WWaOXOmWrRooXbt2mn58uV66aWXVLdu3TOe+4YbbtCMGTN01113adOmTbrwwgvl8Xj0119/qWXLlrr++uvVv39/XXTRRXrkkUd08OBBde/eXWvWrNHYsWN1zjnn6Oabb5Ykvfnmm/r111916aWXqn79+srLy9P06dMlqfjJ/USP81TZbDb1799f999/vzwejyZMmKCDBw9q3Lhx5f59SE9P15IlS4453+l06pxzzpFU9PUod999t1566SWlp6frkksuUUBAgJYuXarx48erc+fOGjx48Cnd34QJE9SlSxc9++yzeuedd8o9NwCcKjpFp+gUADOjU3SKTgEwO1pFq2gVADOjU3SKTgEwO1pFq2gVADOjU3SKTqFKMgDDMHbu3GkMGDDACAkJMSQZcXFxxZft2rXLGDx4sBEZGWn4+fkZzZs3N1566SXD7XaXuo1ffvnFOOeccwyn02lIMoYMGWIYhmGkpaUZw4YNM6Kjo43AwECjR48exoIFC4zevXsbvXv3Lr7+jh07DEnGjBkzTmv23Nxc46mnnjKaNm1qOBwOIzIy0ujTp4+xePHiUts88sgjRlxcnOHn52fUrl3bGDFihJGWlla8zZ9//mlceeWVRlxcnOF0Oo3IyEijd+/exjfffHNKj/NkDj++CRMmGOPGjTPq1q1rOBwO45xzzjF++umnUtuOHTvWkGQkJyeXOn/GjBmGJGPHjh3F58XFxRmSyjzVqVOn1PU9Ho/xxhtvGJ07dzYCAwMNh8NhNG3a1HjkkUeMzMzMMud96aWXynw81157rWG3242tW7ee0uMHgDNBp+gUnQJgZnSKTtEpAGZHq2gVrQJgZnSKTtEpAGZHq2gVrQJgZnSKTtEpVEUWwzCMk+3gDgAAAAAAAAAAAAAAAAAAAADAmbB6ewAAAAAAAAAAAAAAAAAAAAAAgO+ze3sA4HhcLtcJL7darbJazfH5i6o0KwDg7KhKz/1VaVYAwNlRlZ77q9KsAICzpyo9/1elWQEAZ0dVeu6vSrMCAM6eqvT8X5VmBQCcHVXpub8qzQr4Ev5VwZR27twpPz+/E56eeeYZb48pqWrNCgA4O6rSc39VmhUAcHZUpef+qjQrAODsqUrP/1VpVgDA2VGVnvur0qwAgLOnKj3/V6VZAQBnR1V67q9KswK+xmIYhuHtIYCjFRQUaM2aNSfcJjY2VrGxsZU00fFVpVkBAGdHVXrur0qzAgDOjqr03F+VZgUAnD1V6fm/Ks0KADg7qtJzf1WaFQBw9lSl5/+qNCsA4OyoSs/9VWlWwNew8zoAAAAAAAAAAAAAAAAAAAAAoMJZvT0AAAAAAAAAAAAAAAAAAAAAAMD3sfM6AAAAAAAAAAAAAAAAAAAAAKDC2b09gBk1mfiKt0fwCQ3HLPb2CD4jcH4tb4/gE77u8Xq5r+tJanYWJzkxa8zmSrsvVF2dfnjc2yP4hOUDn/f2CD7hpx2tvD2CT7io4fpyX7cyOyXRKpzc1YtHensEn5A4ubG3R/AJX7wyydsj+ISYOglndH3WVDCb25be5u0RfMK619t6ewSfsGB8+V+zQgln7e3lvi5rKpjNf1bc6O0RfMJfr3Xy9gg+YfH4ad4ewSfYY7ae0fVZU8FsHl59rbdH8An/DKrr7RF8wtVzl3l7BJ8wvNmCcl+XNRXM5um1g7w9gk/4blJvb4/gE/568U1vj+ATzuS5n06ZE0deBwAAAAAAAAAAAAAAAAAAAABUOI68DgCnwCNPpd0XnyoCAJyuyuyURKsAAKePNRUAwMxYUwEAzI41FQDAzFhTAQDMjE6ZE79PAAAAAAAAAAAAAAAAAAAAAIAKx87rAAAAAAAAAAAAAAAAAAAAAIAKZ/f2AABQFbiNyvv6EJ6YAQCnqzI7JdEqAMDpY00FADAz1lQAALNjTQUAMDPWVAAAM6NT5sSR1wEAAAAAAAAAAAAAAAAAAAAAFY6d/AHgFHhkeHsEAACOi04BAMyOVgEAzIxOAQDMjlYBAMyMTgEAzIxOmRNHXgcAAAAAAAAAAAAAAAAAAAAAVDiOvA4Ap8Ajj7dHAADguOgUAMDsaBUAwMzoFADA7GgVAMDM6BQAwMzolDlx5HUAAAAAAAAAAAAAAAAAAAAAQIXjyOsAcArchuHtEQAAOC46BQAwO1oFADAzOgUAMDtaBQAwMzoFADAzOmVOHHkdAAAAAAAAAAAAAAAAAAAAAFDhOPI6AJwCj/gEFgDAvOgUAMDsaBUAwMzoFADA7GgVAMDM6BQAwMzolDlx5HUAAAAAAAAAAAAAAAAAAAAAQIXjyOsAcArcfAILAGBidAoAYHa0CgBgZnQKAGB2tAoAYGZ0CgBgZnTKnDjyOgAAAAAAAAAAAAAAAAAAAACgwrHzOgAAAAAAAAAAAAAAAAAAAACgwtm9PQAAVAUevj4EAGBidAoAYHa0CgBgZnQKAGB2tAoAYGZ0CgBgZnTKnDjyOgAAAAAAAAAAAAAAAAAAAACgwnHkdQA4BW6DT2ABAMyLTgEAzI5WAQDMjE4BAMyOVgEAzIxOAQDMjE6ZE0deBwAAAAAAAAAAAAAAAAAAAABUOI68DgCnwOPtAQAAOAE6BQAwO1oFADAzOgUAMDtaBQAwMzoFADAzOmVOHHkdAAAAAAAAAAAAAAAAAAAAAFDhOPI6AJwCtwxvjwAAwHHRKQCA2dEqAICZ0SkAgNnRKgCAmdEpAICZ0Slz4sjrAAAAAAAAAAAAAAAAAAAAAIAKx5HXAeAUuPkAFgDAxOgUAMDsaBUAwMzoFADA7GgVAMDM6BQAwMzolDlV+SOvL126VDfeeKMaNmyogIAABQYGqmHDhrrxxhu1bNkyb48HAKjm6BQAwMzoFADA7GgVAMDM6BQAwOxoFQDAzOgUAFRfVfrI61999ZX+/e9/q2/fvrr33ntVq1YtGYah/fv3a+7cuerevbs++eQTDRo0yNujAqjiPN4eAFUSnQJQWegUyoNOAahMtArlQasAVBY6hfKgUwAqE61CedAqAJWFTqE86BSAykKnzKlK77z+xBNP6JlnntGYMWOOuWz06NGaMGGCHnvsMSIGAPAKOgUAMDM6BQAwO1oFADAzOgUAMDtaBQAwMzoFANWb1dsDnImtW7fqqquuOu7lV1xxhbZt21aJEwHwVW5ZKu0E30GnAFSWyuwUrfIddApAZaJTKA9aBaCysKZCedApAJWJTqE8aBWAysKaCuVBpwBUFjplTlV65/XGjRvrq6++Ou7lX3/9tRo1alR5AwEAcAQ6BQAwMzoFADA7WgUAMDM6BQAwO1oFADAzOgUA1Zvd2wOciWeeeUbXX3+9/vjjDw0YMEC1atWSxWJRUlKSfv75Z82dO1cfffSRt8cEAFRTdAoAYGZ0CgBgdrQKAGBmdAoAYHa0CgBgZnQKAKq3Kr3z+tVXX6358+fr1Vdf1X//+18lJSVJkmJiYtStWzf98ccf6tatm5enBOALPIa3J0BVRKcAVBY6hfKgUwAqE61CedAqAJWFTqE86BSAykSrUB60CkBloVMoDzoFoLLQKXOq0juvS1K3bt18NlRBDj+N7nG+BjRtosjAQK3fv1/Pzvtd/yTtO2bbZwf01Q0d2um5eb9r5vKVXpjWvKw2q255+t/qM7inImJqKDUxTXNn/a73n/tchlH0zOQf5K/h42/U+YPOVWhkiPbt3K8vp/yg/70518vTm4s716UDX21T5or9cmcWyL9+iKJvaK6AhmGSpI3Dfi7zejWvbarIixtU4qSAefhypyQp0ObQiGb9dGGtVgp3BGvTwQS9vOE7rc+IlyQtH/h8mdebvPEHvbdjYWWOiipi6z+G5n3m0Z4t0sFUafhTVrU731Kh97lqoaHvZnt0IFGKqi1dNsSq9t1L7nPuRx6tWWRo317JzyE1bCX9a6hVtepV7FxAZfD1TrlzXdr/5XYdXJEs18Gin19rD26mwEahkqS1t80r83q1/t1ENQfGVeaophbo76fbr+uu3uc1VXhYgDbvSNbkmb9qw7aitWnv85roin7t1bxRLdUIDdCQh2Zry65kL09dcVavtunDjx3avMWqlBSrnnsmVz17uCr0Pv+Yb9e7MxxKSLAqNtaj4UML1KtnyX3O+cCh+Qvs2r3bKqfTUJvWbt15e77q1+fVOFR9vt8qt3Z/tlspy1LkOuhSUIMgNbipgUIahxRdnufWro93KXVZqlxZLjlrOlV7QG3F9Ivx8uTmEujvpzuv6q4LOjVReGigNu/ar0nv/6YNO/bJZrNqxNXddX67hqoTHaasnHwtXb9br3+yQAfSs709+lm3bLVFMz+yasNmi5JTLJr8rEt9elZsD37+w6Kp023akyDVi5X+M9ytvkfc5zvvWzVvvkU7dlvkdEodWhsafadbDetX6FhApfD1Trly3dr6Sbz2L0tXQUahQhoEqsWQ+gprHFR0eZ5bWz7cq/3L0lWY6VJATafqXxytev2jvTy5uRR3quMRnfrgiE5dVUanPvXVTknTP7Rq/WYpOcWi155zq2/Pir3PuX9IU961Fnfq3uEe9etVcvnbcyz6eb5FO3ZL/k6pQxvp/js9dAo+w9dbVZjr1saP9ynx7wzlZ7gU1jBAbW+NVXiTQElFrVr/fpISlx5UQaZLgdEONRoYpYYDIr08uXlYbVbdNPoiXXhFJ4XXDFHq/kz98tnf+nDKz8X7U9SICtbQMZerY8/mCgoN0Nq/t+mNsV8oYecBL09vLgU5Hi18P1tb/sxXToZH0Y3s6nN7iGo385MkZad59MfMLO1cVaD8LI/qtnGo353BCo+t8rtuAeVWHTq15sMD2vtXpvIPuhXe0F8dh0YrskmAJCk33aXV7+1X0uocFWS7VbNVoDoPq6WQWIeXJzeXQH8/3XXlEWuq3UVrqvVHrKm6t2uoOjWL1lR/r9+t1z/zzTXV0tXS9A+ldYfWVFOeM9SvEtZUr70r7U6Q6sdK9w6X+h+xpnprjvTzfGn7oTXVOW2kB+4UayqcFD8BmdgLF/dXs6goPfjdj9qflaVBrVtq9nVX6+J3Z2lfVsmTa78mjdW+doySMrO8OK15Xf/IFbrszv6aeOtU7Vq3R806N9aD00cqOyNHX772vSRpxCtD1P6CNhp/82vatzNZnQa01z1ThyslIVV/frPMy4/APJJmrVd+fJZih7eRvYZTGUsStWfSCjV8tpv8wv3V5L+9Sm2f9c8BJc1cr5BOVf+FarfYQREoy5Ntr1Tj4Fp6cvVnSs4/qEtiO+iNc4fqmgWvKjn/oAbMe7HU9ufXbKan2l6pX5PWeWlimF1BnlSnoUVd+1v07nOeM769v+Z69NfPhu55yVbm5TvWG5r5gkeX3GJR++4WrV5kaMYLHo2eZFWDFkXP/Vv/MdTzcovqN7PI45H+N9OjaY979NhbVjn9zdEHOgWULX7GBuXHZ6vu7a1kr+FU+p9J2vnyCjV9vqv8wv3VfHKPUttnrUlR/IwNCvOBn1/PpjF3XaRG9SL1zOvfKzk1Wxf3aqlXn7xWg++bqQNpWQpw+mnNpnj9umSzHr1rgLfHrXC5eVKTxm5dcnGhnnw64Ixv74cf7frxJz+9+kpumZevXWfVuGf8NXRogXr2cGnBQruefsZfr7+Wo1Yti1q5erVNVw4qUIvmHrk90jvvOvXgw4GaNSNbAWc+4llBq4CybX1nq3L25qjpiKZy1HAoeVGy1o9frw4TOsgZ4dSOOTt0cP1BNR3RVM6aTqX/k67tM7fLEe5QRKcIb49vGo8PHaDGdSP19Fs/KDktWwPPb6mpD1+j6x6bpZy8AjWPi9b0b5Zo8+5khQb5677BF2jS6EEa8vQH3h79rMvNk5o3NnTFQI/uf+rMX/7/+geLvv7Rqumvusu8fPU6ix4eZ9OoYR717eHRvIVWPfS0TTOnuNWuVdGOLstWWXT9FR61bmHI7ZamvGPTXQ/Z9eVMlwLpFGBq697aqaw9uWozsqH8w/2UsDBFy5/frPNfbi3/CIc2zd6j1PWZajuqoQJqOpWy5qA2TN8lZ7ifojuHe3t803j8tiM6lX6oUw8d6lT+EZ3ac0Sn7h2kIeN8sFO5UvMmhq68xNDoJ8t+ve50fPmDRV//aNHMV8t+HXHVWunBcVb9Z6ihvj0NzVtg0QNPW/Xe6x61a1W0zdLVFt1wpaG2LQy53NJr71h1+4NWfTPLY5pOSbQKOJ5Vb+5V5p48dby7nvwj/LR3fpoWP7tdfV5proAIP62dmagD67LU6T/1FFjTof1rMrXmnXj5h9tV+9wwb49vCv++q48uufF8TXrgQ+3akqhmbevrvpeuV3Zmnr6eMV+S9NRbw+QqdOuZ299Vdlaerhp+gV6YM0J39p+g/NwCLz8C8/hxSqYO7HLpkvtDFRxh1frf8/TJk+kaOi1CwRFWffl8umx2i658PEzOQIuWfpWjT55I123TIuUwyftN5UWngLL9PS1J6bvz1e2eWAVE2LVzfoZ+G7dHl0xuqIAIuxZM2CurzaKeY+rIL8Cqjd+m6ddxu3Xpq41k97d6e3zTeOK2AWpcJ1Jj3z60purWUlMfvEb/frxoTdUiLlrvfrNEW/YkKyTQX/cPvkCT7hmkIc/46ppKuvIS6d4nz/z2vvxB+vJHafarZV++cq10/zjpnqFSv57SLwuk+5+W5rwutS9eU0mDr5TatJDcbmnyO9KwB6X/zZJp1lR0ypx8+lnuscce09ChQ709Rrk47TZd1KypJvy+QEv3xmtXeoZeW7REe9IzNLhD++LtagUH6en+F+qB//0ol6fsNxCqu5Zdm2nxN8v09/crtG9XshZ8vkTL565Ws06NS23z8+zfteaP9dq3K1nfv/2Ltq3epWadG5/glqsXT4Fbmcv3K/qapgpsHi5HrUDVHNRYflH+Sv9tryTJHuYsdcpamazA5hFy1Az08vSAOVXlTkmS02pXn1qt9dqmn7Qybaf25qTqra2/Kj43TdfUP0+SlFKQVep0Qa2WWpayQ/G5aV6eHmbV6lyLLrvVqvY9yl48uAoNff2OR0/e6NaDg9yadK9bW1aX/yiCv39lqHlHacD1RUdSH3C9Vc06SL9/WXKbI5+3qcsAq2o3sKhOI4sG329V2n5pz5Zy3y1QJVT1TnkK3Dq4PFkx/26ioObhctYKVK0rGskRFaDUX4u+IcQvzFnqdHBlsoJahMsRbZJXUkzA4WfXBV2aatqc+Vq1IV7x+9L17qd/KmF/hq4aULQ2/XHBBs34fImW/rPLy9NWjq5d3Bo+rEC9epV9tPXCQumN/3Pq6muDdNElwbprZKBWrir/Thmffe5Qp85u3TS4QHH1PbppcIE6dXTr089Kjrzy0oRcDbzYpYYNPWrS2KMxD+dp336rNm8+851BADOr6q1yF7iVsjRFcdfHKaxFmAJiAlT/6vpy1nRq37yib7fI3Jqpmj1rKqxVmPxr+iumT4yC6gcpazsHsTjM6WfXhZ2basrHC7RyU7z27k/X21/9qYTkDF3dp52ycwv0n5c+1y9/b9bupDSt3Zaol+f8qpYNY1QrIsTb4591PbsY+s9wj/r1KnudVFgo/fdNq/pdY9d5F9s1eIRNS1eW/82bOZ9Z1bWzoeE3etQwThp+o0fndTQ057OStx7efMmtQQMNNWlY9ObaM2PcStxn0frNvGkE31b1O+XR/r/T1GxwXUW0DFFgjL+aXFNHAdEO7fm56JuW0rdkKbZXpCJahSqgplN1+9ZUcFygDm7P8fL05lHcqU8WaOXmIzp14IhOvfy5fllaTTrVVbp3uFHqKH1HKiiUXn7DoguvtqrzRVZdf5dVf5/BF06/95lF3TpJt99kqFFc0X+7dJJmf1rSoLde8ujKQ51q0UR6boznUKfKf79AVeELrUr8K0OtbqqtqFbBCo5xqsW/YxQY7dDOuSmSpNQt2arXO1xRrYMVGO1Qg36RCo0LUPq2sg8iUB216NhAS35eq6W/rdf+vWla+MNqrViwSU3b1pMk1WlYUy07NtDrT3ymzWv2KH57sqY+8ZkCgpy64F/neHl68yjMN7R5cb563xasem0cCo+1q/vgYIXVsmnV97lKS3ArcZNL/UcUHYk9oq5d/UeEqCDP0MY/8rw9PmBKVb1TrnyP9izJVIdbohXdOlAhtR1qe11NBUX7aetP6cpMLFTK5jyde0eMIpsEKLSOU51vryVXnke7Fh709vim4fSz68JOTfXakWuqr0uvqe4+tKbalZSmtdsT9fL7v6qVj66penWVRg+XBpxgTfXSG1Lvq6WOF0nX3aUzWlPN/kw6v5N0x01So7ii/3btJM3+tGSbt1+SrhwoNT20pnphjJS4z6J1rKlwEj6983p8fLx27tzp7THKxW61ym61Kt9V+s3wfJdLnevGSpIskl6+9GK9/fdybUlJ8cKUVcPaRRt1Tp82qtO0tiSpUbs4tenRQn//sKJ4m3WLNqrb5Z0VGVt0xKr2F7RW3Wa1teyn1V6Z2YwMtyF5DFn8Sj9tWPxsytmafsz2rox8Zf1zQGE9YytpworllqXSTqg+qnKnJMlmscputSnfU1jq/Hx3oTqExx2zfYQjSD1qNtfXe/lGC5Tf+/81tH29oVsfteqRN6zq0NOiN57waH98+XZg37nBUIuOpZ97W3ayaMeG499e3qH3XwNNtNatzE7RquqjqnfquD+/OqzK3pJ+zPaujHxlrklRuI/8/Hq22G0W2W1W5ReW/rB0QYFL7VrU8dJU5jZ+or/WrrXpqSfzNP3tbF3Qu1APPxKgvXvL9/y5br1N53Yq/drAuZ1dWrfu+DumH/6ytpDQ8n/A62yjU6gIVb1VckvySNajWmV1WHVwU9EbVKHNQpW6IlX5qfkyDEMZ6zOUm5SrGu1qVP68JmU71KqCwqNeRy10qX3TslsVHOCUx2MoKye/MkY0lScn2LRqrUUTnnLr83ddGtDb0IiHbdq1t3y3t3qdReefW7o33c8ztHrd8Z+Psw599iIspHp2ilZVH1W9U4bbkOEp6tKRrA6r0jdlSpLCm4coeXm68lILZBiGUtcdVE5iniLbhXpjZFMq7lTBUZ0qcKl9Mzp1tCfGW7RyrUUvP+XRF9M9uugCQ3c+bC13p1aV1alzDa06QacyiztVvvusKHQKFaGqt8pzqFU2v9J/b20Oq1I2Fr04Etk8SEnLDyo3tVCGYSh5bZayEvMV3cFk/8i9aN2yHerQvZnqNKwpSWrYMlatOzfS0t/XS5L8HEXf6FSYX/J+oMdjyFXoVutzG1X+wCZ1+Gcnu6P030e7Q4pfXyj3od8+W8nxKGS1WWSzW7R3fen3Wqsi1lSoCFW9U4bneJ2yKHljjjyFRd8eZD3iecNqs8hqtyh5Ax8IPux4r/3lFbjUgdf+jvH4+KKjpU96SvpqunTRBdLtD0s7y/3an3T+uaXP636utHLd8a9jxjUVnTKnM//eUBObNWuWt0cot+yCQq2IT9Dd53fRttRUHcjO0eUtm6t9bG3tTCs6Wu2dXc6V22No1vIz+HhMNfDxhK8UFBao6Rsmy+P2yGqzasYTH+q3jxYVbzP1nhm676079dHe/5Or0CWPx9Art7+pdYs2enFyc7EF2BXQOEwH/rdDjtpBsoc5dfCvJOXtyJAj+tgjq2csTpTVaVNIp2gvTAtUDVW5U5KU4y7Q6rRdGt74Qu3ISlZqfpYuim2nNjXqanf2sR+quqxOR2W78vXrvvVemBa+IDnB0IrfDT0zx6qwyKIf+PteY9GGZW79NdfQ5bed/iLgYJoUctS3WIeEF51fFsMw9OX/edSotRTbgEUHfFtV79Thn1/3f7NDztpBsoc5lLEkSbnbD8pR69ifX9MWJcnmb1No55pemNa8cvIK9c+mBN12dVftik9RanqO+vdooVZNamtPEt+kcrT4eIvm/WrXZx9nKyqqaAeJ668r1N9L7fr+Rz/dMfz0v0Y5NdWi8IjSO1uERxhKTSu7Q4YhTZ3mr7ZtXWrU0HP6DwKoQqp+q2wKaRqivV/tVWCdQPmF+enA4gPK2pYl/1r+kqSGtzTUtne2afk9y2WxWSSL1Hh4Y4U2Z6fAw3LyCrVmS4KG/qurdiSkKjUjRwO6tVDrRrW1Z9+xrXL42XT3v3vopyUblZ1Xvb7efk+89MM8i37+1KXoqKLzbr3eo0V/W/TVD1bde/vpd+NAqhQRXrpTEeGGDqSWvb1hSC9Ns+mcth41ZT8X+Liq3il7gE1hTYO0/YsEBcX6y1nDT4mLUpWxNVuBMU5JUotb62ndW7s0f9Sa4k61vqOBwluY6B1qLyvu1KCu2pF4qFNdT9Kpa6tnp3bHS9/Ps+jXzzzFnbrtekML/7boy+8tGn3H6X/o6UCqFHnUa3+R4TphpyZOtapjW4NOoVqo6q3yC7ApvFmgNn2+X8F1/OVfw669C9OVtjVHQTFFewi3HRqrVW/Ga+5dG2SxSRaLRR3uqqvIFkFent48Pn1jnoJC/PXWvDHyuA1ZbRbNevl7/fFN0X4oe7bt0769qbr14cs05bFPlJdboCuHX6CI6FBFRLM2PcwRaFVsC7v+/ChbkXVtCqxh1Yb5+Urc7FJ4rE0RdW0KjbZqwaxsDbg7RH5Oi5Z9laPsNI+y03gNDyiLL3QqqnmA1n12QKF1HfIPs2vXwoNK2ZKnkNoOhdZxKqimXavnJOu8u2Jkc1q16dtU5aW7lZvmPvkdVBM5eYVaszVBw/5Vsqa6qGsLtTnemspu06hreuinv6rnmuq7edLvn6l4TTX0emnB39KX30v33XH6t3kgVYo6ak0VdZI11YSpUqe2hpqxpsJJ+PTO66ciPz9f+fmlP2VjuFyy2L3/W/Pgdz9q/MABWjzyDrk8Hq3bt1/frt+o1rWi1bpWtIZ0OkeDZr/v7TFN74LrzlffG3vqxRtf1c51e9WkQwONeOVWpSSk6efZf0iSrrhnoFp2baYn/zVe+3Ylq12vVvrP1OFKSUzTynn/ePkRmEft4W2UOGOdtj24QLJa5B8XotAuMcrblXnMthkL4xXatbasfr7xNfUegx0U4T1ltcpT6JLVz/utemrNZ3qq7VX6qc8YuTxubTyYqB8T1qhF2LFHrR1Ut5N+SFitAo+rjFsCTm7v1qLFzrPDSr+I5yqUgg69Ppq639ALd5Rc7nFLbrf04BUlC/xz+1h03T0lRw07+hneMI4977BPpxpK2CHdO8lcX2BEp+BNZXXKXeCWzeH9nwPr3tFK8dM3aNP9CyWrRQFxIQrrEqO83cd+3WLaggSFdY3xmZ9fz6ZnXv9ej424SN/8311yuT3avGOffl60Qc0a1vL2aKazeYtNhmHRTbeUfgO0oFAKPXQU9H37LBpyW8nlbrfkcksXXxJcfF7//oV64L6Sf1fHPMufoFWTX3Nq+3arprxmriOz0Cp4k5lb1fSuptr69lYt+88yySoFNwhWVLcoZe8sOkpg4k+JytyaqRb3t5AzyqmDGw9q+8ztctRwqEabGt4d3kTGvvWDnhx2kb5/9U653B5t2rVfPy3ZqOZxpQ+qYLNZ9fyIS2WxWDRx1jwvTes9G7ZYZBgWXX5T6dcTCgulGmFF/5+4T7piSMnlhzvV5eKS8y7r79GTD5SsuyzHLKqO36kXXrVqyzaLZk4x12sDdAreZOZOtR3VUOve3Fm0c7pVCmkYqNrnR+jgzqKfNXf/uF8ZW7PU4cEmCohyKG1jljZM3yVnDT9FtmVntsOKOzX5NDo1uxp2arNkGBZdclPp190KC6Qah/46JeyT/jWk5HK3W3K5pM4Xl5x3eX9DYx8o2dH9mE4d5zxJem6yRZu3S+9NMd9OhLQK3lRWq1wFbtlN0KpOd9fTyjf2Fu2cbpXCGgaobvcaSt+RK0na/n2KUrdkq8vDDRRQ008pG7K1+p14OWvYFd2OD1tJUu/Lz1GfKzpp4r1ztGtzkhq1qqM7n7pCqfsO6pfPl8rt8ui5u2Zo9MTr9emaF+R2ubVy0WYt/Y2DVR3tkvtD9eOrmXrj1hRZrFKtxna17O3U/m0u2ewWDXo0TD++lqkpNxyQxSrFdXCoYSfHyW+4CqBT8CYzd6rrPbX119REfX37NlmsUngjf8X1DFXa9jxZ7Rb1eKiu/pqWqM+HbCl63mgXpNrn8AGroz311g96auhF+uGVI9ZUf21U8/plr6msVosmVMM11fpDa6qBN5X+4G/BUWuqy4eUXOY6tKbqdHHJeZf3l55+oOTXR6+fjDLOO+zZydKm7dL7U8r9MCoEnTIn7+/1doays7P1wQcfaPHixUpKSpLFYlGtWrXUvXt33XDDDQoKOvET+osvvqhx48aVOi+83wBF9L/4ONeoPLvTMzT4w08V4GdXsMOp5OxsvfqvS7QnI0Pn1q2jyKBAzb9rePH2dqtVj17YS7d2PkcX/N90L05uLrdPvFkfT/hKv3+8WJK0c+1uRcdF6foxV+rn2X/I4e/Q0OcH6+mrXtLf36+QJO34Z7cad2igax/4FzuvH8ERHai4R86VJ98tT65L9hpOxb+5Rn5RAaW2y9mcpoKkHMXe1c5LkwLmcaadkspuVczgHoq9qVdFjX3K9uak6o6/3pG/zU/Bdn8dyM/Uix2uU0JO6U+4dgiPU4Pgmhqz6iMvTQpfYBiGrFbpoSlWWY96rcFZdGBKhUVKj0wrebNq9SJDqxcauuWRkvP8jzjgcmgZR1nPSj/2aOyS9Nk0j9YuMXTvy1aF12RxA99QUZ1qMbSzWg079zjXqDzO6EA1GtNJnny33Lku+dVwave0f475+TX70M+v4SPaeGlSc4vfl6FRT38if6ddQQFOpaRn65nRlylxf4a3RzMdw5BsVkNvvZl9TKsCDv21i4wy9M7b2cXnz1/gp/nz7Xri8dzi84KOaFVEhKHU1NLdSUuzKDz82KMOTn7NqUWL7ZoyOUfRNU//qISAGVVUq9oPb69z7jinosY+Zf61/NXmiTZy57nlznXLEe7Qpimb5KzplLvArd2f7Fbz0c0VcU6EJCmofpCyd2Ur4bsEdl4/Qvz+DN314ifydxxqVUa2nh95qRKSS1pls1n14qjLFFszTCPHf1rtjrwkSR5PUac+essl21Gfxw081KmakdKn75TsWP7LAqt+mW/R+MdLPhB85D+7qAgpJdWioretiqSmWxQZcez9v/iqVb8vsmrGay7F8GWN8BEV1alz72ijLnd6//X1wFr+OndsC7kOdcoZ7tDqV7cpoKZT7gKPtnwUrw73N1bNjjUkSSFxgcrclaOd/0ti5/UjxCdn6K7xR3VqxKVKOHBUp0ZeptioMI2cUE07ZVhksxn69C2PrMfpVHSk9Pk7JTuW/zLfop/nWzThiZLzgo/q1NFHBExJO/Zo7JL0/GSLfl9k0awpHjoFn1JRrTr/zpbqPqJ1RY19yoJinOoxrrFceR65ct3yD/fT0ld2KSjaIXeBR+s/TNJ5D8UppmNRl8LiApSxM1fbvk1m5/VDhj16uT55Y57++LboSOs7NyUquk64/j2yr375fKkkaevavbr7kpcVGOIvPz+bMlKz9cpXo7VlzR5vjm464bXtumF8uAryDBXkeBQcYdM3EzIUVqvohcKYJn669bUI5Wd75HZJgWFWzXkgVbWa+Hl5csB7KqpTvUc00wUjW1TU2KcsJMahfs/GyZXnUWGuRwHhdi2aFK/g6KJ/9xGN/TVwUkMVZLvlcRnyD7Nr7pidimjs7+XJzSU+OUN3Tii9pnqhrDXViENrqonVdU0l2WyGPntLJ1xTffFOyfk/zy86TXyi5Lyj11TJp7imem6y9Nsi6b0pYk2FU2KuQ0aepvXr16tZs2Z6+OGHlZaWpvr166tu3bpKS0vTQw89pObNm2v9+hN/2vPRRx9VRkZGqVP4hf0q6RGcmtxCl5KzsxXqdKpngzj9snW7vlq3QZfOeE+Xz5xTfErKzNI7fy/XbZ9+6e2RTcU/0CmPp/Sb9h63R1Zr0Zv/dj+b/Bx2GZ7SR1FwH7ENSrM6bbLXcMqdXajstSkKOadmqcvTF8TLPy5E/vV8Z8HvlqXSTvAdZ6NTUtmtirnu/Ep4BKcuz12oA/mZCrH7q1tUU/2+f0Opy6+o21nrM+K1JTPJSxPCF9RtbJHHI2VlSDVjLaVOoRFFz582W+nzQ8IkP0fp7UNqlDzXNmhp0aaVpX9O2LjCUMOWJdsYhqFPp3q0epGhuydYFRljvufqyuwUrfIdFdmp5jd3rIRHcOqsTpv8Dv38mrU2VaFH/fyaNj9R/g1CFFDfd35+rQh5+S6lpGcrJMipLu3jtGDpVm+PZDpNm7jl9liUlm5V3TpGqVNkRFFv7DaVOj+8hkdOZ+ltj9wxvXUrt5YtL33sgaXL7WrdumQnQsOQJr/q1IIFdk2elKPatc234zqdQnlUZKva3er9HQKPZPO3yRHukCvbpfR/0hXRKUKGy5DhNmQ56vUpi9UiwzDfv3MzyCtwKSUjWyGBTnVtE6f5K7dJKtlxvV6tGho18TNlZOd5eVLvaNHUkNtjUWq6RfXrqtQpKrJoG7u99PmRNQz5O44674g3p9q3NvTnstJ/Rxcvtah965K/o4YhvTDZqnkLrHrnFZfq1q6MR3t6WFOhPCqyU51v8/7OgEey+9vkDHeoMMullDUHFd25RnGndEyndOTnWXCEUp1qG6f5K47o1MhDnXqp+naqZVNDbrdFqWlSXN3Sp5pHdOrI8yPCJX9n6fOO7FSH43Sqw1Gdem6yRb8ssGj6ZI8pOyWxpkL5VGSrugzz/g6BR7L7W+Uf7qeCLJf2r85UzLmh8hxeUx3117poTeWdOc3IGeA4Zo3p8XhkKeOQqjmZecpIzVZsgyg1bVtPS35eW1ljVikOf4uCI2zKy/Jo58oCNeniLHW5M8iqwDCr0hJcStrqUpMuVf/o66ypUB4V2akew5tWwiM4dXZ/qwLC7SrIcitxVbbqnFv6/ShHkE3+YXZlJhQodVveMZejyAlf+xtxmerXqqFRL1fnNZXkdluUchprqshwyXmCNVX71tLiZaXvZ/FS6ZwjXrYwjKIjrv+8QJoxWaZcU9Epc6rSR14fNWqUevXqpVmzZsnhKP3DXEFBgW699VaNGjVKv/3223Fvw+l0yuks/YOixW6O35aeDeJksUjbU9MUV6OGHrmgp7anpunzf9bJ5fEoPa/0E63L41ZydrZ2pKYd5xarpyXfLtfgx67S/t0HtGvdHjU5p6Guvu9y/TTjV0lSTmauVv++TrdPvFn5uQXav+uA2vVupf4399abD8zy8vTmkrX2gGRIjpggFe7P0f5PN8sRE6iw7rHF27hzXcpctk/R1zXz4qSAOZyNTkllt8rqZ45WdYtqIsmiXdkHVC8wQve2GKhd2Qf07d7lxdsE2Z3qF9NGr2z8wXuDosrIzzWUnFDy65QkQ3u3SYEhUnRdizpfaNF7L3l05e1W1W1StCP75tWGYhtY1Pq8018E9L7CotceNPTzJx6162bRmj8NbVopjZ5UclufTjW0/DdDw8da5R8gHUwtehHXP0hyOFl4oOqqyE6Z4evtJSnznxRJkjMmUAX7c5T08VY5awcqvEfJqybuXJcylu5T7evN9UKmmXRpHyfJot0JqaobE65RN/fS7oQ0/e/3dZKkkCB/xUSFKCoiWJJUP7boUKsp6dlKzcjx1tgVJidXio8vORZAYqJFW7ZaFRpiqF49Q/37FeqF8f4adVe+mjZ1Kz3DopUr7WrU0K2uXd0nuOWyXXNVge4ZHagPPnSoe3eXFi2ya/lym15/reT39pVXnZo3z0/PP5ergMDDR8CVgoMMHfXPE6hSqkOr0takSYYUUDtAefvytPPDnQqoHaDoXtGy2q0KbRGqnR/ulNXPKmeUUwc3HlTywmQ1uLGBt0c3la5t4iSLRbsTU1W3Vg3dc10v7UpK07cL1slmtWj83ZepRVwt3f/Kl7JZLYoMK/qKi4ysPLncnpPcetWSkyPtji/5dXySRRu3GAoLlRrUky7t59HjL9j04Ei3WjQ1lJ5h0d8rLGrayFDPrqe/B8+NV3t02z02Tf/Aqgu7e/TbIqv+Wm7RzCklzXt+slU//GLVq8+7FRQgHSj6EU3BwUU7HAJVVXXo1IHVGZIhBcb6KzcpT5s/2KvA2v6K7R0pq92q8JbB2vz+HtkcFvlHOZW2IVMJ81PU/OZ63h7dVMrsVGKavl14qFOjDnVqsu93KvuoTu1NtGjDEZ26rL9Hj75g1UOjPGrZVEpLl/5aaVGzRoZ6dT39+7vpGkND7rHonQ8s6tPd0K+LLFqyXHrv9ZLmPfuKRd/Ps2jK8x4FBkjJhzoVQqfgAyqyVXaTtGr/qkwZkoJjncpOyte69xIVHOtU/QsiZLVbFNkqSOvmJMrmsCqgpkMp67O05480tRkSe9Lbri7+mrdO14/qr/3x6dq1JVFNWtfVVcMu0NxP/yrepscl7ZWRmqXk+HQ1aFFbd429Un/O/UcrFmzy4uTms2NFvmRI4XXsSk906/cZWYqoY1ObfkVHUN60ME8BYVaF1rQpeadLv76dqSZdnGrYkeCgeqoOnUpcmSVDUmisQ5lJhVo1e79C6zjUqE+YJGn34oNyhtoUFOWn9N35WjF9n+qcG6zaHU5+xPnqpGubOFlk0a6kVNWNrqF7D62pvjm0pppwaE113+QvZbNYFBl6aE2VXR3WVNKGLVJYqNSwnnR5f0NjXpAeHiW1OrSmWrJSatZI6l2ONdUt10g33yO9/YHUt7s0b5H053Jpzusl2zzzivTdPOn156Ug1lQ4DebY862c/vrrLy1btuyYgEmSw+HQY489pvPOO88Lk50dIU6nHuzVXTEhwUrPy9dPm7do0vxFcnl860m1or1+z7u69dnrdc/U4aoRHaaUhFR999bPmvPMZ8XbPH/DZA17YbAenXOvQiKCtW9XsmY88aH+9+ZcL05uPp5cl5I/3ypXWp6sQX4K6VRLNa9sLIu9ZMeNzL+Ljqocel6Mt8asEO6q/UUV8BJf75QkBdv9dXfzAYr2D9PBglzN27dO0zbPlcsoadWA2u1ksUg/Ja724qSoKnZvlqY8UvL358u3DEmGzutn0U0PWnTjAxb99KH05dseZaRIQSFSg5ZS63PLtxN5o1YWDXnUqu9mefT9bENRtaXbHrWqQYuS21v4v6I3s6Y8XPpnsBvvt6jLAHPsvE6nUB7VoVOeXJeSPtsmV1qebEF+Cu0UrVpXl/75NeOvfZKksC6+9fPr2RQU6NSIG3qqZmSwDmbl6fe/tuj/Plwo96EX/Hp2bqwnRl1cvP2z910mSXr308V699M/vTJzRdq0yabR9wcW/3rqG0VvPl18UaEefSRPYx7O0+w5Dk1906kDBywKDTXUupVbXbq4ynV/bdp49NSTeXp3ukPvznAoNtajp5/MU6uWJV36+puif8f33hdY6rpjHs7VwIvLd79nG61CeVSHVrlz3Nr1yS4VpBbIHmRX5HmRqn9tfVkPtarZ3c206+Nd2vLGFrmyXHJGOVX/2vqq1beWlyc3l+BAp0Ze20PR4cE6mJ2nX5dt1RufFbWqdlSoendsIkl6/7lbSl3vrhc/0YqNe70xcoVZt8miYfeVvOz/0lSbJJv+dZFHzz3q1jNj3HrrPatenmbT/gNSjdCio6f36Fq+15w7tDE04Sm3Xn/XptenW1UvVpo41q12rUp2Cvzk66I3jIeOLv12xLOPuDRooDkOeUmnUB7VoVOuHLe2fBSvvNQC+QXbVeu8GmpyXZ3iTrW7p7G2fLRX/7y+Q4VZLvnXdKrJdXVUt1/Nk9xy9RIcUEanPi+jU88e1anxvtgp6bbRJTsSTZxa9Hdp0MUevfCooefGGPq/2dJLU63ad6hTHVpLvbqUrxfntJFeesqjKe9aNeVdi+rHSi8/7VG7ViXbfPx10Qy33lt6B6fnxnh0pUk6JdEqlE91aFVhjlvrP0xSXkqh/IJtiu0SppY3xMhqL3rtvvPo+lr/QZKWv7ZbBVluBdZ0qOUNMWrQP8LLk5vHG2O/0C0PDNSoZ69Wjahgpe47qO8/WKwPXivZVyIiOlR3PDFINaJClLr/oOZ9sUwfTmFfiqPlZxuaPztLWQc88g+xqtn5TvW8OUi2Q38fs1I9+u3dLGWnexQcblXrPv7qdp1v7KBKp1Ae1aNTHq1+P1k5KS45gq2q1zVE7QbXLO5UbppLK2fuV16GS/417Gp4QZhaXxPl5anNJzjAqVHXHLGmWr5V0w6vqSJD1fucojXVB8+UXlPdOf4Trdjke2uqIaNL9lGYMLXo/6+42NCLj0rPj5HenC1NnCrtP1C0U3uH1lLvLuW7v3PaSJOekl59V5ryrlQvVpr0tNT+iDXVR18XzTDk3tLXfWGMoSsHlu9+zzY6ZU4Wowp/x2ydOnU0bdo0DRo0qMzLv/rqK40aNUrx8fFlXn48TSa+cjbGq/Yajlns7RF8RuB83pA8G77u8frJNzqOpbsbnL1BTuLc+jtPa/v58+frpZde0vLly5WYmKgvv/xSV1xxRfHlhmFo3Lhxeuutt5SWlqYuXbpo6tSpat265Dtc8vPz9eCDD+rDDz9Ubm6u+vbtq2nTpqlu3bpn6VFVTxXVKUnq9MPjZzoeJC0f+Ly3R/AJP+1odfKNcFIXNTz5194dT2V2Sjq9VtEp86rITl29eOSZjgdJiZMbe3sEn/DFK5O8PYJPiKmTcPKNToA1FcqjIlt129LbznQ8SFr3eltvj+ATFowv/2tWKOGsvb3c12VNhfKoyE79Z8WNZzoeJP31Widvj+ATFo+f5u0RfII9ZusZXd+sayo6ZW4V2aqHV197puNB0j+D+Ht+Nlw9d5m3R/AJw5stKPd1WVOhPCqyU0+vLfs2cXq+m9Tb2yP4hL9efNPbI/gEa8zmcl+XTplTlf5Iwe23364hQ4bo5Zdf1urVq5WUlKR9+/Zp9erVevnllzV06FDdeeed3h4TgA/wGJZKO52u7OxstW/fXq+/XvYbnRMnTtR///tfvf7661q6dKliYmLUv39/ZWZmFm8zevRoffnll/roo4+0cOFCZWVl6bLLLpPb7S7zNnFq6BSAylKZnTrdVtEp86JTACqTWTsl0Sozo1UAKgtrKpQHnQJQmegUyoNWAagsrKlQHnQKQGWhU+ZkP/km5vX0008rICBA//3vf/Xwww/LYin6gzcMQzExMRozZowefvhhL08JABVr4MCBGjiw7O9ZMQxDkydP1uOPP66rrrpKkjRr1izVqlVLH3zwge68805lZGTo3Xff1Xvvvad+/fpJkubMmaN69erpl19+0UUXXVRpj8XX0CkAoFNmRqcAoAitMi9aBQB0yszoFADQKbOjVQBAq8yMTgFA9e5UlT7yuiQ98sgjSkhI0LZt27Rw4UItXLhQ27ZtU0JCAgEDUCXl5+fr4MGDpU75+fnluq0dO3YoKSlJAwYMKD7P6XSqd+/eWrx4sSRp+fLlKiwsLLVNbGys2rRpU7wNyo9OAfBFZ6tVdMr76BQAX8SayrfQKgC+iDWV76BTAHwRnfIttAqAL6JVvoNOAfBFdOrUVOkjr0tSYmKi3njjDS1cuFCJiYmy2Wxq2LChrrjiCt16662y2WzeHhGAD3Dr9L96vrxefPFFjRs3rtR5Y8eO1dNPP33at5WUlCRJqlWrVqnza9WqpV27dhVv43A4FB4efsw2h6+P8qNTACpDZXZKOnutolPeR6cAVBbWVCgvWgWgMrCmQnnRKQCVpSquqeiUOdAqAJWBNRXKi04BqAx0ypyq9JHXly1bppYtW+rbb79VXl6eNm/erI4dOyooKEgPPvigevbsqczMTG+PCQCn5dFHH1VGRkap06OPPnpGt3n465UOMwzjmPOOdirb4MToFABfdbZbRae8g04B8FWsqXwHrQLgq1hT+QY6BcBX0SnfQasA+Cpa5RvoFABfRadOTZXeeX306NG67777tHLlSi1evFizZs3S5s2b9dFHH2n79u3Kzc3VE0884e0xAfgAt2GttJPT6VRoaGipk9PpLNfcMTExknTMJ6n2799f/KmsmJgYFRQUKC0t7bjboHzoFIDKUpmdOputolPeRacAVKaq2CmJVnkbrQJQWVhToTzoFIDKRKdQHrQKQGVhTYXyoFMAKgudMqcqvfP6ihUrdPPNNxf/evDgwVqxYoX27dun8PBwTZw4UZ999pkXJwQA72rYsKFiYmL0888/F59XUFCgP/74Q+eff74kqVOnTvLz8yu1TWJiotauXVu8DcqHTgHAidEp76JTAHBytMq7aBUAnBid8i46BQAnRqe8j1YBwInRKu+iUwBwYr7eKbu3BzgT0dHRSkxMVKNGjSRJ+/btk8vlUmhoqCSpadOmSk1N9eaIAHyEx8Sf9cnKytLWrVuLf71jxw6tWrVKERERql+/vkaPHq0XXnhBTZs2VdOmTfXCCy8oMDBQgwcPliSFhYVp2LBheuCBBxQZGamIiAg9+OCDatu2rfr16+eth+UT6BSAykKnUB50CkBlolUoD1oFoLLQKZQHnQJQmczaKjplbrQKQGUxa6ckWmVmdApAZaFT5lSld16/4oordNddd+mll16S0+nUs88+q969eysgIECStGnTJtWpU8fLUwJAxVq2bJkuvPDC4l/ff//9kqQhQ4Zo5syZevjhh5Wbm6uRI0cqLS1NXbp00dy5cxUSElJ8nVdeeUV2u13//ve/lZubq759+2rmzJmy2WyV/nh8CZ0CADplZnQKAIrQKvOiVQBAp8yMTgEAnTI7WgUAtMrM6BQAVO9OWQzDMLw9RHllZWVp2LBh+uKLL+R2u9WtWzfNmTNHDRs2lCTNnTtXGRkZuvbaa0/rdptMfKUixq12Go5Z7O0RfEbg/FreHsEnfN3j9XJf99edzc/iJCfWp8GmSrsvVKyK6pQkdfrh8bM9brW0fODz3h7BJ/y0o5W3R/AJFzVcX+7rVmanJFrlKyqyU1cvHnm2x62WEic39vYIPuGLVyZ5ewSfEFMn4Yyuz5oK5VGRrbpt6W1ne9xqad3rbb09gk9YML78r1mhhLP29nJflzUVyqMiO/WfFTee7XGrpb9e6+TtEXzC4vHTvD2CT7DHbD35RifAmgrlUZGtenj16V8Hx/pnUF1vj+ATrp67zNsj+IThzRaU+7qsqVAeFdmpp9cOOtvjVkvfTert7RF8wl8vvuntEXyCNWZzua9Lp8ypSh95PTg4WB9//LHy8vLkcrkUHBxc6vIBAwZ4aTIAAOgUAMDc6BQAwOxoFQDAzOgUAMDsaBUAwMzoFABUb1V65/XD/P39vT0CAB/nNqzeHgFVGJ0CUNHoFM4EnQJQGWgVzgStAlDR6BTOBJ0CUBloFc4ErQJQ0egUzgSdAlDR6JQ58acCAAAAAAAAAAAAAAAAAAAAAKhwPnHkdQCoaB5ZvD0CAADHRacAAGZHqwAAZkanAABmR6sAAGZGpwAAZkanzIkjrwMAAAAAAAAAAAAAAAAAAAAAKhw7rwMAAAAAAAAAAAAAAAAAAAAAKpzd2wMAQFXg5rM+AAATo1MAALOjVQAAM6NTAACzo1UAADOjUwAAM6NT5sSfCgAAAAAAAAAAAAAAAAAAAACgwnHkdQA4BW6Dz/oAAMyLTgEAzI5WAQDMjE4BAMyOVgEAzIxOAQDMjE6ZE38qAAAAAAAAAAAAAAAAAAAAAIAKx5HXAeAUePisDwDAxOgUAMDsaBUAwMzoFADA7GgVAMDM6BQAwMzolDnxpwIAAAAAAAAAAAAAAAAAAAAAqHAceR0AToHbsHh7BAAAjotOAQDMjlYBAMyMTgEAzI5WAQDMjE4BAMyMTpkTR14HAAAAAAAAAAAAAAAAAAAAAFQ4jrwOAKfAzWd9AAAmRqcAAGZHqwAAZkanAABmR6sAAGZGpwAAZkanzIk/FQAAAAAAAAAAAAAAAAAAAABAhePI6wBwCjwGn/UBAJgXnQIAmB2tAgCYGZ0CAJgdrQIAmBmdAgCYGZ0yJ/5UAAAAAAAAAAAAAAAAAAAAAAAVjiOvA8ApcPNZHwCAidEpAIDZ0SoAgJnRKQCA2dEqAICZ0SkAgJnRKXPiTwUAAAAAAAAAAAAAAAAAAAAAUOHYeR0AAAAAAAAAAAAAAAAAAAAAUOHs3h4AAKoCt2Hx9ggAABwXnQIAmB2tAgCYGZ0CAJgdrQIAmBmdAgCYGZ0yJ468DgAAAAAAAAAAAAAAAAAAAACocBx5HQBOgYfP+gAATIxOAQDMjlYBAMyMTgEAzI5WAQDMjE4BAMyMTpkTO6+XwdIw29sj+ARrx9beHsFnXFVrrrdHAGAyaVsivD2CT+jx9sveHsEnzH4tzdsjADAZh9Xl7RF8giuAr7A7G8KsTm+PAMCEbBbD2yP4BlJ1VtgsvHkCoDSrxePtEXwC3woOADC7AxfW8/YIPmFo6HfeHgEAAACniZ3XAeAUuA3eRAQAmBedAgCYHa0CAJgZnQIAmB2tAgCYGZ0CAJgZnTIn/lQAAAAAAAAAAAAAAAAAAAAAABWOI68DwCnw8D3YAAATo1MAALOjVQAAM6NTAACzo1UAADOjUwAAM6NT5sSR1wEAAAAAAAAAAAAAAAAAAAAAFY4jrwPAKXAbfNYHAGBedAoAYHa0CgBgZnQKAGB2tAoAYGZ0CgBgZnTKnPhTAQAAAAAAAAAAAAAAAAAAAABUOI68DgCnwM1nfQAAJkanAABmR6sAAGZGpwAAZkerAABmRqcAAGZGp8yJPxUAAAAAAAAAAAAAAAAAAAAAQIVj53UAAAAAAAAAAAAAAAAAAAAAQIWze3sAAKgKPIbF2yMAAHBcdAoAYHa0CgBgZnQKAGB2tAoAYGZ0CgBgZnTKnDjyOgAAAAAAAAAAAAAAAAAAAACgwnHkdQA4BW4+6wMAMDE6BQAwO1oFADAzOgUAMDtaBQAwMzoFADAzOmVO/KkAAAAAAAAAAAAAAAAAAAAAACocR14HgFPgMfisDwDAvOgUAMDsaBUAwMzoFADA7GgVAMDM6BQAwMzolDnxpwIAAAAAAAAAAAAAAAAAAAAAqHAceR0AToFbFm+PAADAcdEpAIDZ0SoAgJnRKQCA2dEqAICZ0SkAgJnRKXPiyOsAAAAAAAAAAAAAAAAAAAAAgArHkdcB4BR4DD7rAwAwLzoFADA7WgUAMDM6BQAwO1oFADAzOgUAMDM6ZU78qQAAAAAAAAAAAAAAAAAAAAAAKhxHXgeAU+CWxdsjAABwXHQKAGB2tAoAYGZ0CgBgdrQKAGBmdAoAYGZ0ypw48joAAAAAAAAAAAAAAAAAAAAAoMJx5HUAOAUeg8/6AADMi04BAMyOVgEAzIxOAQDMjlYBAMyMTgEAzIxOmRN/KgAAAAAAAAAAAAAAAAAAAACACsfO6wAAAAAAAAAAAAAAAAAAAACACmf39gAAUBW4+foQAICJ0SkAgNnRKgCAmdEpAIDZ0SoAgJnRKQCAmdEpc+JPBQAAAAAAAAAAAAAAAAAAAABQ4ar0kdcLCgrkcDiKf71t2zZNmTJFW7ZsUe3atTVixAh16tTJixMC8BUeWbw9AqogOgWgstAplBetAlBZaBXKg04BqCx0CuVBpwBUJlqF8qBVACoLnUJ50CkAlYVOmVOVPvJ6QECA9u/fL0latWqV2rVrpz/++EN16tTRmjVrdP755+vvv//28pQAgOqKTgEAzI5WAQDMjE4BAMyMTgEAzI5WAQDMjE4BQPVWpY+8bhhG8f8/+eSTuuSSS/TJJ5/IYin6pMTQoUM1duxY/fDDD94aEYCPcBtV+rM+8BI6BaCy0CmUF60CUFloFcqDTgGoLHQK5UGnAFQmWoXyoFUAKgudQnnQKQCVhU6ZU5Xeef1Iq1at0kcffVQcMEm69957ddFFF3lxKgAAitApAIDZ0SoAgJnRKQCAmdEpAIDZ0SoAgJnRKQCofqr0zusWi6U4WjabTaGhoaUuDw0NVUZGhjdGA+BjPIbl5BsBR6FTACoLnUJ50SoAlYVWoTzoFIDKQqdQHnQKQGWiVSgPWgWgstAplAedAlBZ6JQ5Venj4RuGoWbNmikiIkIJCQn6559/Sl2+ZcsWxcTEeGk6AEB1R6cAAGZHqwAAZkanAABmRqcAAGZHqwAAZkanAKB6q9JHXp8xY0apXzdu3LjUr5csWaIrr7yyMkc6q4LsDo1u3Vv967RQpH+g1qcl6blVc/VPWmLxNo1DIvVQu746r2Z9WWTR1oPJuufPL5SYe9CLk5tPQKBDQ+7qo/MvbKEa4UHatilJb0z6QZvXJxRvc9MdF+iSKzspOMRfG9fFa+qE77Rre7IXpzaf/BxD8+fkaNOfBcrJ8KhWI7v63xGk2GZFTyVZaR79NjNHO1YWKC/bUP3WfhpwZ5Ai6ti8PPmZc1ftz/rAS3y9U5IU5Oen+7t214DGTRUZGKB1ycl69o9ftWb/vmO2fe7Cfhrctr2enf+bZqxa4YVpzSvA30+3D+6hXl2aKjw0QJt37Ner03/Txq1JkqReXZpq0IB2at64lmqEBurW+2dp607fbNQ/a2z67GOHtm6xKTXFqifH5ej8Hq4Kvc+F8+2aPcOpxESratf2aMiwfHU/4j4//sChRQv9tHe3VQ6noVat3Bp6R77q1vNU6Fyng06hvHy9Ve5clxK+2KmM5QdUeLBQgXHBqntjYwU1Kjp6hzvPrYRPtit9xQG5slxyRPkrun8d1ewb6+XJzSXQ3093XtVdF3RqovDQQG3etV+T3v9NG3bsk81m1Yiru+v8dg1VJzpMWTn5Wrp+t17/ZIEOpGd7e/QKsXy1RbM+smnDZouSUyz677OF6tPTqND7/OUPi6ZNt2tPglQvVrp7uKvUfb77vlXz5lu1c7dFTqfUvrWh0Xe61KB+hY51WmgVysPXOyVJrly3dn22WylLU1V4sFBBDYLU+OaGCmkcLKmoVTs+2qWUZWlyZRXKWdNfsRfFKLYfb9wdqbhVHY9o1QdHtOqqMlr1qW+2atlqafqHVq3fLCWnWPTac2717Vmx9zn3D2nKu9biTt073KN+vUouf3uORT/Pt2jHbsnfKXVoI91/p0cN6RSquOrSqS2fJGjf0gwVZBQqtEGgWt5aV2GNg4ouz3Nr8wcJ2rcsXYWZLgXUdCju4mjVH1DTy5ObS6C/n+668ohO7S7q1PojOtW9XUPVqVnUqb/X79brn9Gps8UXOiXRKpRPdWhVYa5bGz/ep8S/M5Sf4VJYwwC1vTVW4U0CJRW1av37SUpcelAFmS4FRjvUaGCUGg6I9PLk5kKrSixdLU3/UFp3qFVTnjPUrxJa9dq70u4EqX6sdO9wqf8RrXprjvTzfGn7oVad00Z64E6ZqlV0CuVRXTq15sMD2vtXpvIPuhXe0F8dh0YrskmAJCk33aXV7+1X0uocFWS7VbNVoDoPq6WQWIeXJzcXOlWCTpUPnTKnKr3z+pAhQ054+VNPPVVJk1SM5ztfqmah0Xro76+1LzdTg+LaalbvGzXwx//TvrxM1Q8K14cXDtFnO1bptXV/KLMwX41DopTvqdgdvKqi+574lxo0jtbEp75UanKm+lzSTuOn3aLbr52qlORM/XtId101uJsmjftKe3enaPCwXnpx6i0advUU5eYUeHt80/h+SpaSd7n1rweCFRxh1drf8vXhEwd1x7QwBUda9flzmbLapWueCJUz0KK/vsrVB08c1B1v1JDDn6/fQPXj652SpBf7XqRmkZG6f+732p+drStatNR7V16rAXNmal92VvF2/Rs1UYeY2krKyvTitOY1ZtRFalQvSs+++r0OpGbpot6tNHnstbrp3hk6kJqlAH8//bMxQb/9uVljRl7k7XErVF6uRY0aezTg4kI993TgGd/ezz/66ee5fpr435wyL9+wzqYXnw3QLbfl6/weLi1eaNeLzwTo5Vdz1KKlW5L0zxq7Lv9XgZq1cMvtlma969TjDwfq/6ZnyT/gjEcEvMrXW7Vr+mbl7c1W3B0t5BfuVOrifdoycY1avXCuHBFO7f1gq7I2pKvBnS3liPJX5tpU7Z69RX7hDtXoGOXt8U3j8aED1LhupJ5+6wclp2Vr4PktNfXha3TdY7OUk1eg5nHRmv7NEm3enazQIH/dN/gCTRo9SEOe/sDbo1eI3DypWWNDgwa69cBTfmd8e1//YNU3P1r17qtlr+VXr7PokXF2jRzmVp8eHv260KqHn7ZrxhSX2rYq2oF9+SqrrrvCo9YtDLnd0uvv2DTiIT99MbNQAbQKVZivd0qStry9TTl7c9R8RFM5wv20f9EB/fPienWa2F7OCKe2v7dT6Rsy1HxkE/nXdCrtnwxtnbFdzhoORXaO8Pb4pvH4bUe0Kv1Qqx461Kr8I1q154hW3TtIQ8b5Xqtyc6XmTQxdeYmh0U+e+QElvvzBoq9/tGjmq2V/eHfVWunBcVb9Z6ihvj0NzVtg0QNPW/Xe6x61a1W0zdLVFt1wpaG2LQy53NJr71h1+4NWfTPLo0A6hSqsOnRq7f/tUtbePLUbFSdnuJ8SFqRq6XNb1GNSK/lHOLRx9l6lrstSu1ENFFDToZQ1mVo/fbecEX6q1bmGt8c3jSduG6DGdSI19u1DnerWUlMfvEb/fryoUy3iovXuN0u0ZU+yQgL9df/gCzTpnkEa8gydOhk6BZxYdWjVqjf3KnNPnjreXU/+EX7aOz9Ni5/drj6vNFdAhJ/WzkzUgXVZ6vSfegqs6dD+NZla8068/MPtqn1umLfHNw1aVaKoVdKVl0j3Pnnmt/flD9KXP0qzXy378pVrpfvHSfcMlfr1lH5ZIN3/tDTndal9caukwVdKbVpIbrc0+R1p2IPS/2aJVqFKqw6d+ntaktJ356vbPbEKiLBr5/wM/TZujy6Z3FABEXYtmLBXVptFPcfUkV+AVRu/TdOv43br0lcbye7PzraH0akSdAq+hGc5k3Ja7bqoTktNXDNPSw/s1u7sNE1ZP197s9M1uHEnSdJ9bS7QH0nbNPGfX7U+fZ/2ZKfr96StSs0ve+es6srhtKtHn1Z657WftXblLiXsTdWct35XUny6LrvmXEnSFTd01Ucz5mvRbxu0a9t+vTz2Szn9/XThxW29PL15FOYb2rioQH1uC1T9Nn6KiLWp142BCqtl1fIf8pWa4FH8JpcuHll0JPbIujZdPCJIhXmG1v+R7+3xz5jHsFTaCagqnDa7Lm7SVBMWzdfShHjtykjXq3/9qT0HM3Rj2/bF29UKCtbTF/TRfT99L5fHPEeqNguHw67eXZtp2nvztXr9XsUnpWv6x4uVuD9DV15U9Pv40x/rNfPTP7Vs9S4vT1vxzu3i0pCh+eres+wd+AoLpXf/z6mb/h2sKy4N0ehRQVqzqvxvdH31hUMdO7l13eAC1avv0XWDC9Sho1tffV7yafbnxueo/8WFimvgUaPGHt33cJ7277dqyxbzfLNIZXaKVqGq8BS4lb4sWXWua6SQFjXkXytAsVc2kLOmvw78WvQNTNlbDyqiR4xCWtaQs6a/oi6MVUC9YOXs4MNWhzn97Lqwc1NN+XiBVm6K19796Xr7qz+VkJyhq/u0U3Zugf7z0uf65e/N2p2UprXbEvXynF/VsmGMakWEeHv8CtGji6G7h7vVt1fZR1svLJReedOm/tf4qevFfrpphF1LV5b/ufP9z6zq2tnQsBs9ahgnDbvRo/M6Gnr/s5KXdKa95NKggR41aWioeRND48a4lLjPovWbzfOcTaeAY7kL3DqwNEUNb4hTWMtQBcQEKO7qevKv6VTiL0XfZnVwa6Zq9YxWjVZh8q/pr9p9aim4fpAyd2Sd5Narj+JWfbJAKzcf0aoDR7Tq5c/1y9Lq0aqeXaV7hxuljn50pIJC6eU3LLrwaqs6X2TV9XdZ9ffK8t/fe59Z1K2TdPtNhhrFFf23Sydp9qclz8dvveTRlQMNNWkotWgiPTfGc6hT5b/fs401FXAsd4FH+/5OV7PBdRTRMkRBMf5qem2sAqKd2v3zAUlS+uZsxfaKUGTrEAVGO1WvX5RC4gJ0cBvvUx3m9LPrwk5N9dqRnfq6dKfuPtSpXUlpWrs9US+//6ta0Sk6dRQ6BRzLXeBR4l8ZanVTbUW1ClZwjFMt/h2jwGiHds5NkSSlbslWvd7himodrMBohxr0i1RoXIDSt+V6eXrzoFWl9eoqjR4uDThBq156Q+p9tdTxIum6u3RGrZr9mXR+J+mOm6RGcUX/7dpJmv1pyTZvvyRdOVBqeqhVL4yREvdZtM5ErWJNBRzLle/RniWZ6nBLtKJbByqktkNtr6upoGg/bf0pXZmJhUrZnKdz74hRZJMAhdZxqvPtteTK82jXwoPeHt806FRpdKp86JQ5+fTO64899piGDh3q7THKxW61ym61HnMU9Ty3S52i6ski6YLaTbQzM0XTe96gJZffp8/63KZ+sc28M7CJ2WxW2exWFRSU/r3Mzy9U6w71FVMnXJFRIVq+ZFvxZYWFbv2zYqdatatX2eOalsctGR7J5lf6CdbPYdHedYVyFxbtuGF3lFxutVlktUt71vNtAEBZqnKnJMlutRS1yuUudX6ey6XOsXUkSRZJkwYM1NvLl2pLaooXpjQ/m9Uiu62MThW41K5lXS9NZV7/fSlA69fZNOaJXE17O0s9ehfqiTGBit9bvh9rN6y3qWPn0r/3nTq7tGHd8XdMzzn07WIhIWXvtAj4kqrcKsNtSB7J4lf6+cHqZ1XWlgxJUnCzMGWsTFFBar4Mw1DmhjTl78tVaFuOZHuYzXaoU4VHdarQpfZN65R5neAApzweQ1k5Vf9DrOXx1ASbVq21aMJTLn36bqH69/Zo1MN27dpbvttbs86qrueW/gBgt/M8Wr3u+O3LOrRPa5jvvS4LlFKVOyVJhltlt8ph1cHNRR+kCm0WqpQVqco/1Kr0dRnKTcpVeLsalT+wSRW3qow1VftmtOpoT4y3aOVai15+yqMvpnt00QWG7nzYWu5OrVpn0fnnll4bdT/X0Kp1x3+TJpNOoZqo+p0yynxPwOqwKm1j0T/k8BbB2r88Q3mpBTIMQynrMpWdmK+o9qHeGNmUjremyitwqQNrqmPQKaByVfVWeY7TKpvDqpSNRS/kRzYPUtLyg8pNLZRhGEpem6WsxHxFd+Af+WG06vQ8Pr7oKLSTnpK+mi5ddIF0+8PSznK2avU66fxzS5/X/Vxp5brjX4dWobqo6p0yPMfrlEXJG3PkKSx63d96zH5WFiVv4APBh9Gp00OnUJX49M7r8fHx2rlzp7fHKJdsV4FWHNijUS17Kto/WFZZ9K/6bdQ+oo5qBgQr0hmkYD+n7mhxvuYnbdNt8z/Q3PhNmnr+tTovqr63xzeV3JwCrV+9R4OH91ZEVIisVov6DGynFm3qKiIqWBGRwZKktJTsUtdLS8lW+KHLIDkDLarTwq5FH+UoM8Ujj9vQ2t/yFb/Zpaw0jyLr2hQWbdVvs3KUm+WRu9DQ4k9zlZ1mKCu16h9p2SNrpZ1QfVTlTklSdmGhlicm6O7zuio6KEhWi0WDmrdUh5jaig4KkiTd1fk8uQ2PZq4+g49y+rjcvEL9szFet17bTZHhQbJaLRrQq6VaNa2tyPAgb49nKgkJFv3xq12PPZWrNu3cio01dM2/C9S6rVs//+hXrttMS7WoRnjpTtUI9yg1rew3sAxDeusNf7Vu41KDhubpW2V2ilZVL1W5VbYAu4KahCrpm10qSMuX4TGUsmifsrdnqjC9QJJU96Ym8o8N1Nr7lmjlsAXa+vI/qndLUwU34yuDD8vJK9SaLQka+q+uiqpR1PuLz2+p1o1qK6rGsZ1y+Nl097976KclG5WdV+CFib1rT7z04zyrXnrapY7tDNWrIw253qNz2hr6+ofyfWPHgVQpMrz0eZHhReeXxTCkSdPsOqetR00ameeDVnQKFaEqd0qS7AE2hTQN1p6v9io/rUCGx9D+hcnK3JalgkOtajykgQLrBOrv/6zQoiF/ae3EDWp8ayOFNWenwMOKWzXoiFZ1O9SqsOO06trq2ard8dL38yx6ZZxHndpL9etIt11vqGNb6cvvy3dEoPJ0auJUqzq2NdS0UbnuskKwpkJF8IVO1WgapK1fJBXtnO4xlLAgRRlbs5WfXihJanlrXQXX9dfvI9dq7k0rtezFrWo1tJ7CW/DeymE5eYVaszVBw45YUw3s1lJtjtcpu02jrumhn/6iU3SqNDqFilDVW+UXYFN4s0Bt+nx/0c7pHkN75qcpbWuO8tKKWtV2aKxC6vhr7l0b9O3gf7TkhR1qP7yOIlvw/sthtOrU7Y6XvpsnTR4ndT7UqqHX61CrynebB1KlqKNaFXWSVk2YKnVqa6iZiVrFmgoVwRc6FdU8QOs+O6Cc1EJ53IZ2/JGhlC15yk1zK7SOU0E17Vo9J1kFWW65Cw2t/yJFeelu5aa5T34H1QSdOnV06vjolDnZvT1ARZo1a9ZJt8nPz1d+fulP2RiFLln8vP9b89Df3+jFcy/TostHy+XxaF16or7dvVatw2NktRS9SDMvYbNmbvlbkrQhY586RtXVDY076e8Du705uulMfOoL3f/UIH344wNyuzzauilRv/34j5q0qF2ykVH6TX2LRZJ53uc3hX89EKz/vZqlKUPSZLFKMY1tat3boaRtbtnsFl31WIi+ezVLr1xfdHnDDn5q3Kl8OxMC1cGpdEo6TqtcLlns3m/VA3O/14R+F2nJsLuKWrV/n77ZtEGto2upTc1o3dq+oy7/6D1vj2l6z776vR69+2J9/e4Iudwebd6+Tz8v2KBmjWp5ezRT2bbFJsOwaPiQ0m+AFhZKoaFF0d6/z6I7h5Zc7nYXna68tORjvX36Feo/9+UV/9py1HtfhlH0rQFlmfaav3Zst+nlV7OPswXgW8q7pnIXuGVzlG9H3bOpwR0ttOvdTVo7eolklQLjQhTeNVq5u4o+8p88N17Z2w6q0ejWckT6K2tThvbM3iK/Gg6Ftg4/ya1XH2Pf+kFPDrtI3796p1xujzbt2q+flmxU87joUtvZbFY9P+JSWSwWTZw1z0vTeteGLRYZhkWDbiq9DioslMLCilqVuE+6akjJ5W635HJL3S4uOe/S/h498UDJi9On06oXX7Vp8zaLZk4pPLMHA1QBZ7KmMkurmo9oqs1vbdXfdy+XrFJwgyDVPD9KWTuKft5M+ClJmVsz1eqB5vKPcipj40Ftm7ldjnA/hbep4d3hTaS4VZNPo1Wzq1+rNmyWDMOiS24q/QZKYYFU49DnIRL2Sf8aUnK52y25XFLni0vOu7y/obEPlLxwenSnjneeJD032aLN26X3ppjnw8BARTmTTrkK3LKboFPtRjXQP/+3S7+PXCuLVQptGKja3cN1cEeuJGnXD8lK35Ktjg81UkCUQ6kbsrR++h45w/0U1ZYPWh321Fs/6KmhF+mHV47o1F8b1bx+2Z2yWi2aQKeK0Smg4vhCqzrdXU8r39iruXdtkMUqhTUMUN3uNZR+qFXbv09R6pZsdXm4gQJq+illQ7ZWvxMvZw27ottxONDDaNWpWX+oVQNvKr0jScFRrbp8SMllrkOt6nRxyXmX95eefqDk18e89lfGeYc9O1natF16f0q5HwZQZfhCp7reU1t/TU3U17dvk8UqhTfyV1zPUKVtz5PVblGPh+rqr2mJ+nzIFlmsUq12Qap9Dh+wOhqdOjV0ClWN9/d687IXX3xR48aNK3Ve+DUXKvLffbw0UYnd2Wm68ff3FGDzU7CfU8l5WZrc9UrtzU5XWn6OCj1ubT14oNR1th08oE5R9bw0sXklxqfpoTtnyunvp6Agp1JTsvTYC9coKSFNqSmHvt4yKrj4/yWpRkSQ0lKzjneT1VJ4bZtuHh+mgjxDBTmGgiOs+nJCpmrUKnpRsHYTu4ZPqaG8bI/cLikozKqZ92copqn3fyAEqrKyWlXj4v4KH3iRlyYqsTsjQzd8/okC7HYFO5xKzsnWaxdfpr0ZGTq3Tl1FBgZq4W13FG9vt1r1WI/euq1DR/Wa+Y4XJzeXhH0Z+s+TH8vf6aegQIdS0rI17oHLlLg/w9ujmYrHI1mthqa8mS2rtfSCyz+g6L+RUYamvlXS70UL/LRogZ8efqzkq9UCA0uuFx5hKC219BtiGelWhYcf+wm2aVP8teRPu156JVs1a/IJN+CwsjrVelhHtR3eyUsTlXDWClCzxzrIne+WJ9clvxpObZ+6Xo6a/vIUuJXw2Q41uqe1wjpESpIC6wcrd3eW9v+wh53XjxC/P0N3vfiJ/B12BQU4lZKRredHXqqE5JJO2WxWvTjqMsXWDNPI8Z9Wu6NZHGZ4LLJZDX34VqGsRx1YIfBQq2pGSh+/U7Jj+bwFVs2bb9ULj5d85WXwEa9NR0UcewSL1HQpMuLY+x//qk1/LLJq+muFqhV97OVAdVVWq865vb063tHBOwMdIaCWv9o/2UbuPLfcuW45wh3a8Npm+Uc75S5wa+fHu9XqvuaKOKeoS0H1g5S1K0fx3yWw8/oR4pMzdNf4o1o14lIlHDiqVSMvU2xUmEZOqJ6t8hgW2WyGPn3Lc9xORUdKn79TssPeL/Mt+nm+RROeKDnvZJ1KSTv2KLeS9Pxki35fZNGsKR7F0CmgWFmdOu+O1up6V1svTVQiMMapLmObyZXnlivXI/9wP62avF2B0Q65Czza/FGCznmgkaI7Fn17VUhcoDJ35Wrn//az8/oR4pMzdOeE0p16oaxOjTjUqYl0ik4B5lJWq86/s6W6j2jtpYlKBMU41WNcY7nyPHLluuUf7qelr+xS0KFWrf8wSec9FKeYjkVdCosLUMbOXG37Npmd149Aq06Nx5BsNkOfvaUTtuqLI94C/Xl+0WniEyXnHd2q5FNs1XOTpd8WSe9NEa0CjlBWp3qPaKYLRrbw0kQlQmIc6vdsnFx5HhXmehQQbteiSfEKji46mE1EY38NnNRQBdlueVyG/MPsmjtmpyIa+3t5cnOhU6eGTqGqqdLHqJ80aZJ27dp1Rrfx6KOPKiMjo9Qp4speZ2nCsyPXXajkvCyF+vmrZ63G+iV+swoNj/5JTVDDkMhS2zYIiVBCDju6HU9+XqFSU7IUHOKvTt2a6M8/NikpPk0pBzLVsUvj4u3sdpvadmyg9Wv2eHFa83L4WxQcYVVulkfbVxSqWVdHqcv9g6wKCrMqNd6txK0uNeviOM4tVR1uw1JpJ/iOs9EpqexW1ejf9yxMePbkulxKzslWqNOpXnFx+nn7Vn25cb0ueX+WLvtgdvEpKStTb69YpiFffe7tkU0pL79QKWnZCgly6rwODbTw763eHslUGjfxyOOxKD3Notg6RqlTRETRzuQ2m0qdX6OGIYez9LY1jtgxvWUrt1YsL/0hqxXL7GrZuuRot4ZRdMT1xQvsGv9yjmJqm2/H9crsFK3yLRW1pmp1S4ezM+BZYnPa5FfDKVd2oTLXpqrGOZEy3IYM97GHr7ZYLTI4wFqZ8gpcSsnIVkigU13bxGn+ym2SSnZcr1erhkZN/EwZ2XknuSXf1aKpR26PRanpFtWvq1KnqEPLd7u99PkRNSSn46jzjnjRr11rj5YsK/3yzZKlVrVvXfIX1TCkFyfbNG+BVW+9Uqg6tWU6dArlUZFrqva3en+HwCPZ/G1yhDtUmO1S2j/piuwUIcN1vFaJVh1HqVa1jdP8FUe0auShVr1UfVvVsqkht9ui1DQprm7pU80jOnXk+RHhkr+z9HlHvjnVobWhP5eV/ku6eKlFHVqXrJsMo+hItr8ssGj6ZI/qVvNO0SrfUZGd6jy01VmY8Oyx+9vkH+6nwiyXDqzJVHSnGsWdOuZoa1aLDI/5XjsxgxOuqUZcpvq1amjUy3SKTpWNTqE8KrJVXYZ5f4fAI9n9rfIP91NBlkv7V2cq5txQeY7TKovVcvSXsuMQWnViLZtKbrdFKafRqshwyXmCVrVvLS1eVvp+Fi+VzjnisyGGUXQk258XSDMmy5StYk2F8qjITvUY3vQsTHj22P2tCgi3qyDLrcRV2apzbukPUDmCbPIPsyszoUCp2/KOuRxF6NSJ0anjo1PmVKWPvP7QQw/pkUce0YUXXqjhw4fryiuvlMNxejvJOp1OOZ3OUudZ/Mzx29KjViNZJO3ITFVccLgead9XOzJT9PnO1ZKkdzYt0eRuV2lp8m4t2b9TvWIaq0/tZrrp9/e8O7gJderaWBaLRXt2HVCdehEafs8A7d11QHO/WSlJ+urDJbr+tp6K352i+D2puuG2nsrPK9RvP/7j5cnNZfvyAhmSIuvYlJbo1rzpOYqsY1O7fkX/hjYszFdgqFWh0VYl73Tr57ey1ayrQ406Vv2d14HyOBudko7TKrs5WtWzfpwsFou2p6WqQVi4xvTope1pafpswzq5PB6l55VeFLg8HiXnZGtHepqXJjan8zo0kMUi7Y5PU53aNTTqlt7aE5+m735dK0kKCfZXragQRUUES5Lq1yk61GpqerZS03OOe7tVUW6ulBBfsoPeviSrtm21KiTEUN16Hl3Yt0AvTwjQ7XflqXETtzIyLFq90q4GjTw6r4vrBLdctkFXFeih0YH65EOHunV36c9Fdq1cYdPLr5b8vk59zV+/z/PTU8/mKCDQUGpq0WIjKMjQUf80gSqnotZUNhN8FaMkHfwnVYYh+dcOUP6+XMV/vF3OmEBF9oyRxW5VcIswxX+8XVaHTY4op7I2Zihl0T7VvaHxyW+8GunaJk6yWLQ7MVV1a9XQPdf10q6kNH27YJ1sVovG332ZWsTV0v2vfCmb1aLIsKKvuMjIypPL7Xt7V+bkSLvjS154ik+yaOMWKSzUUFw96ZJ+bj3xgl0PjHSpRVNDaRkWLV1hUZNGhnp2Pf13Rgdf7dGwe+ya8YFVF3T36PdFVv213KIZU0o+aPXCZJt++MWqyc+7FBQgHUgpOj84uGhHDqCqqsg1lVlalbYmXYZhKLB2gHL35WnHB7sUWDtAtXrVlNVuVVjLUO34cJesDqv8o5zK2HBQ+xckq+FNDbw9uqmU2arENH278FCrRh1q1WTfb1V2jrQ7vuTXexMt2rDFUFio1KCedFl/jx59waqHRnnUsqmUli79tdKiZo0M9ep6+vd30zWGhtxj0TsfWNSnu6FfF1m0ZLn03uslzXv2FYu+n2fRlOc9CgyQkg91KoROoYqryE6Z4evtJSl59UHJMBQU66+cpHxtej9eQbWdqnNBpKx2i8JbBmvT+/GyOqwKqOlQ6vosJcxPUYub63p7dFPp2iZOFlm0KylVdaNr6N5DnfrmUKcmHOrUfZO/lM1iUWTooU5l0yk6BZyZ6tCq/asyZUgKjnUqOylf695LVHCsU/UviJDVblFkqyCtm5Mo26FWpazP0p4/0tRmSKy3RzcVWlXi2FZJG7ZIYaFSw3rS5f0NjXlBeniU1OpQq5aslJo1knqXo1W3XCPdfI/09gdS3+7SvEXSn8ulOa+XbPPMK9J386TXn5eCaBV8SHXoVOLKLBmSQmMdykwq1KrZ+xVax6FGfYq+vWr34oNyhtoUFOWn9N35WjF9n+qcG6zaHYJOfMPVDJ0qQafgS8yx59sZeOedd/TVV1/p5ptvVmhoqG666SYNHz5cbdq08fZoZyzEz6kH2/ZRTECI0gty9VP8Rv33n9/lOnRopZ8TNmns8u91Z4vuevKcAdqRmaK7//xMy1M4WvjRgoL9ddvdfRUVHarMg7la9OsGzZg6T+5Dgfpk1iI5nH66e8ylCgkJ0Ma1e/Xo3e8pN6f6fYXIieTlGPp9Vo4yD3jkH2JRi/Md6n1LoGz2oh03slI9+uWdHGWnexQcblXbPk71uD7Ay1OfHR4+FYVy8uVOSVKI06mHzu+pmOBgZeTl6cetWzTpz4VyeXxrAVDRggOduvOmnqoZGayDWXn6488teuuDBcWd6nFuYz3+n4HF2z/zwOWSpOkfL9b0jxd7ZeaKsmWTTY88ULIYf+uNoq9E6zegQA88kqf7H87Th3OcevtNf6UcsCgk1FDLVm6dW44d1yWpVWu3xjyRq9kznHpvplO1Yz169MlctWhZskPgd98UvUjyyP2lXyS4/6Fc9b+4sFz3e7bRKZwJX26VO8el+E93qDAtX7YgP4V3jlLsNQ1lsRd9SKbhiFaK/3S7dr65Qa5slxxRTsVe00BRfUx4SAAvCg50auS1PRQdHqyD2Xn6ddlWvfHZQrndHtWOClXvjk0kSe8/d0up69314idasXGvN0auUOs2WXT7fX7Fv540teillcsvcuvZR90aN8att9+TJk2za/8BqUao1K61oR5d3ce7yRPq0MbQ+KdcmvquXVOn21QvVpow1qW2rUp2tvj066IX4oeP9it13XGPuDRooDl+LqNVKC9f7pQkuXJc2vnxbuWnFsgebFfUuRFq8O/6sh5qVYu7m2rnx7u1adoWubJcckY5Fffv+qrdt5aXJzeX4IAyWvV5Ga169qhWjfe9Vq3bJN02uuQN2olTi/4uDbrYoxceNfTcGEP/N1t6aapV+w51qkNrqVeX8h168pw20ktPeTTlXaumvGtR/Vjp5ac9anfEQaM//rpohlvvLf3G8XNjPLpyoDkOeUmnUF6+3ym3Nn8Yr7zUQjmCbap1XriaXh8r66H3BDrc21CbP4zXmtd3qjDLpYCaDjW9Plb1+kd5eXJzCQ5watQ1R3Rq+VZNO9ypyFD1PqeoUx88U7pTd47/RCs20Sk6VYRWobx8vVWFOW6t/zBJeSmF8gu2KbZLmFreEFPcqs6j62v9B0la/tpuFWS5FVjToZY3xKhB/wgvT24utKrEuk3SkNElz7kTphb9/xUXG3rxUen5MdKbs6WJU6X9B4p2FuzQWurdpXz3d04badJT0qvvSlPelerFSpOeltof0aqPvi6aYci9pa/7whhDVw6UKdAplJfvd8qj1e8nKyfFJUewVfW6hqjd4JrFncpNc2nlzP3Ky3DJv4ZdDS8IU+trWE8djU6VoFPlQ6fMyWIYVfcLkaxWq5KSkhQdHa39+/dr5syZmjFjhjZv3qxOnTrp9ttv1/XXX6+QkNP7Ko2mnz5XQRNXL40mlG8nMhxr8IdzvT2CTxjStPw7eN678oazOMmJvXrOh5V2X6hYFdUpSWr02qQKmLj6if29yv4YZCqz+ft4VjSqm1ju61ZmpyRa5UsqqlU3LLmjgiauXra9Ya6vX66q/hg/xdsj+ISA2jvO6PqsqVAeFbmmGr7s1rM/cDW05vV23h7BJyweP83bI/gEe8zWcl+XNRXKoyI7Vdl/J33V4tfO9fYIPuHPF+nU2XAmnZJYU6F8KrJVD6++tgImrn5+m9zN2yP4hL9efNPbI/gEa8zmcl+XNRXKoyI79fTaQRUwcfXz3aTe3h7BJ9Cps4NO+R6rtwc4W6Kjo/Xwww9rw4YN+v3339WqVSvdd999ql2bI+YBOHMew1ppJ/gmOgWgIlVmp2iV76JVACoSncKZolMAKhJrKpwpOgWgotEpnClaBaAisabCmaJTACoSnTKnKv07ZbGUfTj/nj17aubMmUpISNArr7xSyVMBAFCETgEAzI5WAQDMjE4BAMyMTgEAzI5WAQDMjE4BQPVWpXdeNwzjhJeHhobq9ttvr6RpAPgytyyVdjpdmZmZGj16tOLi4hQQEKDzzz9fS5cuLb48KytLd999t+rWrauAgAC1bNlSb7zxxtn87cFx0CkAlaUyO3W6raJT5karAFQWs3ZKolVmRqcAVBbWVCgPOgWgMpm1UxKtMjNaBaCysKZCedApAJXFzJ2Sqm+r7N4e4Ex4PB5vjwAAXjd8+HCtXbtW7733nmJjYzVnzhz169dP69evV506dXTffffpt99+05w5c9SgQQPNnTtXI0eOVGxsrAYN+n/27ju6qfr/4/jrJm3TQRej7L03CshScCA4wYGiqKDgABdOBHGAgAg4QNyiKKg4cP/ULy5EUFmKILPsUTaFQneb3N8fBUppKW1pc2+S5+OcHOxNcvMGaZ982ntvels9vl+jUwBAp+yOVgEArbIzOgUAdMrO6BQA5KBV9kWrAIBO2RmdAoAcgdoqn77yOgB4i8c0vHYrjrS0NH3++eeaOHGiunbtqgYNGmjUqFGqW7fu8TOs/vrrLw0YMEDnn3++6tSpozvvvFOtW7fW0qVLy+KPCgBgAW92qjitolMAgGPs2CmJVgEAcrCmAgDYnR07JdEqAEAO1lQAADuza6ekwG6VTx+8bpqmpk6dqgEDBujTTz+VJM2cOVPNmjVTkyZN9Pjjjys7O9viKQGg7GRnZ8vtdis0NDTP9rCwMC1YsECSdO655+qbb75RQkKCTNPU3LlzFR8fr549e1oxckChUwACHZ2yP1oFINDRKnujUwACHZ2yNzoFALTK7mgVgEBHp+yNTgFAYLcqyOoBzsTYsWM1adIk9ejRQ0OHDtXmzZs1adIkPfjgg3I4HHrppZcUHBys0aNHWz0qAB/nMb13rk9GRoYyMjLybHO5XHK5XPkeGxkZqU6dOmnMmDFq2rSpKleurFmzZmnRokVq2LChJOnll1/WHXfcoRo1aigoKEgOh0PTpk3Tueee65XfTyCjUwC8xZudkoreKjplf7QKgLewpkJJ0CkA3sKaCiVBpwB4E2sqlAStAuAtrKlQEnQKgLfYtVNSYLfKp6+8/t577+m9997T7Nmz9b///U8jR47UlClTNHLkSI0YMUJvvvmmPvroI6vHBIBiGT9+vKKjo/Pcxo8ff8rHz5w5U6Zpqnr16nK5XHr55ZfVr18/OZ1OSTkBW7hwob755hv9/fffeuGFF3T33Xfr559/9tZvKWDRKQD+qjitolP2RqsA+CPWVP6DTgHwV6yp/AOdAuCvWFP5D1oFwF+xpvIPdAqAv2JNVTQ+feX1Xbt2qV27dpKk1q1by+FwqE2bNsfvP/vss7Vz506LpgOAkhkxYoQeeuihPNsKOvPqmPr162vevHlKSUnR4cOHVbVqVfXt21d169ZVWlqaHn/8cX355Ze6/PLLJUmtWrXSv//+q+eff17du3cv099LoKNTAPxVcVpFp+yNVgHwR6yp/AedAuCvWFP5BzoFwF+xpvIftAqAv2JN5R/oFAB/xZqqaHz6yutVqlTR6tWrJUnr16+X2+0+/rEkrVq1SnFxcVaNB8CPeGR47eZyuRQVFZXnVljAjomIiFDVqlV18OBBzZkzR71791ZWVpaysrLkcOT9cu90OuXxeMrqjwtH0SkA3uLNTpW0VXTKnmgVAG+xe6ckWmVHdAqAt7CmQknQKQDeZPdOSbTKjmgVAG9hTYWSoFMAvMUXOiUFXqt8+srr/fr1U//+/dW7d2/98ssveuyxx/TII4/owIEDMgxD48aNU58+faweEwDK1Jw5c2Sapho3bqwNGzbo0UcfVePGjXXbbbcpODhY3bp106OPPqqwsDDVrl1b8+bN04wZM/Tiiy9aPbrfo1MAQKfsjlYBAK2yMzoFAHTKzugUAOSgVfZFqwCATtkZnQKAHIHaKp8+eH306NEKCwvTwoULddddd+mxxx5Tq1atNGzYMKWmpurKK6/UmDFjrB4TgB9wm4bVI5xSUlKSRowYoR07dqh8+fK69tprNW7cOAUHB0uSPv74Y40YMUI33XSTEhMTVbt2bY0bN06DBw+2eHL/R6cAeAudQknRKgDeQqtQEnQKgLfQKZQEnQLgTbQKJUGrAHgLnUJJ0CkA3mLnTkmB2yrDNE3T6iHspuFnY60ewS/Um5Bt9Qh+o9+sH60ewS8MaPhniZ9725LbSnGSwk1vP91rrwXfVe/lF6wewS9U+41/BpWGGfx9LBX1auwq8XO92SmJVuH0blx4p9Uj+IWNrzexegS/MO+5qVaP4BfCqm4+o+ezpoLd3L70VqtH8AsrXmll9Qh+4c/nXrN6BL8QVGVDiZ/Lmgp2M3TZjVaP4Bf+fLm91SP4hb/G06nScCadklhTwX6GLb/O6hH8wtzJnawewS8sGv+G1SP4BUeV+BI/lzUV7GbUyt5Wj+AXvnuhm9Uj+AU6VTrolP/x6SuvA4C3eEyH1SMAAHBKdAoAYHe0CgBgZ3QKAGB3tAoAYGd0CgBgZ3TKnvi/AgAAAAAAAAAAAAAAAAAAAAAoc1x5HQCKwGMaVo8AAMAp0SkAgN3RKgCAndEpAIDd0SoAgJ3RKQCAndEpe+LK6wAAAAAAAAAAAAAAAAAAAACAMseV1wGgCDziDCwAgH3RKQCA3dEqAICd0SkAgN3RKgCAndEpAICd0Sl74srrAAAAAAAAAAAAAAAAAAAAAIAyx5XXAaAIPCZnYAEA7ItOAQDsjlYBAOyMTgEA7I5WAQDsjE4BAOyMTtkTV14HAAAAAAAAAAAAAAAAAAAAAJQ5rrwOAEXgMTnXBwBgX3QKAGB3tAoAYGd0CgBgd7QKAGBndAoAYGd0yp74vwIAAAAAAAAAAAAAAAAAAAAAKHMcvA4AAAAAAAAAAAAAAAAAAAAAKHNBVg8AAL7AYxpWjwAAwCnRKQCA3dEqAICd0SkAgN3RKgCAndEpAICd0Sl74srrAAAAAAAAAAAAAAAAAAAAAIAyx5XXAaAIPOIMLACAfdEpAIDd0SoAgJ3RKQCA3dEqAICd0SkAgJ3RKXviyusAAAAAAAAAAAAAAAAAAAAAgDLHldcBoAg8JmdgAQDsi04BAOyOVgEA7IxOAQDsjlYBAOyMTgEA7IxO2RNXXgcAAAAAAAAAAAAAAAAAAAAAlDmuvA4ARcAZWAAAO6NTAAC7o1UAADujUwAAu6NVAAA7o1MAADujU/bEldcBAAAAAAAAAAAAAAAAAAAAAGWOK68DQBFwBhYAwM7oFADA7mgVAMDO6BQAwO5oFQDAzugUAMDO6JQ9ceV1AAAAAAAAAAAAAAAAAAAAAECZ48rrAFAEnIEFALAzOgUAsDtaBQCwMzoFALA7WgUAsDM6BQCwMzplTxy8XoAKUSlWj+AX0quWt3oEv9HGtd3qEQDYTMuzN1s9gl/YvaSe1SP4hfIO/kkJIC+HYVo9gn/g+yilwsEfJIACOESrSgPf8wcAwP85eCNvAAXg+38AAAAAzgTfbQAAAAAAAAAAAAAAAAAAAAAAlDkukwkAReDhao0AABujUwAAu6NVAAA7o1MAALujVQAAO6NTAAA7o1P2xJXXAQAAAAAAAAAAAAAAAAAAAABljiuvA0AReEzOwAIA2BedAgDYHa0CANgZnQIA2B2tAgDYGZ0CANgZnbInrrwOAAAAAAAAAAAAAAAAAAAAAChzXHkdAIqAM7AAAHZGpwAAdkerAAB2RqcAAHZHqwAAdkanAAB2RqfsiSuvAwAAAAAAAAAAAAAAAAAAAADKHFdeB4Ai4AwsAICd0SkAgN3RKgCAndEpAIDd0SoAgJ3RKQCAndEpe+LK6wAAAAAAAAAAAAAAAAAAAACAMseV1wGgCDgDCwBgZ3QKAGB3tAoAYGd0CgBgd7QKAGBndAoAYGd0yp648joAAAAAAAAAAAAAAAAAAAAAoMxx5XUAKAKTM7AAADZGpwAAdkerAAB2RqcAAHZHqwAAdkanAAB2RqfsiSuvAwAAAAAAAAAAAAAAAAAAAADKHFdeB4Ai8IgzsAAA9kWnAAB2R6sAAHZGpwAAdkerAAB2RqcAAHZGp+yJK68DAAAAAAAAAAAAAAAAAAAAAMocB68DAAAAAAAAAAAAAAAAAAAAAMpckNUDAIAv8Ji8fQgAwL7oFADA7mgVAMDO6BQAwO5oFQDAzugUAMDO6JQ9ceV1AAAAAAAAAAAAAAAAAAAAAECZ48rrAFAEJmdgAQBsjE4BAOyOVgEA7IxOAQDsjlYBAOyMTgEA7IxO2RNXXgcAAAAAAAAAAAAAAAAAAAAAlDmuvA4AReDhDCwAgI3RKQCA3dEqAICd0SkAgN3RKgCAndEpAICd0Sl74srrAAAAAAAAAAAAAAAAAAAAAIAyx5XXAaAITM7AAgDYGJ0CANgdrQIA2BmdAgDYHa0CANgZnQIA2BmdsieuvA4AAAAAAAAAAAAAAAAAAAAAKHNceR0AisDDGVgAABujUwAAu6NVAAA7o1MAALujVQAAO6NTAAA7o1P25PNXXl+yZIluuukm1a1bV2FhYQoPD1fdunV10003aenSpVaPBwAIcHQKAGB3tAoAYGd0CgBgZ3QKAGB3tAoAYGd0CgACl09fef2rr77S9ddfr4suukhDhw5V5cqVZZqm9u7dqx9//FFdunTRp59+qt69e1s9KgAfZ5pWTwBfRKcAeAudQknRKgDeQqtQEnQKgLfQKZQEnQLgTbQKJUGrAHgLnUJJ0CkA3kKn7MmnD15/4okn9Mwzz2j48OH57nvggQc0YcIEPf7440QMAGAJOgUAsDtaBQCwMzoFALAzOgUAsDtaBQCwMzoFAIHNYfUAZ2LDhg265pprTnn/VVddpY0bN3pxIgD+yiPDazf4DzoFwFu82Sla5V9oFQBvoVMoCToFwFtYU6Ek6BQAb6JTKAlaBcBbWFOhJOgUAG+hU/bk0wev169fX1999dUp7//6669Vr1497w0EAMAJ6BQAwO5oFQDAzugUAMDO6BQAwO5oFQDAzugUAAS2IKsHOBPPPPOMbrjhBs2bN089evRQ5cqVZRiGdu/erZ9++kk//vijPv74Y6vHBAAEKDoFALA7WgUAsDM6BQCwMzoFALA7WgUAsDM6BQCBzacPXr/22mv1+++/a8qUKXrxxRe1e/duSVKVKlXUqVMnzZs3T506dbJ4SgD+wDR5Sw8UH50C4C10CiVFqwB4C61CSdApAN5Cp1ASdAqAN9EqlAStAuAtdAolQacAeAudsiefPnhdkjp16uS3oQp3hujOhj3ULa6ZYkPKKf7wTr209v+05vAOSdLCnuMLfN7Udd/rwy3zvTmq7YWFBWvQTefqvE4NFRsdrvWb9mrq279q7fqcf/ic16mhel3SWo0aVFZMVLgG3f++Nmzea/HUZWP1Coe++SxYm+MNHUx06JFRGTqni7tMX3PhfKc+eS9Ye3YZqlzV1I23Zemcc3Nf88tZQVq8wKmE7Q6FuKRGzdy6+fYsVatplulcgDf4c6ckyZ2Wrf1fbdSRf/bKfSRTobUiFXdjY4XVjZYkrR30U4HPq3RdQ1W4pI4XJ7W38NBg3XVtF3Vr10CxUeGK37pXL86cqzWb98jpdGhwny7q3LquqsdFKzk1Q0tWbdOrn8zX/kMpVo9e6pYtd+iDT4K1Nt7Q/gMOTRyToW7nlm2nfp3n1JvTg5Ww01D1aqaGDMrS+eflvuZ7Hwbpt/lObd3mkMsltWzu1r13Zql2LToF/+DPrXKnZSvh86069Pd+ZR3OUnjtcqp1c31F1IvMuT/drR2fbtahv/crOzlbroouxfWorriLqlk8ub2Ehwbrrmu66Pyzczv1wke5nRpyTRd1bnVCp1Zv0yuf+WenJGnpckPvfezQmnhD+w4YmjwmWxeeV7ZN+GmeoVffdWr7TqlmNem+29266ITXnPahQ7/8bmjzNkMul9SmuakH7nKrbq0yHQvwCn/ulCRlp7m1ZfZ27V+SqKzDWSpXJ0L1b6mjqPrlJOW0atPH27R/6UFlJ2cptJJL1XtWUbXuVSye3F7CQ4M1+OoTWrUtp1WrT2hVl1Z1Vb1STqsWr96mV2b7Z6uWLpfeneXQ6nhp3wFDL49166LzyvY1f5wnTX3HcbxTQ2/3qHvX3Pvf/sDQT78b2rxNCnVJbVpID93loVPwC4HQqfWf7tSeJUnKTMpSVJ1wNb21hqLrR+Tcn+5W/Ec7tWfpIWUdyVZYpRDVviROtXpUsnhye6FTuZYsl96dJa062qmpY01190KnXn5H2rZTqlVNGnq7dPEJnXrrA+mn36VNRzt1Vgvp4btEp+A3/L1VWWlurfl4j3YuPqyMpGzF1A1Tq9uqKrZBuKSclq36cLd2LjmszCNuhceFqP6lFVSvZwWLJ7cXWpWLVgHeFQidWjFrv3YsOqKMw27F1g3V2QPjVKFBmCQp7VC2ls/cq93LU5WZ4lalZuFqN6iyIquFWDy5vdCpXHQK/sRh9QA4tcebX6tzKjTQ6P8+1c1/TtHiA+s1td0gVXJFSZIumzsuz23Mf7PlMT2au2elxZPbz7D7LlG7s+po3Ivf67b73tOSZVv0wpjrVbF8zg8Cw0KDtXJNgt56/3eLJy17GelSnXoeDbw3q1T299scp0Y97Drl/fGrHZo8NkRdu2dr0hvp6to9Wy+NDdH6NblfflavcKpnr2yNezldTzyXLo/b0NjhLqWnlcqIpcJjGl67Ab5k9/urlbL6gKrd3kJ1R3dSePMK2v7CP8o6mC5JavBi1zy3Krc1kwwpsm2cxZPby+ODeuicFrU06o0fdNOIGVr031a9MryPKsWWU2hIkBrXidO7Xy1U/yc+0PAp36pWlVg9/2Bvq8cuE2npUsP6Hj1yf+l06v/+59SQB07dqf9WOfTEMyG69OJsfTAtXZdenK3HR4do5ercTi1b7lSfq7L1zqvpenlSutxuQ/cPcyktQDtFq+BLtryzXodXHVTduxqr+bNtFdUiRvETVigzMUOStP3DjTq8IlF1BzdRi+faqfIlNbRt5gYd/Hu/xZPby8jbeqhD81oa9dYP6vfEDC1atVWvPtpHlWKOdqp2nN79ZqFuefoDPfbKt6pZJVYvDPXPTkk5rWpc39SIoaVzctXXPxgaONR5yvuXrzI0bLRTV/TwaPa0bF3Rw6NHRzm1YnXu1+Ol/xq64SqPPngtW289ny23Wxr8aJBSA7RVgC+Jf3ujDv6XpCZDGqjdc60V2zJaK8avUUZipiRpw8ytSlxxSE3vrq/2k1qr+qVVtf79Ldq/NNHiye3liaOtevrtH3TjkzO0cOVWvfpIbqua1I7TO98s1C2jPtCwV3LWVC/c75+tSkuTGjcwNfIBT6ns78sfDN069NQ/Rvh3pfTIaId69TD1xTse9eph6uFRDq1YnfuYJcsN3Xi1qVmve/T2Cx653dIdjzgCtlO0Cr5k5ZtbdeC/I2p1T211mdRUFVpFasnY9Uo/2qm1M3Zo//LDanVPHZ37QjPVuayy1ry3XXuWHrJ2cJuhU7lyOiU98UDp7O/LH6T+Q099/7KV0kOjpV49pK/eyfn1oVHS8jydkvpdLX38uvTOC1K2Wxr0iGzVKYk1FXAqy15P0N4VyWp3X01d9EJDxbUupwXPbFbagZyfMax4f5f2/JusdvfXVPfJjdTg8opa8e5O7Vxy2OLJ7YVW5aJVJcOaCijY4td2a/fyFHW6v5oufbGuqrQO19zR25V6IEumaWr+hB1K3pOl84ZX1yXP11FEpWD9OnqbstNL5/s6/oJO5aJTJUOn7MmvD15//PHHNXDgQKvHKBGXI0jnV26uV9b9oH8PbtGO1AOatvEX7UxL1DU1O0iSEjOT89y6xjXV34mbtDPtoMXT20tISJC6dm6kN6bP04pVO5Sw65Dem/Wndu1JUu/L2kiSfpy7Wu9//Jf+/nertcN6wVnneHTDbVnqcF7BB1pkZ0kfvB2su24I1S1Xhunx+1xatbzkXyq++yJIrdp6dPWN2apey9TVN2arxVkeffdF7hs/jByfofN7ulWzjqk69U3d/UiG9u91aNN6v/4SBfh0pyTJk+nWkb/3Kq5PQ4U3jlVI5XBV6l1fwRVDdWhuzruEBEW78tySl+1TeOPyCqkUbvH09uEKDtIF7RvqlY/n6991Cdqx95CmffmXdu5L0jUXtVJKWqbun/C5flkcr227D2rlxl16fsavalqviipXiLR6/FLXuYNHgwdl6YKuBXcqK0ua+kawrrguVN0uDdPAIS79/W/Je/Hx7CCd086jW2/KVp1apm69KVvtz/bo489zOzVlYoauuMStenVNNWpg6snHMrR7j0Nr4+kU/J8vt8qT6dbBpftUo29dRTaJUWjlMFW/po5CKoVq3687JUnJGw6rwrmVFdU0Rq5Koap0QVWF1yqn1M3JFk9vH67gIF3QrqGmfjpfy+JzOvX2V39p5/4kXXthTqfue/5z/bzkhE598Kua1q2iyuX9r1OSdF4HU/fd7lH3rgVfbT0rS3rxDYe69wnSOZcEqd8Qp5YsK/k3qj6Y7VDHdqZuv8mjurWl22/y6JyzTX0wO7dDb0xyq/elphrUzfmm5TPD3dq1x9DqeL5BBv/my52SJHemR/uWJKrejbUU0zRKYVVCVefamgqt5NLOn/dIkg5vOKIq51VSTLNohVYKVbULK6tcrQgd2ex/Vw0qKVdwkC5o21Avn9iqr/O26t6jrdq6+6BWbtql5z/8Vc38tFXndZSG3m7mufrRiTKzpOdfN3TBtQ616+nQDYMdWrys5K83c7ahTm2lO242Va92zq8d2kozPstt0FuTPLr6aKeaNJDGDvcc7VTJXxfwBf7QqT2LD6lRv+oq3zRSEVVC1fC6agqLc2nbTzkn/B6KT1G1ruVVoXmkwuNcqtm9oiJrh+nwxlSLp7cPOpVX147SA7dLPQrp1KTXpW7XSmf3lPoO1hl1asZsqXNb6c6bpXq1c37t2Faa8VnuY96eJF19qdTwaKeeHS7t2mNoFZ1CAPD5VmV4tHNRklrcXEUVm0WoXFWXml5fWRFxIdr84wFJUmJ8qmqdH6NKzcspIi5EdS8ur+jaoTpEq46jVXnRKsA+fL1T2RkebV94RG36xymuebgiq4aoZd9KiogL1oY5h3RkV5YOxKer/Z1VVKFBmKKqu9TujsrKTvdo6wJOsjqGTuVFp+BP/PqIm4SEBG3ZssXqMUrEaTgU5HAq05OdZ3uGJ1utY+vke3z5kHLqUqmJvk1Y6qUJfYfTaSjI6VBmZt4/y8zMbLVsVt2iqezrtedDtG6lQw+MzNSkN9PVsatbz45wadeOkh30EL/aoVZt8x6A2LqdW/GrT/3lJzUl57XKRRZ8MIgVTNN7NwQOX+6UJJluU/KYMoLzfj4bwU6lbjiU7/HZSRlK/m+/os+r5qUJfcOxTmVkndT8zGy1blRwp8qFu+TxmEpOyfDGiLYyZkKIVqx0aMyTmfpwWrouPN+tB4a5tK2EnfpvtUMd2uXtVMf2bv236tSdSj7aqago+3zR9manaFVg8eVW5XRKcpzUKUewQ0fic77pF9koWoeWHVBmYoZM09Th1YeUvjtNUS1jrRjZlk61niq0U2FHO5UaeJ2SpCcnOPXvSkMTnnLr83ey1aObqSHDnNq6o2T7W77KUOf2eb/4djnH1PJVp25f8tHzL6JZU8HP+XKnpEJaFeJQ0tFWRTeK1IF/DiojMVOmaergqiSl7U5T+VbRVoxsS8dbddKaKj0zW20a0qqTPfGcoWUrDT3/lEdfvOtRz/NN3TXMUeJO/VtQp9qb+reQTh053qmSvWZZYE2FsuAPnTI9kjM47+ezI8Shg2tzPpFjm5TT3r+TlH60UwdWHVHKrgxVbB1lxci2RKeKZ+RzOVf2e+Ep6at3pZ7nS3cMk7aUeD0ldW6fd1uX9tKyVad+jh07JdEplA1fb5XHk9MqR8jJaypDB9bmHJxeoUmEdi09orSjV7jdtzJZybsyFdfaZp/kFqJVxUOrCsaaCmXB1ztlegpeUzlDDO1bmypPVs7V1R0hufc7nIYcQYb2reEkq2PoVPHQqYLRKXsKOv1DfNf7779v9QgllurO1IqDWzWw/oXakrJXiRnJ6lG1tZpH19D21AP5Hn9ZtbOV4s7Qb3sK+coQoNLSsrRyTYL639BJW3cc0MFDqbqoa1M1bVRVO3YetHo8W9m909Afc516/aN0la+Y85W013XZWr7EqblzgtRvUFax93nooKGY2LxflWNiTR06WPAPsExTev+NYDVp4Vatunw1h3/z5U5JkjMsSGH1o7X//zYrpGqEgqJdOrxot9I3JykkLv+V1ZP+3CWHy6nItnEWTGtfqelZWrF+pwZe1VFbdiYqMSlVPTo1UfP6VbV9T/5OhQQ7dc/152rOX2uVkp5pwcTW2ZFg6Mdfnfr203RVOtqpm/tma+Fip/7vhyDdfUfxO3Ug0VD5kzpVPtbUgcRTd2rKa8Fq3dKt+nQKAcCXW+UMC1JEgyjt/HqbQquFKzg6RIl/7VXKpiNyVQ6TJNW8pb62vhOvFQ8skuE0JEOqM6iRIhtzQOAxxzvVu6M27zraqY5N1LzeqTt173Xnas7CwOuUJG1PkH74xdBPn2UrrmLOtltv8OiPxYa++sGhoXcU/60+9yeqwFbtTyz48aYpTXrNqbNaetSwXrFfDvApvtwpSQoKcyqqYTlt/WqHwquHKSQ6WHv/3K8jG5MVViVUktRgQB3FT9ukhff9c7xVjW+vp+jGHBR4TGp6llZs2KlBvXJb1bNjE7U4VauCnLqnz7masyjwWrUtQfr+F0O/zvYc79RtN5hasNjQl98beuDO4q9x9idKFU46769CrArt1MRXHTq7pUmn4Pf8oVMxDSO04YvdiqgeKldMsHb9kaikDSkKr+KSJDW9tYZWvrVNv929UoZTkmGoxZ21FNuknLXD2widKrptCdJ3v0i/zdbxTg28QZq/WPrye+nBO4u/z/2JUsWTOlXxNJ2a8KrUtqWpRnQKAcDXWxUc5lT5RuFaN3uvIqu7FBodpO1/HNLBDWkqVyVEktT6tqr6580E/W/wWhlOyTAMnTW4uio2jbB4evugVUVHqwDv8odOVWwcplWz9yuqRohCo4O0dcFhHVifrsiqIYqq7lJEpSAt/2CfzhlcRU6XQ+u+TVT6IbfSDhb8LuWBiE4VHZ2Cr/Hrg9eLIiMjQxkZec+y8WRmyxFi/R/N6P8+1cgW1+r/zn9c2R631h3ZqR93LVfjqPxXrL2ielv9uPPffFdqR45xL36vx4Zeoi/ev1vZbo/Wb9yjn+etUaP6HEB5os3rHTJNQ0NvC82zPTtLKnf06rL79xp6cFDu/R63lO2Wbrky7Pi28y7K1p0PnPoAQtOUTnXtpXemBmvbZoeeecleZ7+ZZsmu6AuUhoJa5c50yxnitGiiXFVvb6Fd01dp4yPzJYeh0NqRiupQRelbj+R7bNKCBEV1rCpHsPVz282oN37QE3f01HdT71K226N1W/Zqzl9r1aRO3k45nQ6NvedyGQ5Dk977xaJprbPuaKeuuyVvpzKzpOijndq9x9ANt+be7z7aqfMvze3UJRdna/hDJ3TqpC/xhXVq0pRgbdjo0JtT6RRwjJ07VfeuxtoyLV4rhi6SHFJ4nUiV7xSn1C05p/zv/TFByRuPqMGDzRVSwaXkdUna+v4GBUeHKKoFV18/5um3ftCTg3rq+8lHO7V1r+YsXKvGtfN3atyQy2UYhibOCLxOSdKa9YZM09CVN+f9nkJWlhRz9JyIXXukqwbk3n+sVR0uyd12xcUePflw7oHuxslf5gtp1bNTHFq/0dB7U+31/QFaBSvZuVVNhjTQurc2auG9/0gOKbJOhOI6V1Ty5hRJUsKc3Tq8IVnNH26s0IohSlp7ROvf26yQ2BDFtuBkq2OeeusHPTWwp3546YRWLVqrxrUKbpXDYWhCALZqTXzO1+PLbs57ZcqsTCnm6PkQO/dIvQbk3u92S9nZUrtLcrddebGppx/OPdA9X6dOsU2Sxk42FL9Jmjm1+Cd0lSU6BSsV1KnsTLeCbNCpVvfU0X9vbs05ON0hRdUNV9UusTq8OU2StPWHfTq0PkVnP1pPYRVDlLgmWavf3S5XbLAqtuREq2PoVNGsPtqpS2/OezJV5kmdunJA7n3ZRzvV9pLcbVdeLI16OPfjk5tkFrDtmDGTpXWbpA+nlvi3UWZoFaxk51a1va+G/nktQf+7a60MhxRTN0w1z43RoU05rdr4wwEdjE9Vx8dqK7xSsPavTtHyaTsVGhusuFacbHUMrSoaWnVqdApWsnOnOt5fVYte3aWv79gowyHF1gtV7fOidHBTuhxBhs59tIYWvbZLnw9YL8MhVW4VoapncYLVyehU0dCpU6NT9mT9EdqlKCsrS999953Wr1+vqlWr6uqrr1ZEROFf0MePH6/Ro0fn2Vb9pi6qcct5ZTlqkSSkJeruJW8r1BmsCGeoDmQe0dhWN2pnWt6zhlrH1FGdcnF6YsUsiya1v527D2noiI8V6gpWeHiIEg+m6OlhV2rXniSrR7MV05QcDlMTXkuXI+/PsBQalhO22AqmJr2Rfnz7ogVOLVrg1P3Dc89WCwvPjWBBV1lPOmQoOjb/lZzefSVYfy90avQLGapQiavZwv+UpFNSwa1qdFt7NRl4TlmNWmQhceGq/Vh7eTLc8qRlKyjGpYQ3Vii4Yliex6XGH1Tm7lRVG9zKokntLWFvkoaM+1ShriBFhLp0IClFY++5XDv35XbK6XTo2XuvULVK0bp7/GcBd5awJHk8ktNh6v030+U46XsN4Uc7VbGiqZnTcjv12+9Ozf3dqdFP5P55RZzQqQrlTSWedJX1g4cMlS+fv0PPvxys+X869eaUDFWmU/BTpbWmajHoLLW6o21ZjlokoZXD1GRka7kz3HKnZSskxqWNr6yRq1KoPJluJXy2RfWHNlNMmwqSpPBa5ZS6LUW7f9jBwesnSNiXpMHPfarQkCBFhOV0atyQy7Vzf95Ojb/7ClWrGK27JwRmp6TcVn38VracJ62pwo/+86hSBemzabkHlv8836Gffzf03MjcK6mc+GlXsbyOviNIbnsSDxmqUD7/64+f4tBvfzg0/eVsVeFcbfih0lxTnX1HK7W9s00ZTVp0YZVD1ebJ5nKnu5Wd5pYrNkSrX45XaJxL7kyPNn+yXc0fbKQKZ+V0qVytCCVvTdH273Zy8PoJEvYl6a4JeVv1bEGtGnK0VRMDs1Ue05DTaeqztzz5vvd3rFNxFaTPp+UeWP7z74Z++t3QhCdyt5U7qVMnX2npwMH8V2OXpHGTDf32h6H3p3roFPxSaXbqnDubq+PglmU1apGFV3Gpw9ONlJ3uVnaaR6Gxwfp38iaFx4XInelR/Mc7ddbD9RR3dk6TImuH68jWNG35v70cvH4COlU0HlNyOk3NfkuFduqLabnbf/o95zbxidxtJ3dqXxE7NXayNPcPaeZU0Sn4rdJsVZfBTXXukGZlNWqRlaviUtdn6ik73aPsNLdCY4O1+MVtOa3K8GjVR3vU8dFaqtI2p0vRtcOUtCVd67/Zx8HrJ6BVRUOrgLJVmp3qNqSRzr+7SVmNWmSRVULUfUxtZad7lJXmUVhskP54IUHl4oIlSeXrh+rSF+oqM8UtT7ap0Ogg/Th8i8rXDz3NngMLnSoaOgVf4zj9Q+yrc+fOOnTokCRp3759atu2rfr27au3335bd9xxh5o1a6aEhIRC9zFixAglJSXluVXr28kL0xddujtLBzKPKDIoVB0qNtTve1fnub9XjXZak7RDG47stmhC35GekaXEgykqF+FS+7Pq6I9FG6weyVbqNPDI4zGUdMhQlepmnlvM0QMjnE7l2R4dYyok5KRtJwSqUTOP/vs77xGGK/52qlGz3B94mWbOFdcXLXDqqYkZiqtqvwMCTdPw2g3+ozQ6JRXcqoY3W39A4IkcLqeCYlxyp2QpZeUBRZ5VKc/9h+YnKLR2pEJrRlo0oW9Iz8jWgaQURYa71LFlbf3+z0ZJuQeu16wSo3ufm63Dyemn2ZN/atzQI7fHUOIhQzWrm3luxw7gC3Iqz/bYWFMuV95t5U/oVMtmHi06qVOLljrVsnneTk2aEqzf5jv16osZqhbgnaJV/qWs1lTNB7Qp++GLwelyKiTGpeyULB1emaiYsyvIdJsy3aaMky8N4FDOJz7ySc88dafG332FalaO0T2TZispJTA7JUlNGprHW1WrhvLcKuacI6GgoLzbK8SYCg05adsJrWrd3NRfS/P+Pf1ziaHWzXP/npqm9Oxkh36Z79C0l7JVo6o3frfFQ6dQEmW5pmpzq/UHBJ7IGeqUKzZEWSnZSvwvSRXaxsrM9sh053+rBcNhSPa6aLVt5GlVi9r6fdkJrRpyhWpVjtE9zwduq5o2NOV2G0o8KNWukfdW6YROnbi9fKwU6sq77cROtTlFp9qc1Kmxkw39PN/Qu5M9Ad8pWuU/yrJT7QZafzDgiYJCnQqNDVZWcrb2rziiuLYxMrOPralOerDDkOlhTVUQOlW4pg0lt9vQgWJ0qkKs5CqkU62bS38uzfs6fy6Rzmqe+7Fp5lwd8Kf50vTJsmWnJNZUKJmybFXHQY3LePriCQp1KDQ2WJnJbu1dfkRV20fJc/T7f3Lk/XttOIwTrxGAE9CqwtGqU2NNhZIoy06de3vDMp6+eIJCHQqLDVJmslu7/k1R9fZ5j5sIiXAqNDpIR3ZmKnFjer77kYNOFY5OnRqdsiefvvL6woULlZmZc5bMyJEj5XQ6tXXrVlWpUkUHDhxQr1699NRTT+mdd9455T5cLpdcLleebY4Qe/yxdKjQUIZhaGvKPtUMr6B7G12qbSn79X8Jfx9/TLjTpQsrt9TL676zcFL7a39WHRmGtC3hoGpUjdHg287X9oREff/zSklSZLlQVa4UpQrlc04dqlk956tw4sEUJR5KsWrsMpGeJu1OyP0iuXe3oS0bDJWLkqrVMHXuRdl6ZWKI+t+ZpboNPDp82NDKZQ7VquvR2R2K/5PRy67O1tMPufTVx0Fq39mtJX869d8/Dj3zUu5b9rwzNVgLfg3SsNEZCgs3dejoGVvhEVKI6xQ7BnxAaXRKKrhVdnh7e0lKXrlfMqWQKhHK2puqvZ/FK6RKuKK7VDv+GHdato4s3aO4vo0snNTeOrSsLUOGtu5OVM3KMbrvhq7auvugvv19lZwOQ8/dd4Ua16msh1/8Ug6HofLR4ZKkw8npynb711ErqWnSjhM6tXOXofgNhqIipVo1TV3SPVujx4do6JAsNW7o0aEkQ0uXOVS/rkddOhb/z6LvtdkaPNSlGbOC1LWLW7//4dTivx166+XcTk2aHKw5vwRp0tgMRYSbOnC0UxEROQdxAL6srNZUdulU0oqcT9jQqmFK35OuHR9vUmiVcFU4r7IcQQ6VaxKt7R9vkhHikKuiS0fWJunAgr2q2a+exZPbS8cWtSXD0LZdiapROUb39+2qrbsO6tsFRzt1zxVqUruyHpr8pZwOQxWOdirJDzslSamp0rYTvl+esNvQ2vWmoqOkOjWly7t7NPJZpx65260mDU0dSjK0+B9DDeuZOq9j8X8yetO1Ht12v1PvfuTQBV08mvuHQ4v+NvTe1NwrtY+b7NAPPzs0ZZxbEWHS/gM528uVo1XwbYGwpkpccUgypbCqoUrbk65NH21TeNVQVelaSY4gh6KbRmrTrG1yHm1V0prD2jN/n+rfXNvq0W2lY4vcNVWNuBgNPdqqb462asLRVj04+Us5DUMVoo62KsX/WpVyUqd27DK05oROXXGxRyOedejRezxq2lA6eEhatMxQo3qmunYs/uvd3MfUgPsNTfvI0IVdTP36h6GFf0szX8lt3piXDH3/i6Gp4zwKD5P2He1UJJ2CjyvLTtnh7e0lad/yw5JpKqJaqFJ3Z2jdhwmKqOpS9fMryBFkKLZpOa37MEGOEIfCKoUocXWydv5+QE1uqWH16LZCp3Ll75S0Zr0UHSXVrSldebGp4c9Kw+6Rmh3t1MJlUqN6UrcSdKp/H+mW+6W3P5Iu6iL98of019/SB6/kPuaZl6TvfpFeGSdF0Cn4mUBo1Z5/j0imVK6aSym7M7Ry5m6Vq+ZS7Qti5QgyVLFZhFbO3CVniKHwiiHavzpF2+YdVMsBNjyqykK0KhetArwnEDq1a1myTElR1UJ0ZHeW/p2xV1HVQ1Tvwpx3r9r252G5opyKqBisQ9sy9M+7e1S9fTlVbXP6K84HEjqVi07Bn9jjKO1SMG/ePL344ouqUqWKJKlChQoaN26cbrvtNosnK7lyQaEa0qin4kKjdTgrVXP3rNIb6+fIbeZ+Ub24aisZhvTj7uUWTmp/5SJcuqN/V1WqWE5HjqRr3p/xmjZzvtxHA9WlQ32NeOCy448f9VgvSdL0j/7Qe7P+tGTmsrIx3qHRj+S+vcyMN0IkSd0uztY9wzJ19yOZ+uLDYM14K1iJ+w1FRkmNmrp1dgf3qXZZqMbNPXpgZKY+fi9Yn7wfrCpVTT0wMlMNm+b+Pf7x25y3wxn1SN63vbn7kQyd37Nkr1vaPJwVhTPkj52SJE9atvZ9vkHZB9PliAhWZNvKqnR1fRlBuW/ucmRxzjuDRJ1Txaoxba9cmEt3X3+u4sqX0+GUdM1dskGvf7ZAbrdHVStGqWvbBpKkD8b1z/O8IeM+1T9rd1gxcplZs86hux/M7cHk13I6dXnPbD01PFNPPpapd2cGa8rrwdq331B0lNSyuVudS9ipVi08GvNUpt58J1hvvhusGtVMjXsqUy1OeIeQz7/J6dSQB/N26snHMnTFJXQK/sMfW+VOcyvhs83KTMxQUESwYtpXVPU+deQ42qn6dzfVjs82a/Mba5WdnC1XRZeq96mjShfyw6sTlQtz6e7rzlVcbE6nfl26Qa9/ntupbmfndOrDMXk7Nfg5/+uUJK1aZ2jQg7nfTpn0qlOSU716ejR2hFvPDHfrrZkOPf+aU3v3SzFROVdPP7cEJ1lJUpsWpiY85dYr7zj1yrsO1awmTXzarVbNcg8K/PTrnG/ED3wg77d5xjyWrd6X2uNSYrQKZ8ofOyVJ2alubf5kmzISMxVcLkgV25dX3etrHm9Vs3sbatMn27XmtQ3HW1Xn+lqqelFliye3l3JhLt3T54RW/b1Brx1rVYUodTsrp1UfPZO3VXc996n+WedfrVq1Trrtgdwf0E58NefvUu9LPHp2hKmxw029OUOa9KpDe452qk1zqWuHkvXirBbSpKc8mvqOQ1PfMVSrmvT8KI9anXDR6E++zpnh1qF5f3A8drhHV9Mp+Al/7lT8rASlJ2YppJxTlc+JVcMbqskRlPM502ZoXcXPStCKV7YoKzlbYZVC1PCGaqp5cUWLJ7cXOpVr1TppwAO5X3MnvJrz31ddYmr8CGnccOmNGdLEV6W9+3MOwGjTXOrWoWSvd1YL6YWnpCnvSFPfkWpWk14YJbU+oVMff50zw4CheZ/77HBTV19astctC7QKZ8pfW5WV6tbqj/Yo7UCWgss5Vb1DlJrdWOV4q9o/UFOrPtqjpVO2KzPZrfBKIWp2Y2XV7VHe4snthVblolUlQ6dwpvy3Ux4t/3CfUg9kK6ScQzU7RqpVv0rHO5V2MFvL3tur9KRshcYEqe750Wreh/XUyehULjpVMnTKngzT9N33Q3c4HNqzZ48qVaqkypUra+7cuWrWLPczY+vWrWrcuLHS04v3VhAd54wo7VEDkusVFnyl5eVXX7Z6BL/Qutb2Ej+3+dejSm+Q01jV23uvhbJVVp2SpN4L7i3NUQPW7je5sm5pmDPhJatH8Asx1XyjUxKt8idl1aqbFt1R2qMGpPWvN7V6BL8wf/wrp38QTstVddMZPZ81FUqiLNdUdy4dUJqjBqxlr7a2egS/8Nf416wewS8EVdlQ4ueypkJJlGWnhi67sTRHDVh/vtze6hH8wqLxb1g9gl9wVIk/o+ezpkJJlGWrhq/oU5qjBqxfXups9Qh+gVaVjjNpFWsqlERZdmrUyt6lOWrA+u6FblaP4BfoVOmgU/7Hsiuvb9++XVu2bFFqaqoqVaqk5s2b53sLj6K49dZb5XK5lJWVpa1bt+aJ2K5duxQTE1OKUwMAAgWdAgDYHa0CANgZnQIA2BmdAgDYHa0CANgZnQIAnCmvHry+detWvfHGG5o1a5a2b9+uEy/6HhISovPOO0933nmnrr32WjkcjtPub8CA3Csk9e7dW8nJyXnu//zzz9WmTZtSmx9A4PLd96hAcdApAL6KTgUOWgXAV9GqwECnAPgqOhUY6BQAX0arAgOtAuCr6FRgoFMAfBWdsievHbw+dOhQTZ8+XT169NAzzzyjc845R9WrV1dYWJgSExO1cuVKzZ8/X08++aRGjx6t6dOnq337wt/Ob/r06YXeP2rUKDmdztL8bQAA/BSdAgDYHa0CANgZnQIA2BmdAgDYHa0CANgZnQIAlDavHbweEhKijRs3qlKlSvnui4uL04UXXqgLL7xQTz/9tL7//ntt3br1tBE7nYiIiDN6PgAcY5qG1SOgjNEpAL6MTgUGWgXAl9Eq/0enAPgyOuX/6BQAX0er/B+tAuDL6JT/o1MAfBmdsqfTv0dHKZk0aVKBASvIZZddpj59+hTpsVOnTtWAAQP06aefSpJmzpypZs2aqUmTJnr88ceVnZ1d4pkBAIGDTgEA7I5WAQDsjE4BAOyMTgEA7I5WAQDsjE4BAEqb1w5eLwtjxozRyJEjlZKSoqFDh2rChAl68MEHddNNN2nAgAGaNm2axowZY/WYAPyAaRpeuxXXkSNH9MADD6h27doKCwtT586dtWTJkjyPWbNmjXr16qXo6GhFRkaqY8eO2rZtW2n98eAU6BQAb/Fmp4rbKjplb7QKgLfYtVMSrbIzOgXAW1hToSToFABvsmunJFplZ7QKgLewpkJJ0CkA3mLnTkmB26ogK150z549euSRR/TLL79o7969Mk0zz/1ut7tI+3nvvff03nvv6ZprrtHy5cvVtm1bvf/++7rpppskSU2aNNGwYcM0evToUv89AIBd3H777Vq5cqVmzpypatWq6YMPPlD37t21evVqVa9eXRs3btS5556rQYMGafTo0YqOjtaaNWsUGhpq9ei2RacAoPTQqbJBqwCg9NCq0kenAKD00KnSR6cAoHTRqtJHqwCg9NCp0kenAKB0BWqrLDl4/dZbb9W2bdv05JNPqmrVqjKM4p9tIEm7du1Su3btJEmtW7eWw+FQmzZtjt9/9tlna+fOnaUxMoAAZ57+IZZIS0vT559/rq+//lpdu3aVJI0aNUpfffWVXn/9dY0dO1YjR47UZZddpokTJx5/Xr169awa2SfQKQC+hk4FHloFwNfQqsBCpwD4GjoVWOgUAF9EqwILrQLga+hUYKFTAHyNXTslBXarLDl4fcGCBZo/f36e4JRElSpVtHr1atWqVUvr16+X2+3W6tWr1bx5c0nSqlWrFBcXVwoTA4A9ZWdny+125zuTKiwsTAsWLJDH49F3332nYcOGqWfPnlq2bJnq1q2rESNG6KqrrrJmaB9ApwCgdNCpskOrAKB00KqyQacAoHTQqbJBpwCg9NCqskGrAKB00KmyQacAoPQEcqssOXi9Zs2a+d4ypCT69eun/v37q3fv3vrll1/02GOP6ZFHHtGBAwdkGIbGjRunPn36lMLEAAKdaZbsTNGSyMjIUEZGRp5tLpdLLpcr32MjIyPVqVMnjRkzRk2bNlXlypU1a9YsLVq0SA0bNtTevXuVnJys5557TmPHjtWECRP0v//9T9dcc43mzp2rbt26eeu35VPoFABf481OSUVvFZ0qO7QKgK9hTRVY6BQAX8OaKrDQKQC+iDVVYKFVAHwNa6rAQqcA+Bq7dkoK7FY5rHjRyZMna/jw4dqyZcsZ7Wf06NEaOnSodu/erbvuukvPPvusJkyYoGeffVYjR47URRddpDFjxpTO0ADgJePHj1d0dHSe2/jx40/5+JkzZ8o0TVWvXl0ul0svv/yy+vXrJ6fTKY/HI0nq3bu3HnzwQbVp00bDhw/XFVdcoTfeeMNbvyWfQ6cAoHDFaRWdKhu0CgBOjTWV9egUABSONZW16BQAFI41lfVoFQAUjjWVtegUABSONVXReO3K67GxsTKM3DMYUlJSVL9+fYWHhys4ODjPYxMTE4u0T6fTqZEjR+bZdsMNN+iGG24484EB4ERnftJokY0YMUIPPfRQnm0FnXl1TP369TVv3jylpKTo8OHDqlq1qvr27au6deuqYsWKCgoKUrNmzfI8p2nTplqwYEGZzO+r6BQAn+bFTknFaxWdKj20CoBPY03l9+gUAJ/Gmsrv0SkAPo81ld+jVQB8Gmsqv0enAPg0G3dKCtxWee3g9cmTJ3vrpQDAp53qbUJOJyIiQhERETp48KDmzJmjiRMnKiQkRO3bt9e6devyPDY+Pl61a9curZH9Ap0CgKIrSavo1JmjVQBQNKyprEGnAKDoWFN5H50CgKJjTWUNWgUARceayvvoFAAUHWuqovHawesDBgzw1ksBQKkzTeP0D7LInDlzZJqmGjdurA0bNujRRx9V48aNddttt0mSHn30UfXt21ddu3bVBRdcoP/973/69ttv9dtvv1k7uM3QKQC+jE4FBloFwJfRKv9HpwD4Mjrl/+gUAF9Hq/wfrQLgy+iU/6NTAHyZnTslBW6rHN58sXPPPVdPPfWU5s6dq/T0dG++NAD4raSkJN1zzz1q0qSJ+vfvr3PPPVc//vjj8bdmuvrqq/XGG29o4sSJatmypaZNm6bPP/9c5557rsWT2w+dAoDSR6dKF60CgNJHq0oPnQKA0kenSg+dAoCyQatKD60CgNJHp0oPnQKAshGorfLaldclqXHjxvroo480duxYuVwudejQQRdeeKEuuOACdezY8fgfNgCg6K6//npdf/31hT5m4MCBGjhwoJcmypWenq5XXnlFjzzyiNdfuyToFACUPjpVumgVAJQ+WlV66BQAlD46VXroFACUDVpVemgVAJQ+OlV66BQAlA27tqqsO+XVK6+/88472rBhg7Zt26Y333xT9evX1/vvv69u3bopJiZGF198scaPH+/NkQCgSEzTezdfs3//fn333Xf68ccf5Xa7JUlZWVmaMmWK6tSpo+eee87iCYuOTgHwVd7slK+1yp86JdEqAL6LTp2aP7WKTgHwVaypTo1OAYA90KlTo1UAYD3WVKdGpwDAenTq1KzsVImuvH7o0CEtXrxYe/fulcfjyXNf//79T/v8GjVqqH///scfu337dr355puaOnWqfv31V40YMaIkYwEAvOzPP//U5ZdfrqSkJBmGoXbt2mn69Om66qqr5PF49MQTT1hyhjKdAgBI9u2URKsAADns2io6BQCQ7Nsp6cxaRacAwH/YtVWsqQAAkn07JbGmAgBY36liH7z+7bff6qabblJKSooiIyNlGMbx+wzDKNJiS5I2btyo33777fjt0KFD6tSpk7p161bckQCgzJmmcfoHBaAnn3xSPXv21BNPPKF3331XkydP1hVXXKFRo0bplltuydMIb6FTAAIRnSqYHTsl0SoAgYlWFcyOraJTAAIRnSqYHTsllU6r6BQAX0OrCmbHVrGmAhCI6FTB7NgpiTUVgMBDpwpmdaeKffD6ww8/rIEDB+rZZ59VeHh4sZ47ffp0zZ07V7/99puSkpLUpUsXdevWTffcc4/atWunoKASXQgeAGCR5cuXa968eWrevLnGjh2rKVOmaMKECbruuussm4lOAQCOsWOnJFoFAMhlx1bRKQDAMXbslFTyVtEpAPA/dmwVayoAwDF27JTEmgoAkMPqThW7GgkJCbr//vuLvdCSpEGDBqlWrVoaOXKkBg4cqODg4GLvAwAswRlYBUpMTFSlSpUkSeHh4QoPD9dZZ51l6Ux0CkBAolMFsmOnJFoFIEDRqgLZsVV0CkBAolMFsmOnpJK3ik4B8Gm0qkB2bBVrKgABiU4VyI6dklhTAQhAdKpAVnfKUdwn9OzZU0uXLi3Ri7366qvq2LGjRo0apbi4OF155ZV64YUXtHTpUpmmWaJ9AgCsYxiGjhw5osOHDyspKUmGYSg1NVWHDx/Oc/MmOgUAOMaOnZJoFQAglx1bRacAAMfYsVNSyVtFpwDA/9ixVaypAADH2LFTEmsqAEAOqztV7CuvX3755Xr00Ue1evVqtWzZMt9ZVL169Trlc4cMGaIhQ4ZIklavXq158+bpt99+06RJk5Senq4uXbroggsu0COPPFLcsQCgTPHv7IKZpqlGjRrl+fjEM7BM05RhGHK73V6biU4BCER0qmB27JREqwAEJlpVMDu2ik4BCER0qmB27JRU8lbRKQC+jFYVzI6tYk0FIBDRqYLZsVMSayoAgYdOFczqThlmMU99cjhOfbH2kg66c+dOvfbaa5o6daqSk5O9HuWTdZwzwtLX9xeuV8pbPYLfePnVl60ewS+0rrW9xM+tN+vZUpykcJtufNxrr3Wm5s2bV6THdevWrYwnyRUInZKk3gvutXoEv7D7zXpWj+AX5kx4yeoR/EJMNd/olOQ7rbJjp6TAaNVNi+6w9PX9xfrXm1o9gl+YP/4Vq0fwC66qm87o+aypCmbHVgVCpyTpzqUDrB7BLyx7tbXVI/iFv8a/ZvUIfiGoyoYSP5c1VcHs2Cmp9Ftlx04NXXaj1SP4hT9fbm/1CH5h0fg3rB7BLziqxJ/R81lTFcyOrQqUNdXwFX2sHsEv/PJSZ6tH8Au0qnScSatYUxXMjp2SAmNNNWplb6tH8AvfveDdv5v+ik6VDjpV+qzuVLGvvO7xeM74Rffs2aPffvvt+C0+Pl4hISHq0KGDLrjggjPePwCUOs7AKpC3F1FFQacABCQ6VSA7dkqiVQACFK0qkB1bRacABCQ6VSA7dko681bRKQA+iVYVyI6tYk0FICDRqQLZsVMSayoAAYhOFcjqThX74PUTpaenKzQ0tMiPv+eeezR37lytW7dOQUFBat++vfr06aMLLrhAnTt3Lta+AADW27ZtW4Hbo6OjFR0d7eVp8qNTABDY7N4piVYBQKCze6voFAAENrt3Sipeq+gUAPgfu7eKNRUABDa7d0piTQUAgczqThX74HW3261nn31Wb7zxhvbs2aP4+HjVq1dPTz75pOrUqaNBgwad8rn//POPrrrqKl1wwQXq0qWLwsPDz2h4APAW0zSsHsGW6tSpI8Mo+M+mUqVKGjZsmB566CGvzkSnAAQiOlUwO3ZKolUAAhOtKpgdW0WnAAQiOlUwO3ZKKnmr6BQAX0arCmbHVrGmAhCI6FTB7NgpiTUVgMBDpwpmdaeKffD6uHHj9P7772vixIm64447jm9v2bKlXnrppUIXW3/99VfJpgQA2NKyZcsK3H7o0CEtXrxY48aNU3h4uAYPHuy1megUAOAYO3ZKolUAgFx2bBWdAgAcY8dOSSVvFZ0CAP9jx1axpgIAHGPHTkmsqQAAOazuVLEPXp8xY4beeustXXTRRXmGatWqldauXVvoc3///fcivUbXrl2LOxYAlC3T6gHsqXXr1qe8r1u3bqpataqef/55ry626BSAgESnCmTHTkm0CkCAolUFsmOr6BSAgESnCmTHTkklbxWdAuDTaFWB7Ngq1lQAAhKdKpAdOyWxpgIQgOhUgazuVLEPXk9ISFCDBg3ybfd4PMrKyir0ueeff/7xy8ybZsF/IwzDkNvtLu5YAAAb6ty5szZt2uTV16RTAICisqJTEq0CABQdayoAgJ352pqKTgFA4GFNBQCwM9ZUAAA7K+tOFfvg9ebNm2v+/PmqXbt2nu2fffaZzjrrrEKfGxsbq8jISN1666265ZZbVLFixeK+PADAhxw8eFAxMTFefU06BQAoKis6JdEqAEDRsaYCANiZr62p6BQABB7WVAAAO2NNBQCws7LuVLEPXn/66ad1yy23KCEhQR6PR1988YXWrVunGTNm6P/+7/8Kfe6uXbv05Zdf6t1339XEiRN12WWXadCgQbrkkkuOn5kFAHZkmnyNKq7MzExNnDhRHTt29Orr0ikAgYhOFZ9VnZJoFYDARKuKjzUVAHgPnSo+X1xT0SkAvoxWFR9rKgDwHjpVfKypAMB76FTxeaNTxT54/corr9Qnn3yiZ599VoZh6KmnntLZZ5+tb7/9VhdffHGhzw0JCVHfvn3Vt29fbd++XdOnT9e9996rjIwMDRgwQKNHj1ZQULFHAgBY5Jprrilwe1JSklauXKmgoCDNnz/fqzPRKQDAMXbslESrAAC57NgqOgUAOMaOnZJK3io6BQD+x46tYk0FADjGjp2SWFMBAHJY3SnDNE2zzPZeBJs3b9agQYM0b9487du3T+XLl7dyHElSxzkjrB7BL7hesf7/pb94+dWXrR7BL7Sutb3Ez60z47lSnKRwW/oP99prnanbbrutwO1RUVFq0qSJbrrpJkVFRXl5qtJlx05JUu8F91o9gl/Y/WY9q0fwC3MmvGT1CH4hpppvdErynVYFQqcke7bqpkV3WD2CX1j/elOrR/AL88e/YvUIfsFVddMZPZ81VcECoVV27JQk3bl0gNUj+IVlr7a2egS/8Nf416wewS8EVdlQ4ueypioYnbLO0GU3Wj2CX/jz5fZWj+AXFo1/w+oR/IKjSvwZPZ81VcFolXWGr+hj9Qh+4ZeXOls9gl+gVaXjTFrFmqpgdMo6o1b2tnoEv/DdC92sHsEv0KnSQadKn9WdsuR0p4yMDH3++ed699139ddff+nyyy/Xd999Z5uAhQVnWj2CX0iLclg9gt+oFuSxegSgQNOnT7d6hDJh905J0uFMl9Uj+AXTafUE/uGTI5wEUBrusnoAP+SvnZJ8o1U4c7yDXelwGqxNYV/+2io6BQD+gU5Zx2Pyb1gAKApaZR0P37gqFUumP2T1CH7Bs5uDAmFPdAoAYGdWd6rYB6/HxsbKMPIvRAzDUGhoqBo0aKBbb721wKPyFy9erOnTp+vjjz9W3bp1deutt+rTTz8lXgB8AN+AKcjevXsVFxd3yvuzs7P1zz//6JxzzvHaTHQKQGCiUwWxY6ckWgUgUNGqgtixVXQKQGCiUwWxY6ekkreKTgHwbbSqIHZsFWsqAIGJThXEjp2SWFMBCER0qiBWd6rYB68/9dRTGjdunC699FKdc845Mk1TS5Ys0f/+9z/dc8892rx5s4YMGaLs7GzdcUfet4rv2LGjatWqpfvvv19t27aVJC1YsCDfa/Tq1auEvx0AgDdVrVpVu3btOh6ypk2bas6cOapVq5Yk6cCBA+rUqZPcbrfXZqJTAIBj7NgpiVYBAHLZsVV0CgBwjB07JZW8VXQKAPyPHVvFmgoAcIwdOyWxpgIA5LC6U8U+eH3BggUaO3asBg8enGf7m2++qR9//FGff/65WrVqpZdffjnfYkuStm3bpjFjxpxy/4ZheD3KAHBaptUD2JNp5v2D2bFjh7Kzswt9TFmjUwACEp0qkB07JdEqAAGKVhXIjq2iUwACEp0qkB07JZ1Zq+gUAJ9Fqwpkx1axpgIQkOhUgezYKYk1FYAARKcKZHWnHMV9wpw5c9S9e/d82y+66CLNmTNHknTZZZdp06ZN+R7j8XhOeyNgAOBfCnq7qbJEpwAAxeHtTkm0CgBQPKypAAB25ktrKjoFAIGJNRUAwM5YUwEA7KwsO1Xsg9fLly+vb7/9Nt/2b7/9VuXLl5ckpaSkKDIyMt9jHn/8cS1evLgEYwKAxUwv3nBG6BSAgOTNTtGqM0arAAQkOuUz6BSAgMSayqeUtFV0CoBPo1M+gzUVgIDEmsqnsKYCEHDolC0FFfcJTz75pIYMGaK5c+fqnHPOkWEYWrx4sb7//nu98cYbkqSffvpJ3bp1y/fcnTt36oorrpDT6dSVV16p3r17q3v37nK5XGf+OwEAeJ1hGDpy5IhCQ0NlmqYMw1BycrIOHz4sScd/9SY6BQA4xo6dkmgVACCXHVtFpwAAx9ixU1LJW0WnAMD/2LFVrKkAAMfYsVMSayoAQA6rO1Xsg9fvuOMONWvWTK+88oq++OILmaapJk2aaN68eercubMk6eGHHy7wue+9955M09SCBQv07bff6uGHH1ZCQoIuvvhi9erVS1dccYUqVqx4Zr8jACgLpvffqskXmKapRo0a5fn4rLPOyvOxt9/mik4BCEh0qkB27JREqwAEKFpVIDu2ik4BCEh0qkB27JRU8lbRKQA+jVYVyI6tYk0FICDRqQLZsVMSayoAAYhOFcjqThX74HVJ6tKli7p06VKiFzQMQ+edd57OO+88TZw4UWvWrNG3336rt99+W3fddZc6dOigXr166cYbb1T16tVL9BoAAO+YO3eu1SMUiE4BACT7dkqiVQCAHHZtFZ0CAEj27ZRU8lbRKQDwL3ZtFWsqAIBk305JrKkAANZ3qkQHr7vdbn311Vdas2aNDMNQs2bN1KtXLzmdzmLvq2nTpmratKmGDRumffv26ZtvvtE333wjSXrkkUdKMh4AwEsKektDO6BTAADJvp2SaBUAIIddW0WnAACSfTsllV6r6BQA+Da7too1FQBAsm+nJNZUAADrO1Xsg9c3bNigyy67TAkJCWrcuLFM01R8fLxq1qyp7777TvXr1y/0+du3b1fNmjXzbU9JSVFaWpoGDRqkQYMGFXcsAChTpmn1BPbn8Xi0YcMG7d27Vx6PJ899Xbt29docdApAIKJTp2eXTkm0CkBgolWnZ5dW0SkAgYhOnZ5dOiWdWavoFABfRatOzy6tYk0FIBDRqdOzS6ck1lQAAg+dOj0rOlXsg9fvv/9+1a9fXwsXLlT58uUlSQcOHNDNN9+s+++/X999990pnztt2jT99ttv+uCDD/Ld53a71atXLw0dOlS33XZbcccCAFho4cKF6tevn7Zu3SrzpOIbhiG32+21WegUAOBkduqURKsAAPnZqVV0CgBwMjt1Sip5q+gUAPgvO7WKNRUA4GR26pTEmgoAkJdVnXIU9wnz5s3TxIkTj8dLkipUqKDnnntO8+bNK/S5U6dO1Z133ilJuvzyy3Xw4MHj90VFRen555/X5MmTizsSAJQ904s3HzR48GC1a9dOK1euVGJiog4ePHj8lpiY6NVZ6BSAgOTNTvlgq+zUKYlWAQhQdKpQdmoVnQIQkFhTFcpOnZJK3io6BcCn0alC2alVrKkABCTWVIWyU6ck1lQAAhCdKpRVnSr2ldddLpeOHDmSb3tycrJCQkIKfe7GjRtVu3ZtSdL8+fN18OBB3XrrrXrvvfcUGxurevXqaf369cUdCQBgsfXr12v27Nlq0KCB1aPQKQBAPnbqlESrAAD52alVdAoAcDI7dUoqeavoFAD4Lzu1ijUVAOBkduqUxJoKAJCXVZ0q9pXXr7jiCt15551atGiRTNOUaZpauHChBg8erF69ehX63Fq1amnFihXHPzZNU7/++uvxM7F++ukn1a1bt7gjAUDZMw3v3XxQhw4dtGHDBqvHkESnAAQob3bKB1tlp05JtApAgKJThbJTq+gUgIDEmqpQduqUVPJW0SkAPo1OFcpOrWJNBSAgsaYqlJ06JbGmAhCA6FShrOpUsa+8/vLLL2vAgAHq1KmTgoODJUnZ2dnq1auXpkyZUuhzb7nlFj388MOqU6eOJMkwcv5HHTp0SK+++qpGjBjB24cAgA+677779PDDD2v37t1q2bLl8T4c06pVK6/NQqcAACezU6ckWgUAyM9OraJTAICT2alTUslbRacAwH/ZqVWsqQAAJ7NTpyTWVACAvKzqVLEOXjdNU0lJSZo1a5Z27typNWvWyDRNNWvWrEiXjH/44Yf177//qnXr1jIMQ1dccYVSU1PVvn17RUZG6vnnn9fAgQNL/JsBgLJimFZPYG/XXnutJOX5Gm4YhkzTlGEYcrvdXpmDTgEIVHSqcHbplESrAAQuWlU4u7SKTgEIVHSqcHbplHRmraJTAHwZrSqcXVrFmgpAoKJThbNLpyTWVAACE50qnFWdKvbB6w0bNtSqVavUsGHDIi2wThQSEqJPPvlETzzxhM455xxdfPHF2rhxo6ZPn64+ffooJCSkWPsDANjD5s2brR5BEp0CABTMLp2SaBUAoGB2aRWdAgAUxC6dks6sVXQKAPyXXVrFmgoAUBC7dEpiTQUAyM+qThXr4HWHw6GGDRvqwIEDatiwYYlftGXLlrrzzjs1bNgwSdL5559PwADYG2dgFap27dpWjyCJTgEIYHSqUHbplESrAAQwWlUou7SKTgEIWHSqUHbplFQ6raJTAHwSrSqUXVrFmgpAwKJThbJLpyTWVAACFJ0qlFWdchT3CRMnTtSjjz6qlStXntELT5kyRdWrV9eUKVNUrVq1fPebJn9jAMCXrFu3Tvfee68uuugide/eXffee6/WrVvn9TnoFACgIHbplESrAAAFs0ur6BQAoCB26ZRUOq2iUwDgf+zSKtZUAICC2KVTEmsqAEB+VnSq2Aev33zzzVq8eLFat26tsLAwlS9fPs/tVJo2baqPPvpImZmZhe5//fr1GjJkiCZMmFDc0QCg7JiG924+aPbs2WrRooX+/vtvtW7dWq1atdI///yjFi1a6LPPPvPqLHQKQEDyZqd8sFV26pREqwAEKDpVKDu1ik4BCEisqQplp05JJWsVnQLg8+hUoezUKtZUAAISa6pC2alTEmsqAAGIThXKqk4FFfcJkydPLtELvfrqq3rsscd0zz33qEePHmrXrp2qVaum0NBQHTx4UKtXr9aCBQu0evVq3Xvvvbr77rtL9DoAAO8bNmyYRowYoWeeeSbP9qefflqPPfaYrrvuOq/NQqcAACezU6ckWgUAyM9OraJTAICT2alTUslaRacAwL/ZqVWsqQAAJ7NTpyTWVACAvKzqVLEPXh8wYECJXujCCy/UkiVL9Oeff+qTTz7RRx99pC1btigtLU0VK1bUWWedpf79++vmm29WTExMiV4DAMoM72hUqN27d6t///75tt98882aNGmSV2ehUwACEp0qlJ06JdEqAAGKVhXKTq2iUwACEp0qlJ06JZWsVXQKgM+jVYWyU6tYUwEISHSqUHbqlMSaCkAAolOFsqpTRTp4/fDhw0XeYVRUVKH3d+7cWZ07dy7y/gAA9nf++edr/vz5atCgQZ7tCxYs0HnnnVfmr0+nAACFsbpTEq0CABTO6lbRKQBAYazulFR6raJTAOCfrG4VayoAQGGs7pTEmgoAcGpWdapIB6/HxMTIMIwi7dDtdp/RQAAA3/DNN98c/+9evXrpscce099//62OHTtKkhYuXKjPPvtMo0ePLvNZ6BQA4GR26pREqwAA+dmpVXQKAHAyO3VKolUAgPzs1Co6BQA4mZ06JdEqAEBeduhUkQ5enzt37vH/3rJli4YPH65bb71VnTp1kiT99ddfev/99zV+/PiymRIArMbbh+Rz1VVX5dv22muv6bXXXsuz7Z577tHgwYPLdBY6BSDg0al87NQpiVYBAK3Kz06tolMAAh6dysdOnZJoFQDQqvzs1Co6BSDg0al87NQpiVYBCHB0Kh87dKpIB69369bt+H8/88wzevHFF3XjjTce39arVy+1bNlSb731lgYMGFD6UwIAbMfj8Vg9wnF0CgBwMjt1SqJVAID87NQqOgUAOJmdOiXRKgBAfnZqFZ0CAJzMTp2SaBUAIC87dMpR3Cf89ddfateuXb7t7dq10+LFi0tlqKLKzMzM8/HGjRv1wAMP6PLLL9ftt9+uv//+26vzAPBjphdvfqxly5bavn17mb4GnQIQkLzZKT9ulTc6JdEqAAGKTpUK1lR0CkAZYU1VKgJtTUWnAHgVnSoVrKloFYAywpqqVLCmolMAygidKhWl3aliH7xes2ZNvfHGG/m2v/nmm6pZs2apDFVUYWFh2rt3ryTp33//VatWrTRv3jxVr15dK1asUOfOnb2+AAQAnNqWLVuUlZVVpq9BpwAAJeWNTkm0CgBQcqyp6BQA2FmgranoFAD4HtZUtAoA7Iw1FZ0CADsr7U4FFfcJL730kq699lrNmTNHHTt2lCQtXLhQGzdu1Oeff17k/WzcuFHTp0/Xxo0bNWXKFMXFxel///ufatasqebNmxdpH6aZe5rCk08+qcsuu0yffvqpDMOQJA0cOFBPP/20fvjhh2L8DgGgAKZh9QQoIjoFICDRKZ9CqwAEJFrlM+gUgIBEp3xKabSKTgHwObTKZ7CmAhCQ6JRPYU0FIODQKVsq9pXXL7vsMsXHx6tXr15KTEzUgQMH1Lt3b8XHx+uyyy4r0j7mzZunli1batGiRfriiy+UnJwsSVqxYoWefvrp4o4kKecMrAceeOB4wCRp6NChWrZsWYn2BwDwTXQKAGB3tAoAYGd0CgBgd2faKjoFAChLrKkAAHbHmgoAYAfFvvK6lPP2Ic8++2yJX3T48OEaO3asHnroIUVGRh7ffsEFF2jKlClF3o9hGMej5XQ6FRUVlef+qKgoJSUllXhOADjGME//GNgHnQIQaOiU76FVAAINrfItdApAoKFTvudMWkWnAPgiWuVbWFMBCDR0yvewpgIQSOiUPRX7yut16tTRM888o+3bt5f4Rf/77z9dffXV+bZXqlRJBw4cKPJ+TNNUo0aNVL58ee3cuVP//fdfnvvXr1+vKlWqlHhOAIDvoVMAALujVQAAO6NTAAC7O9NW0SkAQFliTQUAsDvWVAAAOyj2ldcffvhhvffee3rmmWd0wQUXaNCgQbr66qvlcrmKvI+YmBjt2rVLdevWzbN92bJlql69epH3M3369Dwf169fP8/HCxcuLDCWAFBsnIHlM+gUgIBEp3wKrQIQkGiVz6BTAAISnfIpZ9oqOgXAJ9Eqn8GaCkBAolM+hTUVgIBDp2yp2Aev33fffbrvvvu0fPlyvfvuu7r//vt19913q1+/fho4cKDOPvvs0+6jX79+euyxx/TZZ5/JMAx5PB798ccfeuSRR9S/f/8izzJgwIBC73/qqaeKvC87CnO6NLDeJTq3UgvFBkdqfXKCXon/SuuO5Jz5NvfCFwp83hsbvtUn237z4qT2Fx4arDv7dFG39g0VGxWm+C379NLMX7Vm0x5J0vntGuiqi1qrSd3KiokM0y2Pz9D6rfssnrps/LvcoY8+CdG6eIcOHHDo2TFp6nquu0xf87d5Tk2b7lLCTkPVq5m6Y1CGup2X+5ozPwzWvPlB2rrNIZfLVMvmHg25M0O1alEOXzFjxgz17ds332ImMzNTH3/88fGv7W+++aYqV65cprPQKe+iVaUjPDRYd13TReef3UCxUeGK37pXL3w0V2s275HT6dCQa7qoc6u6qh4XreTUDC1ZvU2vfDZf+w+lWD26rWSmevTHh8nasDBdqUkexdUL1gV3RKlKw2BJUspBt+a/f0Rb/81URrJH1ZuH6MK7ohRbrdj/JIaPsVOnJFrlTe60bCV8vlWH/t6vrMNZCq9dTrVurq+IejlvY+lOd2vHp5t16O/9yk7OlquiS3E9qivuomoWT24v4aHBGnz1CZ3altOp1Sd0qkuruqpeKadTi1dv0yuz/bdTS5dL785yaHW8tO+AoZfHunXReWX7mj/Ok6a+49D2nVLNatLQ2z3q3jX3/rc/MPTT74Y2b5NCXVKbFtJDd3lUt1bZzoXSY6dW0Snvyk5za8vs7dq/JFFZh7NUrk6E6t9SR1H1y0nKadWmj7dp/9KDyk7OUmgll6r3rKJq3bnq1IloVS46hbJgp05JZ94qOlV02Wlubfg0QXuXHlJmUpYi64SryYBaiq4fkXN/ulvrZ+3Q3qWHlHUkW2GVXKp1SZxqXhxn8eT2QqdyLVkuvTtLWnW0U1PHmuruhU69/I60badUq5o09Hbp4hM69dYH0k+/S5uOduqsFtLDd4lO+Rg7tYo1lXdlpbm19pM92rU4SRlJ2YquG6aWt1ZTbINwSTmtWv3hbu1acliZR7IVHheiepdWVN0eFSyeHHZFq1AW7NQpiTWVN2WlubVi1n7tWHREGYfdiq0bqrMHxqlCgzBJUtqhbC2fuVe7l6cqM8WtSs3C1W5QZUVWC7F4cnthTZWLTqEsWNUpR0mf2Lp1a02ZMkUJCQl6+umnNW3aNLVv316tW7fWu+++K9M89UGn48aNU61atVS9enUlJyerWbNm6tq1qzp37qwnnniipCP5nUebXK92sY00fvUsDVw8SUsT1+n5s+5SxZAoSdI1C0bluU1Y87E8pke/711h8eT28/gdPXVOy9oa/fr3unn4DC3+b4umjrhOlWJzfhAYGhqsFfEJeu3j+RZPWvbS0g01qO/RQ/dnlMr+vv9fkO59IOyU969c5dDTz4Sq58VZem9aqnpenKWnRodq1ercLz/Lljt1zVVZevPVNL00KV1ut/TgsDClpZXKiPCC2267TUlJSfm2HzlyRLfddtvxj/v166eIiAivzESnvINWlY6Rt/VQh+a1NOqtH9TviRlatGqrXn20jyrFlFNoSJAa147Tu98s1C1Pf6DHXvlWNavE6oWhva0e23Z+fOWwtv2bqUsfjFH/lyuqdpsQzX4yUUcOuGWapr559pCSdrvVe2Ssbp5cUVFxTs1+MlFZ6R6rR0cZs2OnJFrlDVveWa/Dqw6q7l2N1fzZtopqEaP4CSuUmZjzb+HtH27U4RWJqju4iVo8106VL6mhbTM36ODf+y2e3F6eONqpp9/+QTc+OUMLV27Vq4/kdqpJ7Ti9881C3TLqAw175VvVqhKrF+73306lpUmNG5ga+UDp9OPLHwzdOvTU3575d6X0yGiHevUw9cU7HvXqYerhUQ6tWJ37mCXLDd14talZr3v09gseud3SHY84lMqaymfYsVV0yjvi396og/8lqcmQBmr3XGvFtozWivFrlJGYKUnaMHOrElccUtO766v9pNaqfmlVrX9/i/YvTbR4cnuhVbnoFMqCHTsllbxVdKroVr21RQf+O6wWd9dV54nNVaFVlP4eF6/0o51aN2O79i8/rJb31FWXF1qo9mWVtfa9bdq79KDFk9sLncqV0ynpiQdKZ39f/iD1H3rq+5etlB4aLfXqIX31Ts6vD42SlufplNTvaunj16V3XpCy3dKgR0SnfIwdW8Wayjv+fWOH9q04orPvrakLXmikuFbl9OeYTUpLzJIkrXxvl/b+e0Rt76upi15qrPqXV9R/7yZo15L8f18AiVahbNixUxJrKm9Y/Npu7V6eok73V9OlL9ZVldbhmjt6u1IPZMk0Tc2fsEPJe7J03vDquuT5OoqoFKxfR29TNj+/zoM1VS46hbJgVadKfPB6VlaWPv30U/Xq1UsPP/yw2rVrp2nTpun666/XyJEjddNNN53yucHBwfrwww+1fv16ffrpp/rggw+0du1azZw5U06ns6Qj5fP4449r4MCBpbY/bwpxBKlrpZZ6c+P/acWhTdqZdkDvb/5Ru9MS1atGZ0nSwcwjeW5dKrbQvwc3alc6P7w6kSs4SOe3b6hXZv2uf9cmaMeeQ5r2xV/auS9J13RvLUn634I1evfLhVqycqvF05a9Th3cunNQprp1Lfhq61lZ0mtvhOiq68LV/dII3TEkTP/8W/LPy09nB6tdO7duuSlLtWuZuuWmLLU9261PPw8+/pgXJ6brskuyVa+uRw0beDTisXTt2ePQuvgSf4mCl5mmKcMw8m3fsWOHoqOjLZiITnkDrSodruAgXdCuoaZ+Ol/L4hO0Y+8hvf3VX9q5P0nXXthKKWmZuu/5z/Xzknht231QKzfu0vMf/KqmdauocvlIq8e3jawMU+v/TNd5t5ZTjRYhiq0WpM79IhVd2akVP6Tq0E63dq3L0kV351yJvXyNIF00OEpZ6abW/p5u9fgoY3bslESrypon062DS/epRt+6imwSo9DKYap+TR2FVArVvl93SpKSNxxWhXMrK6ppjFyVQlXpgqoKr1VOqZuTLZ7ePlzBQbqgbUO9fGKnvs7bqXuPdmrr7oNauWmXnv/wVzXz406d11EaeruZ56oSJ8rMkp5/3dAF1zrUrqdDNwx2aPGykr/ezNmGOrWV7rjZVL3aOb92aCvN+Cz369pbkzy6+lJTDepKTRpIY4d7tGuPodXxJX9deJcdW0Wnyp4706N9SxJV78ZaimkapbAqoapzbU2FVnJp58857xZ4eMMRVTmvkmKaRSu0UqiqXVhZ5WpF6Mhm/7tqUEnRqrzoFMqCHTsllbxVdKpo3Jke7V18UI361VD5ppEKrxKqBn2qKywuRNt/ynnn2kPrk1WtawWVbxalsEou1bioksrVDtfhTakWT28fdCqvrh2lB26XehTSqUmvS92ulc7uKfUdrDPq1IzZUue20p03S/Vq5/zasa0047Pcx7w9Sbr6Uqnh0U49O1zatcfQKjrlU+zYKtZUZc+d6dGuRUlqdnNVVWxWTuWquNTk+ioKjwvRlh8PSJIS16eoZrdYVWxeTuFxIarTvYKiaofp0EaOpkLBaBXKgh07JbGmKmvZGR5tX3hEbfrHKa55uCKrhqhl30qKiAvWhjmHdGRXlg7Ep6v9nVVUoUGYoqq71O6OyspO92jrgsNWj28brKnyolMoC1Z1Kqi4T/jnn380ffp0zZo1S06nU7fccoteeuklNWnS5PhjevTooa5dT/EZcoJ69eqpXr16xR2hyBISErR9+/Yy239ZchpOOR1OZXqy82zP8GSpZXTdfI+PDS6njhWa6rk1s7w1os9wOg0FOR3KzMp7sHZGZrZaN6pu0VT29ewEl3bvdmj0k+mqWMHUvAVBemRYqN5/N1U1a5z6CgCnsnK1U337ZOXZ1qF93oPXT5aSkvPFMCqq2C8HLzvrrLNkGIYMw9BFF12koKDcrLjdbm3evFmXXHKJV2eiU95Dq0rH8U5lnvTnWEinyoW55PGYSk4tnXfR8Aem25TpkYJC8v6DOijEUMLqTDU6NzTn4+Dc+x1OQ86gnPtb9gj36rzwDjt2SqJV3mK6TckjOYLznhDpCHboSHzON/0iG0Xr0LIDqti1ioJjQ3RkTZLSd6ep5k2xVoxsS7nrqbydSs/MVpuGdKogTzxnKGG3oeef8qhSRemX+YbuGubQV9M9ql2j+Pv7d5Wh/tflXYt1aW9q5mxDUsFrtCNHz7+I9r/vy/odO7aKTnnPKVsV4lDS0VZFN4rUgX8Oqkq3OIXEBuvQ6sNK252m8q1qWzGyLdGq4qFTKA47dkoqvVbRqcId+16LIyR/pw6tOyJJim0cqX1/H1L18yvKFRusg6uPKHVXuir0r2nFyLZEp4pn5HNSwm7phaekuIrSz/OlO4ZJX0+X6pSgU8tXSf2vy7utS/ucAzBOhU75Fju2ijWV93iOtsoZnPcDi7H9AAEAAElEQVTnAs4Qhw6szTnht0LjCO3++7BqXVheobFB2r8qRcm7MtTytmpWjAw/QKtQHHbslMSayltMz6k6ZWjf2lTV6pLzSewIyfvza0eQoX1rUlW/e4w3x7Ut1lTFQ6dQHFZ3qtgHr7dv314XX3yxXn/9dV111VUKDs5/AGqzZs10ww03nHIfffr0Ubt27TR8+PA82ydNmqTFixfrs88+O8Uzi+f9998vlf1YIc2doZVJW3RLne7amrJHBzOP6MLKZ6lpVC3tSM3/FvY9q7ZXqjtDv+/7z4Jp7S01PUsr4ndq4FUdtSXhgBKTUtWjcxM1r19V23fz1pUnSkgw9POvQfry01RVrJjzw6V+fbO0aLFT3/8QrLvuyCz2PhMTDcXG5v1BVWysqcTE/GfrSJJpSlNfc6lVS7fq1bXP2+AYxT9uPyBcddVVkqR///1XPXv2VLly5Y7fFxISojp16ujaa6/16kx0yntoVelITc/SivU7NbB3R23elZjTqY5N1LxeVW3fk79TIcFO3XvduZqzcK1S0ov/ddlfhYQ7VLVJsBZ+kqzyNYIUHuPQ2t/TtSs+S7HVnCpfI0hRcQ4tmJGs7vdEKdhl6O+vU5Ry0KOUg/bpTUnRqYLZsVMSrfIWZ1iQIhpEaefX2xRaLVzB0SFK/GuvUjYdkatymCSp5i31tfWdeK14YJEMpyEZUp1BjRTZ2LorndhNanqWVmzYqUG9cjvVs2MTtThVp4KcuqfPuZqzKDA7tS1B+v4XQ7/O9iiuYs62224wtWCxoS+/N/TAncX/gr0/Uapw0vkUFWJzthfENKWJrzp0dktTDcvu5wbFRqsKZsdW0SnvCQpzKqphOW39aofCq4cpJDpYe//cryMbkxVWJefkywYD6ih+2iYtvO+f461qfHs9RTfmjP9jaFXR0alTo1MFs2OnpDNvFZ0qmqAwp6IbRmjTFzsVUS1Urphg7fojUUkbUhRexSVJanJrTa16a6t+v2fF8U41v7OOYpvwE+pj6FTRbUuQvvtF+m22jndq4A3S/MXSl99LD95Z/H3uT5QqntSpiqfp1IRXpbYtTTWyUackWnUqdmwVayrvCQ5zKrZRuNZ9vlflqocqNCZIOxYc0sENqYqoEiJJajmwmv59I0E/Dl4jwykZhqE2g2uoQpMIi6eHL6JVp0anCmbHTkmsqbwlOMypio3DtGr2fkXVCFFodJC2LjisA+vTFVk1RFHVXYqoFKTlH+zTOYOryOlyaN23iUo/5FbaQffpXyBAsKYqOjp1anSqYFZ3qtgHr2/atEm1axd+ZZ+IiAhNnz79lPfPmzdPTz/9dL7tl1xyiZ5//vnijnRGMjIylJGR9ywbT2a2HCHF/qMpdeNXf6RhTfpq9rlPy+1xKz45Qb/sWaaGkfnPGrq06jn6efc/yjrp6rfIMfr17zXyzp76v1cHK9vt0bote/Tjn2vUuG5lq0ezlXXrHTJNQzfekvfqs5lZUnRUzlfx3XsM3XJr7v1ut5Ttli6+NHeB3+PibD36UO7nVb53lTClgg9dl16cEqKNGx16bSpv1eYLjn0tr1Onjm644Qa5XC6LJ/K/Tkm0KhA8/dYPenJQT30/+a6cTm3dqzkL16px7bg8j3M6HRo35HIZhqGJM36xaFr7uvTBaM15OUlv3bZPhkOKqx+sJl1DtXdTlpxBhq4cHqsfpybptX57ZTikWq1DVKdtiNVjowzZsVOS/7WqoE65M91yhpTeW0OWVN27GmvLtHitGLpIckjhdSJVvlOcUrfknPK/98cEJW88ogYPNldIBZeS1yVp6/sbFBwdoqgWXH39mKfe+kFPDeypH146oVOL1qpxrYI75XAYmhCgnVoTL5mmoctuznt1yqxMKebocaY790i9BuTe73ZL2dlSu0tyt115samnH879TloB79RX4DZJGjvZUPwmaeZU3z85KxDYsVX+1inJ3q1qMqSB1r21UQvv/UdySJF1IhTXuaKSN+dcJTBhzm4d3pCs5g83VmjFECWtPaL1721WSGyIYltwstUxtKpo6BSKy46dks68VXSq6FreU1er3tiSc3C6Q4qsG66qncvr8JZUSdK2/+1V0oZktXmkgcIqhujg2mSteXerXDHBqtCSE62OoVNFs/popy69Oe9RBZknderKAbn3ZR/tVNsTLgR35cXSqIdzPz65SWYB244ZM1lat0n6cGqJfxvwMju2KlDWVNmZbgXZoFVt762pZa/vyDk43SFF1w1TjS4xOrQ552fNm74/oMT1KeowrI7CKgXrwJoULZ+WIFdMkOJacbIViodWobjs2CkpMNZUdulUx/uratGru/T1HRtlOKTYeqGqfV6UDm5KlyPI0LmP1tCi13bp8wHrZTikyq0iVPUsTrA6GWuqoqFTKC6rO1Xso95OF6+iSE5OVkhI/gOFgoODdfjw4WLvb8eOHYqJiclz5L8kZWVl6a+//ir0bUzGjx+v0aNH59lWu39H1R3QudhzlLadaQf0wLLXFOoIUXiQS4mZR/RU81u0Oy3vqSsto+uqVkScnlk1w6JJ7S9hb5LuHvupQl1Bighz6cChFI297wrt3Jtk9Wi2YnoMOR2m3nkzVY6T/g0XlnNxSlWsaGr6tNTj2+f9HqTffg/S00+kH98WccKx7+XL57/K+sFDhmLL5z+l6aWXQ/THn0F6ZUqa4irZ7JQn81SH20OSLrzwQu3bt081auS8x8zixYv10UcfqVmzZrrzzhKcuncG/K1TEq0KBAn7kjT4uU8VGnK0U0kpGjfkcu3cn9spp9Oh8XdfoWoVo3X3hM8C7izhooipGqS+4ysoK92jjFRT5co79X8TDym6cs4/eSs3CNYtUyoqI8Ujd7YUHu3QR48cUOUG+a8m4HPoVKHs1CnJ/1pVUKdaDDpLre5oW+w5Slto5TA1Gdla7gy33GnZColxaeMra+SqFCpPplsJn21R/aHNFNOmgiQpvFY5pW5L0e4fdnDw+gkS9iXprgl5O/VsQZ0acrRTEwO3Ux7TkNNp6rO3PHLkPS5Q4UfXVHEVpM+n5R6w9/Pvhn763dCEJ3K3lTvhe9MVy+e/gsWBg/mvcitJ4yYb+u0PQ+9P9ahKXP77LUWrCmWnVvlbp6SCW3X2Ha3U9s42xZ6ltIVVDlWbJ5vLne5WdppbrtgQrX45XqFxLrkzPdr8yXY1f7CRKpyV80lfrlaEkremaPt3Ozl4/QS0qmjoVCHoVKHs1CnpzFvlC51qf2cLdbirVbFnKW3hlUPV/ukmyk53y320U8unbFRYpZxOrf84QW0eqq9KZ8dIkiJrh+vI1lRt+b/dHLx+AjpVNB5TcjpNzX5LhXbqi2m523/6Pec28YncbSd3al8ROzV2sjT3D2nmVNmvUxKtOg07tSpQ1lSd72qqLkOaF3uW0hZRxaVzR9dXdrpH2WluhcYGa8lLWxURFyJ3pkerZ+3WOY/WVpWzc7oUXTtMSVvStPHbfRy8jmKjVYWgU4WyU6ekwFhTdRvSSOff3aTYs5S2yCoh6j6mtrLTPcpK8ygsNkh/vJCgcnE5P58uXz9Ul75QV5kpbnmyTYVGB+nH4VtUvn6oxZPbC2uqoqFThaBThbKqU47TPyRHbGysypcvf9pbUbRo0UKffPJJvu0ff/yxmjVrVuThd+3apXPOOUe1a9dWTEyMBgwYoOTk5OP3JyYm6oILLih0HyNGjFBSUlKeW+0bzynyDN6Q7slUYuYRlQsKU/vyjfXH/lV57r+sWgetO7xdG5N3WTSh70jPyNaBQymKDHepQ8va+v3vDVaPZCsNG7rl9hg6eMhQjepmnluFowebBzmVZ3tsrCmXK/+2Y1o0c2vJ33mPhF+81KkWzXPf4sY0c664Pm9+kKa8mKZqVW124DpOq1+/fpo7d64kaffu3erevbsWL16sxx9/XM8884xXZvDXTkm0KpCkZ2brQFJOpzq2rK3f/9koKffA9ZqVY3TPpNlKSkk/zZ4CW3CoQ+XKO5We7NHWZRmqf07es0NdEQ6FRzt0cGe29mzIUv0O9rjKAcqOHTol+W+rCupU8wFtijyDNzhdToXEuJSdkqXDKxMVc3YFmW5TptuUcfKlARzK+Qcq8snTqRa19fuyEzo15ArVqhyje54P7E41bWjK7TaUeFCqXSPvrVLOORIKCsq7vXysFOrKu+3Eb/q1aW7qr6V5/57+ucRQm+a5f09NM+dKtj/PN/TuZI9qVPXG7xalyQ6t8tdOSQW3qs2tLYs8hzc4Q51yxYYoKyVbif8lqULbWJnZHpnu/G9fZzgMiYtWF4hWFY5OoaTs0Cmp9FrlC51qd5v1BwOeKOhYp5KzdWDFYcW1i5GZnbOmkiPv1wDDoZzLsCEfOlW4pg0lt9vQgWJ0qkKs5CqkU62bS38uzfs6fy6RzjrhU8w0c64O+NN8afpk0SkfZYdWBdqaqsMg6w8IPFFQqEOhscHKTM7W3uVHVKV9lDzZx77/l/exhsPg238oEVqFkrJDp6TAWlOde3vDIs/hDUGhDoXFBikz2a1d/6aoevu8J1CFRDgVGh2kIzszlbgxPd/9yMGaqnB0CiVlVaeKfOX1yZMnH/9v0zQ1ZMgQPfPMM4qLK/5pEk8++aSuvfZabdy4URdeeKEk6ZdfftGsWbP02WefFXk/w4cPl9Pp1KJFi3To0CGNGDFC559/vn766SfFxsYen7UwLpcr3+XuHSHFviB9mWhfvrEkaXvqPlUPq6jBDa7Q9tS9+mHX4uOPCXe61C2ulV5f/61VY/qEDi1ryzAMbd2VqJqVY3Vvv67atuug/u/3nIMroyJCVblipCrG5JzFV7tqzj/GDhxKUWJS6in364tS06SEhNzzVnbtcmj9BlORkaZq1TTVo3uWxo4P1b1DMtSwoUdJSYb+XuZU/boederoLmTPBbvu2izdOzRMH8wK1nldsjX/jyAt/dup115OO/6YFya79PMvQRo/Nk3h4dKBo1dqLxeRc2C8LfANjEKtXLlS55yTczD1p59+qpYtW+qPP/7Qjz/+qMGDB+upp54q8xn8tVMSrQoEHVvUlgxD23YlqkblGN3ft6u27jqobxesktNh6Ll7rlCT2pX10OQv5XQYqhCd8xYXScnpynZz1MoxW/7JkGlK5as7dWiXW7+/d0Sx1YPUvHvOacTxC9IVFm0ospJT+7dk67dph1W/g0t1zrJLbM4AnSqUHTol+W+rCuqUHd7eXpKSVuRcCiC0apjS96Rrx8ebFFolXBXOqyxHkEPlmkRr+8ebZIQ45Kro0pG1STqwYK9q9qtn8eT20rFFbRkytHV3omrExWjo0U59c7RTE4526sHJX8ppGKoQdbRTKf7ZqZRUaVtC7sc7dhlas95UdJRUp6Z0xcUejXjWoUfv8ahpQ+ngIWnRMkON6pnq2rH4r3dzH1MD7jc07SNDF3Yx9esfhhb+Lc18Jfdzc8xLhr7/xdDUcR6Fh0n7DuRsjyyXc8ChLdCqQtmhVf7aKcnerUpccUgypbCqoUrbk65NH21TeNVQVelaSY4gh6KbRmrTrG1yHm1V0prD2jN/n+rffOZXc/QntCoXnSohOlUoO3RKKr1W0ami2788STKl8GqhStudrviPdii8aqiqdasgR5BDsU3LKf7D7XKGGAqt6NLBNUe08/cDanxLTatHtxU6lSt/p6Q166XoKKluTenKi00Nf1Yado/U7GinFi6TGtWTupWgU/37SLfcL739kXRRF+mXP6S//pY+eCX3Mc+8JH33i/TKOCnCrp2SaNVp2KFVgbamCrJJq/b+e0SmpHLVXErZnaFVM3epXDWXap1fXo4gQxWaRWjVB7vkDHEorFKIDqxO1vZ5B9ViQDWrR4dN0aoSolOFskOnpMBaU9mlU7uWJcuUFFUtREd2Z+nfGXsVVT1E9S7MeUfFbX8elivKqYiKwTq0LUP/vLtH1duXU9U2EYXvOMCwpspFp0qIThXKqk4V+ci3AQMG5Pn4vvvu07XXXqt69Yr/Q/1evXrpq6++0rPPPqvZs2crLCxMrVq10s8//6xu3boVeT8///yzvvzyS7Vr106SdN5556lv37668MIL9csvv0hS/qvo+ZCIoFDdXv8yVXLF6EhWqn7ft0LvbPxBbjP3i+qFlc+SIUO/7llm4aT2Vy7cpSF9z1Nc+XI6nJyuuUvW641PF8h9NFDnta2vJ++65Pjjx953hSRp2ud/atoXf1kyc1lZu86p+x8MO/7x1NdyKnFpzyyNHJ6hxx/L0PszQ/TK6y7t228oOspU8+YedepQ/APXJallC49GPZWut99xadq7IapezdQzT6WrebPcv8dffZPzdjj3PRie57mPP5auyy7JLtHrwruysrKOLwZ+/vln9erVS5LUpEkT7drlnStt0ylr0KrSUS7MpbuvO1dxseV0OCVdvy7doNc/z+lU1YpR6nZ2A0nSh2P653ne4Oc+1T9rd1gxsi1lpHq0YEaykve7FRrpUINOoTr3lnJyBuV8niUfdOu3d1OUesijiFiHml0Qpo59y51mr/AHduiURKus4E5zK+GzzcpMzFBQRLBi2ldU9T515AjKOZmz/t1NteOzzdr8xlplJ2fLVdGl6n3qqNKFXBLgROXCXLqnzwmd+nuDXjvWqQpR6nZWTqc+eiZvp+567lP9s87/OrVqnXTbA7nf+J74as7fp96XePTsCFNjh5t6c4Y06VWH9uyXYqKkNs2lrh1K9p2xs1pIk57yaOo7Dk19x1CtatLzozxqdcIFbD75OmeGW4fm/Yb82OEeXX0p35HzBXZoFZ2yRnaqW5s/2aaMxEwFlwtSxfblVff6msdb1ezehtr0yXateW3D8VbVub6Wql5U2eLJ7YVW5aJTKAt26JRUeq2iU0WXnerW+o8TlH60U5XPiVGDvtWPd6rV/fW1/uMd+u+VzcpKzlZoJZca9K2uGt0rWTy5vdCpXKvWSQMeyP28mPBqzn9fdYmp8SOkccOlN2ZIE1+V9u7POQCjTXOpW4eSvd5ZLaQXnpKmvCNNfUeqWU16YZTU+oROffx1zgwDhuZ97rPDTV19acleF95nh1axprJGVqpbq2ftVvqBLAWXc6pah2g1vbGKHEd/LtDugVpa/dFu/f3yNmUmuxVeKURNb6yiOhcX7Sr4CDy0CmXBDp2SWFNZISvVo+Uf7lPqgWyFlHOoZsdItepX6Xin0g5ma9l7e5WelK3QmCDVPT9azftUtHhq+2FNlYtOoSxY1SnDLMopSgWIjIzU8uXLS7TYKi3lypXTsmXL1LBh7lt9ZGdn67rrrtOmTZv0wQcfqE2bNnK7i3fQ7QW/PlzaowaktHc4W7m0fDvpRatH8AuVqiWc/kGnUO8l7/0/2PTgQ157rdLSoUMHXXDBBbr88svVo0cPLVy4UK1bt9bChQvVp08f7djh/X8M+nOnJFpVWlJmVLd6BL8waMTXVo/gF+5qPK/Ez/VmpyTfa5UdOyX5d6tuWnRHaY8akOLfaGr1CH7hr/GvWT2CXwiqsuGMns+aqnB2bJU/d0qS7lw64PQPwmkte7W11SP4BVpVOs6kVaypCmfHTknWt6osO3XfPzeV5qgBa+HUtlaP4BcWjX/D6hH8gqNK/Bk9nzVV4ezYKqs7JZVtq4Ytv640Rw1YE1sX/QrFODXP7kZWj+AXzqRVrKkKZ8dOSda3qiw7NWpl79IcNWB990LRT0bAqbGmKh10quxY1SlHmezVS+rVq6cVK1bk2RYUFKTPPvtM9erV0xVXXGHRZAAQWCZMmKA333xT559/vm688Ua1bp3zw+tvvvnm+NuKBCI6BQD2QKdOjVYBgD3QqoLRKQCwBzpVMDoFAPZBqwpGqwDAHuhUwegUANiDVZ0KKrM9n6R8+fKKj49XxYoVFRsbW+jbeiQmJhZpn5deeqneeustXXvttXm2HwvZtddea9nZaQD8i8E7GBfq/PPP1/79+3X48GHFxsYe337nnXcqPDzcwsmKjk4B8GV0qnD+0CmJVgHwbbSqcP7QKjoFwJfRqcLRqYLRKQDeRKsKR6sKRqsAeAudKhydKhidAuAtdKpwVnWqyAevP/RQ3kvZZ2Zmaty4cYqOjs6z/cUXC77E/ksvvaTIyEhJ0uTJk4s5ZsHGjRun1NTUAu8LCgrSF198QcQAwEucTqeys7O1YMECGYahRo0aqU6dOl57fToFACiM1Z2SaBUAoHBWt4pOAQAKY3WnpDNrFZ0CAP9ndatYUwEACmN1pyTWVACAU7OiU0U+eH3ZsmV5Pu7cubM2bdqUZ1thZ1UNGDBAkpSdnS1J6tmzp6pUqVLkQQsSFBSkqKioU97vdDpVu3btM3oNAJAkcQZWoVJSUnTfffdpxowZ8ng8knK+Bvfv319Tp071ytnCdApAQKNThbJDpyRaBSDA0apC2aFVdApAQKNThbJDp6QzaxWdAuDzaFWh7NAq1lQAAhqdKpQdOiWxpgIQwOhUoazqVJEPXp87d27pvGBQkIYMGaI1a9aUyv6mTp2qpUuX6vLLL9f111+vmTNnavz48fJ4PLrmmmv0zDPPKCioyL9NAEAJPPTQQ5o3b56+/fZbdenSRZK0YMEC3X///Xr44Yf1+uuvl/kMdAoAcCp26JREqwAAp2aHVtEpAMCp2KFTUum0ik4BgH+yQ6tYUwEATsUOnZJYUwEACmZVpyz56t6hQwctW7bsjM+OGjNmjCZNmqQePXpo6NCh2rx5syZNmqQHH3xQDodDL730koKDgzV69OhSmhxAwOIMrEJ9/vnnmj17ts4///zj2y677DKFhYXp+uuv99piq7TQKQA+h04Vyt86JdEqAD6IVhXK31pFpwD4HDpVKDpVMDoFwKtoVaFoVcFoFQCvoVOFolMFo1MAvIZOFcqqTlly8Prdd9+thx9+WDt27FDbtm0VERGR5/5WrVoVaT/vvfee3nvvPV1zzTVavny52rZtq/fff1833XSTJKlJkyYaNmwYEQOAMpaamqrKlSvn2x4XF6fU1FQLJjozdAoA/Iu/dUqiVQDgb/ytVXQKAPwLnSoYnQIA+6BVBaNVAGAPdKpgdAoA7MGqTlly8Hrfvn0lSffff//xbYZhyDRNGYYht9tdpP3s2rVL7dq1kyS1bt1aDodDbdq0OX7/2WefrZ07d5be4ACAAnXq1ElPP/20ZsyYodDQUElSWlqaRo8erU6dOlk8XfHRKQDwL/7WKYlWAYC/8bdW0SkA8C90qmB0CgDsg1YVjFYBgD3QqYLRKQCwB6s65SizPRdi8+bN+W6bNm06/mtRValSRatXr5YkrV+/Xm63+/jHkrRq1SrFxcWV+vwAAo9heu9WXEeOHNEDDzyg2rVrKywsTJ07d9aSJUsKfOxdd90lwzA0efLkM/sDOcmUKVP0559/qkaNGrrooovUvXt31axZU3/++aemTJlSqq/lDXQKgK/xZqeK2yo6VTZoFQBfY9dOSbSqLNApAL6GNVXh6FTB6BQAb7JrpyRaVRZoFQBfw5qqcHSqYHQKgLfYuVOS9a2yqlNev/L6kSNHFB8fr6ysLJ1zzjmqWLFiiffVr18/9e/fX71799Yvv/yixx57TI888ogOHDggwzA0btw49enTpxSnBwD7uf3227Vy5UrNnDlT1apV0wcffKDu3btr9erVql69+vHHffXVV1q0aJGqVatW6jO0aNFC69ev1wcffKC1a9fKNE3dcMMNuummmxQWFlbqr1eW6BQAlC46VfpoFQCULlpVuugUAJQuOlW66BQAlD5aVbpoFQCULjpVuugUAJQ+q1tlVaeKdPD6ihUrirzDVq1aFbqfSy+9VLt375ZpmoqKitLs2bPVvXv3Iu//RKNHj1ZYWJgWLlyou+66S4899phatWqlYcOGKTU1VVdeeaXGjBlTon0DQB6mYfUEBUpLS9Pnn3+ur7/+Wl27dpUkjRo1Sl999ZVef/11jR07VpKUkJCge++9V3PmzNHll19eJrOEhYXpjjvuKJN9nw6dAhDw6NRpWdkpiVYBAK06PdZU+dEpAF5Dp07LH9ZUdAqAT6NVp8WaKj9aBcBr6NRpsabKj04B8BqbdkqyT6us6FSRDl5v06aNDMOQaRZ8Tftj9xmGIbfbfcr9DB8+XLVq1dJnn32m0NBQjR49Wvfee6/Wrl1bouGdTqdGjhyZZ9sNN9ygG264oUT7AwA7yMjIUEZGRp5tLpdLLpcr32Ozs7PldrsVGhqaZ3tYWJgWLFggSfJ4PLrlllv06KOPqnnz5mUy8/jx41W5cmUNHDgwz/Z3331X+/bt02OPPVYmr3sMnQIA7ypqq+hULloFAN7Dmqr46BQAeBdrquIrjVbRKQAoGtZUxceaCgC8izVV8bGmAgDv8bU1lVWdKtLB65s3by6VF1u6dKm+//57tWvXTlLOby4uLk7JyckqV65cqbwGAJSJgv/9XibGjx+v0aNH59n29NNPa9SoUfkeGxkZqU6dOmnMmDFq2rSpKleurFmzZmnRokVq2LChJGnChAkKCgrS/fffX2Yzv/nmm/roo4/ybW/evLluuOGGMl9s0SkAAc+LnZKK3io6lYtWAQh4rKkKZXWr6BSAgMeaqlD/z959h0dV5v8bf5+ZZCaNQEJJCCWE3kFBBQF7Wd1d+4+1Lgt23BVsiHVBRQR1BUHXrxXEwtpxd1VUZBEsCIIgTXonlPSE1Jnz+yNICCQxGZKZZ2bu13XlWjnTPrAkdx7ynDOB7pRUP62iUwCCGmuqGgW6VaypAIQ91lQ1CnSnJNZUAMKcoZ2SzGhVoDpVq83rqamp9fJiBw4cUNu2bQ//umnTpoqJidH+/fuJGAAcct999+nOO++sdKyqM69+NWvWLI0YMUKtWrWS0+nUiSeeqKuvvlrLli3Tjz/+qKlTp2rZsmWyrIZ7C5T09HS1bNnymOPNmzfXnj17Gux1f0WnAMC/6tIqOlWOVgGA/7Cmqjs6BQD+xZqq7uqjVXQKAGqHNVXdsaYCAP9iTVV3rKkAwH+CbU0VqE7VavN6VdasWaPt27erpKSk0vGLLrqo2sdYlqW8vLzDl7j/9e1G8vLylJube/h+8fHxvo4FAA3C8uMZWNW9TUh1OnTooAULFqigoEC5ublq2bKl/vSnPyktLU0LFy7Uvn37Ki0gPB6P7rrrLk2ZMkVbt26tl5nbtGmjb775RmlpaZWOf/PNN0pJSamX16grOgUgnPizU1LdWkWnqkerAIQT1lQ1M7FVdApAOGFNVTMTOyXVvVV0CkAwY01VMxNbxZoKQDhhTVUzEzslsaYCED5M7pQU+FYFqlN13ry+efNmXXrppfr5559lWZZsu/z/2V939Xs8nmofa9u2OnfufMyxE0444fB/W5ZV43MAAKoWGxur2NhYZWVlae7cuZo8ebIuv/xynXPOOZXud/755+u6667T8OHD6+21b7jhBo0ePVqlpaU666yzJEnz5s3TmDFjdNddd9Xb69QGnQIAM9GpCrQKAMxEq8rRKQAwE52q4Gur6BQANCxaVY41FQCYiU5VYE0FAGYKVKsC1ak6b14fNWqU0tLS9OWXX6p9+/b64YcflJGRobvuuktPPfVUjY+dP3++z4MCQED5+Qysupg7d65s21aXLl20ceNG3XPPPerSpYuGDx+uyMhINW3atNL9IyMjlZycrC5dutTbDGPGjFFmZqZGjhx5+KzcqKgo3Xvvvbrvvvvq7XVqg04BCEt0qkYmdUqiVQDCFK2qkUmtolMAwhKdqpFJnZJ8bxWdAhDUaFWNTGoVayoAYYlO1cikTkmsqQCEIYM7JQW+VYHqVJ03r3/33Xf66quv1Lx5czkcDjkcDg0ePFgTJ07U7bffruXLl1f72NNPP/24hgUAHCsnJ0f33Xefdu7cqcTERF1++eWaMGGCIiMj/TaDZVmaNGmSHnroIa1du1bR0dHq1KnTMW+BsnPnTqWkpMjhcDTYLHQKAMxCp45FqwDALLSqMjoFAGahU8fytVV0CgAaBq2qjDUVAJiFTh2LNRUAmCXQrQpUp+q8ed3j8SguLk6S1KxZM+3evVtdunRRamqqfvnll3oZCgBMYxl8BtbQoUM1dOjQWt9/69atDTZLXFycTjrppGpv7969u3766Se1b9++wWagUwDCEZ2qHRM6JdEqAOGJVtWOCa2iUwDCEZ2qHRM6JdEqAOGJVtWOCa2iUwDCEZ2qHRM6JdEqAOHH5E5J5rTK352q8+b1nj17auXKlWrfvr1OOeUUTZ48WS6XSy+++GKDxxMAENxsu+G/G6BTAABf+aNTEq0CAPiONRUAwGSsqQAApmNNBQAwGWsqAIDJ6rtTdd68/uCDD6qgoECS9Nhjj+kPf/iDhgwZoqZNm+pf//pXvQ4HAMYw/AwsVKBTAMISnQoqtApAWKJVQYNOAQhLdCqo0CoAYYlWBQ06BSAs0amgQqsAhB06ZaQ6b14///zzD/93+/bttWbNGmVmZiohIUGWZdXrcAAA1BWdAgCYjlYBAExGpwAApqNVAACT0SkAgOloFQDABI7jefCOHTu0c+dOJSYm1ileI0aMUF5e3jHHCwoKNGLEiOMZCQCAw+gUAMB0tAoAYDI6BQAwnS+tolMAAH9hTQUAMB1rKgBAoNR583pZWZkeeughNW7cWO3atVNqaqoaN26sBx98UKWlpbV6jpkzZ6qwsPCY44WFhXr99dfrOhIANDzbjx8hzB9n6dIpAGHJn50K4Vb562oStApAWKJT9YI1FQA0ENZU9SJY1lR0CkBQolP1gjUVADQQ1lT1gjUVADQQOlUv6rtTEXV9wF//+ld9+OGHmjx5sgYOHChJ+u677zRu3DgdOHBAL7zwQrWPzc3NlW3bsm1beXl5ioqKOnybx+PRJ598ohYtWvjw2wAABAPbbvhC0ykAgK/80SmJVgEAfMeaCgBgMtPXVHQKAMCaCgBgMtZUAACT1Xen6rx5/e2339bs2bN1wQUXHD7Wu3dvtW3bVldeeWWNi60mTZrIsixZlqXOnTsfc7tlWRo/fnxdRwKABmeF8FlR/rRmzRqlpKQ06GvQKQDhiE7VD390SqJVAMITraofrKkAoGHQqfph+pqKTgEIZrSqfrCmAoCGQafqB2sqAGgYdKp+1Hen6rx5PSoqSu3atTvmeLt27eRyuWp87Pz582Xbts466yy9//77SkxMPHyby+VSamqqXyIMADh+l112Wa3v+8EHH0iS2rRp01DjHEanAACSuZ2SaBUAoJypraJTAADJ3E5JvreKTgFAaDG1VaypAACSuZ2SWFMBAMzoVJ03r99222169NFH9dprr8ntdkuSiouLNWHCBP31r3+t8bGnn366JGnLli1q27atLMvyYWQAgAkaN24c6BGqRKcAAJK5nZJoFQCgnKmtolMAAMncTkm+t4pOAUBoMbVVrKkAAJK5nZJYUwEAzOhUrTavH73L/ssvv1Tr1q3Vp08fSdKKFStUUlKis88+u1YvmpqaqoULF+r//u//tHnzZr377rtq1aqVZs2apbS0NA0ePLiOvw0AgL+99tprgR7hMDoFADiaSZ2SaBUA4FgmtYpOAQCOZlKnpPptFZ0CgNBgUqtYUwEAjmZSpyTWVACAykzoVK02rx+9y/7yyy+v9Ou6Xg7+/fff13XXXadrrrlGy5YtU3FxsSQpLy9Pjz/+uD755JM6PR8ANDg70AOgJnQKQNijU8ajVQDCHq0yGp0CEPbolPHqs1V0CkBQolVGY00FIOzRKeOxpgIQ1uiUkWq1eb2+d9k/9thjeuGFF/TnP/9Zs2fPPnz81FNP1SOPPFKvrwUA8I/33ntP77zzjrZv366SkpJKty1btqxBX5tOAQB+SyA7JdEqAMBvY00FADBZKK2p6BQAhCbWVAAAk7GmAgCYLBCdcvj6wP3792vRokX65ptvtH///jo99pdfftFpp512zPH4+HhlZ2f7OhIANBjL9t9HMHr22Wc1fPhwtWjRQsuXL9fJJ5+spk2bavPmzbrgggsCMhOdAhBO/NmpYGyViZ2SaBWA8EKnamZiq+gUgHDCmqpmJnZK8r1VdApAMKJTNTOxVaypAIQT1lQ1M7FTEmsqAOGDTtUsUJ2q8+b1goICjRgxQi1bttRpp52mIUOGKCUlRddff70OHjxYq+do2bKlNm7ceMzxRYsWqX379nUdCQAQYM8//7xefPFFTZ8+XS6XS2PGjNEXX3yh22+/XTk5OX6dhU4BAI5mUqckWgUAOJZJraJTAICjmdQp6fhbRacAIPSY1CrWVACAo5nUKYk1FQCgskB1qs6b1++8804tWLBA//73v5Wdna3s7GzNmTNHCxYs0F133VWr57j55ps1atQoLV68WJZlaffu3XrzzTd19913a+TIkXX+TQBAg7P9+BGEtm/frlNPPVWSFB0drby8PEnSddddp7ffftuvs9ApAGHJn50KwlaZ1CmJVgEIU3SqRia1ik4BCEusqWpkUqek428VnQIQlOhUjUxqFWsqAGGJNVWNTOqUxJoKQBiiUzUKVKci6vqA999/X++9957OOOOMw8cuvPBCRUdHa+jQofrnP//5m88xZswY5eTk6Mwzz1RRUZFOO+00ud1u3X333frrX/9a15HqncvpCfQIIaEg0gr0CCEjxqrzpyrgV8nJycrIyFBqaqpSU1P1/fffq0+fPtqyZYts279VDodOSVJiVGGgRwgJ+aSqXvwlfkegRwBqZFKnpPBpFQCg9kxqFZ0CABzNpE5Jx9+qYOiUw/IGegQACComtSpc1lQOKwh35RjopOH/CPQIIWHxxEBPANTMpE5J4bGmAgDUXqA6VecdsQcPHlRSUtIxx1u0aFHrt7kqKSnRhAkT9MADD2jNmjXyer3q3r274uLidODAATVr1qyuYwEAAuiss87Sv//9b5144om6/vrrdccdd+i9997T0qVLddlll/l1FjoFADiaSZ2SaBUA4FgmtYpOAQCOZlKnpONvFZ0CgNBjUqtYUwEAjmZSpyTWVACAygLVqTpvXh84cKD+/ve/6/XXX1dUVJQkqbCwUOPHj9fAgQNr9RxDhw7VBx98oJiYGPXv3//w8b179+rss8/WqlWr6joWADQsLh5QoxdffFFeb/nVgG655RYlJiZq0aJF+uMf/6hbbrnFr7PQKQBhiU7VyKROSbQKQJiiVTUyqVV0CkBYolM1MqlT0vG3ik4BCEq0qkYmtYo1FYCwRKdqZFKnJNZUAMIQnapRoDpV583rU6dO1e9+9zu1bt1affr0kWVZ+umnnxQVFaW5c+fW6jn27Nmj66+/Xq+99lqlY2eddZZ69OhR15EAAAG2c+dOtWnT5vCvhw4dqqFDh8q2be3YsUNt27b12yx0CgBwNJM6JdEqAMCxTGoVnQIAHM2kTknH3yo6BQChx6RWsaYCABzNpE5JrKkAAJUFqlOOuj6gZ8+e2rBhgyZOnKi+ffuqd+/eeuKJJ7Rhw4ZaB+iTTz7RDz/8oDvuuEOStGvXLp1xxhnq1auX3nnnnbqOBAANzrL99xGM0tLStH///mOOZ2ZmKi0tza+z0CkA4cifnQrGVpnUKYlWAQhPdKpmJrWKTgEIR6ypamZSp6TjbxWdAhCM6FTNTGoVayoA4Yg1Vc1M6pTEmgpA+KFTNQtUp+p85XVJio6O1o033ujzizZt2lRz587V4MGDJUn//e9/deKJJ+rNN9+Uw1Hn/fQAgACzbVuWZR1zPD8///DbTPkTnQIAHMm0Tkm0CgBQmWmtolMAgCOZ1inp+FpFpwAg9JjWKtZUAIAjmdYpiTUVAKBCoDpVq83rH3/8ca2f8KKLLqrV/Vq3bq0vvvhCgwcP1rnnnqtZs2ZV+QcAAEYIwrOi/OHOO++UJFmWpYceekgxMTGHb/N4PFq8eLH69u3b4HPQKQBhj05VyZROSbQKAGhV1UxpFZ0CEPboVJVM6ZRU/62iUwCCDq2qkimtYk0FIOzRqSqZ0imJNRWAMEenqhToTtVq8/oll1xSqyezLEsej6fK2xISEqqM1MGDB/Xvf/9bTZs2PXwsMzOzVq8HAAis5cuXSyo/A+vnn3+Wy+U6fJvL5VKfPn109913N/gcdAoAUBVTOiXRKgBA1UxpFZ0CAFTFlE5Jx98qOgUAocmUVrGmAgBUxZROSaypAADHCnSnarV53ev1HvcLTZky5bifAwACxeIMrCrNnz9fkjR8+HBNnTpV8fHxAZmDTgEId3SqaqZ0SqJVAECrqmZKq+gUgHBHp6pmSqek428VnQIQ7GhV1UxpFWsqAOGOTlXNlE5JrKkAhDc6VbVAd6pWm9frw7BhwyRJZWVlevPNN3X++ecrOTnZXy8PAGhAr7322uH/3rlzpyzLUqtWrQI4Ud3RKQAIXaHQKYlWAUAoC4VW0SkACF10CgBgOloFADAZnQIAmCxQnar15vXCwkLNmzdPf/jDHyRJ9913n4qLiw/f7nQ69eijjyoqKqrmF4yI0K233qq1a9f6ODIABABnYNXI6/Xqscce09NPP638/HxJUqNGjXTXXXfpgQcekMPhaPAZ6BSAsEanamRCpyRaBSDM0aoamdAqOgUgrNGpGpnQKal+WkWnAAQtWlUjE1rFmgpAWKNTNTKhUxJrKgBhjE7VKFCdqvXm9ddff13/+c9/Dgds+vTp6tGjh6KjoyVJ69atU0pKiu64447ffK5TTjlFy5cvV2pqqo9jAwBM8sADD+iVV17RE088oUGDBsm2bX3zzTcaN26cioqKNGHChAafgU4BAKpjQqckWgUAqJ4JraJTAIDqmNApqf5aRacAIPSY0CrWVACA6pjQKYk1FQCgaoHqVK03r7/55pvHxOmtt95S+/btJUlvvPGGnnvuuVottkaOHKm77rpLO3fuVL9+/RQbG1vp9t69e9d2LADwD87AqtHMmTP18ssv66KLLjp8rE+fPmrVqpVGjhzpl8UWnQIQ1uhUjUzolESrAIQ5WlUjE1pFpwCENTpVIxM6JdVfq+gUgKBEq2pkQqtYUwEIa3SqRiZ0SmJNBSCM0akaBapTtd68vn79enXu3Pnwr6OioipdDv7kk0/WbbfdVqvn+tOf/iRJuv322w8fsyxLtm3Lsix5PJ7ajgUAMEBmZqa6du16zPGuXbsqMzPTLzPQKQBAdUzolESrAADVM6FVdAoAUB0TOiXVX6voFACEHhNaxZoKAFAdEzolsaYCAFQtUJ2q9eb1nJwcRURU3H3//v2Vbvd6vSouLq7Vc23ZsqW2LwsARrA4A6tGffr00fTp0/Xss89WOj59+nT16dPHLzPQKQDhjE7VzIROSbQKQHijVTUzoVV0CkA4o1M1M6FTUv21ik4BCEa0qmYmtIo1FYBwRqdqZkKnJNZUAMIXnapZoDpV683rrVu31qpVq9SlS5cqb1+5cqVat25dq+dKTU2t7csCAILA5MmT9fvf/15ffvmlBg4cKMuy9O2332rHjh365JNP/DIDnQIAVMeETkm0CgBQPRNaRacAANUxoVNS/bWKTgFA6DGhVaypAADVMaFTEmsqAEDVAtWpWm9ev/DCC/Xwww/r97//vaKioirdVlhYqPHjx+v3v/99nV58zZo12r59u0pKSiodv+iii+r0PACAwEpLS9P69ev13HPPad26dbJtW5dddplGjhypsrIyv8xApwAA1TGhUxKtAgBUz4RW0SkAQHVM6JRU/62iUwAQOkxoFWsqAEB1TOiUxJoKAFC1QHWq1pvX77//fr3zzjvq0qWL/vrXv6pz586yLEvr1q3T9OnTVVZWpvvvv79Wz7V582Zdeuml+vnnn2VZlmy7/Lr8lmVJkjwejw+/FQBoQLx9SI3S0tK0Z88eTZgwodLxjIwMtWnTxi9f1+kUgLBGp2pkQqckWgUgzNGqGpnQKjoFIKzRqRqZ0Cmp/lpFpwAEJVpVIxNaxZoKQFijUzUyoVMSayoAYYxO1ShQnXLU9o5JSUn69ttv1a1bN40dO1aXXnqpLrnkEt13333q3r27Fi1apKSkpFo916hRo5SWlqa9e/cqJiZGq1ev1tdff63+/fvrf//7n6+/FwBAgPy6GDlafn7+MWfsNhQ6BQCojgmdkmgVAKB6JrSKTgEAqmNCp6T6axWdAoDQY0KrWFMBAKpjQqck1lQAgKoFqlO1vvK6VL7D/rPPPlNmZqY2btwoSerYsaMSExPr9KLfffedvvrqKzVv3lwOh0MOh0ODBw/WxIkTdfvtt2v58uV1ej4AaHCcgVWlO++8U1L5GbQPP/ywYmJiDt/m8Xi0ePFi9e3b12/z0CkAYYtOVcm0Tkm0CkAYo1VVMq1VdApA2KJTVTKtU1L9tIpOAQhKtKpKprWKNRWAsEWnqmRapyTWVADCFJ2qUqA7VafN679KTEzUySef7POLejwexcXFSZKaNWum3bt3q0uXLkpNTdUvv/zi8/MCAPzr10WHbdv6+eef5XK5Dt/mcrnUp08f3X333X6fi04BACRzOyXRKgBAOVNbRacAAJK5nZKOr1V0CgBCh6mtYk0FAJDM7ZTEmgoAEPhO+bR5/Xj17NlTK1euVPv27XXKKado8uTJcrlcevHFF9W+fftAjAQANbI4A6tK8+fPlyQNHz5cU6dOVXx8fIAnqh90CkCwoVNVC9VOSbQKQPChVVUL1VbRKQDBhk5VjU4BgDloVdVoFQCYgU5VjU4BgBnoVNUC3amAbF5/8MEHVVBQIEl67LHH9Ic//EFDhgxR06ZN9a9//SsQIwEAjsNrr70W6BHqFZ0CgNASap2SaBUAhJpQaxWdAoDQQqcAAKajVQAAk9EpAIDJAtWpgGxeP//88w//d/v27bVmzRplZmYqISFBlmUFYiQAqBlnYIUVOgUg6NCpsEOrAAQdWhVW6BSAoEOnwgqdAhCUaFVYoVUAgg6dCit0CkDQoVNGCsjm9aokJiYGegQAAKpFpwAApqNVAACT0SkAgMnoFADAdLQKAGAyOgUAqCu/bl4fMWJEre736quvNvAkAFA3FmdghQU6BSBY0anwQasABCtaFR7oFIBgRafCA50CEMxoVXigVQCCFZ0KD3QKQLCiU2by6+b1GTNmKDU1VSeccIJsm78RAACz0CkAgOloFQDAZHQKAGAyOgUAMB2tAgCYjE4BAOqTXzev33LLLZo9e7Y2b96sESNG6Nprrz3utw1ZsmSJpkyZom+//Vbp6emyLEtJSUk69dRTdccdd6h///71ND2AsMb33WGBTgEIWnQqbNAqAEGLVoUFOgUgaNGpsECnAAQ1WhUWaBWAoEWnwgKdAhC06JSRHP58seeff1579uzRvffeq3//+99q06aNhg4dqrlz5/p0RtZHH32kQYMGKTMzU6NGjdKrr76ql19+WaNGjVJWVpYGDRqkOXPmNMDvBAAQiugUAMB0tAoAYDI6BQAwGZ0CAJiOVgEATEanAAD1ybID+D4e27Zt04wZM/T666+rtLRUa9asUVxcXK0f37NnT1177bUaO3ZslbdPmjRJr7/+ulavXl2nuc5fMLpO90fVsl5rG+gRQsb8iVMDPUJIiG25zefH9rrrmXqcpGY/P32H314LNTO1U5J0+bcj6/wYHGv7Sx0DPUJIWPT49ECPEBLcLTf7/Fh/dkqiVSYxtVXXLL6xTvdH1da/0C3QI4SE7yY+H+gRQkJE8sbjejxrqvBkaqck6aalw+r8GBxr+XN9Aj1CSKBV9eN4WsWaKjyZ3KlRy6+q82NwrG+fPSnQI4SExRNfCPQIIcGRvP64Hs+aKjyZ3KqxK6+o82NwrHnPnBroEUICraofx9Mq1lThyeROjVt1cZ0fg2P99+nTAz1CSKBT9YNOhR6/Xnn9aJZlybIs2bYtr9db58dv3LhRl112WbW3X3LJJdq0adPxjAgA5Ww/fsAYdApA0PBnp2iVUWgVgKBBp8ISnQIQNFhThSU6BSCo0KmwRKsABA3WVGGJTgEIGnTKSH7fvF5cXKy3335b5557rrp06aKff/5Z06dP1/bt2+t09pUkdejQQR999FG1t8+ZM0ft27c/zokBAOGETgEATEerAAAmo1MAAJPRKQCA6WgVAMBkdAoAUF8i/PliI0eO1OzZs9W2bVsNHz5cs2fPVtOmTX1+vkceeURXXnmlFixYoPPOO09JSUmyLEvp6en64osv9Pnnn2v27Nn1+DsAEK6sQA8Av6BTAIIVnQoftApAsKJV4YFOAQhWdCo80CkAwYxWhQdaBSBY0anwQKcABCs6ZSa/bl5/4YUX1LZtW6WlpWnBggVasGBBlff74IMPavV8l19+ub7++mtNnTpV//jHP5Seni5JSk5O1sCBA7VgwQINHDiw3ub3t2inW8PaXahTm/VSk8g4bcrfpX9u+kDr83ZIkuaePqXKx720aY7e2znfj5OaLyYqUjdfNkhnnNhRCfExWr9tn55+a77Wbtkrp9OhWy8bpFN7p6lVi8bKP1isJWu2a/q7C3UguyDQo9e7H1dYen12hNaud+hAhqWnHy3RmUPq/vY9dTFvgUPPvxqhnbsttU6xddsNZTrriNd89U2nvvraqa3bLbndUp8eXt1+c5nateV9NOBfdKruPIVl2vfhZuUu26+y3BJFtW2klld3Vkz7eEnSquHzqnxc0tCOan5Bqj9HNVpMVKRuufSITm0v79SaIzo1qHeaWjUv79QPa7Zr+nuh2amlKyzNmO3Q2vWW9mdYmvJomc4a0rA9+GKBpededWrHbqlNivS3Gzw6+4jXfPlNh+Z9bWnLoU717WFr9M0epbVt0LGAKtGquvEUlmnX+9uU/eMBleaWKiY1Tm2v7aDY9o3Kby/yaOc7W5T94wGV5ZfJ3cytFue1UouzUwI8uVnoVGVLV0ivvu3QmvXS/gxLzz7m0dlDGvY1P18gTXvFcbhVo27w6pzTKm5/6Q1LX3xtact2Kcot9e0p3Xmzl1bB7+hU3ZUVerT1vR06sCRTpbmlimsXqw7XtVN8h/IrVXmKPNo8e7sOLM1SWX6popq71er8ZKWckxzgyc1CqyrQKaB6dKruygo92vDObu1dkqOSnFLFt4tRt7+0VuMOseW3F3m0/q3d2rs0W6V5ZYpu7lLq71qo7XnNAzy5WehUhSUrpFffllYf6tS0x2yd44dOPfuKtH231DZFGnWDdO4RnXrxDemLr6XNhzp1Qk/prptFpxAQtKruSgs9Wjt7r3b/kKvinDI1SYtW7+EtldAxRlJ5y1a/ma7dS3JVkudRTAuXOlzQVO3P932zZSiiVRVoFVA9OlV3pYUerXz7gHYuzlNxrkcJaVE6cUQLNe0YLUkqzC7Tiln7lL7ioEoKPGrePUb9r09SoxRXgCc3C52qQKcQSvy6ef3Pf/6zLKt+z2MYOHBg0IeqOnd0vlLtYpM1ed0byizO1VlJ/fVE75G6cckTyijJ0ZXfPlTp/icldtMdXa7UogMrAzSxuR4Yfp46tG6qcS9+qv3ZBbrg1G567p4r9Kf7Z+pgcYm6pLbQqx9/r/U79is+Nkp3XH2Gnh51sYaNfyvQo9e7oiJLnTvYuuiCUt3z8PF/s/Pxp079+zOnXppaUuXtK1ZbGjs+UrdeX6YzB3s1f5FDY8dF6pVpJerVvXxj4I8/OTT0Eo96dPXK45Gmvxyhkfe49P6MYkVHH/eI9YN99GGBTtXdrtfWqnhXgVrf2F0RTdzK/i5dW59apk4TBigyIUpdpgyudP/8lRna9dpaNe7XIkATm+nB4eepQ6um+vtLhzo1sJueu/sKDX2gvFNdU1volY+/14Yd+9UoJkp3Xn2Gnr79Yg17JPQ6VVgkdelg65ILvLrz4eP/VnXOp5bmfObQq1M9Vd6+YrWlMeOduu16r84e7NW8RQ7dM86pGdM86n2oU0t/snTlJV716GrL45GmvezULfdE6MMZZYqhU/AzWlU3W1/ZoMJdBUq7uYsiE9zK+Gav1k9aqR4T+8uV6NaONzcpb2220m7pKnezKOWuytK2mRsU2cSlhH7NAj2+MehUZYWFUpeOti690Nboh5zH/XwffmppzmeWZkyt+qTin1ZJd4936G8jbJ09xNa8hZbuGufQrOle9e5efp8lKyxddamtXl1tlXmkZ1926Ma7Hfp4ppdWwa/oVN2tf2mTCnYWquutHeVOcGnvN/u1cuJanTS5j9yJLm2ctU3Za3PUbWQHRTV3K/PnHG14bYtcTVxq1j8x0OMbg1ZVoFM+olNhgU7V3ar/26b8nUXqfVuq3AmR2r0wU0se26DBT3dXVKJL617fqczV+ep9WztFN3cpY2We1ry6Xe7ESCX1bxLo8Y1BpyqUd0q69EJp1EO/ff/f8uGn0oefSa9Prfr25aukO8dLt4+QzhkifblQunOc9MZ0qc/hTklXXyr17Cp5PNKUl6Xr75b+M1PmdEqiVWGCVtXd8n/uUu6OIvX/WxtFJURox8JsLXpki855prOim0Zq5cw9OrCqQP1vb6OY5i7tW5GvFS/vUlRipFJOig/0+MagVRVolY/oVFigU3X3w/Ppyt5erIG3pyg6MUJbv87R/PE7dOGUNEUnRmjhpJ1yOC0NGdtKkdEOrft3lr4av12/n9peEVGOQI9vDDpVgU75iE4Zya+b12fMmOHPlwtqLkekBjfvrXGrXtGqnM2SpDe2faZTm/XSH1IGaebWT5RVmlfpMQOb9dKK7I1KL8oIxMjGckdG6Mz+nXTPs3O0fP0uSdJLH32n00/soMvP6q0XPvhWf3vq/UqPeeqNrzTz79coKbGR9mbmVfW0QWvQKV4NOqX6K62XlkrPvRKhT790Ki9f6phm6/abytT/BN+uzv7WexE6pb9XI64p3zSYlurRjz859NZ7EZr4cKkk6bknSys9ZvzYUp19SZTWrLfUrw/1gP/QqbrxlniU++N+pd7eW7FdEiRJSZe0V96y/cr8apeSLu+gyMbuSo/JXb5fsV0T5GphyneogeeOjNCZ/Trp7iM7Nec7nXFEp/56dKfe/EozHw7NTg05xdaQU6r/2l9aWn5Fv0++dCj3UKfuuMmrk07wrRdvvOfQgP62brimvHM3pHq19CdLb7zn0OSHy9v1wpOVN74/MtajMy6J1Jr1lvrTKfgZrao9b4lHWUv3q+PoHmrUtYkkqdVl7ZS9LEP7v9qtVlekKX9jrpoOTlJ8t/Lbm5/ZUvvn79HBLflsXj+ETh1ryABpyIDqv/6XlErPvmzpv19ah9ZU5VeXPfkE315v1nuWBvaTbry2/DXbp9passLS6+9aeurv5cdefLLyeu2xsV4NudipNeul/n18e13AF3SqbjwlXu1fkqmed3ZRk27lmybaXd5GB5ZmafeXe5U2tI1yN+YpeUhzNeneWJKUclaU9szbp7wtBWxeP4RWVUangOrRqbrxlHi194dsnXB3ByV2K3/3qk7/L0X7luZo+xcH1PlPKcpeX6CU0xLVtEf57THnuLVj3n7lbjrI5vVD6FRlpw0o/6hOSak09WXpP19KeflSp7TyK/b52qnX35NO7SfddG35r29KLd9Y8fq70tN/Lz/20pOVH/P4WGnQxZZWr7d1Ep2Cn9GquvEUe7V7cY4GjElVs+7l7wrSbWiS9vyQqy2fZ6j7VcnKXH9Qbc9oouY9yt/dKu3cRG39IkPZmw6yef0QWlUZrQKqR6fqpqzYqx3f52nI2NZq0aP8HUF6/am5dv6Qr41zs9XujMbKWF+kC59JU+O25fsq+t+YpA9H5Grbolx1OKdJAKc3B52qjE4hlIT0KTr333+/RowYEegxfOK0HHJaTpV4K2/qLfaWqkfj9sfcv0lknE5O7K656d/7a8Sg4XRainA6VFJSVul4cUmZ+nRuVeVj4qLd8npt5R8s9seIRhk3KVIrVjk08eES/euVEp1zukd/HROp7Tt9O3vy59UODTip8g+oBp7s1YrV1X/5ycsvf63GjXx6yQZh2f77QPgI5k5Jku2xJa8tK7Ly57PlcqhgQ/Yx9y/LKVbeygwlDEnx04TB4XCnSit3qqikTH070amjPTTJqZ9WWZr0sEfvv1Km8063desYp7bt9O35Vqy2dOpJlb/4DjrZ1orV1XcvP7/8fxs3MueLtj87RavCSzC3qrxTkuOoTjkiHcpbnytJatS5sbKXZ6gks1i2bSt3TbaK0gsV3yshECMbiU7V3YNPWFq+ytJTD3v1watenX+GrZvHOHxu1U9VteokWz/V0Kq8w63y7TUbAp1CQwjmTkk1tMrlUM6hVjXu3EgZy7JUnFki27aVtTpHhemFSuzdOBAjG4lW1Q2dqhprKjSEUOiU7ZWckZU/nx0uh7LWlX8iJ3SN074fc1R0qFMZq/NUsKdYzfqwGfBXdKpuHnii/Mp+Tz8sffSqdP4Z0o1jpK0+/9ufdOpJlY8NOklavrr6x5jYKYlOoWEEe6u83vJWOVxHr6ksZaw7KElq2jVWe5bmqTCjVLZta/+qfOXvKVGLPoZ9kgcQraobWlU11lRoCMHeKdtb9ZrK6bK0f91BeUvL91I5XBW3O5yWHBGW9q896NdZTUan6oZOVY1OmSmkN6/v2rVLW7duDfQYPin0FGtNzhZdnXq+El3xcsjSWS36qWujtkp0HfuPfucmn6xCT5EW7V8ZgGnNdrCoVCs37NaIiweoWZNYOSxLvxvYTT3at1SzxrHH3N8V6dRf/99gzf1+nQqKSgIwceDs2GXps3kOTR5XohN722rTytafr/Soby+v5nzq29sMH8iUmiZU/qrcNMFWRmbV97dt6R/PR6hvL686tuerOUJbMHdKkpzREYru0Fj7Pt6i0qxi2V5b2d/uUeHmXJXlHPv1M+ubdDmjnIrv3zwA05rrYFGpVm7cresvqujUBQO7qWd1nYpw6rYrBmvu4nDslPTpPEtPjfOoX29bbVpJf7nSqxN62froU9++rT2QKSUe1anEBFsHaujUk887dUIvrzodez4hEHKCuVXO6AjFdozX7jnbVXKoUxnf7FXB5jyVZpd//WxzXQdFp8Ro5ejFWjZikTY89bNSh3VUoy5sCPwVnaqb7bukT+ZZema8V/36SG1bScOvtHViL+nDT3w7Ibh8TVX5WNME1diqyc85dGIvm1Yh5AVzpyQpItqp+E5x2vbRThVnlcj22tq7aL/yNuWrJLv8ghYdh7VTTKtoff+3ZVo47Af9PHmdOv0lTY27sCnwV7Sq9ugU4F+h0KkmnWK18YP08s3pXlu7F2YoZ2OBig91qttfWiuudZT+N3KVPr92uZZO3KjuI9oooWtcgKc3B52qve27pP/Ok6aML39njratpBFX6lCnfHvOA5lSs6M61ew3OjXpOalfL1ud6RTCQLC3KjLaqcTOMfrlvX0qzCyV7bG1/essZW0sVFFWeav6DG+pRq3d+uyWdZpz1Sp9O2Gr+tyQombdjv0aHK5oVe3RKsC/QqFTzbpEa/V7B3Qws1Rej60tC3KUsaFIhVkexbdyK7Z5hFa8sV8l+R55Sm2t+SBDRdkeFWZ5fvsFwgSdqj06hWATEegBGtLMmTN/8z7FxcUqLq58lo23pEwOV+D/aCave0N3drlKbw98RB7bo415OzV/3zJ1jGt9zH3PTz5FX+37UaV2WRXPhL+/+Kkeuv58fTLlZpV5vPpl2z7N/X6duqS2qHQ/p9OhCbf+XpZlafLr8wI0beCs22DJti1dcq270vHSUqlx4/Iz/vbsla4YVnG7xyOVeaRBv6s4duG5Hj1wV8XfReuon33ZtlTdj8OemBqhDZscenWaYWe/sY8eDaA2nZKqbpWnxCOny7eTSupT65u6a9era/XLnYskh6Xo1EZqfEqyirbnHnPfrIW71XhAshyRgZ/bNA+/+KkeHnG+Pn3miE4tXqcubavulMNhaVIYdmrtoU798drK36eVlkpNDu0z3bNXumRYxe2/duqU31Uc+8O5Xj10V8W7ghzdKdXQqcenOrRhk6UZ0wz7notOoYH4uqYypVNpN3fR1pfXa+WoxZJDimnXSIkDW+jg1vJT/vd9vkv5m/LU8Y4ecjV1K/+XHG2buVGRjV2K78nV139Fp2pv7XrJti1deG3lk6pKS6Qmh/aZ7t4rXTSs4naPRyork/r/ruLYH8+19fe7Kr64H9Oqao5J0mNTLK3fLM2a5q36DoFCq9AAQmFN1fXWjvrlxU36/q/LJIfUqF2sWpzaTPlbCiRJu+amK3djvnrc1UVRzVzKWZenDTO2yJXgUkJPTrb6Fa2qHTpVAzqFBnA8nSor8SjCgE71vq2dfv6/bfrfyFWyHFJ8WoxaDkpQ7pZCSdK2T/cre0OBTrynvaKbuZS5Nl9rXt0hd0KkmvXiRKtf0anaWXOoUxdcW/mLcslRnfrjsIrbyg51qt/vKo798Vxp3F0Vvz7mZ1RVHPvVo1OkXzZLb07z+bfRcGgVGkAotKrf31pr2fO79NnN62Q5pCZp0WozuImyN5e3atOnGcpaf1AD7k1VTPNIHVhToBUv71ZUQqRa9OZkq1/RqtqhVTWgU2gAodCpAbe31OLn9mjOjZtkOaSE9lFKHRKvrM1FckRYGnxPay1+fo/eH7ZBlkNK6h2rlidwgtXR6FTt0Kka0CkjBX6HdoBNnDhR48ePr3Ss/bBT1HH4gABNVGFPUYbuWTFdbodLsRFRyizJ1f3dhim9KKPS/Xo2bq82MUl6fE3toh2Odu3P0S1PvKMoV4Rio93KyCnQhFt/r90Hcg7fx+l0aOLIPyilWWONnPRu2J19JUler+R02HrzxRI5jrqAbUx0+Vfx5k2lt1+u+LP5aqFDX33t1GMPlB4+Fhdb8RW/WaJ0ILNysTKzLSUmHvv6k6ZG6OtvnHr52RIltTj2diBcVdWqriP6q/v1J1XzCP9xt4hR+7H95C32yFNYpsgmbm1//mdFNouudL+C9VkqST+ohFt7BmhSs+3an6ObJ1Xu1ONVderWQ52aHN6dmv1imZzHdKr8f5s3ld59uWJj+ZcLHfrya0tPPFBxdnrsEev9ZolSRqalI1crmdmWmlbRqYlTHfrfNw699myZkukUcFhVnep5/QnqfWO/AE1UISopWl0f6CPPoU65mri1afpauZtHyVvi0a53t6rDqO5q0repJCmmbZwObi9Q+qc72bx+BDpVe17bktNp690XvVWsqcr/t0VT6f2XKzbsffm1pS++tjTpwYpjcUe16ugrWGRkHXuVW0maMMXS/76xNHOal1YBR6iqVSfe2Fv9buobmIGOEJ0Upb4P9ZCnyKOyQo/cCS6teXa9olq45Snxasu/dqjHHZ3V9ITyT/q4trHK31agHf/dzeb1I9Cq2qFTgJmq6tTJN/XQgFt6BWiiCjHJbp3y984qK/KorNCrqIRI/TRls2JauOQp8Wr97N064a72anFieZMapcYob1uhtv5nH5vXj0CnasdrS06nrfdeVI2d+uDliuNffF3+MfnBimNHd2p/LTv12BRp/jfSrGmiU8BRqmrVoFu6afCt3QM0UYW4ZLdOe6S9yoq8Kiv0KCohUj/8Y3t5q4q9Wv3WXg24p62S+5V3qXFqtHK2FmnDx/vZvH4EWlU7tAowU1WdOv3WzjpjZNcATVShUbJL5zyaqrIir0oLvYpOiNA3T+9SXItISVJihyhd8HSaSgo88pbZimococ/HblVih6gAT24WOlU7dArBJug3rxcUFOitt97St99+q/T0dFmWpaSkJA0aNEhXXXWVYmNrPhvpvvvu05133lnp2OWL72/Ikeus2Fui4pISxUVEq19iV728+eNKt5+fPEDr87Zrc8HuAE0YPIpKylRUUqZGMW4N6JWqaf9aKKli43qbpCa6ddK7yikoCvCkgdG1ky2P11JmtnRi76pPOYqIkNq2rrgtsYnkdlU+dqRePbxavNSha/9fxabB75c41KdHxQ+8bLt84/r8RU69NKVErVoaeLqTgSMhOBxvp6SqW/XnZfc01Mg+cbidcrid8hSUKn9VppKHdqx0e9bXexTVrpGi2zYK0ITBoVKneqZq2jtHdOrWP6htUhPdMplOZWZb6ldjpyp+3bSJrSiXVenYkfr0sPXdUkvX/b+KY98usdSnR8Xz23b5xvWvFjn0ypQytW5ZH7+bekancBwaYk1104rRDThx3TndTjndTpUVlCp3VaZa/6m9bI8t22PLOvrSAA6Vf+LjGHTqt3XrZMvjcSgzS+rXp+r7RERIqUd0KTFBinJXPnakvodaNWxoxd/Lb5dY6ntUqyZMtTRvoaUZU720CiGlodZUd6wa2VAj+8QZ5ZQzyqnSgjJl/pyj9le1lV3mle059m2BLIclGXbRalPQqprRqRrQKfiooTp139obGmpkn0REORUR5VRpfpkOrMxTl6tbyS77dU111J0dlmwvn1RVoVM169ZJ8ngsZWTZ6l/LTjVNkNw1dKpPD+nbpdJfhlYc+3aJdEKPil/btvTYVOnLhdLMqTKzUxKtgs8aqlWPrB9Wzb0DIyLKoYgoh0ryPdq3Ik89rm0p76F//5Ojcqwsh8XnVDVoVc1oVQ34nIKPGqpTkzde3VAj++TITu35qUB9r6u8s9cVW36V+LzdJcrcVKReVzYPxJjGo1M1o1M1oFNGCurN62vWrNG5556rgwcP6vTTT1fbtm1l27b27dune+65R+PGjdPnn3+u7t2rP+PX7XbL7XZXOuZwmfHH0i+hqyxJOwr3qVV0M93Q/mLtPLhPn6cvPnyfGKdbpzXvoxc3zQncoEFgQM9UybK0fU+mWic10e1/Ok3b9mTp34tWy+mw9MRtf1DX1CTdOeVDOR2WmjaOkSTl5BepzBNaPw08eFDasatigb4r3dIvGyzFx9tKbWPrgnM8evjxSN0xskxdO9nKzpGWLHOoY3tbgwfU/c/i6svLdMPtLs14y6nTB3m14BuHfvjRoVemVZzh9sSUCH36pVPPTChRTLStA4feXCAurvyHY0Cwqo9OSVW3yoS3t5ekvJ/LP2HdyTEq2XdQ6f/aKHfLGCUMrvhu1FNYppwle9Xyyk6BGtN4A3qmypKlbemZat2iiUYd6tTHhzo16VCn7pjyoZyWpabxhzpVEJqd2r6r4te70i2t22CrcbzUro30+3O8euBxp+4e6TnUKUs/LLPUqb2tIQPqvuK45nKvht/u1KtvOXTmIK/mf+PQ4h8tzZhWcdLVhCkOffqlQ1MneBQbLTqFkNJQaypTOpWzsvxSAFEto1W0t0g7Z29WVHKMmg5JkiPCobiujbVj9mZZLofczdzKW5ejjEX71Obq9gGe3Cx0qrKCo1q1c4+ltUe06g/nenXf4w7dc5tX3TpJWdnS4uWWOre3dZoPb/J27RW2ht1u6eW3LJ01yNZX31j6/kdp1vSK7j36jKVP5lmaNsGrmGhp/6FWNaJVCHLhsKbKXJkt2VJ0yygV7i3S5re2K6ZllJJPay5HhEONuzXS5re3y3moVTlrc7V34X51uDY10KMbhVZVoFOA/zRkp0x4e3tJ2r8iV7JtxaZE6WB6sX55c5diW7rV6oymckRYSugWp1/e3CWHy6Ho5i5lrsnX7q8z1PW6an7qHaboVIVjOyWt3SA1jpfS2kh/PNfW2MelMbdJ3Q916vvlUuf20uk+dOrPV0jX3S699JZ09iBp3jfSdz9Kb0yvuM8jz0j/nSdNnyDF0imEmHBo1d6f8iRbiktxqyC9WKtmpSsuxa3UMxPkiLDUrHusVs3aI6fLUkwzlw6sKdD2BVnqNczEXVWBQ6sq0CrAf8KhU3uW58uWFJ/iUl56qX56fZ/iW7nU/qzyd6/a/m2u3PFOxTaLVPb2Yi17da9anRSnln1/e9N+OKFTFegUQokZu7R9dNttt+m0007TzJkz5XK5Kt1WUlKiv/zlL7rttts0f/78AE14fGIjojQ87Q9q5m6ivNICfXNgpV7b8l957Iovqqe3OFGSpfn7lgVu0CAQF+3WyP83WC0S4pRbUKSvlm7UP99fJI/Hq5bN4nX6ieVXCH7z0T9XetwtT7yjZet2BmLkBrPmF4duuqPi8+Ufz5W/Fc0fz/do/H2lGje2VC/PitAzz0do3wFLTeLLr54+aECZT6/Xp6etiQ+X6vlXIvT8qxFqnWJr4t9L1at7xQ+w3p1T/qXoxtGVizXu3lJddIFHJrA4Aws+CPVOSZK3sEzp721SWVaRnLGRiu/XQkmXd5AVUfEeRDmL90qSGp+SHKgxjRcX7dZtVxzRqR836vlfO9U0XqefUN6ptx6p3Kmbn3hHy34JrU6t/sXS9XdUfIv65HNOSU5ddL5Xj93n0SNjPXpxlkNPPe/UvgNSk/jyq6f7coKVJPXtaWvSwx5Nf8Wp6a861CZFmvx3j3of0al35pT/48aI0ZW/dX703jJdfIEZgaBT8FWot8pT6NGud7eoJLNYEbGRanJSM7W6op0chzrVYWQ37Xx3i7a8sE5l+WVyN3Or1RXt1Pwsfnh1JDpV2epfpOGjK/7he/Jz5X+fLv6dV4/fZ+uxsbb+73Xpyecc2nuoVX17SKed4tsX6xN6Sk8+7NW0Vxya9oqltinSU+O86n3Ev9f/a075DH8ZVfkf5B8b69WltApBLNQ7JUllBz3a8q/tKs4sUWRchJqdlKi0oW0Ot6r7Xztp8792aO3zGw+3qt3Qtmp5dlKAJzcLrapAp3xDp+CLcOnU+rd3qSizVK44p5JOTlCnK1PkiCi/QE7fUWla//YurZy+VaX5ZYpu7lKnK1PU5txmAZ7cLHSqwupfpGGjKy6wNOm58v++5He2Jt4nTRgrvfC6NPk5ad+B8g0YfXtIp5/i2+ud0FN6+mFp6ivStFekNinS0+OkPkd0avac8hmGjar82MfH2rr0At9etyHQKvgiHFpVetCjNW/tVWFGqSLjnGp1Sry6X5V8uFUnjW6j1W/t1dKpO1SS71FMc5e6X5WktPMSAzy5WWhVBVrlGzoFX4RHp7xa8eZ+HcwokyvOoTYDGqn31c0Pd6owq0zLZ+xTUU6ZoppEKO2MxupxBeupo9GpCnTKN3TKTJZtB+/7ocfExGjp0qXVnmG1atUqnXzyyTp48GCdnvf8BaPrYTpkvdY20COEjPkTpwZ6hJAQ23Kbz4/t+7dn6nGSmv007Q6/vRYaVkN1SpIu/9ast7gPVttf6hjoEULCosen//ad8JvcLTf7/Fh/dkqiVaGkoVp1zeIb62O8sLf+hW6BHiEkfDfx+UCPEBIikjce1+NZU8EXDbmmummpWW9xH6yWP1fN+8+iTmhV/TieVrGmgi8aslOjll91vONB0rfPnhToEULC4okvBHqEkOBIXn9cj2dNBV80ZKvGrrzieMeDpHnPnBroEUICraofx9Mq1lTwRUN2atyqi493PEj679OnB3qEkECn6gedCj2O376LuRISErRhw4Zqb9+4caMSEhL8OBEAABXoFADAdLQKAGAyOgUAMBmdAgCYjlYBAExGpwAgvEUEeoDjceONN2rYsGF68MEHde655yopKUmWZSk9PV1ffPGFHn/8cY0ePTrQYwIIBUH7HhUIJDoFwG/oFHxEqwD4Da2CD+gUAL+hU/ABnQLgV7QKPqBVAPyGTsEHdAqA39ApIwX15vVx48YpOjpa//jHPzRmzBhZliVJsm1bycnJGjt2rMaMGRPgKQEA4YpOAQBMR6sAACajUwAAk9EpAIDpaBUAwGR0CgDCW1BvXpeke++9V/fee6+2bNmi9PR0SVJycrLS0tICPBmAUGJxBhZ8RKcA+AOdwvGgVQD8gVbBV3QKgD/QKfiKTgHwF1oFX9EqAP5Ap+ArOgXAH+iUmYJ+8/qv0tLSCBcAwFh0CgBgOloFADAZnQIAmIxOAQBMR6sAACajUwAQfhyBHuB4TZs2TcOGDdM777wjSZo1a5a6d++url276v7771dZWVmAJwQQEmw/fiCk0CkAfuHPTtGqkEOrAPgFnYKP6BQAv2BNBR/RKQB+Q6fgI1oFwC9YU8FHdAqAX9ApIwX1ldcfffRRPfnkkzrvvPM0atQobdmyRU8++aTuuOMOORwOPfPMM4qMjNT48eMDPSoAIAzRKQCA6WgVAMBkdAoAYDI6BQAwHa0CAJiMTgFAeAvqzeszZszQjBkzdNlll2nFihXq16+fZs6cqWuuuUaS1LVrV40ZM4aIAThuFmdFwQd0CoC/0Cn4ilYB8BdaBV/QKQD+QqfgCzoFwJ9oFXxBqwD4C52CL+gUAH+hU2ZyBHqA47Fnzx71799fktSnTx85HA717dv38O0nnniidu/eHaDpAADhjk4BAExHqwAAJqNTAACT0SkAgOloFQDAZHQKAMJbUG9eT05O1po1ayRJGzZskMfjOfxrSVq9erVatGgRqPEAhBLbjx8IGXQKgN/4s1O0KqTQKgB+Q6fgAzoFwG9YU8EHdAqAX9Ep+IBWAfAb1lTwAZ0C4Dd0ykgRgR7geFx99dX685//rIsvvljz5s3Tvffeq7vvvlsZGRmyLEsTJkzQFVdcEegxAQBhik4BAExHqwAAJqNTAACT0SkAgOloFQDAZHQKAMJbUF95ffz48Ro1apTS09N188036/HHH9ekSZP0+OOP64EHHtDZZ5+tRx99NNBjAggFBp99lZeXp9GjRys1NVXR0dE69dRTtWTJEklSaWmp7r33XvXq1UuxsbFKSUnRn//8Z95ayU/oFAC/MfhMYTplNloFwG8M7ZREq0xGpwD4DWsq+IBOAfArQzsl0SqT0SoAfsOaCj6gUwD8xuBOSeHbqqC+8rrT6dQDDzxQ6diVV16pK6+8MkATAYD/3XDDDVq1apVmzZqllJQUvfHGGzrnnHO0Zs0axcXFadmyZXrooYfUp08fZWVlafTo0brooou0dOnSQI8e8ugUANAp09EqAKBVJqNTAECnTEanAKAcrTIXrQIAOmUyOgUA5cK1VUG9eR0A/MXy4awofygsLNT777+vOXPm6LTTTpMkjRs3Th999JH++c9/6rHHHtMXX3xR6THTpk3TySefrO3bt6tt27aBGBsAUM/oFADAdLQKAGAyOgUAMB2tAgCYjE4BAExmaqek8G6VI9ADAAB8V1ZWJo/Ho6ioqErHo6OjtWjRoiofk5OTI8uy1KRJEz9MCAAIZ3QKAGA6WgUAMBmdAgCYjlYBAExGpwAApgvnVrF5HQAMU1xcrNzc3EofxcXFVd63UaNGGjhwoB599FHt3r1bHo9Hb7zxhhYvXqw9e/Ycc/+ioiKNHTtWV199teLj4xv6twIACFG1bRWdAgAEAmsqAIDpWFMBAEzGmgoAYDrWVAAAk7Gmqh02rwNAbdj++5g4caIaN25c6WPixInVjjZr1izZtq1WrVrJ7Xbr2Wef1dVXXy2n01npfqWlpbryyivl9Xr1/PPP18+fCwDADH7sVF1bRacAAJKM7ZREqwAAYk0FADCfoZ2SaBUAQKypAABmM7hTUvi2KiLQAwAAKrvvvvt05513VjrmdrurvX+HDh20YMECFRQUKDc3Vy1bttSf/vQnpaWlHb5PaWmphg4dqi1btuirr74K+jOvAACBVZdW0SkAgL+xpgIAmI41FQDAZKypAACmY00FADAZa6raYfM6ANSCZdt+ey23211jsKoTGxur2NhYZWVlae7cuZo8ebKkinht2LBB8+fPV9OmTet7ZABAgPmzU5JvraJTABDeWFMBAEzGmgoAYDrWVAAAk7GmAgCYLBg6JYVfq9i8DgBBbu7cubJtW126dNHGjRt1zz33qEuXLho+fLjKysp0xRVXaNmyZfrPf/4jj8ej9PR0SVJiYqJcLleApwcAhDo6BQAwHa0CAJiMTgEATEerAAAmo1MAANOFa6vYvA4AteHfE7DqJCcnR/fdd5927typxMREXX755ZowYYIiIyO1detWffzxx5Kkvn37Vnrc/PnzdcYZZ/h/YABA/aNTAADT0SoAgMnoFADAdLQKAGAyOgUAMJnBnZLCt1VsXgeAIDd06FANHTq0ytvatWsn289vfQIAwJHoFADAdLQKAGAyOgUAMB2tAgCYjE4BAEwXrq1i8zoA1IIVmg0AAIQIOgUAMB2tAgCYjE4BAExHqwAAJqNTAACT0SkzOQI9AAAAAAAAAAAAAAAAAAAAAAAg9HHldQCoDc7AAgCYjE4BAExHqwAAJqNTAADT0SoAgMnoFADAZHTKSFx5HQAAAAAAAAAAAAAAAAAAAADQ4LjyOgDUgsUZWAAAg9EpAIDpaBUAwGR0CgBgOloFADAZnQIAmIxOmYkrrwMAAAAAAAAAAAAAAAAAAAAAGhyb1wEAAAAAAAAAAAAAAAAAAAAADS4i0AMAQFDg7UMAACajUwAA09EqAIDJ6BQAwHS0CgBgMjoFADAZnTISV14HAAAAAAAAAAAAAAAAAAAAADQ4rrwOALVgcQYWAMBgdAoAYDpaBQAwGZ0CAJiOVgEATEanAAAmo1Nm4srrAAAAAAAAAAAAAAAAAAAAAIAGx5XXAaA2OAMLAGAyOgUAMB2tAgCYjE4BAExHqwAAJqNTAACT0SkjceV1AAAAAAAAAAAAAAAAAAAAAECD48rraDC2FegJQkeEnIEeIexZnIEFADAYnQKA6q0uKQ70CCGhz3E+nlYBQPUcXGMm4OgUAMB0tAoAYDI6BQAwGZ0yE/8qDgAAAAAAAAAAAAAAAAAAAABocFx5HQBqw+YULACAwegUAMB0tAoAYDI6BQAwHa0CAJiMTgEATEanjMSV1wEAAAAAAAAAAAAAAAAAAAAADY4rrwNALVicgAUAMBidAgCYjlYBAExGpwAApqNVAACT0SkAgMnolJm48joAAAAAAAAAAAAAAAAAAAAAoMFx5XUAqA3OwAIAmIxOAQBMR6sAACajUwAA09EqAIDJ6BQAwGR0ykhceR0AAAAAAAAAAAAAAAAAAAAA0ODYvA4AAAAAAAAAAAAAAAAAAAAAaHARgR4AAIKB5Q30BAAAVI9OAQBMR6sAACajUwAA09EqAIDJ6BQAwGR0ykxceR0AAAAAAAAAAAAAAAAAAAAA0OC48joA1IYd6AEAAKgBnQIAmI5WAQBMRqcAAKajVQAAk9EpAIDJ6JSRuPI6AAAAAAAAAAAAAAAAAAAAAKDBceV1AKgFizOwAAAGo1MAANPRKgCAyegUAMB0tAoAYDI6BQAwGZ0yE1deBwAAAAAAAAAAAAAAAAAAAAA0OK68DgC1YXMKFgDAYHQKAGA6WgUAMBmdAgCYjlYBAExGpwAAJqNTRuLK6wAAAAAAAAAAAAAAAAAAAACABseV1wGgFixOwAIAGIxOAQBMR6sAACajUwAA09EqAIDJ6BQAwGR0ykxceR0AAAAAAAAAAAAAAAAAAAAA0OC48joA1AZnYAEATEanAACmo1UAAJPRKQCA6WgVAMBkdAoAYDI6ZSSuvA4AAAAAAAAAAAAAAAAAAAAAaHBsXgcAAAAAAAAAAAAAAAAAAAAANLiIQA8AAMHA4u1DAAAGo1MAANPRKgCAyegUAMB0tAoAYDI6BQAwGZ0yE1deBwAAAAAAAAAAAAAAAAAAAAA0OK68DgC1YXMKFgDAYHQKAGA6WgUAMBmdAgCYjlYBAExGpwAAJqNTRuLK6wAAAAAAAAAAAAAAAAAAAACABseV1wGgFixOwAIAGIxOAQBMR6sAACajUwAA09EqAIDJ6BQAwGR0ykxceR0AAAAAAAAAAAAAAAAAAAAA0OCC+srrJSUlcrlch3+9adMmTZs2TRs2bFDLli116623ql+/fgGcEEDI4Aws+IBOAfAbOgUf0SoAfkOr4AM6BcBv6BR8RKsA+A2tgg/oFAC/oVPwAZ0C4Dd0ykhBfeX16Oho7du3T5L0008/qXfv3lqwYIFatWqllStX6tRTT9UPP/wQ4CkBAOGKTgEATEerAAAmo1MAANPRKgCAyegUAMBkdAoAwltQX3ndtitOiXjooYd04YUX6p133pFlWZKkESNG6O9//7s+/fTTQI0IIERYnIEFH9ApAP5Cp+ArWgXAX2gVfEGnAPgLnYKvaBUAf6FV8AWdAuAvdAq+oFMA/IVOmSmoN68f6aefftLs2bMPB0ySRo0apfPPPz+AUwEAUI5OAQBMR6sAACajUwAA09EqAIDJ6BQAwGR0CgDCT1BvXrcs63C0nE6n4uPjK90eHx+vnJycQIwGINR4OQULdUenAPgNnYKPaBUAv6FV8AGdAuA3dAo+olUA/IZWwQd0CoDf0Cn4gE4B8Bs6ZaSg3rxu27Y6d+4sy7KUn5+vn3/+Wb169Tp8+4YNG5ScnBzACY9PtNOtYe0u1KnNeqlJZJw25e/SPzd9oPV5OyRJc0+fUuXjXto0R+/tnO/HSc0XExWpWy4dpDNO7KiE+Bit375PT781X2u27JXT6dCtlw3SoN5patW8sfIPFuuHNds1/b2FOpBdEOjR693SFZZmzHZo7XpL+zMsTXm0TGcNadgv0F8ssPTcq07t2C21SZH+doNHZx/xmi+/6dC8ry1t2W7J7Zb69rA1+maP0to26FhAgwv1TkmSp7BM+z7crNxl+1WWW6Koto3U8urOimlfvrBcNXxelY9LGtpRzS9I9eeoRqNTFegU4F+h3ipPYZl2vb9N2T8eUGluqWJS49T22g6Kbd+o/PYij3a+s0XZPx5QWX6Z3M3canFeK7U4OyXAk5uFTlW2ZqVDH78bqS3rLWVlOnT3uGKdPMjToK/5/UKn/jUjUnv3WEpqaeuq4aU6eXDFa374doR+WOTUrh0OudxS5+4eXXtDqVLa8I9xCG6h3ilJKiv0aOt7O3RgSaZKc0sV1y5WHa5rp/gOcZLKW7V59nYdWJqlsvxSRTV3q9X5yUo5J7h/3/WNVlVYskJ69W1p9Xppf4alaY/ZOmdIw77m5wukZ1+Rtu+W2qZIo26Qzj2t4vYX35C++FravF2Kcksn9JTuulmsqRASQr1VZYUebXhnt/YuyVFJTqni28Wo219aq3GH2PLbizxa/9Zu7V2ardK8MkU3dyn1dy3U9rzmAZ7cLHSqAp0C/CvUOyVJpYUerZ29V7t/yFVxTpmapEWr9/CWSugYI6m8ZavfTNfuJbkqyfMopoVLHS5oqvbnNw3w5GahVRVoFeA/4dKplW8f0M7FeSrO9SghLUonjmihph2jJUmF2WVaMWuf0lccVEmBR827x6j/9UlqlOIK8ORmoVMV6BRCSVBvXn/ttdcq/bpDhw6Vfv3999/r0ksv9edI9eqOzleqXWyyJq97Q5nFuTorqb+e6D1SNy55QhklObry24cq3f+kxG66o8uVWnRgZYAmNteDw89Th1ZN9feXPtX+7AJdMLCbnrv7Cg19YKYOFpeoa2oLvfLx99qwY78axUTpzqvP0NO3X6xhj7wV6NHrXWGR1KWDrUsu8OrOh4//S8CcTy3N+cyhV6dWvVljxWpLY8Y7ddv1Xp092Kt5ixy6Z5xTM6Z51Lt7+UaKpT9ZuvISr3p0teXxSNNeduqWeyL04YwyxUQf94j1gz0f8EGod0qSdr22VsW7CtT6xu6KaOJW9nfp2vrUMnWaMECRCVHqMmVwpfvnr8zQrtfWqnG/FgGa2Ex0qgKd8hGdgo9CvVVbX9mgwl0FSru5iyIT3Mr4Zq/WT1qpHhP7y5Xo1o43NylvbbbSbukqd7Mo5a7K0raZGxTZxKWEfs0CPb4x6FRlxUVSu/ZenXmeV08/4j7u5/vfXKf+93mExj1dXOXt69c4NOUxl/70l1KdPMijH75x6pnHXHrkmWJ16uaVJK1Z6dT5F5WpQxevPB5p9msuPTbWrX+8XKQoWoUgFuqdkqT1L21Swc5Cdb21o9wJLu39Zr9WTlyrkyb3kTvRpY2ztil7bY66jeygqOZuZf6cow2vbZGriUvN+icGenxj0KoKhYVSl47SpRdKox767fv/lg8/lT78THp9atW3L18l3Tleun2EdM4Q6cuF0p3jpDemS326l99nyQrp6kulnl0lj0ea8rJ0/d3Sf2aKNRWCXqi3atX/bVP+ziL1vi1V7oRI7V6YqSWPbdDgp7srKtGlda/vVObqfPW+rZ2im7uUsTJPa17dLndipJL6Nwn0+MagUxXo1HGgVfBBqHdKkpb/c5dydxSp/9/aKCohQjsWZmvRI1t0zjOdFd00Uitn7tGBVQXqf3sbxTR3ad+KfK14eZeiEiOVclL8b79AmKBVFWiVj+gUfBAOnfrh+XRlby/WwNtTFJ0Yoa1f52j++B26cEqaohMjtHDSTjmcloaMbaXIaIfW/TtLX43frt9Pba+IKEegxzcGnapAp3xEp4wU1JvXhw0bVuPtDz/8sJ8mqX8uR6QGN++tcate0aqczZKkN7Z9plOb9dIfUgZp5tZPlFWaV+kxA5v10orsjUovygjEyMZyR0bozH6ddPezc7R8/S5J0ktzvtMZJ3bQ5Wf11gsffKu/PvV+pcc89eZXmvnwNUpKbKS9mXlVPW3QGnKKrSGnVP8VubRUmvaKQ5986VBuvtQxzdYdN3l10gm+fRV/4z2HBvS3dcM15Zsqbkj1aulPlt54z6HJD5dvJHzhycobCh8Z69EZl0RqzXpL/ftQDwSvUO6UJHlLPMr9cb9Sb++t2C4JkqSkS9orb9l+ZX61S0mXd1Bk48obunKX71ds1wS5WpjyHWrg0anK6BTgX6HcKm+JR1lL96vj6B5q1LWJJKnVZe2UvSxD+7/arVZXpCl/Y66aDk5SfLfy25uf2VL75+/RwS35bF4/hE4d64STvTrhZG+1t5eVSrNnRGrhPKcOFlhq086ra24oVY8+1T+mJv/9IEK9+3l16VVlkqRL25ZpzUqn/vtBhEY/UCJJemBi5Y3vI+8u1g3/L0abNzjUvbdvrwuYIJQ7JUmeEq/2L8lUzzu7qEm38k0T7S5vowNLs7T7y71KG9pGuRvzlDykuZp0byxJSjkrSnvm7VPelgI2rx9Cqyo7bUD5R3VKSqWpL0v/+VLKy5c6pZVfCenkE3x7vdffk07tJ910bfmvb0ot/4HV6+9KT/+9/NhLT1Z+zONjpUEXW1q93tZJfXx7XcAUodwqT4lXe3/I1gl3d1Bit/J3r+r0/1K0b2mOtn9xQJ3/lKLs9QVKOS1RTXuU3x5zjls75u1X7qaDbF4/hE5VRqcA/wrlTkmSp9ir3YtzNGBMqpp1L39XkG5Dk7Tnh1xt+TxD3a9KVub6g2p7RhM171H+7lZp5yZq6xcZyt50kM3rh9CqymgV4D+h3qmyYq92fJ+nIWNbq0WP8ncE6fWn5tr5Q742zs1WuzMaK2N9kS58Jk2N25bvq+h/Y5I+HJGrbYty1eGcJgGc3hx0qjI6hVDCKTqGcloOOS2nSryllY4Xe0vVo3H7Y+7fJDJOJyd219z07/01YtBwOi1FOB0qKS2rdLyopEx9O7Wq8jFx0W55vbbyD1Z95btQ9tAkp35aZWnSwx69/0qZzjvd1q1jnNq207fnW7Ha0qknVd7YN+hkWytWW9U+Jj+//H8bN2JDIGAy22NLXltWZOVvJyyXQwUbso+5f1lOsfJWZihhSIqfJgwOdKpu6BSA2irvlOQ4qlOOSIfy1udKkhp1bqzs5RkqySyWbdvKXZOtovRCxfdKCMTIRqJTdff8Uy79ssqh0Q+U6Mn/K9KA0zx6/D639uysvi01Wb/God79Kp9I1ae/R+vXVP9POgcLyl8rjlYBRqu2VS6Hcg61qnHnRspYlqXizBLZtq2s1TkqTC9UYu/GgRjZSLSqbh54ovyKSU8/LH30qnT+GdKNY6StPq+ppFNPqnxs0EnS8tXVPybv8JrKt9cE4B+2x5btlZyRlb+PdbgcylpX/omc0DVO+37MUdGhTmWszlPBnmI168NmwF/RqbqhUwDqwustb5XDdfSaylLGuoOSpKZdY7VnaZ4KM0pl27b2r8pX/p4StejDJ/mvaFXd0CoAtWV7q15TOV2W9q87KG9p+YVnHK6K2x1OS44IS/vXHvTrrCajU3VDpxBMQnrz+v33368RI0YEegyfFHqKtSZni65OPV+Jrng5ZOmsFv3UtVFbJbqO/Ue/c5NPVqGnSIv2rwzAtGY7WFSqlRt36/qLBqhZk1g5LEsXDOymnu1bqlnj2GPu74pw6rYrBmvu4nUqKCoJwMSBs2OX9Ok8S0+N86hfb1ttWkl/udKrE3rZ+uhT375cHMiUEhMqb5hITLB1ILPq+9u29OTzTp3Qy6tOx56nETCW7b8PhI9g7pQkOaMjFN2hsfZ9vEWlWcWyvbayv92jws25Kss59utn1jfpckY5Fd+/eQCmNRedqj06VT1/dopWhZdgbpUzOkKxHeO1e852lRzqVMY3e1WwOU+l2eVfP9tc10HRKTFaOXqxlo1YpA1P/azUYR3VqAsbAn9Fp+omfbelb+Y7dcdDJerWy6vkFFsX/b8yde3p1fy5vr35XXaWpSZHtapJgq3srKo3w9u2NPOFSHXt6VHbNHO+aNMpNIRg7pQkRUQ7Fd8pTts+2qnirBLZXlt7F+1X3qZ8lWSXX9Ci47B2imkVre//tkwLh/2gnyevU6e/pKlxFzYF/opW1d72XdJ/50lTxkv9+0htW0kjrpRO7CV9+Ilvz3kgU2p21Hl/zRJU45pq0nNSv162OrOmQhgI5lZFRDvVpFOsNn6QXr453Wtr98IM5WwsUPGhTnX7S2vFtY7S/0au0ufXLtfSiRvVfUQbJXSNC/D05qBTtUenakan0BCCuVOSFBntVGLnGP3y3j4VZpbK9tja/nWWsjYWqiirvFV9hrdUo9ZufXbLOs25apW+nbBVfW5IUbNux34NDle0qvZoVfVYU6EhhEKnmnWJ1ur3DuhgZqm8HltbFuQoY0ORCrM8im/lVmzzCK14Y79K8j3ylNpa80GGirI9Kszy/PYLhAk6VXt0qnp0yky+/eQ0SOzatUs7duyo8T7FxcUqLq58lo23pEwOV+D/aCave0N3drlKbw98RB7bo415OzV/3zJ1jGt9zH3PTz5FX+37UaV2WRXPhIdf/FQPjzhfnz5zs8o8Xv2ybZ/mLl6nLm1bVLqf0+nQhFt/L4fD0qTX5wVo2sBZu8GSbVv647WV//6XlkpNGpf/95690iXDKm73eKQyj3TK7yqO/eFcrx66q+Kt6a2j91TYUnXXHHx8qkMbNlmaMY2/ywh9temUVHWrPCUeOV3Ohhqt1lrf1F27Xl2rX+5cJDksRac2UuNTklW0PfeY+2Yt3K3GA5LliAz83KahU7VDpwD/83VNZUqn0m7uoq0vr9fKUYslhxTTrpESB7bQwa3lp/zv+3yX8jflqeMdPeRq6lb+LznaNnOjIhu7FN+Tq6//ik7V3pYNDtm2pVHDoyodLyuV4uLL/7XqwD5Ld1xfcbv3UKuu+2P04WNDzi7TTaMrvxPbkewaWvXKtEht3+LQI8+E3xVFEH5CYU3V9daO+uXFTfr+r8skh9SoXaxanNpM+VsKJEm75qYrd2O+etzVRVHNXMpZl6cNM7bIleBSQs/GAZ7eHLSqdtasl2zb0gXXVv4JSkmJ1OTQ+RC790p/HFZxW5lHKiuT+v2u4tgfz5XG3VXx66PXVHYVx3716BTpl83Sm9N8/m0AQcXXNVVZiUcRBnSq923t9PP/bdP/Rq6S5ZDi02LUclCCcrcUSpK2fbpf2RsKdOI97RXdzKXMtfla8+oOuRMi1awXJ1r9ik7VDp0C/O941lSmtKrf31pr2fO79NnN62Q5pCZp0WozuImyN5e3atOnGcpaf1AD7k1VTPNIHVhToBUv71ZUQqRa9OZkq1/RqtqhVYB/hUKnBtzeUouf26M5N26S5ZAS2kcpdUi8sjYXyRFhafA9rbX4+T16f9gGWQ4pqXesWp7ACVZHo1O1Q6cQbAK/Q7sBzZw58zfvM3HiRI0fP77SsfbDTlHH4QMaaqxa21OUoXtWTJfb4VJsRJQyS3J1f7dhSi/KqHS/no3bq01Mkh5f89u/33C1a3+Obp70jqJcEYqNdisjp0CP3/p77T6Qc/g+TqdDE2/9g1KaNdbIye+G3dlXkuT1Sk6Hrdkvlsl51AVsYw7to2jeVHr35YoNe18udOjLry098UDFWX+xR3wf1SxRysi0VJ6ucpnZlpomHvv6E6c69L9vHHrt2TIltzj29oCyOS0K9a82nZKqblXXEf3V/fqTqnmE/7hbxKj92H7yFnvkKSxTZBO3tj//syKbRVe6X8H6LJWkH1TCrT0DNKnZ6FTt0Kka0Ck0EF/XVD2vP0G9b+zXUGPVWlRStLo+0EeeQ51yNXFr0/S1cjePkrfEo13vblWHUd3VpG9TSVJM2zgd3F6g9E93snn9CHSq9mxbcjhsTXq+SI6jWhUVXf61OqGprSdfKDp8fPEipxYvcur2sRV/ZtExFV/Xq7rKek62pcYJx37tf3V6pH783qnxTxeraXPD2kCr0ACOZ0114o291e+mvg0wVd1EJ0Wp70M95CnyqKzQI3eCS2ueXa+oFm55Srza8q8d6nFHZzU9obxLcW1jlb+tQDv+u5vN60egVbXjtSWn09Z7L+qYTv26pmrRVPrg5YrjX3xd/jH5wYpjcUetqfYfdaWljCypaRXfSj02RZr/jTRrmlhTIWz4uqY6+aYeGnBLr4Yaq9Zikt065e+dVVbkUVmhV1EJkfppymbFtHDJU+LV+tm7dcJd7dXixPImNUqNUd62Qm39zz42rx+BTtUOnfoNtAoN4HjWVINu6abBt3ZviLHqJC7ZrdMeaa+yIq/KCj2KSojUD//YXt6qYq9Wv7VXA+5pq+R+5V1qnBqtnK1F2vDxfjavH4FW1Q6tqgGdQgM4nk6dfmtnnTGya0OMVSeNkl0659FUlRV5VVroVXRChL55epfiWkRKkhI7ROmCp9NUUuCRt8xWVOMIfT52qxI7RP3GM4cXOlU7dKoGdMpIjt++S2i77777lJOTU+mj/TX9Az1WJcXeEmWW5CouIlr9Ervqu4xVlW4/P3mA1udt1+aC3QGaMHgUlZQpI6dAjWLcGtAzVV8v3ySpImBtk5rotqfeU05B0W88U2jq2smWx2spM9tS29aq9NGsfD+PIiIqH2/axFaU66hjRwSqTw9b3y2tvNHi2yWW+vSoiIJtS49PcWjeQodefqZMrVv643cLBI+qWtXluhMDPVYlDrdTkU3c8hSUKn9VpuJPaF7p9qyv9yiqXSNFt20UoAmDA52qGZ0CzFRVp3oM6xvosSpxup1yNXGrrKBUuasy1eTEprI9tmyPLevoSwM4xD9gVINO/bZ2Hb3yei3lZFtKbmVX+mhy6MQop1OVjjduYsvlOurYEa3q3N2rn3+sfIWYlT861bl7xbuI2Hb5FdcXL3Lq4cnFatGSv8PAkapqVd+/BH5D4JGcUU65E1wqLShT5s85atovQXaZV7bn2LdasByW5K36ecIdrapZt06Sx2MpI0tKbV35o/kRa6ojjzdNkNzuY4/9qk8P6dullV/n2yXSCT0qfm3b5Vdd+mKh9NoUsaYCjlJVp/qPCPxmwCNFRDkVlRCp0vwyHViZpxb9msgu+3VNddSdHZZsL9+PVoVO1YxOAeaqqlUDru8S6LEqiYhyKCohUiX5Hu1bkaeWJ8XLe+jf/+SoHCvLYR15PRscgVbVjFYBZqqqU4Nv6BTosSqJiHIoOiFCJfke7fmpQK1OqrxvwhXrVFTjCOXtLlHmpqJjbkc5OlUzOoVgE9RXXn/66ad1xRVXKDU11efncLvdcrvdlY45XGb8sfRL6CpL0o7CfWoV3Uw3tL9YOw/u0+fpiw/fJ8bp1mnN++jFTXMCN2gQGNAzVZYsbUvPVOsWTTTqT6dp254sfbxotZwOS5Nu+4O6pibpjikfymlZahofI0nKKShSmSe0fhp48KC0fVfFr3elW1q3wVbjeKldG+n353j1wONO3T3So66dbGXnWPphmaVO7W0NGVD3Vfw1l3s1/HanXn3LoTMHeTX/G4cW/2hpxrSKK+BOmOLQp186NHWCR7HR0oFDby4QFydFuat5Yj+z+AcM+KA+OiVV3SoT3t5ekvJ+Lv+EdSfHqGTfQaX/a6PcLWOUMLjiu1FPYZlyluxVyyvNWiCahE5VoFO+oVPwVUOtqUzpVM7K8ksBRLWMVtHeIu2cvVlRyTFqOiRJjgiH4ro21o7Zm2W5HHI3cytvXY4yFu1Tm6vbB3hys9CpyooKpfRdFT/03JduaetGS3HxUkprW4PPLtP0yS79+aZSpXX0KjfX0qrlDrVN8+rEU+r+53HhpWX6+51ufTQ7Qied6tGSb536eZlDjzxT8Taor0yL1KKvIjRmfLGiY2xlH7oKRkys5KJVCGLhsKbKXJkt2VJ0yygV7i3S5re2K6ZllJJPay5HhEONuzXS5re3y3moVTlrc7V34X51uPb4/kxCDa2qUHDUmmrnHmntBqlxvJTWRvrjubbGPi6NuU3q3knKypa+Xy51bi+d7sObkf75Cum626WX3pLOHiTN+0b67kfpjekV93nkGem/86TpE6TYaGn/oTVVI9ZUCAENtaYy4e3tJWn/ilzJthWbEqWD6cX65c1dim3pVqszmsoRYSmhW5x+eXOXHC6Hopu7lLkmX7u/zlDX61oHenSj0KkKdMp3tAq+aMg1lSmt2vtTnmRLcSluFaQXa9WsdMWluJV6ZoIcEZaadY/Vqll75HRZimnm0oE1Bdq+IEu9hrGr6ki0qgKt8g2dgi/CoVN7lufLlhSf4lJeeql+en2f4lu51P6s8nev2v5trtzxTsU2i1T29mIte3WvWp0Up5Z9Y2t+4jBDpyrQKd/QKTOZsUvbR/fcc4/uvfdenXnmmbrhhht06aWXyuVyBXqsehMbEaXhaX9QM3cT5ZUW6JsDK/Xalv/KY1d8UT29xYmSLM3ftyxwgwaBuGi3brtisFokxCm3oEhf/bhRz7+/SB6PVy2bxuv0EzpKkt565M+VHnfzE+9o2S87AzFyg1n9i6Xr76j41H/yOackpy4636vH7vPokbEevTjLoaeed2rfAalJfPlVaQcP8C3mfXvamvSwR9NfcWr6qw61SZEm/92j3t0rqvDOnPJvGkeMrvwl6dF7y3TxBdQDwSvUOyVJ3sIypb+3SWVZRXLGRiq+XwslXd5BVkTFm7vkLN4rSWp8SnKgxjQenapApwD/CvVWeQo92vXuFpVkFisiNlJNTmqmVle0k+NQpzqM7Kad727RlhfWqSy/TO5mbrW6op2an8UPr45EpyrbtN6h8XdXvGXn6y+Uf86cfm6ZbhtTopF3l+iDNyP1+ouRyjxgqVG81LmbRyee4qnuKWvUpYdXox8o0ewZkfrXzEglt7Q1+oESdepW0b7P/13+FqPj7q78VqIj7y7WGef79rqACUK9U5JUdtCjLf/aruLMEkXGRajZSYlKG9rmcKu6/7WTNv9rh9Y+v/Fwq9oNbauWZycFeHKz0KoKq3+Rho2uOMlq0nPl/33J72xNvE+aMFZ64XVp8nPSvgPlP9jq20M6/RTfXu+EntLTD0tTX5GmvSK1SZGeHif1OeKi0bPnlM8wbFTlxz4+1talF/j2uoApQr1VZQc9Wv/2LhVllsoV51TSyQnqdGWKHBHln9d9R6Vp/du7tHL6VpXmlym6uUudrkxRm3ObBXhys9CpCnQK8K9Q75QklR70aM1be1WYUarIOKdanRKv7lclH27VSaPbaPVbe7V06g6V5HsU09yl7lclKe28xABPbhZaVYFWAf4THp3yasWb+3Uwo0yuOIfaDGik3lc3P9ypwqwyLZ+xT0U5ZYpqEqG0MxqrxxWsp45GpyrQKYQSy7aD9/3QHQ6HXn31VX300Uf65JNPFB8fr2uvvVY33HCDevbs6fPznr9gdP0NGcYyZ7QN9AghY9Hj03/7TvhN7pabfX7smedNqsdJajb/83v99lpoWA3VKUm6/NuR9TRleNv+UsdAjxAS6FT9CJZOSbQqlDRUq65ZfGM9Thm+1r/QLdAjhISXxz8T6BFCQp+2O47r8ayp4IuGXFPdtHRYPU0Z3pY/1yfQI4SExRNfCPQIIcGRvN7nx7Kmgq8aqlWjll9Vj1OGr2+fPSnQI4QEOlU/jqdTEmsq+KYh11RjV15RT1OGt3nPnBroEUICraofrKngbw3ZqXGrLq6nKcPbf58+PdAjhAQ6VT/oVOhx/PZdzHbhhRfqo48+0s6dOzVmzBjNnTtXffr00cknn6yXXnpJeXl5gR4RABDG6BQAwHS0CgBgMjoFADAdrQIAmIxOAQBMRqcAIHwF/eb1X7Vo0UJjxozR2rVr9b///U/du3fXHXfcoZYtebt3AMfPsm2/fSA00SkADcmfnaJVoYtWAWhIdArHi04BaEisqVAfaBWAhkSncLzoFICGxJoKx4tOAWhIdMpMQb153bKsKo8PGTJEM2bM0O7du/XMM7w9OAAgMOgUAMB0tAoAYDI6BQAwHa0CAJiMTgEATEanACC8RQR6gONh/8ZZCvHx8brxxhv9NA2AkOYN9AAIRnQKgN/QKfiIVgHwG1oFH9ApAH5Dp+AjWgXAb2gVfECnAPgNnYIP6BQAv6FTRgrqzeteL3+rAADmolMAANPRKgCAyegUAMB0tAoAYDI6BQAwGZ0CgPDmCPQAx+Nvf/ubFi5cGOgxAIQBy7b99oHQQacA+Is/O0WrQgutAuAvdAq+oFMA/IU1FXxFqwD4C52CL+gUAH9hTQVf0CkA/kKnzBTUm9efe+45nXHGGercubMmTZqk9PT0QI8EAMBhdAoAYDpaBQAwGZ0CAJiOVgEATEanAAAmo1MAEN6CevO6JH3++ee68MIL9dRTT6lt27a6+OKL9Z///Ie3FgEAGIFOAQBMR6sAACajUwAA09EqAIDJ6BQAwGR0CgDCV9BvXu/Vq5emTJmi3bt364033lBxcbEuueQStWnTRg888IA2btwY6BEBhALbjx8IKXQKgF/4s1O0KuTQKgB+QafgIzoFwC9YU+E40CoAfkGn4CM6BcAvWFPBR3QKgF/QKSMF/eb1X0VGRmro0KH67LPPtHnzZt14441688031aVLl0CPBgAAnQIAGI9WAQBMRqcAAKajVQAAk9EpAIDJ6BQAhJ+Q2bx+pLZt22rcuHHasmWLPvvss0CPAyAU2Lb/PhDy6BSAeufPTtGqsECrANQ7OoV6RKcA1DvWVKhntApAvaNTqEd0CkC9Y02FekSnANQ7OmWkoN68npqaKqfTWe3tlmXp3HPP9eNEAABUoFMAANPRKgCAyegUAMB0tAoAYDI6BQAwGZ0CgPAWEegBjseWLVsCPQKAMGFxUhR8QKcA+Audgq9oFQB/oVXwBZ0C4C90Cr6iVQD8hVbBF3QKgL/QKfiCTgHwFzplpqC+8joAAAAAAAAAAAAAAAAAAAAAIDiweR0AasO2/fdRR3l5eRo9erRSU1MVHR2tU089VUuWLDlidFvjxo1TSkqKoqOjdcYZZ2j16tX1+acDAAg0f3aqjq2iUwAAScZ2SqJVAACxpgIAmM/QTkm0CgAg1lQAALMZ3CkpfFvF5nUACHI33HCDvvjiC82aNUs///yzzjvvPJ1zzjnatWuXJGny5Mn6xz/+oenTp2vJkiVKTk7Wueeeq7y8vABPDgAIB3QKAGA6WgUAMBmdAgCYjlYBAExGpwAApgvXVrF5HQBqwfL676MuCgsL9f7772vy5Mk67bTT1LFjR40bN05paWn65z//Kdu2NWXKFD3wwAO67LLL1LNnT82cOVMHDx7UW2+91TB/WAAAv/Nnp+rSKjoFAPiViZ2SaBUAoBxrKgCA6UzslESrAADlWFMBAExmaqek8G4Vm9cBIIiVlZXJ4/EoKiqq0vHo6GgtWrRIW7ZsUXp6us4777zDt7ndbp1++un69ttv/T0uACDM0CkAgOloFQDAZHQKAGA6WgUAMBmdAgCYLpxbFRHoAQAgKNi2316quLhYxcXFlY653W653e5j7tuoUSMNHDhQjz76qLp166akpCS9/fbbWrx4sTp16qT09HRJUlJSUqXHJSUladu2bQ33mwAA+JcfOyXVvlV0CgBwGGsqAIDJWFMBAEzHmgoAYDLWVAAAkxnaKSm8W8WV1wHAMBMnTlTjxo0rfUycOLHa+8+aNUu2batVq1Zyu9169tlndfXVV8vpdB6+j2VZlR5j2/YxxwAAqK26tIpOAQD8jTUVAMB0rKkAACZjTQUAMB1rKgCAyVhT1Q6b1wHAMPfdd59ycnIqfdx3333V3r9Dhw5asGCB8vPztWPHDv3www8qLS1VWlqakpOTJenwWVi/2rdv3zFnZAEAUFt1aRWdAgD4G2sqAIDpWFMBAEzGmgoAYDrWVAAAk7Gmqh02rwNAbdj++3C73YqPj6/0UdXbhhwtNjZWLVu2VFZWlubOnauLL774cMS++OKLw/crKSnRggULdOqppx7/nwsAwAx+7JSvraJTABDmDO+URKsAIKyxpgIAmM7wTkm0CgDCGmsqAIDJgqBTUvi1KiLQAwAAjs/cuXNl27a6dOmijRs36p577lGXLl00fPhwWZal0aNH6/HHH1enTp3UqVMnPf7444qJidHVV18d6NEBAGGATgEATEerAAAmo1MAANPRKgCAyegUAMB04doqNq8DQC1Yth3oEar161uL7Ny5U4mJibr88ss1YcIERUZGSpLGjBmjwsJCjRw5UllZWTrllFP0+eefq1GjRgGeHABQX+gUAMB0tAoAYDI6BQAwHa0CAJiMTgEATGZyp6TwbRWb1wEgyA0dOlRDhw6t9nbLsjRu3DiNGzfOf0MBAHAInQIAmI5WAQBMRqcAAKajVQAAk9EpAIDpwrVVbF4HgNow/AwsAECYo1MAANPRKgCAyegUAMB0tAoAYDI6BQAwGZ0ykiPQAwAAAAAAAAAAAAAAAAAAAAAAQh9XXgeA2vAGegAAAGpApwAApqNVAACT0SkAgOloFQDAZHQKAGAyOmUkrrwOAAAAAAAAAAAAAAAAAAAAAGhwXHkdAGrBsu1AjwAAQLXoFADAdLQKAGAyOgUAMB2tAgCYjE4BAExGp8zEldcBAAAAAAAAAAAAAAAAAAAAAA2OK68DQG1wBhYAwGR0CgBgOloFADAZnQIAmI5WAQBMRqcAACajU0biyusAAAAAAAAAAAAAAAAAAAAAgAbHldcBoDY4AwsAYDI6BQAwHa0CAJiMTgEATEerAAAmo1MAAJPRKSOxeb0KDou/rAAAALXltHgzHwCAuXq43IEeAQAAAAAAAAAAAABwCDuNAAAAAAAAAAAAAAAAAAAAAAANjiuvA0BteAM9AAAANaBTAADT0SoAgMnoFADAdLQKAGAyOgUAMBmdMhJXXgcAAAAAAAAAAAAAAAAAAAAANDiuvA4AtWDZdqBHAACgWnQKAGA6WgUAMBmdAgCYjlYBAExGpwAAJqNTZuLK6wAAAAAAAAAAAAAAAAAAAACABseV1wGgNjgDCwBgMjoFADAdrQIAmIxOAQBMR6sAACajUwAAk9EpI3HldQAAAAAAAAAAAAAAAAAAAABAg+PK6wBQG5yBBQAwGZ0CAJiOVgEATEanAACmo1UAAJPRKQCAyeiUkbjyOgAAAAAAAAAAAAAAAAAAAACgwXHldQCoDc7AAgCYjE4BAExHqwAAJqNTAADT0SoAgMnoFADAZHTKSFx5HQAAAAAAAAAAAAAAAAAAAADQ4LjyOgDUhjfQAwAAUAM6BQAwHa0CAJiMTgEATEerAAAmo1MAAJPRKSNx5XUAAAAAAAAAAAAAAAAAAAAAQINj8zoAAAAAAAAAAAAAAAAAAAAAoMFFBHoAAAgGlm0HegQAAKpFpwAApqNVAACT0SkAgOloFQDAZHQKAGAyOmUmrrwOAAAAAAAAAAAAAAAAAAAAAGhwXHkdAGqDM7AAACajUwAA09EqAIDJ6BQAwHS0CgBgMjoFADAZnTISV14HAAAAAAAAAAAAAAAAAAAAADQ4rrwOALXh5QwsAIDB6BQAwHS0CgBgMjoFADAdrQIAmIxOAQBMRqeMxJXXAQAAAAAAAAAAAAAAAAAAAAANjiuvA0Bt2JyBBQAwGJ0CAJiOVgEATEanAACmo1UAAJPRKQCAyeiUkbjyOgAAAAAAAAAAAAAAAAAAAACgwXHldQCoDc7AAgCYjE4BAExHqwAAJqNTAADT0SoAgMnoFADAZHTKSFx5HQAAAAAAAAAAAAAAAAAAAADQ4LjyOgDUBmdgAQBMRqcAAKajVQAAk9EpAIDpaBUAwGR0CgBgMjplJK68DgAAAAAAAAAAAAAAAAAAAABocFx5HQBqw8sZWAAAg9EpAIDpaBUAwGR0CgBgOloFADAZnQIAmIxOGSnor7y+ZMkSXXPNNUpLS1N0dLRiYmKUlpama665RkuXLg30eACAMEenAACmo1UAAJPRKQCA6WgVAMBkdAoAYDI6BQDhK6ivvP7RRx9p6NChOvvsszVq1CglJSXJtm3t27dPn3/+uQYNGqR33nlHF198caBHBQCEIToFADAdrQIAmIxOAQBMR6sAACajUwAAk9EpAAhvQb15/cEHH9QjjzyisWPHHnPb6NGjNWnSJN1///1EDMDxs72BngBBiE4B8Bs6BR/RKgB+Q6vgAzoFwG/oFHxEqwD4Da2CD+gUAL+hU/ABnQLgN3TKSI5AD3A8Nm7cqMsuu6za2y+55BJt2rTJjxMBAFCBTgEATEerAAAmo1MAANPRKgCAyegUAMBkdAoAwltQb17v0KGDPvroo2pvnzNnjtq3b++/gQCELtv23wdCBp0C4Df+7BStCim0CoDf0Cn4gE4B8BvWVPARrQLgN3QKPqBTAPyGNRV8QKcA+A2dMlJEoAc4Ho888oiuvPJKLViwQOedd56SkpJkWZbS09P1xRdf6PPPP9fs2bMDPSYAIEzRKQCA6WgVAMBkdAoAYDpaBQAwGZ0CAJiMTgFAeAvqzeuXX365vv76a02dOlX/+Mc/lJ6eLklKTk7WwIEDtWDBAg0cODDAU/ou2unWn1Mv1MBmvdUkMk6b8nfp/zZ9oPX52yVJn542tcrHvbx5jt7f+ZU/RzVeTFSkbrl0kM44saMS4mO0fvs+Pf3WfK3ZsldOp0O3XjZIg3qnqVXzxso/WKwf1mzX9PcW6kB2QaBHr3dLV1iaMduhtest7c+wNOXRMp01pGHP+PligaXnXnVqx26pTYr0txs8OvuI13z5TYfmfW1py3ZLbrfUt4et0Td7lNa2QceqGy9nRaHuQr1TkuQpLNO+Dzcrd9l+leWWKKptI7W8urNi2sdLklYNn1fl45KGdlTzC1L9OarR6FSFpSukV992aM16aX+GpWcf8+jsIQ37mp8vkKa94jjcqVE3eHXOaRW3v/SGpS++trRluxTllvr2lO682UunEBJCvVWewjLten+bsn88oNLcUsWkxqnttR0U275R+e1FHu18Z4uyfzygsvwyuZu51eK8VmpxdkqAJzcLnaqMVvmIVsEHod4pSSor9Gjrezt0YEmmSnNLFdcuVh2ua6f4DnGSylu1efZ2HViapbL8UkU1d6vV+clKOSc5wJObhVZVWLJCevVtafWhTk17zNY5fujUs69I23dLbVOkUTdI5x7RqRffkL74Wtp8qFMn9JTuull0CiEh1FtVVujRhnd2a++SHJXklCq+XYy6/aW1GneILb+9yKP1b+3W3qXZKs0rU3Rzl1J/10Jtz2se4MnNQqcq0KnjQKvgg1DvlCSVFnq0dvZe7f4hV8U5ZWqSFq3ew1sqoWOMpPKWrX4zXbuX5Kokz6OYFi51uKCp2p/fNMCTm4VWVaBVPqJT8EG4dGrl2we0c3GeinM9SkiL0okjWqhpx2hJUmF2mVbM2qf0FQdVUuBR8+4x6n99khqluAI8uVnoVAU65SM6ZaSg3rwuSQMHDgz6UFVnVKcr1S62pZ765Q1lFOforKT+erz3SN28dKIySnJ09XcPVrp//8TuGt35Sn1zYEWAJjbXg8PPU4dWTfX3lz7V/uwCXTCwm567+woNfWCmDhaXqGtqC73y8ffasGO/GsVE6c6rz9DTt1+sYY+8FejR611hkdSlg61LLvDqzoeP/0vAnE8tzfnMoVeneqq8fcVqS2PGO3Xb9V6dPdireYscumecUzOmedS7e3kYlv5k6cpLvOrR1ZbHI0172alb7onQhzPKFBN93CMCARXKnZKkXa+tVfGuArW+sbsimriV/V26tj61TJ0mDFBkQpS6TBlc6f75KzO067W1atyvRYAmNhOdqlBYKHXpaOvSC22Nfsh53M/34aeW5nxmacZUb5W3/7RKunu8Q38bYevsIbbmLbR01ziHZk33qnf38vssWWHpqktt9epqq8wjPfuyQzfe7dDHM710CiEhlFu19ZUNKtxVoLSbuygywa2Mb/Zq/aSV6jGxv1yJbu14c5Py1mYr7ZaucjeLUu6qLG2buUGRTVxK6Ncs0OMbg05VRqsA/wrlTknS+pc2qWBnobre2lHuBJf2frNfKyeu1UmT+8id6NLGWduUvTZH3UZ2UFRztzJ/ztGG17bI1cSlZv0TAz2+MWhVhfJOSZdeKI166Pif78NPpQ8/k16v+joqWr5KunO8dPsI6Zwh0pcLpTvHSW9Ml/oc7pR09aVSz66SxyNNeVm6/m7pPzNFpxASQrlVq/5vm/J3Fqn3balyJ0Rq98JMLXlsgwY/3V1RiS6te32nMlfnq/dt7RTd3KWMlXla8+p2uRMjldS/SaDHNwadqkCnAP8L5U5J0vJ/7lLujiL1/1sbRSVEaMfCbC16ZIvOeaazoptGauXMPTqwqkD9b2+jmOYu7VuRrxUv71JUYqRSTooP9PjGoFUVaBXgX6HeqR+eT1f29mINvD1F0YkR2vp1juaP36ELp6QpOjFCCyftlMNpacjYVoqMdmjdv7P01fjt+v3U9oqIcgR6fGPQqQp0CqGEr3KGcjkiNbh5H72y5WOtytmkPUUH9Oa2z5RelKHfpwySJGWV5lX6GNC0p1Zmb1R6UUaApzeLOzJCZ/brpGffWajl63dp575svTTnO+0+kKPLz+qtgsIS/fWp9/XlkvXalp6lVZv36Kk3v1L3tGQlJTYK9Pj1bsgptv52g1fnnFb1GUWlpdI/XnDonCsidPLvInT1rU4tWW75/HpvvOfQgP62brjGq7RU6YZrvDr5RFtvvFfx5eeFJz26+AJbHdPKA/vIWI/27LW0Zr3vr1vvbNt/H0CQ8JZ4lPvjfiUP7ajYLglyJ8Uo6ZL2cjWLVuZXuyRJkY3dlT5yl+9XbNcEuVrwHeqv6FRlQwZIo26wK52pe6SSUumpf1o683KH+p/v0JW3OPTDct9fb9Z7lgb2k2681lb71PL/PaWf9Pq7FQ168UmvLj3Uqa4dpcfGeg91yvfXrXf+7BStQpDwlniUtXS/Wv8pTY26NlFUUrRaXdZOruZR2v/VbklS/sZcNR2cpPhuTeRuHqXmZ7ZUTNs4HdySH+DpzUGnjkWrfESngGN4SrzavyRT7a9qqybd4hWdHKV2l7dRVHO3dn+5V5KUuzFPyUOaq0n3xopqHqWUs5IU1zZWeVtC76pBvqJVlZ02QBp9g3ReDZ168p/S6ZdLJ54v/ekWHVenXn9POrWfdNO1UvvU8v8d0E96/d2K+7z0pHTpBVKnQ516fKy0Z6+l1eHaKVqFIOEp8WrvD9nqfHUrJXZrpNjkKHX6fymKbuHW9i8OSJKy1xco5bRENe3RSDEt3GpzTjM1So1W7qaDAZ7eHHSqMjp1HOgUcAxPsVe7F+eo57XJatY9VnEt3eo2NEmxLVza8nn5nonM9QfV9owmat4jTrEtXEo7N1GNU6OUTasOo1WV0SofsaYCjlFW7NWO7/PU988t1KJHjBq1dKnXn5ortkWkNs7NVt6eUmWsL9JJNyWracdoxbdy/3/27js8irLfw/h3s+kJEAgl1ABSpEpTmoCAgDSRooiNJhZQKVZQARvtqGDnVWmCICJSBEWUJlKUKkWq9BJK6C31OX9EFpcUQrJlktyfc+U6L7PPbH47yN4ZmN1VrV6FFH8lUft/P+ft8S2DTjmjUxlEpywpW1+8PmjQIPXo0cPbY2SI3eYju82uuMR4p+2xiXGqlLt0svVhfrl0R75K+jlqtadGzDLsdpt87T6KjXM+lldi41WtbNEU9wkNClBiotGFSzGeGNFSXh9p18YtNo0cnKCZ4+LVvJHR0y/Ztf9Qxu7vr6021bvd+Um5/h1Gf21N/cL0C/9eK5QnF0/myN6ycqckySQYKdHI5uf844TN30cXd51Jtj7+bIzOb4pW3gZFPDRh1kCnbs5rI2zasMWmdwcn6vvxiWpxl9GTL/lkuFMbU+rU7UYb0+jUeUenMvY9gawkK7cqqVOSz3Wd8vHz0fmdSX/pl6tcHp3ZEK3YUzEyxujc32d0JeqyclfJ642RLYlO3TxaBXhOVu6UlEar/H109t9W5SmXS9HrTyvmVKyMMTq99awuR11Wvqp5vDGyJdGqm/PqiKR3THpvsDR7vNTiLqnXS9K+DP/dn1Tvdudt9W+XNmxNfR86hZwkK7fKJBiZRMnu5/xzp4+/j05vT/qDnPfWUB1fd1ZX/u1U9Nbzung0Rvlv451sr6JTN4dOAZ6VlTslSYmJSa3y8b/+nMqm6O1JF6eH3xqio2vP63J0nIwxOrHlgi4cjVXB2/hDfhWtujm0CvCcrN4pk5jyOZXd36YT2y8pMS7p01h9/K/d7mO3ycfXphPbeJHVVXTq5tApZCW+3h7AnQ4fPqyDBw96e4wMuZwQo7/P7lWXEs114FKUzsSeV6OCNVU+V6SOXD6RbP3dhW7X5YQrWnHyLy9Ma22XrsRp0+4j6nlvHe09ekqnzl5Sizq3qnLpwjp47HSy9f6+dvXpdKd+/mO7Ll6J9cLE3nPwsPTTIpt+mRGvgvmTtnV7MFEr/rRp9k8+6tsr5Y+xT8vJU1K+vM4XWuTLa3TyVMrrjZH+71O7qldJVNnkr9PwHl4VBTfIyp2SJHuQr4JuyaPjc/cqoHCIfPP46+zqKF3ec07+hYKTrT+9Ikr2QLty1yrghWmti06l34HD0o+LbFr8XaKjU90fNPr9T5tm/WhTvydu/rn65Ckp/LprVMPzKs1OjfrERzWqGDqFHCErt8oe5KuQMrl1ZM4BBRYJll8ef51adVwX95xXQKGkTwAp/ugt2j9upzb1+0M2u02ySSV7llOu8lwQeBWdujm0Kg20Cm6QlTslSb5BduUuG6r9sw8puGiQ/PP46fjKkzr/zwUFRQRKksp0LamdX+7R6mfXO1pV/vHSylOeiwKvolXpd+CwNH+RtPQ7OTrV40Fp+Z/SrB+l/k/c/H2ePCXlv65T+W/QqZGfSDWrGJWjU8gBsnKrfIPsCisbot3fRymkaKACwvx0dMUpnd19UcERAZKkCt2KacvnB7S09xbZ7JJsNlV+ooTy3hrq3eEthE6lH526AVoFN8jKnZIkvyC78pUL1o7vjitX0QAF5vHVwRVndHr3ZYVG+EuSbuteWOv/d1gLntoum12y2Wyq/lRR5a8Q4uXprYNWpR+tSgOdghtkh07lLx+krd+dVO5i/grM46v9v59T9K4rylXYX7mLBiikgK/+mnJCdzwVIXuAj3b8cEpXziTo8ukEb49vGXQq/ehUGuiUJWXri9cnTZp0wzUxMTGKiXF+lU1ibLx8/L1/aN7dMVn9yz2kr+u8pQSToN3nD2np8fUqE1os2drmEXW05Pg6xZn4FO4Jgz//SYN7tNBPo59UfEKiduw/rp//2K7yJQo6rbPbffTO063l42PTyK8WeWla79m2yyZjbGr7iPN//3FxUti/1+8cPSbd1/Xa7QkJUnyCVPuea9vaNEvU689fu9Dddv0bAhoptfcIHPaBj3b9Y9PEj/hvGdlfejolpdyqhNgE2f3t7hjrphR7oqIOj9+mHQN+l3xsCorMpTy1I3TlQPKPsTq9/Ijy1ImQj5/357YaOpU+23ZKxtjU6hHnd1GJi5XC/r1258gx6d6u125PSJDi46Va91zb1raZ0ZDnr52cJOtUKtsk6e0xNu3cI03+6OZf0AVkRRk9p7JKp0o9WV77vtypTX3/kHyk4JK5lK9uQV3al/SS/+MLD+vCP+dVpn8l+YcH6MKOs9o/abf88vgrd2Xeff0qOpV+tArwrOxwTnXr02W04/N/tPqZ9ZKPlKtkiArWy68Ley9Kkg7/HKVzuy+o0vPlFZjfX2e3n9euiXvln9dfeSvzYquraFX6/P1vp1o+4vyPNbHXdapt12u3xf/bqZr3XNvWtpk09Plrv76+SSaFbVe9NUbasUf6+qMMPwwgS8noOVV8bIJ8LdCpqn1KavP/9iddnO4j5S4VrML18+rc3suSpP0/ndCZXRdV48XSCsrvr1PbLujv8QcVkNdP+avwQqur6FT60CnA8zJzTmWVVtV8tpjWf3pYC57cLpuPFFYqSMXvDNOZPUmt+uenaJ3eeUl1Xo5UcAE/nfz7ov768ogC8/qpYFVebHUVrUofWgV4VnboVJ3nCuuPT45qTq9/ZPOR8pYOVGSD3Dq954p8fG2688Vi+uPTo5rZdZdsPlKhqiEqXJ0XWF2PTqUPnUJW4/0rtL1s+PDheuONN5y23dLtDpXtXsdLE11z9Eq0Xtr0kQJ8/BXsG6jTsef0yq1dFXUl2mldpdylVTy4kIZvm+idQbOAwyfO6smR3yrQ31chQQGKPntRw55urSMnzzrW2O0+Gv50GxXJn0e9R83Ica++kqTERMnuY/TN5/GyO19roeCkN6dUgXBpxpfXLiz/dbmPfv3NphGvXnvVX8h/fo7Kn0+KPmVTUrqSnDpjU3i+5N9/+Ac+WrrCRxM+jFdEweS3exWvwIIXpdSqW3vUUsWet6eyh+cEFAxW6VdqKjEmQQmX4+UXFqADn26WX/4gp3UXd55WbNQl5X26spcmtTY6lT6Jxia73WjG54nySaVTBcOlmV9eu1jv199s+uU3m0a+dm1b6HWduv5VwdGnk7/DrSS9M8ampStsmvRRIp0C/iOlTlXuWV1Ve9X00kTXBBYK0q2v3qaEfzvlHxagfz7epoACgUqMTdDhGft0S9+KCqsWLkkKLhGqSwcuKuqnQ1y8/h90Kv1oVRpoFbwopVbV6FVVNZ+o5p2B/iOoUKCqvV5JCVcSFH85QQF5/fX3hzsVWDBACbGJ2jv9oCr1L6fw6kl/6ENLhOjC/os6OP8IF6//B61Kn0Qj2e1G332uNDv1/ZfXtv/yW9LXqNeubbu+UyfS2am3x0hLVkiTPxKdAv4jpU7d8UQl1XmqipcmuiY4IkC1h5RT/JUExV9OVGBeP20cs0fBBf2VEJuond8cUfXnS6tgjaQm5YoM1vn9l7Vv3nEuXv8POpU+dOoGaBW8KKVW1X+qgu58uqKXJromNCJADd8srfgriYq/nKDAvH768/0DSa2KSdTWqcdU58USiqiZ1KU8kUE6u++Kds09wcXr/0Gr0odWpYFOwYtS6lSjp8vprt63emmia3JF+OvutyIVfyVRcZcTFZTXVyveO6zQgn6SpHy3BKrle6UUezFBifFGgXl8tfCVfcp3S6CXJ7cWOpU+dCoNdMqSstXF63FxcZo/f7527dqlwoULq3379goJSfvVSAMHDtSAAQOctt3/50B3jnnTYhJjFRMbq1DfINXMd6vG75nrdHuLiDraef6A9l484qUJs44rsfG6EhuvXMEBqlM5Uh99u1zStYCVKBSmp0bN0NmLV7w8qXfcWtYoIdGmU2dsqlk15SdtX1+pxH/e/D88zCjQ3+a07b9uq2S0aq1Nj95/bdvKNTbdVuna/RuTdOH64t99NG5MvIoVdsWjAawnI52SUm7VY+tfdNeYGeITYJdPgF0JF+N0YcspRTxQxun2078dVWDJXAoqkctLE2YNdCptFcoaJST46NRpqeZtKa/x9ZUi/9OkfHmlwADnbf9V7d9OdX3gWpdWrrGp2nWdeucDmxYtt2niB4l0Ctmaq86pnvirnxunvHn2ALvsAXbFX4zTuS2nVKxzaZkEI5NgZLv+rQF8xF9gpIJO3RitAtzLledU/bf0dteYGWIPtMseaFfcxXid2nxWpbuUkIlPlElI/vF1Nh+bxIcrpIhWpa1CWSkhwabo00a10tmp8LxSQBqduq2StHKt1O2Ba9tWrpGqV7r2a2Oktz+Qfl0uTfpAdArZmqvOqQZue9ydY94030C7fAPtirsQr5Obzqv8Q0Vl4q+eU1232Mcmk8g5VUroVNroFOB+rjynenNn11RWe4dvoI98A30UeyFBx/86r0qPFFbiv3//Jx/nWNl8bP993zX8B61KG60C3MuVnRq1+yF3jZkh/+3U0Y0XVe1R5yt7/UOS3iX+/JFYnfrniqo8WMAbY1oenUobnUJWk6UvXq9Xr55+/PFHhYWF6cSJE2ratKl27NihyMhIHTx4UK+++qpWrlypokWLpnofAQEBCggIcNrm42+Nw1Ij762ySTp0+biKBBZQz9L36tCl41p47A/HmmB7gBoUqKYv9szx3qBZQJ3KkbLJpv1Rp1SsYJj6dm6o/UdPa+7vW2X3sWlknza6NbKQ+o+ZJbvNpvDcwZKksxevKD4he/1r4KVL0oHD1359OMqm7buM8uSWShaXWt+dqFeH2fVC7wTdWtbozFmb/lxvU9nSRg3q3PxZ/MMdE9X9ObvGT/VR4/qJWrLCR3+ss2niR9feqf2dMT766VcfffBOgkKCpJP/frhAaGjSRRyWkJi9/juAZ7iiU1LKrbLCx9tL0vnNSX9gAyKCFXv8kqKm71ZA4WDlvfPaT6MJl+N1ds0xFX6wrLfGtDw6dc3F6zp16KhN2/7TqTbNEjVwmI9e7JOoCmWl02ekPzbYVK60UcMMfHDOI52Muj5n05dTbWpS32jxCptWr5Mmf3yteW+NtunHRTZ99E6igoOkE/92KhedQjbgrnMqq3Tq7KaktwIILBykK8eu6NA3exQYEazwBoXk4+uj0Fvz6OA3e2Tz91FA/gCd335W0b8fV/GHSnt5cmuhU85oVQbRKmRATjinOrXpjGSkoMKBunzsivZMPaDgwoGKaFhAPr4+ylMhl/ZMOyD7v606u+2cji0/oVseifT26JZCq65J3ilp2y4pT26pVHGpbTOjV4ZJL/WRKv7bqdUbpHKlpUYZ6NRjnaRHn5O+mCo1rS8tWiGtWidN+fjamjdHS/MXSR+/I4XQKWQz7jqnssLH20vSib/OScYopEigLkXFaMfXhxVSOEBF7wqXj69NeSuEasfXh+Xj76OgAv469fcFHfktWrc+msq/eudQdOoaOpUJtAoZ4M5zKqu06tjG85KRQosE6GJUjLZMjlJokQBFNs4rH1+b8lcM0ZbJR2X3tyk4v79O/n1RB5adVpWuXFX1X7TqGlqVQXQKGZATOnV0wwUZSbmL+Ot8VJw2fnVcuYv6q3STpE+vOrDynAJy2xWS309nDsRo/fhjKnp7qApXu/FF+zkJnbqGTmUQnbIka1ylnUGrV69WbGzSRzy8+uqrstvt2r9/vyIiIhQdHa17771XgwcP1rhx47w8acaE2APVvVRb5Q8I0/m4i/r95F+atG++Esy1P0yNCtSQZNPS4+u8N2gWEBoUoD6d7lTBvKE6d/GKFq/brU9n/q6EhEQVDs+tRtWT3iF46puPOe335IhvtX7HIW+M7DZbd9jUs/+1P/r/94ldkl33tkjU2wMT9OYrCfp8so/e/dSu4yelsNxJ755+Z52MPYlXq2w0cnCCPh5n18fjfVS8iDRqSIKqVrx2ocW3c5J+aOzRz/kp6a2X49WuJS97R9aV3TslSYmX4xX13T+KP31F9hA/5a5ZUIU63iKb77XPIDr7xzFJUp7aEd4a0/Lo1DVbd0jd+137y4RRnyT9t9TunkQNG2j09itG//tK+r9PfHTs305VqyQ1rJ2xXlSvLP3f4ER9NM5HH42zqUQR6d2hiar6n087nT4naYZufZ3/kuPtVxLVnk4hi8vurUq4nKDDM/Yq9lSMfEP8FHZ7fhXtVFI+/3bqlt4VdGjGXu0du13xF+IVkD9ARTuVVIEm/OPVf9EpZ7QK8Jzs3ilJir+UoL3TDyjmVKz8Qn2V//Z8KvVAcUerKj5TVnumH9S2T3c7WlXygRIq3LSQlye3Flp1zdYdUtd+195ZcuQnSf/7vnuMhg+U3nlFGvuVNOoT6fjJpH/YqlZJalQ7Y9+vemXpvcHSB+Okj8ZJxYtI7w2VbvtPp76ZkzRD177O+w57xah9y4x9X8Aqsnur4i8laOe0w7pyKk7+oXYVuiOvyj5YRD6+SX+uq/UtpZ3TDmvTx/sUdyFeQQX8VfbBIireLL+XJ7cWOnUNnQI8K7t3SpLiLiXo76nHdDk6Tn6hdhWtnVsVu0Q4WnV7v+LaOvWY1n5wULEXEhRcwF8VuxRSqeb5vDy5tdCqa2gV4Dk5o1OJ+uvrE7oUHS//UB8Vr5NLVR8q4OjU5dPx2jDxuK6cjVdgmK9K3ZVHlTpxPnU9OnUNnUJ2YjMm634euo+Pj6KiolSwYEGVL19e77//vlq3bu24fenSperevbv27t17U/fb8re+N16EGzo5gXeAcpXfh31840W4oYDCezK8b8vCfVw4Sdp+OvqJx74X3MtdnZKkjiut9RH3WdWBL8p4e4RsYdXwT709QrbgG7E7w/t6slMSrcpO3NWqh//o5epRc6SdYyt4e4RsgU65RmY6JXFOhYxx5znVE2ut9RH3WdWGT1L5/FnclD+Gj/X2CNmCT8TODO/LORUyyl2t6ruhi6tHzZFWfni7t0fIFuiUa2SmUxLnVMgYd55TvbKpkytHzbEWja7n7RGyBVrlGpxTwdPc2amhW9q5ctQca/57jbw9QrZAp1yDTmU/Wfqd1yXJZkt65caZM2dUqlQpp9tKlSqlo0ePemMsANlN1n2dD7yMTgHwCDqFTKBVADyCViGD6BQAj6BTyARaBcAjaBUyiE4B8Ag6hQyiUwA8gk5ZUpa/eL1bt24KCAhQXFyc9u/fr4oVr30mwdGjRxUWFua94QAAOR6dAgBYHa0CAFgZnQIAWB2tAgBYGZ0CAFgZnQKAnCtLX7z+2GOPOV6B1a5dO124cMHp9pkzZ6patWpemAxAtsMrsJABdAqAx9ApZBCtAuAxtAoZQKcAeAydQgbRKgAeQ6uQAXQKgMfQKWQAnQLgMXTKkrL0xesTJ05M8/ahQ4fKbrd7ZhgAAK5DpwAAVkerAABWRqcAAFZHqwAAVkanAABWRqcAIGfz8fYAmfHss89q+fLlqd4eEhKiwMBAD04EINtKNJ77QrZBpwB4jCc7RauyFVoFwGPoFDKATgHwGM6pkEG0CoDH0ClkAJ0C4DGcUyED6BQAj6FTlpSlL17/5JNPdNddd6lcuXIaOXKkoqKivD0SAAAOdAoAYHW0CgBgZXQKAGB1tAoAYGV0CgBgZXQKAHK2LH3xuiQtXLhQrVq10rvvvqsSJUqoXbt2mjdvnhITE709GoBsxJhEj30he6FTADzBk52iVdkPrQLgCXQKGUWnAHgC51TIDFoFwBPoFDKKTgHwBM6pkFF0CoAn0ClryvIXr1epUkVjxozRkSNHNGXKFMXExOi+++5T8eLF9eqrr2r37t3eHhEAkIPRKQCA1dEqAICV0SkAgNXRKgCAldEpAICV0SkAyLmy/MXrV/n5+emBBx7QggULtGfPHvXq1Utff/21ypcv7+3RAGQHicZzX8iW6BQAt/Jkp2hVtkWrALgVnUIm0SkAbsU5FVyAVgFwKzqFTKJTANyKcypkEp0C4FZ0ypKyzcXr/1WiRAkNHTpUe/fu1YIFC7w9DgAATugUAMDqaBUAwMroFADA6mgVAMDK6BQAwMroFADkDL7eHiAzIiMjZbfbU73dZrOpWbNmHpwIQLZleFUUbh6dAuAxdAoZRKsAeAytQgbQKQAeQ6eQQbQKgMfQKmQAnQLgMXQKGUCnAHgMnbKkLH3x+t69e709AgAAqaJTAACro1UAACujUwAAq6NVAAAro1MAACujUwCQs/l4ewAAAAAAAAAAAAAAAAAAAAAAQPaXpd95HQA8JjHR2xMAAJA6OgUAsDpaBQCwMjoFALA6WgUAsDI6BQCwMjplSbzzOgAAAAAAAAAAAAAAAAAAAADA7XjndQBID2O8PQEAAKmjUwAAq6NVAAAro1MAAKujVQAAK6NTAAAro1OWxDuvAwAAAAAAAAAAAAAAAAAAAADcjovXASAdTGKix75uRnx8vF577TWVKlVKQUFBKl26tN58800l/ud+Lly4oGeeeUbFihVTUFCQKlSooM8++8zVhwgA4EWe7BStAgBkBJ0CAFiZVc+p6BQA4CordkqiVQCAJJxTAQCszKqdknJ2q3y9PQAAIONGjhypsWPHatKkSapUqZLWrl2r7t27K0+ePOrbt68kqX///lqyZImmTJmikiVLauHCherdu7eKFCmidu3aefkRAACyO1oFALAyOgUAsDI6BQCwOloFALAyOgUAsLqc3CreeR0A0sMYz33dhFWrVqldu3Zq3bq1SpYsqU6dOql58+Zau3at05quXbvqrrvuUsmSJfXEE0/otttuc1oDAMjiPNkpWgUAyAg6BQCwMoueU9EpAICDBTsl0SoAwL84pwIAWJlFOyXl7FZx8ToAWExMTIzOnTvn9BUTE5Pi2jvvvFOLFi3Szp07JUl//fWXfv/9d7Vq1cppzdy5c3X48GEZY7RkyRLt3LlTLVq08MjjAQBkP7QKAGBldAoAYHXpbRWdAgB4A+dUAACr45wKAGBlnFOlDxevA0B6JBqPfQ0fPlx58uRx+ho+fHiKY7388svq0qWLbr31Vvn5+al69erq16+funTp4ljz4YcfqmLFiipWrJj8/f11zz336NNPP9Wdd97pqaMHAHA3D3aKVgEAMoROAQCszKLnVHQKAOBgwU5JtAoA8C/OqQAAVmbRTkk5u1W+3h4AAOBs4MCBGjBggNO2gICAFNdOnz5dU6ZM0dSpU1WpUiVt3LhR/fr1U5EiRdS1a1dJSQFbvXq15s6dq8jISP3222/q3bu3ChcurLvvvtvtjwcAkP3QKgCAldEpAIDVpbdVdAoA4A2cUwEArI5zKgCAlXFOlT5cvA4A6WESPfatAgICUg3W9V588UW98sorevDBByVJVapU0f79+zV8+HB17dpVly9f1qBBgzRr1iy1bt1aklS1alVt3LhR7777bpYOGADgPzzYKYlWAQAygHMqAICVWfScik4BABw4pwIAWBnnVAAAK7Nop6Sc3Sofbw8AAMi4S5cuycfH+ancbrcrMTEpunFxcYqLi0tzDQAA7kSrAABWRqcAAFZGpwAAVkerAABWRqcAAFaXk1vFO68DQDqYROPtEVLUtm1bvfPOOypRooQqVaqkDRs26P3331ePHj0kSblz51ajRo304osvKigoSJGRkVq2bJm++uorvf/++16eHgDgKlbtlESrAABJrNoqOgUAkOgUAMD6aBUAwMroFADAyqzaKSlnt4qL1wEgC/voo4/0+uuvq3fv3jp+/LiKFCmiJ598UoMHD3as+eabbzRw4EA9/PDDOnXqlCIjI/XOO+/oqaee8uLkAICcglYBAKyMTgEArIxOAQCsjlYBAKyMTgEArC4nt4qL1wEgC8uVK5fGjBmjMWPGpLomIiJCEyZM8NxQAAD8B60CAFgZnQIAWBmdAgBYHa0CAFgZnQIAWF1ObhUXrwNAephEb08AAEDq6BQAwOpoFQDAyugUAMDqaBUAwMroFADAyuiUJfl4ewAAAAAAAAAAAAAAAAAAAAAAQPbHO68DQDqYROPtEQAASBWdAgBYHa0CAFgZnQIAWB2tAgBYGZ0CAFgZnbIm3nkdAAAAAAAAAAAAAAAAAAAAAOB2vPM6AKSHSfT2BAAApI5OAQCsjlYBAKyMTgEArI5WAQCsjE4BAKyMTlkS77wOAAAAAAAAAAAAAAAAAAAAAHA7mzHGeHsI3JyYmBgNHz5cAwcOVEBAgLfHydI4lq7BcQRwPZ4XXIPj6BocRwDX43nBNTiOrsFxBJASnhtcg+PoGhxHANfjecE1OI6uwXEEkBKeG1yD4+gaHEcA1+N5wTU4jq7BcYS3cPF6FnTu3DnlyZNHZ8+eVe7cub09TpbGsXQNjiOA6/G84BocR9fgOAK4Hs8LrsFxdA2OI4CU8NzgGhxH1+A4ArgezwuuwXF0DY4jgJTw3OAaHEfX4DgCuB7PC67BcXQNjiO8xcfbAwAAAAAAAAAAAAAAAAAAAAAAsj8uXgcAAAAAAAAAAAAAAAAAAAAAuB0XrwMAAAAAAAAAAAAAAAAAAAAA3I6L17OggIAADRkyRAEBAd4eJcvjWLoGxxHA9XhecA2Oo2twHAFcj+cF1+A4ugbHEUBKeG5wDY6ja3AcAVyP5wXX4Di6BscRQEp4bnANjqNrcBwBXI/nBdfgOLoGxxHeYjPGGG8PAQAAAAAAAAAAAAAAAAAAAADI3njndQAAAAAAAAAAAAAAAAAAAACA23HxOgAAAAAAAAAAAAAAAAAAAADA7bh4HQAAAAAAAAAAAAAAAAAAAADgdly8DgAAAAAAAAAAAAAAAAAAAABwOy5et7CoqCj17dtXZcqUUWBgoAoVKqQ777xTY8eO1aVLlyRJJUuW1JgxY5LtO3ToUFWrVs2zA1tQt27dZLPZZLPZ5Ofnp0KFCqlZs2YaP368EhMTHetKlizpWPffrxEjRnhxemv67zG12WwKDw/XPffco02bNjnW2Gw2zZ4923tDAvAIOuUatMr1aBWAq2hV5tEp16NTAK6iU5lHp1yPTgG4ik65Bq1yPVoF4CpalXl0yvXoFICr6JRr0CrXo1WwCi5et6g9e/aoevXqWrhwoYYNG6YNGzbo119/Vf/+/fXDDz/o119/9faIWcY999yjo0ePat++ffrpp5/UuHFj9e3bV23atFF8fLxj3ZtvvqmjR486fT377LNenNy6rh7To0ePatGiRfL19VWbNm28PRYAD6JTrkWrXI9WAaBVrkOnXI9OAaBTrkOnXI9OAaBTrkWrXI9WAaBVrkOnXI9OAaBTrkWrXI9WwQp8vT0AUta7d2/5+vpq7dq1CgkJcWyvUqWKOnbsKGOMF6fLWgICAhQRESFJKlq0qGrUqKE6deqoadOmmjhxoh5//HFJUq5cuRzrkLb/HtOIiAi9/PLLatiwoU6cOKECBQp4eToAnkCnXItWuR6tAkCrXIdOuR6dAkCnXIdOuR6dAkCnXItWuR6tAkCrXIdOuR6dAkCnXItWuR6tghXwzusWFB0drYULF6pPnz5OAfsvm83m4amylyZNmui2227T999/7+1RsrwLFy7o66+/VpkyZRQeHu7tcQB4AJ3yDFrlOrQKyHlolfvRKdehU0DOQ6fcj065Dp0Cch465Rm0ynVoFZDz0Cr3o1OuQ6eAnIdOeQatch1aBW/h4nUL2r17t4wxKl++vNP2/PnzKzQ0VKGhoXr55Zcd219++WXH9qtfw4YN8/TYWc6tt96qffv2OX6d0nFcunSp1+azsnnz5jmOUa5cuTR37lxNnz5dPj48pQA5AZ3yHFqVcbQKyNlolWfQqYyjU0DORqc8g05lHJ0CcjY65Tm0KuNoFZCz0SrPoFMZR6eAnI1OeQ6tyjhaBSvw9fYASN31r7L6888/lZiYqIcfflgxMTGO7S+++KK6devmtPbDDz/Ub7/95okxsyxjjNMxTuk4Fi1a1MNTZQ2NGzfWZ599Jkk6deqUPv30U7Vs2VJ//vmnIiMjvTwdAE+hU+5HqzKOVgGQaJW70amMo1MAJDrlbnQq4+gUAIlOeQKtyjhaBUCiVe5GpzKOTgGQ6JQn0KqMo1WwAi5et6AyZcrIZrNp+/btTttLly4tSQoKCnLanj9/fpUpU8ZpW758+dw7ZDawbds2lSpVyvHrlI4jUhYSEuJ0rGrWrKk8efLoiy++0Ntvv+3FyQB4Ap3yHFqVcbQKyNlolWfQqYyjU0DORqc8g05lHJ0CcjY65Tm0KuNoFZCz0SrPoFMZR6eAnI1OeQ6tyjhaBSvgff4tKDw8XM2aNdPHH3+sixcvenucbGnx4sXavHmzOnbs6O1RsgWbzSYfHx9dvnzZ26MA8AA65Rm0yrVoFZCz0Cr3o1OuRaeAnIVOuR+dci06BeQsdMozaJVr0SogZ6FV7kenXItOATkLnfIMWuVatArewDuvW9Snn36q+vXrq1atWho6dKiqVq0qHx8frVmzRtu3b1fNmjW9PWKWERMTo6ioKCUkJOjYsWNasGCBhg8frjZt2uixxx5zrDt//ryioqKc9g0ODlbu3Lk9PbLlXT2mknT69Gl9/PHHunDhgtq2bevlyQB4Cp1yLVrlerQKAK1yHTrlenQKAJ1yHTrlenQKAJ1yLVrlerQKAK1yHTrlenQKAJ1yLVrlerQKVsDF6xZ1yy23aMOGDRo2bJgGDhyoQ4cOKSAgQBUrVtQLL7yg3r17e3vELGPBggUqXLiwfH19lTdvXt1222368MMP1bVrV/n4XPvwgcGDB2vw4MFO+z755JMaO3asp0e2vKvHVJJy5cqlW2+9VTNmzNBdd93l3cEAeAydci1a5Xq0CgCtch065Xp0CgCdch065Xp0CgCdci1a5Xq0CgCtch065Xp0CgCdci1a5Xq0ClZgM8YYbw8BAAAAAAAAAAAAAAAAAAAAAMjefG68BAAAAAAAAAAAAAAAAAAAAACAzOHidQAAAAAAAAAAAAAAAAAAAACA23HxOgAAAAAAAAAAAAAAAAAAAADA7bh4HQAAAAAAAAAAAAAAAAAAAADgdly8DgAAAAAAAAAAAAAAAAAAAABwOy5eBwAAAAAAAAAAAAAAAAAAAAC4HRevAwAAAAAAAAAAAAAAAAAAAADcjovXARe566671K9fP2+PAQBAqmgVAMDK6BQAwMroFADA6mgVAMDK6BQAwOpoFeBZXLwOSzl+/LiefPJJlShRQgEBAYqIiFCLFi20atUqb492Q99//73eeustb48BAHAzWgUAsDI6BQCwMjoFALA6WgUAsDI6BQCwOloFIL18vT0A8F8dO3ZUXFycJk2apNKlS+vYsWNatGiRTp065e3RUhUXFyc/Pz/ly5fP26MAADyAVgEArIxOAQCsjE4BAKyOVgEArIxOAQCsjlYBSC/eeR2WcebMGf3+++8aOXKkGjdurMjISN1xxx0aOHCgWrdu7VjzxBNPqFChQgoMDFTlypU1b948x32sXLlSDRs2VFBQkIoXL67nnntOFy9edNxesmRJDRs2TD169FCuXLlUokQJff75505zvPzyyypXrpyCg4NVunRpvf7664qLi3PcPnToUFWrVk3jx49X6dKlFRAQIGNMso8OOX36tB577DHlzZtXwcHBatmypXbt2uWmowcA8ARaBQCwMjoFALAyOgUAsDpaBQCwMjoFALA6WgXgZnDxOiwjNDRUoaGhmj17tmJiYpLdnpiYqJYtW2rlypWaMmWK/v77b40YMUJ2u12StHnzZrVo0UIdOnTQpk2bNH36dP3+++965plnnO7nvffeU61atbRhwwb17t1bTz/9tLZv3+64PVeuXJo4caL+/vtvffDBB/riiy80evRop/vYvXu3vv32W82cOVMbN25M8fF069ZNa9eu1dy5c7Vq1SoZY9SqVSunGAIAshZaBQCwMjoFALAyOgUAsDpaBQCwMjoFALA6WgXgphjAQr777juTN29eExgYaOrVq2cGDhxo/vrrL2OMMT///LPx8fExO3bsSHHfRx991DzxxBNO25YvX258fHzM5cuXjTHGREZGmkceecRxe2JioilYsKD57LPPUp1p1KhRpmbNmo5fDxkyxPj5+Znjx487rWvUqJHp27evMcaYnTt3GklmxYoVjttPnjxpgoKCzLfffpuOIwEAsCpaBQCwMjoFALAyOgUAsDpaBQCwMjoFALA6WgUgvXy9eN08kEzHjh3VunVrLV++XKtWrdKCBQs0atQoffnllzp+/LiKFSumcuXKpbjvunXrtHv3bn399deObcYYJSYmau/evapQoYIkqWrVqo7bbTabIiIidPz4cce27777TmPGjNHu3bt14cIFxcfHK3fu3E7fKzIyUgUKFEj1cWzbtk2+vr6qXbu2Y1t4eLjKly+vbdu23dxBAQBYCq0CAFgZnQIAWBmdAgBYHa0CAFgZnQIAWB2tApBePt4eALheYGCgmjVrpsGDB2vlypXq1q2bhgwZoqCgoDT3S0xM1JNPPqmNGzc6vv766y/t2rVLt9xyi2Odn5+f0342m02JiYmSpNWrV+vBBx9Uy5YtNW/ePG3YsEGvvvqqYmNjnfYJCQlJcxZjTKrbbTZbmvsCAKyPVgEArIxOAQCsjE4BAKyOVgEArIxOAQCsjlYBSA/eeR2WV7FiRc2ePVtVq1bVoUOHtHPnzhRfgVWjRg1t3bpVZcqUyfD3WrFihSIjI/Xqq686tu3fvz9DM8fHx+uPP/5QvXr1JEnR0dHauXOn41VgAIDsg1YBAKyMTgEArIxOAQCsjlYBAKyMTgEArI5WAUgJ77wOy4iOjlaTJk00ZcoUbdq0SXv37tWMGTM0atQotWvXTo0aNVLDhg3VsWNH/fLLL9q7d69++uknLViwQJL08ssva9WqVerTp482btyoXbt2ae7cuXr22WfTPUOZMmV04MABffPNN/rnn3/04YcfatasWTf9WMqWLat27dqpV69e+v333/XXX3/pkUceUdGiRdWuXbubvj8AgDXQKgCAldEpAICV0SkAgNXRKgCAldEpAIDV0SoAN4OL12EZoaGhql27tkaPHq2GDRuqcuXKev3119WrVy99/PHHkqSZM2fq9ttvV5cuXVSxYkW99NJLSkhIkCRVrVpVy5Yt065du9SgQQNVr15dr7/+ugoXLpzuGdq1a6f+/fvrmWeeUbVq1bRy5Uq9/vrrGXo8EyZMUM2aNdWmTRvVrVtXxhj9+OOPyT66BACQddAqAICV0SkAgJXRKQCA1dEqAICV0SkAgNXRKgA3w2aMMd4eAgAAAAAAAAAAAAAAAAAAAACQvfHO6wAAAAAAAAAAAAAAAAAAAAAAt+PidQAAAAAAAAAAAAAAAAAAAACA23HxOgAAAAAAAAAAAAAAAAAAAADA7bh4HQAAAAAAAAAAAAAAAAAAAADgdly8DgAAAAAAAAAAAAAAAAAAAABwOy5eBwAAAAAAAAAAAAAAAAAAAAC4HRevAwAAAAAAAAAAAAAAAAAAAADcjovXAQAAAAAAAAAAAAAAAAAAAABux8XrAAAAAAAAAAAAAAAAAAAAAAC34+J1AAAAAAAAAAAAAAAAAAAAAIDbcfE6AAAAAAAAAAAAAAAAAAAAAMDtuHgdAAAAAAAAAAAAAAAAAAAAAOB2XLwOAAAAAAAAAAAAAAAAAAAAAHA7Ll4HAAAAAAAAAAAAAAAAAAAAALgdF68DAAAAAAAAAAAAAAAAAAAAANyOi9cBAAAAAAAAAAAAAAAAAAAAAG7HxesAAAAAAAAAAAAAAAAAAAAAALfj4nU4uXDhgvr166ciRYooMDBQ1apV0zfffJOufe+66y7ZbLZUv6KiotJ1P0OHDtXEiRPTPfO5c+f06quvqly5cgoODlbRokV1//33a+vWrZl6fOvXr9fdd9+t0NBQhYWFqUOHDtqzZ0+655KkadOmqV69egoJCVFoaKiaN2+uhQsXpri2Ro0a6tu3r6SkY1m5cuU077ty5cqqUKFCsu2zZs2SzWZT3bp1k902efJk2Ww2zZ0796YeBwBYRWY6JUlLlixRs2bNVLBgQYWGhqpq1ar68MMPlZCQkO77oFN0CgDSktlW/fzzz6pfv76CgoKUJ08etW3bNsVmpIVW0SoASMn58+f10ksvqXnz5ipQoIBsNpuGDh16U/dx/PhxdevWTfnz51dwcLDq1q2rRYsW3dR90Ck6BQCpyWyrDh06pH79+qlRo0YKCwuTzWa7qeZcRatoFQCkJLOd+v7779WlSxeVKVNGQUFBKlmypB5++GHt2rXrpuagU3QKAFKT2Vb9+uuvatasmYoUKaKAgAAVLFhQTZo00Y8//nhTc9AqWgWkBxevw0mHDh00adIkDRkyRD/99JNuv/12denSRVOnTr3hvp9++qlWrVrl9LVo0SL5+fmpTp06ioiISHXfH374IVnojDGaMmWKVq5cmeb3bdu2rcaMGaNevXpp/vz5GjFihDZu3Ki6detq//79GXp827dv11133aXY2Fh9++23Gj9+vHbu3KkGDRroxIkTNzwWUlKIH374YZUtW1ZTp07VnDlzVLNmTbVv315nz551Wrt3715t2LBBHTt2TNd9S1Ljxo21ffv2ZC8KWLp0qUJCQrR27VqdP38+2W0+Pj5q2LBhur8PAFhJZjr166+/6u6771Z8fLy++OILzZ49W3fddZf69u2rAQMGpLkvnaJTAJBemWnVnDlz1LJlSxUsWFAzZ87U2LFjtWvXLjVo0ED//PNPmvvSKloFADcSHR2tzz//XDExMbrvvvtuev+YmBg1bdpUixYt0gcffKA5c+aoUKFCuueee7Rs2bI096VTdAoA0iOzrdq9e7e+/vpr+fv7q1WrVje1L62iVQBwI5nt1MiRI3Xp0iW9+uqrWrBggd5++21t2LBBNWrUuOGbV9ApOgUA6ZHZVkVHR6tSpUoaPXq0Fi5cqP/973/y8/NT69atNWXKlDT3pVW0CrhpBvjX/PnzjSQzdepUp+3NmjUzRYoUMfHx8Td9nxMnTjSSzJdffpnmuu3bt5uHHnrItGjRwjz44IPmqaeeMnfeead55plnzOHDh1Pdb9euXUaSee2115y2r1y50kgy77//foYe3/3332/y589vzp4969i2b98+4+fnZ1566aUbPu7Vq1cbm82WbC5jjNm0aZO5dOmS07ZRo0aZggULmoSEBGOMMY0aNTKVKlVK83vMnDnTSDLTpk1z2l61alXTt29f4+fnZ3788Uen20qXLm1q1qx5w/kBwIoy26mHH37YBAQEmAsXLjhtb968ucmdO3ea+9IpOgUA6ZHZVpUvX95UrVrVJCYmOrbt27fP+Pv7m4ceeijNfWkVrQKAG0lMTHQ05sSJE0aSGTJkSLr3/+STT4wks3LlSse2uLg4U7FiRXPHHXekuS+dolMAkB6ZbdXV51ljjFmzZo2RZCZMmJCufWkVrQKAG8lsp44dO5Zs2+HDh42fn5/p2bNnmvvSKToFAOmR2ValJDY21hQtWtQ0aNAgzXW0ilYBN4t3XofDrFmzFBoaqvvvv99pe/fu3XXkyBH98ccfN32f48aNU2hoqDp37pzmuvLly+vrr79W79699f3332vatGl677339NFHH6lIkSKp7ufn5ydJypMnj9P2sLAwSVJgYKBjW3ofX3x8vObNm6eOHTsqd+7cjnWRkZFq3LixZs2aleZjiY+P15QpU+Tv76/+/fsrPj7e8ZWYmKgqVaooKCjIaZ+ZM2eqffv28vFJ/Y/krFmzFBwcrMcff1zx8fG66667ZLPZtHTpUsea6Ohobd68Wa1bt1bNmjW1ZMkSx20HDx7Unj171Lhx4zTnBwCrymyn/Pz85O/vn+w5OCwszKkXKaFTdAoA0iMzrYqOjtaOHTvUsmVL2Ww2x/bIyEhVrlxZs2fPVkJCQqr70ypaBQA3YrPZnBpzs2bNmqXy5cs7fVytr6+vHnnkEf355586fPhwqvvSKToFAOmR2Val9Tx7I7SKVgHAjWS2UwULFky2rUiRIipWrJgOHjyY5r50ik4BQHpktlUp8fPzU1hYmHx9fdNcR6toFXCzuHgdDlu2bFGFChWSxaZq1aqO22/Grl27tHz5cj344IMKDQ294drHHntMn376qdq3b68uXbpowIABeu6553T06NFU94uMjFS7du00evRoLVmyRBcuXND27dv13HPPqUSJEnrwwQdv+vH9888/unz5smP79Wt3796tK1eupDjPxo0b5efnp48//lgxMTEKDw+Xn5+f42vs2LHJ9jl06JD+/PPPND82ZPTo0br//vs1aNAgffnll/L19VW+fPlUtWpVp0gtW7ZMdrtd9erVU6NGjZzidnUdAQOQVWW2U0899ZRiY2P13HPP6ciRIzpz5owmT56sWbNm6aWXXkpzXzpFpwAgPTLTqtjYWElSQEBAstsCAgJ06dIl/fPPP6nuT6toFQC425YtW1J9bpeU5sfc0yk6BQBWR6toFQB4w549e7R//35VqlQpzXV0ik4BgCclJiYqPj5eR44c0ZAhQ7Rz5049//zzae5Dq2gVcLO4eB0O0dHRypcvX7LtV7dFR0ff1P2NGzdOktSzZ88brt22bZs6d+6sBQsW6NZbb1Xt2rW1fPly3X777dq7d2+a+86YMUOtW7dWkyZNlCtXLlWoUEHHjx/XsmXLlDdvXse69D6+q/8/tbXGGJ0+fTrFWYoVK6Y1a9aocOHCqlevntasWeP01a1bt2T7zJw5U2FhYSmGJTExUc8++6xeeeUVTZo0Sa+99prT7Y0bN9bOnTsdkV+6dKlq1aqlkJAQNWrUSOvXr9e5c+cct9ntdjVo0CDF2QHA6jLbqdq1a2vx4sWaNWuWihYtqrx586p79+565513bniiRafoFACkR2ZaVahQIeXLl08rVqxw2n7mzBnHX7altT+tolUA4G6Z6RydolMAYHW0ilYBgKfFx8erZ8+eCg0NVf/+/dNcS6foFAB4UqtWreTn56eiRYtqzJgxmj59ulq3bp3mPrSKVgE3i4vX4SStjw65mY8ViY+P16RJk1SpUiXVqVPnhuvvvffeZJGz2Wx69NFHVa9evTT3ffrppzVz5kyNHj1ay5Yt0/Tp0+Xv768mTZpo//796X4M19+WkWORP39+VatWTf7+/sqTJ4+qVavm+KpZs6aCg4OT7TNz5ky1a9cu2avCrly5ovvuu09ff/21Fi5cqIcffjjZvlejd/VVVkuXLtVdd90lSbrzzjslSb/99pvjtlq1ailXrlypPi4AsLrMdGrdunVq3769atasqR9++EGLFy/WwIED9dprr+mtt95Kc186RacAIL0y2iofHx/16dNHixYt0ltvvaXjx49r9+7deuSRR3Tp0iXHmtTQKloFAJ6Q0c7RKToFAFZHq2gVAHiSMUY9e/bU8uXL9dVXX6l48eJprqdTdAoAPOmjjz7Sn3/+qTlz5qhFixbq3Lmzpk2bluY+tIpWATfL98ZLkFOEh4en+A5Jp06dkpTyq5FS8+OPPyoqKkovv/zyTc8xdOjQdK9dsGCBxo0bpxkzZqhTp06O7c2bN1fJkiU1dOhQTZgwQVL6H194eLiklN8t6tSpU7LZbAoLC0txno0bN6p69eqSpP3798vPz89x25o1a1SrVi2n9VFRUVqxYoVeeumlZPd1/PhxHTx4UHfffXeqEW/UqJF8fHy0ZMkSNW/eXFu2bNGoUaMkSbly5VL16tW1dOlSVa1aVXv37lXnzp1TvB8AyAoy26k+ffqoUKFCmjVrlux2u6SkEwEfHx8NHTpUDz/8sEqXLn3DOehUEjoFAMlltlWDBw/WhQsX9Pbbb2vw4MGSpNatW6t79+768ssvVbRo0XTNQauS0CoAcC1X/d0hnUpCpwDAumhVEloFAO5hjNHjjz+uKVOmaNKkSWrXrt1N7U+nktApAHCfsmXLOv73vffeq5YtW6pPnz7q3Llzmm+0dBWtSkKrgLTxzutwqFKlirZt26b4+Hin7Zs3b5YkVa5cOd33NW7cOPn7++vRRx916YzX27hxoyTp9ttvd9oeFhamMmXKaMuWLY5t6X18t9xyi4KCghzbr19bpkwZBQYGpjjP1Y8O6dChg/z9/fX7779rzZo1WrduXbJ4SdKsWbMUEhKiZs2aJbutRIkS+uGHH7R06VJ16NBBV65cSbYmT548jkgtXbpUPj4+ql+/vuP2Ro0aacmSJVqyZIkkpfjxJACQVWS2Uxs3blTNmjUdF65fdfvttysxMVHbtm1z7cCiU3QKQE6T2Vb5+vrq/fffV3R0tDZt2qQjR45o3rx5OnDggEqVKqVixYq5fGZaRasAIL2qVKmS6nO7dHN/d5hedIpOAYDV0SpaBQA34+qF6xMmTNCXX36pRx55xK3fj07RKQBwhTvuuEOnT5/WiRMnXH7ftIpWIefi4nU4tG/fXhcuXNDMmTOdtk+aNElFihRR7dq103U/UVFR+vHHH3Xfffc5XsnkLkWKFJEkrV692ml7dHS0du7c6XRxR3ofn6+vr9q2bavvv/9e58+fd6w7cOCAlixZog4dOqQ6T/78+VWrVi09/fTTio2N1R9//KFatWqpRo0ajjV79+5VTEyMpKSPDWnTpo0CAgJSvL/mzZvr559/1m+//aY2bdro4sWLydY0btxYu3bt0tSpU1WzZk2njwZp1KiRNm7cqNmzZ8vPz88pbgCQ1WS2U0WKFNHatWuVkJDgtH3VqlWS5JYLAukUnQKQs7jqnCo0NFRVqlRR4cKFtX79ei1atEh9+/Z1x8i0SrQKANKrffv22r59u/744w/Htvj4eE2ZMkW1a9d2NMWV6BSdAgCro1W0CgDSyxijXr16acKECfrf//6n7t27u/170ik6BQCZZYzRsmXLFBYW5pbrAGkVrUIOZoD/aNasmcmbN6/5/PPPzeLFi02vXr2MJDNlyhSndT169DB2u93s27cv2X2MGDHCSDILFy50+7znz583kZGRJm/evObdd981ixcvNl9//bWpVq2asdvtZsmSJU7r0/v4tm3bZkJDQ03Dhg3Njz/+aL7//ntTuXJlU6RIEXP8+PF0zdanTx9jt9vNU089ZX744QezaNEiM2TIEBMWFmbOnj1rTp48aXx9fc13332XbN9GjRqZSpUqOX69Zs0aEx4eburVq2fOnDnjtHb+/PlGkrHZbObFF190uu306dPGx8fH2Gw2U79+/XTNDQBWlplOffjhh0aSadmypZk9e7ZZuHChefnll42vr6+5++673TIvnaJTAHKezLRqyZIlZtSoUWbBggXmp59+Mm+88YYJDg42rVu3NvHx8W6Zl1bRKgA5y48//mhmzJhhxo8fbySZ+++/38yYMcPMmDHDXLx40bEupU5duXLFVKpUyRQvXtx8/fXX5pdffjHt27c3vr6+ZunSpW6Zl07RKQA5T2ZaZYxxrB05cqSRZPr06ePY5g60ilYByFky06lnnnnGSDI9evQwq1atcvpav369W+alU3QKQM6TmVbde++95vXXXzczZ840S5cuNVOnTjXNmzc3kswnn3zilnlpFa1CzsXF63By/vx589xzz5mIiAjj7+9vqlataqZNm5ZsXdeuXY0ks3fv3mS3lStXzpQsWdIkJiZ6YGJjjh49ap555hlTpkwZExgYaIoUKWJat25tVq1alWxteh+fMcasXbvWNG3a1AQHB5vcuXOb++67z+zevTvdcyUmJppp06aZ+vXrm3z58png4GDTtGlT88svvxhjjPnyyy9NcHCw0w8GV10fMGOM2bJli4mIiDA1atQwJ06ccGw/d+6c8fX1NZLMvHnzkt1XtWrVjCTz6quvpnt2ALCqzHZq5syZ5s477zT58+c3ISEhplKlSuatt94yFy5ccNvMdIpOAchZMtOqFStWmNq1a5vcuXObgIAAU7lyZfPuu++a2NhYt85Mq2gVgJwjMjLSSErx679NSu2cKioqyjz22GMmX758JjAw0NSpU8fxvOwudIpOAchZMtuq1PZ15/t50SpaBSDnyEyn0to3MjLSbTPTKToFIGfJTKtGjhxpbr/9dpM3b15jt9tNeHi4adGiRYrPn65Eq2gVciabMcbc3Hu1A3CFVq1aKSgoKNlHmQAAYAV0CgBgdbQKAGBldAoAYHW0CgBgZXQKAGB1tArIHC5eBwAAAAAAAAAAAAAAAAAAAAC4nY+3BwAAAAAAAAAAAAAAAAAAAAAAZH9cvA4AAAAAAAAAAAAAAAAAAAAAcDsuXgcAAAAAAAAAAAAAAAAAAAAAuB0XrwMAAAAAAAAAAAAAAAAAAAAA3I6L17OZiRMnymazpfq1dOlSx9qSJUuqW7dubpvl008/1cSJE91y30OHDpXNZnPLfe/bt082m82ls2/atEndu3dXqVKlFBgYqNDQUNWoUUOjRo3SqVOnUtynRo0astlsevfdd1O8/frfa19fXxUrVkzdu3fX4cOHHeuWLl2a5n8TVx/nyZMnVahQITVo0ECJiYlO3ys2Nla33XabSpUqpfPnz7vmoADIkehU5tEpOgXAvWhV5tEqWgXAfehU5tEpOgXAvWhV5tEqWgXAfehU5tEpOgXAvWhV5tEqWoWswdfbA8A9JkyYoFtvvTXZ9ooVK3pshk8//VT58+d3ayTdoXDhwlq1apVuueUWl9zfF198od69e6t8+fJ68cUXVbFiRcXFxWnt2rUaO3asVq1apVmzZjnts3HjRm3YsEGSNG7cOL3wwgup3v/V3+vLly/rt99+0/Dhw7Vs2TJt3rxZISEhjnXDhg1T48aNk+1/9XHmz59f//vf/9S+fXuNHj1azz//vGPNkCFDtHnzZi1atEi5cuXK1PEAAIlOZQadolMAPINWZRytolUA3I9OZRydolMAPINWZRytolUA3I9OZRydolMAPINWZRytolXIIgyylQkTJhhJZs2aNTdcGxkZabp27eq2WSpVqmQaNWqUrrWxsbEmLi4u3fc9ZMgQkxX+8125cqWx2+3mnnvuMVeuXEl2e0xMjJkzZ06y7X369DGSTOvWrY0ks2LFimRrUvu9fv31140kM2XKFGOMMUuWLDGSzIwZM9I18yOPPGICAwPN33//7fQYnn322XTtDwBpoVPWQqcAIDlaZS20CgCc0SlroVMAkBytshZaBQDO6JS10CkASI5WWQutAtzHx+VXwyNLO3funF544QWVKlVK/v7+Klq0qPr166eLFy86rUtMTNRHH32katWqKSgoSGFhYapTp47mzp0rKeljSbZu3aply5Y5PqKiZMmSkq59lMXkyZP1/PPPq2jRogoICNDu3bslSePHj9dtt92mwMBA5cuXT+3bt9e2bdvSnLtnz57Kly+fLl26lOy2Jk2aqFKlSo5fz5gxQ7Vr11aePHkUHBys0qVLq0ePHo7bU/rokBMnTuiJJ55Q8eLFFRAQoAIFCqh+/fr69ddf05xr2LBhstls+vzzzxUQEJDsdn9/f917771O265cuaKpU6eqZs2aGj16tOOYpFedOnUkSfv370/3Pv/14YcfKl++fOratavOnTunrl27qnTp0hoxYkSG7g8AXIlO0Sk6BcDqaBWtolUArIxO0Sk6BcDqaBWtolUArIxO0Sk6BcDqaBWtolXIKny9PQDcIyEhQfHx8U7bbDab7HZ7qvtcunRJjRo10qFDhzRo0CBVrVpVW7du1eDBg7V582b9+uuvstlskqRu3bppypQp6tmzp9588035+/tr/fr12rdvnyRp1qxZ6tSpk/LkyaNPP/1UkpI9gQ8cOFB169bV2LFj5ePjo4IFC2r48OEaNGiQunTpouHDhys6OlpDhw5V3bp1tWbNGpUtWzbF2fv27avx48dr6tSpevzxxx3b//77by1ZskSffPKJJGnVqlXq3LmzOnfurKFDhyowMFD79+/X4sWL0zyejz76qNavX6933nlH5cqV05kzZ7R+/XpFR0enuk9CQoIWL16smjVrqnjx4mne/399//33On36tHr06KGyZcvqzjvv1PTp0zVmzBiFhobecP+rPwgUKFDAaXtiYmKy/yYkydfX+Wkgb968+uKLL9S6dWvVqFFDe/fu1fLlyxUcHJzuxwAAN0KnktCpa+gUAKuhVUlo1TW0CoCV0KkkdOoaOgXAamhVElp1Da0CYCV0KgmduoZOAbAaWpWEVl1Dq5DtePut3+FaVz9OIqUvu93utPb6jw4ZPny48fHxSfZRFN99952RZH788UdjjDG//fabkWReffXVNGdJ7aNDrn6URcOGDZ22nz592gQFBZlWrVo5bT9w4IAJCAgwDz30kGNbSh8d0qhRI1OtWjWnbU8//bTJnTu3OX/+vDHGmHfffddIMmfOnEl17r179xpJZsKECY5toaGhpl+/fmk+3utFRUUZSebBBx+8qf2aNGliAgMDzenTp40x135Px40b57Tu6vbVq1ebuLg4c/78eTNv3jxToEABkytXLhMVFWWMuXa8U/s6ePBginM0b97cSDLPPPPMTc0PAGmhU3SKTgGwOlpFq2gVACujU3SKTgGwOlpFq2gVACujU3SKTgGwOlpFq2gVcgreeT2b+uqrr1ShQgWnbVdfOZWaefPmqXLlyqpWrZrTq3RatGghm82mpUuXqmXLlvrpp58kSX369MnUjB07dnT69apVq3T58mV169bNaXvx4sXVpEkTLVq0KM3769u3rzp06KAVK1aofv36OnfunCZPnqzu3bs7XrV0++23S5IeeOAB9ezZU/Xr11fRokVvOOsdd9yhiRMnKjw8XHfffbdq1qwpPz+/m3i06bN3714tWbJEXbp0UVhYmCTp/vvv13PPPafx48c7fcTJVVc/KuSqKlWq6LPPPlOhQoWcto8cOVJNmjRJtv/16yTpr7/+0pIlS+Tj46Nly5YpNjZW/v7+mXhkAOCMTtEpOgXA6mgVraJVAKyMTtEpOgXA6mgVraJVAKyMTtEpOgXA6mgVraJVyO58vD0A3KNChQqqVauW01fNmjXT3OfYsWPatGmT/Pz8nL5y5colY4xOnjwpSTpx4oTsdrsiIiIyNWPhwoWdfn31Yziu3y5JRYoUSfNjOiSpXbt2KlmypONjQiZOnKiLFy86hbZhw4aaPXu24uPj9dhjj6lYsWKqXLmypk2bluZ9T58+XV27dtWXX36punXrKl++fHrssccUFRWV6j758+dXcHCw9u7dm+Z9/9f48eNljFGnTp105swZnTlzRnFxcbr33nu1YsUKbd++Pdk+X331ldasWaMNGzboyJEj2rRpk+rXr59sXenSpZP9N1GrVq1kIY6Li1PXrl1VpEgRff/999qyZYveeuutdD8GAEgPOkWnrkenAFgNraJV16NVAKyETtGp69EpAFZDq2jV9WgVACuhU3TqenQKgNXQKlp1PVqF7IZ3XodD/vz5FRQUpPHjx6d6uyQVKFBACQkJioqKSjE26XX9q8HCw8MlSUePHk229siRI47vnxofHx/16dNHgwYN0nvvvadPP/1UTZs2Vfny5Z3WtWvXTu3atVNMTIxWr16t4cOH66GHHlLJkiVVt27dFO87f/78GjNmjMaMGaMDBw5o7ty5euWVV3T8+HEtWLAgxX3sdruaNm2qn376SYcOHVKxYsXSnD8xMVETJ06UJHXo0CHFNePHj9eoUaOctl39YcVV3nzzTW3atEm//vqrmjRpoqeeekojRoxQ+/btVaNGDZd9HwC4WXSKTkl0CoC10SpaJdEqANZFp+iURKcAWButolUSrQJgXXSKTkl0CoC10SpaJdEqZB288zoc2rRpo3/++Ufh4eEpvkqnZMmSkqSWLVtKkj777LM07y8gIECXL19O9/evW7eugoKCNGXKFKfthw4d0uLFi9W0adMb3sfjjz8uf39/Pfzww9qxY4eeeeaZNOdr1KiRRo4cKUnasGFDuuYsUaKEnnnmGTVr1kzr169Pc+3AgQNljFGvXr0UGxub7Pa4uDj98MMPkqSff/5Zhw4dUp8+fbRkyZJkX5UqVdJXX33l9LEurrZ27VqNGDFCvXv3dnzMyKhRo1SsWDF169YtxccAAJ5Cp+gUnQJgdbSKVtEqAFZGp+gUnQJgdbSKVtEqAFZGp+gUnQJgdbSKVtEqZCW883o2tWXLlhSf6G655RYVKFAgxX369eunmTNnqmHDhurfv7+qVq2qxMREHThwQAsXLtTzzz+v2rVrq0GDBnr00Uf19ttv69ixY2rTpo0CAgK0YcMGBQcH69lnn5UkValSRd98842mT5+u0qVLKzAwUFWqVEl15rCwML3++usaNGiQHnvsMXXp0kXR0dF64403FBgYqCFDhtzwcYeFhemxxx7TZ599psjISLVt29bp9sGDB+vQoUNq2rSpihUrpjNnzuiDDz6Qn5+fGjVqlOJ9nj17Vo0bN9ZDDz2kW2+9Vbly5dKaNWu0YMGCVF8ldVXdunX12WefqXfv3qpZs6aefvppVapUSXFxcdqwYYM+//xzVa5cWW3bttW4cePk6+urQYMGqUiRIsnu68knn9Rzzz2n+fPnq127djc8FtfbtWuXVq9enWx7sWLFVKxYMcXExKhr166KjIx0RF2SQkNDNX78eDVt2lRvvfUWHyMCwCXoFJ26Hp0CYDW0ilZdj1YBsBI6RaeuR6cAWA2tolXXo1UArIRO0anr0SkAVkOraNX1aBWyHYNsZcKECUZSql9ffPGFY21kZKTp2rWr0/4XLlwwr732milfvrzx9/c3efLkMVWqVDH9+/c3UVFRjnUJCQlm9OjRpnLlyo51devWNT/88INjzb59+0zz5s1Nrly5jCQTGRlpjDFmyZIlRpKZMWNGio/hyy+/NFWrVnXcb7t27czWrVud1gwZMsSk9p/v0qVLjSQzYsSIZLfNmzfPtGzZ0hQtWtT4+/ubggULmlatWpnly5c71uzdu9dIMhMmTDDGGHPlyhXz1FNPmapVq5rcuXOboKAgU758eTNkyBBz8eLFFGe43saNG03Xrl1NiRIljL+/vwkJCTHVq1c3gwcPNsePHzcnTpww/v7+5r777kv1Pk6fPm2CgoJM27ZtjTHXfq/XrFmT5ve+erxT+3r11VeNMca8+OKLxsfHx+lY/Ffv3r2Nr6+vWbduXboeMwCkhE7RqevRKQBWQ6to1fVoFQAroVN06np0CoDV0CpadT1aBcBK6BSduh6dAmA1tIpWXY9WIbuyGWOMgGzk+eef12effaaDBw8qPDzc2+MAAOCETgEArI5WAQCsjE4BAKyOVgEArIxOAQCsjlYBOYOvtwcAXGX16tXauXOnPv30Uz355JPECwBgKXQKAGB1tAoAYGV0CgBgdbQKAGBldAoAYHW0CshZeOd1ZBs2m03BwcFq1aqVJkyYoNDQUG+PBACAA50CAFgdrQIAWBmdAgBYHa0CAFgZnQIAWB2tAnIWLl4HAAAAAAAAAAAAAAAAAAAAALidj7cHAAAAAAAAAAAAAAAAAAAAAABkf1y8DoeVK1dq6NChOnPmjLdHsRybzaahQ4d6e4wbWrp0qWw2m7777juX3q/NZkv1q1u3bo513bp1S/MjW0JDQ53WX5336pfdbleBAgXUtm1brV271qWPAUD2QKtSR6toFQDvo1Opo1N0CoD30anU0Sk6BcAaaFXqaBWtAuB9dCp1dIpOAbAGWpU6WkWrYD2+3h4A1rFy5Uq98cYb6tatm8LCwrw9jqWsWrVKxYoV8/YYXtWpUyc9//zzybYXKFAg0/c9bNgwNW7cWHFxcdqwYYPeeOMNNWrUSBs3blTZsmUzff8Asg9alTpaRasAeB+dSh2dolMAvI9OpY5O0SkA1kCrUkeraBUA76NTqaNTdAqANdCq1NEqWgXr4eJ1IB3q1Knj7RG8rlChQm47DmXLlnXcd4MGDRQWFqauXbtqypQpeuONN9zyPQEgu6FVtAoArIxO0SkAsDI6RacAwOpoFa0CACujU3QKAKyOVtEqWI+PtwdA2hYvXqy77rpL4eHhCgoKUokSJdSxY0ddunRJxhiVLVtWLVq0SLbfhQsXlCdPHvXp00eSlJiYqLffflvly5dXUFCQwsLCVLVqVX3wwQeSpKFDh+rFF1+UJJUqVcrxUQ5Lly513Of06dNVt25dhYSEKDQ0VC1atNCGDRucvu/Vj47Yvn27WrRooZCQEBUuXFgjRoyQJK1evVp33nmnQkJCVK5cOU2aNOmmj8mMGTNUu3Zt5cmTR8HBwSpdurR69OjhuP3KlSt6/vnnVa1aNeXJk0f58uVT3bp1NWfOHKf7qV69uho0aJDs/hMSElS0aFF16NDBse36jw6ZOHGibDablixZoqefflr58+dXeHi4OnTooCNHjjjdX0xMjJ5//nlFREQoODhYDRs21Lp161SyZEmnj9G4dOmSXnjhBZUqVUqBgYHKly+fatWqpWnTpt30Mbpy5YoGDBigiIgIBQUFqVGjRqn+Xu3evVutWrVSaGioihcvrueff14xMTE3/T1dqVatWpKkY8eOeXUOAOlDq5KjVTdGqwB4Cp1Kjk7dGJ0C4Cl0Kjk6dWN0CoAn0arkaNWN0SoAnkKnkqNTN0anAHgSrUqOVt0YrUJOwMXrFrZv3z61bt1a/v7+Gj9+vBYsWKARI0YoJCREsbGxstlsevbZZ/XLL79o165dTvt+9dVXOnfunCNgo0aN0tChQ9WlSxfNnz9f06dPV8+ePXXmzBlJ0uOPP65nn31WkvT9999r1apVWrVqlWrUqCEp6aMdunTpoooVK+rbb7/V5MmTdf78eTVo0EB///230/eOi4tThw4d1Lp1a82ZM0ctW7bUwIEDNWjQIHXt2lU9evTQrFmzVL58eXXr1k3r1q1L9zFZtWqVOnfurNKlS+ubb77R/PnzNXjwYMXHxzvWxMTE6NSpU3rhhRc0e/ZsTZs2TXfeeac6dOigr776yrGue/fu+v3335Mdu4ULF+rIkSPq3r37Ded5/PHH5efnp6lTp2rUqFFaunSpHnnkEac13bt315gxY9S9e3fNmTNHHTt2VPv27R3H/qoBAwbos88+03PPPacFCxZo8uTJuv/++xUdHZ3u43PVoEGDtGfPHn355Zf68ssvdeTIEd11113as2eP07q4uDjde++9atq0qebMmaMePXpo9OjRGjlyZLL7NMYoPj4+2Zcx5qbnu5G9e/dKksqVK+fy+wbgWrQqOVqVPrQKgCfQqeToVPrQKQCeQKeSo1PpQ6cAeAqtSo5WpQ+tAuAJdCo5OpU+dAqAp9Cq5GhV+tAq5AgGlvXdd98ZSWbjxo2prjl37pzJlSuX6du3r9P2ihUrmsaNGzt+3aZNG1OtWrU0v9///d//GUlm7969TtsPHDhgfH19zbPPPuu0/fz58yYiIsI88MADjm1du3Y1kszMmTMd2+Li4kyBAgWMJLN+/XrH9ujoaGO3282AAQPSnOu/3n33XSPJnDlzJt37xMfHm7i4ONOzZ09TvXp1x/aTJ08af39/M2jQIKf1DzzwgClUqJCJi4tzbJNkhgwZ4vj1hAkTjCTTu3dvp31HjRplJJmjR48aY4zZunWrkWRefvllp3XTpk0zkkzXrl0d2ypXrmzuu+++dD+ulCxZssRIMjVq1DCJiYmO7fv27TN+fn7m8ccfd2y7+nv17bffOt1Hq1atTPny5Z22SUr1a/LkyU73GRISkup8ISEhTo/56rzTp083cXFx5tKlS2bFihWmfPnypmLFiub06dMZPBIAPIVWJUer0karAHgSnUqOTqWNTgHwJDqVHJ1KG50C4Gm0KjlalTZaBcCT6FRydCptdAqAp9Gq5GhV2mgVchLeed3DEhISnF65kpiYmOraatWqyd/fX0888YQmTZqU7JUzkpQrVy51795dEydO1MWLFyUlfdzI33//rWeeecax7o477tBff/2l3r176+eff9a5c+fSPfPPP/+s+Ph4PfbYY06zBwYGqlGjRk4fLyIlfcxGq1atHL/29fVVmTJlVLhwYVWvXt2xPV++fCpYsKD279+f7lluv/12SdIDDzygb7/9VocPH05x3YwZM1S/fn2FhobK19dXfn5+GjdunLZt2+ZYEx4errZt22rSpEmO34fTp09rzpw5euyxx+Tr63vDee69916nX1etWlWSHI9p2bJljnn/q1OnTsnu/4477tBPP/2kV155RUuXLtXly5dv+P1T89BDD8lmszl+HRkZqXr16mnJkiVO62w2m9q2bZvsMaT0e/LAAw9ozZo1yb7++3udUZ07d5afn5+Cg4NVv359nTt3TvPnz1dYWFim7xvAzaNVtEqiVdejVYB10Ck6JdGp69EpwDroFJ2S6NT16BRgLbSKVkm06nq0CrAOOkWnJDp1PToFWAutolUSrboerUJGcPG6h91yyy3y8/NzfL355ptprv31119VsGBB9enTR7fccotuueUWffDBB07rnn32WZ0/f15ff/21JOnjjz9WsWLF1K5dO8eagQMH6t1339Xq1avVsmVLhYeHq2nTplq7du0NZz527JikpHj8d3Y/Pz9Nnz5dJ0+edFofHByswMBAp23+/v7Kly9fsvv29/fXlStXbjjDVQ0bNtTs2bMdQS1WrJgqV66sadOmOdZ8//33euCBB1S0aFFNmTJFq1at0po1a9SjR49k36tHjx46fPiwfvnlF0nStGnTFBMTo27duqVrnvDwcKdfBwQESJIjPlc/9qNQoUJO63x9fZPt++GHH+rll1/W7Nmz1bhxY+XLl0/33Xdfso82SY+IiIgUt13/MSQp/V4FBASk+HtSoEAB1apVK9nXf39ffX19lZCQkOpc8fHx8vPzS7Z95MiRWrNmjZYtW6ZXX31Vx44d03333aeYmJgbPlYArkerlGw7rUpCq2gVYAV0Ssm206kkdIpOAVZAp5RsO51KQqfoFGAVtErJttOqJLSKVgFWQKeUbDudSkKn6BRgFbRKybbTqiS0ilbh5tz45SVwqR9++MHpD2WRIkXSXN+gQQM1aNBACQkJWrt2rT766CP169dPhQoV0oMPPihJKlOmjFq2bKlPPvlELVu21Ny5c/XGG2/Ibrc77sfX11cDBgzQgAEDdObMGf36668aNGiQWrRooYMHDyo4ODjVGfLnzy9J+u677xQZGZmZh+8S7dq1U7t27RQTE6PVq1dr+PDheuihh1SyZEnVrVtXU6ZMUalSpTR9+nSnVyCl9GTYokULFSlSRBMmTFCLFi00YcIE1a5dWxUrVnTJrFcjdezYMRUtWtSxPT4+PllMQkJC9MYbb+iNN97QsWPHHK/Eatu2rbZv335T3zcqKirFbddH09UKFSqkK1eu6NSpU8l+YImOjlZMTEyymEtS6dKlVatWLUlJP6QEBQXptdde00cffaQXXnjBrTMDSI5WZR6tujFaBSCj6FTm0akbo1MAMopOZR6dujE6BSAzaFXm0aobo1UAMopOZR6dujE6BSAzaFXm0aobo1XICXjndQ+rUqWK0ytXbhSwq+x2u2rXrq1PPvlEkrR+/Xqn2/v27atNmzapa9eustvt6tWrV6r3FRYWpk6dOqlPnz46deqU9u3bJyn5K4euatGihXx9ffXPP/+k+Oqbq088nhYQEKBGjRpp5MiRkqQNGzZISvo4DH9/f6d4RUVFac6cOcnuw26369FHH9Xs2bO1fPlyrV27Vj169HDZjA0bNpQkTZ8+3Wn7d999p/j4+FT3K1SokLp166YuXbpox44dunTp0k1932nTpskY4/j1/v37tXLlSt111103dT836+6775aU/PFK0rfffuu0Ji0vvfSSypQpoxEjRuj8+fOuHRLADdEq16FVqaNVADKKTrkOnUodnQKQUXTKdehU6ugUgMygVa5Dq1JHqwBkFJ1yHTqVOjoFIDNolevQqtTRKuQEvPO6hY0dO1aLFy9W69atVaJECV25ckXjx4+XlPxJoFmzZqpYsaKWLFmiRx55RAULFnS6vW3btqpcubJq1aqlAgUKaP/+/RozZowiIyNVtmxZSUlxlaQPPvhAXbt2lZ+fn8qXL6+SJUvqzTff1Kuvvqo9e/bonnvuUd68eXXs2DH9+eefjlcNecLgwYN16NAhNW3aVMWKFdOZM2f0wQcfyM/PT40aNZIktWnTRt9//7169+6tTp066eDBg3rrrbdUuHDhFD+Go0ePHho5cqQeeughBQUFqXPnzi6bt1KlSurSpYvee+892e12NWnSRFu3btV7772nPHnyyMfn2utHateurTZt2qhq1arKmzevtm3bpsmTJ6tu3bppvjouJcePH1f79u3Vq1cvnT17VkOGDFFgYKAGDhyY4cdy7NgxrV69Otn23LlzO16t1rhxY917773q27ev9u3bp0aNGskYo99++02jR4/Wvffem66I+vn5adiwYXrggQf0wQcf6LXXXsvw3ADci1YlR6vSh1YB8AQ6lRydSh86BcAT6FRydCp96BQAT6FVydGq9KFVADyBTiVHp9KHTgHwFFqVHK1KH1qFHMHAslatWmXat29vIiMjTUBAgAkPDzeNGjUyc+fOTXH90KFDjSSzevXqZLe99957pl69eiZ//vzG39/flChRwvTs2dPs27fPad3AgQNNkSJFjI+Pj5FklixZ4rht9uzZpnHjxiZ37twmICDAREZGmk6dOplff/3VsaZr164mJCQk2fdv1KiRqVSpUrLtkZGRpnXr1uk9JGbevHmmZcuWpmjRosbf398ULFjQtGrVyixfvtxp3YgRI0zJkiVNQECAqVChgvniiy/MkCFDTGr/yderV89IMg8//HCKt0syQ4YMcfx6woQJRpJZs2aN07olS5YkO25XrlwxAwYMMAULFjSBgYGmTp06ZtWqVSZPnjymf//+jnWvvPKKqVWrlsmbN68JCAgwpUuXNv379zcnT55M9/G5+v0nT55snnvuOVOgQAETEBBgGjRoYNauXeu0NrXfq5SOk6RUv+rXr++0NjY21gwbNsxUqlTJBAQEmICAAFOpUiUzbNgwExsbm+K8M2bMSPHx1K5d2+TNm9ecOXMm3ccAgGfRquRoVdpoFQBPolPJ0am00SkAnkSnkqNTaaNTADyNViVHq9JGqwB4Ep1Kjk6ljU4B8DRalRytShutQk5iM+Y/ny+ALK1WrVqy2Wxas2aNt0fBDaxcuVL169fX119/rYceesjb4wCAx9CqrINWAciJ6FTWQacA5ER0KuugUwByKlqVddAqADkRnco66BSAnIpWZR20Csg8X28PgMw5d+6ctmzZonnz5mndunWaNWuWt0fCdX755RetWrVKNWvWVFBQkP766y+NGDFCZcuWVYcOHbw9HgC4Ha2yPloFICejU9ZHpwDkZHTK+ugUgJyOVlkfrQKQk9Ep66NTAHI6WmV9tApwDy5ez+LWr1+vxo0bKzw8XEOGDNF9993n7ZEyLD4+Ps3bfXx85OPj46FpXCd37txauHChxowZo/Pnzyt//vxq2bKlhg8frsDAwHTdhzFGCQkJaa6x2+2y2WyuGBkAXIpWWR+tApCT0Snro1MAcjI6ZX10CkBOR6usj1YByMnolPXRKQA5Ha2yPloFuIfNGGO8PQQg6YZPvl27dtXEiRM9M4zFLF26VI0bN05zzYQJE9StWzfPDAQAORStSh2tAgDvo1Opo1MA4H10KnV04QpjQwABAABJREFUCgCsgValjlYBgPfRqdTRKQCwBlqVOloFJMfF67CMtWvXpnl7/vz5VbJkSc8MYzHnz5/Xjh070lxTqlQphYeHe2giAMiZaFXqaBUAeB+dSh2dAgDvo1Opo1MAYA20KnW0CgC8j06ljk4BgDXQqtTRKiA5Ll4HAAAAAAAAAAAAAAAAAAAAALidj7cHAAAAAAAAAAAAAAAAAAAAAABkf1y8DgAAAAAAAAAAAAAAAAAAAABwO19vD2BFfTd08fYI2cLowuu8PUK2seCyv7dHyBZaldqS4X0To8q5cJK0+UTs9Nj3QtbVqO3/eXuEbGHZDy96e4RsocbTo709Qraw/rP+Gd7Xk52SaBVurGVEb2+PkC2YAnm9PUK2YItP9PYI2cJP24Znan/OqWA1LQIf9vYI2YON90ZxCR+btyfIFn6++FWG9+WcClbTzN7Z2yMADja73dsjZAsLY6dman/OqWA1zXzu9/YI2ULwb4W8PUK2sHltaW+PkC3s6Tcgw/tyTgWroVOwFP4O1SV+SZie4X3plDXxJwMAAAAAAAAAAAAAAAAAAAAA4HZcvA4AAAAAAAAAAAAAAAAAAAAAcDtfbw8AAFlBohI99r14VREA4GZ5slMSrQIA3DzOqQAAVsY5FQDA6jinAgBYGedUAAAro1PWxHECAAAAAAAAAAAAAAAAAAAAALgd77wOAOmQYDz3CiyemAEAN8uTnZJoFQDg5nFOBQCwMs6pAABWxzkVAMDKOKcCAFgZnbIm3nkdAAAAAAAAAAAAAAAAAAAAAOB2XLwOAOmQKOOxr8wYPny4bDab+vXrl+a6ZcuWqWbNmgoMDFTp0qU1duzYTH1fAIB3ebJTmWkVnQKAnCsrdEqiVQCQU3FOBQCwuqzQKYlWAUBOxTkVAMDK6JQ1cfE6AGQTa9as0eeff66qVaumuW7v3r1q1aqVGjRooA0bNmjQoEF67rnnNHPmTA9NCgDIiegUAMDqaBUAwMroFADA6mgVAMDK6BQAwMpyYqe4eB0A0iHRg/+XERcuXNDDDz+sL774Qnnz5k1z7dixY1WiRAmNGTNGFSpU0OOPP64ePXro3XffzdD3BgB4nyc7lZFW0SkAgJU7JdEqAMjpOKcCAFidlTsl0SoAyOk4pwIAWBmdsiYuXgeAbKBPnz5q3bq17r777huuXbVqlZo3b+60rUWLFlq7dq3i4uLcNSIAIAejUwAAq6NVAAAro1MAAKujVQAAK6NTAAAry6md8vX2AACQFSQY47HvFRMTo5iYGKdtAQEBCggISHH9N998o/Xr12vNmjXpuv+oqCgVKlTIaVuhQoUUHx+vkydPqnDhwhkbHADgNZ7slHRzraJTAACJcyoAgLVxTgUAsDrOqQAAVsY5FQDAyuiUNfHO6wBgMcOHD1eePHmcvoYPH57i2oMHD6pv376aMmWKAgMD0/09bDab06/Nv5G+fjsAAClJb6voFADAGzinAgBYHedUAAAr45wKAGB1nFMBAKyMTqUP77wOAOmQKM+9AmvgwIEaMGCA07bU3s1i3bp1On78uGrWrOnYlpCQoN9++00ff/yxYmJiZLfbnfaJiIhQVFSU07bjx4/L19dX4eHhLnoUAABP8mSnpPS3ik4BAK7inAoAYGWcUwEArI5zKgCAlXFOBQCwMjplTVy8DgAWk9ZHL16vadOm2rx5s9O27t2769Zbb9XLL7+cLGCSVLduXf3www9O2xYuXKhatWrJz88v44MDAHKM9LaKTgEAvIFzKgCA1XFOBQCwMs6pAABWxzkVAMDK6FT6cPE6AGRhuXLlUuXKlZ22hYSEKDw83LF94MCBOnz4sL766itJ0lNPPaWPP/5YAwYMUK9evbRq1SqNGzdO06ZN8/j8AIDsjU4BAKyOVgEArIxOAQCsjlYBAKyMTgEArCynd4qL1wEgHRI8/PEhrnT06FEdOHDA8etSpUrpxx9/VP/+/fXJJ5+oSJEi+vDDD9WxY0cvTgkAyAw6BQCwOloFALAyOgUAsDpaBQCwMjoFALAyOmVNNmNM1v2dcZO+G7p4e4RsYXThdd4eIdtYcNnf2yNkC61KbcnwvtFHirlwkrSFFznkse+FrKtR2//z9gjZwrIfXvT2CNlCjadHe3uEbGH9Z/0zvK8nOyXRKtxYy4je3h4hWzAF8np7hGzBFp/o7RGyhZ+2Dc/U/pxTwWpaBD7s7RGyB5uPtyfIHnxs3p4gW/j54lcZ3pdzKlhNM3tnb48AONhS+Jhy3LyFsVMztT/nVLCaZj73e3uEbCH4t0LeHiFb2Ly2tLdHyBb29BuQ4X05p4LV0ClYCn+H6hK/JEzP8L50ypp453UASIfELPwKLABA9kenAABWR6sAAFZGpwAAVkerAABWRqcAAFZGp6yJl3UAAAAAAAAAAAAAAAAAAAAAANyOd14HgHRIMLwCCwBgXXQKAGB1tAoAYGV0CgBgdbQKAGBldAoAYGV0ypp453UAAAAAAAAAAAAAAAAAAAAAgNvxzusAkA6J3h4AAIA00CkAgNXRKgCAldEpAIDV0SoAgJXRKQCAldEpa+Kd1wEAAAAAAAAAAAAAAAAAAAAAbsc7rwNAOiTIeHsEAABSRacAAFZHqwAAVkanAABWR6sAAFZGpwAAVkanrIl3XgcAAAAAAAAAAAAAAAAAAAAAuB3vvA4A6ZDAC7AAABZGpwAAVkerAABWRqcAAFZHqwAAVkanAABWRqesKcu/8/qaNWv08MMPq1SpUgoKClJwcLBKlSqlhx9+WGvXrvX2eACAHI5OAQCsjE4BAKyOVgEArIxOAQCsjlYBAKyMTgFAzpWl33l99uzZeuCBB9S0aVP17dtXhQoVkjFGx48f18KFC1W/fn19++23ateunbdHBZDFJXp7AGRJdAqAp9ApZASdAuBJtAoZQasAeAqdQkbQKQCeRKuQEbQKgKfQKWQEnQLgKXTKmmzGmCz7pviVK1fWI488oldeeSXF20eOHKmvvvpKW7duvan77buhiyvGy/FGF17n7RGyjQWX/b09QrbQqtSWDO+751BhF06SttLFjnrse8G93NUpSWrU9v8yOx4kLfvhRW+PkC3UeHq0t0fIFtZ/1j/D+3qyUxKtyi7c2amWEb0zOx4kmQJ5vT1CtmCL56+kXOGnbcMztT/nVMgId7aqReDDmR0PkmTL8h/saQ0+Nm9PkC38fPGrDO/LORUywp2dambvnNnxAJex2e3eHiFbWBg7NVP7c06FjHBrq3zuz+x4kBT8WyFvj5AtbF5b2tsjZAt7+g3I+L6cUyED6BRyDP4O1SV+SZie4X3plDVl6T8Zu3fvVocOHVK9/b777tM///zjwYkAALiGTgEArIxOAQCsjlYBAKyMTgEArI5WAQCsjE4BQM6WpS9ev+WWWzR79uxUb58zZ45Kl+YVlgAyL0E2j30h+6BTADzFk52iVdkHnQLgSXQKGUGrAHgK51TICDoFwJPoFDKCVgHwFM6pkBF0CoCn0Clr8vX2AJnx5ptv6sEHH9SyZcvUvHlzFSpUSDabTVFRUfrll1+0cOFCffPNN94eEwCQQ9EpAICV0SkAgNXRKgCAldEpAIDV0SoAgJXRKQDI2bL0xesdO3bUb7/9pg8++EDvv/++oqKiJEkRERGqW7euli1bprp163p5SgDZQaLx9gTIiugUAE+hU8gIOgXAk2gVMoJWAfAUOoWMoFMAPIlWISNoFQBPoVPICDoFwFPolDVl6YvXJalu3brZKlQHFp7QgV9P6PKJWElSaLEglekQoQLV86S4PurP0zr4y0md23dZifGJSes7FVaB23J7cmzL+3yKNPoLmx7tZDTo2ZTXHI+WRn0ibd0p7T8kPdJRqa7NSVbMS9CKeYk6dTzp1xElbGrxsI8q3O6T6j7xsUY/T03UusWJOndaCssvNXvQrtotUt8HyK6yS6fua1VND3a4XfnyhmrfgZP6+IvF2vT34TTWV1eHNtUVUTC3jp04rynfrtbPS7Y6bm9Qt6weub+OihYOk6+vjw4dOaNvZ6/RwiV/e+LhIBupUaaoHmtWSxVKFFSBsFANGDtXS//6J1373la6iL4YcL/+OXJSXYZ97eZJAWvKLp2SpNbdGqpT77uVr2Ae7d9xVP8bPENb/0j5+aBeq2pq3bWBbqlcTH7+vtq/46imvDtf65duc6y5u3MdPf/BY8n2vTfyOcXFxLvtcXhbm8611anbncpXIJf2/3NcY0fO19b1+1NcW7VWKY2a8Hiy7Y/fO1qH9p6UJEXeUlCP9mmqshWLqlDRvBo7cr5mT1np1sdgBa271FGnHg2SjuPu4/rf8Hnaum7fDferWD1So77qpX27jumZDh853RaSK1Bd+zVX/WaVFJo7SFGHTuvLUT9qzW873PQoAGvIqq1q88Tdun9Aa+WLCNP+vw9r7IuTtWVF6n9eqzS4VU+OfESRFYsq+ugZzXhvnuZ/uchx+6iFr+q2hhWT7ffHTxs0uP27kqRJO8YoIrJAsjVzx/6iT/pNzPyD8oI2TzTV/f1bK19EnqTj+NIUbVmxM9X1Ve68VU+OfOjacXx/vuZ/udhxu93XrgdfbKu7H7lT+Yvk1aGdURr32jda+8tmx5rK9cvr/v6tVbZGSYUXzquhD4zRqh/WufVxWkGbXk11f79WScd622GNfelrbVmZ8rHOF5FHTwx/SGWqlVTRMoU057NfNPYlzqmQM2XVTrV9qrnuf6GtwguHad/WQ/pswCRt+X17quurNqygJ999TCUrFVP0kdP69t25mve/Xx23t3y8iZo90lAlKxeXJO1at1fjX5umHWtSPid78OX71HNYF33/wY/6bMAk1z44L3P1sb2z/R3q8sp9KlImQnY/u47sitJ3o+fp1ynLPfFwPKLtk3fr/gFtlK9w0s9Nnz3/1Q1/bnrq/x5N6v2RM/r2vR80/4trPzc1e7ShXhz3VLL9WufqqriYOEmSj91Hjw3uqCYP1lfeiDCdOnpGCycv09Rhs2UMVzUge8mqrbpe26eb6/4X2l17fu0/4QbPrxX15Htdrz2//t8czfvfL47bIysWU9c3OqtszdKKKFlQn/afoFkf/OiJh2IZ0fP36vz644o9elE2fx8F3RKmAveXVUBESJr7nV58UKcXH1Tcycvyyxeo8DallKdeEQ9NnXU8ffvtanFLWZXOl09X4uO1/ugRjfx9ufaePu3t0QBLySqdcnWHJOnODrXV7c0HVfiWQjr6zzFNeG2aVsz+M8X7e/CV+9Rz2MP6/oP5+qz/RMf2R4fcr7s611eB4uGKj43XrnV7NOG1adr+526XPG5388ZxDQoNVLe3HlT9++5QWME82r1hrz7tN0E716bvGgMr8sY5fpunmqntk81UqGTS30fv33pIU96eqTULNrrnQSJbyvIXr2c3geF+Kt+lqIILBUiSDv8WrfXv7lG9EbcqV/GgZOtPb7ug8Cq5VO7BIvINtuvw0mitH/WP6r5dXrlLBXt6fEvavE369gep/C1p/2VTXKyUL0x68hHpqxmemS0ryJPfpjY97MpfxCZJWvNrosa9kaDnP7apcElbivtMGpag82ekzv3sKlDEpvNnjRITPDi0GyQo5ccK5ASN7yyvZx5votFjf9GWvw+r7T23aeTQTuraZ7yOnzifbH27ltX0RNcG+r+Pftb2XVGqUK6wXnymhc5fuKKV//4we/78FU35drUOHIpWXHyi6t5eWi/3banTZy5pzYZ9Hn6EyMoCA/y08/AJzV21Ve8+2Tbd+4UG+uvNbi20ZscB5cuV9X9molPI6Rq2q6kn3+ykT175Rn+v2aNWj96pt6b20ZMN39KJw8n/MaBKnTLa8Nt2TRo+VxfOXlKzB+tq6FdPq3+rUfpnyyHHuovnLqtX/Tec9s3OF643bFFFT77cSp+8/YO2btivVvffrrc/66on2n2gE1FnU92vZ5v3delCjOPXZ09fdPzvgEA/RR06reULt+jJl1q7dX6raNiyip58pbU+eWuO/l6/X60619Zb/+umJ9uO1omjqR/H4NAAvTDifm1c/Y/CwkOdbvP1s2vYuJ46c+qC3uk7VSePnVWBiDy6dDEmlXuzHlqFnKRRpzp66t1H9XHfCdq6cqdaP95Eb895Sb2qv6QTB6OTrS9UsoDenv2ifhq/RCO7f6pK9crpmQ+66+zJc/p99hpJ0ludx8jX/9pf5ebOF6rP1gzX8u+v/cPLc/Vfl4/92hsHlKxUTCN+HKTl3//hxkfrPo061dZT//eIPu47UVtX7VLrxxvr7dkvqleNV1I+jpEF9PbsF/TThCUa2WOsKtUtq2c+6PbvcVwrSeo2tJOadKmnMb3H6+COI6rVrKoGT++n/o3f1D9/Jb1YKzAkQHs2H9DCyb9p8Dd9PfqYvaVRx9p6atTD+rjfJG1dvUutezbW27NeUK+aA3XiUPJj7efvpzMnz+mb/5ur9s/c44WJXY9OISdp9EBdPT26qz56Zpy2rtih1k/crWHzB6pn5QEpPr9GlCygt+e9op++XKyRj32sSvXL69mPe+rMiXP6/d8O3daokpZ8s1J/r9qh2CtxeuDFezViwat6vMrzij7ifE5WrtYtatWrqeN5Nztxx7E9d+qCpg6fpYPbjyguNl51WtfQC+Oe1pnj57R24V+efogu1+j+Onrqvcf00bPjtXXVTrV+vKne+eFlPX7bi6kes3fmvqQfxy3RiG6fqFLdcnr2ox5JvZ+1xrHu4tlL6lH5ead9r164LkmdX2yr1r3u1v/1/Ez7/z6kcjVL6/kvntTFs5c1++MF7nvAmUCrkJM1eqCenh7dXR/1+SLp+fXJZhr246vqWam/Thw8mWx9RMmCenv+QP305SKNfPTDpOfXT3r9+/yadH4UEBygo3uP67fvVump97t5+BFZw6WdpxXWuLiCSuWWSTQ68f1uHXxvvUq/XU8+AfYU9zm95KBOzNyliK4VFVgqt67sOaeoSX/LJ9hPuaolfzF1TnZH0eKavGmjNkUdk93Hphfq3amv2ndU868m6nJ89vs7ZjqF7MwdHapQp5xe+6a/Jg7+Ritm/an67e/Qa9P7q3+D15NdeJ50DtVM//y1L9n3OrTzqD5+dpyO7jmmgCB/dezfRiN+fl1dyz6rsyfPueV4uIq3juuAL55WycrFNfKxjxR95LSaPtJAo34ZrJ6V+iv6yCmPHgNX8NY5/slD0Ro3aKoO7z4mSWr+WEO9MetFPV3zZe3/+1Cy7+ttdMqasvXbIA8aNEg9evTw9hg3pWDNMBWonkchRQIVUiRQ5R4sKt9AH53ddTHF9RW6FlfpeyOU55YQhRQOVLkuRRVSOEDH16f+D+I5ycVL0otvS2++KOXOlfbaooWlQc9J990jhYamvTYnqVzHRxXv8FHBYjYVLGZT6252BQRK+7en/GKAbWsTtXuzUa+37Cpfw0f5ImyKLO+jUhWz9dMNkCFZpVMP3FdLP/6yWfMXbtb+Q6f08ZdLdOLkebVrWS3F9c0bV9TcBX9pye87dPTYWS1evl3zf9mkLp3ucKzZuOWglq/epf2HTulI1BnN/GG99uw7oSoVi3roUSG7WLl1nz6du1KLN97cq8dfffhuLVizXZv2HHXTZEDWl1U6JUntn2yihdNW6uepK3VwV5T+N/g7nTh8Rq27Nkxx/f8Gf6fvPvlFOzfu15G9JzRp+Fwd2XtctZtXcVpnjNHpE+ecvrKzDo/V18/fr9OC79fq4N4T+t+oH3Ui6qzadK6d5n5nTl3U6egLjq/E/3z23s6th/Xl+wu0bMFmxcVmv3+USUn7rg208Pu1+vm7tTq454T+N3yeTkSdVesH66S533NvtNeS+X9p28YDyW5r3qGmcuUJ0pvPTNbfG/br+JEz2rp+v/buiHLXwwCyBKu2qsNzLfXzxKVaMGGpDu44orEvTtGJQ9Fq88TdKa5v83hTHT8YrbEvTtHBHUe0YMJSLZy0TB37XXvRz/nTF3X62FnHV42mVXTlUqx+m3ntwvSzJ887randsrqO/BOlTb9tS+nbWl7ScVymBROX/Xscv046jr2apri+Ta8mOn7wpMa++HXScZy47N/j2MqxpulD9fXNqB+05ue/FLXvhOZ9sUjrft2sjn1bOtasXbhJk974TivmrHX7Y7SKDs/eo58nLdOCSf8e65e+1olDp9SmV5MU1x87kHScf526QhfPXvLwtEDWYdVOdezXWgvGL9ZP4xbrwPbD+mzAJJ04GK22TzVPcX2bJ5vpxIFofTZgkg5sP6yfxi3WzxOW6P4B195EYMSjH+mHsQv1z1/7dXDHEY1+4n+y+dhUvanzOVZgSIAGTn5Go5/8XBdOX3Dr4/QGdxzbTcv+1orZa3Rg+2Ed3XNMsz76SXs2HVCl+uU99bDcqmPfVlow4d+fm7Yf0dgXJuvEoWi1fTLln5taP/Hvz00vTNbB7Uk/N/08cak69W/jtM4Y4/Rz0eljzv9uWqF2Wa36Ya3+/Gmjju0/qeXf/6l1v25WuZql3PZYASuyaquu17F/G+fn1/4TdeLgSbV9OpXn16ea6cSBk/qs/8T/PL8u1v3P3+tYs3PtP/ripclaOn2l04tbcpLi/Wso7M4iCigaqsDiuVS4RyXFn7qiK/tS/zvQc6uOKqxRMeW+I0L+BYKVu3aE8jQoqlM/7fPc4FlE99nfa+bff2vXqWhtP3lSL/3ys4rmzq3KhQp5ezQgy7BKp9zRoQ59W2vdL5v0zYjZOrjjiL4ZMVsbFm1Rh77ObwIUGBKogVOe0+gnxurC6eTXDi6Z9rs2LNqsqL3Htf/vQxo7YJJC8gSrdNUSrj0IbuCN4+of6K8GHWvri5enaPPybTryT5QmvzFDUXuPp/p9rc5b5/ir563Xnz9t1OFdR3V411FNeH26Ll+4ogp1yrr9MSP7yNZXkx4+fFj79u3z9hgZZhKNjq48pfiYRIWVS/ujmf67T/zlBPmFpPxK2JzmrTFSo7pSvVreniR7SEwwWr80UTExUskKKb8iaetqo+JlbVo8I1FDH47TsJ5xmvNFgmJjsvbHLCbI5rEv5BxZoVO+vj4qVyYi2buhr9mwT5UrpHyhuZ+fXbHXXZwWExuvCmULy25P+UePGlVLqHjRvNq01XqvwET2c2/diiqWP48+n7/a26O4jCc7RatyjqzQKSnpHanLVi2h9UudL8xbv2ybKt5eOl33YbPZFBQSqPNnnC++CgoJ0MS1b2ny+nc0dPLTuqVyMZfNbTW+vnaVrVhE61c6vxho/crdqlAt7b/k/OTbPpq6+BUN/6KHqt6es/+h39fPrrKVimj9il1O29ev2KWK1VM/js3a11Th4uH6+pNFKd5ep0lFbdt4QH1eb6epywfps7l91fmJu+Tjk3Wek+kU3MGKrfL1s6tsjVJa9+tmp+3rft2siqn8xX2FOmWTrV/7yyaVq1lKdt+U/46vRbe7tGzGKsVcSvkTGHz97GrS5U79PGlZBh6F9/n62VW2ekmtW3TdcVy0JfXjWLuM1i3a4rRt7a+bVa7GtePo5++r2CvOF6bEXI5VpXrlXDh91nLtWDsfu3WLN6ti7Zzzj02cU8EdrNqpcjVLa90vm5y2r/vlL1Wqm/JzYYU65bTuF+d3+F678C+Vq1U61U4FBAfI189X5085X6D+7Mc99cePG7Thuuf37MBTx7Z6k8oqVr6wNi/Pmi9O+6+rPzet//X6Y7ZZFeukfMwq1i6rdb9c9/NBCj83BYUGavKuD/T1no/05qwXdEu1SKd9tq7coWqNK6to2QhJUumqJVS5Xnn9aeGPuKdTcAcrtup6vn6+Sc+v133axLpfNqlS3ZRfyJP0/Or83LL257SfXyElXkr6tz17iF/qa+ITZfNz/rc+m7+PLu89KxOf6Nb5srpc/gGSpLNXrnh5EvfgnAruYIVOuatDFeumdC6wURXrOd9n0jnU+nSdQ/n6+arVE3frwpmLlv+kK28dV7uvj+y+dsVdiXVaE3M5VpXr35qpx+QN3j7Hv8rHx6a7OtdTYEiA/l61MwOPxP3olDX53nhJ1jVp0iRvj5Ah5w9c1urXdygxLlH2QLtqPF9aocWC0rXvvvnHlRCTqIi6ed08pfXNXyT9vVOa8T9vT5L1Hdlr9EH/eMXHSv5BUo/X7YqITPmJNvqo0d6tRn7+UvfBdl08K333cYIunTfqMiBbP+UANy0rdCpP7iD52n106ozzq3hPn7mofGEpv7Bqzfp9atO8qn5fvVs7/zmm8mUKqdXdVeTnZ1ee3EE69e8rgkOC/fXdxKfl72dXQqLRmM9+0dqN1j6JQtZXvECYnr3vTvV871slJGbtF1YB7pYVOiVJufOFyu5r1+kT5522nzlxTnkL5E7XfXR4uqkCg/3129x1jm2HdkXpvb6TtW/bYQXnCtR9vRrr3bkvqE/Td3Rk7wmXPgYryJ03OOk4Rjv/xdPp6AvKF57yR1OdOnleY4bO0u6/j8jP364mbaprxJc99FKPcdqybp8Hprae3GH/HseTzsfxTPQF5c2f8seBFYkMV/cBLfTio58rMSHlf+SLKJZXt9UurSXzNmrwkxNVtGR+9X79/9m77+ioigaMw++mkNDSgBB6RzoSsABSpAtSBGnSm4DY6EUsfIKgoKhIsQJWrKCCIAiCIiC9BhJqCOmEJPSS8v0RCCzZQFyyu3eT33POnmPuzt2dGdZ5d5K5czvK1c1FX89bl+3tAJyFEbPKq3BBubq5KiHGfHfPhJhE+Rb1tniOb1Fvi+Xd3N3kXbigzkQlmD13X73yKlejlGYP+yjTejToUE8FfPJp9Rd/WdcQB7vZj+Y7/iVE36Ufo2/vx7PX+7GAzkQlpu2y/nwb7dt4SJHHYlTn0eqq/3igXDK50Do38CqUyWc2+qx8W1juawBZY8Sc8i7slfZ99bbxMj46Ub4BPhbP8Qvw1nYL5TPLKUkaPP0pnQ4/o523XJzVtHsDVapTTiMemnTP7TAiW/ZtPq+8WhK2QO4ebkpJTtH7z35q1rfO6kbeZ+izmET5BmSS9wE+io8xX5hxe5+FBUdo1uAFOr4/TPkK5tUTz7XR7PWvaVi9iYo4knb3qm9n/qr83vn06b5ZSklOkYurixa98p3Wf7vZNo0FDMqIWXU77/SxIsHseHx0wh3GVx9tt1D+TtmV26Wmpirm22DlreQjj5KZ36a+QPVCSvg7XAXr+MujTEFdDj2rxI0RUnKqks9fk5uPhx1r7VxeatxE28JPKSQuztFVAZyGEXLKVjnkG+Bz17lD0+4NVCmwvEY8OOGOdXyoXaBe+makPPLl0ZnIBI1v9brOxp274zmO5qh+vXT+sg5sClavyU/q5MFwxUcn6tGeDVXloYoKP+x8d7p15BxfksrWKKX3/5mqPJ7uunT+sqZ0maWTB8PvqU3IXXL9StIrV67oyhXzHYqSribLLY/jrrjNX9xDDd6soqQLyYramqC980L10KuV7rqAPeKfMzryQ6TqjCkvD+/Mr4bNDSJjpOlzpE9mSR7Mj+6Zf0lpzDw3XTqfqr0bU/X128l69i2TxQXsKamSyST1Hu+qvPnTnu/0tLRoWrK6jEhVHg/nvLooJdU5642cwVJWpSQnycXVjjF++xpfk0mpGQ6mWfztZvn55tf8Wb0kk0nxCRe0au1+PfXkQ0q5ZbHwxUtXNfiFxcrrmUeBtUvrmUGPKiIqUbv3h9mwIcjNXEwmvTHwMS1YvkUnYxIcXZ1sRU7BkSzmVGqyXEz2nVOlpprnkslkynDMkiad6qn3mHaa0m+BEm9ZcHxo5wkd2nki/eegrcc0Z80EdRjUVAsmf59t9TYeC/2YSclTJ07r1InT6T8f3BOmIgHeerLfI7l28foNFr46Wfw8uriYNH5mD335wR8Kv6Uvb2dycVFC3AW9/8pSpaSk6khQhPyKeOnJQY2cZvE6WQVHckRWWcqlTAdUSRmGCJPJ4utIabuuH98fpuDtxzJ9vdb9m2rb73t0JjIhq1U2JMv9mHlHZuxH8+Pzx3ypF+cN0id73pJSUxVxLEarP/9brfo2ysZaO6fb+85ksnAwByOn4EhGyak7zZ8yjhGZ51S3MR3UtEdDjWk2RdeupN3tokjJQnpmdj9NaPNG+rGcyhZ9e+ncZQ0LHKe8BTxVp1lNDZvVV5HHYrR3Q1D2VdyBLGfQfz3hZp8d2npEh7bevKvYgU0hmrd1mjo900rzRn0uSWrarb6a93xEM/rO1YmgU6pQu4yGz+qjuMh4rfni73ttkk2QVXAkI/z+z9J4eefx1cJcwsLrIE30V4d0+dR5lZnwwB3LFWpfXkmJV3Xija1SquTmlUfeDYrrzKoTkhPdIdDepjzaTFWKFFa37751dFVshpyCI9kjp2ySQxnK3DxWpGQhPfPuAE1oPfWuc6g9fx7QsDpj5V24oB4b0kKTvx2l5x+eqITYs3c8zwjs3a+S9GbfORrz6TNaEv6RkpOSdXjnca37eqMqBWbtbs5GZO85/g2ngiM0LHCcCvjk1yOdH9LYhSM0+tHXDLmAnZwyJqdfvH7hwgV9/fXX2rRpk6KiomQymVS0aFE1bNhQPXv2VP78lneFvWH69OmaMmWK2bEHn66uh4fVtGW178jFzUX5AzwlSd4V8uvs0Ys6sTJWNYZkfovxyE1ntP/DUN3/YnkVrpm13QVzsgPBUly8SU8+fXNQTU42afueVH29VNqzRnLljmBZ5uZuUpHikmRS6crSyZBU/bUsRd1eyNiJXn6SdyGlL1yXpKKlTUpNlRJPS0VK2K/egBHca05JlrOqdKUWKntfK1tVO13i2UtKSk6Rn695PX298yk+4aLFc65eTdKb76/SrLmr5eeTT3HxF9S+dW1duHhFiWdvnpOaKoVfX0hx5HiMypQqpF5dH2LxOmwmn2ceVS8boPtK+Wt890clpS1od3ExaesHL2jEnJ+0LZjPH3IXW+VUhfz1VKnAnf/QkV3Onjmv5KRk+fmbz4O8CxdUwuk77yzRuGNdvfhOb73x9Cfa/XfwHcumpqYqZHeoipf3v+c6G9HZ+ItKTkqWbyHz3cF9/PJn2I39Tg7tDVOzx2tnd/WcxtmEtH70K2y+Q5W3XwElWOjHvPk9VLlmSVWoWkzPTO4gSTK5mOTi4qLl+6bqpcGfac+/xxQfe1ZJSSlmFwKGHYuRXxEvubm7Kulasm0bBjiQrbKqvGsNVXSrle31PXv6XNp4WtTH7Lh3ES/F37az9Q3xFnYT9ynipaRrSTp729jhkTePmnatr8//90OmdfAvXVh1mtXQ693ftaoNRnCzH837xdvfS/Exlv/wlraj0J37MfH0OU3p9q7cPdzlVaiA4iLiNWhqd0WfyHl3Vcmqs3H/va8B3GSrnCqnaqpgqpHt9U08fTbt++ptO7D5+HtluHvFDWeiEuV3+/jqbzmnnhz1uHpO7KTxrabq+L6T6ccr1S0n36I+mrdtevoxVzdX1WxcVR1HtFbbvL3Mvus6I1v2bWpqqiKORkuSju4JVemqJdRzQienX7x+I+8z9EER7ww7B94QH5WQ4XuWbyafxxtSU1MVvP2YSlQMSD82ZPpTWjLzF63/Lm2n9RP7w1S0dGH1GNfRsIvXAWvZLquqqoKq26ra6RLTxwofs+M+/hnvvHTDmagE+QX4ZiifNlYYeydaR4j66pDO745V6fEPyN3P845lXfK4qtjA6groW1VJZ6/KzcdDCRtOycXTVa4FcvcGi5l5temjal6+gnp8/62izmf996xAbmH0nLJVDsVHZdxh3Mf/5vfgSnXLp82htr+Z/vzNOVQbtfV8SikpaXdyvXzxiiKORiniaJQO/ntYi4LfV5tBzbRkxrJ7aLltOapfJSnyWLRGP/qqPPN5KJ9XXp2JStBL34xU1PGYe2+YnTlqjn9D0rXk9LlqyI5juq9eBT3xfFu9N/zje2gVchOnvh9qUFCQKleurHHjxik+Pl6lS5dWyZIlFR8fr7Fjx+q+++5TUNCdf3EzceJEJSYmmj3qDaxmpxZkTWqqlHLN8q3DpbQd1/fND1Xt58rJP5BbuUpS/brSzwtT9dMnSn/UuC9Vj7dI+28Wrt+7pGuWf5FcrpqLEs9IVy7dfD4mPFUmF8m7sL1ql/2SZbLbAzlHduSUZDmrSldsZocWSElJKQo5EqV6dcqYHa93fxntv8vVksnJKYqNO6+UlFQ1a1xFm7cdveOOFiZJ7u4M0LCdC5evqOvrn6vnG1+mP374e6+OR51Rzze+1L7jkY6uotXsmVNkVc5hy5yqkD/QDi1Ik3QtWYf3nlSdJlXNjgc2qaKgbZnvSNukUz2NereP3npmobb9sT9L71WhRqlM/4Du7JKSknU4KEJ16lc0O16nfkUd3J3xF1KZqVClmM7E5t4/AiZdS9bhAxGq06CS2fHABhUVtCtjP148f0XDOryrEZ3npD9++3arwo7FaETnOTq0N+2iqgM7Q1W8dKH03S8kqUTZwoqLOes0C9fJKVjDlllV3tU2iyySrqXt1hPY3HzBYWDzmgractjiOQe3HFZgc/ONNOq2qKmQHceVnGT+/3jjJx+Wu4eb1n7zT6Z1aNW3sRJiEvXvyl1WtsLxkq4l6/CuEwpsdls/NquReT/+eyRD+brNaypkZ8Z+vHblmuIi4uXq5qpHOj2gzct3Zm8DnEimff1oDQX9a7mvcyLmVLCGLXOqnKnqXc+zRtK1ZIXsOKbAFuYXcAW2qKUDm0MsnnNwS0iG8nVb1lLI9mNm42vX0e3Ve3IXTWo7XSE7zOdiu9bu15BaYzQscHz6I3jbUa37eqOGBY53+oXrkm37NgOT5J7H6fcnu+V7k/n3oMAWNRS0xXKfBf17WIEtbsusFrUsfm+6VYXaZRQXlZD+s0e+PEq97XOXkpwik4F3DSanYA2bZpWq2KEFUtK1pLTxtaWl8dXyZhQWx9dWte8+vuYyqampaQvXd8ao9Ni6ylMkb5bPNbm5yN3PUyYXk85ujVKB2kUMPYY6ymtNm6l1xUrq/eP3OnU2Z18czJwK1nCGnLJVDgVtDlHdDHOB2gralPaau9bu05CaozSsztj0R/C2I1r31UYNqzM2feG6RSaT3D2MfUGRo/r1VpcvXtGZqAQV8Mmveq1ra9Mv2+6lSQ7hqDl+ZkwmKY+HMeeq5JQxGfPTkkUjRoxQ48aNtXjxYuXJk8fsuatXr6p///4aMWKE/vzzz0xfw8PDQx4eHmbH3PI4buFcyDfhKny/tzwLuSv5cooiN53RmaBzqjcxbQFB8DfhunLmmmqNKCvp+sL1eSdUtV8p+VTKrysJabdncMnjIvd8uXcBYP58UuXb7uaRN6/k433z+DsfSdGx0psv3Sxz8PrfYy5ekuIT0n52d5cqlrVHrY1pxcJkVXnAJN/CJl2+JO3akKIje1M1dGra52v5Z8lKjEtVr7Fpw0ndR01a87X0zdvJatPHVRfOpurXT5L1UCuT8ngwOCN3yY6ckixnlYur/SL8u2Xb9dKodgo+HKUDhyL0eJva8i/ipV9W7pEkDenbSEUKFdQbs3+TJJUs7quqlYspKDhCBQt4qluneipXurCmX39ekno9+ZCCj0QpPDJB7u6uerhuebVuVl3vzF9jt3YhZ8jr4a5SRXzSfy5RyEuVSxbR2QuXFRV/Ts92bCh/nwJ6ZfHvSk2VjkbEmZ0ff+6irl5LynAcyA1smlN2vGWwJC39cJ3GzOmnw3tCdXD7cT3Wu6GKlPDVb5+n7ZbWf1JHFSrmo7efWywpbeH6mDn9tODl73Vox3H5Fknbtf3K5au6eO6yJOmp0W11aMdxRRyLUb6CedVxcFOVr15ScycusWvb7Omnz//R2OlP6vCBcB3cc1KPdX1A/sW8teK7rZKkAS+0UiF/L816KW233069Gyg6Il6hR2Lk7u6qZo/fr0atauj1F79Kf003N1eVrpC2W72bu6sK+3up/H3FdOniFUWGnbF/I+1g6eK/NWZGNx3ef0oHd5/UY90eVJFiPvrt238lSf1Htlahol56e8L3Sk1NVejhaLPzE+LO6+qVJLPjK5b8qw69G2jYpMf1y1ebVbxMIXV/uql++XKTXdsG2JuzZtVP76/U2M+GK2TncR3cclhtBzWTf6lCWvHxWknSgNe7q3BxX80ctECStPyTteowvKWefrOXVn72p6o+XEmt+zfVjL4fZHjtNv2baNMvO3TujOXd2kwmk1r1baI/vvxbKcl3+COWE/jp/ZUa++mwtH7894jaDno0rR8/ud6P/+uW1o+DP5QkLf94nToMa6mn33xKKz9br6oPVVTr/k00o9/c9Ne874EKKlzcV0f3hKpwCV/1fqmzTC4mfffOivQynvk9VLxC0fSfA8oWUflapXUu/oJiw3LmvOGnOas09pOhCtl1va8HNr3e1+skSQOmdE3r6yEfpZ9TvlbaXULzFvCUd+GCKl+rtJKuJunkoQiHtAFwBGfNqR/fXaHxi59VyI6jOrj5sNoOaS7/0oW1/MO038sNnNZThUv46a3+aePn8g/XqMOI1ho6q49WfrJOVetXUpuBzfRGr/fSX7PbmA7q979umt77fUWdiEm/m8Ol85d1+cIVXTp/WScOmN/t7vKFyzobdz7DcWdmi77tMb6TQnYcVcTRaLnncdODj9VRyz6N9f6ITx3Sxuz243u/adzCZxSy45iC/j2sdoOayb9UYS3/KC3vB07trkLF/TRz4HxJ0oqP1qrj8FYa+lZv/fbZOlV7qJLaDGiq6X3mpL9m78mddfDfIwo/EqV8XnnVaURrVahdRh88vyi9zJYVO9VzQkfFhJ1WaNApVby/rDq/0Fa/L15vx9YDtuesWXW7H2cv1/jPn1PI9qM6uDlEbZ9ukTa+LlgtSRr4xlMqXNxPb/VPm0MtX7BGHUa00dC3+2nlx3+oav3KaePrU++mv6abu5vKVCspKe2CoMIlCqlC7bK6dP6yIo5G2a1tjhT95SGd/TdKJZ+rLRdPNyUlXpEkueR1k8v1NTMxPx5WUvwVFR+cduHQ1agLunT8rPKW91LyhSSdWR2qK+EXVGxQ9t8xxtn979Fm6lClip7+5Redv3pVhfPlkySdu3JVV5KTHFw7wBicJadskUNL31+hdzb8T93HddSmn7epQccHFNiipkY2elmSMplDXdHZM+fSj3vm89BTL3XW5l+2Ky4yXl6FCqrDM61VpKSf/vp+c7a131Yc0a+SVK9Vbclk0qngCBWvGKCn3+qjsOAI/b7wzp8zo3LEHF+SBk7toa2rdis2LE55C3rq0e4NVKtpdU1q+4adewDOzKkXr//777/avn17hgCTpDx58mjSpEl68MEHHVAz611JTNLeuSd0JeGa3PO5qmDpvKo3saIK17q+mCL+mi6dvppePuyP00pNloI+C1PQZzdDq3hjP9V6pqy9q+9UYuOkyNvu+NF58M3F1QeCpeV/SMUDUrX2WztXzkDOxafqq7dSdDZeyptPKlbOpKFTXXVfYNqNG86eSVX8Lf3okdekYdPd9NO8ZL3zfJLyF5Tub+yix/o59Y0elOzcN6qAg+SUnPpzY7C8vfKqb48GKuSXX8dDT2v8lB8VHZu2Q0AhvwLyL1Iwvbyri0ndO9VTqZJ+SkpK0a59JzVi3FeKuuV2456e7ho5vKWKFCqgK1eTdPLUGU19e4X+3Gj5KlogM9VKF9XHo7qm/zy6a1NJ0i+bD+i1z1ersHd+BfgVzOTsnIOcgjVySk5J0l8/71BB3/x6alRb+fl76cShSL3Sa55iTqUtjvYr6iX/EjdvJdi27yNyc3fVszN66NkZPdKPr/l2s9554QtJUgGvvHp+1lPyK+KlC+cu6+i+MI3t9I5CdoXat3F29Nfv++Tlk0+9hj0q3yIFFXokWi8/87liIhMkSX5FCsq/2M27fbm5u2rI6MdUyN9LV69cU+iRGL38zGJt+/vmbg6F/Atq3g/Ppv/85IBGenJAI+3ddkzjBuaMxRa3+2vlPhX0ya+nnmkuvyIFdeJwtF4ZtkgxEQmSbvSjz396zdNRiXpp8GcaOqGd5i17XnHRZ/XzF5v0/Scbsr8BNkJWwRrOmlUbftiign4F1GvSE/IL8FHogVOa3GmmYk6eliT5BfioSKlC6eWjT8RqcqeZGvpWb7Uf1lJnIuM1f9Tn2rjMfLefEhUDVKNhFU1sNz3T967TvIaKli6s3xc7z/iQmQ0//Hu9Hzvd0o+zFHMybQF5hn4MjdXkTrM09K1eaj+0hc5EJmj+6C+0cdn29DJ5PNzV79UnVaxcEV06f0Xbft+jtwYt0IXEi+llKgeW08zVN3e7GPZWL0nS6i/+1ttP31y8nZNs+PF6X0/omNbXQac0ufPbigm7pa9LFjI7Z/7mqen/XTmwnJp1b6Co0Fj1qzbarnXPLuQUrOG0OfXdZnn5FVTvyV3kV8xXJ/aH6aXHZ6TnVKFiPvK/ZXyNOhGryY/P0LC3+6nDM60VFxGveS8u1MaftqaXaT+8pfJ4uOvV783HgM+nfK8v/veDfRpmALboW8/8Hnr+g0EqXLKQrly6qrBD4ZrR9wNt+M74i1GyYsP3W+TlV0C9Xuosv2LX877DW2bfm27vs5c6vKVhs/qo/fCWOhMRr3kjF2vj0pvfmwp459OL8wbJN8BHFxMv6sjuUI1u9rqCtx9NLzP3xcXq91pXPff+APn4eysuIl6/fbJWX079yX6N/4/IKljDWbPqdhu+2ySvQgXU++Unb46v7d64Ob4G+Mq/9M1bgEediNHkdtM17J1bxtcXPtPGn/5NL1OouK8W7JqZ/nO3MR3UbUwH7Vl/QGOavWavpjlUwvpTkqSTb+0wOx4woLp8HikuSUpKuKJrZy6nP5eakqozv4fqavQFmVxdlO8+X5WZ9IDyFM76ru25Re/a90uSlnTtZnZ87OpV+jELO0k7G3IK1nCWnLJFDgVtDtG0nu+q/+s91O9/PRR5NErTeszWoa1Hslyv5OQUlbqvhFr+0FRehQvqXNw5BW87qpGNX1Fo0Kns6wAbcVS/5vPOp0FvPKXCJQvp3Jnz2vjTv/rspW+c9u4sjprj+xT11vjFI+RXzFcXEi/q+N6TmtT2De38Y58dWv3fkVPGZEpNTXXae/GVKFFC8+bNU8eOHS0+v2zZMo0YMULh4eH/6XVf2NUzO6qX680utuPuhZAlqy5l/KKG/65tuf1Wn7vtZNnsq8hdPFD6hN3eC7Zlq5ySpCbtZ969EO5qw69jHV2FHCFw+GxHVyFH2Dl/pNXn2jOnJLIqp7BlTj0W8My9Vg+SUov43r0Q7sqU5Nw7DxvFyoOZL5bNCuZUsIYts6q1Z697rR4kycQv/bOFC3crzA6/X/jc6nOZU8Eatsyplq7d77V6QLYxuebeOz1np9VXv76n85lTwRo2zSqXrncvhLvK91fRuxfCXe3bXt7RVcgRjr04yupzmVPBGuQUcg1+h5ot1iRbv/swOWVMTr3z+pAhQ9SvXz9NnjxZLVu2VNGiRWUymRQVFaU1a9bojTfe0IsvvujoagIAcilyCgBgZOQUAMDoyCoAgJGRUwAAoyOrAABGRk4BQO7m1IvXX3vtNeXNm1fvvPOOxo0bJ5MpbYea1NRUBQQEaMKECRo3bpyDawkgJ0hJZQcs/HfkFAB7IadgDXIKgD2RVbAGWQXAXsgpWIOcAmBPZBWsQVYBsBdyCtYgpwDYCzllTE69eF2Sxo8fr/Hjx+v48eOKioqSJAUEBKhcuXIOrhkAAOQUAMDYyCkAgNGRVQAAIyOnAABGR1YBAIyMnAKA3MvpF69HRkZq/vz52rhxoyIjI+Xq6qpy5cqpU6dO6t+/v1xdXR1dRQA5QLK4AgvWIacA2AM5BWuRUwDshayCtcgqAPZATsFa5BQAeyGrYC2yCoA9kFOwFjkFwB7IKWNycXQF7sX27dtVtWpV/frrr7p8+bJCQkIUGBio/Pnza8yYMWrUqJHOnTvn6GoCAHIpcgoAYGTkFADA6MgqAICRkVMAAKMjqwAARkZOAUDu5tSL11988UWNHDlSu3bt0qZNm7R48WKFhIRoyZIlOnbsmC5duqTJkyc7upoAcoDkVBe7PZBzkFMA7MWeOUVW5RzkFAB7IqdgDbIKgL0wp4I1yCkA9kROwRpkFQB7YU4Fa5BTAOyFnDImp+6pnTt3qk+fPuk/P/XUU9q5c6eio6Pl6+urt956Sz/88IMDawgAyM3IKQCAkZFTAACjI6sAAEZGTgEAjI6sAgAYGTkFALmbm6MrcC/8/f0VGRmp8uXLS5Kio6OVlJQkLy8vSVKlSpV05swZR1YRQA6R4tzX+sBByCkA9kJOwRrkFAB7IqtgDbIKgL2QU7AGOQXAnsgqWIOsAmAv5BSsQU4BsBdyypic+l+lU6dOGjZsmFatWqU///xTvXr1UpMmTZQ3b15JUnBwsEqUKOHgWgIAcityCgBgZOQUAMDoyCoAgJGRUwAAoyOrAABGRk4BQO7m1DuvT506VZGRkWrfvr2Sk5NVv359ffnll+nPm0wmTZ8+3YE1BJBTJMvk6CrACZFTAOyFnII1yCkA9kRWwRpkFQB7IadgDXIKgD2RVbAGWQXAXsgpWIOcAmAv5JQxOfXi9QIFCujbb7/V5cuXlZSUpAIFCpg936pVKwfVDAAAcgoAYGzkFADA6MgqAICRkVMAAKMjqwAARkZOAUDu5tSL12/w9PR0dBUA5HDJqS6OrgKcGDkFwNbIKdwLcgqAPZBVuBdkFQBbI6dwL8gpAPZAVuFekFUAbI2cwr0gpwDYGjllTPyrAAAAAAAAAAAAAAAAAAAAAABsjsXrAAAAAAAAAAAAAAAAAAAAAACbc3N0BQDAGaTI5OgqAACQKXIKAGB0ZBUAwMjIKQCA0ZFVAAAjI6cAAEZGThkTO68DAAAAAAAAAAAAAAAAAAAAAGyOndcBIAuSudYHAGBg5BQAwOjIKgCAkZFTAACjI6sAAEZGTgEAjIycMib+VQAAAAAAAAAAAAAAAAAAAAAANsfO6wCQBcmpXOsDADAucgoAYHRkFQDAyMgpAIDRkVUAACMjpwAARkZOGRP/KgAAAAAAAAAAAAAAAAAAAAAAm2PndQDIghSu9QEAGBg5BQAwOrIKAGBk5BQAwOjIKgCAkZFTAAAjI6eMiX8VAAAAAAAAAAAAAAAAAAAAAIDNsfM6AGRBcqrJ0VUAACBT5BQAwOjIKgCAkZFTAACjI6sAAEZGTgEAjIycMiZ2XgcAAAAAAAAAAAAAAAAAAAAA2Bw7rwNAFiRzrQ8AwMDIKQCA0ZFVAAAjI6cAAEZHVgEAjIycAgAYGTllTPyrAAAAAAAAAAAAAAAAAAAAAABsjp3XASALUlK51gcAYFzkFADA6MgqAICRkVMAAKMjqwAARkZOAQCMjJwyJv5VAAAAAAAAAAAAAAAAAAAAAAA2x+J1AAAAAAAAAAAAAAAAAAAAAIDNuTm6AgDgDJK51gcAYGDkFADA6MgqAICRkVMAAKMjqwAARkZOAQCMjJwyJv5VAMCJzZ8/X7Vq1ZKXl5e8vLxUv359rVy5MtPy69evl8lkyvA4dOiQHWsNAMhNyCoAgJGRUwAAoyOrAABGRk4BAIyMnAIAGF1uzip2XgeALEhONTm6ChaVLFlSM2bMUMWKFSVJixcvVseOHbVr1y5Vr1490/OCg4Pl5eWV/nORIkVsXlcAgO0YNacksgoAkMaoWUVOAQAk4+aURFYBANIYNavIKQCARE4BAIzNqDkl5e6sYvE6ADix9u3bm/08bdo0zZ8/X1u2bLljgPn7+8vHx8fGtQMAgKwCABgbOQUAMDqyCgBgZOQUAMDIyCkAgNHl5qxycXQFAMAZpMjFbo8rV67o7NmzZo8rV67ctY7JyclasmSJLly4oPr169+xbJ06dVSsWDE1b95cf/75Z3Z1EwDAQeyZU2QVAMAa5BQAwMiYUwEAjI6cAgAYmTPMqcgpAMi9nCGnpNyXVey8bsHfCx50dBVyhPK16zq6CjmGx2lXR1chR2j7iqNrkDXTp0/XlClTzI69+uqreu211yyW37dvn+rXr6/Lly+rQIECWrp0qapVq2axbLFixfTRRx+pbt26unLlir744gs1b95c69evV+PGjbO7KbCh4i8ddnQVcoQWjac5ugo5QuHLyY6uAuyMrMLdpCQkOroKOcP5C46uQc7gynwqtyGnkBUp15IcXQUgnYmsynXIKtxVaoqjawDcZODbq8M2yCnAfi42jnZ0FXKECqZYR1chZ3jR0RXIuv+SVeQUAIdjjp/rMKfKGlNqamqqoythNIFDZzu6CjnCmdosZMsuLF7PHsGvjLT63M9CHsnGmtxZrzJrM1xt5eHhIQ8PD4vlr169qpMnTyohIUE//vijPvnkE23YsCHTELtd+/btZTKZ9Msvv9xz3WE/Pbc87egq5Aix48o4ugo5gguL17PF6q3WX2Vlz5ySyCrcXWvPXo6uQs7gxvXm2YEFgdljVeJn93Q+cyoYTUvX7o6uApCOrMoeq69+bfW5zKlgNC1dujq6CkA6cip7rL625J7OZ04FoyGrYCgmF0fXIEdYk/yt1ecaeU5FTuVO5BSQ86xJ+d7qc42cU1LuzSr+Eg4ABnOnsLIkT548qlixoiSpXr162rZtm9577z19+OGHWTr/4Ycf1pdffmlVXQEAuRNZBQAwMnIKAGB0ZBUAwMjIKQCA0f2XrCKnAAD2xpwqa1i8DgBZkCLnuS1mampqhqu37mTXrl0qVqyYDWsEALA1Z8opiawCgNzImbKKnAKA3MeZckoiqwAgN3KmrCKnACD3IacAAEbmTDkl5Z6sYvE6ADixSZMm6bHHHlOpUqV07tw5LVmyROvXr9eqVaskSRMnTlR4eLg+//xzSdK7776rsmXLqnr16rp69aq+/PJL/fjjj/rxxx8d2QwAQA5GVgEAjIycAgAYHVkFADAycgoAYGTkFADA6HJzVrF4HQCyIDnVxdFVsCg6Olp9+vRRZGSkvL29VatWLa1atUotW7aUJEVGRurkyZPp5a9evaoxY8YoPDxcefPmVfXq1bVixQq1bdvWUU0AAGQDo+aURFYBANIYNavIKQCAZNycksgqAEAao2YVOQUAkMgpAICxGTWnpNydVabU1NRUR1fCaAKHznZ0FXKEM7WTHV2FHMPjtKujq5AjBL8y0upzPwxuko01ubOh922w23vBefXc8rSjq5AjxI4r4+gq5Agul8n87LB66ytWn2vPnJLIKtxda89ejq5CzuDG9ebZweTKfCo7rEr87J7OZ04Fo2np2t3RVQDSkVXZY/XVr60+lzkVjKalS1dHVwFIR05lj9XXltzT+cypYDRkFQzFZNwFac5kTfK3Vp/LnApGQ04BOc+alO+tPpecMia+wQEAAAAAAAAAAAAAAAAAAAAAbI5t3AAgC5K51gcAYGDkFADA6MgqAICRkVMAAKMjqwAARkZOAQCMjJwyJv5VAAAAAAAAAAAAAAAAAAAAAAA2x87rAJAFKakmR1cBAIBMkVMAAKMjqwAARkZOAQCMjqwCABgZOQUAMDJyypjYeR0AAAAAAAAAAAAAAAAAAAAAYHPsvA4AWZDMtT4AAAMjpwAARkdWAQCMjJwCABgdWQUAMDJyCgBgZOSUMfGvAgAAAAAAAAAAAAAAAAAAAACwOXZeB4AsSEnlWh8AgHGRUwAAoyOrAABGRk4BAIyOrAIAGBk5BQAwMnLKmPhXAQAAAAAAAAAAAAAAAAAAAADYHDuvA0AWJMvk6CoAAJApcgoAYHRkFQDAyMgpAIDRkVUAACMjpwAARkZOGRM7rwMAAAAAAAAAAAAAAAAAAAAAbI6d1wEgC1JSudYHAGBc5BQAwOjIKgCAkZFTAACjI6sAAEZGTgEAjIycMib+VQAAAAAAAAAAAAAAAAAAAAAANsfO6wCQBckyOboKAABkipwCABgdWQUAMDJyCgBgdGQVAMDIyCkAgJGRU8bEzusAAAAAAAAAAAAAAAAAAAAAAJtj8ToAAAAAAAAAAAAAAAAAAAAAwObcHF0BAHAGKalc6wMAMC5yCgBgdGQVAMDIyCkAgNGRVQAAIyOnAABGRk4ZE/8qAAAAAAAAAAAAAAAAAAAAAACbY+d1AMiCZK7AAgAYGDkFADA6sgoAYGTkFADA6MgqAICRkVMAACMjp4yJfxUAAAAAAAAAAAAAAAAAAAAAgM059c7rV69eVZ48edJ/Pnr0qObMmaPDhw+rWLFiGj58uOrWrevAGgLIKVJkcnQV4ITIKQD2Qk7BWmQVAHshq2ANcgqAvZBTsAY5BcCeyCpYg6wCYC/kFKxBTgGwF3LKmJx65/W8efMqJiZGkrR7927VqlVLGzZsUIkSJbR37141aNBAW7dudXAtAQC5FTkFADA6sgoAYGTkFADAyMgpAIDRkVUAACMjpwAgd3PqnddTU1PT//vll19W27Zt9d1338lkSrtSYuDAgXr11Ve1cuVKR1URQA6RnOrU1/rAQcgpAPZCTsFaZBUAeyGrYA1yCoC9kFOwBjkFwJ7IKliDrAJgL+QUrEFOAbAXcsqYnHrx+q12796tJUuWpAeYJL3wwgtq3bq1A2sFAEAacgoAYHRkFQDAyMgpAICRkVMAAKMjqwAARkZOAUDu49SL100mU3poubq6ysvLy+x5Ly8vJSYmOqJqAHKYlFTT3QsBtyGnANgLOQVrkVUA7IWsgjXIKQD2Qk7BGuQUAHsiq2ANsgqAvZBTsAY5BcBeyCljcur98FNTU1W5cmX5+fkpIiJC+/btM3v+8OHDCggIcFDtAAC5HTkFADA6sgoAYGTkFADAyMgpAIDRkVUAACMjpwAgd3PqndcXLlxo9nOFChXMft6yZYueeOIJe1YpWwRWKqG+reqpaml/FfEpoFHzftH6PUczLX9/heJ6vnMjlQ3wlWced0WeOauf/tqrr9busmOtjeWZwAfVunxlVfDx0+WkJO2MCteMLX/pWEJ8pucUyZdfkxs0VY0iRVXOx1eL9u7U//750461NqZ6pUtoUIN6qlHMX/4FC+iZb3/R2uDMP4+S1L5GFQ1uUE9lCvno3OWr+vvoCb215i8lXLpsp1pnv2TnvtYHDpJTc+pOYtdGKHZdhK6eTvv/PW+JfAroWEbetQs5uGbG0KFTXXXt+bAK+RXQiROxmjdnjfbvDbNYduzEx9X6sdoZjp84HqvB/T6SJD3S+D717N1QJUr4ytXNReGn4vXDt1v0x+r9Nm2Ho7XvUk9d+9SXX6GCCj0Wo/mzV2v/7pOZlnd3d1WvwY3VvE1N+RYqoNMxZ/XNwo36/dfdkqSGTauo54BHVLykn9zcXBQedkY/fLVZa1fuy/Q1jYacgrWcNasef7qFuo5qJ78AH4UGhWvB2C+0/5/gTMvXbFRFQ9/srTLVSiguMkHfv71cKz5Zm/78W6tfUu3G1TKc9+/KXXrliVmSJBdXF/V5uYua9Wgg36I+OhOVoDVf/KWvpy9Tampq9jfSQR4f0kxdX2grvwBvhR6M0ILxX2n/phCLZf2Keuvp6T1V8f6yKlGxqH6ev0YLxn9tVqZhh7rqMaa9ipf3l5u7m8KPRunH91dp7ZJN9miOwzw++FE9+Xwb+RX1UeihcC2Y8I0ObD5ssaxfUW8NmdZdle4vq+IV/PXzgrX6cOI3mb52ky4PauJnw7Rp+U79r9cHtmpCtiOrYA1nzSlJaj+slbqOaa9CxXx04sApzR+1WPs3Hsq0fK3GVTV0Vl+VrV5ScRHx+m7WL1r+4R/pzz82uJla9m6ssjVKSZIO7ziuzyZ/o+BtN39H88XROQoo65/htX+Z97vmPPdZNrbOfrK7Hx954kH1nNBJxSsGyNXdVRGHo/TD7OX648u/08vUbFRVXce0V+XAcipU3E+vdp6pTT9vt2k7ba390BbqOupx+RVL++40f/Tnd/3uNGxmn7TvThEJ+u7tX7Xi45vfnVr2aayxnw7LcF67gv107cq1DMd7jOuggVN76Kf3V2rBmC+yp1HZjJyCNZwpp9oPb6WuYzreHE9HLrzLeFpNQ9/ud3M8nfmzln+4xqzMI50fUv//9VCxCkUVeTRaCyd/o3+WbU1/Pm8BT/V/vYcadnpQPv7eOrLruOa9uFAh229ml2d+Tw2e0UsNOj4gr0IFFX0iRkvnrNTyBauzvxNsILv7tUy1kuo3pbsq1S2vgLL+mjdyoZa+95vZa/SY0EmPPPGQSlUpoSuXripoU7A+mfCVToVE2KydttZ+WEt1HdX+ek6d0vxRn2v/P5n3Y81GVTVsVh+VqXa9H9/+VSs+upn3DTs9kJb3FQLk5u6q8CNR+mH2Cq396mbe5y3gqX5TuqlhxwfSPp+7T2j+qEUK2X7Mpm29F2QVrOEsWeWInMrKeOpsOeWIfuzzalf1fbWb2TlnohLUvfgQs2Olq5TQ4Bm9VatJNZlcTAo9EKbXu89WbNjpbGi57Tlijv/4sJZqP7SlipYtIkkKPXBKX079UdtW7bZNI+8ROQVrGDWnHDGeZuV9ffy9NWRGb9VtVUv5ffJr318HNff5TxV+JEqSVLRMEX15fJ7FOr7e7W399cMWa7vEZhzR148Pa6X2w1qZj6+vf2/Y8TUrHDE3TfsdagdVrls+7XeoT7ylTT9vs1kb7xU5ZUxOvXi9X79+d3z+lVdesVNNspdnHneFnIrVL5sOaNaw9nctf+nqNX27frcOnzqtS1evqU7F4nqpVwtdupqkn/52nkVX2emh4qX0xb5d2hMTJTcXF4156BF93r6rWn6zUJeSMv4BRZI8XF115vJFzd25RYNq1bVzjY0rXx53BUfH6qfdB/RBt7t/HuuWKq43O7XW9NUb9GfIMRUtWECvtWuuqe1b6tnvfrVDjQHjyKk5dSfufnlUols5eRTNK0mK2xitY+8dUJX/1VXekvkdXDvHatqsqoY/11Lvv7NKB/aHqV2HQE1/q4cG9f1QMTFnM5Sf9/4affLhzYuoXF1d9NFng/XX+oPpx86dvaSvv/hHYSdP69q1ZD3coJLGTmivhPiL2r7NuH9ouRdNWlTTsFGtNeet33RgT5jaPRGoae8+pcHd5yk2OmM/StJLbzwpX7/8emfqr4o4dUY+vvnl6npzcnLu7CV9s/BvnTwRp6RryXrokUoa83JHJcRf1I4td75gC3B2zphVTZ58WMNm9dEHLyzUgU0haje4mab+PE5D6oxTbFhchvJFyxbR1GVjtfKzP/XmgHmq3qCynn1vgBJPn9XGZWm/RHm9+7tyy3NzeuzlV0Dzt03X3z/d/GVW9zHt1W5wc80avEChB0+pUmB5jf7oaV1IvKhlc3+3fcPtoEmXBzXszV76YOTnOrAlRO0GPqqpP43WkHoTFXvqTIby7h7uSjh9Tktm/qonnm1t8TXPxV/QNzN/VVhIhJKuJuuhx2pr9ILBSog9qx1rc+bFVo07P6Ch03tq7ugvdGDLEbUd0FRTfxippx+anEk/uinx9Dl9M2u5nhjR8o6v7V+qkAa/3k377rDgEMhJnDGnJKlJt/oaPruf5jz7qQ78E6x2T7fQGysmalCNURazKqBsEU1dPkErP1mnN/t+oOoN79NzHwxSQuxZbbyeRbWbVNefSzYpaHOwrl6+pm5jO2jGqpc0uOZoxUWkbdbw7EOT5HLL99yyNUrrrdWTtcGAf5jKClv049kz5/X19KUKOxSha1eT9HC7QI35dLgSYs5q++o9kiTP/B46tidUqxet16s/jLZrm22hSdeHNeztvprz3Gc6sDlE7QY317Rfx2tw7bGZ9uO0X8bpt0//1Iz+c1W9fmU9N2dg2nenpTf/AHUh8aIG1jDvH0sL1yvXLa+2g5rp6N7Q7G8c4GDOklNNujXQ8NkDNGfEx2nj6dCWeuO3lzSo+kiLC8YCyvpr6oqJWvnJWr3Z5/208XTukOvj6b+SpKoPV9bkJSO16JUl+mfpVjV84kFN/nakRjZ6WYe2HpEkjfp4uMrWKKU3+85RXES8mvdupLfWvKJB1UcqLiLte/Hw2f1Uu2kNzejzvqJPxKpuq9p6fu5gxUWc0eZfjH3hkC361SOfhyKPx+ivHzZr2Dv9Lb5vrcbV9cu83xW87Yhc3Vw1YGpPzfh9sgZXH6nLF6/Yssk20aRrfQ17u5/mPPepDmwKVrshLTRt+QQNrjU685z6dbx++3SdZvT7QNUb3Kfn5gxSYuxZbVyalvfnzlzQN9OX6WRweNo8tF2gxnwyTAkxidqxZq8kaeSHQ1W2ekm91X+u4iLj1fypRnpz1WQNrnXzuxWQEzhDVjkqp7IynjpTTjmqHyXp+P6TGt/y9fSfU5JTzN6rWPmimv3361r52Totfu1bXUi8qNJVS+ra5as26o3s5ag5/ulTcfp00tcKPxItSWrVt7GmLB2r4XXHKzTolP06ALAhI+aUo8bTrLzvlKXjlHQtSa90eksXz15Sl1GP6801r6RnV2xYnLoVM794qN3TLdRtbEdtXbnbth1nBUf19elTcfp04lfpi/5b9WuqKcvGa3jgWKccXx01N/XM76Fje0O1etGfevXHsbZsInIwLikwoE0HTmjez5u0bteRuxeWFBwWq9+3BetYZJwi487qt38PaXPQCdWpWMLGNTWufst/1A/BB3Q4Pk4H42I1dt0qlSzopZpFimZ6zqlzZzVl45/6KThI5646x0TJHv46ckLv/rlJaw5l7fNYu2QxhSec1Rdbd+tUwlntCIvQtzv2qUaxzPveGaSkmuz2AJyZT53C8q5dSJ4B+eQZkE8lniwnF09XXThqeVFxbtKl20NatWK3Vq7YrZOhcZo/Z41iYs+qfadAi+UvXLii+DMX0h+V7yumAgXzatVve9LL7Nl9Uv/8HayToXGKjEjQ0h+26dixGNWoVcpezbK7Lk/V16pfdmnVz7sUduK0FsxerdjoRLXvUs9i+XoPV1CtwDKaPPJr7dp2XNGRiQoOilDQvpsTz707Q/XP+mCFnTityPB4Lft2q44diVaN2s7Tj/bMKbIKjtb5+cf0+6L1WrVwvcKCI7Rg7JeKPRWnx59uYbH844ObKyYsTgvGfqmw4AitWrheqxdvUJcX26WXORd/QfHRiemPwOY1dfniVf3147/pZao+VEmbl+/Q1lW7FR16WhuXbtXOP/apUt3yNm+zvXR+to1+//wvrVq8QWHBkVow/mvFhp/R44ObWywfffK0Foz7Sn98848unL1osczevw9p0687FBYcqcjjMVo2b42O7Q9T9QaVbdkUh+o8orV+/+Jvrfr8b4WFROrDid+k9eOgRy2Wjz4ZpwUTvtHaJZt0MfFSpq/r4mLS+I+f1pfTf1bUiVhbVd9myCnkJl1ebKdVn63Tyk/X6eShcM0ftVixYXFqP6yVxfKPD22p2JNxmj9qsU4eCtfKT9fp94V/quuom5sIzOgzR78uWK2je0IVFhyh2U9/KJOLSXWa10wvk3j6nFmePdwuUOFHorR3Q5DN22wLtujHvRuC9M+ybTp5KFyRx6K1dM5KHdt7UtUb3pdeZtuq3Vr0yrfpC+CcXZcX2mrVwuvfnQ5FaMGYLxR7Kk7th1r+7tTu6evfncZ8obBDad+dfl+0Xk+OfNysXGpqqtnnLT46McNreeb30ITPR2j28E90Pv6CTdqXXZhTISfrMvJx8/F05CLFhp1W++GZjKfDWir25GnNH7nolvF0nbqO7pBepvML7bRjzV4tmbFMYcERWjJjmXat3a/OL6TNs/J45lGjLg/p4/Ffat/fBxVxNEpfTPleUcdjzN636sOVtebz9dq7IUjRobH67eM/dHRPqCrXq5ChXkZji34N2X5UH4/7Quu/3WTxgiBJmtR2mlYvXq/QoFM6tjdUswbOU9EyRZx2btrlxXZatfBPrfrsz7ScGv15Wt4PtXxhb7unWyrmZJwWjP48Lac++1O/L/pTT466mVN7/wrSPz9vU9ihCEUei9ayOSt1bN9J1WhYRZKUx9NdjTo/qE8mfq19Gw8p4mi0vnj9B0WdiMn0fY2AnEJO5YickrI2njpTTjmqHyUpJSlF8dEJ6Y/E0+Z/Exwwtae2/rZLn4z/Ukd3n1DU8Rht/W2nEmKd42+Hjprjb1m+U1tX7lb44UiFH47Uwpe/1aXzl1X14Uo2b7M1mFMhp3DUeHq39y1RqZiq1a+s95/5WCHbj+pUSITmPPOJ8hbw1KM9G0qSUlLMx+P46AQ17PSg1n+3SZcvXLZhr1nHUX29ZfkObV256+b4Ovmb6+Orc/7dylFz022rdmvRy0uc5neo5JQx5ejF65MmTdLAgQMdXQ27u69UEdUqX1w7QpzvaiBbKZjHQ5KUcMV4YZzT7AqLUIBXATWuWFaSVCh/PrWuVkkbDh93bMUAA8rpOZWakqozW2KUciVZ+St6Obo6DuXm5qLKlYtp+zbzsXDHtmOqVqNkll7jsXb3a+eO44rJZHdxSaoTWFYlS/lp756T91Rfo3Jzc1GlKsW081/z3dB3/HtM1TJZsF+/cWWFHIxQ1z4N9fXyF/XZDyM05PmWyuOR+Q2I7n+gnEqVKaR9u3JmPwL/hdGyys3dVZUCy2nHH+Z3mNrxxz5Vy+SX9lUfrpSh/PY1e1W5bjm5urlaPKd1/6ba8P1mXbll17r9m4J1/6PVVaJigCSpfM3Sqt7gPqe+jeCt3NxdValO2Qy7oe9Yu1/VHq6Ybe9zf9NqKlWpmPZvzJk7h7u5u6rS/WW0c90Bs+M71x1Q1QfvrR+fGt9BCafP6fcv/r57YSCXMFpOSWnjQOW65dN39bxhx5o9ql7f8h9Aqj5cWTvW7DE7tn31HlWuVz7TrPLI5yE3dzedO3M+03o07/WIfl/4p8Xnjc5e/VinWQ2VvK+Y9v190OLzzu7Gd6edf9zej/tULZM/yFV7qJJ2rLntu5aF7055C3jqi8Pv6atjc/S/pWNU4f4yGV7rufcHaOtvu7RrXc682wpwN0bIKTd3t7TxdLX5+LhjzV5Vr3+fxXPSxlPzcWP77+bjabX6lsbc3arWIO01Xd1c5OrmmmFH1SuXrqYvIJakA/8cUv329VSouJ8kqXbT6ipZuZi2/27+2kZjq361Rn7vfJKU6XcCI0vPqdvz/o+9qpZJ3ld7uJJ23J5rq/eqct3M+/H+R2uoVOWbee/q5ipXN1ddvWy+COPKpauqfsvnE8gNHJ1VjsopSyyNp86SU47ux+KVArTk1If6/OhcTfr6RQWU809/zmQy6aF2gTp1OELTV76k76I+0fub31CDjg9Y3V57Msoc38XFpKbdG8gzv4eCNodY0RLAOdk7pxw1nmblfd093CXJ7DtsSkqKrl1NUo2GVS3WrVJgeVWsU06rPl17x3Y7gqOz6wYXFxenHl+NNDcFrJH5qp0cIDw8XGFhYY6uht2snDFYvgXyytXVRR/+ukXL/uGPAjdMbthUWyNOKeRMxtthIHvtOhWpMUtX6d0u7ZTHzVXurq5aG3xUr69yzj+WAraUU3PqUth5Bb++SynXUuTq6aryz1dX3hL5HV0th/L2zidXNxfFx5v/0in+zAX5+RW46/l+hQrowYcq6I3Xl2V4Ln9+Dy358Xm553FVSnKq3p+9Sju358wLhrx8rvdjnPmOffFnLsi3kOXPWEAJX9WoXVpXryZpyrjv5OWTT8+Na6uCXp56Z+qv6eXy5ffQNytGpvfjnLd+086tx2zaHsAZGC2rvAoXlKubqxJizHf2TIhJlG9Rb4vn+Bb1tljezd1N3oUL6kxUgtlz99Urr3I1Smn2sI/Mjn8361fl986nT/bOVEpyilxcXbTo1e+1/rvN994wA/AqdIe+9bfct1mVzyuvvg55V+4ebkpJTtGckZ9r558H7n6iE7rRj/G39WN87Fn5ZfIZzYpqD1VU6z6NNOKR1+6xhkDOYrSckiTvwl5p48Btu1DHRyfKN8DH4jl+Ad7abqF8ZlklSYOnP6XT4We087YLtG5o0OkBFfDJr9WLN1jVDkezZT/m88qrJWEL0nPp/Wc/zbQfnd2N704Z+jEmUb4BmXx3CvBRfIz5H7Bu78ew4AjNGrxAx/eHKV/BvHriuTaavf41Das3URHXb7nctFt9VaxTVs/Wf9k2jQOcgBFyyjt9HEgwOx4fnXCH8dRH2y2Uv3Uc8A3wueMYfen8ZR3YFKxek5/UyYPhio9O1KM9G6rKQxUVfjgq/Zy5zy/UyI+GasmpD5V0LUkpKamaPWSBDvxz6F6bblO26ldrDHu7n/b9fVAnDhjrO1FWeN3I+9vnT9GJ8i3qY/Ec36IWPnsW5vj5vPLqm9D5N+ehz32mnWvT8v7S+cs6sDlEvV7qrJOHwpUQnaBHezRUlQfNP59AbuDorHJUTlliaTx1lpxyZD8e+vew3ur3gU6FRMq3qLd6vdRF7/0zTYNrjNS5M+fl4++tfAXzqvv4Tlr08hJ9MuEr1Wtzv179cYzGNpuivX8Z+05hjp7jl61RSu//M1V5PN116fxlTekySycPht9TmwBnYu+cctR4mpX3DTsUrqgTMRr0xlN6d9hHunzhirqMelyFivnKr5jlurUZ1EyhQacMuSjb0d8BytYorfc3Tbs5vnaeqZMHnW+TYCPNTQFr5OjF64sXL75rmStXrujKlStmx1KSk+Ti6nxdM2jmd8rn4a6a5YvpuSceUVhsgn7fljN3s/sv/teouaoWKqInl37j6KrkChUK+2lym6aa+9cWbTwaqiIF82tci0aa0q65Xvp1jaOrZ7WUnH2jCjhIVnJKspxVyVeT5ZrHmFc9ehTLpyqv11PyxSQlbItV6MfBqjSxdq5fwC5JqanmP5tMJqXeftCC1m1q6fz5y/rn74y5fvHiFQ0d9Iny5s2jOnXLatiIFoqMiNee3Tl31/Dbe8xksnDwOpfrfTzj5aW6eCHt/6MP312tl2d01QczV+rqlSRJ0qWLVzS894fyzJtHdR4op6EvtlJkeLz27gy1XUOyETkFW7F6TpWaLBeT7XLq9rHTZDJlOg6klb/tgMlk8XWktF3Xj+8PU/B28wtYmnR9WM17NtSMfnMVGhSuCrXLaNjM3oqLjNcfX+acnbAt9u2dOjcLLp27rGcavCzP/J6q07Sahk7vqagTsdr7t7H+0JetrMx8S/IW8NS4j4fovecX66wT7qZ4A1kFW7iXOZUjsupO44CluYKl15GkbmM6qGmPhhrTbEqmt219bGAzbV21W3GR8f+x5sZii368dO6yhgWOU94CnqrTrKaGzeqryGMx2rvB2Ism7kXGftGd493iCTf78dDWIzq09Uj60wc2hWje1mnq9EwrzRv1uYqU9NPwt/tqYrvpmX5GjYacgi0YKaf+6++kLM8LbnudDGXMj73Zd47GfPqMloR/pOSkZB3eeVzrvt6oSoHl08t0ev4xVX24sl7uMEPRobGq1bianps7WHGR8dq11vgXFtmkX/+D5z4YpHK1SmtkI+e+UChjv+jOnZKh4zO+zqVzlzW83nh5FvBUnUdraOjMPml5f32R5Fv952r0x0O15OT8tM/nruP6c8k/qnh/uexokk2QVbAFo2SVI3LqVpmNp86WU47ox1vvSnliv3Rwc4gWH/lArfo11Y+zl8vFJe01N/+8XT+9u0KSdHTPCVWvf58eH9rS8IvXb3DUHP9UcISGBY5TAZ/8eqTzQxq7cIRGP/qaIRewk1OwBUfllKNy6U7vm5yUrP89+bZGfzJcS88sUnJSsnb+sU9bf9tpsU55PPOoWc9H9NXUHzKttxE4qq9PBUdoWJ2xKuCTT490eVhjFz2r0U1fdcoF7JLj56bOgJwyJudboZ3Npk+frilTppgdCwhspWL12jioRtaLiDsrSToSESc/r3wa+vjDuX7x+muPNFOLchXUbem3irrgvH/kdyZDH3lQO8Mi9OnmHZKk4JjTunT1mr4e0F3v/rlJsecv3OUVANzOUlZVHxSomoPrOqhGd+bi5iLPonklSfnLFdTF4+cUuzpcpQdYvn1ebpCYeFHJSSkZdln38c2n+Pi7j4ut29XWH6v3KSkpJcNzqalSRHjagpSjR6JVukxh9ezdIEcuXj+bcL0fb9tl3cc3v+LPWO7HM3HndTr2XPrCdUk6eeK0XFxMKuzvpYiwM5Ku9+OptH48djhapcsVVo/+jzjN4nXAkSzlVHnXGqroVivb3+vs6XNKTkrOsAObdxGvDDu13ZC2Y5v5zqI+RbyUdC1JZ+PM5wgeefOoadf6+vx/GX+ZN2T6U/p25q/a8P0WSdKJA2HyL11YPcZ2yBGL18/G3alvz97Ta6empiriWIwk6di+kyp1X3F1H/14jly8frMfb/vMFS5odT8WK1dEAWWKaMq3z6cfM13/w9+KuI81uN4kRR6Ptb7SQC5gKavKqZoqmGpk+3slnj6r5KRk+d22s42Pv5cSoi1n1ZmoRPndtgu2j7/lrHpy1OPqObGTxreaquP7LH/n9y9dWHWa19SUJ9+2viEOZst+TE1NVcTRaEnS0T2hKl21hHpO6JQjF6/f+O6UoV+KeGfYheqG+KiEDN8HfDP5PN6Qmpqq4O3HVKJigKS021L7FvXW3C3T0su4urmqZqMq6vhMK7Ur0FcpKTn4r2HAf2Q5p6qqgqrf82snpo8DPmbHffy97zCeJsgvwDdD+bRx4Jyk62OFhde8dWyJPBat0Y++Ks98HsrnlVdnohL00jcjFXU8bW6QxzOPBk57Sq91npm+4OL4vpOqcH9ZdR3dwZCLAm+wVb/+FyPeH6iH29fT6Cav6nT4mf98vhGcvZH3t+WOj7/3Heb4GT97vkW875j3x67nfY/xHdMXSUYei9aY5v8z+3xO+uoFRZ2Iyb4GAjmIrbLKkTl1Q2bjqTPllBH68YbLF6/o+L6TKlGpWHrdkq4lKfSg+c7JJw+dUo2GVbLSPIdy9Bw/6Vpyep6F7Dim++pV0BPPt9V7wz++h1YBOU925ZSjxtOsvu/hncc0LHCs8nnlk3seNyWePqv3N7+hwzuOZqhX4ycflkc+D635/K+sNN3uHJ1dSdeSFHE07a5L6ePrC2313m13ZTY6I8xNgXvh1JcUvP322woNvbcFRRMnTlRiYqLZo2idFtlUQ8cxyaQ8bsbckddepjRqrjblK+mpn7/TqXOZT6CQvTzd3ZRy26VYydd/NjmiQtkkOdVktwdyjuzIKclyVlXre/+9V9COUiwsus5NkpJSFBISqbr1zHfuqVuvnIL23/nq3dr3l1bJkn5auWJPlt7LZJLc3XPm9YlJSSk6fChSgQ+WNzse+GB5Be21fMu4A3vCVKhIQXnmdU8/VrK0n5KTU3T6DosITSaT3N2d57uUPXOKrMpZbDWnKu9674ssLEm6lrZbX2Bz88WGgc1rKmjLYYvnHNxyWIHNa5odq9uipkJ2HFdyUrLZ8cZPPix3Dzet/eafDK/jkTePUlPM8ywlOSV9EbGzS7qWrMO7Tiiwmfm/XWCz6graciSTs6xjMknuHjk0q64l6/DuUNV5tJrZ8TqPVtfBrdb1Y1hIpIY+/LKeeeS19MeW33Zrz9+H9Mwjryn2lHMsVCGnYA1bzqnKmapmQw0zSrqWrJAdxxTYwvwirsAWtXQgk1v0HtwSkqF83Za1FLL9mFlWdR3dXr0nd9GkttMVsuPY7S+TrnX/pkqISdS/KyzvvOQMbNmPGZgk9zw5OJd2Hs/wXSiwRQ0FbbHcj0H/HlZgi9u+a7WoZfG7060q1C6juOu3Fd61br+erjNOwx+YmP4I3n5U6775R8MfmGjIhevMqWANm+aUsmcxV9K1pLTxtKWl8dTy5kcWx9NWtc3G06DNIaqbYcytraBNGV/z8sUrOhOVoAI++VWvdW1t+mWbJMnN3VXuedwyzLOSk1PSd2k1Klv1a1Y9O2eQHnniIY1rPsWpF1un51SL23KqeU0FZZL3QRbm+IEtaylkx5370WQyyd3DPcNxs89nq1ra/OsOK1piH+QUrGH0rHJ0Tt1pPHWmnHJ0P97KPY+bSlctoTPX7wKWdC1JwduOqlTlEmblSlQqrujQ01lroAMZYY5/K5NJymPQ36syp4I1jJZTjhpP/+v7Xjx7UYmnz6pExQBVrldBm37elqFMm4HNtPmX7Uo8fW+bE9mKkbJLSpsv5MmTcb5gdI6emzoTcsqYnHrx+tixY1WhQgW1bNlS3377ra5evfqfX8PDw0NeXl5mDxdXx37Zy+vhrsoli6hyySKSpBKFvVS5ZBEF+BaUJD3bqaH+1791evluTWurca3yKuXvo1L+PurQoJr6tKqr37bmvF3ssur1xi30ROWqeuGPFbpw9aqK5M2nInnzyeOWf9txDzfS280fMzuvWqEiqlaoiPK5u8svb15VK1REFX0L2bv6hpLP3V1VihZRlaJpn8eSPl6qUrSIinmlfR5HNWuoNzve/Dz+GXJMLatUVM+6tVTSx1uBpYprcuum2hMeqRh2XUcukx05JVnOKtc8xlxUG/79MZ0PTtCV2Mu6FHZe4T8c17mDCfKr7+/oqjncj9/9q8cev19t2tZW6TKFNPzZFvL399avP6ctKBn0dFONn9Q+w3lt2t2vgwfCdcLCjqo9ezVQYL1yKlbMR6VKF1KXbg+qZeua+mP1fpu3x1F+/Hqz2nQMVOv296tU2cIaNrKV/AO8tfyntD8sDXymmca+1jG9/Lrf9+lc4kWNeaWjSpcrrJp1SmvI8y31+6+7dfVKkiSpR7+GCnywvAKK+6hUmULq8tTDatG2ltauMs7OKYCt2GxOlY23t7/dT++vVJsBj6pVvyYqdV9xDX2rt/xLFdKKj9dKkga83l1jPx2WXn75J2tVtHQhPf1mL5W6r7ha9Wui1v2b6sfrt6m9VZv+TbTplx06dybjrqJbftulHuM76cE296tomcJq0KGeOj//mDb9vN1mbbW3nz5YpTb9mqhVn0YqdV8xDZ3xlPxLFtKKT9dJkga81lVjP3ra7JzyNUurfM3SypvfU96FC6p8zdIqXaV4+vPdRz+uwEerK6BsEZWqXEydn22tFk811Lolm+3aNnv6ae7vatO3sVr1fkSlKhfT02/0kH9JP634bL0kacCrXTRmwWCzc8rXLKXyNUvJs4CnvAsXUPmapVT6vrR+vHYlSaEHw80eFxIv6tK5ywo9GK6kazn3l4mALedUtsyqH99doccGNVPrAU1VukoJDXu7r/xLF9byD9dIkgZO66lxi0akl1/+4Rr5lymsobP6qHSVEmo9oKnaDGym79/5Nb1MtzEd1P/17po1eL6iTsTIt6i3fIt6yzO/h9l7m0wmte7fVGs+36CUZOe+iNgW/dhjfCcFtqipgHL+KnVfcXV5sZ1a9mmstV9vTC/jmd9DFWqXUYXaZSRJAWX9VaF2GRUp5Zy/I/zxvd/UZuCjat2viUpVKa5hM3vLv1RhLf8o7bvTwKndNfaz4enlV3y0VkVLF9bQt3qrVJXiat2vidoMaKofZi9PL9N7cmfVbVlLAeX8Vb52GY366GlVqF1GK66/5qXzl3XiwCmzx+ULV3Q27rxOHHDO2y8DljhLTv04e7keG9RcrQc8mjaevtMvbTxdsFqSNPCNpzRu0bPp5ZcvuD6evt3v+nj6aNp4+vYv6WWWvr9CdVvVVvdxHdPurDSuowJb1NRP792cZ9VrVVv1Wt+vgLL+CmxRS7PWvaaw4Aj9vvBPSdLFc5e0Z/0BDXmrj2o1qaaAsv5q1a+pWvZpoo3LtmZb+23FFv3q5u6mCrXLqkLtsnLP46bCJQqpQu2yKl4hIL3Mc3MHq3mvRpre6z1dPHdZvkV95FvUR3k889iv8dnox3dXqM3AZmrdv2laTs26nvcf/SFJGji1h8YufCa9/IqP1qhomcIaOrNPWk71b6o2Ax7VD+/czKke4zoqsPmted9WLXo30tqvb941rW7LWqrXqrYCyhZRYPOamvnHyzoVEqnfF623W9sBe3CGrHJUTt1tPHW2nHJUPz49s49qNU7rnyoPVtTL349WPq+8Wr14fXqZ72f9oibdG+ixwc1VvEKAOo5oo/rt6+qX+b/bvmOygaPm+AOn9lCNR6qoaJkiKlujlAa83l21mlY3m78Czs6IOeWo8fRu7yulbcBUq0k1BZTzV/0O9TRj9cvatGyrdqzZa9aG4hUCVLNxVa38dK1VfWAvjurrgdN63jK+ltaAqT2vj6/OeZdlR81NPfN7ppeRpIBy/qpQu6yKlCpsn4YjRzDmJXn/wSeffKJly5apT58+8vLyUu/evTV48GDVqJH9t/21l2pliurj0V3Tfx7drakk6ZdNB/Ta4tUq7J1fAX4F0583mUx6tlNDlSjsraSUFJ2KTdCcnzbqx7/33v7SuUafGvdLkr7t1MPs+Ji1K/VD8AFJkn++/CpRwMvs+d+690v/71r+AepUuZpOnU3UI1/m3tsu1SheVF/0u/l5nNS6qSTpp90HNPGX1SpSIL+Ked/8PC7dE6T8efKo1wP3a3yrxjp3+Yq2HA/TzLXOGfI3pHBVFKyUE3PqTpLOXtOJjw7pWsJVueZ1U95S+VVxTE151fBzdNUcbv26g/Lyyqfe/R6RX6ECOnE8VpPGL1FMdNrVzn6FCsi/qPltBPPn91CjJlU07/3Vll5Snnnd9fyoNipSpKCuXElS2Mk4zZj6s9avO2jz9jjKhj+C5OWdT70GNZZf4QIKPRqjySO/VkxU2l1W/Aqb9+PlS9c04dkvNWLMY/pg8RCdS7yoDX8EadGCP9PLeObNo+fGPabC/l5p/Rh6Wm++slQb/giye/usRU7hXjhbVm34YYsK+hVQr0lPyC/AR6EHTmlyp5mKOZm2U49fgI/Z4rLoE7Ga3Gmmhr7VW+2HtdSZyHjNH/W5Ni4z34miRMUA1WhYRRPbTbf4vvNGLla/V5/Us+8PkE8RL8VFxuu3T9fpq2k/2a6xdrbhx61pfTuhY1rfBoVrcpd3FBMWJ0nyC/BWkVLmmT5/8+vp/105sJyadW+gqNBY9as+RlLaAsBnZ/dV4RJ+unrpqsJCIvXW4A+14Ufj/ZEvu/z10zZ5+RVQr3Ed5BvgrdCD4Xq567s3+7Got/xLmvfjvI03b2lauU5ZNetWX9Ghp9Wv1ji71t2WyCpYy9lySpI2fLdZXn4F1XtyF/kV89WJ/WF66fEZ6VlVqJiP/G/JqqgTsZr8+AwNe7ufOjzTWnER8Zr34kJt/OnmWNl+eEvl8XDXq9+PNnuvz6d8ry/+90P6z4EtaqpomSJatXC9bRtpB7boR8/8Hnr+g0EqXLKQrly6qrBD4ZrR9wNt+O7mRVWV61XQ2+teTf95+Dtpvy9cvXi9Zg6cb+tmZ7sN329Jy6WXOsuv2PXvTh3eMvvudHs/vtThLQ2b1Ufth7fUmYh4zRu5WBuX3vzuVMA7n16cN0i+AT66mHhRR3aHanSz1xW8PeNtqp0FOQVrOUNObfhuk7wKFVDvl5+8OZ62e+PmeBrgK//SN/+4HHUiRpPbTdewd24ZT1/4TBt/+je9TNDmEE3r+a76v95D/f7XQ5FHozStx2wduuVuQ/m882nQG0+pcMlCOnfmvDb+9K8+e+kbs53cpvV8V4PeeEoTv3xBBf0KKDo0Vgsnf2O2QMOobNGvhYr7asGumek/dxvTQd3GdNCe9Qc0ptlrkqQOw9M2E3p7/c05hCTNHDDXbKGgs9jw/WZ5FSqgXi91uZ5TYZrc/mbe+xXzlX+pW/sxVi+1f1PD3u6r9sNbXc+pRdq41Dzvn5sz8GbeB0fozX5zteH7m3mf3zufBk7tqcIl/dI+n0u3auHLSwy90yBZBWsZPasclVNZGU+dKacc1Y+FSxTSpK9fkFdhLyXGntXBLSF6vv5L6e8rSf8s26r3hn+knhOe0Ij3BupUcISmPDlLB/5xjs0YHTXH9ynqrfGLR8ivmK8uJF7U8b0nNantG9r5hzE3XiKnYC2j5ZSjxtO7va+U9t146Nv95FvUR2ci47Xmiw366vUfM7ShzcBHdTr8jHasztqd3R3FUX3tU9RH4z9/7pbxNVSTHpumnX845zpLR81NK9crr7f/vPk9avg7/SVJqxet18yBc23XYCuRU8ZkSk1NNd49OrPIxcVFUVFR8vf3V0xMjBYtWqSFCxcqJCREdevW1ZAhQ9SjRw8VLFjw7i92i8Chs21U49zlTG3j/oLH2XicNuYOy84m+JWRVp/7wq6e2ViTO3uvzjd2ey/Ylq1ySpJ6bnn67oVwV7Hjyji6CjmCy2UyPzus3vqK1efaM6cksionsVVWtfbsZaMa5zJuTn+9uSGYXJlPZYdViZ/d0/nMqWANW86pWrp2t0GNAeuQVdlj9dWvrT6XORWsYdOccul690KAnZBT2WP1tSX3dD5zKliDrEKuYXJxdA1yhDXJ31p9LnMqWIOcAvBfrEn53upzySljyjHf4Pz9/TVu3DgdPHhQ69evV7Vq1TRy5EgVK1bM0VUDkAOkpLrY7YGciZwCYEv2zCmyKuciqwDYEjmFe0VOAbAl5lS4V+QUAFsjp3CvyCoAtsScCveKnAJgS+SUMTl1T5lMlrfzb9SokRYtWqSIiAjNns0u6gAAxyCnAABGR1YBAIyMnAIAGBk5BQAwOrIKAGBk5BQA5G5OfQ/y1NTUOz7v5eWlIUOG2Kk2AHKyZFn+0gzcCTkFwF7IKViLrAJgL2QVrEFOAbAXcgrWIKcA2BNZBWuQVQDshZyCNcgpAPZCThmTUy9eT0lJcXQVAADIFDkFADA6sgoAYGTkFADAyMgpAIDRkVUAACMjpwAgd3PqxesAYC8pqVyBBQAwLnIKAGB0ZBUAwMjIKQCA0ZFVAAAjI6cAAEZGThmTi6MrcC9SU1M1Z84c9evXT999950k6YsvvlC1atVUpUoVTZo0SUlJSQ6uJQAgtyKnAABGR1YBAIyMnAIAGBk5BQAwOrIKAGBk5BQA5G5OvfP61KlTNXPmTLVq1UovvPCCjh8/rpkzZ2rkyJFycXHR7Nmz5e7urilTpji6qgCAXIicAgAYHVkFADAycgoAYGTkFADA6MgqAICRkVMAkLs59eL1RYsWadGiRercubP27NmjunXravHixerVq5ckqUqVKho3bhwhBuCepaQ69Y0q4CDkFAB7IadgLbIKgL2QVbAGOQXAXsgpWIOcAmBPZBWsQVYBsBdyCtYgpwDYCzllTE79rxIZGal69epJkmrXri0XFxfdf//96c8HBgYqIiLCQbUDAOR25BQAwOjIKgCAkZFTAAAjI6cAAEZHVgEAjIycAoDczakXrwcEBCgoKEiSdPjwYSUnJ6f/LEkHDhyQv7+/o6oHIAdJkcluD+Qc5BQAe7FnTpFVOQtZBcBeyClYg5wCYC/MqWANcgqAPZFTsAZZBcBemFPBGuQUAHshp4zJzdEVuBdPPfWU+vbtq44dO2rt2rUaP368xowZo7i4OJlMJk2bNk1PPvmko6sJAMilyCkAgNGRVQAAIyOnAABGRk4BAIyOrAIAGBk5BQC5m1MvXp8yZYry5s2rLVu2aOjQoRo/frxq1aqlcePG6eLFi2rfvr1ef/11R1cTQA6QnMpVUfjvyCkA9kJOwVpkFQB7IatgDXIKgL2QU7AGOQXAnsgqWIOsAmAv5BSsQU4BsBdyypicevG6q6urXnrpJbNjPXr0UI8ePRxUIwAAbiKnAABGR1YBAIyMnAIAGBk5BQAwOrIKAGBk5BQA5G5OvXgdAOwlJdXF0VUAACBT5BQAwOjIKgCAkZFTAACjI6sAAEZGTgEAjIycMib+VQAAAAAAAAAAAAAAAAAAAAAANsfO6wCQBSmpJkdXAQCATJFTAACjI6sAAEZGTgEAjI6sAgAYGTkFADAycsqY2HkdAAAAAAAAAAAAAAAAAAAAAGBz7LwOAFmQIq7AAgAYFzkFADA6sgoAYGTkFADA6MgqAICRkVMAACMjp4yJndcBAAAAAAAAAAAAAAAAAAAAADbH4nUAyIKUVJPdHv/F/PnzVatWLXl5ecnLy0v169fXypUr73jOhg0bVLduXXl6eqp8+fJasGDBvXQNAMAA7JlTZBUAwBrkFADAyJhTAQCMjpwCABiZUedU5BQAQDJuTkm5O6tYvA4ATqxkyZKaMWOGtm/fru3bt6tZs2bq2LGjDhw4YLH88ePH1bZtWzVq1Ei7du3SpEmT9Pzzz+vHH3+0c80BALkFWQUAMDJyCgBgdGQVAMDIyCkAgJGRUwAAo8vNWeXm6AoAAKzXvn17s5+nTZum+fPna8uWLapevXqG8gsWLFDp0qX17rvvSpKqVq2q7du3a9asWerSpYs9qgwAyGXIKgCAkZFTAACjI6sAAEZGTgEAjIycAgAYXW7OKnZeB4AsSEl1sdvDWsnJyVqyZIkuXLig+vXrWyyzefNmtWrVyuxY69attX37dl27ds3q9wYAOJY9c4qsAgBYg5wCABgZcyoAgNGRUwAAI3OGORU5BQC5lzPklJT7soqd1wHAYK5cuaIrV66YHfPw8JCHh4fF8vv27VP9+vV1+fJlFShQQEuXLlW1atUslo2KilLRokXNjhUtWlRJSUk6ffq0ihUrlj2NAADkaGQVAMDIyCkAgNGRVQAAIyOnAABG91+yipwCANgbc6qsYed1AMiClFST3R7Tp0+Xt7e32WP69OmZ1u2+++7T7t27tWXLFg0fPlz9+vVTUFBQpuVNJpPZz6mpqRaPAwCchz1ziqwCAFiDnAIAGBlzKgCA0ZFTAAAjM/KcipwCABg5p6Tcm1XsvA4ABjNx4kSNGjXK7FhmV15JUp48eVSxYkVJUr169bRt2za99957+vDDDzOUDQgIUFRUlNmxmJgYubm5qVChQtlQewBAbkBWAQCMjJwCABgdWQUAMDJyCgBgdP8lq8gpAIC9MafKGhavA0AWpMh+Vybd6TYhWZGamprh1iM31K9fX7/++qvZsdWrV6tevXpyd3e3+j0BAI5lz5ySyCoAwH/HnAoAYGTMqQAARsecCgBgZM40pyKnACD3caacknJPVrk4ugIAAOtNmjRJf//9t06cOKF9+/bppZde0vr169WrVy9JaVdy9e3bN738sGHDFBoaqlGjRungwYP67LPP9Omnn2rMmDGOagIAIIcjqwAARkZOAQCMjqwCABgZOQUAMDJyCgBgdLk5q9h5HQCyICXVvldgZVV0dLT69OmjyMhIeXt7q1atWlq1apVatmwpSYqMjNTJkyfTy5crV06//fabRo4cqblz56p48eJ6//331aVLF0c1AQCQDYyaUxJZBQBIY9SsIqcAAJJxc0oiqwAAaYyaVeQUAEAipwAAxmbUnJJyd1aZUlNTUx1dCaMJHDrb0VXIEc7UTnZ0FXIMj9Oujq5CjhD8ykirz33inxHZWJM7W9pwrt3eC86r55anHV2FHCF2XBlHVyFHcLlM5meH1Vtfsfpce+aURFbh7lp79nJ0FXIGN643zw4mV+ZT2WFV4mf3dD5zKhhNS9fujq4CkI6syh6rr35t9bnMqWA0LV26OroKQDpyKnusvrbkns5nTgWjIatgKCYXR9cgR1iT/K3V5zKngtGQU0DOsyble6vPJaeMib+EA0AWGPkKLAAAyCkAgNGRVQAAIyOnAABGR1YBAIyMnAIAGBk5ZUxcfggAAAAAAAAAAAAAAAAAAAAAsDl2XgeALOAKLACAkZFTAACjI6sAAEZGTgEAjI6sAgAYGTkFADAycsqY2HkdAAAAAAAAAAAAAAAAAAAAAGBzLF4HAAAAAAAAAAAAAAAAAAAAANicm6MrYET+m+McXYUcIV+sj6OrkGO4n7/q6Crketw+BEZzpvllR1chR3DLG+roKuQIJldXR1ch1yOnYDQp15IcXYUcwZSc7Ogq5AipJq7bNwKyCoaTmuLoGgA3MUY6HDkFAJlLTUl1dBUgsgoA7og5vsORUwAAIyOnjIm/4AIAAAAAAAAAAAAAAAAAAAAAbI6d1wEgC1LEFVgAAOMipwAARkdWAQCMjJwCABgdWQUAMDJyCgBgZOSUMbHzOgAAAAAAAAAAAAAAAAAAAADA5th5HQCyICWVK7AAAMZFTgEAjI6sAgAYGTkFADA6sgoAYGTkFADAyMgpY2LndQAAAAAAAAAAAAAAAAAAAACAzbHzOgBkAVdgAQCMjJwCABgdWQUAMDJyCgBgdGQVAMDIyCkAgJGRU8bEzusAAAAAAAAAAAAAAAAAAAAAAJtj53UAyAKuwAIAGBk5BQAwOrIKAGBk5BQAwOjIKgCAkZFTAAAjI6eMiZ3XAQAAAAAAAAAAAAAAAAAAAAA2x87rAJAFXIEFADAycgoAYHRkFQDAyMgpAIDRkVUAACMjpwAARkZOGRM7rwMAAAAAAAAAAAAAAAAAAAAAbI6d1wEgC1K5AgsAYGDkFADA6MgqAICRkVMAAKMjqwAARkZOAQCMjJwyJnZeBwAAAAAAAAAAAAAAAAAAAADYHIvXAQAAAAAAAAAAAAAAAAAAAAA25+boCgCAM0gRtw8BABgXOQUAMDqyCgBgZOQUAMDoyCoAgJGRUwAAIyOnjImd1wEAAAAAAAAAAAAAAAAAAAAANsfO6wCQBSmpXIEFADAucgoAYHRkFQDAyMgpAIDRkVUAACMjpwAARkZOGRM7rwMAAAAAAAAAAAAAAAAAAAAAbI6d1wEgC1K5AgsAYGDkFADA6MgqAICRkVMAAKMjqwAARkZOAQCMjJwyJnZeBwAAAAAAAAAAAAAAAAAAAADYHDuvA0AWpHAFFgDAwMgpAIDRkVUAACMjpwAARkdWAQCMjJwCABgZOWVM7LwOAAAAAAAAAAAAAAAAAAAAALA5dl4HgCxI5QosAICBkVMAAKMjqwAARkZOAQCMjqwCABgZOQUAMDJyypjYeR0AAAAAAAAAAAAAAAAAAAAAYHPsvA4AWZDCFVgAAAMjpwAARkdWAQCMjJwCABgdWQUAMDJyCgBgZOSUMbHzOgAAAAAAAAAAAAAAAAAAAADA5px+8fq2bdvUq1cvlStXTnnz5lW+fPlUrlw59erVS9u3b3d09QDkEKmp9nsgZyGnANiDPXOKrMp5yCoA9kBOwVrkFAB7YE4Fa5FTAOyFnIK1yCoA9sCcCtYipwDYAzllTG6OrsC9WLZsmbp166bmzZvrhRdeUNGiRZWamqqYmBitXr1aDRs21HfffaeOHTs6uqoAgFyInAIAGB1ZBQAwMnIKAGBk5BQAwOjIKgCAkZFTAJC7mVJTnXetf40aNdS7d29NmDDB4vNvvvmmPv/8cx04cOA/vW6bWpOzo3q53vmKPo6uQo7hfj7Z0VXIEf5cPd7qcx9YOSkba3Jn2x57w27vBduyVU5JUuv8fe+1epBkyuvp6CrkCCZXV0dXIUdYGT3f6nPtmVMSWZWT2CqrWrp2z47q5XomF5Ojq5AzmJz+pnOGsPrq1/d0PnMqWMOWc6qWLl3vtXpAtmFOlT1WX1ti9bnMqWANcgq5BnOqbLEm+dt7Op85FaxBVgH4L9akfG/1ucypYA1yCsB/QU7lPE7924YjR46oc+fOmT7fqVMnHT161I41ApBTpchktwdyDnIKgL3YM6fIqpyFrAJgL+QUrEFOAbAX5lSwBjkFwJ7IKViDrAJgL8ypYA1yCoC9kFPG5NSL1ytUqKBly5Zl+vzPP/+s8uXL269CAADcgpwCABgdWQUAMDJyCgBgZOQUAMDoyCoAgJGRUwCQu7k5ugL34n//+5969OihDRs2qFWrVipatKhMJpOioqK0Zs0arV69WkuWWH+rUAC4ITWVq6Lw35FTAOyFnIK1yCoA9kJWwRrkFAB7IadgDXIKgD2RVbAGWQXAXsgpWIOcAmAv5JQxOfXi9S5duuivv/7Se++9p3feeUdRUVGSpICAANWvX18bNmxQ/fr1HVzLrHm8+4N6sn8j+RUuoNCjMVrw1m86sDPUYtla9crprc8GZTg+uMO7OnXitCSpTZd6atH+fpWpWFSSdCQoQgvfX62Q/eG2a4QTqV2tpJ7q+IDuq1BUhf0KaOKMZfp76xFHV8swOravo+5dH1QhvwI6EXpaH8xfq337T2VavkWzaurR9SGVKOGrCxeuaOv241rw0TqdPXc5Q9lHm1bVK5M6aOOmEL382lJbNgNwuByVU0Oaq+uLbeUX4K3Qg+FaMO4r7d8UYrGsX4C3np7+lCreX1YlKhbVz/PXaMG4r8zKlKlaQn0nd1bFOmUVUKaIFoz7Skvn/m6PphjO4wOa6MlnW8uvqLdCgyO04KVvdWCL5Uxq2K6O2g1oovI1Ssndw00nD0Xoy7d+1Y4/g+xca8dq17+xnhzRUn7+3goNjtSHL3+vA/9a7rMGbe9Xu/6NVaF6Sbl7uCk0OFJfzlyunesPmpXp/kIbFS9XRG7urgo/FqOf5v+hdT9stVeTAIdx1qxqP6yVuo5pr0LFfHTiwCnNH7VY+zceyrR8rcZVNXRWX5WtXlJxEfH6btYvWv7hH+nPPza4mVr2bqyyNUpJkg7vOK7PJn+j4G03b0fZ55Un1ffVrmaveyYqQd1LDM3m1tlP+2Et1XVUe/kV81Fo0CnNH/W59v+TeT/WbFRVw2b1UZlq1/vx7V+14qOb/diw0wPqOaGTilcISBtPj0Tph9krtParvy2+Xo9xHTVwWk/99P5vWjD682xvn720H9pCXUc9fr0fwzV/9Ofa/09wpuVrNqqiYTP7qEy1EoqLSEjrx4/Xpj/fsk9jjf10WIbz2hXsp2tXrkmSXFxd1PeVLmrWo6F8A3x0JjJBq7/YoK/fWKbU1NTsbyTgIM6SU+2Ht1LXMR1v5tLIhXfJpWoa+na/m7k082ct/3CNWZlHOj+k/v/roWIViiryaLQWTv5G/yy7+f00bwFP9X+9hxp2elA+/t46suu45r24UCHb07LL1c1VA6b20IOPBSqgvL8uJl7Uzj/26dOJXykuMt42HXGPjNiPkuSZ31ODZ/RSg44PyKtQQUWfiNHSOSu1fMHq7O8EG3FE5j8+tKUeH9pCRcsUkSSFBp3SV1N/0rbfd9usnYC9OUtOSY4ZY3tM6KRHnnhIpaqU0JVLVxW0KVifTPhKp0IiJJFVN9ytHx8f1krth7VS0bLXx9MDp/Tl699r26rd6WWcPascMce/VY/xnTTojZ766b3fNH/U4uxtHOBgRs0qR4ynd3vfrObSCwueVmDzmipU3E+Xzl++nm9fKiw4Iht7yDqO6Neajaqq65gOqly3vAoV99OrT7ylTT9vS3/eGfPekuzu2zLVSqrflO6qVLe8Asr6a97IhVr63m9mr3G3vgVyAqPmlK391zHFWTlz3rcd0kLNej6iioHllN8rnzr59tOFxIvZ2Dv3xlF9e0OPCZ006I1e+um9FZo/clH6cWefm8L+nHrxuiTVr1/f6YOqcesaGjqureZO+1UHdp1U264PaOq8vnq60/uKjUrM9LxB7Wfr4vkr6T8nxl9I/+9a9cpp/cq9Ctp9UlevJKnrgEZ6Y0F/De38vuJiztm0Pc4gr4e7jpyI0Yp1+/XG+I6Oro6hPNqkikYMa65356zW/gPhat/ufr05rav6D/5EMbEZPzs1qpfQhLHtNO/Dddq05YgKFyqgUS+01phRj+mVKeaL04v6e2n4kEe1Z1+YvZqTbVK4AgtWygk51aTLQxr2Vi998OJiHdhyWO0GPaqpS8doSN2Jij0Vl6G8ex53JZw+qyUzf9ETz7ax+JoeefMo8kSs/lq6VUPf7GXrJhhW4071NHRad80d97UO/HtEbfs11tQlz+vphq8pNvxMhvI16lfSzg0HtWjaUp1PvKRWPRvota+e1Yutp+uoE46t1mjcsa6Gvt5VcycsUdDWo2rbt5Fe/2aEhjb6n2LDM/6is2b9Stq14aAWv/GzzideVMueDfTaF89o5GNv6uj1C7POJVzQt++uVNiRaCVdTdKDrWpq1Ht9lXD6nNkidyMjp3AvnC2rmnSrr+Gz+2nOs5/qwD/Bavd0C72xYqIG1Ril2LCMuRRQtoimLp+glZ+s05t9P1D1hvfpuQ8GKSH2rDb+lPZLl9pNquvPJZsUtDlYVy9fU7exHTRj1UsaXHO04iJuji3H94dpfKvX039OSU6xfYNtpEnX+hr2dj/Nee5THdgUrHZDWmja8gkaXGt0pv047dfx+u3TdZrR7wNVb3CfnpszSImxZ7VxaVo/njtzQd9MX6aTweFKupqsh9oFaswnw5QQk6gda/aavV7leuXVdnBzHd1r+aJtZ9Gk68Ma9nZfzXnuMx3YHKJ2g5tr2q/jNbj22Mz78Zdx+u3TPzWj/1xVr19Zz80ZqMTTZ7Vx6c0/Pl1IvKiBNUabnXtj4bokdR/bXu2GtNDMQfMVGnRKleuW1+iPh+pC4iUt+2CV7Rp8D8gqWMvoOdWkWwMNnz1Ac0Z8nJZLQ1vqjd9e0qDqIxUbdjpD+YCy/pq6YqJWfrJWb/Z5Py2X5g65nkv/SpKqPlxZk5eM1KJXluifpVvV8IkHNfnbkRrZ6GUdur75wqiPh6tsjVJ6s+8cxUXEq3nvRnprzSsaVH2k4iLOyCOfhyrWKa8vp/6gY3tCVdA3v4bP7q///TxeIx6cYNc+ygqj9qMkDZ/dT7Wb1tCMPu8r+kSs6raqrefnDlZcxBlt/mW7/TrJSo7K/NOn4vTppG8UcTRaUtrFWa/9NEbPPDBBoUGZb5LhKOQUrGX0nJIcN8bWalxdv8z7XcHbjlxfINBTM36frMHVR+ryxStklbLWj6dPxenTiV8p/EjaQp5W/ZpqyrLxGh44Nn08deascuQcX5Iq16ugtkOa6+ge489NySpYy2hZ5ajx9G7vm9VcOrzjmNZ99bdiTp5WQb8C6vtqN834/WX1KT9CKSmO+12ho/rVM7+Hju0N1epFf+rVH8dmeB9ny3tLbNG3Hvk8FHk8Rn/9sFnD3ulv8X3v1rdGQ07BWkbLKVv7r2OKs3L2vPfIl0fbft+tbb/v1uDpxlrP4qi+vSFtDtVSR/ecyPBeRp6bklPG5OLoCkDq3Lehfl+6Q6t+2qGw47H68K3fFBuVqMe7PXjH8xLOXFB83Pn0R0rKzd3V3pr4vZZ/u1XHgqN06sRpvTdlmUwuJt3/UAVbN8cpbNl1XB9/84/++vewo6tiOF27PKDfVu3Vb6v26mRYnOYuWKuY2HPq0L6OxfLVqpZQVHSiflq2Q1FRidp/IFy/rtit+yoHmJVzcTHppQntteiLjYqMTLBDSwBkl87PtdHvizdo1eINCguO0IJxXyn21Bk9PqSZxfLRJ09rwdiv9MfX/2R69WnIzuP65KUl2vDDv2YLsXKbzsNb6vevNmrVlxsVdjhKH07+TrER8Xp8QBOL5T+c/J1+mPO7QnaFKuJYjBZNW6aIYzF6qHUtO9fccZ4Y1lyrv96k37/6J63PXv5eseHxate/scXyH778vX6Yu0Yhu0MVcTxWi9/4Oa3PWt3ss32bDmvTyj0KOxylyNDT+vnjP3U8KFzVH6por2YB+A+6vNhOqz5bp5WfrtPJQ+GaP2qxYsPi1H5YK4vlHx/aUrEn4zR/1GKdPBSulZ+u0+8L/1TXUe3Ty8zoM0e/Llito3tCFRYcodlPfyiTi0l1mtc0e62UpGTFRyemPxJPO++FwV1ebKdVC//Uqs/+VNihCC0Y/XlaPw5tabF8u6dbKuZknBaM/lxhhyK06rM/9fuiP/XkqMfTy+z9K0j//LxNYYciFHksWsvmrNSxfSdVo2EVs9fyzO+hCYuf0+xhH+n8LRdhO6MuL7TVqoXrtWrh+rR+HPOFYk/Fqf3QFhbLt3u6uWLC4rRgzBdp/bhwvX5ftF5PjnzcrFxqaqrZZy0+2vzC9qoPVdLmX7dr68rdig49rb9/2qodf+xT5brlbNZWAJZ1Gfm4eS6NXKTYsNNqPzyTXBrWUrEnT2v+yEW35NI6dR3dIb1M5xfaaceavVoyY5nCgiO0ZMYy7Vq7X51faCdJyuOZR426PKSPx3+pfX8fVMTRKH0x5XtFHY9Jf9+LZy9qQuvX9df3m3UqJEIH/z2sD57/TJXrVVCRUoVt3zH/kVH7UUr7482az9dr74YgRYfG6reP/9DRPaGqXM85fs/qqMzfsmKntq3arfDDkQo/HKlFr3yrS+cvq+pDlWzeZgDmHDHGStKkttO0evF6hQad0rG9oZo1cJ6KlimiSnXLSyKrpKz145blO7R15a708XTh5G/SxtOHK6eXceascuQc3zO/hyZ+8axmD/1I5+PP27SdAG5y1Hh6t/fNai799vEf2vf3QUWHxurIruNa+PI38i9dOP0OGY7iqH7dtmq3Fr28JP1C19s5W95bYou+Ddl+VB+P+0Lrv92U6d9J79a3AJzTfx1TnJWz5/3S937Tt28u08EtITbqIes5qm+ltJ3VJ375vGY/vcDi3/eceW4Kx8jRi9cnTZqkgQMHOroad+Tm5qpKVYtr5ybzq1R2bj6iqveXvuO5c78boa/Xjtf0jweo1gN3/gO1h6e73NxcdS7x0j3XGTmXm5uLKlcK0Padx82Ob99xXDWqlbB4zoGgcBUpXFAPPZD2C2dfn3xq0ug+bfnX/PaLfXs1VELiRf22aq+llzG81FT7PZB7OEVOubuqUp2y2rF2v9nxHev2qRp/cL4nbu6uqlS7tHb+GWR2fOefQar6YNa+vJtMJuUt4Klz8ca5RZUtubm7qlKt0tq5/rY+23BQ1eqVz9JrpPdZQuaLJe9vdJ9KViyq/Zud5yI3e+YUWZW7GC2r3NxdVblu+Qy7eO9Ys0fV61e2eE7Vhytrx5o9Zse2r96jyvXKy9XN1eI5Hvk85ObupnNnzP94XbxSgJaEzdfnR+Zo0tcvKKCc/z20xnHc3F1VKbCcdt7ej3/sVbVM+rHaw5W044/byq/eq8p1M+/H+x+toVKVi2nf3+Z3sXhuzkBtXblLu9btt3ies0jvx9v7Zc0+VXs4k358qJJ2rNl3W/m9qly3nFk/5i3gqS8Ov6evjs3R/5aOUYX7y5idc2BTsO5/tIZKVEq7aLh8rdKq0eA+bV21OxtaZhvkFGzB0Tnl5u6WlkurzXNmx5q9ql7/PovnpOWS+bix/XfzXKpW31J27Va1Bmmv6ermIlc3V127fNWszJVLVzNcMHSr/N75lJKSogt3+C7sCEbvxwP/HFL99vVUqLifJKl20+oqWbmYtv9u/tpG5OjMv8HFxaSm3erLM7+Hggz4Rz+JORVsw9E5JTlujLUkv3c+Scowz7q9DFmVeT+6uLioafcGaePp5pvjqbNmlaPn+M99MEj//rZLu9bus3ie0ZBTsAV7Z5WjxlNr3le6ey555vNQ6wGPKvJYtMW7RdiLUXIqq4ya95bYqm9zIuZUsAUjzKmyk7V55GxyWt4biaMzP20OtTPTOZSR56bklDG5OboCthQeHq6wsDBHV+OOvHzzydXNVfFx5r8wiY+7IL/CBSyec+b0Ob07ZZmOBIXL3d1NzdrfrxkfD9C4QZ9p/44TFs8Z+GIrxcWc1a4tRy0+D0iSt1c+ubq6KP62RZDx8Rfk65vf4jkHgsI17c3leuWlDsqTx01ubq76Z9NhvT/3j/QyNaqVUNs2tTR4+EKb1h9wNk6RU4UKytXNVQkx5rt9JkSflW8LbwfVKmfwKlQg7TtA7Fmz4/GxZ+Xn75Wl1+gyoqU88+XRXz8b+/a/2cXL70afme90nBB7Tr7+Wfs8dh7eIq3PftlpdjxfQU99uWe63PO4KyU5RXMnfKNdfx3KtroDzspoWeVd2CttHLhtF+r46ET5BvhYPMcvwFvbLZR3c3eTd+GCOhOVkOGcwdOf0unwM9r5x81fvhzaekRv9Z+rUyGR8i3qo16TntB7G1/X4Jqj77j4woi8bvRjjIV+LOpj8Rzfoj4Z+z0mYz/m88qrb0Lny93DTSnJKZrz3GfaecsvsZp2q6+Kdcrp2YdfytY2OYJX4YKWP48xifINsJxLvgE+io8x/yXh7Z/HsOAIzRq8QMf3hylfwbx64rk2mr3+NQ2rN1ERR6IkSd/O/FX5vfPp032zlJKcIhdXFy165Tut/3azbRoLGJSjc8o7fRxIMDseH51wh1zy0XYL5W8dB3wDLIy5t2TdpfOXdWBTsHpNflInD4YrPjpRj/ZsqCoPVVT44SiL7+vu4a7B03tp3dcbdfGcsTa3MHo/zn1+oUZ+NFRLTn2opGtJSklJ1ewhC3TgH+PPFxyZ+ZJUtkYpvff368rj6a5L5y9rypNv6+TB8GxrH2B0js4pyXFjrCXD3u6nfX8f1IkDlvuErLpRJmM/lq1RWu9vmnZzPO08UycPnkp/3lmzypFz/KbdG6hSnXIa8dCke24H4MzsnVWOGk+ted875VL74a005M0+ylvAUycPntL4Vq8r6VrSnZpuU47Oqf/CyHlvia36FkDWGGFOlZ2sGVOcUU7JeyNyZOY37d5AlQLLa8SDEzKtn7POTeE4OXrx+uLFi+9a5sqVK7py5YrZsZSUJLm42LlrbrviwmTK/CqMUydO69SJ0+k/H9wbpiIB3nqyX0OLi9efHPCImj5WS+MGfqprVx03aYLzSL39w2cyZVq2TOlCeu6Z5vr8q03atv24CvkV0NAhTTXqhdaa+c5K5c2bR5MmPK5Z767S2bPGD/rMpKZm3gcw98MPP+jJJ590dDWcQlZySsokq1KT5WKy39X5FocFLhfMHhn61pSlrm3a+QH1HtteU/rMU+Lpc3c/IQdJva3T0r433b3TmjxRT73HttOUfgsy9Nml81c0otkbypvfQ/c3uk9DpjypyNDT2rfJOXZfJ6eyjpz6b6yeU9k4p27/fz5t7Mx8HMiYYyaLryNJ3cZ0UNMeDTWm2RSzW7Zuu2VH6xP7w3Rwc4gWH35frfo20Y/vrrCiFY6XsR9153zP0JEZX+fSucsaXm+8PAt4qs6jNTR0Zh9FHovR3r+CVKRkIQ1/p58mtn0j09vhOiPL35P+6wk3+/HQ1iM6tPXm3dkObArRvK3T1OmZVpo36nNJaRcBNO/5iGb0nasTQadUoXYZDZ/VR3GR8Vrzxd/32iSbIKuyjqzKOqPMqSzlzJ1zKWOOZXidu4zRb/adozGfPqMl4R8pOSlZh3ce17qvN6pSYMY7Erm6ueqlb16UycWkOSM+yVqjHMCo/djp+cdU9eHKernDDEWHxqpW42p6bu5gxUXGO9FOrfbN/BtOBUdoeL3xyu+TX42eeFBjP3tGY5pPMeQCdnIq68iprDNKTkmOGWNv9dwHg1SuVmmNbPSyxefJqlvLZDx2KjhCw+qMVQGffHqky8Mau+hZjW76avoCdmfPKnvP8YuULKRnZvfThDbONTclq7KGnPpvHJVVjhpPs/q+d8ultV9t1M41e+VXzFddR3fQ5G9H6cVHJjt8THF03t+Ns+S9JTbp2xyGnMo6sirrjDSnyk7/dUxxVs6e90Zm774tUrKQnnl3gCa0nnrH7ztGnpuSU1lnz5xyscu7GNj06dPl7e1t9jgWu8lu7382/qKSk5Lle9su6z5++TPsxn4nh/aGqXjpQhmOd+nXUD0GNdGkoYt0/HD0PdcXOVvi2YtKTk6Rn5/5Luu+PvkUH2/59ihP9XhY+w+E69vvt+rY8Vht23Fc785ZrbZtasnPL7+KF/NRsQAfvfG/Lvpj5Vj9sXKsWrWooQYPV9IfK8eqeDEfO7QM2SkpKUkHDhxQSIj5bZ5//vln1a5dW7169XJQzXIui1l1bb9d3vts3Lm0nCpqvnuot7+X4mPOZnIWsuJs3Pm0vr1tl3WfwgUz7MZ+u8ad6unFd/vpjcEfaddflm/LnhOdPZPWZ35FzPvMu3BBJdytzzrW1Yvv9NEbQz7Rbgs7qqempiryRKyOHTilnxas1cblu9T9+TbZWn/YBzllf5Zy6niqbcamxNNn08aB23YP8PH3UsJtOwLccCYqUX637YLt4++lpGtJOnvbnOvJUY+r58ROmthmmo7vO3nHuly+eEXH959UiUoB/70hDnb2Rj/etuOqj793hp1Zb7C0a4NvEe8M/ZiamqqIo9E6tidUP767Qn//9K96jO8oSaoUWE6+RX0099/pWnnpK6289JVqN6mmTs+20cpLX8nFxbl+cXT29Lnrn8fbPl9FvDPsUHFDfFRChp1ufTP5PN6Qmpqq4O3HVKLizc/akOlPacnMX7T+u806sT9Ma7/aqJ/eX6ke4zreW6NgF2SV/VnMKt37bi+J6eOAj9lxH3/vO+RSgvwCfDOUTxsH0i6wjI/KOOb6+JuPLZHHojX60VfVvkBvPVV6mJ57eKLc3N0UdTzG7DxXN1dN/naUAsr5a3yr1w25g5CR+zGPZx4NnPaUFoxerC3Ld+j4vpP6ee4qbfhuk7qO7nCPLbc9R2X+DUnXkhVxNFqHdxzTZ5OX6NjeUD3x3GPZ0jbYDjllf7bKKcmxY+wNI94fqIfb19PYZlN0OvxMhufJqoyveXs/Jl1LUsTRKIXsOKbPJn2tY3tO6IkX2kpy7qxy1By/Ut20uem8bdO16srXWnXla9VuWl2dnmujVVe+drq5aW5DTjlGdmWVo8bT//K+Wcmli2cvKvxIlPb9fVD/6/q2SlUprkeeePBuzbcZR+dUVjhD3ltiq75FzkZW2Z8t51TZyZoxxRnllLw3Ikf1baW65dPmUNvf1KqrS7Tq6pLrc6jHtOrqErm4uDj13DS3MVJO5ajF69euXdOyZcs0c+ZMffnll7pwwfJi21tNnDhRiYmJZo/yRRrYobZpkpKSdfhghOrUr2h2vM7DFXVw950XS9yqQpViOnP6tl/K9H9ETz39qCY/s1iHgyKypb7I2ZKSUhRyOEr1AsuaHa8bWFb7gyzviOTp4a7UFPOrr1Ku/2ySSSfD4jTg6U81ePjC9MemLYe1e0+oBg9fqJi7LDY0itRUk90eRhYUFKTKlSurVq1aqlq1qjp37qzo6Gg1adJE/fr1U8uWLXXkyJG7v1AuZU1OSZlklXsNG9c2TdK1ZB3edUKBzczfL/DRGgr61zl2pDaqpGvJOrznpOo0rWZ2vE7Tqjq49Wim5zXt/IBGz+mvN4d+oq1rjL9zUnZKupasw3tPqk6TqmbHAxtXVdD2Y5me1+SJehr1Xl+99cxn2vZH1i78MJkk9zzOc5Mie+aUkbOKnLp32TWnKmeqetfzrJF0LVkhO44psEUts+OBLWrpwOYQi+cc3BKSoXzdlrUUsv2YkpOS0491Hd1evSd30aS20xWyI/Mx5Qb3PG4qXaWEzkQm/PeGOFjStbSdZQNb1DQ7Hti8poIy6cegLYcV2Py28i1rKWSHeT/ezmQyyd3DXZK0a91+PX3/GA2vNz79Ebz9qNZ984+G1xufPo9wFun9eHu/tKihoC2Z9OO/hxXY4rbvVS1qKWTH8Tv2Y4XaZRR3yy2FPfLlyTgPS06RycCLLMipNGTVvcnOOVU5Vbnn+iRdS0rLpZaWcinY4jkWc6lVbbNcCtocoroZsqu2gjZlfM3LF6/oTFSCCvjkV73WtbXpl23pz934I0yJSgEa3/J1nTuT9Y0y7MnI/ejm7ir3PG5KTUkxK5+cnOIUC9sclfn3UsZRmFOlIafujdFySnL8GPvsnEF65ImHNK75FEWdML/ASiKr/ktW3cpkMilPnrTx1JmzylFz/F1r92tIrTEaFjg+/RG87ajWfb1RwwKNOzclp8ip7ODorHLUeJrV97U2lxz9PddoOXU7Z8l7S2zVtzkRc6o0ZNW9cXRO2Zo1Y4ozyql5bwSO6ttda/dpSM1RGlZnbPojeNsRrftqo4bVGauUlBTDz03JqTRGyymnXrzeoEEDJSQkSJJiY2NVt25dde/eXR9//LGGDBmiatWqKTz8zrcg9fDwkJeXl9nDxcW+C5V++vwftelcV606BapUuSJ6euxj8i/mrRXfp/2RZMDzLTVmWpf08p1611f9R6uqeOlCKlPBXwOeb6lGLWvo12+2pJd5csAj6vtsC73z6k+KDk+Qb6EC8i1UQJ5589i1bUaV19NdFcsWUcWyRSRJxfy9VbFsERUtXNDBNXO873/cprZtauux1jVVulQhPTOsmYr6e+nX5bslSYMHNtbEse3Sy2/ackSNHqmsDo/fr2IB3qpRrYSee6aFDh6KUNyZ87p2LVknTpw2e5w/f0UXL13ViROnlZSUkklNYEQTJkxQuXLl9PPPP6tbt25atmyZGjVqpObNmyssLEyzZs1SqVKlHF1Nw8iOnJIyySo73uLqpzmr1KZ/E7Xq21il7iuuoW8+Jf9ShbTik3WSpAFTumrsx0+bnVO+VmmVr1VaeQt4yrtwQZWvVVqlqxRPf97N3TW9jHseNxUq7qvytUqreHl/u7XLCH6av0Ztej+iVk81VKlKAXp6ajf5l/DTikUbJEkDJj+hMXMHpJdv2vkBjZk7UB+/8r0O7TgmX38v+fp7KV/BvI5qgt0tXbBWrXs1VKue9dP67H9PqkhJX/22+G9JUv+XOmr0nH7p5Zs8UU9j5vTXx6/9qEPbj8u3iJd8i3gpX0HP9DLdnm+tOo2rKKBMYZWsWFRPDG2u5l0f1roft9q9fbg35NR/Z7M5lQ1z6sd3V+ixQc3UekBTla5SQsPe7iv/0oW1/MM1kqSB03pq3KIR6eWXf7hG/mUKa+isPipdpYRaD2iqNgOb6ft3fk0v021MB/V/vbtmDZ6vqBMx8i3qLd+i3vLM75Fe5um3eqtW46oKKFtEVR6sqJe/H6V8Xnm1+vMNNmurLf347gq1GdhMrfs3VakqxTVs1vV+/OgPSdLAqT00duEz6eVXfLRGRcsU1tCZfVSqSnG17t9UbQY8qh/eWZ5epse4jgpsXlMB5fxV6r7i6vJiW7Xo3Uhrv04boy+dv6wTB06ZPS5fuKKzced04sAp+3ZANvnxvd/U5v/s3Xd4U+XDh/E7HVB2KVD2KkMoyBbZU4ZsQZQhggwBQZANsmQjgqCCgD+lDBUQEReooAKK4ouyN8jee2/avH9Ug6EFkjZNzjn5fq6r1yWnZzw5wrn7pCdJ++rUaVs19jy+9QLhOTPy7Qc/AdB+9PP0m9XVsf7SD34ic66MdJ7wQux5bFuVui9V4/PJ987jC0OaUrpWMbLkDSeieG56f/Ay+YrnZuk/+wT4Y+kGWg5sTNmnS5A5d0YqNi5D0571+O2rezetijGpVe4xw5xq8eRvebpDTeq8VD22S2+3jb2ezlgOQPuxreg/u7tj/W9n/NOlSW3/6VL12C5N+tqxzpJ3l1K6dnGe79+YnI9l4/n+jSn11ON88c5SxzplahenTJ0SZMkTTqmnijHx5zc4svs4P0StBCAgMIBhi/pQsEwE4194l4DAANJnDiV95lCCgo33Ik2jnsfrV26wedV2Ok1oQ7GqkWTJE07tttWo1aYqa740x3zBF80HeGlUC4pWLETm3JnIUzQn7UY+T7Gqkfz86RrvPXhxmzrlHjN0Cnx3jX11Wkdqtq7MuNbvcP3KTUeHkoXE/p5KrXLtPLYf05Kilf69nubipdEtKVatiOOaa/ZW+WKOHzs3PeL0dfPaTS6fu8rB7Ue8+fDFTeqU+4zYKl9dTx91XFe6lCVvOC0GNqFAqQgy5cxI4XIFGbKwF7dv3Gbdsg0JOh+e4qvzGpIqhHzF85CveB4g9hzlK56HTDkzAubrfXyS4twGBQc5zltwsiAyZs9AvuJ5yJbv3icvPurcijGpVe4xYqeS2qOuKVZh5t4DpM8cSr7ieRyfiJv38VzkK56HNOlTJ+l5c4Uvzm38c6hbXD5/xTGHMvvc1F8YrVPm+GnwAf744w9u374NwODBgwkMDOTQoUNkyZKFc+fO0ahRI4YNG8ZHH33k45E+3C8/bCNtaEpad65O+kxpOPT3KYZ2m8fpf97BLyxTGsL/89EMQcGBdOpTlwzhabl96w6H9p1m6Ctz+XPNvXchaPjckyRLFsTQt1s5Hevj6T/z8fSfvfGwDK1Qviy8N+p5x597tK8OwLKftzF26ve+GpYhrFy9i7RpU/Bi64qEhaXi4KGzDByyiFOnY98hPUNYasLD0zrW/2HFNlKmTMYzjUrT9eUaXL12k42bDvPBh6t89AgkKa1bt45ly5ZRqlQpKlWqxMKFC+nXrx+dOnXy9dAMySqdWr34/0gTlprWAxsTliWUQzuOMqTpJE4fOQdAWJZQMuXI4LTN9LWjHf9dsFReajxfgZOHztA2sg8AGbKmd1qn+Wv1aP5aPTb/spP+T4/zwqMyhl++/Iu06VPRum990mdOx6Fdxxna8j1OH439COWwzOkIzxHmWL9e2yoEBQfS/a3WdH/r3kf1rJj/O5Nene3t4fvEL1+tJ036VLTqXZ+wzGk5uOsEw1pNu3fOwtMRnv0/56xN5dhz9mZLur/Z0rF8xYK1vN1zLgAhKZPT7c2WZMwayu2bdzjy90ne6hbFL1+t9+6Dk0RTp9xnxlat/mwtacPS8MKQZoRlTc/BbUcY3GA8pw+fBSBD1lDCc97r0smDZxjSYDxdJrWl0St1OHf8Au+/FsWaL+49UdKway2SJQ9m+KI+TseaO2IR80Z+DkDGHBl4/ZMepM2YlktnLrPz//bSo8IQx3HNZvWitaTNkJrWg5sRljWUQ9uPMKThvfMYljU94f/5RcjJg2cY3PBNukx6kYZda3P++AXe7zWbNUvunceQVMl59b32ZMyRgVs3bnNk93HebDuN1YvWev3xecvqRX+QNiw1rQc3/ec8HmVIown3zmOWuH8fBzeaQJeJbWjYtdY/53EOa5bcu+k8dbqUvPZ+B9JnCeX6pev8vekQfWqMYvdf9z6ZZdprc2j7RnNeffclQsPTce74BZZ9+BMfj/7Cew9eEkStco8ZOrX6s99JmyE1Lwx99l6X6o+916Us6QnP9d/r6WmG1B9Hl7f/06Wes1jzxf851tmxdg9jWk6h3agWtB3ZghP7TjKmxWR2rbv3jicp06Wkw9hWZMyRgSvnr7Lmi/9j1uD5jnfLyZQjAxUaPwHAzE0Tncbcp/pwtqzekWTnJCGMeh4BxrScQoexrRj0cU/ShKXm1KEzRA2Zb5pfKvqq+ekzp6P/7G6EZY3t2f6thxlcfxwbfvKvTxAzG3XKPWboFPjuGtuoax0AJq0a4TSet16axvI5q9QqXDuPoZlDGTD3VcKypufapesc2HKI158ew4YftzjWMXOrfDXHF3NSp9xnxFb56nr6qOO60qU7N+/weKXCNO1Zn9TpU3Ph1EW2/rKTnhWHcNHHnzbuq/NasEwEk1bea33Xt9sBsHz2Kt5qP810vY9PUpzbDNnSM2PjW44/P9e3Ec/1bcTmVdvpW+MN4NHnVoxJrXKPETuV1B51TbEKM/ceoEGXWrw4/DnH9yb/Mgq4N5/1JV+dW1eYeW7qL4zWKZvdbjfmZ5+5ICAggJMnTxIeHs5jjz3G22+/Tf36994RetWqVbz00kscOHDArf3WLTbE00P1S1fzh/p6CJYRfNW6Hx/lTSuXD0jwtkW+esNzA3mE7Y29dyx3BQQEcOLECTJnzgxA6tSp2bBhAwULFvTxyIwpqToFUCfVi54cqt+ypQh59ErySLZAY75y3Wy+OzU9wdt6s1Ng3FapU+5LqlbVCnz+0SvJI9kM8DF6lmAz9YfOGcby258manvNqWKpVe5JyjlVrYDmnhyqSKJoTuUZy+8sSPC2mlPFUqfco06J39CcyiNWRC9M1PaaU6lTCaFWiYg7VsQsSvC2mlPFUqvco06JiDvUqcQzWqdM/2yDzRb7y/yLFy+SN29ep+/lzZuXEydO+GJYIiKWZLPZCAi4l46AgACCg4N9OCLjU6dERLxHnUoYtUpExHvUKvepUyIi3qNOuU+dEhHxHnUqYdQqERHvUavcp06JiHiP0ToV5KsDHzlyhIMHD3L9+nUyZcpEkSJFSJ48udv7adeuHcmTJ+fOnTscOnSIyMhIx/dOnDhBaGioB0ctIv7KvJ9R4Vl2u52CBQs6JhBXr16lZMmSTmEDOH/+vC+G51HqlIiYiToVy586BWqViJiLWhXLn1qlTomImahTsdQpdUpEjEut8q9OgVolIuaiTsXyp1apUyJiJupULKN1yqs3rx86dIgZM2Ywf/58jhw5gv0/fyuSJUtG5cqVefnll2nWrFmcExKftm3bOv67cePGXL161en7ixcvpkSJEh4bv4iIv4uKivL1EJKUOiUiYm5W7xSoVSIiZmf1VqlTIiLmpk6pUyIiRmb1ToFaJSJidlZvlTolImJuRuuUzW73zusKevbsSVRUFLVr16ZRo0aULVuW7NmzkyJFCs6fP8+2bdv49ddfmT9/PkFBQURFRfHEE08k6pjXrl0jMDCQkJAQt7arW2xIoo4rsa7mD/X1ECwj+Gq0r4dgCSuXD0jwtoWXjPDgSB5u5zPDvXYsucdMnQKok+rFRB1bYtlSuH/uJS5bYKCvh2AJ352anuBtvdkpUKt8xUytqhX4fKKOK7FsATZfD8EabI9+klwebfntTxO1veZU1memTgHUCmieqGOLeJLmVJ6x/M6CBG+rOZX1qVMiiaA5lUesiF6YqO01p7I+tUpEfG1FzKIEb6s5lfWpUyLia+qU9XjtndeTJUvGvn37yJQpU5zvhYeHU6NGDWrUqMHw4cNZtmwZhw4dSnTEUqVKlajtRUTEf6hTIiJidGqViIgYmTolIiJGpk6JiIjRqVUiImJk6pSIiHia114q/9Zbb8UbsPjUq1ePZ5991qV133vvPdq2bctnn30GwLx584iMjKRQoUK8/vrr3L17N8FjFhH5l91u89qXkQUEBBAYGBjnK3369JQrV44vvvjC10NMMHVKRMzMm50ycqus3ClQq0TE3NSpWFZulTolImamOVUsdSqWOiUiRqROWbtToFaJiLlpThXLyq1Sp0TEzNSpWEbrlNfeeT0pjBo1irfeeovatWvTs2dPDhw4wFtvvUWvXr0ICAhg8uTJBAcHM2KEd9/2X0TEqpYsWRLv8osXL7Ju3TpeeOEF5syZQ/Pm+ggmUKdERLxNnXKfWiUi4l1qlXvUKRER71Kn3KNOiYh4lzrlPrVKRMS71Cr3qFMiIt5ltE755Ob1U6dO0bdvX3766SdOnz6N3W53+n50dLRL+5k9ezazZ8+madOmbN68mdKlSzNnzhxat24NQKFChejfv78iJiKJZn/0Kn6hcePGD/xe27ZtiYyMZOLEiaafbKlTImI26lQsf+kUqFUiYj5qVSx/aZU6JSJmo07FUqdiqVMiYkRqlf90CtQqETEfdSqWv7RKnRIRs1GnYhmtUz65eb1du3YcPnyYoUOHkjVrVmy2hL1V/okTJyhTpgwAxYsXJyAggBIlSji+X6pUKY4fP+6JIYuIGNK4ceP44osv2LVrFylSpKBChQq8+eabPPbYYw/cZtWqVVSvXj3O8p07d1KoUKFEjad27doMGTIkUfswAnVKRMRzjNQqq3QK1CoREU8xUqfAOq1Sp0REPEOdShrqlIiI5xipVVbpFKhVIiKeYqROgXVapU6JiHiOkVrl7U755Ob1NWvW8OuvvzoFJyGyZMnCjh07yJUrF3v37iU6OpodO3ZQpEgRALZv3054eLgHRiwi/s5uT9gP20lt9erVdOvWjSeeeIK7d+8yePBgateuzY4dO0iVKtVDt929ezdp06Z1/DlTpkyJHs+NGzcICQlJ9H58TZ0SEbMxaqfAWK2ySqdArRIR8zFqq4zUKbBOq9QpETEbdco16pQzdUpEvEmtejSrdArUKhExH3XKNVZplTolImZj1E6BsVrl7U755Ob1nDlzxvnIkIRo1aoVL774Io0bN+ann35iwIAB9O3bl3PnzmGz2RgzZgzPPvusB0YsImJM33//vdOfo6KiCA8PZ/369VSpUuWh24aHhxMaGurR8fzvf/+jZMmSHt2nL6hTIiKeY6RWWaVToFaJiHiKkToF1mmVOiUi4hnqVNJQp0REPMdIrbJKp0CtEhHxFCN1CqzTKnVKRMRzjNQqb3fKJzevT5kyhYEDBzJz5kzy5MmT4P2MGDGCFClS8Mcff9C5c2cGDBhAsWLF6N+/P9evX6dhw4aMGjXKcwMXEf+V+J+7XXbr1i1u3brltCx58uQkT578kdteunQJgLCwsEeuW7JkSW7evElkZCRDhgyJ9+NE7te7d+8HHvevv/5i3759/Prrr4/cj9GpUyJiOl7sFBi3Vf7SKVCrRMSENKcC/KdV6pSImI5J5lTqlGeoUyJiSppT+U2nQK0SERPSnArwn1apUyJiOibpFPjXnMpm98RLoVyQPn16bLZ7b79/7do17t69S8qUKQkODnZa9/z5894Y0gPVLTbEp8e3iqv5Q309BMsIvhrt6yFYwsrlAxK8bcHPvfcDcatt0YwYMcJp2fDhw3njjTceup3dbqdx48ZcuHDhoSHZvXs3v/zyC6VLl+bWrVvMmzePGTNmsGrVqke+YutBkUubNi2FChXilVdeIXfu3A/dh1GZqVMAdVK96OshWIIthfk/ls0IbIGBvh6CJXx3anqCt/Vmp8C4rbJyp8BcraoV+LxPj28VtgDjfoSdqdgCfD0CS1h++9NEba85VSwrt8pMnQKoFdDc10MQcdCcyjOW31mQ4G3NMKdSpxJHnRJJBM2pPGJF9MJEba85lbU7BWqViPjeiphFCd5Wc6pYVm6VOiUivmb1ToH/zam8dvP6nDlzXF63bdu2STiSR9PN656hm9c9Rzeve4ZZbl7f2rB/gl591a1bN5YuXcqaNWvIkSOHW8ds2LAhNpuNr7/+2u3xWoWZOgW6ed1TdPO6Z+hGC88w083rapVvmKlVunndM3TzuofoRguPMNPN6+qUb5ipU6BfYImxaE7lGWa6eT0hrVKnEkedEkkEzak8wkw3r2tO5RtqlYj4mpluCtScyvvUKRHxNat3CvyvVUHeOpARwiQiklB2u/duHHL1Y0L+69VXX+Xrr7/ml19+cTteAOXKlePjjz92e7v72e12zpw5Q3h4eKL35W3qlIiYmTc7BeZtlZk7BWqViJib5lSuMXOr1CkRMTOjz6nUqcRTp0TE7DSnejQzdwrUKhExN82pXGPmVqlTImJmRu8UGKNV3u6UV18qX6lSJYYNG8bKlSu5efOmNw8tImJJdrud7t2788UXX/Dzzz+TN2/eBO1n48aNZM2a9ZHrpUyZkjNnzjj+XLduXU6cOOH48+nTp13aj1GpUyIinufNVlm9U6BWiYh4muZUnqVOiYh4ljrlWeqUiIjn6bk/z1KrREQ8S3Mqz1KnREQ8z5/nVF5753WAxx57jE8//ZTRo0eTPHlynnzySWrUqEH16tUpV64cwcHB3hyOiIjL7HZfjyB+3bp149NPP+Wrr74iTZo0nDx5EoB06dKRIkUKAAYNGsSxY8eYO3cuAFOmTCFPnjwUKVKE27dv8/HHH7N48WIWL178yOPdvHkT+39Oxm+//caNGzec1rEb9WS5QJ0SEbMy8qXXm62yeqdArRIR8zLq5VdzKs9Sp0TErIx66VWnPEudEhEzM+rlV8/9eZZaJSJmZdTLr+ZUnqVOiYhZGfnS689zqgTdvH7x4kXWrVvH6dOniYmJcfreiy+++MDtPvroIwCOHj3Kzz//zOrVq5kzZw5vvPEGKVKkoEKFCtSoUYNBgwYlZFgiIn5n+vTpAFSrVs1peVRUFO3atQPgxIkTHD582PG927dv07dvX44dO0aKFCkoUqQIS5cupV69eh4Zk83m3Y9aiY86JSJiHEZrlRE6BWqViIhRGK1TYIxWqVMiIsagTj1YQlqlTomIeJ7RWmXmToFaJSLiaUbrFJi7VeqUiIjnGa1V3uyUze7mrfLffPMNrVu35tq1a6RJk8ZpsDabjfPnz7s9iCNHjjBz5kzee+89rl69SnR0tNv78KS6xYb49PhWcTV/qK+HYBnBV337b8IqVi4fkOBt8y0c48GRPNy+5wd77VjuCggI4OTJk4SHhwOQJk0aNm/eTEREBACnTp0iW7ZsPr2O+0OnAOqkevCTm+I6W4oQXw/BEmyBgb4egiV8d2p6grf1ZqfAuK0yQ6fAP1pVK/B5nx7fKmwBxngS2/RsAb4egSUsv/1porbXnCqWGVrlD50CqBXQ3NdDEHHQnMozlt9ZkOBtNaeKZYZOgedbpU6JPILmVB6xInphorbXnMp/OwVqlYh4x4qYRQneVnOqWP7aKnVKRLxBnUo8o3XK7Xde79OnD+3bt2fs2LGkTJkywQfet28fq1atcnxdvHiR8uXLU7Vq1QTvU0REkpbNZoszcTHKK4P/pU6JiPgvM3QK1CoREX9mhlapUyIi/ssMnQLPtEqdEhExH3/qFKhVIiJm5E+tUqdERMzHaJ1y++b1Y8eO0aNHjwTFKyoqipUrV7Jq1SouXbpExYoVqVq1Kt26daNMmTIEBbk9HBER77Abb0LhC3a7nYIFCzrCdfXqVUqWLElAQIDj+76mTomIX1KnAHN0CtQqEfFTahVgjlapUyLil9QpwBydgoS3Sp0SEVNTqyzfKVCrRMTE1CnA+q1Sp0TEtNQpwHidcrsaderU4a+//nK8Vbw7OnToQK5cuRg8eDDt27cnODjY7X2IiIjvREVF+XoIj6ROiYj4LzN0CtQqERF/ZoZWqVMiIv7LDJ2ChLdKnRIRMTerdwrUKhERs7N6q9QpERFzM1qn3L55vX79+vTr148dO3bw+OOPxwlRo0aNHrjttGnTWL16NW+88QYDBw6kUqVKVKtWjapVq1K6dGlDflSKiAiAQV4A63Nt27b19RAeSZ0SEX+kTsUyQ6dArRIR/6RWxTJDq9QpEfFH6lQsM3QKEt4qdUpEzEytsn6nQK0SEfNSp2JZvVXqlIiYlToVy2idstndfK/3f98iPt6d2WxER0e7tJ8dO3awevVqVq1axerVq7l58yYVK1akevXq9O3b150heVzdYkN8enyruJo/1NdDsIzgq679u5KHW7l8QIK3jZg/1oMjebj9LV/32rES6/bt25w+fZqYmBin5bly5fLRiPyjUwB1Ur3o6yFYgi1FiK+HYAm2wEBfD8ESvjs1PcHberNTYJ5WGbFT4B+tqhX4vE+PbxW2AD3R6xG2B/+bE9ctv/1porbXnCp+RmyVP3QKoFZAc18PQcRBcyrPWH5nQYK31ZwqfkbsFHimVeqUiBs0p/KIFdELE7W95lRxWblToFaJiPetiFmU4G01p4qflVulTomIt6lTnufrTrl983pSOH78OO+//z7vvfceV69edXnCllR087pn6OZ1z9HN656RqJvXP/Xik4KtjB+wPXv20KFDB37//Xen5Xa73a0n3szCaJ0C3bzuKbp53TN0o4VnJOrmdS92CozfKn/rFBivVbp53TN087qH6EYLj0j0zeuaUznxt1YZrVOgX2CJsWhO5RmJunldcyon6pTvH586JYaiOZVHJPrmdc2pHPytU6BWiYh3JOqmQM2pnPhbq9QpEfEGdcpzjNKpoMRsfPPmTUJC3L/p69SpU6xatcrxtWfPHpIlS8aTTz5J9erVEzMkERHxgpdeeomgoCC+/fZbsmbNatiPf1KnRET8k1k6BWqViIi/Mkur1CkREf9klk5BwlqlTomImJvVOwVqlYiI2Vm9VeqUiIi5GaVTbt+8Hh0dzdixY5kxYwanTp1iz549REREMHToUPLkyUOHDh0euG23bt1YuXIlu3fvJigoiCeeeIJnn32W6tWrU6FChQRN3ERExPs2bdrE+vXrKVSokK+HEoc6JSIiRu4UqFUiImLsVqlTIiJi5E5BwlulTomIWINVOwVqlYiIVVi1VeqUiIg1GKVTbt+8PmbMGObMmcOECRPo1KmTY/njjz/O5MmTHzrZ2rBhA02aNKF69epUrFiRlClTJmzUIiJeZrcb95WwvhAZGcnZs2d9PYx4qVMi4o/UKWdG7hSoVSLin9QqZ0ZulTolIv5InXJm5E5BwlulTomImalV91i1U6BWiYh5qVPOrNoqdUpEzEqdcmaUTrl98/rcuXP54IMPqFmzJl26dHEsL1asGLt27XrotmvXrnV/hCIiYjhvvvkm/fv3Z+zYsTz++OMEBwc7fT9t2rQ+Gpk6JSIixu4UqFUiImLsVqlTIiJi5E5BwlulTomIWINVOwVqlYiIVVi1VeqUiIg1GKVTbt+8fuzYMfLnzx9neUxMDHfu3Hnotr/88otLx6hSpYq7wxIRSVp2Xw/AWJ566ikAatas6bTcbrdjs9mIjo72xbAAdUpE/JQ65cTInQK1SkT8lFrlxMitUqdExC+pU06M3ClIeKvUKRExNbXKwaqdArVKRExMnXJi1VapUyJiWuqUE6N0yu2b14sUKcKvv/5K7ty5nZYvWrSIkiVLPnTbatWqYbPFvgW/3R7/3wgjRFpERB5u5cqVvh7CA6lTIiJi5E6BWiUiIsZulTolIiJG7hQkvFXqlIiINVi1U6BWiYhYhVVbpU6JiFiDUTrl9s3rw4cPp02bNhw7doyYmBi++OILdu/ezdy5c/n2228fum369OlJkyYN7dq1o02bNmTMmDHBAxcR8Sa73ebrIRhK1apVfT2EB1KnRMQfqVPOjNwpUKtExD+pVc6M3Cp1SkT8kTrlzMidgoS3Sp0SETNTq+6xaqdArRIR81KnnFm1VeqUiJiVOuXMKJ0KcHeDhg0bsnDhQpYtW4bNZmPYsGHs3LmTb775hlq1aj102xMnTvDmm2+ydu1aHn/8cTp06MDvv/9O2rRpSZcuneNLRESM78KFC0ycOJEOHTrQsWNHJk2axPnz5309LHVKREQA43YK1CoREYll1FapUyIiAsbtFCS8VeqUiIh1WLFToFaJiFiJFVulTomIWIcROmWzP+hzPJLYkSNHiIqKYs6cOdy6dYu2bdsyYsQIgoLcfjN4j6tbbIivh2AJV/OH+noIlhF8VR+p4wkrlw9I8LZ55o734Ege7uCLA712rIRavXo1jRo1Il26dJQpUwaA9evXc/HiRb7++mvDvEIrMYzcKYA6qV709RAswZYixNdDsARbYKCvh2AJ352anuBtvdkpMH6r/KFTYOxW1Qp83tdDsARbgN4FwCNsbr9uX+Kx/Panidpecypn/tAqI3cKoFZAc18PQcRBcyrPWH5nQYK31ZzKmTrle+qUGIrmVB6xInphorbXnOoef+gUqFUi4n0rYhYleFvNqZz5Q6vUKRHxNnXKc4zSKZ/dvP6vAwcO0KFDB1avXs2ZM2cICwvz5XAA3bzuKbp53XN087pn6OZ1zylatCgVKlRg+vTpBP7zC9bo6GheeeUVfvvtN7Zt2+bjEXqOETsFunndU3TzumfoRgvP0M3rnuNPnQJjtko3r3uGbl73EN1o4RG6ed2z/KlVRuwU6BdYYiyaU3mGbl73HHXK99QpMRTNqTxCN697jj91CtQqEfEe3RToOf7UKnVKRLxFnfIco3TK7Zc7pU+fHpst7i/QbTYbISEh5M+fn3bt2vHSSy89cB+3bt1i8eLFzJo1i7Vr11K/fn2WLl1qmIBx5KSvR2AJaS5f8/UQRDxINw791759+1i8eLEjYACBgYH07t2buXPn+nBkftIpICB3Dl8PwRKi9+739RAsYd/4sr4egqhTTozcKfCTVtljfD0CS7DrNaweYdP9gAahVv2XkVvlF50SMRh7jE/fX0YAdcqZkTsFiW+VKTqlm4U9Q3NTz9B5NAi16l9W7xSYpFXiEYm5CUvu0U2qRqBO/ZfVW6VOiYj5qFP/ZZROuX3z+rBhwxgzZgxPP/00ZcuWxW638+eff/L999/TrVs3Dhw4QNeuXbl79y6dOnVy2nbdunVERUWxYMEC8ubNS7t27fjss88ULxERkylVqhQ7d+7ksccec1q+c+dOSpQo4ZtB/UOdEhERI3cK1CoRETF2q9QpERExcqcg4a1Sp0RErMGqnQK1SkTEKqzaKnVKRMQajNIpt29eX7NmDaNHj6ZLly5Oy2fOnMny5ctZvHgxxYoV4913340z2SpXrhy5cuWiR48elC5d2rG/+zVq1MjdYYmIJC29ARZbtmxx/HePHj3o2bMnf//9N+XKlQPgjz/+YNq0aYwf792PWrmfOiUifkmdMk2nQK0SET+lVpmmVeqUiPgldco0nYKEt0qdEhFT8/NW+UOnQK0SERPz806Bf7RKnRIR01KnDNkpm91ud+t/TerUqdm0aRP58+d3Wv73339TokQJrl69yr59+yhWrBjXrl1zWicg4NEfc2iz2YiO9u1no9dN39Gnx7cKW7o0vh6CiJPvDk5O8LZ55rzpwZE83MG2A7x2LHcEBARgs9l4VDZ8fR33h04BPB35uq+HYAnRe/f7egiWsG98WV8PwRL29emd4G292SkwZqvM0inwj1bpY1rFSGz/+cg7SbjldxYkanvNqczTKn/oFKhVYjC2R//bkUdbEb0wwdtqTmWeTkHCW2WqTgU+7+shWIM9xtcjEHFYEbMoUdv7+5zKHzoFJmuV5lQekdhrg8TS30fPSMzfR82p/KNV6pSI+JI6lThG7JTb77weFhbGN998Q69evZyWf/PNN46PAbl27Rpp0sS9cTkmRk8SiYhJ6RVYHDhwwNdDcIk6JSJ+SZ0yTadArRIRP6VWmaZV6pSI+CV1yjSdgoS3Sp0SEVPz81b5Q6dArRIRE/PzToF/tEqdEhHTUqcM2Sm3b14fOnQoXbt2ZeXKlZQtWxabzca6detYtmwZM2bMAGDFihVUrVo1zravv/46TZo0oWxZvTuniIjZ5M6d2+1t6tevz4cffkjWrFmTYETxU6dERPyTWToFapWIiL8yS6vUKRER/2SWTkHCW6VOiYiYlz90CtQqEREz84dWqVMiIuZlxE65ffN6p06diIyMZOrUqXzxxRfY7XYKFSrE6tWrqVChAgB9+vSJd9vjx4/ToEEDAgMDadiwIY0bN+app54iefLkiXsUIiJiSL/88gs3btzw6jHVKRERcZUvOgVqlYiIuE5zKhERMTKzzanUKRER/2K2ToFaJSLib8zWKnVKRMS/JHWn3L55HaBixYpUrFjR7e1mz56N3W5nzZo1fPPNN/Tp04djx45Rq1YtGjVqRIMGDciYMWNChiQikrTsNl+PQNygTomI31GnTEetEhG/o1aZijolIn5HnTKdhLRKnRIRU1OrTEVzKhHxO+qU6WhOJSJ+RZ0ypATdvB4dHc2XX37Jzp07sdlsREZG0qhRIwIDAx+5rc1mo3LlylSuXJkJEyawc+dOvvnmG/73v//RuXNnnnzySRo1akTLli3Jnj17QoYnIiJ+Tp0SERGjU6tERMTI1CkRETG6hLZKnRIREW/QnEpERIxOcyoREfE1t29e//vvv6lXrx7Hjh3jsccew263s2fPHnLmzMnSpUvJly+fW/srXLgwhQsXpn///pw5c4avv/6ar7/+GoC+ffu6OzwRkSRht/t6BOIqdUpE/JE6ZS5qlYj4I7XKPNQpEfFH6pS5eLJV6pSImIVaZR6aU4mIP1KnzEVzKhHxN+qUMQW4u0GPHj3Ily8fR44cYcOGDWzcuJHDhw+TN29eevTo8cjtjxw5Eu/ya9eucePGDTp06MBXX32lgImISIKoUyIiYnRqlYiIGJk6JSIiRpeYVqlTIiKS1DSnEhERo9OcSkREjMDtm9dXr17NhAkTCAsLcyzLkCED48ePZ/Xq1Q/d9sMPP2TQoEHxfi86OppGjRoRFRXl7pBERJKe3YtfkijqlIj4JW92Sq1KNLVKRPySOmUa6pSI+CXNqUwloa1Sp0TE1NQp09CcSkT8kuZUpqI5lYj4HXXKkNy+eT158uRcuXIlzvKrV6+SLFmyh2773nvv8fLLLwNQv359Lly44Phe2rRpmThxIlOmTHF3SCIiYlCvv/6604THG9QpERFxlS86BWqViIi4TnMqERExMrPNqdQpERH/YrZOgVolIuJvzNYqdUpExL8kdafcvnm9QYMGvPzyy/zf//0fdrsdu93OH3/8QZcuXWjUqNFDt923bx+5c+cG4Ndff+XChQs0btzYEbOIiAj27t2bgIchIpLE7DbvfZnAnDlzWLp0qePP/fv3JzQ0lAoVKnDo0CHH8kGDBhEaGurVsalTIuKXvNkpE7TKyJ0CtUpE/JQ65cTIrVKnRMQvaU7lxMidgoS3Sp0SEVNTpxys2ilQq0TExDSncmLVVqlTImJa6pQTo3TK7ZvX3333XfLly0f58uUJCQkhJCSEihUrkj9/ft55552HbpsrVy62bNni+LPdbufnn392RGzFihXkzZvX3SGJiIiXjR07lhQpUgCwdu1apk6dyoQJE8iYMSO9evXy6djUKRERMXKnQK0SERFjt0qdEhERI3cKEt4qdUpExBqs2ilQq0RErMKqrVKnRESswSidCnJnZbvdzqVLl5g/fz7Hjx9n586d2O12IiMjyZ8//yO3b9OmDX369CFPnjwA2GyxrzK4ePEi06ZNY9CgQfr4EBExJJvd1yMwliNHjjiu+19++SXPPvssL7/8MhUrVqRatWo+G5c6JSL+Sp1yZtROgVolIv5LrXJm1FapUyLir9QpZ0btFCSuVeqUiJiZWnWPVTsFapWImJc65cyqrVKnRMSs1ClnRumU2zevFyhQgO3bt1OgQAGXJlj/1adPHzZt2kTx4sWx2Ww0aNCA69ev88QTT5AmTRomTpxI+/bt3dqniIh4X+rUqTl37hy5cuVi+fLljlddhYSEcOPGDZ+NS50SEREwbqdArRIRkVhGbZU6JSIiYNxOQeJapU6JiFiDVTsFapWIiFVYtVXqlIiINRilUwFurRwQQIECBTh37lyCDpYsWTIWLlzI5s2bSZYsGbVq1SIoKIh58+Zx+vRpXn755QTtV0Qkydm9+GUCtWrVomPHjnTs2JE9e/ZQv359ALZv3+54la0vqFMi4re82SkTtMqonQK1SkT8mDrlxKitUqdExG9pTuXEqJ2CxLVKnRIRU1OnHKzaKVCrRMTENKdyYtVWqVMiYlrqlBOjdMqtm9cBJkyYQL9+/di2bVuCD/r444/z8ssv079/f7p06UK1atVIlixZgvcnIiLeNW3aNMqXL8+ZM2dYvHgxGTJkAGD9+vW0bNnSp2NTp0RExMidArVKRESM3Sp1SkREjNwpSHyr1CkREXOzeqdArRIRMTurt0qdEhExN6N0yma329261z99+vRcv36du3fvkixZMlKkSOH0/fPnz3tkYHa7HZvN5pF9uatu+o4+Oa7V2NKl8fUQRJx8d3BygrfNM3OiB0fycAc79/XasazIHzoF8HTk6z47tpVE793v6yFYwr7xZX09BEvY16d3grf1ZqdArUosf2hVrYDmPjmuSHxsgYG+HoIlLL+zIFHba05lHv7QKVCrxGBsbr/HjMRjRfTCBG+rOZW5eKNVPu9U4PM+O7al2GN8PQIRhxUxixK1veZU5qE5lbgjsdcGiaW/j56RmL+PmlOZi1/MqXRdELEcdcp6gtzdYMqUKQk6UOHChRk6dCjPPvvsQ19ttXfvXt5++21y587NwIEDE3QsERFJWlu2bIl3uc1mIyQkhFy5cpE8eXIvjyqWOiUiIkbuFKhVIiJi7FapUyIiYuROQcJapU6JiFiHFTsFapWIiJVYsVXqlIiIdRilU27fvN62bdsEHWjatGkMGDCAbt26Ubt2bcqUKUO2bNkICQnhwoUL7NixgzVr1rBjxw66d+/OK6+8kqDjiIhI0itRosRDXyUbHBzM888/z8yZMwkJCfHiyNQpERExdqdArRIREWO3Sp0SEREjdwoS1ip1SkTEOqzYKVCrRESsxIqtUqdERKzDKJ1y6eb1y5cvu7zDtGnTxru8Ro0a/Pnnn/z+++8sXLiQTz/9lIMHD3Ljxg0yZsxIyZIlefHFF3nhhRcIDQ11+XgiIl5h9/UAjGXJkiUMGDCAfv36UbZsWex2O3/++SeTJk1i+PDh3L17l4EDBzJkyBAmTkz6j15Rp0TE76lTTozWKVCrRETUKmdGa5U6JSJ+T51yYrROQeJbpU6JiOmpVQ5W7BSoVSJicuqUEyu2Sp0SEVNTp5wYpVMu3bweGhr60Dvt/ys6Ovqh369QoQIVKlRwaV8iImJMY8aM4Z133qFOnTqOZcWKFSNHjhwMHTqUdevWkSpVKvr06eOVyZY6JSIi/2W0ToFaJSIizozWKnVKRET+y2idAs+1Sp0SETE/K3cK1CoRESuwcqvUKRER8zNKp1y6eX3lypWO/z548CADBw6kXbt2lC9fHoC1a9cyZ84cxo0blzSjFBHxNb0Cy8nWrVvJnTt3nOW5c+dm69atQOxHjJw4ccIr41GnRMTvqVNOjNYpUKtERNQqZ0ZrlTolIn5PnXJitE6BWiUiolbdo06JiBiQOuVErRIRMRh1yolROuXSzetVq1Z1/PfIkSN5++23admypWNZo0aNePzxx/nggw9o27at50cpIiKGUqhQIcaPH88HH3xAsmTJALhz5w7jx4+nUKFCABw7dozMmTN7ZTzqlIiI/JfROgVqlYiIODNaq9QpERH5L6N1CtQqERG5R50SERGjU6tERMTIjNIpl25e/6+1a9cyY8aMOMvLlClDx44dPTIoV92+fdtx8gD27dvHe++9x969e8maNStdu3aldOnSXh2TiFiUXoHlZNq0aTRq1IgcOXJQrFgxbDYbW7ZsITo6mm+//RaA/fv388orr3h9bOqUiPgldcqJkTsFapWI+Cm1yomRW6VOiYhfUqecGLlTYJxWqVMi4lVqlYM65Tq1SkS8Rp1yola5Rp0SEa9Rp5wYpVNu37yeM2dOZsyYwaRJk5yWz5w5k5w5c3psYK5IkSIFJ06cIDw8nE2bNlGxYkUKFizIE088waZNm6hQoQK//vorZcuW9eq4RESsrkKFChw8eJCPP/6YPXv2YLfbefbZZ2nVqhVp0qQBoE2bNj4ZmzolIiJG7hSoVSIiYuxWqVMiImLkToFxWqVOiYj4hjrlOrVKRMQ31CrXqFMiIr5hlE65ffP65MmTadasGT/88APlypUD4I8//mDfvn0sXrzY4wN8GLv93ksihg4dSr169fjss8+w2WwAtG/fnuHDh/Pdd995dVwiYkF2m69HYDipU6emS5cuvh5GHOqUiPgldSoOo3YK1CoR8VNqVRxGbZU6JSJ+SZ2Kw6idAuO0Sp0SEa9Sq5yoU65Rq0TEa9SpONSqR1OnRMRr1Kk4jNApt29er1evHnv27GH69Ons2rULu91O48aN6dKli1uvvtq3bx9RUVHs27ePd955h/DwcL7//nty5sxJkSJF3B0WmzZtYsGCBY6AAfTs2ZM6deq4vS8REXm0PXv2sGrVKk6fPk1MTIzT94YNG+ajUalTIiISy6idArVKRERiGbVV6pSIiIBxOwWeaZU6JSJiblbvFKhVIiJmZ/VWqVMiIuZmhE65ffM6xH58yNixYxN80NWrV/P0009TsWJFfvnlF8aMGUN4eDhbtmzhww8/5PPPP3dpPzabzRGtwMBA0qZN6/T9tGnTcunSpQSPU0TkXzb7o9fxJ//73//o2rUrGTNmJEuWLE4TCJvN5vPJljolIv5GnXJm9E6BWiUi/ketcmb0VqlTIuJv1ClnRu8UJK5V6pSImJFadY/VOwVqlYiYjzrlzOqtUqdExGzUKWdG6VSAuxvkyZOHkSNHcuTIkQQfdODAgYwePZoVK1aQLFkyx/Lq1auzdu1al/djt9spWLAgYWFhHD9+nK1btzp9f+/evWTJkiXB4xQRkfiNHj2aMWPGcPLkSTZt2sTGjRsdXxs2bPDp2NQpERExcqdArRIREWO3Sp0SEREjdwoS3yp1SkTE3KzeKVCrRETMzuqtUqdERMzNKJ1y+53X+/Tpw+zZsxk5ciTVq1enQ4cOPPPMMyRPntzlfWzdupVPP/00zvJMmTJx7tw5l/cTFRXl9Od8+fI5/fmPP/7gmWeecXl/IiIPpFdgOblw4QLNmzf39TDipU6JiF9Sp5wYuVOgVomIn1KrnBi5VeqUiPgldcqJkTsFiW+VOiUipqRWOVi9U6BWiYgJqVNOrN4qdUpETEedcmKUTrl98/qrr77Kq6++yubNm5k1axY9evTglVdeoVWrVrRv355SpUo9ch+hoaGcOHGCvHnzOi3fuHEj2bNnd3ksbdu2fej3jfAxK65q0KEaz75ah7DMoRzadZwZry9g+9q98a4bljkdnUY/R4HiucmWL5yvZv7EzNcXOq0z4Zt+FKv0WJxt1y3fwrDn302Sx2AE9V+oyLOdqxMWnpZDe04yc+SXbP9zf7zrFimTl5cGNiRnvnCSpwjm9LELLPt0LV9+tDre9as2LMnA917k9+VbGfXyrKR8GD6n8yiP0rx5c5YvX06XLl18PZQ41KmkUb/FkzzbvjJhmdJw6O/TzBy/lO3rDz5yu8iSuZgwpxMH/z5F96ZTHcvfnN2RYmUj4qy/bvUuhned68mh+1TDLrVo3rshYVlDObTjKNN7z2Xbb7seuP7jlQvTZWIbckfm4NzxC3w26RuWfvBjvOtWe648r3/Sk9+/+pM3np3kWN6gcy0adH6KzLkzAXBox1E+Gf0Ff/6wyaOPzQy6lH2COgUKEBEWxq27d9lw/Dhv/vIrBy5c8PXQJIkZuVOgViVEw661ad63MRmyhnJw+1Gm94pi25oHX0+LVYmk86S25Cnyz/X0ra/4duYKp3UqNX2SdiNbkDVfZk7sO0XUkPn89uU6p3UyZAuj4/jWlH26JMlSJOPYnhNM6jidvRtifzYOSRVCx/GtqdD4CdJmSMOpg6dZ8t53fDtjuedPggf44jwGBAbw4hvPUaNVZcKyhHL+xAWWz1nFJ6MXY7ffe6YoV6HsdBz/AsWqRmILsHFo+xFGPT+ZM0fOev5EeJine1+xyRO0HNiEbPmyEBQcyLG/T/L55KX89MmvjnXUe/MzcqvUKff54vr6eOXCNO/biIKlI8iQLYzhz0zg96/+dNqHOvXo89hiYBMqPfMkOQtl59aN2+z4fTcfDvyEo3uOO9ZpM7w51Z6vSKacGbh7+y571+8nash8dq372/MnwUsadqlN874N753r3nMeca4L03nii/fO9cSv+XbmvXY93bEGtV6oQp6iOQHYu/4As4bMZ/ef+5L8sUjSMHKnIPGt8rdOxcdX14EM2dLHzrHqlrg3x+o0g70bDiTNA00EX81DH3bcwKBAXhrdgrJPlyJLRDjXL11nw49b+WjQJ5w7ce/5rnqdnqJGy0rkL5WXVGlT0iR9W65duu7Bs+NZnj7XuSNz0HbE8xQoHUGWPOG83yuKJe8sc9pHgy61adilNpnz/DOn2n6Uj0ct4s/vNyXJYxTPsnqnQK0CYz+PJdbmq58B/tViYBM6jG3NF+8sZXqv2Y7l/WZ1o3a7ak7r7vxjDz0qDE7wY5WkY/VWqVOJ4+51Rh7MX8+lUZ+PBnP/vs+fGKVTAQndsHjx4rzzzjscO3aM4cOH8+GHH/LEE09QvHhxZs2a9dAf3lu1asWAAQM4efIkNpuNmJgYfvvtN/r27cuLL76Y0CGZVpVnnqDz2BYsmLSMblVHsm3tHkZ/1pNMOcLiXT84WRCXzl5h/qSl7N92NN51RrZ5n5aP9XZ8dS4/jOi70fz65V9J+VB8qkqDEnQe1oQFU1fQvd5Etv+5n1GzXyZTttB417954zbfzP2Vfs9N5eWnxjP/vRW07fM0T7csH2fd8Ozp6fh6I7b+n/V/4aLzKK7Inz8/Q4cOpV27dkyaNIl3333X6csI1CnPqVL3cToPqs+Cmavo3mwq29cfZNTMtmTKmu6h26VMnZy+45qz6Y+4/+ZH9fyEVlXGOr46N5oS26kftiXVw/C6qs3L02VSWz4dv4SuTwxk65pdjPl2IJlyZoh3/Sx5MjHmmwFsXbOLrk8MZP6bX/LK5HZUeqZsnHXDc2Wk05svsPXXnXG+d/boOT56fT7dyw2me7nBbFq5nTe+6EvuyBwef4xG92SOnHy8aRPPfjqfFz//nEBbAHOebUaKILdfvykmY4ZOgVrlqqrPVaDr5JeYP3YxXUv1Z9uanYxdNphMOTPGu36WPOGMXjqIbWt20rVUf+aP+4JX3mlPpaZPOtYpXK4gQxb04sePV9OlRF9+/Hg1Qxb2olDZ/I51UoemYsqaUUTfieb1emPpWKQXM/vO4erFa451uk5uS5k6JRjf5l06RL7G4ilL6f5ue8o3KpN0JySBfHUeWwxoQoPOtZj66kd0iHyN/w34mOZ9G9Hk1acd62SNyMzkX0dxePcx+lQfTucSffl49GLu3LyddCfEQ5Ki91fOX2P+uC/pWXkonUsN4Ic5q+n7YRdK1yrmWEe9Nz8ztEqdco2vrq8hqZKzf8shpr760QPHpk49+jwWq1KEr9//gR7lX2dg7VEEBgUy/ochhKS8905jR/ecYOqrH/FysT70qjyUU4fOMP6HoaTLmDbpTkgSqvpcebpObsv8cUvoWnog29bsYuzSQQ9t1+hvY9frWnog88d/yStTXqJS03vtKl61CCsX/E6/miPpWXEop4+cZfz3g8mQLb23HpZ4mBk6BQlvlT91Kj6+ug6kDk3FlF9Hxs6x6o+jY9E+zOw3j6sXjXdTta+69KjjJk+ZnPwlI/h49Oe8UnoAI5pNJEfBrIz8aoDTeJKnTMafP2xi/rglSXB2PCspznXylMk5ceB0nJv6/+vs0XN8NOgTuj0xkG5PDGTTym2M+HKA5lQmYfVOgVpl5OexxNp89XfvXwXL5KNep1rs23ww3uOt+24jz2Xt5PgaXH+cRx63eJ7VW+XvnUoMd68z8mD+ei6N/Hy0mX/f52+M0imbPYEvEb1z5w5LliwhKiqKFStWUK5cOTp06MDx48eZOnUq1atXj/cjQv7dtl27dixYsAC73U5QUBDR0dG0atWK2bNnExgYmKgH9a/XX3+dkydPMmuWe+/uXDd9R48c31VTVrzO31sOM7XPx45lH/wxirXLNhI18ouHbjvhm37s23o4zjuv369Jl6doM6gxrQr34dZ171wQbOnSeOU4/5r85Wvs23aUqUM+dyyb+eNA1i7fyuwJS13ax5AZL3Hz+m0m9v7EsSwgwMaEhd1ZvmgdRctGkCptCku/Y7iVz+N3BycneNu870169EoecuDVPl47VkLd/wra/7LZbOzfH/879XuTlTsF8HTk6x4ZgysmL+jKvh3HmTryK8eymd+8xtqfdzB78oPfsW/gxBYcO3SWmBg75WsWdnrn9fs1aVOBNq8+Rauq47h1445Hx/8w0XuT7u/qu7+NZu/GA7zX/d4P7x9umcTvX//JrCEL4qzfYWwryjcoTcdi964BPaZ1IKJYbl6rfO9V5QEBNib+PJzlc1ZTtFIhUqdL6fTO6/H5/NSHfDjwE76PWumBRxbXvvFxb7A3orAUKfjzla60WLCQP48d8/Vw4tjXp3eCt/Vmp8D4rTJDp8DaraoV4LmPGXt37Vj+3niAd1/5n2PZR9sn89tXfzLr9bjnp+P41pRvWIYORXo5lvWc3omIYnnoWTH2XWgGz+9FyrQpGFx/rGOdscsGc/XCVca2fgeADuNaU6TCY/Su+uB39vhgyyRWf/Y7n4xe7Fg27c83WffdBuYMe/gczdt8dR5HfT2QC6cv8XbH6Y51hi2KnZe+2fY9AF7/9DWi70Q7/uxpNg/9e4hPUvX+ftPWjWPdso3MeeOzB66T1L1ffifu43GH5lTOzNAqK3cKPNcqX11f/2tFzKJ43+lGnXLvPAKky5iWz09/RO+qw+J9sTBAyjQp+OrSXPo/NYKNP3voBdi2BL/HjNve/X107Lnudq9dH217O/ZcD54fZ/2O41rFnuui9+YrPd/vSESx3PSsNDTeYwQE2Pji3Cym9ojix3m/eP5BPMCK6IT/vdacypkZOgUJb5UpOhX4vEfGEB9fXQc6jG0ZO8eq9oZnH9DD2GMStJmvuuTucSH2Jrdp68bTKnfXOO9kV6xqJJNWjjD0O68nxbn+r3n7p/HFO0vjvPN6fBafjeJ//efx/ayfE/hoHm5FzKJEba851T1W79S/2xq+VR58/u9+Rn4ey9MSe22QWFaY44ekCmH6+jd5t9uHtB7cjH2bD8Z55/VUoSl5o+lbHnms8UnM30fNqZxZvVX+3qnESMjP/BI/fz2XRnge9UHPRyf17/vUKc8xSqfcftvJDRs2EBUVxfz58wkMDKRNmzZMnjyZQoUKOdapXbs2VapUeeA+goOD+eSTTxg1ahQbNmwgJiaGkiVLUqBAgYQ9igc4duwYR44c8eg+PS0oOJACJXLz2ZTvnJZvWLmdwmXzeew4ddpUYvUX67x247q3BQUHUqBoDhZN/8lp+YZfdxNZOo9L+8hXJDuFS+dh7kTnJ7Ba9azDpfNXWf7Z/1G0bISnhmxIOo/iqgMHjPcxrv9SpzwrKDiQApHZWPS/1U7LN/z+N5Elcj9wu1rPlCJrzjAmDPiMll2qP/I4tZuVYfWyLV69cT0pBQUHUqBUXhZO+Mpp+foftxBZvmC820SWK8D6H7c4r798C3Vfqk5gUCDRd6MBaD2kGZfOXOb7qJUUrVQovl05BATYqPJsOUJSJWfHH3sS8YisIU3y2HdPvHTzpo9HIknNyJ0CtcodQcFBFCwdwcI3v3Ravn7FFoqUfyzebQqXK8j6Fc7X079+2Ezd9jUc19PI8gVZPOVb53WWb6Jpz/qOP5dvWIa/lm9i6MLePF41knPHzvP19B/47sN7Pytv/20X5RuW4ftZKzl3/DzFqxUhR8GsvP/a5kQ+cs/y5Xnc9tsuGnSuRfYCWTm29wQRxXJTtFIhxy9ebDYbT9YvxWdvfcW47waTr2ReTh44zYLxS+L9uEEjScre/1eJ6kXJWTArHw2K/8lW9d6cjNwqdcp1vry+ukKdcv88pkqXEoAr568+cKz1Xn6KqxevsW/zoUc9NMMJCg6MPdf3t2vFZoo8oF2x59r578xfyzdTt/2D25U8ZXKCgoMeeB7F+IzcKUh8q/ylU/Hx5XUgdo61maELe/F4lcKxc6wZy/nuw6S5UTihfNWlhBwXYtsVExPDtf98SphZJNW5dldAQABVmv8zp1qrOZUZWL1T4O+tMu7zWGJtvp6bvjq1A/+3bAMbf9pK68HN4j1e8WpF+Ozkh1y7eI0tv+wgavB8Lp657OYjFW+weqv8uVOJkdCf+SUufz2Xvm7Vw5j5933+yCidcvvm9SeeeIJatWoxffp0mjRpQnBwcJx1IiMjadGixSP3FRERQURE0t3EOmfOnCTbt6ekzZCawKBALtz3A+WFM5cJC0/nkWMULJWXvJE5mPyq8c9HQqVNn+qf83jFafnFM1dI/4iP8J23djjpwlITEBTAJ1O+54eF/+f4XmTpvNR57km61ZuYJOM2Gp3HB7Ml6DMqxBfUKc9KG5oy9rpwzvkXzhfPXSF9xvgnn9lyZ+ClXnXp12YmMdGPfnejgo/nIG/BLEwZ+vBPGzGTtBnTxp6305ecll84dYn0mUPj3SZ95lAunLpv/dOXCAoOIl3GNJw/eZHICgWp+1J1upYZ+NDj5ymak3d+HUWykGBuXL3JiGcncXin8d5p3Nter1aVP48eZc+5c74eisepU+aiVrkuXcY0sdfTUxedll84dZH0WULj3SYsSyh/xbP+f6+n6bPEc809dclpn1kjwmnYpTaLJ3/Lp+O+oFDZ/HR7pz13bt1xvHPgtB5R9PqgMwuOzuTunbvExNiZ3GkG23/bldiH7lG+PI8L3/ySVOlSMmvnFGKiYwgIDCBqyHxWLvgNgNDwdKRMk4LnBzRh9tAFfDjwE8rULcHwxX3pV2MEW37ZkdiHn2SSqvcAKdOmYP6h6QQnDyImOob3Xp3Fhp+2Om1ntt6rVeahTrnOl9dXV6hT7p/HLpPasvXXnRzc7vyL0Sfrl2Lw/F4kT5mM8ycuMqD2KC6fu/KAvRhXun/b5cZ5CcuSjr/iWf/+dv1Xx3GtOHvsPBt+3Brne0alTpmLp1pl9U7Fx5fXgdg5Vi0WT17Kp+OWxM6xprzEnVt3vfopDY/iqy4l5LjByYPpOK41P3+6hutXbrj4CI0jqc61q/IUzcW7v4+5N6dq+haHdx5170F4kVplHppTJY6Rn8cSa/Pl371qz1egQKkIupV98O//1n2/kdWfr+X0oTNkyRtOu5EtmPDTcLqVGcCd23fdeahJQp0yF82pfCMh1xmJn7+eSyM9j3o/o/++T50yJrdvXt+/fz+5cz/4nVYBUqVKRVRU1AO//+yzz1KmTBkGDnT+weutt95i3bp1LFrkvY9GunXrFrdu3XJaFmOPJsCWdB8rHi+7878Qm82G3e6ZfzV121TiwI6j7NlgjFdMJCU795/HuMvu17f5e6RIlZxCJXPz0oAGHD90ltVfbyRFquT0m9KadwYt5PIF871jRWLoPEp8evfuzahRo0iVKhW9e/d+6Lpvv/22l0YVl9U6BQ9oVcxdAgLczniC3d+k2E7FXS8gwMaACc/z8bQfOXbItRuE6zQrw4E9J9mz1bi/GEiouOeNOM2/bwPnP9vu7SdF6hAGzu7OlC7/e+RNEkd3H6drmQGkCk1F5WfK0m/WK/StOcLQN7QltTdq1qBQxow8vyDhHyMvxmaWToH1WuWNOVWcy+Mj5kvxdSvOfh5xjbYFBLDnr33MGjwfgH2bDpK7SE4adqnjuLGiSY+nKVyuIEMbjefUoTMUqxLJq9M6cu7EBTb+ZLybtXxxHqs9X4GarSszrvU7HNx+lPwl8tB1cjvOHb/AirmrCQiI3efar/7iiylLAdi3+SBFyj9Gg861fP5klis82ft/3bhyk65lBhCSOoSS1YvS+a02nNh/2ul8qPfmY5ZWWa1TkPSt8sX11RXqVNydPuw8vjq1A3mL5aJX5aFxvrd55Xa6lOxHuoxpeLrTUwxZ2Jse5QaZ9h3u4p/jP+xcO//53rmOu81zfRtRrUVF+tYYwZ1b1vh0NX9hlk5B4lvlb52Kjy+uA4451pAFwD9zrMgcNOxcy1A3r//LV11y9biBQYEMnv8atgAb73X78IHjMoMkOdcuOLr7OF1K9iN1aEoqNStHv9nd6VNtuKFvYPdn/tQpUKvAmM9jiX/w9t+9TDky8MqUlxhYZ/RD51CrP/vd8d8Htx9hz1/7+PjgdJ6sX4o1S9Y95BGJt/hTq9SpxHH3OiMP5q/n0tfPo8bHCr/vszojdsrtu94eFS9XrF69muHDh8dZXrduXSZOdP+dmY8ePUpoaCipU6d2Wn7nzh3Wrl370I/cGjduHCNGjHBali95SfKnKOX2OBLi8rmrRN+NJv1977IemjFNnHdjT4jkKZJRtekTzB371aNXNrHLF64RfTeasEzO7w6eLmMaLp59+A1+p46eB+Dg7hOEZkzDCz3rsvrrjWTNnYEsOTPwxocdHeva/rnQfvv3RDrVGMeJw9Z651adx4ew23w9Ap/buHEjd+7ccfz3g/z7Q46vWK1T8IBWZaxEgUyV3R6Luy5fvB57XciYxml5urDUXDwX9+O/U6RKTsHHc5CvcFZeGdwQiP03HxAQwLdbRjG4UxSb/2+/Y/3kIcFUfboY8977MWkfiJddPns59rzd966roeHp4rw767/iezVs+kzpuHvnLpfPXSV3kRxkyRvOyC/7Ob7/7/X0uxuf0L5Ib07sPwXA3TvRHN8X+9971++nYJl8PPPq07zzirl/kZVQw2tU56l8+WixYCEnr1r0Y+vVKdN0CqzXqvg6lZfC5KOI2+O436WzV2Kvp/ddH0PD03HxVPzX0/MnLxKWJX2c9WOvp7E/0144GfeaGxqezuldBc6fuBDnF9aHdx6jctNyACQLSUb7Ma14o+lbrFu2AYADWw+Tr0QemvdpZKibAn15HjtNaMPCN79k1cLYX64c3HaY8NwZaTHwGVbMXc2ls1e4e+cuh3Y6v8Pt4V1HKVqxEEaWFL3/l91ud7R8/+ZD5CqcnRYDGjs9uWe63qtVpmmV1ToFSdcqX15fH0Wdcu88dnu3PeUalqFP1eGcPXY+zvdvXr/F8X0nOb7vJDv/by+zd79L3Q41WDD+S9cfqAFc+rddcc5L2oec60uEZUkXZ/372wXwbO8GtBzUhAG1R3Ng62GPjj3JqVOm6RQkvlXm6FQk+WxF3R7Lo/jyOhA7x3J+oeXhXceo3PTJBD6apOGrLrlz3MCgQIYs7E2WvOH0qznClO+6Dkl3rl11985dju87CcCe9ft5rEw+nulZj3e6fODWfrzGz1vlT50Cs7TKM8//3c/Iz2OJtfnq716B0hGkzxzK+3+96fh+YFAgj1cpTONudakX0oqYmLifdH3+5EVOHzpD9gJZ3X2oScPPOwX+1Sp/7lRiJOQ6I/Hz13NphOdRHzY2Q/++T50yZKcCXF0xffr0hIWFPfLLFVevXiVZsmRxlgcHB3P5sus3bJ84cYKyZcuSO3duQkNDadu2LVf/c0PS+fPnqV69+kP3MWjQIC5duuT0FRFS3OUxJNbdO9Hs3XSIktUjnZaXrBbJznX7Er3/Kk3KEJwsmJ8/+yPR+zKyu3ei2bvtKCUrFXRaXqpSQXasP+jyfmw2CE4e+5qOI/tO06X2m3SrN9Hx9ceP29my9m+61ZvImRMXPfgIjEHn0XzGjRvHE088QZo0aQgPD6dJkybs3r37kdutXr2a0qVLExISQkREBDNmzHjkNitXriQ0NNTx3w/6+vnnnxP7sBLEqp2C+FuVL0N5l8eRGHfvRLN3x3FKVsjvtLxUhfzs2HQozvrXr96iS6N36NZ0quNr2cJ1HNl/hm5Np7Jri/MPqpXrPk5wskB+/ubBPxiZ0d070ezdcIBSTz3utLxUzcfZsXZPvNvs+GMvpWret36tYuxZv5/ou9Ec2XWcl0v0pWuZAY6vP75Zz+ZVO+haZgBnjpx94HhsNhvByeN+3Js/GF6jBrXzF+CFzxZx1I1/v+I53mqV0TsF1m1VfJ3Ki2eehLh75y571u+nVK1iTstLPVWM7Wvj/3u08489lHrKef3StYuz56/Y6ynAjrV7KH3/OrWKs+P3e/vc/ttuchTM5rROjoJZOXXoDABBwYEEJwvCft8vDqKjYxzvLmAUvjyPISmTExPj/M4MMf85R3fv3GX3n/vIWTC70zrZC2Tj1KEHt80IkqL3D+JKy/2594mhOdU9Vu0UJF2rfHl9fRR1yvXz2P29DlR65kn61xzByYOnXRu0Sa+5d+9Ex57rp+I71/G3K95zXauY07kGaN6nIS8Macbr9caxZ/3++3cjCaROOfNUq0zRKVthl8fhDl9eB7b/vpscBZ1vrspR4N4cyyh81SVXj/vvjevZC2RhQK1RXDlv3jdqSKpznVA2m41kyczXd1/Tc3/3aE7lGUZ+HkuszVd/9zb+tJVOj/emS8l+jq/df/7Nz5+soUvJfvHeuA6QJiw1mXJm4NyJCwl6vP5CcypnfjWnSqJOJUZCrjMSP389l75+HvVRYzPr7/t8zZ/nVC6/8/qUKVMc/2232+natSsjR44kPDzc7YMWLVqUhQsXMmzYMKflCxYsIDIy8gFbxTVw4EACAwP5v//7Py5evMigQYOoVq0aK1asIH369I6xPkzy5MlJnjy50zJvf2zIF++voN+MDuzdeJCdf+7n6bZVCM8RxtKoVQC8NKwpGbKGMrHrLMc2EUVzAhCSKjnpMqYhomhO7t65y+HdJ5z2XadNJX5ftpErF6557fH4ypIPV9H37dbs3XKEnRsO8nSrCmTKlp5ln8S+Mrpd//pkyJyOSX0+BaBBm4qcOX6RI/+8U12RJyJo1qk6X8/5FYA7t+5yaM9Jp2Ncuxz77hX3L7cSnccHMOinyqxevZpu3brxxBNPcPfuXQYPHkzt2rXZsWMHqVKlinebAwcOUK9ePTp16sTHH3/Mb7/9xiuvvEKmTJlo1qyZS8edM2cOzz777AOP4QtW7RQ8oFUBbn94SoItmb2Gvm82Z+/2Y+zcdJinmz9BpqzpWLYw9iPo2vWqTYbwtEwa9Dl2u51Df59y2v7i+Wvcvn0nznKAOs3KsPannVy5ZM53B3qYxVOW0n92N/as38+OP/ZQv+NThOfKyLcfxL7LfPvRLciQPYy3XnofgKUfrKDxK7Xp/FYbln30E5HlClL3peqMe+FdAO7cusPB7c7vAHz10nUAp+UvjWrBn99v4szRc6RIE0K15ypQrGokg+uP88bDNpQRNWvQqFAhOn/1NVdv3yZjypQAXLl9m1t37/p4dB5m0E6Bb1plxE6BdVuV1HOqxZO/ZcDcV9nz1z52rt1DvZf/uZ7OWA5A+7GtyJgtjAntpgLw7YwVNOpWl86T2vLd/36kcPmC1G1fg7Gtpjj2ueTdpby9eiTP92/M71/9SYXGT1DqqcfpVXnoveNO+ZZ3fhtNy0HPsPqztTxWNj/1Oj3FlM4zAbh+5QabV22n04Q23Lpxm9OHzlKsaiS12lRlRp85Hnv8nuKr8/jHN+tp9XpTTh8+y6HtR8hfMi/NejXkh6h7T3wsmvg1gxf0YsuvO9i8cjtP1C1B+Yal6VP9Da+cm8TwdO8BWvRvzJ71+zm+/xTByYIo+3QJnnqhMu92/8ixjil7b9BWaU51j1U7BUnbKl9dX0NShZA9fxbHn7PkDSdf8TxcPn+VM0fOqlO4dh5fndaRGi0rMbzJBK5fuUn6fz5N49ql69y+eZuQlMlpNbgpa7/+i3MnLpA2QxoavVKHTDnC+GXRWq+dH09aPGUpA+Z0Z8/6fexcu5d6nWrGnuuZKwBoP6YlGbOHMaHdNAC+nbmCRt3q0HliG7778GcKly8Qe65bv+PY53N9G9F25HOMe+FdTh48TfrMse/QfOPqTW5euxV3EEakTjkxYqfAc63yp07Fx1fXgcVTlvHOmpG0HNiE1Yv+nWPVZEqX/yXZY00on81DH3HcgMAAhi3qQ/5SeRnacDwBgQGOdl05f5W7d2Kf70qfOZSwLKGOnxXyPp6LG1ducvrwWa5cMNbN7klxroOCg8gdmQOA4GRBZMyegXzF83Dj6k3HO623H9OSdd9t5MyRc6RIk4LqLSpSrFoRXn96jHdPgDvUKgerdwrUKiM/jyXW5ou/ezeu3uTgduc3/7p57RaXz19xLA9JFcKLbzTn18X/x/kTF8icJxPtx7Ti0tkr/LZknRfOjAvUKSdWb5W/dyoxHnWdEdf567k06vPRYPDf9xm0U+Dfcyqb3ZWrfDzSpEnD5s2biYiIcHvbr7/+mmbNmtGqVStq1KgBwE8//cT8+fNZtGgRTZo0cWk/2bNnZ8mSJZQtWxaAW7du8fzzz3Po0CF++ukn7ty5Q7Zs2YiOdu+V9nXTd3RrfU9o0KEazXvUJX3mdBzaeZyZgxew7fe9APSZ9hKZc2Wkf8O3HOt/fyHux4CfOnyWtsUHOv6cPV9mPvprDIOeeZuNq3bEWT+p2dKl8fox679QkeZdahCWKS0H95zgg1Ffsm1d7Dt89J7Yksw5whjQIvYJ10ZtK/N0q/JkyRlG9N0YThw+x/cL1rLsk7UP/OGn98SWpEqbglEvz4r3+1Zh1fP43cHJCd42YsrbHhzJw+1/rXeCtz1z5gzh4eGsXr36gR+dNGDAAL7++mt27tzpWNalSxc2b97M2rWu/eI1U6ZMXL9+nYYNG/LCCy9Qt25dgoK8dzO1K6zcKYCnI193e5vEqN/iSZp3qEJYpjQc3HuKD8YvZds/n8jQe0wzMmdPz4B2cdsE0LpbTcrXLEz3plOdlmfPnYEPv+vD6x1msXHt30n9EOIVvTdp3w2uYZdaNO/TiLCsoRzafoQZfeaydc0uAPp+1JXMuTPR76mRjvUfr1yYLpNeJHdkDs4fv8DCiV+z9J+b3+LT96OupE6XkjeeneRY1vuDzpSoXpSwrKFcv3Sd/VsP89lbX7Php61J9jj3jS+bZPtOjH194r+e9v/+exZv9/7PRo/yoPG6wpudAuO3ygydAmu3qlZAc7fWf5SGXWvzXL/GhGVNz8FtR5jRezZbf439+9FvVjcy58lE3xpvONYvViWSLm+3JXeRnJw7foHPJnzpuBHjX5WblaPdqBZkjcjMiX0niRoynzX3PdH/ZP1SdBjbmuwFsnDywGk+n/wt3334k+P76TOH0mFsK0rXLk6asNScOnSGZf/7kcWTv/Xo4/cUX5zHFKlDaDeqBRWblCU0PB3njp9n5YLf+Hjk544bKwDqvFSdlgOfIWOODBzdfZw5byxk7dd/eeRx2wKT9klqT/e+3YjnqNq8PBlzZODWjdsc2X2cL9/7jtX/uUnSF71ffmdBorbXnMqZGVpl5U6BZ1vli+trsaqRTFrp/HHIAMtnr+Kt9rHP2ahTjz6PK2IWxTuWt16axvI5qwhOHszrn/Sk0JMFSJsxDVfOXWH3n/v4ZMxi9vyV+E/NdLC5/AGpHtGwS22e69fw3rnuM/c/5zq2XX1r3mtXsSqF6TKpLbmL5Ig91299xbcz77Vr3r73yJIn7i+6545YxLyRnyf9A/rHiuiFCd7WLHMqdcpZQltlik4FPu/2Nu7w1XXgyfql6DCm5T9zrDN8PuVbvvswCW8ItMf/TqWu8NU89GHHzZw7Ex8feD/e8fapPpwtq2Of72ozvDkvDn8uzjr/9s1oPH2uH3SeNq/a7thP7w+7UrJGUcKypufapesc2HKIhRO+YsOPW5LscT7o5w5XaU51j9U7BSZplYef/7ufkZ/H8qTEXhskltnn+Peb+PMb7Nt8kOm9ZgOQLCQZI5b0I1/JvKQOTcX5ExfYvHI7s4ct4MzRcx577In5+6g5lTOrt0qdSpyHXWfEPf56Lo36fDQk7e/7/KFT4F9zKp/cvA6wdOlSxo4dy6ZNm0iRIgXFihVj+PDhVK1a1eV9pE6dmo0bN1KgQAHHsrt379K8eXP279/Pxx9/TIkSJUxx87oV+eLmdZGHSdTN65O9F7Gdr3Tj1i3nd6WK75Wi8fn7778pUKAAW7dupWjRovGuU6VKFUqWLMk779x7Z5wlS5bw3HPPcf36dYKDH/2xmHfv3uX7779n/vz5fPXVV6RIkYLmzZvzwgsvUKFChUdu7w1W7hR4/+Z1q0rqm9f9hVFvXjebRN287sVOgfFbZYZOgbVbZeQnBcX/JPXN6/4i0Teva07lxAytsnKnQK0Sg/HyzetWlaib100yp1KnnCWmVYbvVBLfvO43EnHzuoinJfrmdc2pHPyhU2CCVmlO5RG6ed0z9PfRMxJ1U6DmVE78oVXqlIh4mz90CvxrTuWzZ8Xr16/Pb7/9xrVr1zh79iw///yzWwEDiIiIYMsW51fABwUFsWjRIiIiImjQoIEnhywi4hXjxo0jXbp0Tl/jxo175HZ2u53evXtTqVKlB8YL4OTJk2TOnNlpWebMmbl79y5nz551aYxBQUE0aNCATz75hNOnTzNlyh9ck1MAAQAASURBVBQOHTpE9erVyZcvn0v7MDp1SkTkwYzeKn/oFKhVIiIPYvROgX+0Sp0SEXmwhLRKnfIsdUpE5MGMPqfyh06BWiUi8jCaU/meOiUi8mCaU7nGeJ9J4oann36aDz74gGbNmjkt/zdkzZo14+jRoz4anYhYiS1Bn1GRMIMGDaJ3b+d333XllVfdu3dny5YtrFmz5pHr2mw2pz//+yEc9y93RcqUKalTpw4XLlzg0KFDTh9J4u/UKRHxFm92CszVKnXq4dQqEfEWzakeTK16MHVKRLzFDHMqdcp41CkR8SbNqeKnTj2cWiUi3qI51YOpVQ+mTomIt5ihU+B/cyqXb16//2Tevn2bMWPGkC5dOqflb78d/1vsh4WFsWfPHjJmzEj69OkfepLOnz/v0pjGjBnD9evX4/1eUFAQX3zxhSImIqbj6seE/Nerr77K119/zS+//EKOHDkeum6WLFk4efKk07LTp08TFBREhgwZXD7m9evXWbJkCZ988gk//vgjOXPmpGXLlixa5JuPt1OnRES8xwytMlqnQK0SEfEWM3QKjNcqdUpExHvcbZU6FSsxrVKnRERcZ4Y5ldU6BWqViIg7NKdKGM2pRES8Q3Mq17h88/rGjRud/lyhQgX279/vtOxhYZo8eTJp0qQBYMqUKW4M8cGCgoJImzbtA78fGBhI7ty5PXIsEfFzXn4FlqvsdjuvvvoqS5YsYdWqVeTNm/eR25QvX55vvvnGadny5cspU6YMwcHBLh23ZcuWfPPNN6RMmZLmzZuzatUqKlSokKDH4CnqlIj4NYN2CnzTKiN2CtQqEfFzBm2V5lT3qFMi4tfUKSdG7BQkrlXqlIiYnlrlYMVOgVolIianTjmxYqvUKRExNYN2Cvx7TuXyzesrV65M1IHatm0LwN27dwGoU6cOWbJkSdQ+Ad577z3++usv6tevz3PPPce8efMYN24cMTExNG3alJEjRxIU5PLDFBExlW7duvHpp5/y1VdfkSZNGserqtKlS0eKFCmA2I8iOXbsGHPnzgWgS5cuTJ06ld69e9OpUyfWrl3LRx99xPz5810+rs1mY+HChdSpU8cw11h1SkTEmHzRKiN2CtQqEREj0pzqHnVKRMR41ClniWmVOiUikjT03N89mlOJiBiP5lTONKcSETEef55Tef3IQUFBdO3alZ07dyZ6X6NGjeKtt96idu3a9OzZkwMHDvDWW2/Rq1cvAgICmDx5MsHBwYwYMcIDIxcRMZ7p06cDUK1aNaflUVFRtGvXDoATJ05w+PBhx/fy5s3LsmXL6NWrF9OmTSNbtmy8++67NGvWzOXjfvrpp4keu1GpUyIinuWLVlm5U6BWiYh4kuZUnqdOiYh4jjrleeqUiIhn6bk/z1OrREQ8R3Mqz1OnREQ8y5/nVD65bf7JJ59k48aNif5oj9mzZzN79myaNm3K5s2bKV26NHPmzKF169YAFCpUiP79+ytiIpJ4Bv34ELv90QObPXt2nGVVq1Zlw4YNiTr2tWvXWL16NYcPH+b27dtO3+vRo0ei9u1r6pSImI5BOwW+a5WVOwVqlYiYkEFbpTlV0lCnRMR01Kk41KlHU6dExKvUKidW7hSoVSJiQupUHFZulTolIqZj0E6Bf8+pfHLz+iuvvEKfPn04evQopUuXJlWqVE7fL1asmEv7OXHiBGXKlAGgePHiBAQEUKJECcf3S5UqxfHjxz02bhERibVx40bq1avH9evXuXbtGmFhYZw9e5aUKVMSHh5u+smWOiUiYm5W7xSoVSIiZmf1VqlTIiLmpk6pUyIiRmb1ToFaJSJidlZvlTolImJuRumUT25ef/755wHnO/RtNht2ux2bzUZ0dLRL+8mSJQs7duwgV65c7N27l+joaHbs2EGRIkUA2L59O+Hh4Z5/ACLid2wGfgWWL/Tq1YuGDRsyffp0QkND+eOPPwgODuaFF16gZ8+evh5eoqlTImI26pQzq3cK1CoRMR+1ypnVW6VOiYjZqFPO1Cl1SkSMR626x+qdArVKRMxHnXJm9VapUyJiNuqUM6N0yic3rx84cMAj+2nVqhUvvvgijRs35qeffmLAgAH07duXc+fOYbPZGDNmDM8++6xHjiUiIvds2rSJmTNnEhgYSGBgILdu3SIiIoIJEybQtm1bmjZt6ushJoo6JSJiblbvFKhVIiJmZ/VWqVMiIuamTrlGnRIR8Q2rdwrUKhERs7N6q9QpERFzM0qnXLp5fcuWLS7v8FEf/XHlyhX27NnDnTt3KFu2LBkzZnR53/cbMWIEKVKk4I8//qBz584MGDCAYsWK0b9/f65fv07Dhg0ZNWpUgvcvIuJgt/l6BIYSHByMzRZ7TjJnzszhw4cpXLgw6dKl4/Dhw14fjzolIn5PnXJitE6BWiUiolY5M1qr1CkR8XvqlBOjdQo81yp1SkRMS61ysHKnQK0SEZNSp5xYuVXqlIiYkjrlxCidcunm9RIlSjg+3iM+rn70x5YtW3j66ac5efIkdrudtGnT8vnnn/PUU08laPCBgYEMHjzYaVmLFi1o0aJFgvYnIiKuKVmyJH/99RcFCxakevXqDBs2jLNnzzJv3jwef/xxr49HnRIRkf8yWqdArRIREWdGa5U6JSIi/2W0ToFnWqVOiYhYg1U7BWqViIhVWLVV6pSIiDUYpVMu3bzuqY/7GDhwILly5WLRokWEhIQwYsQIunfvzq5duzyyfxGRJBP/z+9+a+zYsVy5cgWAUaNG0bZtW7p27Ur+/PmJiory+njUKRHxe+qUE6N1CtQqERG1ypnRWqVOiYjfU6ecGK1T4JlWqVMiYmpqlYNVOwVqlYiYmDrlxKqtUqdExLTUKSdG6ZRLN6/nzp3bIwf766+/WLZsGWXKlAFg1qxZhIeHc/XqVVKnTu2RY4iISNL79zoOkClTJpYtW+bD0ahTIiLizGidArVKREScGa1V6pSIiPyX0ToFnmmVOiUiYg1W7RSoVSIiVmHVVqlTIiLWYJROuXTzenx27NjB4cOHuX37ttPyRo0aPXCbs2fPkitXLsefM2TIQMqUKTlz5owiJiKGZtMrsJzcuHEDu91OypQpATh06BBLliwhMjKS2rVr+3h0sdQpEfEn6pQzM3QK1CoR8S9qlTMztEqdEhF/ok45M0OnwP1WqVMiYmZq1T1W7RSoVSJiXuqUM6u2Sp0SEbNSp5wZpVNu37y+f/9+nnnmGbZu3YrNZsNuj/0/a7PZAIiOjn7gtjabjStXrhASEgKA3W53LLt8+bJjvbRp07o7LBER8aLGjRvTtGlTunTpwsWLFylbtizJkiXj7NmzvP3223Tt2tVnY1OnRETEyJ0CtUpERIzdKnVKRESM3ClIeKvUKRERa7Bqp/5dR60SETE/q7ZKnRIRsQajdCrA3Q169uxJ3rx5OXXqFClTpmT79u388ssvlClThlWrVj10W7vdTsGCBUmfPj3p06cnLCyMq1evUrJkSdKnT09oaCjp06dP6GMREUk6di9+mcCGDRuoXLkyAJ9//jlZsmTh0KFDzJ07l3fffdenY1OnRMQvebNTJmiVkTsFapWI+Cl1yomRW6VOiYhf0pzKiZE7BQlvlTolIqamTjlYtVOgVomIiWlO5cSqrVKnRMS01CknRumU2++8vnbtWn7++WcyZcpEQEAAAQEBVKpUiXHjxtGjRw82btz4wG1XrlyZqMGKiIgxXL9+nTRp0gCwfPlymjZtSkBAAOXKlePQoUM+HZs6JSIiRu4UqFUiImLsVqlTIiJi5E5BwlulTomIWINVOwVqlYiIVVi1VeqUiIg1GKVTbt+8Hh0dTerUqQHImDEjx48f57HHHiN37tzs3r37odtWrVo1YaMUERFDyZ8/P19++SXPPPMMP/zwA7169QLg9OnTPv8IKHVKRESM3ClQq0RExNitUqdERMTInYKEt0qdEhGxBqt2CtQqERGrsGqr1CkREWswSqcC3N2gaNGibNmyBYAnn3ySCRMm8NtvvzFy5EgiIiI8PkARESOw2b33ZQbDhg2jb9++5MmThyeffJLy5csDsa/GKlmypE/Hpk6JiD/yZqfM0CojdwrUKhHxT+qUMyO3Sp0SEX+kOZUzI3cK1CoR8U/q1D3qlIiI8WhO5UytEhExFnXKmVE65fY7rw8ZMoRr164BMHr0aBo0aEDlypXJkCEDCxcu9PgARUTEeJ599lkqVarEiRMnKF68uGN5zZo1eeaZZxx/Pnr0KNmyZSMgwO3XSiWYOiUiIkbuFKhVIiJi7FapUyIiYuROgVolIuLv1CkRETE6tUpERIzMKJ1y++b1OnXqOP47IiKCHTt2cP78edKnT4/NZvPo4EREDMMEr4rytixZspAlSxanZWXLlnX6c2RkJJs2bfLqq3PVKRHxS+pUHEbtFKhVIuKn1Ko4jNoqdUpE/JI6FYdROwVqlYj4KbXKiTolImIw6lQcapWIiIGoU3EYoVNu37z+X0eOHMFms5EjRw5PjUdERCzEbvdt/dUpERF5GF93CtQqERF5OF+3Sp0SEZGH8XWnQK0SEZEHU6dERMTo1CoRETGypO6U2+/nfvfuXYYOHUq6dOnIkycPuXPnJl26dAwZMoQ7d+64tI/27dtz5cqVOMuvXbtG+/bt3R2SiEjSs3vxSxJFnRIRv+TNTqlViaZWiYhfUqdMQ50SEb+kOZWpJLZV6pSImJI6ZRqaU4mIX9KcylQ0pxIRv6NOGZLbN693796dDz74gAkTJrBx40Y2btzIhAkT+Oijj3j11Vdd2secOXO4ceNGnOU3btxg7ty57g5JRETEQZ0SERGjU6tERMTI1CkRETG6xLZKnRIRkaSkOZWIiBid5lQiImIEQe5uMH/+fBYsWMDTTz/tWFasWDFy5cpFixYtmDFjxgO3vXz5Mna7HbvdzpUrVwgJCXF8Lzo6mmXLlhEeHu7ukEREkpxNr4oyDXVKRPyROmUuapWI+CO1yjzUKRHxR+qUuSS0VeqUiJiZWmUemlOJiD9Sp8xFcyoR8TfqlDG5ffN6SEgIefLkibM8T548JEuW7KHbhoaGYrPZsNlsFCxYMM73bTYbI0aMcHdIIiJiUDabzevHVKdERMRVvugUqFUiIuI6zalERMTIzDanUqdERPyL2ToFapWIiL8xW6vUKRER/5LUnXL75vVu3boxatQooqKiSJ48OQC3bt1izJgxdO/e/aHbrly5ErvdTo0aNVi8eDFhYWGO7yVLlozcuXOTLVs2d4ckIiIGZbd7/6Vr6pSIiLjKF50CtUpERFynOZWIiBiZ2eZU6pSIiH8xW6dArRIR8Tdma5U6JSLiX5K6Uy7dvN60aVOnP//444/kyJGD4sWLA7B582Zu375NzZo1H7qfqlWrAnDgwAFy5crls1eQiYiId+zYscMrkxN1SkREEsJbnQK1SkREEkZzKhERMTKzzanUKRER/2K2ToFaJSLib8zWKnVKRMS/JHWnXLp5PV26dE5/btasmdOfc+bM6dZBc+fOza+//srMmTPZv38/ixYtInv27MybN4+8efNSqVIlt/YnIpLkfPOCV8O6efMm7733HitXruT06dPExMQ4fX/Dhg2A+31IKHVKRPyeOuXEaJ0CtUpERK1yZrRWqVMi4vfUKSdG6xR4tlXqlIiYklrlYPVOgVolIiakTjmxeqvUKRExHXXKiVE65dLN61FRUR496OLFi2nTpg2tW7dmw4YN3Lp1C4ArV64wduxYli1b5tHjiYiIZ7Vv354VK1bw7LPPUrZsWZ+/oladEhGR/zJap0CtEhERZ0ZrlTolIiL/ZbROgWdbpU6JiJib1TsFapWIiNlZvVXqlIiIuRmlUy7dvB6fM2fOsHv3bmw2GwULFiRTpkwubzt69GhmzJjBiy++yIIFCxzLK1SowMiRIxM6JBGRJGPTK7CcLF26lGXLllGxYkVfD+WB1CkR8SfqlDMzdArUKhHxL2qVMzO0Sp0SEX+iTjkzQ6cg4a1Sp0TEjNSqe6zeKVCrRMR81ClnVm+VOiUiZqNOOTNKpwLc3eDatWu0b9+erFmzUqVKFSpXrky2bNno0KED169fd2kfu3fvpkqVKnGWp02blosXL7o7JBER8bLs2bOTJk0aXw8jXuqUiIgYuVOgVomIiLFbpU6JiIiROwWJb5U6JSJiblbvFKhVIiJmZ/VWqVMiIuZmlE65ffN67969Wb16Nd988w0XL17k4sWLfPXVV6xevZo+ffq4tI+sWbPy999/x1m+Zs0aIiIi3B2SiIh42aRJkxgwYACHDh3y9VDiUKdERMTInQK1SkREjN0qdUpERIzcKUh8q9QpERFzs3qnQK0SETE7q7dKnRIRMTejdCrI3Q0WL17M559/TrVq1RzL6tWrR4oUKXjuueeYPn36I/fRuXNnevbsyaxZs7DZbBw/fpy1a9fSt29fhg0b5u6QPC7m6lVfD8ESbDdu+HoI1mFz+3Um4mn6+BAnZcqU4ebNm0RERJAyZUqCg4Odvn/+/Hkfjcw/OgVwd9deXw9BxCGi///5egjW4NrvLeKnTjkxcqfAf1olYhT2GF0kDUH/G5wYuVXqlIgP2GN8PQJRp5wYuVOQ+FaZolO6LojI/dQqB6t3CkzSKvGIWgHNfT0EEc9Qp5xYvVXqlIiYjjrlxCidcvvm9evXr5M5c+Y4y8PDw13+mKv+/ftz6dIlqlevzs2bN6lSpQrJkyenb9++dO/e3d0hiYiIl7Vs2ZJjx44xduxYMmfOjM1m8/WQHNQpERExcqdArRIREWO3Sp0SEREjdwoS3yp1SkTE3KzeKVCrRETMzuqtUqdERMzNKJ2y2e12t15XULNmTTJkyMDcuXMJCQkB4MaNG7Rt25bz58/z448/PnIft2/fJlmyZFy/fp0dO3YQExNDZGQkqVOn5uzZs2TMmDFhj8ZDage38OnxrcIWGOjrIViH3nndI364MS/B2xYaPtmDI3m4XSN6ee1YCZUyZUrWrl1L8eLFfT2UOPyhU6B3YhCDUac8YkX0wgRv681OgfFbZeROgX+0Sp0SQ1GnPCIxnQLNqe5n5Fb5Q6dArRKxohUxixK8reZUzozcKUh8q9QpEfGFxHQKNKf6L6t3CtQqEfENzak8x+qtUqdExBfUKc8xSqfcfuf1d955h7p165IjRw6KFy+OzWZj06ZNhISE8MMPP7i0j+eee44vvviClClTUqZMGcfyU6dOUbNmTbZt2+busERExIsKFSrEjRs3fD2MeKlTIiJi5E6BWiUiIsZulTolIiJG7hQkvlXqlIiIuVm9U6BWiYiYndVbpU6JiJibUTrl9tuPFS1alL179zJu3DhKlChBsWLFGD9+PHv37qVIkSIu7ePEiRN06NAhzrJq1apRqFAhd4ckIpLkbHbvfZnB+PHj6dOnD6tWreLcuXNcvnzZ6cuX1CkR8Ufe7JQZWmXkToFaJSL+SZ1yZuRWqVMi4o80p3Jm5E5B4lulTomIGalT91i9U6BWiYj5aE7lzOqtUqdExGzUKWdG6ZTNbrd7/XSdO3eOKlWqULt2bSZPnsyxY8eoUaMGxYsXZ8GCBQQE+PYjvWsHt/Dp8a3CFhjo6yFYhz7m3iN+uDEvwdsWHjbZgyN5uJ0jjf3RIYDjOm2z2ZyW2+12bDYb0dHRvhiWxxi9U6CPuRKDUac8YkX0wgRv681OgfFbZfVOgfFbpU6JoahTHpGYToHmVPezequM3ilQq0SsKDEfHaw5lTN1Sp0SEc9LTKdAc6r/snqnQK0SEd/QnMpzrN4qdUpEfEGd8hyjdCrIlZW+/vprl3fYqFGjR66TIUMGfvjhBypVqgTA0qVLKVWqFJ988okhAiYiEocJXhXlTStXrvT1EJyoUyLi99QpJ0brFKhVIiJqlTOjtUqdEhG/p045MVqnwLOtUqdExJTUKgerdwrUKhExIXXKidVbpU6JiOmoU06M0imXbl5v0qSJSztz5677HDlysGLFCipVqkStWrWYN29enDv5RUTEmKpWrerrIThRp0RE5L+M1ilQq0RExJnRWqVOiYjIfxmtU+D5VqlTIiLm5Q+dArVKRMTM/KFV6pSIiHkZpVMu3bweExOT6AOlT58+3khdv36db775hgwZMjiWnT9/PtHHExHxJJtegRXHr7/+ysyZM9m/fz+LFi0ie/bszJs3j7x58zpeYest6pSI+Dt1Ki4jdQrUKhERtSouI7VKnRIRf6dOxWWkTkHiW6VOiYjZqVXOrNYpUKtExNzUqbis1ip1SkTMTJ2KywidcunmdU+YMmWKtw4lIiJJbPHixbRp04bWrVuzYcMGbt26BcCVK1cYO3Ysy5Yt8/EI3adOiYhYhxU7BWqViIiVWLFV6pSIiHWoUyIiYmRW7BSoVSIiVmLFVqlTIiLWYZROuXzz+o0bN/jpp59o0KABAIMGDXIMGiAwMJBRo0YREhIS7/Zt27YF4O7du3zyySfUqVOHLFmyJGbsIiLeo1dgORk9ejQzZszgxRdfZMGCBY7lFSpUYOTIkT4ZkzolIn5NnXJixE6BWiUifk6tcmLEVqlTIuLX1CknRuwUJK5V6pSImJ5a5WDFToFaJSImp045sWKr1CkRMTV1yolROuXyzetz587l22+/dQRs6tSpFClShBQpUgCwa9cusmXLRq9evR5+wKAgunbtys6dOxMxbBER8aXdu3dTpUqVOMvTpk3LxYsXvT8g1CkREbnHiJ0CtUpERO4xYqvUKRER+ZcROwWeaZU6JSJiflbuFKhVIiJWYOVWqVMiIuZnlE4FuLriJ598Qvv27Z2Wffrpp6xcuZKVK1fy1ltv8dlnn7m0ryeffJKNGze6N1IREV+ye/HLBLJmzcrff/8dZ/maNWuIiIjwwYjUKRHxc97slAlaZcROgVolIn5OnXJixFapUyLi1zSncmLEToHnWqVOiYgpqVMOVu8UqFUiYkKaUzmxeqvUKRExHXXKiVE65fI7r+/Zs4eCBQs6/hwSEkJAwL1738uWLUu3bt1c2tcrr7xCnz59OHr0KKVLlyZVqlRO3y9WrJirwxIRER/o3LkzPXv2ZNasWdhsNo4fP87atWvp27cvw4YN88mY1CkREfmXETsFapWIiNxjxFapUyIi8i8jdgo81yp1SkTE3KzeKVCrRETMzuqtUqdERMzNKJ1y+eb1S5cuERR0b/UzZ844fT8mJoZbt265tK/nn38egB49ejiW2Ww27HY7NpuN6OhoV4clIiI+0L9/fy5dukT16tW5efMmVapUIXny5PTt25fu3bv7ZEzqlIiI/MuInQK1SkRE7jFiq9QpERH5lxE7BZ5rlTolImJuVu8UqFUiImZn9VapUyIi5maUTrl883qOHDnYtm0bjz32WLzf37JlCzly5HBpXwcOHHD1sCIihmAzwUd6eNuYMWMYPHgwO3bsICYmhsjISFKnTu2z8ahTIuLP1Km4jNYpUKtExL+pVXEZrVXqlIj4M3UqLqN1CjzXKnVKRMxIrXJm5U6BWiUi5qNOxWXlVqlTImI26lRcRuhUwKNXiVWvXj2GDRvGzZs343zvxo0bjBgxgvr167u0r9y5cz/0S0REjK19+/ZcuXKFlClTUqZMGcqWLUvq1Km5du0a7du398mY1CkREfmXETsFapWIiNxjxFapUyIi8i8jdgo81yp1SkTE3KzeKVCrRETMzuqtUqdERMzNKJ2y2e12l15XcOrUKUqUKEGyZMno3r07BQsWxGazsWvXLqZOncrdu3fZuHEjmTNndvngO3bs4PDhw9y+fdtpeaNGjdx7FB5WO7iFT49vFbbAQF8PwTpsLr/ORB7ihxvzErxtkYGTPTiSh9s+vpfXjpVQgYGBnDhxgvDwcKflZ8+eJUuWLNy9e9frY/KnTgHUCmju6yGI3KNOecSK6IUJ3tabnQLjt8qInQL/apU6JYaiTnlEYjoFmlPdz4it8qdOgVolYkUrYhYleFvNqZwZsVPg+VapUyLiTYnpFGhO9V/+0ilQq0TEuzSn8hx/aZU6JSLepE55jlE6FeTqipkzZ+b333+na9euDBw4kH/vebfZbNSqVYv333/f5Xjt37+fZ555hq1bt2Kz2Zz2BRAdHe3u4xARES+4fPkydrsdu93OlStXCAkJcXwvOjqaZcuWxQmbt6hTIiJi5E6BWiUiIsZulTolIiJG7hR4rlXqlIiIOflLp0CtEhExK39plTolImJORuuUyzevA+TNm5fvv/+e8+fP8/fffwOQP39+wsLC3Dpoz549yZs3Lz/++CMRERGsW7eOc+fO0adPHyZOnOjWvkREvMKlz6iwvtDQUGw2GzabjYIFC8b5vs1mY8SIET4YWSx1SkT8ljoFGL9ToFaJiB9TqwDjt0qdEhG/pU4Bxu8UeKZV6pSImJJa5TedArVKRExInQL8p1XqlIiYjjoFGK9Tbt28/q+wsDDKli2b4IOuXbuWn3/+mUyZMhEQEEBAQACVKlVi3Lhx9OjRg40bNyZ43yIiknRWrlyJ3W6nRo0aLF682GkCkyxZMnLnzk22bNl8OMJY6pSIiH8yS6dArRIR8VdmaZU6JSLin8zSKUhcq9QpERFz8pdOgVolImJW/tIqdUpExJyM1qkE3byeWNHR0aROnRqAjBkzcvz4cR577DFy587N7t27fTEkEZGHsukVWABUrVoVgAMHDpArVy7Hxz5ZjTolImajTsXyl06BWiUi5qNWxfKXVqlTImI26lQsdUqdEhHjUqv8p1OgVomI+ahTsfylVeqUiJiNOhXLaJ0K8MVBixYtypYtWwB48sknmTBhAr/99hsjR44kIiLCF0MSERE37Ny5k99++83x52nTplGiRAlatWrFhQsXfDgyz1CnRETMzeqdArVKRMTsrN4qdUpExNzUKRERMTKrdwrUKhERs7N6q9QpERFzM0qnfHLz+pAhQ4iJiQFg9OjRHDp0iMqVK7Ns2TLeffddXwxJROTh7F78MoF+/fpx+fJlALZu3Urv3r2pV68e+/fvp3fv3j4eXeKpUyJiOt7slAlaZfVOgVolIiakTjmxeqvUKRExHc2pnKhTIiIGpE45WL1ToFaJiAlpTuXE6q1Sp0TEdNQpJ0bpVJDXjvQfderUcfx3REQEO3bs4Pz586RPn97nb0UvIiKPduDAASIjIwFYvHgxDRs2ZOzYsWzYsIF69er5eHSJp06JiJib1TsFapWIiNlZvVXqlIiIualTIiJiZFbvFKhVIiJmZ/VWqVMiIuZmlE755J3X4xMWFqaAiYhh2eze+zKDZMmScf36dQB+/PFHateuDcRey/99ZZbVqFMiYmTe7JQZWuWPnQK1SkSMTZ1y5o+tUqdExMg0p3KmTomIGI86dY8/dgrUKhExNs2pnPljq9QpETEydcqZUTrl1Xdeb9++vUvrzZo1K4lHIiIiiVGpUiV69+5NxYoVWbduHQsXLgRgz5495MiRw8ejSzh1SkTEGqzaKVCrRESswqqtUqdERKxBnVKnRESMzKqdArVKRMQqrNoqdUpExBqM0imvvvP67NmzWblyJRcvXuTChQsP/HLHn3/+SevWrcmbNy8pUqQgZcqU5M2bl9atW/PXX38l0SMREfFvU6dOJSgoiM8//5zp06eTPXt2AL777jvq1q3r49ElnDolImINVu0UqFUiIlZh1VapUyIi1qBOuU6dEhHxPqt2CtQqERGrsGqr1CkREWswSqe8+s7rXbp0YcGCBezfv5/27dvzwgsvEBYWluD9ffnllzz33HPUrFmTnj17kjlzZux2O6dPn2b58uVUrFiRzz77jMaNG3vwUYiIXzLBR3p4U65cufj222/jLJ88ebIPRuM56pSImJY65cSqnQK1SkRMTK1yYtVWqVMiYlrqlBN1yjXqlIh4lVrlYNVOgVolIiamTjmxaqvUKRExLXXKiVE65dV3Xn///fc5ceIEAwYM4JtvviFnzpw899xz/PDDD9jt7v8NGTJkCCNHjuS7777jtddeo2XLlrRq1YrXXnuNZcuWMXLkSF5//fUkeCQiIsbxyy+/0LBhQ7Jly4bNZuPLL7986PqrVq3CZrPF+dq1a5fLx6xWrRpz587lxo0biRy9sahTIiKep055llolIuJ5apXnqFMiIp6nTnmOOiUi4nnqlGepVSIinqdWeY46JSLief7cKa/evA6QPHlyWrZsyYoVK9ixYwdFihThlVdeIXfu3Fy9etWtff399980bdr0gd9v0qQJ+/btS+yQRURiX4HlrS83Xbt2jeLFizN16lS3ttu9ezcnTpxwfBUoUMDlbUuXLk3//v3JkiULnTp14o8//nB32IalTomIKXmzU262Sp3yPLVKREzJoJ0CtcrT1CkRMSXNqZyoU65Rp0TEq9QpByt3CtQqETEpzamcWLlV6pSImJI65cQonfL6zev/9e9d/3a7nZiYGLe3z5cv30NfafDVV18RERGRiBGKiBjf008/zejRox/6Q318wsPDyZIli+MrMDDQ5W0nTZrEsWPHmDt3LmfOnKFKlSpERkYyceJETp065e5DMCx1SkQk8dSppKVWiYgknlqVdNQpEZHEU6eSjjolIpJ46lTSUqtERBJPrUo66pSISOL5c6eCvHakf9y6dYsvvviCWbNmsWbNGho0aMDUqVOpW7cuAQHu3Us/cuRIWrRowerVq6lduzaZM2fGZrNx8uRJVqxYwfLly1mwYEESPRIR8Sc2Xw8gCZQsWZKbN28SGRnJkCFDqF69ulvbBwYG0rhxYxo3bsyZM2eYOXMmQ4cO5fXXX6devXr06NGDGjVqJNHok446JSJmpE7FZdVOgVolIuakVsVl1VapUyJiRupUXOrUo6lTIuJNVmuVOvVgapWImJHVOgVq1YOoUyJiRupUXEbolFdvXn/llVdYsGABuXLl4qWXXmLBggVkyJAhwftr1qwZv/zyC++88w5vv/02J0+eBCBLliyUL1+e1atXU758eU8NX0TEK27dusWtW7ecliVPnpzkyZN7ZP9Zs2blgw8+oHTp0ty6dYt58+ZRs2ZNVq1aRZUqVdze37p164iKimL+/PmEh4fTrl07Tpw4QcOGDenatSsTJ070yLi9QZ0SEXFNUrZKnXo4tUpE5NE0p/IddUpExDWaU/mGOiUi4hp1ynfUKhER16hVvqFOiYi4Rp1yjc1ut9uTbO/3CQgIIFeuXJQsWRKb7cGvZ/jiiy+8NaR41Q5ukaT7b9ilFs17NyQsayiHdhxleu+5bPtt1wPXf7xyYbpMbEPuyBycO36BzyZ9w9IPfox33WrPlef1T3ry+1d/8sazk+7to1IhmvdpSIFSecmQLYw3mk3k96//8vhj+y+bGx9FkBANXn6K5r3rE5YllEM7jjGj3zy2/bb7ges/XrkQnd98gdyR2Tl34iKLJn3L0g9/clonVbqUtBvxHBUblyFN+lScPHiGDwZ8wp8/bAYgIDCANkObUaNFBdJnDuX8yYusmPcLn477kiT9p2Rz79WJ7mjwck2a96pPWJZ0seex/8ds+23PA9d/vFIhOr/Z6t55fHspSz/82WmdZ7rXoX6nmoTnzMDlc1f4dcmfzBr6GXdu3QEgReoQ2g5vRoVGZQjNlJZ9mw8xve889qw/kGSPE+CHG/MSvG2xXpM9OJKHa5ruEiNGjHBaNnz4cN54441Hbmuz2ViyZAlNmjRx65gNGzbEZrPx9ddfu7T+6dOnmTdvHlFRUezdu5eGDRvSsWNH6tSp47i+//jjjzRp0oSrV6+6NRZfMkunAGoFNPfYvhp2rU3zvo3JkDWUg9uPMr1XFNvWPLhLxapE0nlSW/IU+adLb33FtzNXOK1TqemTtBvZgqz5MnNi3ymihsznty/Xxbu/FgOb0GFsa754ZynTe812LA8NT0en8S9QunYxUoWmYusvO5nW4yOO/X3SI4/b03xxHgMCA3jxjeeo0aoyYVlCOX/iAsvnrOKT0YsdXWozvDnVnq9IppwZuHv7LnvX7ydqyHx2rfvbcw8+CTsVn4ZdatO8b8N757r3nEec68J0nvjivXM98Wu+nXnvZ6lKz5Sl5cAmZMufhcDgQI7vPcnnk7/lx49/9cbDcVgRvTDB23qzU5DwVqlTiWeWViWmU77q0qOOG5IqhI7jW1Oh8ROkzZCGUwdPs+S97/h2xnLHOhN/foPi1Yo47Xflgt8Y22pKgs+HJ/ni3D5euTDN+zaiYOkIMmQLY/gzE/j9qz+d9/FMWeq/XIsCpSNIlzEtXUr2Y9/mg5574EncKU93KXdkDtqOeI4CpfKSJU847/eaw5J3lzntI0XqENqNfJ6KTZ4gNDwdf288wPu95rDnr31J9jgT0ynQnOp+Vm2VWToFnp1TeZq712uJn87jPZ7+GSC2Vc9ToHTEP62KYsk7zq1y5WcAT1sRsyjB22pO5UydUqceRddYz/DX8+ireX+GbGF0HN+ask+XJFmKZBzbc4JJHaezd8N+wLV5f2IkplNgjjmVOpV4/tSqxPy8WKTCY0xaNYKD247QpVS/RI0DIFPOjLw6tQMlahTl9o3b/Dx/DR/0ncfdO3cByJw7Ex8feD/OdoOeHsNfP2xK9PGNSp0y1nOoSd0p0JzqYdSqWP7UqaTkT9fXNsOb8+Lw55yWnT95keezdYp3/bAsoXSe2JYCpSPIXiALX773ndM9JInxqN7/69k+Danf6SnCc2fi4ulLfDtjOfPHLfHIGBLCqL837TerG7XbVXPaZucfe+hRYbDTssLlCvLS6JYUejI/0Xei2bfpIK/XG8vtm7fdPhfq1IOZtVNefef1F1988aHx8gdVm5eny6S2vPfqR2z/fTf1Oz3FmG8H0rFYH84cORdn/Sx5MjHmmwEs++hnxredSpEKj/Hqex24dOYya5Y4XzTCc2Wk05svsPXXnXH2E5IqhP1bDvHDnFUMX9QnyR6ft1R9thxdJrZhas8otv++h/odazD6q/50Ktk/3vOYOU8mRn/Zj+9mreTNl96nSIWCdH/nJS6dvcyaL2N/6A8KDmTc0oFcPHOZ0a3e5eyx82TKEcaNKzcd+3m+b0Pqd6zJxI4zOLTzKAVKRdDng5e5duk6X077wWuP31OqPvskXd56gak9Z7N97V7qd6zO6C/70anUwPjPY+5MjP6yL99FreTN9jMoUr4A3d9p9895jH0xRPUWFWg/6jne7vIhO9buJXuBLPT938sAzOz/CQC9pncgT2QOJrSfwfkTF6jRsiLjlw6kU6mBnDt+wXsnwKAGDRpE7969nZZ56h0CH6RcuXJ8/PHHLq+fI0cO8uXLR/v27WnXrh2ZMmWKs07ZsmV54oknPDnMJOePnar6XAW6Tn6J97r9j+2/7aZ+51qMXTaYDkV6cebI2TjrZ8kTzuilg/juw594s827FKn4GK9O68TFM5dZ88X/AbE/fA5Z0IvZwxbw25J1VHymLEMW9qJX5aFxbpguWCYf9TrVivcGtRFL+nP3zl2GNZnA9cs3aNa7AW+uGEbHIr24ef1WnPV9yVfnscWAJjToXIsJ7aZxaPsRCpbJR99Zr3Dt0nXHTW5H95xg6qsfcWL/KZKnSEazXg0Y/8NQ2hZ4lUtnL3vvJHlI1efK03VyW97r/lHsuX75KcYuHUSHor0f+LPU6G8H8t2HP/Pmi1Njz/XUDv+c69ifpS6fv8qn45ZwZNdx7ty+S7n6pej7UVcunr7MX8s3e/shmoK3W6VO3WP1VvnqeurKcbtObkvxakUZ3+ZdTh08Q+naxekxrSPnjp9n7X9eGLz0fz8yZ9i9m3xv3XD/yZek4KtzG5IqOfu3HGL57JUMXxz/LxNDUoWw/ffd/PL5Wnr/r2vSnYQkkBRdSp4yOSf2n+KXz/+gy6QX4z1u7/91Jk+RnLzZdhrnjp+nZuvKTFg+hA5Fe2tOheZUvmT1TnmDu9driZ/O4z1J8TNA8pTJOXHgNL98vpYub7eL97iu/AzgzzSn8g11yjN0jfUMfz2Pvpqbpg5NxZQ1o9i8cjuv1xvLxdOXyJYvM1cvXnMcy9V5vz9Qp3zHn1qV0J8XU6ZNSf853dn401bSZw5N9DgCAgIY8+0gLp65TK/KQ0mbIQ39Z3fHZrMxrccsp3X7PzWCg9uPOv585bx5bjh1lzplvOdQ1SlnapVv+FOnkoo/Xl8PbDvMgFqjHH+OiY554LrByYO5dPYyn45dTLPXGnhsDK72/pV3XqJ0reJ80G8eB7YeJlW6lKTNmMZj43CXkX9vCrDuu41MbH/vBX53bzu/EKBwuYKM+24w88cvYVqPj7h7+y4RxfNgj3nw3wGrUKdc49Wb12fPnu3Nw/H6669z8uRJZs2a9eiVvaTZa/X5Pmol389aCcCMPnMpU6s4DTvXYtaQBXHWr/9yLU4fPseMPnMBOLLrOAVLR/Bs7wZON68HBNgYOLc780Z+TtFKhUidLqXTfv78YRN/WuhVv017PM0Ps1fxfdQqAGb0+5jStYrR4OWniBoa993gGnSsyekj55jRL/Yf6ZHdxylYKoJmr9V33Lxep2010oSlple1EUTfjQbg9GHnC33hJwuw9tv1rPt+EwCnDp2l+nPlKVA6IokeadKKPY+r+X72agBm9PuE0k89ToNONYka9lmc9Rt0qsHpI2eZ0S/2JvTY85iXZq/Vc9y8Hvlkfrav3cvKhWsBOHX4LKs+W8tjZfIBkCwkmEpNnuCN5pMd75T/8ZglVGhYmgadajJnxOdJ/rgTwua1z6jw7MfZu2rjxo1kzZrV5fV//PFHSpcuTapUqQA4dOgQS5YsoXDhwtSpUweAtGnTsnLlyiQZb1Lxx04169WA72f9zHcfxX6CwvResylTuzgNu9Zm1uufxlm/QZdanDl81vHq1sO7jlGwTD6a92nk+GG3ac/6rF+xhQXjvwRgwfgvKValCE171mds63cc+wpJFcKgj3sw+eUZtB7czOk42QtkJbJ8QToW7cWhHbFPBL73yocsOvUh1VtWdIzXKHx1HguXK8jvX//FumUbADh16AzVW1SkYOl8jmOtnL/G6dgzes/h6Q41iSiWi40/b/PoefCGZq/Vdz7XvefEnusutZk1eH6c9Rt0rsWZw+eY3nsO8M+5Lh1B894NHTcJblm9w2mbJe99R60Xq1Kk4mOmuXndm50C77dKnbrH6q3y1fXUleMWLleQFXNXOa4Zy/73I/VfrkXBMvmcfjlw6/otLpy66PFzk1i+Ord/fr+JP/+ZPz3Ijx//AsS+WNZskqJLe/7a53gH9Q5jW8bZR7KQYCo3fZJhz7zlePH6vJGfU7HxEzTsUpvZwxL3DulJRXMqZ1ZtldU75Q3uXq8lfjqP9yTFzwBOrRrXOt7juvIzgJFoTuVMnfIMK3YKdI31FH89j76amz4/oAlnjpxjYod7N1acOnTG6Viuzvt9xcpzKnXqHn9qVUJ/Xnxtxsv8PH8NMdExVGxcNs7367SrxnP9GpMlbzgnD57hy/eW8c30B78zdenaxcgVmYNBubpw7kTsGwLM7DuHflHdiBo8n+tXbjjWvXzuqiGf90sK6pTxnkNVp5ypVb7hT51KKv54fY25G+NyP08dOsP7r0UBUPelGg9cLyl6n6tQdhp2qU2nx/twdM9x1x9gEjLy700B7ty689D/t13fbsuS95ax8M0vHcuO/X0yoacjUdQpZ0bpVNJ+draPHTt2jIMHD/p6GA5BwYEUKJWXDSu2OC1f/+MWIssXjHebyHIFWP/jfesv30LB0hEEBgU6lrUe0oxLZy7zfZS5frBJiH/P4/oftzotX//jViLLFYh3m8LlCsRZ/68VWyhYOq/jPJZrUIqd/7eX7u+0Y8Gh95m5fjwt+jciIODeqwa3/b6bEtWLkD1/FgAiHs9FkQqPmeoXMf8KCg6kQMk8rP/pvvP407YHn8cn87P+J+cbHf/6cSsFS907j9t+30OBknl4rEzsDf1Z8mTiiTrF+b9/zlFgUCCBQYHcvnnHaT+3bt6mSIX4/x3Iw129epVNmzaxadMmAA4cOMCmTZs4fPgwEPtqrhdfvPeOjVOmTOHLL79k7969bN++nUGDBrF48WK6d+/u8jFHjx7NvHnzALh48SJly5Zl0qRJNGnShOnTp3vuwVmcrzsVFBxEwdIRrL/v5tz1K7ZQpPxj8W5TuFxB1t/Xsb9+2EzBMve6FFm+IOtXOO/zr+WbiKzgvM9Xp3bg/5ZtYON91yGIfUUt4HStiImJ4c7tuxStWNjFR+gdvjyP237bRckaRcleIPaH0IhiuSlaqRDrvtvwwLHWe/kprl68xr7Nh9x7oAYQFBwYe67v/1lqxWaKPOBnqdhzff95dD7X9ytZoyg5Hssa76fZiPvUKXPzZqt8dT119bjbf9tF+YZlyJAtDIDi1YqQo2BW/vrBebsarSrz+emP+N/Wt3n5rTakSB3i6ilIMr5uvlV5q0v3+3dOdef+OdWN2xSt6B/n3tPUKvPy9ZzK0xJyvZa4dB7vSaqfAcS71CnzslqnQNdYT/HX8+jLuWn5hmXYs34fQxf25rOTHzJ9/QSe7ljTaRtX5/3iTJ0yN7O1qk67amTLl5l5IxbF+/2nO9bkpdEtiRoynw6RvYga/CntRrag1otVH7jPyPKPcXDbYceNbBB7nUkWkizOG9iN/GoAn538kCm/jqJys3KeeVAGpE4Z8zlUdSrh1CrzMlunHsVfr6/ZCmRhwdGZzN03jdc/fY0secMTtb+k6n25hqU5sf805RqUYu6+aczbP43e/+tCmvSpEzXehDL6700htkWfnfyQqF3v0OuDzoRmSuv4XmimtBQuV5CLpy8xZc1oPjvxPyatHEGRioXcOAv+wZ875dV3Xve2OXPm+HoITtJmTEtgUCAXTl9yWn7h1KUHfqRV+syhXDh13/qnLxEUHES6jGk4f/IikRUKUvel6nQtMzCphm4oaTOmITAokIv3nceLpy+RPnO6eLdJnzldvOv/9zxmzRtOiWqR/Lzgd4Y0mUD2/FnoPqUdgUGBfDJ2CQCfTfyGVOlS8uGWt4iJjiEgMIDZwxex6rO1SfNgk9D/s3ff4U1WDx/GvyktLXvTInvLFsoPQQUZAgIKKA4UGbIEEbDIEFEBByigoALiYigqoij6sgRRkCkyRVbZs6XsTUtp3j8qgdAW0jTjJLk/19XrsumT5ORInzunefLk+jyetbv89NHbzOPRm+fx7H/zmF0nY89o6ferlSt/Dr23+DVZLMlR+79PftPMMXMkSZfOX9bW1Tv19ODWOrDjiE4fPaP6T9TRnf8rrcO7jrrnwbqCh9+BlR5r165VgwYNbN9f+9iRjh07aurUqYqJibEFTZISEhLUv39/HT58WFmyZFGlSpU0d+5cNW/e3OH7XL9+vcaOHStJ+uGHHxQREaENGzZo1qxZev3119WzZ08XPTr/5u1O5fpvP3DzOyFPHT2tPBG5U71O3ojcWpvK9jfuT/NEpNKuo2fsbrP+k/eobI1S6lUr9XYd3H5Ysfvi1GXE0xrX41NdvhCvNv0eUr5CeZS3UOpj8xZvzuN3785WtlxZNXnbOFuXprz6rf6YscLuene3qKEh30YpNGtmnYw5rUFN3tTZE+ecfchek+vac6nbzMuN8kbk0tpUtr9xriUpa84smnFwkkJCg5V0NUkfvvCF1v+W8o0VxqJTduiU63iyVd7anzp6vxP6TFHUp89pxqFPlHglUUlJVo3tNklbVmy3bbP4m2WK3RunU7GnVaJyUXUe0U6lqpbQy03flDd5s1X+zJ1dupVL5y9ry8odajfkUR3Ydlinjp5Wg6fu1Z13l9Hhnd45Y4VDaJUdWuUa3l5TuZoz+2ukxDxe567nAH6JTtmhU67hb52S2Me6SqDOozfXpoVKFdTDPZpo1tg5+mbkj7qzVhn1+qCzrsRf0W9fJX8amCPrfq8ytFV0yrf5UqsKl4lQl5HtFFXvdSVdTUp1m2defUyf9P/S9gn2sfviVKxiEbXo3liLvlya6nXyRORO8fr3+dMXlBB/RXn/249cOn9ZH/ebqi0rdsialKQ6Lf+nITOiNLrTeC3+epnrHqQh6NRpu8tN+RsqnXIerfJdvtQpRwTi/nX7Xzs1quN4HYqOUZ7wXGo3pI0+WPG2ulaO0rmT5526TXf1vlCpcIUXz696j9XRqI4fKShTkHq+30mvff+SBj4w3KmxZoTpr5uuWbBBS39Ypbj9xxRRsqA6vdFWoxYPVa+ag3QlIVGFSoVLkjoMfUKfDvhSuzbuU+MO92vUb6+re5V+nj8DO52yY0qn/PrgdUfEx8crPj7e7rIk61UFWdx3Fhmr1f63wWKRZL3Fb8jNP7Ncv50s2cP08tQXNK7HZz55EFpGpJxHyy13NCmm2GKxux1LkEWnj53VB89/rqQkq3Zt2Kd8hfLosagWtoPX73+8tho9da/e6ThB+7ceVulqxdVj9DM6EXNKv033zYVp6vOY9kSmnEf7y6vWvVNPDWyp8X2navvfu3VH6XD1HPOMTsae1jfv/CxJGtV5kvp90k3f7vlIVxOvatfGffrju1Uqc1cJFz2qwFK/fv0U/x9vdPNHNw0cOFADBw7M0H1evHhROXLkkCQtXLhQjz76qIKCglS7dm3t3+97Z3M2nbtblSIzFsst/02lut+4+XZu0boCRfLp+XHP6uWmb+lKvP0ZQ6+5mnhVbzz2nl76vKd+OjlVVxOvav1vm7VmXupnFDeBp+dRSn4TQKN2dTWy3Qfat+WQytxVQj3HdtKJI6fsFmab/tiiHtUHKFf+HGrW7QG9+l0/9ak9WKeP2b+ByVekNne3nmv77y03PQeQpEvnLqtHjYHKkj1M1RtWUY8xHRSzJ8728YtwHp3yf67ulDf2p47cb+s+zVShdjm91vIdHd1/TFXrVVTvCV11IuaU7VNE5n++2Lb9vi0HdXhnrCaufVdlqpfUrg1703wMnuKtufV37ujS7bzbcYL6f95DMw5N0tXEq9q5fq9+/3aFylYv6fjAYUOr/J83/v6XEendXyN1zON1bnkOAI+hU/7P1zolsY91lUCdR2+sTS1BQYpeu1uTh3wrSdq9cZ+KVyqqh3s0tR287si6HynRqcDg7VYFBQVp8Nd99eWwmTq8MybVbXLlz6mCxfKr3+c9FfVpD9vlmYKDdOHMRUnS23NfUZW6yZ/ue3T/MXWrknxgUGr/hm/cN509cU4/jptr+1n0uj3KniebnhjQyi8PXr+GTiUz5W+odMp5tMr/ebtT6RVI+9e/F2y0/fe+f6Vtq6I1bdd4NelYX7PGzkn37bmz95agIGUOy6x3O463Pd94r+vH+njdKBUpd4cORR9J93hdwdTXTZfOXGn7731bDip67W5N3/ex7m5RQ8t/WiNLUPL9zv10kX6dukRS8jqsesMqatq5oSa/8k2ajyHQBHKnfP7g9QsXLuibb77RypUrFRsbK4vFovDwcN1777166qmnlC1btltef+TIkRo+3P7dMaUslVQ6U2WXj/Xs8bO6mnhVeW86y3rugrlSnI39mtTeLZOnQC4lXknU2RPnVbxSEUWULKg3Zg+w/fzaL//8S1+rc6V+itlj8NmsnXD2+DldTbya4mz1uQrkvMU8pjybeO4COW3zKEknY0/r6pWrSkq6vjM4sP2I8hXKo+CQTEq8clXdRj6t70b/n5Z+v1pS8s63YLH8ajugpc8dvH59Hu3nJVfBnDoVl/rBjMnvtLr1PHYc+pgWf7tCC6YmHzS5b8shhWUNVd8JnfXtu7/IarUqZm+cBjR5W6FZQ5UtZ5hOxp7RK1/1Uuy+Y254pC7in88TnVamTBnNnj1bjzzyiH799VdFRUVJkuLi4pQzZ87bXDuwZLRTUuqtKqkKKq1KGRrbmf/2A3lv6kzugik/ZeGak7GnlTciT4rtk/cDyW+iOhWbsl25C+ayvXuzbGQp5QnPrYlr37X9PFNwJlWpV0Gtej2o5mFPKykpSTvX71GPGgOUNWdWhWQO1pnjZ/XhqhHauW53hh63q3lrHiWp26j2+u7d2VryXfLCYN+/B1SweH61ffkRu4PXL1+M15HdsTqyO1bb/tqpqTs+1INdGmrGO7OdfNTecebac6kU85LzFnN9RnlvbldB+3ZJyYu4I7uTnzPt3rRfxSoU1lMvt/adg9fplB06lT7uWFM50ylv7U8dud/MYZnV+e2nNezR0bY3Uu3dfECl7yqhx19qmeaLAzvX79GVhEQVLlvIqweve7NV/sydXbqdmD1H9VLD4QrLGqqsObPoZOxpDfm2r2L3xaX7cXgMrbJDqxxn8prK1ZzZXyMl5vE6dz0H8Et0yg6dclwgdUpiH+sqgTqP3lybnow5pQPbDtltc2DbYdV9tLYk59f9HkWrbOhU+vhDq7LkCFP5/5VRmeol9cJHXSQlHxMRFBSkBQkz9HLTt7Rvy0FJ0tjuk7T9r1121792pvb3u01SaJbMkqTEK4mSkvchd9YqY7d99tzZFJI5+JZ/49q2OlrNujRyzQM0DJ3KbXe5CX9DpVO+h1Y5zh865ahA3b/e6PLFeO3dfECFyxZy6vrXjol0R+9PxpxS4pVEuzfKHdh2WJJUsFh+jx+8bvLrpmndd9z+Y7b/tydjTkuS9m9NuQ4rWDR/mrfjNnTKjimdCvLYPbnB1q1bVa5cOQ0cOFCnTp1SsWLFVKRIEZ06dUoDBgxQ+fLltXXrrQ84Gjx4sM6cOWP3VTKoglvGm3gl+WxoNR6oYnd5jUZVtHVVdKrX2bp6p2o0umn7xlUVvW6PriZe1cHtR9T9rv7qWXOQ7Wv1/63TpiVb1bPmIB07eNwtj8WbbPPYyP4NBjUaVdHW1TtTvc62VOYx8oEqil63V1cTr0qStq6KVqHS4bZ3HElSkbIROnHklBKvJG8TmiWzrEn2H0OWdDXJFkdfknjlqnZu2KcaDW+ax4aV057Hv3al2D6yURVFr78+j8lzZL/HT0pKksVikeWmaYq/GK+TsWeUPXdWRT5QRavmmHtGZdh7/fXX1b9/f5UoUUJ333236tSpIyn53VjVq1f38ujM4YpOSWm0SndmeHyJVxIVvW6PajSuand5jQeqasuqHaleZ9vqaNV4wH77yCbVFL12j93+NPLmbRpX09aVybe5YfFmdavSTz2qD7B97fh7l37/erl6VB+gpJv2sxfPXtSZ42dVuEyEytUsrZU//52hx+1q3ppHSQrLGmr3pispuUtBt+uSxaKQ0JBbb2OgxCtXk+f6gdTmOvXnUqnOdeOqdnOdKosUktnn3+cZsOiU49y2pnKiU97anzpyv8EhmRSSOTjFWuDqbfa5JSoVVUjmYJ2MOZXmNp7gzVb5M492KQ2XL8brZOxpZc+dTTWbVNPKX9am+zbgHbTKMaavqVzNmf01UmIer3PXcwD4PzrlmEDrlMQ+1lUCdR69uTbdsmKHipS7w26bIuUK6ej+5JMqObvuh3fQKcf5S6sunr2U4nWlOZ8s0oHth9Wj+gBt/2unTsed0bFDJ1SoVLjtZD7Xvq692f/EkZO2y+IOJB9HsXXVDpWoXMzuAK3IJtWUcDlBO9ftSXNMZaqX9Prf/NyFTpn3N1Q65XtolWP8pVOOCtT9641CMgerWIXCTjfUnb3fsmK7gkOCVahUuG2bIuWSD8S+tm7wJJNfN01NjrzZVaBoPp347/9t7L44HT98UkXKp1yHxR0w+OS2AcKUTvn0ETm9evVSvXr1NG3aNGXOnNnuZwkJCerUqZN69eqlP/74I83bCA0NVWhoqN1l7vzYkFnj5mrg1F6KXrdHW1dHq0XXB1SwWH7N+fQ3SVLnt9oqX+G8Gv3sREnJH53Q6vkmem50e837YrEq1i6nB59toJHPfChJuhJ/Rfu22L9D5fx/H4Nx4+Vh2UJ1R5kI2/cRJQuqVLXiOnfyvI4dPOG2x+suP344XwMm91T0+r3atnqnmndpqIJF82nuZ4slSc+++aTy35FHo7tMkiTN+XyxWvZsrO7vttP8yX+oQu2yatqpvt7pMN52m3M+/U0tezZRz/fa6+eJC1W4TITaDmylnyf+attm9bwNajuoteIOntD+bYdUuloJPdqnmRZOWypf9OOH8zXgix7J8/jXLjXv0iB5Hj//bx7feCJ5Hrt+Ikma89nvatmjsbq/+7TmT16iCneXUdNO9+udjhNst7l63gY92qeZdm3ar+1rdqtw6XB1fP0xrZ673naAZeQDVWSxSAejY1W4dLi6jmirQztjtfDLPz0/CXDKY489pvvuu08xMTGqVq2a7fJGjRrpkUce8eLIzOKKTknubdWssXM06Mveil67W9tWRat59/+6NGmhJKnziKeV/468GtUpeX85Z9Iitez1oJ57r6Pmf/abKtQppwc7N9SIp8fZbvOnD+fq/aVv6MmBrbTy5791T6v/qcYDVRRV9zVJ0qXzl21nwLjm8oV4nT15zu7yeo/V1uljZxV34LhKVimm58c9q5Wz12jdon9c8thdyRvzKEmr/2+dnn7lUcUdOK79Ww6qTPWSahP1sH6d8ruk5IPbnx7yqFb9slYnYk4pZ74cavl8UxUokld/fr/KcxPkQrPGzdWgaS8oet1ubVu1U827NUqe608WSZI6v/2U8hfOq1Gdkts055NFatmrqZ4b017zP/9dFeqUTZ7rdh/YbrPtoNaKXrdbR3YfVUjmYNVqVl2N29fTh72+8MpjRMbRKceZtqby1v70dvd78dwlbVqyRd1GtVf8pQTF7T+uqvdXVOP292vSS9MkSYVKhatRu7paM2+9zhw/p+IVi+i5MR20c/0ebVnh/T86emtuw7KFqfBNa9HS1Uro7Mnztjdb58iTXQWL5Ve+O5LPBnHtD1knY0/r1NHT7pyWDHNHl4JDMql4xSKSkv+Qm79wHpWuVlyXzl+2fUpIzSbVJIt0aMcR3VEmQt3ffUYHdxzRr1OWeHYC4DRa5RhfWFO52u3213AM83idO54DBIcE39SqfCpdrcR/rYqV5NhzAJiLTjkmEDslsY91lUCdR6+t+8fN0Qcr3tJTgx/R0pmrVL5WGTXv9oDGPZf8+pcj636Yg045zuRW3e754o37A6vVmuJ1pdNxZ3Tl8hW7y78aPlPPf9BZF89e0pr5GxQSGqLyNUspe57smjV2TqrjWLfwHx3YekiDvuytTwd+pZx5s6v76Paa9/liXTx3SZLUuMP9SrxyVbs37FVSklW1H45U697N9fnL0zM0ByajU2b9DZVO+R5a5RiTO+UugbZ/7T66vVb/3zrFHTiu3AVz6ukhbZQ1ZxYtnLZEUsr9qiSVrlZCkpQle5hy5c+p0tVK6EpCou2TlNzV+/W/bVb0uj3q/8Xzmhg1RUFBQeo9vovWLdxkdzZ2TzL1ddOwbGHqMOxxLZv1l07GnFJ4iQLq/PbTOnP8nFb8tMZ2OzPH/KyOw57Unk37tXvjPjXueL+K3llYbzz+ngdmD7diSqcsVqvVZ0+KnzVrVq1du1YVK1ZM9ef//vuvatWqpYsXL6brdpuEtHXF8NL0cI/GevyllspbKLf2bzmoSS99qc3Lt0uS+n/RU+HFC2jAA2/Ytq9St4J6vNdBxSsW0ckjp/TdmF8097+D3VPT/4ueyp4rq4Y9dv0XvWq9ihqz+PUU2y78cqnGdPnYhY/uOksm9z4ReKj7A3r8pYeUNyK39m85pEkDp+vf/+bxpc+eU3jx/BrY5G3b9lXq3qnnRj2TPI8xpzRzzBzbQdrXVLi7jJ4b1V6lqxXT8SOn9OvUJZo55v9sB11nyR6mjkMf0z2t/qfcBXLqRMwpLZm5Sl+//aPt7OxuYXHfhyQ81L2RHu/X4oZ5/Fr//ndwzUufdk+ex6YjbNtXue9OPTeqnYpXLKyTMac18705mvv577afB2UK0lODWumBp+9Vvjvy6Mzxs1o9d6OmDvteF/57Y0W9NrWSD4wvnFfnTl7Qip//1pSh3+vi2Utue5yS9Oulr5y+7l29x7pwJLe28aMoj90X3MtdnZKkxkGPZ3R4Ng/3bKInBrRS3kJ5tO/fg5rUb6o2L9smSRowuZfCSxRQ/4bDbNtXrVdRPd7vqOKViurEkVOaOWq27QCta+q2qa1Ob7ZVoVLhitkdqymvfqvlNzxJvdmY34dp96Z9+jhqqu2y1r2b6fH+LZUnPLdOxpzSoq+W6us3Z9k+2sk03pjHLNnD1OnNtrq3dS3lLphLJ46c1B8zVmj6Gz8o8UqiQkJD9MrXfXXn3WWVM38OnTtxTjv+3q2v356l6LW7Xffg3dip1Dzco4meGPDw9bl+6csb5jr5uVT/RtefS1WtV0E93uuo4pWKJM/16J8155Prz6U6vfGk6j9RR/mL5FP8pQQd3H5YP300X0tnevYA/0VXv3P6up7slESr/Im7WpWRTnmrS7e6X0nKE55bXUY8rcgm1ZQjb3Yd3X9M8z77zfaHsAJF8unlr/qoROWiCssepmMHT2jNvPX6avj3OnfqvNPz4UremNuq91fUe3/Yf1ynJC2cukSjOycf0N2kY30NmNIrxTZfDp+pr4Z/n/EH7uZOubpL4cULaPqe8SnuZ9OSLbbbqfd4bXV5+ynlL5JP506e1/If/9LkV2e4dU2VkU5JrKngHF9ZU7na7ZoExzCP17n6OUB48QKavndiivvZtGSL7XYceQ7gaouSnH/ewJoKzgjUTknsY10lUOfRW+v+u1vUUJcR7VS4bIRi98bph7FzNP+G1wlvt+7PqIx0SmJNBeeY3KrbPV9MbX9wo/ZDH9e9rWqpR40Bdpc3eOo+PdG/pYpVLKLLF+K1b/MB/fjBXK2YnfZrVAWK5lefCV11V8PKSriUoN+/Xa5P+3+pKwnJr0c17nC/nhzYWgWL51fS1SQdjo7Rjx/M1eKvlzn9+H0BnTLrb6ju7pTEmgqeZ3Kn3CmQ9q+vfPOiqtaroJz5c+rMsbPatjpaU1//znYgemr71dT2RbH74tS+1PXXkdzRe0nKVyiPen3YWZFNqunyhXj9PX+DPun/pVdf5zPxddPMYZk1/KcBKl29pLLnzqaTMae06Y8tmvr6DB07ZH8S5ScHtVbL55sqR97s2rNpvz4bNF1bVmx3ai7olP/x6YPXCxcurIkTJ6pVq1ap/nz27Nnq1auXDh8+nK7bdffB64HC3QevBxQPHxTorzh4HZ7mrk5JZi+2EIDolEtw8Dq8wV2tolMwCp1yCQ5ehzewpgKQHryABU+jUwDSg4PX4Q20CkB6sKaCp9EpAOlBp/xPsLcHkBHdunVTx44d9eqrr6px48YKDw+XxWJRbGysFi1apBEjRujFF1/09jAB+AOffZsPvIlOAfAYOgUn0SoAHkOr4AQ6BcBj6BScQKcAeBStghNoFQCPoVNwAp0C4DF0ykg+ffD6sGHDlCVLFr3//vsaOHCgLBaLJMlqtSoiIkIvv/yyBg4c6OVRAgACFZ0CAJiOVgEATEanAAAmo1MAANPRKgCAyegUAAQ2nz54XZIGDRqkQYMGae/evYqNjZUkRUREqGTJkl4eGQB/YuEdWHASnQLgCXQKGUGrAHgCrYKz6BQAT6BTcBadAuAptArOolUAPIFOwVl0CoAn0Ckz+fzB69eULFmScAEAjEWnAACmo1UAAJPRKQCAyegUAMB0tAoAYDI6BQCBJ8jbA8iojz76SB07dtTMmTMlSV999ZUqVqyoO++8U6+88ooSExO9PEIAfsHqwS/4FToFwCM82Sla5XdoFQCPoFNwEp0C4BGsqeAkOgXAY+gUnESrAHgEayo4iU4B8Ag6ZSSfPvP6m2++qdGjR6tJkybq27ev9u7dq9GjRysqKkpBQUEaO3asQkJCNHz4cG8PFQAQgOgUAMB0tAoAYDI6BQAwGZ0CAJiOVgEATEanACCw+fTB61OnTtXUqVP16KOPatOmTYqMjNS0adPUrl07SdKdd96pgQMHEjEAGWbhXVFwAp0C4Cl0Cs6iVQA8hVbBGXQKgKfQKTiDTgHwJFoFZ9AqAJ5Cp+AMOgXAU+iUmYK8PYCMiImJUc2aNSVJ1apVU1BQkO666y7bz2vUqKEjR454aXQAgEBHpwAApqNVAACT0SkAgMnoFADAdLQKAGAyOgUAgc2nD16PiIjQ1q1bJUk7d+7U1atXbd9L0pYtW1SwYEFvDQ+AP7F68At+g04B8BhPdopW+RVaBcBj6BScQKcAeAxrKjiBTgHwKDoFJ9AqAB7DmgpOoFMAPIZOGSnY2wPIiKefflodOnRQq1attHjxYg0aNEj9+/fXiRMnZLFY9Pbbb+uxxx7z9jABAAGKTgEATEerAAAmo1MAAJPRKQCA6WgVAMBkdAoAAptPH7w+fPhwZcmSRatXr9Zzzz2nQYMGqWrVqho4cKAuXryohx9+WG+++aa3hwkACFB0CgBgOloFADAZnQIAmIxOAQBMR6sAACajUwAQ2CxWq5UT1d+kSUhbbw/BL1gyZfL2EPyHJcjbI/ALv176yunr1nhurAtHcmvrP4ny2H3BdzUOetzbQwCuo1Musejqd05f15OdkmgVbo9OwSh0yiUy0imJNRXMQ6sA/7Mo6Xunr8uaCqahU4D/yUinJNZUMA+tAvwPayr4EzoF+B865X94BRcAAAAAAAAAAAAAAAAAAAAA4HbB3h4AAPgCC59RAQAwGJ0CAJiOVgEATEanAACmo1UAAJPRKQCAyeiUmTjzOgAAAAAAAAAAAAAAAAAAAADA7TjzOgA4gndgAQBMRqcAAKajVQAAk9EpAIDpaBUAwGR0CgBgMjplJM68DgAAAAAAAAAAAAAAAAAAAABwO868DgAOsFh5CxYAwFx0CgBgOloFADAZnQIAmI5WAQBMRqcAACajU2bizOsAAAAAAAAAAAAAAAAAAAAAALfjzOsA4AjegAUAMBmdAgCYjlYBAExGpwAApqNVAACT0SkAgMnolJE48zoAAAAAAAAAAAAAAAAAAAAAwO048zoAOMDCO7AAAAajUwAA09EqAIDJ6BQAwHS0CgBgMjoFADAZnTITZ14HAAAAAAAAAAAAAAAAAAAAALgdZ14HAEfwDiwAgMnoFADAdLQKAGAyOgUAMB2tAgCYjE4BAExGp4zEmdcBAAAAAAAAAAAAAAAAAAAAAG7HwesAAAAAAAAAAAAAAAAAAAAAALcL9vYAAMAXWPj4EACAwegUAMB0tAoAYDI6BQAwHa0CAJiMTgEATEanzMSZ1wEAAAAAAAAAAAAAAAAAAAAAbseZ1wHAEbwDCwBgMjoFADAdrQIAmIxOAQBMR6sAACajUwAAk9EpI3HmdQAAAAAAAAAAAAAAAAAAAACA23HmdQBwgIV3YAEADEanAACmo1UAAJPRKQCA6WgVAMBkdAoAYDI6ZSbOvA4AAAAAAAAAAAAAAAAAAAAAcDvOvA4AjuAdWAAAk9EpAIDpaBUAwGR0CgBgOloFADAZnQIAmIxOGYkzrwMAAAAAAAAAAAAAAAAAAAAA3I4zr6fCevWqt4fgF5hHF7LwPhNvs/AOLACAwegUAKQtoXlNbw8BolUAALPRKQCA6WgVAMBkdAoAYDI6ZSaOiAUAAAAAAAAAAAAAAAAAAAAAuB1nXgcAR1h5CxYAwGB0CgBgOloFADAZnQIAmI5WAQBMRqcAACajU0bizOsAAAAAAAAAAAAAAAAAAAAAALfjzOsA4AALb8ACABiMTgEATEerAAAmo1MAANPRKgCAyegUAMBkdMpMnHkdAAAAAAAAAAAAAAAAAAAAAOB2HLwOAAAAAAAAAAAAAAAAAAAAAHC7YG8PAAB8Ah8fAgAwGZ0CAJiOVgEATEanAACmo1UAAJPRKQCAyeiUkTjzOgAAAAAAAAAAAAAAAAAAAADA7TjzOgA4wJLk7REAAJA2OgUAMB2tAgCYjE4BAExHqwAAJqNTAACT0SkzceZ1AAAAAAAAAAAAAAAAAAAAAIDbceZ1AHCE1dsDAADgFugUAMB0tAoAYDI6BQAwHa0CAJiMTgEATEanjMSZ1wEAAAAAAAAAAAAAAAAAAAAAbseZ1wHAARbegQUAMBidAgCYjlYBAExGpwAApqNVAACT0SkAgMnolJk48zoAAAAAAAAAAAAAAAAAAAAAwO048zoAOMLKW7AAAAajUwAA09EqAIDJ6BQAwHS0CgBgMjoFADAZnTISZ14HAAAAAAAAAAAAAAAAAAAAALgdZ14HAAdYeAMWAMBgdAoAYDpaBQAwGZ0CAJiOVgEATEanAAAmo1Nm4szrAODj/vzzTz388MO64447ZLFYNHv27NteZ+nSpYqMjFRYWJhKlSqlSZMmuX+gAICARKcAAKajVQAAk9EpAIDJ6BQAwHS0CgBgskDuFAevA4CPu3DhgqpVq6bx48c7tP3evXvVvHlz1a1bVxs2bNArr7yiPn36aNasWW4eKQAgENEpAIDpaBUAwGR0CgBgMjoFADAdrQIAmCyQOxXs7QEAgE8w+ONDmjVrpmbNmjm8/aRJk1SsWDGNGzdOklShQgWtXbtWY8aMUZs2bdw0SgCAW9EpAIDpaBUAwGR0CgBgOkNbRacAAJKM7ZREqwAAolOG4szrAGCY+Ph4nT171u4rPj7eZbe/atUqNWnSxO6ypk2bau3atbpy5YrL7gcA4L/c2So6BQDIKNZUAADTsaYCAJiMTgEATEerAAAmo1OO4eB1AHCAxeq5r5EjRypXrlx2XyNHjnTZY4mNjVV4eLjdZeHh4UpMTNTx48dddj8AAM/xZKfc3So6BQD+yV86JdEqAPBHrKkAAKajUwAAk7GmAgCYjE6ZKdjbAwAA2Bs8eLD69etnd1loaKhL78Nisdh9b7VaU70cAIDUuLtVdAoAkBGsqQAApmNNBQAwGZ0CAJiOVgEATEanHMPB6wDgiP928p4QGhrq8gMrbhQREaHY2Fi7y+Li4hQcHKx8+fK57X4BAG7kwU5J7m0VnQIAP8WaCgBgMtZUAADT+cmaik4BgJ9iTQUAMBmdMlKQtwcAAPCsOnXqaNGiRXaXLVy4UDVr1lRISIiXRgUAQDI6BQAwHa0CAJiMTgEATEanAACmo1UAAJP5U6c4eB0AHGCxeu4rvc6fP6+NGzdq48aNkqS9e/dq48aNOnDggKTkjyLp0KGDbfsePXpo//796tevn7Zt26bJkyfriy++UP/+/V0xVQAAL/Bkp9LbKjoFAJDM7ZREqwAArKkAAOajUwAAk7GmAgCYjE6ZKdjbAwAAZMzatWvVoEED2/f9+vWTJHXs2FFTp05VTEyMLWiSVLJkSc2bN09RUVGaMGGC7rjjDn344Ydq06aNx8cOAPB/dAoAYDpaBQAwGZ0CAJiMTgEATEerAAAmC+RO+fTB6wkJCcqcObPt+927d+ujjz7Szp07VahQIfXs2VORkZFeHCEAv+HE2fs8pX79+rJa0x7g1KlTU1x2//33a/369W4cFSQ6BcCD6BScRKsAeAytghPoFACPoVNwEq0C4DGGtopOmY1OAfAYQzsl0SqT0SkAHkOnjBTk7QFkRJYsWRQXFydJ2rhxo6pWraqlS5eqcOHC+ueff3TPPfdozZo1Xh4lACBQ0SkAgOloFQDAZHQKAGA6WgUAMBmdAgCYjE4BQGDz6TOv3/iOg9dee03NmzfXzJkzZbFYJEmdO3fW0KFDNX/+fG8NEYCfsBj8DiyYi04B8BQ6BWfRKgCeQqvgDDoFwFPoFJxFqwB4Cq2CM+gUAE+hU3AGnQLgKXTKTD598PqNNm7cqBkzZtgCJkl9+/ZV06ZNvTgqAACS0SkAgOloFQDAZHQKAGA6WgUAMBmdAgCYjE4BQODx6YPXLRaLLVqZMmVSzpw57X6eM2dOnTlzxhtDA+BvkngLFtKPTgHwGDoFJ9EqAB5Dq+AEOgXAY+gUnESrAHgMrYIT6BQAj6FTcAKdAuAxdMpIPn3wutVqVbly5WSxWHT+/Hlt3rxZVapUsf18586dioiI8OIIU/dwzyZ6vH8r5SuUW/u2HNLHUVP07/LtaW5ftV5FPfdeR5WoVEQnjpzSzNE/a84ni+y2ue/Ru9XpjbYqVDpcMbuPasqr32rF7DW2n3+1Z4IiShRMcdu/TFygj174wnUPzstcPbfFKxZRx+FPqmxkKUWUKKiJUVP00wfzPPFQvOrhHk30eP+Hr89jv2m3mccKem5Mh+vzOOYXzfnkN9vP73uklp56ubXuKBOhTCGZdGRnrH4YO0e/TV/miYcDeI2vdiqj0rsv9lXe6Lmj91vszsLq+s4zqnp/RVmCLNq/5aDefHKsjh08Lkka8/swVatfye46f8xYoRFPj8vAjLiPq7uU3PcnVLZGyf/6Pk0/fWjf96BMQeow9HE1fPo+5Y3IrZMxp7Rw2lJ9/faPdh9hB/g6X2mVN/a5bV9urfseuVtF7yys+EsJ2rpyhz5/+Wsdij4iScoUnEnPvtVWtZrVUESpgrp45qLW/7ZZXwz+WidiTrlnIgwTKM13Ruvmd6nto/9T3jzZte/AcY3/7Hf9s/XwLbavrkcfqq6Igjl19Ng5TZ+5Wr/+scX287p1yuqZx2urcKHcCg4O0qEjpzVz9t9a+MdWTzwcwGt8pVOuxv7VNQJ1Hr3xvKn90MfVYegTdtc5GXtaT97R7fptPFJLLbo3VtnIUsqVP6d6VB+g3Zv2ueZBA15EqwJrH+tqgTqP3mjVQz2a6OEeTRReooAkaf+WQ5r+5vf6e8HGVO+z76Tueqh744B5XRD+y9ROpfd38kaV7imv95YM175/D6pHjQEZHkuBovnVe3wX3dWwshIuJej3b5fr0/5fKfFKoiQpvHgBTd87McX1Bjd7W2t/vf143Sm9x4BUvb+i3vtjeIrLO1foq4M7jmRoLLebx9TWDJJ06cJltczRPkP3nVGmvt4Xli1MXd9pp3ta/U858+XQ0X1x+umj+ZozaaFtm+bdHlDDp+5TmRollS1nVrXO01EXzlx00cwA7mdqp9wtUNcBbV9urS4j2unHD+bq46ipqW6TNyK3nhvTUWUjS6lw2QjN/mh+mtuml68239RO3ciR9dPbc19RrWbVNfSRUVr589/pnAX4K58+eH3KlCl235cuXdru+9WrV+uRRx7x5JBu6/4n7lHPsc/qo16facuKHWrxXGONmDdEXSpF2Q4ou1FEiYJ6a+5gzf98sd5t/6Eq3VtevSd00+ljZ7X8x78kSRVql9OrM6I09fUZWvHTGt37SC29+l2Uouq+pu1rdkmSXqg1WEGZgmy3W6JyUY1a9LqWfr/KMw/cA9wxt6FZQxWzN05//rBKPd7v5OFH5B33P1FHPcd21EcvfJE8j90f0Ii5g9Wlcj8dO3gixfYRJQrorTkva/7nv+vdDuOT53F8l//mMTlsZ0+e1zcjf9LB7Ud0JSFRtVvUUP8veup03FmtXbjJ0w8R8Bhf7FRGpXdf7Ku81XNH7rdQqXCNXfam5k/+XdOGfacLZy6qWIUiunI5wW5Mcz/7TdNe/872ffwl+5+bwh1dCs0aqpg9R/XnD6vV470Oqd5v24Gt9NBzD2jUsxO1f8shlatZSv2/6KkLZy7qp4/mu/UxA57kC63y1j63ar1K+mXir9rx967/DlR/Su/8+qq6VorS5YvxCs0aqjLVS2n6Wz9oz6b9ypEnm3qO7aQ3fh6kXrVe9ugceUOgNN8ZDe4rrxe6NtTYSYv079bDevjBanp32GPq2Guy4o6dS7F9q2Z3qXvHuhr90a/avjNWFcoV0oAXmurc+cta+fduSdK5c5c1feZqHTh0QlcSk1Tnf6U0qG8znTp9UX9v2OfhRwh4ji90ytXYv7pGoM6jt543SdLefw9oUOM3bd8nXU2yu6+wbGHasnKH/vxhlfp91tNNMwB4Hq0KnH2sqwXqPHqrVccPndAXg7/W4V2xkqQmHetr+OxB6lljgPZvPWR3n/e0+p8q1Cqr44dPunk2APcztVPp+Z28UdacWTVw2gvasHiz8oTnzvA4goKC9PacwTp97Kyi6r6mnPlyaODUF2SxWDShz2S7bQc+MFz7tlwf27mT5zN8/xnl7DEgncr30cWzl2zfnzl2NkPjcGQevx/zf5ozyf7AuVG/va7o//725S0mv97Xc2xHVatfWe+0/1BH9x1TZJNq6jOhq04cOalVv6yVJIVmzay/f92ov3/dqK4j23lo1gDXMbVT7hSo64ByNUurebfGtz2RQUhoiM4cP6tvRsxSmxcfctn9+2rzTe7UNY6snx59sYXECQKRCp8+eL1jx463/Pnrr7/uoZE4rk3UQ1ow+XfN/+J3SdLHUVNVs0k1PdyziSa/8k2K7R/q0VjHDhy3vYvowPbDKleztB5/qaVtp/Jo3xZat+gfzXhntiRpxjuzVbVeJT3at4VGtPtAknTmuP2Co+3LrXV4V6z+Weo/Z2lzx9xGr92t6LXJC6YuAfJkv82LLeznsd+05Hns0USTh3ybYvuHnmusYwdO6ON+0yT9N4+RpfR4v4dtBwne/O/sp4/mq3GH+1Xp3vK+c/A6DYUTfLFTGZXefbGv8lbPHbnfZ996SmvmbdDng6bb7j92b1yKMcVfjNepo6ddMh/u5I4u2fV9xFOp3m+FOmW18pe1WjNvgyTp6P5jatD2XpWrWcrlj9El6BSc5Aut8tY+95Xmb9vd7pjOE/VD3BcqG1lKm5dt08WzF/Vy0zftthnfZ7ImrHlHBYrm9+s/MkqB03xnPNG6puYt2qy5CzdLksZ//odq1SipVs3u0mdfpvz0qSYNKuqXBZv0x/IdkqSYo2dUsXwhPfVYLdvB6xv/PWh3nVn/t14PNqqsKhUL+87B67QKTvCFTrka+1fXCNR59NbzJklKSky65Rrzt+l/Sko+i5WR6BScRKsCZx/raoE6j95q1eo56+xud8qr3+qhHk1UoXY5uwNl892RVy981EWDH3xLb80Z7OqHnzG0Ck4wtVOO/k7e7MVJ3fX7t8uVdDVJ97aqleLnTTvV1xMDWimiZEHF7jum2R/N0/99vDCVW0oW2aSqilUsosHFetg+SfGT/tM0YEovTRnyrS6eu36A99kT5417TcXZY0BOx5255dm53TGPly9c1uULl23XKVW1uEpUKqoPen7qyEN1G5Nf76tQu5wWfbnE9v9z3me/qUX3xipXs7Tt4PVrZ7eten9FN8xOOtEpOMHUTrlTIK4DwrKFafD0PhrbfZLaDWlzy22P7j+miS8mv6nhwWcbprldoDTf5E5Jjq2fSlUtrjZRD+mFWoM1M+Yzl8yLU+iUkYJuvwlcJTgkWOUiS2ndTQfrrlv0jyrVKZ/qdSrULqd1i/6xu2ztr5tUrmYpZQrOJEmqWKec1i2yv821Czeq4j2p32ZwSLAataurX6f87uxDMY675jbQBIdkSp7Hm+Zl3aJNqlSnXKrXSZ7Hm//93XoeqzesrCLlC2nzsm2uGTgAIzizL/ZF3uq5I/drsVh0d4saOrTziEbOH6KZsZ/rw1UjdE+r/6UYU8On6+qHuC/02eb31X10e2XJHpaOWfAMT3UpNf8u36HqDSurcNlCkpIXVZXvLa818zek81EAyAhT1lCSlC1XVkm3PsNCtlxZlZSUpAunL6T9oPxAoDTfGcHBQSpXJiLFAeV/b9inyhUKp3qdkJBMSkhItLssPiFRFcoWUqZMqf/ZpkbVYipaOI/+2ZL2C7oAfA/7V9cI1Hn09vOmO8pGaMahT/Tl7gl65ZsXFVGyYEYfEgADBeo+1tUCdR693aprgoKCVP/JexSWLVRbV0XbLrdYLBr0ZW99P+aXWx48C8C10vqdvFnTTvV1R+lwfTX8+1R/3qxrIz371lOa8uq36lIxSlOGfKNOb7RV4w73p3mbFeuU175/D9gOYpOS9zGZwzKrbKT9iWze+HmQZsZ+rnHL3lTdNrXT+SjdLz3HgHy8frRmHP5Uoxa9rmr1K9n9zN3zeOP9HNxxRP8u3+7gI3Q9k1/vk6QtK7arzsM1le+OvJKkavUrqUi5Qlr7q4+cHBBACoG6Dug9vov+mrdeGxZvdsntBUrzTe+UI+un0CyZ9co3L2p87y+MeUMAzOLTZ16/nVdeeUWxsbGaPHny7Tf2gFz5cyhTcKYUv4ynjp5WnojcqV4nb0RurU1l++CQYOXKn0MnY5Ove+romZu2OZPmbd7T+n/KnjubFk5d4twDMZC75jbQ5Mqf8795dPzfU96IXFqbyvY3z2PWnFk04+AkhYQGK+lqkj584Qut/801T0w8wcI7sOAGpnUqo5zZF/sib/XckfvNXTCXsubIoicHtdbU12bo85e/Vs0H79LQWf01oOFw/fNn8tkZFn+zTLF743Qq9rRKVC6qziPaqVTVEinOIOxt7uzS7Xw36mdly5VVk7e+r6SrSQrKFKQpr36nP2asdOahuB2dgrt4u1WmrKEkqcd7HbV52Tbt23Iw1Z+HhIao68h2+v2b5XZnaPBHgdJ8Z+TKmUXBmYJ08qY3MJw6fUF5c2dL9Tp/r9+nh5pU1fLVuxS9+6jKlwlX8weqKCQkk3LlzKKTp5JvK1vWzPphak9lDsmkq0lWjft4kdZu3O/2x+QqtAru4O1OuRr7V9cI1Hn05vOm7X/t1KiO43UoOkZ5wnOp3ZA2+mDF2+paOcqrH62cHnQK7kKrkJpAnUdvr/FLVC6mD1e+rcxhIbp0/rKGPzpaB7ZdP8jiyUGtlJR4VT99OM/Zh+hWtAru4M1O3e538kaFy0Soy8h2iqr3upKuJqW6zTOvPqZP+n+p5T8lfwJr7L44FatYRC26N9aiL5emep08Ebl1+qb9x/nTF5QQf0V5/9uHXDp/WR/3m6otK3bImpSkOi3/pyEzojS603gt/jrlJ+x5iyPHgJyMOa33u0/SznV7FBIaogfa19Oo315X/wbDbCedc9c83igkc7AaPl1X3737k3MP1kVMfr1Pkib0maKoT5/TjEOfKPFKopKSrBrbbZK2rPDeAf+3QqfgDqynfF/9J+9R2Rql1KvWyy67zUBpvumdcmT91GNsJ21dtcP2iSHeRKfM5NcHrx8+fFgHD6Z+YME18fHxio+Pt7ssyXpVQRb3nXnbetMvg8VikfXmC+22t/+ZxWJJeTsptknljv7TrHNDrZm/we7dRP7CLXMbgFKbl1vPo/331+fx+g8unbusHjUGKkv2MFVvWEU9xnRQzJ64235sGeDPHOmU5J1WZUR698W+yls9v9X9BgUl3+aqn9fqx3FzJUm7N+1TpTrl9dBzjW0Hr8//fLHt+vu2HNThnbGauPZdlaleUrs27E3zMXiLO7p0O/WfvEeN2t2nkc98pH1bDqrMXSXU8/2OOhFzUou+/NPxwQM+zpQ1lbfXUL3Hd1HJqsUUVfe1VH+eKTiThnz7oixBFn3U6/M0x+VvAqX5Trl5GiwWWdP4TMJp361S3jzZ9PGYdpLFolOnL2jB4n/19GN3Kynp+nUuXkpQ177TlCUss2pUK6bnuzTQkdgz2vjv7Z9PAv6KNRVuJVDn0RvPm/5esNH23/v+lbatita0XePVpGN9zRo7J13jB/yNKWsqVwvUfayrBeo8emuNf2jHEfWoPkDZc2fVfW1qa8DUF/RS/aE6sO2QytYopUf6tNDzkQPT/XgAX+bNNdWtfidvFBQUpMFf99WXw2bq8M6YVG8rV/6cKlgsv/p93lNRn/awXZ4pOEgXzlyUJL099xVVqVtBknR0/zF1q9JPUuqvG9y4Xzp74pzt9RZJil63R9nzZNMTA1oZdfC6I8eAHIo+okPRR2zfb1sdrQJF8unxl1pq87Jtbp3HG9336N3KmiPMmNdaTHy9T5Ja92mmCrXL6bWW7+jo/mOqWq+iek/oqhMxp1x29mLAdPztz7cVKJJPz497Vi83fUtX4q+45DYDsfkmdsqR9VOdh2uqeoPK6lGDNRbS5tcHr0+bNu2224wcOVLDhw+3u6ykKqi0KqVxDeedOX5OVxOvpnh3ae6CuVK8u+eak7GnlTciT4rtE68k6uyJc5KkU7Ep31GTu2CuFO+SkaSCxfKr+gNVNbzNaOcfiIHcNbeB5szxs2nMY85bzOMZ5Y3IlWL75Hm8fmYlq9WqI7uPSpJ2b9qvYhUK66mXW/vOwet++EQR3udIpyTPtiojnNkX+yJv9dyR+z1z/JwSryRq/zb7RfyB7YdU+d4703xMO9fv0ZWERBUuW8iog9fd2aXb6fZuO3337s9a8l3ymdb3/XtQBYsVUNtBrY35g6odOgU38faayoQ1VK8PO6v2wzX10v1DdfzwyRQ/zxScSa9+108RJQtqQKPhfn/WdSlwmu+MM2cvKfFqkvLmsT/Lep5cWXXq9MVUr5OQkKh3P1ygMRMWKm/urDpx6oIeblpNFy7G68zZ69exWqXDMaclSbv2xql40Xxq9/jdvnPwOq2CG7CmQmoCdR5NeN50zeWL8dq7+YAKly2U/gfiLXQKbuLtNZWrBeo+1tUCdR693arEK4k6sjtWUvKBKOVrltYjfZvrgx6fqnLdO5W7YE59vf9j2/aZgjPpuTEd9WjfFmpfqpczD9m1aBXcwJtrqlv9Tt4oS44wlf9fGZWpXlIvfNRFkmQJsigoKEgLEmbo5aZv2T4pcWz3Sdr+1y676187U/v73SYpNEtm231LyfuPO2uVsds+e+5sCskcfMvnu9tWR6tZl0bOPnSXy8gxINv/2qlG7epKSp5Xyf3z2KxLI62esz7FGV09zeTX+zKHZVbnt5/WsEdHa8289ZKkvZsPqPRdJfT4Sy3NPHidTsEN+NufbysbWUp5wnNr4tp3bZdlCs6kKvUqqFWvB9U87GklJaX+iSpp8VSrrvFm803ulCPrp7saVlah0uGafWqq3e28/kN//btsm/o3HHb7SXAlOmWkIG8PwNsGDx6sM2fO2H2VVNoHd2VE4pVERa/boxqNq9pdXuOBqtqyakeq19m2Olo1HrDfPrJJNUWv3aOriVclSVtXRSvy5m0aV9PWlSlvs+mzDXQ67oz+mrs+Iw/FOO6a20CTeOVq8jw+kNo8Rqd6nVTnsXHV28+jJfkjwQDcnidblRHO7It9kbd67sj9Jl5J1I6/d6toucJ22xQue4eO7j+e5mMqUamoQjIH66Rhn8ri0S7dJCxrqJJuWsAkXU2ynd0ewHXu7JS311AvfNRF9z1ytwY2Gq7YfXEp7uvageuFy0ZoUOM3de6k42+S8WWB0nxnJCYmKXpXrGpWL253ec27iuvfbYdved2rV5N07MR5JSVZ1bDenVr19+5b/i3NIikkxMwzxwCmYU0VWAJ1Hr39vOlGIZmDVaxCYePWmICpfKVTUuDuY10tUOfRpFZJyWcOzJw5RJL021d/6rlq/dWj+gDb1/HDJ/X9mF80+MG30/U4AX/kiVbd+Dt5o4tnL6lblX52v59zPlmkA9sPq0f1Adr+106djjujY4dOqFCpcB3ZHWv3de1veieOnLRdFncg+fWSrat2qETlYnYHZ0U2qaaEywnauW5PmmMtU72kUc91M3IMSOm7SurEfydL8MQ8RpQoqGoNKmnB5MXyNpNf7wsOyaSQzMGy3nRQ51VepwJS5StrqkBbB2xYvDlFw3f8vUu/f71cPaoPSPeB65JnWnUjbzbf5E45sn6a8c7sFNtI0qR+UzWm80RnpgR+yKePHH3vvff02GOPqXjx4rffOA2hoaEKDQ21u8ydHxsya+wcDfqyt6LX7ta2VdFq3v0BFSyWX3MmLZQkdR7xtPLfkVejOo2XJM2ZtEgtez2o597rqPmf/aYKdcrpwc4NNeLpcbbb/OnDuXp/6Rt6cmArrfz5b93T6n+q8UCVFB9pb7FY1LRTAy36cqnt3Ub+xB1zGxwSrOIVi0hKftElf+F8Kl2thC6dv2x7J7i/mTVurgZNe0HR63Zr26qdat6tUfI8frJIktT57aeUv3Bejeo0QZI055NFatmrqZ4b017zP/9dFeqUTZ7Hdh/YbrPtoNaKXrdbR3YfVUjmYNVqVl2N29fTh72+8MpjdIaFN2DBCa7olOT5VmXE7fbF/sJbPXdkfr8f84uGzIjSP8u2atMfW/S/B+9SnYcj9VKDYZKkQqXC1ahdXa2Zt15njp9T8YpF9NyYDtq5fo+2rDBvUeyOLgWHZLqp73lUulrx//qe/Ckhq+es09ODH1HcgePav+WQylQvoTZRLfTrlD88PAOOoVNwli+sqby1z+09oasaPnWfhrYepYvnLitPeG5J0oUzF5VwOUFBmYL0+vcvqUyNknrt4XcUlCnIts25k+dtZ3PwV4HSfGfMnL1WQ/q10I6dsdqy/YgeerCaChbIqV/mb5IkdetQVwXy5dCIsfMkSUXuyKMK5Qpp644jypE9TE+0rqmSxfJr5H8/l6R2j92tHbtidTjmtEJCMql2ZCk1bVhJ73+8yCuP0Rm0Cs5gTcX+1VmBOo/eet7UfXR7rf6/dYo7cFy5C+bU00PaKGvOLFo4bYltmxx5sqtgsfzKd0fy2Z+KlL9DUvIZobx9xkWJTsF5vrCmcrVA3ce6WqDOo7da1fntp7Rm/gYdO3hCWXJkUYO296pq/Up6pVnygRXnTp5P8Yb0xCuJOhl7Soeij7h5VhxDq+AMU9dUt/udvHFfYLVabWdWv+Z03BlduXzF7vKvhs/U8x901sWzl7Rm/gaFhIaofM1Syp4nu2aNnZPqONYt/EcHth7SoC9769OBXyln3uzqPrq95n2+2Pbpio073K/EK1e1e8NeJSVZVfvhSLXu3Vyfvzzd6cfvSrc6BuTmfeojfZvr6L5j2r/loIIzB6vRM/VU77Hadmdsd9c8XtO0cwOdjDmtv+dvdO1EOMnU1/sunrukTUu2qNuo9oq/lKC4/cdV9f6Katz+fk166fqZqPOE51beiNwqXCZCklSySjFdOndZcQeO69wpz55ohU7BGaZ2yp0CaR1w6fzlFA2/fCFeZ0+es11+835WkkpXKyFJypI9TLny51TpaiV0JSFRB7YdkhRYzTe1U46sn04dTf1vfnEHjqd6wjB3o1Nm8umD1wcMGKBBgwapQYMG6tq1qx555BFlzpzZ28O6paUzVypnvux65rXHlLdQHu3796CGtBhhe6dPvog8Klgsv2372H1xerXFSPV4v6NaPt9UJ46c0sS+k7X8x79s22xdFa23nxqnTm+2Vcc32ipmd6zebjtW29fYfzxGjQeqKLx4AS2Y/LtnHqyHuWNu892RR5M2XF+sPdG/pZ7o31Kblmzx/MdXeMjSmauUM28OPfNqm+vz+NA71+exUG4VLJrPtn3svmN69aF31OO9G+bxxSla/uMa2zZh2ULVZ3wX5S+ST/GXEnRw+2G902G8ls5c5fHHB3iSL3Yqo263L/YX3uq5I/O7YvYafdDzUz318iPq9UFnHdpxRMMfG6MtK7ZLkhITElW9YRU90qe5wrKH6djBE1ozb72+Gv69U+9udjd3dCnfHXk1af0o2/d2fW/0hiRpfJ8p6vTGk+ozvotyF8ylE0dOau6nv2n6mz946JEDnuELrfLWPrdlz6aSpPeW2H/U5OhnJ2jhtCUqUCSf7mn1P0nSJxvH2G3zUoOh+mfpVtdOhGECpfnO+GP5DuXKmUUd2t6jfHmzae/+4xo0fJaOHjsrScqXN7sKFshh2z5TkEVPtq6pokXyKjExSRs2H1CvgV8rNu6sbZuwsBBF9WysAvmyKz4hUQcOndRb783VH8vNe+MZ4Eq+0ClXY//qGoE6j9563pS/cD698k1f5cyfU2eOndW21dHqU2eI3XzXaVlTA6b0sn3/6owoSdKXw2fqq+Hfu21OAHejVYGzj3W1QJ1Hb7Uqd3huDfqyt/IWyqMLZy5q7z/79Uqzt7X+t3889+ABLzC1U7f7nbx5X+CI+V/8rssXE/RE/5bq+u4zunwhXvs2H9CPH8xN8zpJSUka8tBI9ZnQVeOWv6WESwn6/dvl+rT/l3bbtRvSRgWL51fS1SQdjo7Re10mavHXy9L/wN3gVseA3DyPIZmD1X10B+UvnFfxlxK0f0vyPnjN/A22bdw5jxaLRU061tfCaUuMeT3K5Nf73n5qnLqMeFqDp/dVjrzZdXT/MU159Vu7A1wf6tFYHYY+Yft+7J9vSrr+N2zAdKZ2yp0CdR2QltSaf+NxeuVqllajdnUVuy9O7Usl/10pkJpvcqcAV7BYrbf6EGqzBQUFafLkyZo9e7bmzZunnDlz6plnnlHXrl1VuXJlp2+3cdDjLhwl4AKWIG+PwC8suvqd09dt0ORdF47k1v5YOMhj9wX3clenJFoFw9Apl/CVTkm0yp+wpkIgSGhRy9tD8AtL/29Ahq7PmgrOYE0FID0WJTl/EDxrKjiLNRUAR2WkUxJrKjiHNRWA9GBNBU+jUwDSg075H58/0qh58+aaPXu2Dh06pIEDB+rXX39VtWrVVKtWLX322Wc6d+6ct4cIAAhgdAoAYDpaBQAwGZ0CAJiOVgEATEanAAAmo1MAELh8/uD1awoWLKiBAwdq27ZtWrJkiSpWrKioqCgVKlTI20MD4AcsVqvHvuCf6BQAd/Jkp2iV/6JVANyJTiGj6BQAd2JNBVegVQDciU4ho+gUAHdiTYWMolMA3IlOmcmnD163WCypXl63bl1NnTpVR44c0dixYz08KgAAktEpAIDpaBUAwGR0CgBgOloFADAZnQIAmIxOAUBg8+mD1623eZdCzpw51a1bNw+NBgAAe3QKAGA6WgUAMBmdAgCYjlYBAExGpwAAJqNTABDYgr09gIxISkry9hAABAp2N3ACnQLgMexu4CRaBcBj2N3ACXQKgMewu4GTaBUAj2F3AyfQKQAew+4GTqBTADyG3Y2RfPrM671799ayZcu8PQwAAFJFpwAApqNVAACT0SkAgOloFQDAZHQKAGAyOgUAgc2nD16fMGGC6tevr3Llyundd99VbGyst4cEwE9ZrFaPfcF/0CkAnuLJTtEq/0KrAHgKnYIz6BQAT2FNBWfRKgCeQqfgDDoFwFNYU8EZdAqAp9ApM/n0weuStHDhQjVv3lxjxoxRsWLF1KpVK82ZM4ePFgEAGIFOAQBMR6sAACajUwAA09EqAIDJ6BQAwGR0CgACl88fvF6lShWNGzdOR44c0fTp0xUfH6/WrVuraNGiGjJkiHbt2uXtIQLwB1YPfsGv0CkAHuHJTtEqv0OrAHgEnYKT6BQAj2BNhQygVQA8gk7BSXQKgEewpoKT6BQAj6BTRvL5g9evCQkJ0RNPPKEFCxZoz5496tatm77++muVL1/e20MDAIBOAQCMR6sAACajUwAA09EqAIDJ6BQAwGR0CgACj98cvH6jYsWKadiwYdq7d68WLFjg7eEA8AdWq+e+4PfoFACX82SnaFVAoFUAXI5OwYXoFACXY00FF6NVAFyOTsGF6BQAl2NNBReiUwBcjk4ZyacPXi9evLgyZcqU5s8tFosaN27swREBAHAdnQIAmI5WAQBMRqcAAKajVQAAk9EpAIDJ6BQABLZgbw8gI/bu3evtIQAIEBbeFAUn0CkAnkKn4CxaBcBTaBWcQacAeAqdgrNoFQBPoVVwBp0C4Cl0Cs6gUwA8hU6ZyafPvA4AAAAAAAAAAAAAAAAAAAAA8A0+feZ1APAYK2/BAgAYjE4BAExHqwAAJqNTAADT0SoAgMnoFADAZHTKSJx5HQAAAAAAAAAAAAAAAAAAAADgdpx5HQAcYEny9ggAAEgbnQIAmI5WAQBMRqcAAKajVQAAk9EpAIDJ6JSZOPM6AAAAAAAAAAAAAAAAAAAAAMDtOHgdAAAAAAAAAAAAAAAAAAAAAOB2wd4eAAD4BKvV2yMAACBtdAoAYDpaBQAwGZ0CAJiOVgEATEanAAAmo1NG4szrAAAAAAAAAAAAAAAAAAAAAAC348zrAOAI3oAFADAZnQIAmI5WAQBMRqcAAKajVQAAk9EpAIDJ6JSROPM6AAAAAAAAAAAAAAAAAAAAAMDtOPM6ADjAYuUtWAAAc9EpAIDpaBUAwGR0CgBgOloFADAZnQIAmIxOmYkzrwMAAAAAAAAAAAAAAAAAAAAA3I4zrwOAI3gHFgDAZHQKAGA6WgUAMBmdAgCYjlYBAExGpwAAJqNTRuLM6wAAAAAAAAAAAAAAAAAAAAAAt+PM6wDgiCRvDwAAgFugUwAA09EqAIDJ6BQAwHS0CgBgMjoFADAZnTISZ14HAAAAAAAAAAAAAAAAAAAAALgdZ14HAAdYrFZvDwEAgDTRKQCA6WgVAMBkdAoAYDpaBQAwGZ0CAJiMTpmJM68DAAAAAAAAAAAAAAAAAAAAANyOM68DgCN4BxYAwGR0CgBgOloFADAZnQIAmI5WAQBMRqcAACajU0bizOsAAAAAAAAAAAAAAAAAAAAAALfj4HUAAAAAAAAAAAAAAAAAAAAAgNsFe3sAAOAT+PgQAIDJ6BQAwHS0CgBgMjoFADAdrQIAmIxOAQBMRqeMxMHrgC+wJnl7BAAApI1OAQAMlnnuGm8PAQAAAAAAAAAAAADwHw5eBwBHcFwmAMBkdAoAYDpaBQAwGZ0CAJiOVgEATEanAAAmo1NGCvL2AAAAAAAAAAAAAAAAAAAAAAAA/o8zrwOAAyxWq7eHAABAmugUAMB0tAoAYDI6BQAwHa0CAJiMTgEATEanzMSZ1wEAAAAAAAAAAAAAAAAAAAAAbseZ1wHAEbwDCwBgMjoFADAdrQIAmIxOAQBMR6sAACajUwAAk9EpI3HmdQDwAxMnTlTJkiUVFhamyMhILVu2LM1tlyxZIovFkuJr+/btHhwxACCQ0CkAgOloFQDAZHQKAGA6WgUAMBmdAgCYLhBbxZnXAcARBr8D67vvvtOLL76oiRMn6t5779Unn3yiZs2aaevWrSpWrFia19uxY4dy5sxp+75AgQKeGC4AwB3oFADAdLQKAGAyOgUAMB2tAgCYjE4BAExmcKekwG0VZ14HAB/3/vvvq0uXLuratasqVKigcePGqWjRovr4449veb2CBQsqIiLC9pUpUyYPjRgAEEjoFADAdLQKAGAyOgUAMB2tAgCYjE4BAEwXqK3i4HUAcITV6rmvdEhISNC6devUpEkTu8ubNGmilStX3vK61atXV6FChdSoUSP98ccf6Z4SAIBBPNmpdLSKTgEAbAzslESrAAD/YU0FADCdgZ2SaBUA4D+sqQAAJjO0U1JgtyrY2wMAANiLj49XfHy83WWhoaEKDQ1Nse3x48d19epVhYeH210eHh6u2NjYVG+/UKFC+vTTTxUZGan4+Hh99dVXatSokZYsWaJ69eq57oEAAPyWo62iUwAAb2BNBQAwHWsqAIDJWFMBAEzHmgoAYDLWVI7h4HUAMMzIkSM1fPhwu8uGDh2qYcOGpXkdi8Vi973Vak1x2TXly5dX+fLlbd/XqVNHBw8e1JgxY3wqYAAA70lvq+gUAMCTWFMBAEzHmgoAYDLWVAAA07GmAgCYjDWVYzh4HQAckeS5uxo8eLD69etnd1lq77ySpPz58ytTpkwp3mkVFxeX4h1Zt1K7dm1Nnz49/YMFAJjBg52SHG8VnQIA2LCmAgCYjDUVAMB0rKkAACZjTQUAMJmhnZICu1VB3h4AAMBeaGiocubMafeVVsAyZ86syMhILVq0yO7yRYsW6Z577nH4Pjds2KBChQplaNwAgMDhaKvoFADAG1hTAQBMx5oKAGAy1lQAANOxpgIAmIw1lWM48zoAOMBitXp7CGnq16+f2rdvr5o1a6pOnTr69NNPdeDAAfXo0UNS8ru5Dh8+rC+//FKSNG7cOJUoUUKVKlVSQkKCpk+frlmzZmnWrFnefBgAgAygUwAA09EqAIDJ6BQAwHS0CgBgMjoFADCZyZ2SArdVHLwOAD7uySef1IkTJ/TGG28oJiZGlStX1rx581S8eHFJUkxMjA4cOGDbPiEhQf3799fhw4eVJUsWVapUSXPnzlXz5s299RAAAH6MTgEATEerAAAmo1MAANPRKgCAyegUAMB0gdoqi9Vq+NsKvKBx0OPeHgIAN1iU9L3T121WYbALR3Jr87eN9Nh9wXfRKsD/+EqnJFqF26NTgP/JSKck1lQwD60C/A9rKvgTOgX4H9ZU8De0CvA/rKngT+gU4H/olP8J8vYAAAAAAAAAAAAAAAAAAAAAAAD+L9jbAwAAn5DEh1QAAAxGpwAApqNVAACT0SkAgOloFQDAZHQKAGAyOmUkzrwOAAAAAAAAAAAAAAAAAAAAAHA7zrwOAI6w8g4sAIDB6BQAwHS0CgBgMjoFADAdrQIAmIxOAQBMRqeMxJnXAQAAAAAAAAAAAAAAAAAAAABux5nXAcARvAMLAGAyOgUAMB2tAgCYjE4BAExHqwAAJqNTAACT0SkjceZ1AAAAAAAAAAAAAAAAAAAAAIDbceZ1AHAE78ACAJiMTgEATEerAAAmo1MAANPRKgCAyegUAMBkdMpInHkdAAAAAAAAAAAAAAAAAAAAAOB2HLwOAAAAAAAAAAAAAAAAAAAAAHA7nz94/e+//1a7du1UsmRJZcmSRVmzZlXJkiXVrl07rV271tvDA+Avkqye+4JfoVMAPMKTnaJVfodWAfAIOgUn0SkAHsGaChlAqwB4BJ2Ck+gUAI9gTQUn0SkAHkGnjBTs7QFkxOzZs/XEE0+oUaNG6tu3r8LDw2W1WhUXF6eFCxfq3nvv1cyZM9WqVStvDxUAEIDoFADAdLQKAGAyOgUAMB2tAgCYjE4BAExGpwAgsFmsVqvPHupfuXJlPfPMM3r55ZdT/fm7776rL7/8Ulu2bEnX7TYOetwVwwNgmEVJ3zt93WYl+7lwJLc2f+/7HrsvuJe7OiXRKsAf+UqnJFrlT1hTAXBURjolsaaCc1hTAUgP1lTwBtZUABzFmgrewJoKQHqwpoKn0SkA6UGn/E+QtweQEbt27dKjjz6a5s9bt26t3bt3e3BEAABcR6cAAKajVQAAk9EpAIDpaBUAwGR0CgBgMjoFAIHNpw9eL126tGbPnp3mz3/++WeVKlXKcwMC4L+sVs99wW/QKQAe48lO0Sq/QqsAeAydghPoFACPYU0FJ9EqAB5Dp+AEOgXAY1hTwQl0CoDH0CkjBXt7ABnxxhtvqG3btlq6dKmaNGmi8PBwWSwWxcbGatGiRVq4cKFmzJjh7WECAAIUnQIAmI5WAQBMRqcAAKajVQAAk9EpAIDJ6BQABDafPni9TZs2+vPPP/XBBx/o/fffV2xsrCQpIiJCderU0dKlS1WnTh2Pj+vhnk30eP9Wylcot/ZtOaSPo6bo3+Xb09y+ar2Keu69jipRqYhOHDmlmaN/1pxPFtltc9+jd6vTG21VqHS4YnYf1ZRXv9WK2WvSdb/3PVJLLbo3VtnIUsqVP6d6VB+g3Zv22d1GoVLh6j66gyrfd6dCQoO1dsFGje8zWafjzmR8YjLI1HkdMLmXmnSqb3edbauj1eeeIRl/0B7g6nktXrGIOg5/UmUjSymiREFNjJqinz6YZ3cb7Yc+rg5Dn7C77GTsaT15RzfXPjhXSuJdUUg/UzvlbundryB1zGPavNEu49EpOMnUVlWpW0GP92+pcpGllO+OvBr6yCit/PnvW16n4dP36YkBrVS4bCFdOHNRaxds1CcDvtS5k+czNJYCRfOr9/guuqthZSVcStDv3y7Xp/2/UuKVRElSePECmr53YorrDW72ttb+ujFD9226QG2VN9amjqyh2g99XPWfvFcFiuZTYkKidq7boymvfqvta3a56JFnEK2CE0ztlLsF6v7V1ZjH67zRrrYvt9Z9j9ytoncWVvylBG1duUOfv/y1DkUfcdvjzBA6BSeZ2CpTX0tx5DWqvpO6q0ajKsp3R15dOn/5v33HdB3c4Z19R3rXpnkjcuu5MR1VNrKUCpeN0OyP5uvjqKkuGcvt1qbXPPbSw2rR7QEVLF5Ap+POaM6khfp25E8uGYOreOPfqCP/LxclfZ/q/X868Ct9P+aXDDxiF6FVcIKJnfIE1gKuESjzaOpzJ0f+1jfm92GqVr+S3e3+MWOFRjw9LgMz4iQ6BSfQKf/ev3pCIM5l25dbq8uIdvrxg7lprjfve6SWHurRVKXvKqGQ0GDt33JIXw2fqbULN2X4/n32dVM6ZSSfPnhdkurUqWNUqO5/4h71HPusPur1mbas2KEWzzXWiHlD1KVSlI4dPJ5i+4gSBfXW3MGa//livdv+Q1W6t7x6T+im08fOavmPf0mSKtQup1dnRGnq6zO04qc1uveRWnr1uyhF1X3N9sTUkfsNyxamLSt36M8fVqnfZz1TjCUsa6je+fVV7dm0XwMaDZckdXrjSb35y8vqU+cVWb34kQYmz6skrZm/QWM6X9/xJibY/7HQVO6Y19CsoYrZG6c/f1ilHu93SvO+9/57QIMav2n7PulqkssfH2AC0zrlbundryB1zGPavNkuwF+Z2KqwbKHa889+LZz6h4bOGnDb7Svde6cGTuutSf2mavX/rVO+wnnV9+Nu6vdZTw1vM9rpcQQFBentOYN1+thZRdV9TTnz5dDAqS/IYrFoQp/JdtsOfGC49m05ZPs+owfNmy5QW+Wttal0+zXUoegYje/9hWL2HFVolsxqE/WQ3vn1NXUs21tnjp9104wA7mdip9wpUPevrsY8XuetdlWtV0m/TPxVO/7epUzBmfTsW0/pnV9fVddKUbp8Md6jcwC4m0mtMvm1lNu9RiVJO9ft0e9fL1PcgePKkTe7Ogx9Qu/8+pral+qlpCTPv4aQ3rVpSGiIzhw/q29GzFKbFx9y2TgcXZs+/8GzimxcTZ8O+Ep7Nx9QtlxZlTN/DpeNwxW89W/Ukf+XTxSyP8FSrWZ3qd/nPbVs1moXzwLgWSZ1yhNYC7hGoMyjyc+dHP1b39zPftO017+zfR9/KcGdUwa4HJ3yz/2rJwTiXJarWVrNuzVO8Ubwm1WpV1Hrf9ukyUO+0YXTF9T02QZ645eX1bv2YO3eeOvr3gqvm8LVgrw9AH/TJuohLZj8u+Z/8bsObD+sj6Om6tjB43q4Z5NUt3+oR2MdO3BcH0dN1YHthzX/i9/165Tf9fhLLW3bPNq3hdYt+kcz3pmtgzuOaMY7s7Vh8b96tG+LdN3vb9P/1PQ3f9D63zanOpZK95ZXeImCGv3sBO3794D2/XtAYzpP1J21yuiuhpVdNEPOMXleJelK/BWdOnra9nXulG/scN0xr9Frd+uzgV9pyXcrdSX+Spr3nZSYZDdnxh9MYbV67gvwYendryB1zGPavNkuo3myU7QKHvD3go2a+toMLf9pze03llShdlkd3Ren2R/NV+y+OG1ZsV1zP12kcjVL2W3XtFN9fbFlrOZe/FpfbB132/1qZJOqKlaxiN5t/6F2b9ynDYs365P+09S8ayNlzZHFbtuzJ87bPb+9+ex3/iZQW+Wttal0+zXUH98u14bFmxW7N077tx7SpH7TlC1XVpWqWsz1E+EMOgU4JFD3r67GPF7nrXa90vxtLZy2RPu3HtKef/ZrTOeJCi9eQGUjS6V2t97Hmgp+wuTXUm73GpUkzfvsN21etk1H9x/Trg17NeW1b1WwWH6FlyjggtlJv/SuTY/uP6aJL07Rb1/9qQtnLqa5nTvWpsXuLKyHezTR0NajtOr/1ip2X5x2b0re1iTe+jfqyP/LG9dbp46eVp2W/9OmP7Yodm+c6yYgI+gU4BDWAq4RKPNo8nMnR//WF38x3q5fF8+m/RzErVhTAQ4JlP2rJwTaXIZlC9Pg6X00tvsknT914Zbbfhw1VTNH/6Lotbt1eFesJg/5Vod3xqjOwzXttguo103plJH8+uD1V155RZ07d/bY/QWHBKtcZCmtu+kjFtYt+keV6pRP9ToVapfTukX/2F229tdNKlezlDIFZ5IkVaxTTusW2d/m2oUbVfGe8k7fb2pCQkMkq9XuoK2Ey1d09WqSKt93p8O342q+MK/V6lfSzNjPNWX7B4r69DnlLpAz/Q/Uw9w1r466o2yEZhz6RF/unqBXvnlRESULpu8BAH7A051yN1f1KNAxj2nzdruAQOQrrdq6cofyF8mnWs2qS5JyF8ylem3qaM289bZtmnVtpGffekpTXv1WXSpGacqQb9TpjbZq3OH+NG+3Yp3y2vfvAZ2IOWW7bO2vm5Q5LHOKA6/e+HmQZsZ+rnHL3lTdNrVd/AjNEqit8tba9Jr0rKGCQ4LVvPsDOn/6gnZv2u/wYwR8ja90ylGBun91NebxOm+360bZcmWVxFmWEHg82SpfeC0lPcKyhqrpsw0Us+eojh084fTtmMZda9PaD0cqZk+caj9UQ1/unqCv9kxQv896KEee7G5/TI4yqUu3k7tgLt3doobmT/7d6dsAfAFrKqQmUObRl5473epvfQ2frqsf4r7QZ5vfV/fR7ZUle9htHjngO+gU0hKIc9l7fBf9NW+9U29Qtlgsypoji93f5XjdFCYI9vYA3Onw4cM6ePCgx+4vV/4cyhScSaeOnra7/NTR08oTkTvV6+SNyK21qWwfHBKsXPlz6GRs8nVPHT1z0zZnbLfpzP2mZtvqnbp8IV5d331Gk1/5RhaLRV3ffUaZMgUpb6E8Dt+Oq5k+r2sWbNDSH1Ypbv8xRZQsqE5vtNWoxUPVq+YgXUkw92yL7ppXR2z/a6dGdRyvQ9ExyhOeS+2GtNEHK95W18pR5r6Axbui4Aae7pS7uapHgY55TJs322U8OgU38ZVWbV0VrXee+VBDZkQpc1iIgkOCtfLnvzW+9/WPqHvm1cf0Sf8vbWdZi90Xp2IVi6hF98Za9OXSVG83T0Runb5pzXD+9AUlxF9R3v/2O5fOX9bH/aZqy4odsiYlqU7L/2nIjCiN7jRei79e5p4H7GWB2ipvrU0lx9dQd7eooSHfRik0a2adjDmtQU3e1NkT5zLysF2HVsENfKVTjgrU/aurMY/XebNdN+vxXkdtXrZN+7YY+jtLp+AmnmyV6a+lOOrhnk3U7d3kA68ObDukQU3e9P4Z2lzIXWvTQqXCFV48v+o9VkejOn6koExB6vl+J732/Usa+MBwtz4mR5nUpdtp0vF+XTx3Wct//Mvp23A5WgU3YE2F1ATKPPrCc6fb/a1v8TfLFLs3TqdiT6tE5aLqPKKdSlUtoZebvunoNLgOnYIb0CmkJdDmsv6T96hsjVLqVetlp67/2EsPKyxbqJbOXGm7LOBeN6VTRvLrg9enTZt2223i4+MVHx9vd1mS9aqCLM6fifPmf+sWi0XWW/wC3Pwzi8WS8nZSbJPysvTe783OHD+rN594T30mdlPr3s1kTbLqj29XKHrdHiVdTXL4dtzF1Hm9cce+b8tBRa/dren7PtbdLWo4/FGS3uSWeb2NvxdstP33vn+lbauiNW3XeDXpWF+zxs5x/IYAH+dIpyT3tMqdMtojJGMe0+aNdgGByltrqvQqVqGIen3wrKa/+YPW/rpR+QrlUbdR7dV3Une93/Vj5cqfUwWL5Ve/z3sq6tMetutlCg6yfZT723NfUZW6FSQlf9R7tyr9JKXch0j2+52zJ87px3FzbT+LXrdH2fNk0xMDWvntwevXBGqrvLE2dXQNtemPLepRfYBy5c+hZt0e0Kvf9VOf2oN1+thZxx4c4GNYU+FWmMfrvPV31Wt6j++iklWLKaruaw6PGfAX3lhTmfpaiqMWf71c6xf9o7yF8ujxl1rq1e/66cX7XrX71GBf5c61qSUoSJnDMuvdjuN1eGeMJOm9rh/r43WjVKTcHToUfcStjy09vN0lRzR9tqF+/2aZX/y7A26FNRVuJVDm0eTnTrf7W9/8zxfbtt235aAO74zVxLXvqkz1ktq1YW+ajwHwFXQKtxMIc1mgSD49P+5Zvdz0LafWJw3a3qv2Qx/X0NajbP3gdVOYwq8PXnfEyJEjNXy4/RkHSqqCSqtSum/rzPFzupp41fZOkmtyF8yV4l0n15yMPa28EXlSbJ94JdH2jslTsSnfFZS7YC7buzWdud+0rFv0jzqW7a2c+XLoauJVXThzUd8d+Uyxe+PSdTuu5GvzejL2tOL2H1PhsoUceHTe4655dcbli/Hau/mA2XPmZ09u4Ftc2Sp3cmWPAhnzmDaT2mUcOgUvMqFTT738iLas2KHvx/wiSdq7+YAuXYjXuGVvauqr3yopKfl3ZGz3Sdr+1y676157o+773SYpNEtmSbKd1e9U7GndWauM3fbZc2dTSObgFGfPudG21dFq1qWRax6cgQK1Vd5am6YmrTXU5YvxOrI7Vkd2x2rbXzs1dceHerBLQ814Z7ZjD9KdaBW8yIRWOSJQ96+uxjxeZ0K7en3YWbUfrqmX7h+q44dPOv9g3I1OwYtc1Slfey0lLRfPXtTFsxd1eFestq3eqR9PTtF9j9TSHzNWpPu2TGMJSj64zR1r05Mxp5R4JdF24LokHdh2WJJUsFh+Iw5eN6FLjqh8350qdmdhvd12rFPXdxtaBS9iTRVYAmUefeG5U3r/1rdz/R5dSUhU4bKFPH/wOp2CF9GpwBNIc1k2spTyhOfWxLXv2i7LFJxJVepVUKteD6p52NNKSkr9pMT3P3GP+n3eU28+8b42LN5su9yda9PUGPG6KZ0yUpC3B+BKV65c0ezZszV69GhNnz5dFy5cuO11Bg8erDNnzth9ldSdTt1/4pVERa/boxqNq9pdXuOBqtqyakeq19m2Olo1HrDfPrJJNUWv3aOriVclSVtXRSvy5m0aV9PWlTucvt/bOXvinC6cuai7GlRW7oI5teqXtU7djiv42rzmyJtdBYrm04mYU449QC9x17w6IyRzsIpVKKyThs8ZkFHOdEpybavcyR09CkTMY9pMahfgr7y9pnJWaNbMtgPUr7n2xxWLxaLTcWd07NAJFSoVbvtj/7Wv2H3Jb9Q9ceSk7bK4A8clSVtX7VCJysXs/vgV2aSaEi4naOe6PWmOp0z1kn793DZQW+WttWlqHF5DWSwKCQ259TaAD2FNBUcwj9d5u10vfNRF9z1ytwY2Gm57zgX4O2+uqXzttRRHWfzoOa0716ZbVmxXcEiwCpUKt21TpFzym12P7j/moUd4a97ukqOadW6k6LW7teef/U5dHzAZayo4IlDm0SefO93meVGJSkUVkjnYr/82Df9Gp+CoQJrLDYs3q1uVfupRfYDta8ffu/T718vVo/qANA9cb9D2Xg2Y0ksj232gNfPW2/2M101hCp8+eP2ee+7R6dOnJUnHjh1TZGSknnzySX322Wfq1q2bKlasqMOHD9/yNkJDQ5UzZ067r4x8bMissXPUrEsjNX22gYrdWVg93u+ogsXya86khZKkziOe1sCpL9i2nzNpkQoWz6/n3uuoYncWVtNnG+jBzg31/Xu/2Lb56cO5imxSTU8ObKWi5e/QkwNbqcYDVfTjB3Mdvl9JypEnu0pXK6HiFYtIkoqUv0Olq5VQnvDctm2adqqvCneXVaFS4WrUrq5em9lPP46b6/UzMpg6r2HZwtR9dHtVqF1O4cULqOr9FfXmLy/rzPFzWvHTGg/NjvPcMa/BIcEqXa2ESlcroZDMwcpfOJ9KVyuhO0pH2LbpPrq9qtarqIgSBXVnrTJ67fuXlDVnFi2ctsRjjx3wBFd0SnJ9q9zJkR7h9pjHtHmrXYC/MnFNJSU/z772eylJESULqnS1EipQNL+klL/rq+es032P1tJDPZooomRBVbqnvHp98Ky2/bXT9qbSr4bPVNuXH9EjfZqrcNlCKlG5mJp2qq82UQ+lOY51C//Rga2HNOjL3ip9VwlVb1hZ3Ue317zPF+viuUuSpMYd7leDp+5TsTsLq0i5O/TYSw+rde/mmj1+fobmwHSB2ipvrU1vt4YKyxqqzm8/pQp3l1XBYvlVpnpJ9fushwoUyas/v1/lmckB3IA1VeDsX12NebzOW+3qPaGrGrWrq5HtPtDFc5eVJzy38oTnVuawzJ578IAHmLamMvW1FOn2r1FFlCyoti+3VtkapVSgaH5VqF1Or34XpYRLCSleaPeU9K5NJdm2z5I9TLny51TpaiVUrEIR28/dtTZd/9tmRa/bo/5fPK/Sd5VQ2Rql9OKk7lq3cJPd2di9zVv/Rm/3//KarDmyqO7jtTX/i8VunAXAc1hTBfZaICMCZR5Nfe7kyN/6CpUK1zOvPaZykaUUXryAajWrrtdm9tPO9Xu0ZYV/HbgJ/0Wn/Hf/6gmBMpeXzl/Wvi0H7b4uX4jX2ZPntG/LQUkpe9Wg7b0aOO0FfdJ/mrat3mn7u1zWnFlt2/C6KUwQ7O0BZMTq1auVkJAgSRoyZIgyZcqk/fv3KyIiQidOnFDLli31+uuv64svvvDYmJbOXKmc+bLrmdceU95CebTv34Ma0mKE7R0o+SLyqGCx638Iid0Xp1dbjFSP9zuq5fNNdeLIKU3sO1nLf/zLts3WVdF6+6lx6vRmW3V8o61idsfq7bZjtX3NLofvV5LqtKypAVN62b5/dUaUJOnL4TP11fDvJUlFyhdW5xHtlCNvdh3dF6dvRvyoWWPnuGey0sHUeU26mqSSlYvpgfb3K3vubDoZc0qb/tiit9uO1aXzlz00O85zx7zmuyOPJm0Ybfv+if4t9UT/ltq0ZIv6NxwmScpfOJ9e+aavcubPqTPHzmrb6mj1qTPE7t+rcdJ4pxpwKyZ2yt0c6RFuj3lMm7faZTw6BSeZ2qpyNUvpvT+uf8Rjz/c7SZIWTl2i0Z0npPhdXzhtibLkCFOrXg/quTEddOH0BW34/V99/vLXtm3mf/G7Ll9M0BP9W6rru8/o8oV47dt8wO5Fg5slJSVpyEMj1WdCV41b/pYSLiXo92+X69P+X9pt125IGxUsnl9JV5N0ODpG73WZqMVfL3PRbJgpUFvlrbXp7dZQV68mqWj5wmr8Q33lzJ9D506c046/dyuq3uvav/WQh2bnNmgVnGBqp9wpUPevrsY8XuetdrXs2VSS9N4S+4/tHv3sBDNPYEGn4CTTWmXqaynS7V+junL5iqrcV0GP9m2h7Hmy69TR09r85zb1vfdVnT521m1zdivpXZtKsvsbU7mapdWoXV3F7otT+1LJj91da1Or1arXW76jXh921vtL39DlC/H6e/4GfXLT+tXbvPVv9Hb/L6+p3/ZeWSwW/f7tCndNgfNoFZxgWqc8gbWAawTKPJr63MmRv/UlJiSqesMqeqRPc4VlD9Oxgye0Zt56fTX8+zTPwutWdApOoFP+u3/1BObyupt71aJ7YwWHBKvPhG7qM6Gb7fIb1z8B97opnTKSxWq1Wm+/mZmCgoIUGxurggULqnz58nr//ffVokUL28+XLFmiZ599Vnv37k3X7TYOetzVQwVggEVJ3zt93WaFet1+IxeZHzPh9hvBJ7irUxKtAvyRr3RKolX+hDUVAEdlpFMSayo4hzUVgPRgTQVvYE0FwFGsqeANrKkApAdrKnganQKQHnTK//j0mdclyWKxSJJOnz6tkiVL2v2sZMmSiokx56PwAPgw332fD7yMTgHwCDqFDKBVADyCVsFJdAqAR9ApZACtAuARtApOolMAPIJOwUl0CoBH0Ckj+fzB6506dVJoaKiuXLmi/fv3q2LFirafxcTEKHfu3N4bHAAg4NEpAIDpaBUAwGR0CgBgOloFADAZnQIAmIxOAUDg8umD1zt06GB7B1arVq10/vx5u5/PmjVLd911lxdGBsDv8A4sOIFOAfAYOgUn0SoAHkOr4AQ6BcBj6BScRKsAeAytghPoFACPoVNwAp0C4DF0ykg+ffD61KlTb/nzYcOGKVOmTJ4ZDAAAN6FTAADT0SoAgMnoFADAdLQKAGAyOgUAMBmdAoDAFuTtAWRE7969tWzZsjR/ni1bNoWFhXlwRAD8VpLVc1/wG3QKgMd4slO0yq/QKgAeQ6fgBDoFwGNYU8FJtAqAx9ApOIFOAfAY1lRwAp0C4DF0ykg+ffD6hAkTVL9+fZUrV07vvvuuYmNjvT0kAABs6BQAwHS0CgBgMjoFADAdrQIAmIxOAQBMRqcAILD59MHrkrRw4UI1b95cY8aMUbFixdSqVSvNmTNHSUlJ3h4aAD9itSZ57Av+hU4B8ARPdopW+R9aBcAT6BScRacAeAJrKmQErQLgCXQKzqJTADyBNRWcRacAeAKdMpPPH7xepUoVjRs3TkeOHNH06dMVHx+v1q1bq2jRohoyZIh27drl7SECAAIYnQIAmI5WAQBMRqcAAKajVQAAk9EpAIDJ6BQABC6fP3j9mpCQED3xxBNasGCB9uzZo27duunrr79W+fLlvT00AP4gyeq5L/glOgXArTzZKVrlt2gVALeiU8ggOgXArVhTwQVoFQC3olPIIDoFwK1YUyGD6BQAt6JTRvKbg9dvVKxYMQ0bNkx79+7VggULvD0cAADs0CkAgOloFQDAZHQKAGA6WgUAMBmdAgCYjE4BQGDw6YPXixcvrkyZMqX5c4vFosaNG3twRAAAXEenAACmo1UAAJPRKQCA6WgVAMBkdAoAYDI6BQCBLdjbA8iIvXv3ensIAAKFlY/0QPrRKQAeQ6fgJFoFwGNoFZxApwB4DJ2Ck2gVAI+hVXACnQLgMXQKTqBTADyGThnJp8+8DgAAAAAAAAAAAAAAAAAAAADwDT595nUA8JikJG+PAACAtNEpAIDpaBUAwGR0CgBgOloFADAZnQIAmIxOGYkzrwMAAAAAAAAAAAAAAAAAAAAA3I4zrwOAI6xWb48AAIC00SkAgOloFQDAZHQKAGA6WgUAMBmdAgCYjE4ZiTOvAwAAAAAAAAAAAAAAAAAAAADcjjOvA4ADrElJ3h4CAABpolMAANPRKgCAyegUAMB0tAoAYDI6BQAwGZ0yE2deBwAAAAAAAAAAAAAAAAAAAAC4HWdeBwBHWK3eHgEAAGmjUwAA09EqAIDJ6BQAwHS0CgBgMjoFADAZnTISZ14HAAAAAAAAAAAAAAAAAAAAALgdZ14HAEck8Q4sAIDB6BQAwHS0CgBgMjoFADAdrQIAmIxOAQBMRqeMxJnXAQAAAAAAAAAAAAAAAAAAAABux5nXAcAR1iRvjwAAgLTRKQCA6WgVAMBkdAoAYDpaBQAwGZ0CAJiMThmJM68DAAAAAAAAAAAAAAAAAAAAANyOg9cBAAAAAAAAAAAAAAAAAAAAAG4X7O0BAIAvsCZZvT0EAADSRKcAAKajVQAAk9EpAIDpaBUAwGR0CgBgMjplJs68DgAAAAAAAAAAAAAAAAAAAABwO868DgCOsCZ5ewQAAKSNTgEATEerAAAmo1MAANPRKgCAyegUAMBkdMpInHkdAAAAAAAAAAAAAAAAAAAAAOB2HLwOAA6wJlk99uWMiRMnqmTJkgoLC1NkZKSWLVt2y+2XLl2qyMhIhYWFqVSpUpo0aZJT9wsAMIMnO+VMq+gUAMDkTkm0CgACHWsqAIDpTO6URKsAINCxpgIAmMz0TkmB2SoOXgcAH/fdd9/pxRdf1JAhQ7RhwwbVrVtXzZo104EDB1Ldfu/evWrevLnq1q2rDRs26JVXXlGfPn00a9YsD48cABAI6BQAwHS0CgBgMjoFADAdrQIAmIxOAQBMF6itslitVucO9fdjjYMe9/YQALjBoqTvnb6uJ/cL6R3n3XffrRo1aujjjz+2XVahQgW1bt1aI0eOTLH9oEGD9Msvv2jbtm22y3r06KFNmzZp1apVzg8cHkWrAP/jK52S0jdWOhWY6BTgfzLSKYk1FcxDqwD/w5oqGZ3yD3QK8D+sqa6jVf6BVgH+hzVVMjrlH+gU4H/8tVNS4LaKM68DgGHi4+N19uxZu6/4+PhUt01ISNC6devUpEkTu8ubNGmilStXpnqdVatWpdi+adOmWrt2ra5cueKaBwEA8GuOtopOAQC8gTUVAMB0rKkAACZjTQUAMB1rKgCAyVhTOSbY2wMwUUbf+e5u8fHxGjlypAYPHqzQ0FBvD8enMZeuEQjz6Mn9wrBhwzR8+HC7y4YOHaphw4al2Pb48eO6evWqwsPD7S4PDw9XbGxsqrcfGxub6vaJiYk6fvy4ChUqlLEHAI+gVYGBeXSNQJhHT+8THG0VnQpcdCowMI+uESjzyJoKpqFVgYF5dI1AmEfWVDANnQoMzKNrBMo8sqaCaWhVYGAeXSMQ5pE1FUxDpwID8+gagTCPpnZKCuxWceZ1HxQfH6/hw4en+W4MOI65dA3m0bUGDx6sM2fO2H0NHjz4ltexWCx231ut1hSX3W771C4HnMV+wTWYR9dgHl0vva2iUzAN+wXXYB5dg3l0PdZU8AfsG1yDeXQN5tH1WFPB17FfcA3m0TWYR9djTQV/wL7BNZhH12AeXY81FXwd+wXXYB5dg3l0PdZUjuHM6wBgmNDQUIffyZY/f35lypQpxTut4uLiUrzD6pqIiIhUtw8ODla+fPmcGzQAIKA42io6BQDwBtZUAADTsaYCAJiMNRUAwHSsqQAAJmNN5RjOvA4APixz5syKjIzUokWL7C5ftGiR7rnnnlSvU6dOnRTbL1y4UDVr1lRISIjbxgoACDx0CgBgOloFADAZnQIAmI5WAQBMRqcAAKYL5FZx8DoA+Lh+/frp888/1+TJk7Vt2zZFRUXpwIED6tGjh6TkjyLp0KGDbfsePXpo//796tevn7Zt26bJkyfriy++UP/+/b31EAAAfoxOAQBMR6sAACajUwAA09EqAIDJ6BQAwHSB2qpgbw8A6RcaGqqhQ4c6/NECSBtz6RrMo3c9+eSTOnHihN544w3FxMSocuXKmjdvnooXLy5JiomJ0YEDB2zblyxZUvPmzVNUVJQmTJigO+64Qx9++KHatGnjrYcAP8R+wTWYR9dgHr2LTsFE7Bdcg3l0DebR+2gVTMS+wTWYR9dgHr2LTsFE7Bdcg3l0DebR+2gVTMS+wTWYR9dgHr2LTsFE7Bdcg3l0DebR+wK1VRar1Wr19iAAAAAAAAAAAAAAAAAAAAAAAP4tyNsDAAAAAAAAAAAAAAAAAAAAAAD4Pw5eBwAAAAAAAAAAAAAAAAAAAAC4HQevAwAAAAAAAAAAAAAAAAAAAADcjoPXAQAAAAAAAAAAAAAAAAAAAABux8HrBouNjVXfvn1VpkwZhYWFKTw8XPfdd58mTZqkixcvSpJKlCihcePGpbjusGHDdNddd3l2wAbq1KmTLBaLLBaLQkJCFB4ersaNG2vy5MlKSkqybVeiRAnbdjd+vfPOO14cvZlunFOLxaJ8+fLpwQcf1D///GPbxmKxaPbs2d4bJACPoFOuQatcj1YBuIZWZRydcj06BeAaOpVxdMr16BSAa+iUa9Aq16NVAK6hVRlHp1yPTgG4hk65Bq1yPVoFU3DwuqH27Nmj6tWra+HChRoxYoQ2bNig3377TVFRUfq///s//fbbb94eos948MEHFRMTo3379mn+/Plq0KCB+vbtq4ceekiJiYm27d544w3FxMTYffXu3duLIzfXtTmNiYnR4sWLFRwcrIceesjbwwLgQXTKtWiV69EqALTKdeiU69EpAHTKdeiU69EpAHTKtWiV69EqALTKdeiU69EpAHTKtWiV69EqmCDY2wNA6p5//nkFBwdr7dq1ypYtm+3yKlWqqE2bNrJarV4cnW8JDQ1VRESEJKlw4cKqUaOGateurUaNGmnq1Knq2rWrJClHjhy27XBrN85pRESEBg0apHr16unYsWMqUKCAl0cHwBPolGvRKtejVQBolevQKdejUwDolOvQKdejUwDolGvRKtejVQBolevQKdejUwDolGvRKtejVTABZ1430IkTJ7Rw4UL16tXLLmA3slgsHh6Vf2nYsKGqVaumH3/80dtD8Xnnz5/X119/rTJlyihfvnzeHg4AD6BTnkGrXIdWAYGHVrkfnXIdOgUEHjrlfnTKdegUEHjolGfQKtehVUDgoVXuR6dch04BgYdOeQatch1aBW/h4HUD7dq1S1arVeXLl7e7PH/+/MqePbuyZ8+uQYMG2S4fNGiQ7fJrXyNGjPD0sH3OnXfeqX379tm+T20elyxZ4rXxmWzOnDm2OcqRI4d++eUXfffddwoKYpcCBAI65Tm0ynm0CghstMoz6JTz6BQQ2OiUZ9Ap59EpILDRKc+hVc6jVUBgo1WeQaecR6eAwEanPIdWOY9WwQTB3h4A0nbzu6zWrFmjpKQktWvXTvHx8bbLBwwYoE6dOtlt++GHH+rPP//0xDB9ltVqtZvj1OaxcOHCHh6Vb2jQoIE+/vhjSdLJkyc1ceJENWvWTGvWrFHx4sW9PDoAnkKn3I9WOY9WAZBolbvRKefRKQASnXI3OuU8OgVAolOeQKucR6sASLTK3eiU8+gUAIlOeQKtch6tggk4eN1AZcqUkcVi0fbt2+0uL1WqlCQpS5Ysdpfnz59fZcqUsbssb9687h2kH9i2bZtKlixp+z61eUTqsmXLZjdXkZGRypUrlz777DO99dZbXhwZAE+gU55Dq5xHq4DARqs8g045j04BgY1OeQadch6dAgIbnfIcWuU8WgUENlrlGXTKeXQKCGx0ynNolfNoFUzAef4NlC9fPjVu3Fjjx4/XhQsXvD0cv/T7779r8+bNatOmjbeH4hcsFouCgoJ06dIlbw8FgAfQKc+gVa5Fq4DAQqvcj065Fp0CAgudcj865Vp0CggsdMozaJVr0SogsNAq96NTrkWngMBCpzyDVrkWrYI3cOZ1Q02cOFH33nuvatasqWHDhqlq1aoKCgrS33//re3btysyMtLbQ/QZ8fHxio2N1dWrV3X06FEtWLBAI0eO1EMPPaQOHTrYtjt37pxiY2Ptrps1a1blzJnT00M23rU5laRTp05p/PjxOn/+vB5++GEvjwyAp9Ap16JVrkerANAq16FTrkenANAp16FTrkenANAp16JVrkerANAq16FTrkenANAp16JVrkerYAIOXjdU6dKltWHDBo0YMUKDBw/WoUOHFBoaqooVK6p///56/vnnvT1En7FgwQIVKlRIwcHBypMnj6pVq6YPP/xQHTt2VFDQ9Q8feP311/X666/bXfe5557TpEmTPD1k412bU0nKkSOH7rzzTn3//feqX7++dwcGwGPolGvRKtejVQBolevQKdejUwDolOvQKdejUwDolGvRKtejVQBolevQKdejUwDolGvRKtejVTCBxWq1Wr09CAAAAAAAAAAAAAAAAAAAAACAfwu6/SYAAAAAAAAAAAAAAAAAAAAAAGQMB68DAAAAAAAAAAAAAAAAAAAAANyOg9cBAAAAAAAAAAAAAAAAAAAAAG7HwesAAAAAAAAAAAAAAAAAAAAAALfj4HUAAAAAAAAAAAAAAAAAAAAAgNtx8DoAAAAAAAAAAAAAAAAAAAAAwO04eB0AAAAAAAAAAAAAAAAAAAAA4HYcvA64SP369fXiiy96exgAAKSJVgEATEanAAAmo1MAANPRKgCAyegUAMB0tArwLA5eh1Hi4uL03HPPqVixYgoNDVVERISaNm2qVatWeXtot/Xjjz/qzTff9PYwAABuRqsAACajUwAAk9EpAIDpaBUAwGR0CgBgOloFwFHB3h4AcKM2bdroypUrmjZtmkqVKqWjR49q8eLFOnnypLeHlqYrV64oJCREefPm9fZQAAAeQKsAACajUwAAk9EpAIDpaBUAwGR0CgBgOloFwFGceR3GOH36tJYvX653331XDRo0UPHixVWrVi0NHjxYLVq0sG3TvXt3hYeHKywsTJUrV9acOXNst7Fy5UrVq1dPWbJkUdGiRdWnTx9duHDB9vMSJUpoxIgR6ty5s3LkyKFixYrp008/tRvHoEGDVK5cOWXNmlWlSpXSa6+9pitXrth+PmzYMN11112aPHmySpUqpdDQUFmt1hQfHXLq1Cl16NBBefLkUdasWdWsWTPt3LnTTbMHAPAEWgUAMBmdAgCYjE4BAExHqwAAJqNTAADT0SoA6cHB6zBG9uzZlT17ds2ePVvx8fEpfp6UlKRmzZpp5cqVmj59urZu3ap33nlHmTJlkiRt3rxZTZs21aOPPqp//vlH3333nZYvX64XXnjB7nbee+891axZUxs2bNDzzz+vnj17avv27baf58iRQ1OnTtXWrVv1wQcf6LPPPtPYsWPtbmPXrl2aOXOmZs2apY0bN6b6eDp16qS1a9fql19+0apVq2S1WtW8eXO7GAIAfAutAgCYjE4BAExGpwAApqNVAACT0SkAgOloFYB0sQIG+eGHH6x58uSxhoWFWe+55x7r4MGDrZs2bbJarVbrr7/+ag0KCrLu2LEj1eu2b9/e2r17d7vLli1bZg0KCrJeunTJarVarcWLF7c+88wztp8nJSVZCxYsaP3444/THNOoUaOskZGRtu+HDh1qDQkJscbFxdltd//991v79u1rtVqt1ujoaKsk64oVK2w/P378uDVLlizWmTNnOjATAABT0SoAgMnoFADAZHQKAGA6WgUAMBmdAgCYjlYBcFSwF4+bB1Jo06aNWrRooWXLlmnVqlVasGCBRo0apc8//1xxcXEqUqSIypUrl+p1161bp127dunrr7+2XWa1WpWUlKS9e/eqQoUKkqSqVavafm6xWBQREaG4uDjbZT/88IPGjRunXbt26fz580pMTFTOnDnt7qt48eIqUKBAmo9j27ZtCg4O1t133227LF++fCpfvry2bduWvkkBABiFVgEATEanAAAmo1MAANPRKgCAyegUAMB0tAqAo4K8PQDgZmFhYWrcuLFef/11rVy5Up06ddLQoUOVJUuWW14vKSlJzz33nDZu3Gj72rRpk3bu3KnSpUvbtgsJCbG7nsViUVJSkiRp9erVatu2rZo1a6Y5c+Zow4YNGjJkiBISEuyuky1btluOxWq1pnm5xWK55XUBAOajVQAAk9EpAIDJ6BQAwHS0CgBgMjoFADAdrQLgCM68DuNVrFhRs2fPVtWqVXXo0CFFR0en+g6sGjVqaMuWLSpTpozT97VixQoVL15cQ4YMsV22f/9+p8acmJiov/76S/fcc48k6cSJE4qOjra9CwwA4D9oFQDAZHQKAGAyOgUAMB2tAgCYjE4BAExHqwCkhjOvwxgnTpxQw4YNNX36dP3zzz/au3evvv/+e40aNUqtWrXS/fffr3r16qlNmzZatGiR9u7dq/nz52vBggWSpEGDBmnVqlXq1auXNm7cqJ07d+qXX35R7969HR5DmTJldODAAc2YMUO7d+/Whx9+qJ9++indj6Vs2bJq1aqVunXrpuXLl2vTpk165plnVLhwYbVq1SrdtwcAMAOtAgCYjE4BAExGpwAApqNVAACT0SkAgOloFYD04OB1GCN79uy6++67NXbsWNWrV0+VK1fWa6+9pm7dumn8+PGSpFmzZul///ufnnrqKVWsWFEDBw7U1atXJUlVq1bV0qVLtXPnTtWtW1fVq1fXa6+9pkKFCjk8hlatWikqKkovvPCC7rrrLq1cuVKvvfaaU49nypQpioyM1EMPPaQ6derIarVq3rx5KT66BADgO2gVAMBkdAoAYDI6BQAwHa0CAJiMTgEATEerAKSHxWq1Wr09CAAAAAAAAAAAAAAAAAAAAACAf+PM6wAAAAAAAAAAAAAAAAAAAAAAt+PgdQAAAAAAAAAAAAAAAAAAAACA23HwOgAAAAAAAAAAAAAAAAAAAADA7Th4HQAAAAAAAAAAAAAAAAAAAADgdhy8DgAAAAAAAAAAAAAAAAAAAABwOw5eBwAAAAAAAAAAAAAAAADg/9m78/CYzoaP47/JLrbYQ9S+1FpF7cRSFFVba69dH62qUlV0QbWluuiqG0Krltq7KipUi5aillJLUVvsak1Icr9/eDOMbJNJZnKSfD/Xlet5cuacyT13pufrTM6cAQAAbsfJ6wAAAAAAAAAAAAAAAAAAAAAAt+PkdQAAAAAAAAAAAAAAAAAAAACA23HyOgAAAAAAAAAAAAAAAAAAAADA7Th5HQAAAAAAAAAAAAAAAAAAAADgdpy8DgAAAAAAAAAAAAAAAAAAAABwO05eBwAAAAAAAAAAAAAAAAAAAAC4HSevAwAAAAAAAAAAAAAAAAAAAADcjpPXAQAAAAAAAAAAAAAAAAAAAABux8nrAAAAAAAAAAAAAAAAAAAAAAC34+R1AAAAAAAAAAAAAAAAAAAAAIDbcfI6AAAAAAAAAAAAAAAAAAAAAMDtOHkdAAAAAAAAAAAAAAAAAAAAAOB2nLwOB5cvX9bTTz+tIkWKKCAgQNWqVdO8efOc2rZx48ay2WyJfkVERDh1P+PGjdPMmTOdHvPFixf1/PPPq1y5cgoMDFRISIgeeeQR7dq1K1WPb8uWLbr//vuVI0cOBQUFqWPHjvrnn3+cHpckzZ07V/Xq1VP27NmVI0cOtWjRQitWrEhw3erVq2vo0KGSbs5l5cqVk7zvypUrq0KFCvGWL1myRDabTXXr1o132xdffCGbzaavv/46RY8DAKwiNZ2SpPDwcDVv3lwFCxZUjhw5VLVqVb333nuKiYlx+j7oFJ0CgKSktlU//vij6tevr2zZsil37txq27Ztgs1ICq2iVQCQkEuXLmnkyJFq0aKFChQoIJvNpnHjxqXoPk6dOqU+ffoof/78CgwMVN26dfXTTz+l6D7oFJ0CgMSktlVHjx7V008/rdDQUAUFBclms6WoOXFoFa0CgISktlOLFy9Wt27dVKZMGWXLlk0lSpRQjx49tG/fvhSNg07RKQBITGpbtWrVKjVv3lxFihSRv7+/ChYsqKZNm+r7779P0ThoFa0CnMHJ63DQsWNHzZo1S2PHjtUPP/yg++67T926ddOcOXOS3Xbq1KnasGGDw9dPP/0kX19f1alTR8HBwYlu+80338QLnTFGs2fP1vr165P8uW3bttU777yjgQMH6rvvvtOkSZO0bds21a1bV4cPH3bp8e3Zs0eNGzfW9evX9dVXX2nGjBnau3evGjZsqNOnTyc7F9LNEPfo0UNly5bVnDlztGzZMtWoUUMdOnTQf//957DuwYMHtXXrVnXq1Mmp+5akJk2aaM+ePfHeFLBmzRplz55dmzdv1qVLl+Ld5uXlpUaNGjn9cwDASlLTqVWrVun+++9XdHS0PvvsMy1dulSNGzfW0KFDNXz48CS3pVN0CgCclZpWLVu2TK1atVLBggW1aNEiffzxx9q3b58aNmyoAwcOJLktraJVAJCcs2fP6tNPP1VUVJTat2+f4u2joqLUrFkz/fTTT3r33Xe1bNkyFSpUSA888IDWrl2b5LZ0ik4BgDNS26r9+/fryy+/lJ+fn1q3bp2ibWkVrQKA5KS2U6+//rquXr2q559/XsuXL9crr7yirVu3qnr16slevIJO0SkAcEZqW3X27FlVqlRJU6ZM0YoVK/TJJ5/I19dXbdq00ezZs5PcllbRKiDFDPD/vvvuOyPJzJkzx2F58+bNTZEiRUx0dHSK73PmzJlGkpk2bVqS6+3Zs8d0797dtGzZ0nTt2tUMGjTINGjQwDz55JPm2LFjiW63b98+I8m88MILDsvXr19vJJm3337bpcf3yCOPmPz585v//vvPvuzQoUPG19fXjBw5MtnHvXHjRmOz2eKNyxhjtm/fbq5eveqwbPLkyaZgwYImJibGGGNMaGioqVSpUpI/Y9GiRUaSmTt3rsPyqlWrmqFDhxpfX1/z/fffO9xWqlQpU6NGjWTHDwBWlNpO9ejRw/j7+5vLly87LG/RooXJlStXktvSKToFAM5IbavKly9vqlatamJjY+3LDh06ZPz8/Ez37t2T3JZW0SoASE5sbKy9MadPnzaSzNixY53e/sMPPzSSzPr16+3Lbty4YSpWrGhq1aqV5LZ0ik4BgDNS26q4/awxxmzatMlIMmFhYU5tS6toFQAkJ7WdOnnyZLxlx44dM76+vqZ///5Jbkun6BQAOCO1rUrI9evXTUhIiGnYsGGS69EqWgWkFFdeh92SJUuUI0cOPfLIIw7L+/btq+PHj+u3335L8X1Onz5dOXLkUJcuXZJcr3z58vryyy/1xBNPaPHixZo7d67eeustvf/++ypSpEii2/n6+kqScufO7bA8KChIkhQQEGBf5uzji46O1rfffqtOnTopV65c9vWKFy+uJk2aaMmSJUk+lujoaM2ePVt+fn4aNmyYoqOj7V+xsbGqUqWKsmXL5rDNokWL1KFDB3l5Jf6f5JIlSxQYGKgBAwYoOjpajRs3ls1m05o1a+zrnD17Vjt27FCbNm1Uo0YNhYeH2287cuSI/vnnHzVp0iTJ8QOAVaW2U76+vvLz84u3Dw4KCnLoRULoFJ0CAGekplVnz57V33//rVatWslms9mXFy9eXJUrV9bSpUsVExOT6Pa0ilYBQHJsNptDY1JqyZIlKl++vMPH1fr4+Khnz576/fffdezYsUS3pVN0CgCckdpWJbWfTQ6tolUAkJzUdqpgwYLxlhUpUkRFixbVkSNHktyWTtEpAHBGaluVEF9fXwUFBcnHxyfJ9WgVrQJSipPXYbdz505VqFAhXmyqVq1qvz0l9u3bp3Xr1qlr167KkSNHsuv26tVLU6dOVYcOHdStWzcNHz5cTz31lE6cOJHodsWLF1e7du00ZcoUhYeH6/Lly9qzZ4+eeuopFStWTF27dk3x4ztw4ICuXbtmX37nuvv371dkZGSC49m2bZt8fX31wQcfKCoqSvny5ZOvr6/96+OPP463zdGjR/X7778n+bEhU6ZM0SOPPKIxY8Zo2rRp8vHxUd68eVW1alWHSK1du1be3t6qV6+eQkNDHeIWtx4BA5BRpbZTgwYN0vXr1/XUU0/p+PHjunDhgr744gstWbJEI0eOTHJbOkWnAMAZqWnV9evXJUn+/v7xbvP399fVq1d14MCBRLenVbQKANxt586die7bJSX5Mfd0ik4BgNXRKloFAOnhn3/+0eHDh1WpUqUk16NTdAoAPCk2NlbR0dE6fvy4xo4dq7179+qZZ55JchtaRauAlOLkddidPXtWefPmjbc8btnZs2dTdH/Tp0+XJPXv3z/ZdXfv3q0uXbpo+fLluvvuu1W7dm2tW7dO9913nw4ePJjktgsWLFCbNm3UtGlT5cyZUxUqVNCpU6e0du1a5cmTx76es48v7n8TW9cYo/Pnzyc4lqJFi2rTpk0qXLiw6tWrp02bNjl89enTJ942ixYtUlBQUIJhiY2N1ZAhQzRq1CjNmjVLL7zwgsPtTZo00d69e+2RX7NmjWrWrKns2bMrNDRUW7Zs0cWLF+23eXt7q2HDhgmOHQCsLrWdql27tlavXq0lS5YoJCREefLkUd++ffXqq68me6BFp+gUADgjNa0qVKiQ8ubNq19//dVh+YULF+wvtiW1Pa2iVQDgbqnpHJ2iUwBgdbSKVgGAp0VHR6t///7KkSOHhg0bluS6dIpOAYAntW7dWr6+vgoJCdE777yj+fPnq02bNkluQ6toFZBSnLwOB0l9dEhKPlYkOjpas2bNUqVKlVSnTp1k13/ooYfiRc5ms+nRRx9VvXr1ktz28ccf16JFizRlyhStXbtW8+fPl5+fn5o2barDhw87/RjuvM2VucifP7+qVasmPz8/5c6dW9WqVbN/1ahRQ4GBgfG2WbRokdq1axfvXWGRkZFq3769vvzyS61YsUI9evSIt21c9OLeZbVmzRo1btxYktSgQQNJ0s8//2y/rWbNmsqZM2eijwsArC41nfrjjz/UoUMH1ahRQ998841Wr16t0aNH64UXXtCECROS3JZO0SkAcJarrfLy8tLgwYP1008/acKECTp16pT279+vnj176urVq/Z1EkOraBUAeIKrnaNTdAoArI5W0SoA8CRjjPr3769169bp888/11133ZXk+nSKTgGAJ73//vv6/ffftWzZMrVs2VJdunTR3Llzk9yGVtEqIKV8kl8FWUW+fPkSvELSuXPnJCX8bqTEfP/994qIiNBzzz2X4nGMGzfO6XWXL1+u6dOna8GCBXr44Yfty1u0aKESJUpo3LhxCgsLk+T848uXL5+khK8Wde7cOdlsNgUFBSU4nm3btunee++VJB0+fFi+vr722zZt2qSaNWs6rB8REaFff/1VI0eOjHdfp06d0pEjR3T//fcnGvHQ0FB5eXkpPDxcLVq00M6dOzV58mRJUs6cOXXvvfdqzZo1qlq1qg4ePKguXbokeD8AkBGktlODBw9WoUKFtGTJEnl7e0u6eSDg5eWlcePGqUePHipVqlSy46BTN9EpAIgvta166aWXdPnyZb3yyit66aWXJElt2rRR3759NW3aNIWEhDg1Dlp1E60CgLSVVq8d0qmb6BQAWBetuolWAYB7GGM0YMAAzZ49W7NmzVK7du1StD2duolOAYD7lC1b1v7/H3roIbVq1UqDBw9Wly5dkrzQUhxadROtApLGlddhV6VKFe3evVvR0dEOy3fs2CFJqly5stP3NX36dPn5+enRRx9N0zHeadu2bZKk++67z2F5UFCQypQpo507d9qXOfv4SpcurWzZstmX37lumTJlFBAQkOB44j46pGPHjvLz89Mvv/yiTZs26Y8//ogXL0lasmSJsmfPrubNm8e7rVixYvrmm2+0Zs0adezYUZGRkfHWyZ07tz1Sa9askZeXl+rXr2+/PTQ0VOHh4QoPD5ekBD+eBAAyitR2atu2bapRo4b9xPU49913n2JjY7V79+60HbDoFJ0CkNWktlU+Pj56++23dfbsWW3fvl3Hjx/Xt99+q3///VclS5ZU0aJF03zMtIpWAYCzqlSpkui+XUrZa4fOolN0CgCsjlbRKgBIibgT18PCwjRt2jT17NnTrT+PTtEpAEgLtWrV0vnz53X69Ok0v29aRauQdXHyOuw6dOigy5cva9GiRQ7LZ82apSJFiqh27dpO3U9ERIS+//57tW/f3v5OJncpUqSIJGnjxo0Oy8+ePau9e/c6nNzh7OPz8fFR27ZttXjxYl26dMm+3r///qvw8HB17Ngx0fHkz59fNWvW1OOPP67r16/rt99+U82aNVW9enX7OgcPHlRUVJSkmx8b8uCDD8rf3z/B+2vRooV+/PFH/fzzz3rwwQd15cqVeOs0adJE+/bt05w5c1SjRg2HjwYJDQ3Vtm3btHTpUvn6+jrEDQAymtR2qkiRItq8ebNiYmIclm/YsEGS3HJCIJ2iUwCylrQ6psqRI4eqVKmiwoULa8uWLfrpp580dOhQdwyZVolWAYCzOnTooD179ui3336zL4uOjtbs2bNVu3Zte1PSEp2iUwBgdbSKVgGAs4wxGjhwoMLCwvTJJ5+ob9++bv+ZdIpOAUBqGWO0du1aBQUFueU8QFpFq5CFGeA2zZs3N3ny5DGffvqpWb16tRk4cKCRZGbPnu2wXr9+/Yy3t7c5dOhQvPuYNGmSkWRWrFjh9vFeunTJFC9e3OTJk8e8+eabZvXq1ebLL7801apVM97e3iY8PNxhfWcf3+7du02OHDlMo0aNzPfff28WL15sKleubIoUKWJOnTrl1NgGDx5svL29zaBBg8w333xjfvrpJzN27FgTFBRk/vvvP3PmzBnj4+NjFi5cGG/b0NBQU6lSJfv3mzZtMvny5TP16tUzFy5ccFj3u+++M5KMzWYzzz77rMNt58+fN15eXsZms5n69es7NW4AsLLUdOq9994zkkyrVq3M0qVLzYoVK8xzzz1nfHx8zP333++W8dIpOgUg60lNq8LDw83kyZPN8uXLzQ8//GDGjx9vAgMDTZs2bUx0dLRbxkuraBWArOX77783CxYsMDNmzDCSzCOPPGIWLFhgFixYYK5cuWJfL6FORUZGmkqVKpm77rrLfPnll2blypWmQ4cOxsfHx6xZs8Yt46VTdApA1pOaVhlj7Ou+/vrrRpIZPHiwfZk70CpaBSBrSU2nnnzySSPJ9OvXz2zYsMHha8uWLW4ZL52iUwCyntS06qGHHjIvvviiWbRokVmzZo2ZM2eOadGihZFkPvzwQ7eMl1bRKmRdnLwOB5cuXTJPPfWUCQ4ONn5+fqZq1apm7ty58dbr3bu3kWQOHjwY77Zy5cqZEiVKmNjYWA+M2JgTJ06YJ5980pQpU8YEBASYIkWKmDZt2pgNGzbEW9fZx2eMMZs3bzbNmjUzgYGBJleuXKZ9+/Zm//79To8rNjbWzJ0719SvX9/kzZvXBAYGmmbNmpmVK1caY4yZNm2aCQwMdPiHQZw7A2aMMTt37jTBwcGmevXq5vTp0/blFy9eND4+PkaS+fbbb+PdV7Vq1Ywk8/zzzzs9dgCwqtR2atGiRaZBgwYmf/78Jnv27KZSpUpmwoQJ5vLly24bM52iUwCyltS06tdffzW1a9c2uXLlMv7+/qZy5crmzTffNNevX3frmGkVrQKQdRQvXtxISvDr9iYldkwVERFhevXqZfLmzWsCAgJMnTp17Ptld6FTdApA1pLaViW2rTuv50WraBWArCM1nUpq2+LFi7ttzHSKTgHIWlLTqtdff93cd999Jk+ePMbb29vky5fPtGzZMsH9Z1qiVbQKWZPNGGNSdq12AGmhdevWypYtW7yPMgEAwAroFADA6mgVAMDK6BQAwOpoFQDAyugUAMDqaBWQOpy8DgAAAAAAAAAAAAAAAAAAAABwO6/0HgAAAAAAAAAAAAAAAAAAAAAAIPPj5HUAAAAAAAAAAAAAAAAAAAAAgNtx8joAAAAAAAAAAAAAAAAAAAAAwO04eT2TmTlzpmw2W6Jfa9assa9bokQJ9enTx21jmTp1qmbOnOmW+x43bpxsNptb7vvQoUOy2WxpOvbt27erb9++KlmypAICApQjRw5Vr15dkydP1rlz5xLcpnr16rLZbHrzzTcTvP3O37WPj4+KFi2qvn376tixY/b11qxZk+RzIu5xnjlzRoUKFVLDhg0VGxvr8LOuX7+ue+65RyVLltSlS5fSZlIAZEl0KvXoFJ0C4F60KvVoFa0C4D50KvXoFJ0C4F60KvVoFa0C4D50KvXoFJ0C4F60KvVoFa1CxuCT3gOAe4SFhenuu++Ot7xixYoeG8PUqVOVP39+t0bSHQoXLqwNGzaodOnSaXJ/n332mZ544gmVL19ezz77rCpWrKgbN25o8+bN+vjjj7VhwwYtWbLEYZtt27Zp69atkqTp06drxIgRid5/3O/62rVr+vnnnzVx4kStXbtWO3bsUPbs2e3rvfbaa2rSpEm87eMeZ/78+fXJJ5+oQ4cOmjJlip555hn7OmPHjtWOHTv0008/KWfOnKmaDwCQ6FRq0Ck6BcAzaJXraBWtAuB+dMp1dIpOAfAMWuU6WkWrALgfnXIdnaJTADyDVrmOVtEqZBAGmUpYWJiRZDZt2pTsusWLFze9e/d221gqVapkQkNDnVr3+vXr5saNG07f99ixY01GePquX7/eeHt7mwceeMBERkbGuz0qKsosW7Ys3vLBgwcbSaZNmzZGkvn111/jrZPY7/rFF180kszs2bONMcaEh4cbSWbBggVOjblnz54mICDA/PXXXw6PYciQIU5tDwBJoVPWQqcAID5aZS20CgAc0SlroVMAEB+tshZaBQCO6JS10CkAiI9WWQutAtzHK83PhkeGdvHiRY0YMUIlS5aUn5+fQkJC9PTTT+vKlSsO68XGxur9999XtWrVlC1bNgUFBalOnTr6+uuvJd38WJJdu3Zp7dq19o+oKFGihKRbH2XxxRdf6JlnnlFISIj8/f21f/9+SdKMGTN0zz33KCAgQHnz5lWHDh20e/fuJMfdv39/5c2bV1evXo13W9OmTVWpUiX79wsWLFDt2rWVO3duBQYGqlSpUurXr5/99oQ+OuT06dN67LHHdNddd8nf318FChRQ/fr1tWrVqiTH9dprr8lms+nTTz+Vv79/vNv9/Pz00EMPOSyLjIzUnDlzVKNGDU2ZMsU+J86qU6eOJOnw4cNOb3O79957T3nz5lXv3r118eJF9e7dW6VKldKkSZNcuj8ASEt0ik7RKQBWR6toFa0CYGV0ik7RKQBWR6toFa0CYGV0ik7RKQBWR6toFa1CRuGT3gOAe8TExCg6Otphmc1mk7e3d6LbXL16VaGhoTp69KjGjBmjqlWrateuXXrppZe0Y8cOrVq1SjabTZLUp08fzZ49W/3799fLL78sPz8/bdmyRYcOHZIkLVmyRA8//LBy586tqVOnSlK8Hfjo0aNVt25dffzxx/Ly8lLBggU1ceJEjRkzRt26ddPEiRN19uxZjRs3TnXr1tWmTZtUtmzZBMc+dOhQzZgxQ3PmzNGAAQPsy//66y+Fh4frww8/lCRt2LBBXbp0UZcuXTRu3DgFBATo8OHDWr16dZLz+eijj2rLli169dVXVa5cOV24cEFbtmzR2bNnE90mJiZGq1evVo0aNXTXXXclef+3W7x4sc6fP69+/fqpbNmyatCggebPn6933nlHOXLkSHb7uH8IFChQwGF5bGxsvOeEJPn4OO4G8uTJo88++0xt2rRR9erVdfDgQa1bt06BgYFOPwYASA6duolO3UKnAFgNrbqJVt1CqwBYCZ26iU7dQqcAWA2tuolW3UKrAFgJnbqJTt1CpwBYDa26iVbdQquQ6aT3pd+RtuI+TiKhL29vb4d17/zokIkTJxovL694H0WxcOFCI8l8//33xhhjfv75ZyPJPP/880mOJbGPDon7KItGjRo5LD9//rzJli2bad26tcPyf//91/j7+5vu3bvblyX00SGhoaGmWrVqDssef/xxkytXLnPp0iVjjDFvvvmmkWQuXLiQ6LgPHjxoJJmwsDD7shw5cpinn346ycd7p4iICCPJdO3aNUXbNW3a1AQEBJjz588bY279TqdPn+6wXtzyjRs3mhs3bphLly6Zb7/91hQoUMDkzJnTREREGGNuzXdiX0eOHElwHC1atDCSzJNPPpmi8QNAUugUnaJTAKyOVtEqWgXAyugUnaJTAKyOVtEqWgXAyugUnaJTAKyOVtEqWoWsgiuvZ1Kff/65KlSo4LAs7p1Tifn2229VuXJlVatWzeFdOi1btpTNZtOaNWvUqlUr/fDDD5KkwYMHp2qMnTp1cvh+w4YNunbtmvr06eOw/K677lLTpk31008/JXl/Q4cOVceOHfXrr7+qfv36unjxor744gv17dvX/q6l++67T5LUuXNn9e/fX/Xr11dISEiyY61Vq5ZmzpypfPny6f7771eNGjXk6+ubgkfrnIMHDyo8PFzdunVTUFCQJOmRRx7RU089pRkzZjh8xEmcuI8KiVOlShV99NFHKlSokMPy119/XU2bNo23/Z3rSdKff/6p8PBweXl5ae3atbp+/br8/PxS8cgAwBGdolN0CoDV0SpaRasAWBmdolN0CoDV0SpaRasAWBmdolN0CoDV0SpaRauQ2Xml9wDgHhUqVFDNmjUdvmrUqJHkNidPntT27dvl6+vr8JUzZ04ZY3TmzBlJ0unTp+Xt7a3g4OBUjbFw4cIO38d9DMedyyWpSJEiSX5MhyS1a9dOJUqUsH9MyMyZM3XlyhWH0DZq1EhLly5VdHS0evXqpaJFi6py5cqaO3dukvc9f/589e7dW9OmTVPdunWVN29e9erVSxEREYlukz9/fgUGBurgwYNJ3vftZsyYIWOMHn74YV24cEEXLlzQjRs39NBDD+nXX3/Vnj174m3z+eefa9OmTdq6dauOHz+u7du3q379+vHWK1WqVLznRM2aNeOF+MaNG+rdu7eKFCmixYsXa+fOnZowYYLTjwEAnEGn6NSd6BQAq6FVtOpOtAqAldApOnUnOgXAamgVrboTrQJgJXSKTt2JTgGwGlpFq+5Eq5DZcOV12OXPn1/ZsmXTjBkzEr1dkgoUKKCYmBhFREQkGBtn3flusHz58kmSTpw4EW/d48eP239+Yry8vDR48GCNGTNGb731lqZOnapmzZqpfPnyDuu1a9dO7dq1U1RUlDZu3KiJEyeqe/fuKlGihOrWrZvgfefPn1/vvPOO3nnnHf3777/6+uuvNWrUKJ06dUrLly9PcBtvb281a9ZMP/zwg44ePaqiRYsmOf7Y2FjNnDlTktSxY8cE15kxY4YmT57ssCzuHytp5eWXX9b27du1atUqNW3aVIMGDdKkSZPUoUMHVa9ePc1+DgCkFJ2iUxKdAmBttIpWSbQKgHXRKTol0SkA1karaJVEqwBYF52iUxKdAmBttIpWSbQKGQdXXofdgw8+qAMHDihfvnwJvkunRIkSkqRWrVpJkj766KMk78/f31/Xrl1z+ufXrVtX2bJl0+zZsx2WHz16VKtXr1azZs2SvY8BAwbIz89PPXr00N9//60nn3wyyfGFhobq9ddflyRt3brVqXEWK1ZMTz75pJo3b64tW7Ykue7o0aNljNHAgQN1/fr1eLffuHFD33zzjSTpxx9/1NGjRzV48GCFh4fH+6pUqZI+//xzh491SWubN2/WpEmT9MQTT9g/ZmTy5MkqWrSo+vTpk+BjAABPoVN0ik4BsDpaRatoFQAro1N0ik4BsDpaRatoFQAro1N0ik4BsDpaRatoFTISrryeSe3cuTPBHV3p0qVVoECBBLd5+umntWjRIjVq1EjDhg1T1apVFRsbq3///VcrVqzQM888o9q1a6thw4Z69NFH9corr+jkyZN68MEH5e/vr61btyowMFBDhgyRJFWpUkXz5s3T/PnzVapUKQUEBKhKlSqJjjkoKEgvvviixowZo169eqlbt246e/asxo8fr4CAAI0dOzbZxx0UFKRevXrpo48+UvHixdW2bVuH21966SUdPXpUzZo1U9GiRXXhwgW9++678vX1VWhoaIL3+d9//6lJkybq3r277r77buXMmVObNm3S8uXLE32XVJy6devqo48+0hNPPKEaNWro8ccfV6VKlXTjxg1t3bpVn376qSpXrqy2bdtq+vTp8vHx0ZgxY1SkSJF49/W///1PTz31lL777ju1a9cu2bm40759+7Rx48Z4y4sWLaqiRYsqKipKvXv3VvHixe1Rl6QcOXJoxowZatasmSZMmMDHiABIE3SKTt2JTgGwGlpFq+5EqwBYCZ2iU3eiUwCshlbRqjvRKgBWQqfo1J3oFACroVW06k60CpmOQaYSFhZmJCX69dlnn9nXLV68uOndu7fD9pcvXzYvvPCCKV++vPHz8zO5c+c2VapUMcOGDTMRERH29WJiYsyUKVNM5cqV7evVrVvXfPPNN/Z1Dh06ZFq0aGFy5sxpJJnixYsbY4wJDw83ksyCBQsSfAzTpk0zVatWtd9vu3btzK5duxzWGTt2rEns6btmzRojyUyaNCnebd9++61p1aqVCQkJMX5+fqZgwYKmdevWZt26dfZ1Dh48aCSZsLAwY4wxkZGRZtCgQaZq1aomV65cJlu2bKZ8+fJm7Nix5sqVKwmO4U7btm0zvXv3NsWKFTN+fn4me/bs5t577zUvvfSSOXXqlDl9+rTx8/Mz7du3T/Q+zp8/b7Jly2batm1rjLn1u960aVOSPztuvhP7ev75540xxjz77LPGy8vLYS5u98QTTxgfHx/zxx9/OPWYASAhdIpO3YlOAbAaWkWr7kSrAFgJnaJTd6JTAKyGVtGqO9EqAFZCp+jUnegUAKuhVbTqTrQKmZXNGGMEZCLPPPOMPvroIx05ckT58uVL7+EAAOCATgEArI5WAQCsjE4BAKyOVgEArIxOAQCsjlYBWYNPeg8ASCsbN27U3r17NXXqVP3vf/8jXgAAS6FTAACro1UAACujUwAAq6NVAAAro1MAAKujVUDWwpXXkWnYbDYFBgaqdevWCgsLU44cOdJ7SAAA2NEpAIDV0SoAgJXRKQCA1dEqAICV0SkAgNXRKiBr4eR1AAAAAAAAAAAAAAAAAAAAAIDbeaX3AAAAAAAAAAAAAAAAAAAAAAAAmR8nrwMAAAAAAAAAAAAAAAAAAAAA3I6T1y1o/fr1GjdunC5cuJDeQ7Ecm82mcePGpfcwknXo0CHZbLZEv25/DI0bN1blypUTvJ8zZ87EW3/mzJkO9+Xj46PChQura9eu2rdvn5sfmXuVKFEiyXmL+5o+fbqCgoLUqlWrePcxZcoU2Ww2devWLd5tEyZMkM1m0/bt2yVJffr0UY4cOdz+uIDMhk4ljk7RKToFWAOtShytolW0Ckh/dCpxdIpO0SnAGmhV4mgVraJVQPqjU4mjU3SKTgHpj04ljk7RKTqF2/mk9wAQ3/r16zV+/Hj16dNHQUFB6T0cS9mwYYOKFi2a3sNw2pAhQ9S9e/d4y9PiMYSFhenuu+9WZGSkfv31V7366qsKDw/Xnj17lCdPnlTff3pYsmSJoqKi7N9PmzZN06dP1/Lly5U7d2778tKlS2vp0qVas2aNoqOj5eNza1e2Zs0aZc+eXeHh4fHuf82aNcqXL5+qVKni3gcCZHJ0KnF06hY6RaeA9ESrEkerbqFVtApIL3QqcXTqFjpFp4D0RKsSR6tuoVW0CkgvdCpxdOoWOkWngPRCpxJHp26hU3QKnLyODKZOnTrpPYQUKVasmNvGXLlyZdWsWVPSzXdxxcTEaOzYsVq6dKn69u3rlp+ZGlevXlVgYGCS69x7770O3y9fvlySVKNGDeXPn9/htiZNmujbb7/V5s2b7XMcGxurdevW6fHHH9ebb76p3bt3q0KFCpKk69eva8OGDWrdurVsNltaPSwAcECnbqFTdAqANdGqW2gVrQJgPXTqFjpFpwBYE626hVbRKgDWQ6duoVN0CoD10Klb6BSdguSV3gPIKFavXq3GjRsrX758ypYtm4oVK6ZOnTrp6tWrMsaobNmyatmyZbztLl++rNy5c2vw4MGSbv5H9sorr6h8+fLKli2bgoKCVLVqVb377ruSpHHjxunZZ5+VJJUsWdL+cQlr1qyx3+f8+fNVt25dZc+eXTly5FDLli21detWh58b97EIe/bsUcuWLZU9e3YVLlxYkyZNkiRt3LhRDRo0UPbs2VWuXDnNmjUrxXOyYMEC1a5dW7lz51ZgYKBKlSqlfv362W+PjIzUM888o2rVqil37tzKmzev6tatq2XLljncz7333quGDRvGu/+YmBiFhISoY8eO9mWJfZRGeHi4Hn/8ceXPn1/58uVTx44ddfz4cYf7i4qK0jPPPKPg4GAFBgaqUaNG+uOPP1SiRAn16dPHvt7Vq1c1YsQIlSxZUgEBAcqbN69q1qypuXPnpniOPCkuaCdPnkzRduPGjZPNZtPWrVvVsWNH5cqVS7lz51bPnj11+vTpeOun5Pm3Y8cOtWjRQjlz5lSzZs1cf3AJaNKkiSQ5/Lfx559/6vz583rsscdUuHBhh3dh/fbbb7p27Zp9u9vt379frVu3Vo4cOXTXXXfpmWeecXgnGJAR0Kn46JS10Ck6BdCq+GiVtdAqWoWsjU7FR6eshU7RKYBWxUerrIVW0SpkbXQqPjplLXSKTiFro1Px0SlroVN0Kivi5HUnHDp0SG3atJGfn59mzJih5cuXa9KkScqePbuuX78um82mIUOGaOXKldq3b5/Dtp9//rkuXrxoj9jkyZM1btw4devWTd99953mz5+v/v3768KFC5KkAQMGaMiQIZKkxYsXa8OGDdqwYYOqV68uSXrttdfUrVs3VaxYUV999ZW++OILXbp0SQ0bNtRff/3l8LNv3Lihjh07qk2bNlq2bJlatWql0aNHa8yYMerdu7f69eunJUuWqHz58urTp4/++OMPp+dkw4YN6tKli0qVKqV58+bpu+++00svvaTo6Gj7OlFRUTp37pxGjBihpUuXau7cuWrQoIE6duyozz//3L5e37599csvv8SbuxUrVuj48eNOvZtowIAB8vX11Zw5czR58mStWbNGPXv2dFinb9++euedd9S3b18tW7ZMnTp1UocOHexzH2f48OH66KOP9NRTT2n58uX64osv9Mgjj+js2bNOz0+c2NhYRUdHx/tyh4MHD0qSypUr59L2HTp0UJkyZbRw4UKNGzdOS5cuVcuWLXXjxg37Oil5/l2/fl0PPfSQmjZtqmXLlmn8+PGuP7gE3HPPPcqTJ49DqMLDw1W4cGGVLVtWjRo1cghc3Hp3RuzGjRt66KGH1KxZMy1btkz9+vXTlClT9Prrr6fpeAF3olPx0Snn0Ck6BXgKrYqPVjmHVtEqwBPoVHx0yjl0ik4BnkKr4qNVzqFVtArwBDoVH51yDp2iU4An0Kn46JRz6BSdgpsZJGvhwoVGktm2bVui61y8eNHkzJnTDB061GF5xYoVTZMmTezfP/jgg6ZatWpJ/rw33njDSDIHDx50WP7vv/8aHx8fM2TIEIflly5dMsHBwaZz5872Zb179zaSzKJFi+zLbty4YQoUKGAkmS1bttiXnz171nh7e5vhw4cnOa7bvfnmm0aSuXDhgtPbREdHmxs3bpj+/fube++91778zJkzxs/Pz4wZM8Zh/c6dO5tChQqZGzdu2JdJMmPHjrV/HxYWZiSZJ554wmHbyZMnG0nmxIkTxhhjdu3aZSSZ5557zmG9uXPnGkmmd+/e9mWVK1c27du3d/pxJeTgwYNGUqJf69ats68bGhpqKlWqlOD9nD59OtHHvHHjRnPjxg1z6dIls3z5chMcHGwaNWrkMF/OGDt2rJFkhg0b5rD8yy+/NJLM7NmzjTGuPf9mzJiRorEkNrbTp08neHv79u1N9uzZ7Y+5bdu2pmvXrsYYY6ZOnWoKFChgYmNjjTHGNGnSxBQsWNBh+7hxfvXVVw7LW7dubcqXL5/ouNauXWsefPBBU7hwYSPJLFmyJMWPbf78+eaee+4x2bJlM8WKFTOTJ09O8X0AcehUfHQqaXSKTiWHTiGt0ar4aFXSaBWtSg6tQlqiU/HRqaTRKTqVHDqFtEar4qNVSaNVmbdVdApWRKfio1NJo1OZt1PG0CpYD52Kj04ljU7RqeTQqbSRZa+8HhMT4/COmNjY2ETXrVatmvz8/PTYY49p1qxZ+ueff+KtkzNnTvXt21czZ87UlStXJN38yJG//vpLTz75pH29WrVq6c8//9QTTzyhH3/8URcvXnR6zD/++KOio6PVq1cvh7EHBAQoNDTU4d0m0s2P2mjdurX9ex8fH5UpU0aFCxfWvffea1+eN29eFSxYUIcPH3Z6LPfdd58kqXPnzvrqq6907NixBNdbsGCB6tevrxw5csjHx0e+vr6aPn26du/ebV8nX758atu2rWbNmmX/PZw/f17Lli1Tr1695OPjk+x4HnroIYfvq1atKkn2x7R27Vr7eG/38MMPx7v/WrVq6YcfftCoUaO0Zs0aXbt2Ldmfn5ihQ4dq06ZN8b6qVavm8n3GqVOnjnx9fZUzZ0498MADypMnj5YtW+bUfCWkR48eDt937txZPj4+9ncupfT5J0mdOnVyaSzOatKkia5cuaJNmzYpNjZW69atU+PGjSVJoaGhOn36tHbt2qWoqCht3LgxwY8Osdlsatu2rcOyqlWrJvnfw5UrV3TPPffogw8+cGncP/zwg3r06KFBgwZp586dmjp1qt5++22X7w+ZE52iUxKduh2duoVOwSpoFa2SaNXtaNUttApWQKfolESnbkenbqFTsApaRaskWnU7WnVLUq2iU/AUOkWnJDp1Ozp1C8dUsAI6RackOnU7OnULnco4suzJ66VLl5avr6/96+WXX05y3VWrVqlgwYIaPHiwSpcurdKlS+vdd991WG/IkCG6dOmSvvzyS0nSBx98oKJFi6pdu3b2dUaPHq0333xTGzduVKtWrZQvXz41a9ZMmzdvTnbMJ0+elHQzILeP3dfXV/Pnz9eZM2cc1g8MDFRAQIDDMj8/P+XNmzfeffv5+SkyMjLZMcRp1KiRli5dat+pFS1aVJUrV9bcuXPt6yxevFidO3dWSEiIZs+erQ0bNmjTpk3q169fvJ/Vr18/HTt2TCtXrpQkzZ07V1FRUerTp49T48mXL5/D9/7+/pJkD1DcR38UKlTIYT0fH59427733nt67rnntHTpUjVp0kR58+ZV+/bt4328iTOKFi2qmjVrxvvKkSOHwxhiYmIS3D7uo0Z8fX3j3fb5559r06ZNWr16tf73v/9p9+7d6tatW4rHGCc4ONjh+7i5iZs7V55/uXLlcnk8zoiLUnh4uLZu3aoLFy4oNDRUklSxYkUVKFBAa9as0caNG3Xt2rUEI5bQfyf+/v5J/vfQqlUrvfLKK+rYsWOCt1+/fl0jR45USEiIsmfPrtq1aztE/osvvlD79u01aNAglSpVSm3atNFzzz2n119/XcaYlE4DMik6pXjL6dRNdOrWuOhUwugUPIVWKd5yWnUTrbo1LlqVMFoFT6BTirecTt1Ep26Ni04ljE7BU2iV4i2nVTfRqlvjolXx0Sl4Cp1SvOV06iY6dWtcdCphtAqeQKcUbzmduolO3RoXnUoYnbIO196qkQl88803ioqKsn9fpEiRJNdv2LChGjZsqJiYGG3evFnvv/++nn76aRUqVEhdu3aVJJUpU0atWrXShx9+qFatWunrr7/W+PHj5e3tbb8fHx8fDR8+XMOHD9eFCxe0atUqjRkzRi1bttSRI0cUGBiY6Bjy588vSVq4cKGKFy+emoefJtq1a6d27drZ390yceJEde/eXSVKlFDdunU1e/ZslSxZUvPnz5fNZrNvd/u8x2nZsqWKFCmisLAwtWzZUmFhYapdu7YqVqyYJmONC9XJkycVEhJiXx4dHW3fScfJnj27xo8fr/Hjx+vkyZP2d2O1bdtWe/bsSZPx3K5QoULatGmTjDEO8yTJ/s62O+MrSRUqVFDNmjUl3dyZx8TEaNq0aVq4cKEefvjhFI8jIiIiwbmJm7uUPv/ufCzuULlyZXuo/P39VahQId1999322xs1aqTw8HD77zihiLlD3759dejQIc2bN09FihTRkiVL9MADD2jHjh0qW7asoqKi4v23ni1bNh09elSHDx9WiRIlPDJOWBudSj06lTbolOvoFDI7WpV6tCpt0CrX0SpkZnQq9ehU2qBTrqNTyOxoVerRqrRBq1xnxVbRKaQVOpV6dCpt0CnXWbFTEq1C2qBTqUen0gadch2dQpa98nqVKlUc3hGTXMTieHt7q3bt2vrwww8lSVu2bHG4fejQodq+fbt69+4tb29vDRw4MNH7CgoK0sMPP6zBgwfr3LlzOnTokKT47x6K07JlS/n4+OjAgQMJvqsnbofmaf7+/goNDdXrr78uSdq6daukmzsxPz8/h51ZRESEli1bFu8+vL299eijj2rp0qVat26dNm/erH79+qXZGBs1aiRJmj9/vsPyhQsX2t/llJBChQqpT58+6tatm/7++29dvXo1zcYU5/7779fFixe1fPnyeLd99dVX8vLyUtOmTZO9n8mTJytPnjx66aWXkvw4nMTEvXPw9p8dHR1t/zgOKz7/bDabQkNDtX79eq1cudL+7qs4oaGhWrt2rcLDw1WkSBGVK1fO7WM6cOCA5s6dqwULFqhhw4YqXbq0RowYoQYNGigsLEzSzblcvHixfvrpJ8XGxmrv3r165513JEknTpxw+xiRMdCptEOnUodOuY5OIbOjVWmHVqUOrXIdrUJmRqfSDp1KHTrlOjqFzI5WpR1alTq0ynVWaxWdQlqiU2mHTqUOnXKd1Tol0SqkHTqVduhU6tAp19EpZNkrr6fExx9/rNWrV6tNmzYqVqyYIiMjNWPGDEk3d0C3a968uSpWrKjw8HD17NlTBQsWdLi9bdu2qly5smrWrKkCBQro8OHDeuedd1S8eHGVLVtW0s3AStK7776r3r17y9fXV+XLl1eJEiX08ssv6/nnn9c///yjBx54QHny5NHJkyf1+++/29855AkvvfSSjh49qmbNmqlo0aK6cOGC3n33Xfn6+tp3JA8++KAWL16sJ554Qg8//LCOHDmiCRMmqHDhwgl+FEe/fv30+uuvq3v37sqWLZu6dOmSZuOtVKmSunXrprfeekve3t5q2rSpdu3apbfeeku5c+eWl9et93HUrl1bDz74oKpWrao8efJo9+7d+uKLL1S3bt0k3yGXkH///VcbN26Mt7xAgQIqXbq0JKlHjx6aOnWqOnfurFGjRum+++7TtWvX9P333+uzzz7TkCFDVKpUqWR/Vp48eTR69GiNHDlSc+bMUc+ePVM01sWLF8vHx0fNmzfXrl279OKLL+qee+5R586dJclSz7/bNWnSRAsXLtSKFSv0wQcfONwWGhqqs2fP6ueff1b37t09Mp4tW7bIGBMvmFFRUfZ3sw0cOFAHDhzQgw8+qBs3bihXrlwaOnSoxo0b5/COTcBZdCo+OuUcOuV+dAq4iVbFR6ucQ6vcj1YBdCohdMo5dMr96BRwE62Kj1Y5h1a5n5VaRaeQXuhUfHTKOXTK/azUKYlWIX3QqfjolHPolPvRqSzOIFkbNmwwHTp0MMWLFzf+/v4mX758JjQ01Hz99dcJrj9u3DgjyWzcuDHebW+99ZapV6+eyZ8/v/Hz8zPFihUz/fv3N4cOHXJYb/To0aZIkSLGy8vLSDLh4eH225YuXWqaNGlicuXKZfz9/U3x4sXNww8/bFatWmVfp3fv3iZ79uzxfn5oaKipVKlSvOXFixc3bdq0cXZKzLfffmtatWplQkJCjJ+fnylYsKBp3bq1WbduncN6kyZNMiVKlDD+/v6mQoUK5rPPPjNjx441iT316tWrZySZHj16JHi7JDN27Fj792FhYUaS2bRpk8N64eHh8eYtMjLSDB8+3BQsWNAEBASYOnXqmA0bNpjcuXObYcOG2dcbNWqUqVmzpsmTJ4/x9/c3pUqVMsOGDTNnzpxxen4OHjxoJCX6defju3jxohk5cqQpW7as8fPzM4GBgaZmzZrm448/NrGxsQ7rJvaYjTHm2rVrplixYqZs2bImOjraqbHG/T7++OMP07ZtW5MjRw6TM2dO061bN3Py5Ml466fm+ZdScWM7ffp0ouv89ddf9nnduXOnw22xsbEmb968RpL57LPP4m2b2DiTeo7eSZJZsmSJ/ft58+YZb29vs2fPHrNv3z6HrxMnTjhsGx0dbY4ePWqioqLM999/byQlOOdAcuhUfHQqaXSKTtEpeBqtio9WJY1W0SpaBU+iU/HRqaTRKTpFp+BptCo+WpU0WpU1WkWnYBV0Kj46lTQ6lTU6ZQytgjXQqfjoVNLoFJ2iU55hM8YYIU3VrFlTNptNmzZtSu+hIBnr169X/fr19eWXX3rsHTpWM27cOI0fP16nT59W/vz503s4GY7NZtOSJUvUvn17SdLevXtVvnx5/fzzz2rYsKHT99OrVy/t379f69evd9NIgVvoVMZBp+hUatEpZFS0KuOgVbQqtWgVMiI6lXHQKTqVWnQKGRWtyjhoFa1KDTqFjIpOZRx0ik6lFq1CRkSnMg46RadSi06lL5/0HkBmcfHiRe3cuVPffvut/vjjDy1ZsiS9h4Q7rFy5Uhs2bFCNGjWULVs2/fnnn5o0aZLKli2rjh07pvfwkIFcvnxZ+/fvt39/8OBBbdu2TXnz5lW5cuXUo0cP9erVS2+99ZbuvfdenTlzRqtXr1aVKlXUunVrnTlzRgsXLlTjxo0VGRmpsLAwLViwQGvXrk3HR4XMjk5ZH51CWqFTyKholfXRKqQVWoWMiE5ZH51CWqFTyKholfXRKqQFOoWMik5ZH51CWqFVyIjolPXRKaQVOmUh6X3p98wi7uMq8uXL5/DxFhnRjRs3kvyKiYlJ7yG6ZOPGjaZ+/fomT548xsfHxwQHB5vevXub48ePO30fsbGxyc7PnR/3kV5iYmKSHasxzn1ER1rISHOXnLj/3u/86t27tzHGmOvXr5uXXnrJlChRwvj6+prg4GDToUMHs337dmOMMadPnzZ16tQx2bNnN4GBgaZZs2YJftwQkJbolPXRKTqVVugUMipaZX20ilalFVqFjIhOWR+dolNphU4ho6JV1keraFVaoFPIqOiU9dEpOpVWaBUyIjplfXSKTqUVOmUdnLyOeBL6jzOh/1CzosR2Xrd/hYWFpfcwjTG34pTU18GDBz02nrCwsGTHEx4e7rHxAMi46FTi6JTr6BSAtESrEkerXEerAKQVOpU4OuU6OgUgLdGqxNEq19EqAGmFTiWOTrmOTgFIK3QqcXTKdXQK7mAzxhgBt9m8eXOSt+fPn18lSpTwzGAs5tKlS/r777+TXKdkyZLKly+fh0aUuOPHj+v48eNJrlO1alX5+fl5ZDxnz57VwYMHk1ynfPnyypkzp0fGAyDjolOJo1Ouo1MA0hKtShytch2tApBW6FTi6JTr6BSAtESrEkerXEerAKQVOpU4OuU6OgUgrdCpxNEp19EpuAMnrwMAAAAAAAAAAAAAAAAAAAAA3M4rvQcAAAAAAAAAAAAAAAAAAAAAAMj8OHkdAAAAAAAAAAAAAAAAAAAAAOB2Puk9ACtq7vVIeg8BgBusjF3g8raxEeXScCRJ8wre67GfhYyLVqWN1OwXcAvPx7SRUTol0Sokj/0CkPmk9t9NHFPBamgVkPlwTIXMhE4BmQ/HVMhsaBWQ+XBMhcyETgGZD53KfLjyOgAAAAAAAAAAAAAAAAAAAADA7bjyOgA4IVaxHvtZvKsIAJBSnuyURKsAACnHMRUAwMo4pgIAWB3HVAAAK+OYCgBgZXTKmpgnAAAAAAAAAAAAAAAAAAAAAIDbceV1AHBCjPHcO7DYMQMAUsqTnZJoFQAg5TimAgBYGcdUAACr45gKAGBlHFMBAKyMTlkTV14HAAAAAAAAAAAAAAAAAAAAALgdJ/kDgBNiZdJ7CAAAJIpOAQCsjlYBAKyMTgEArI5WAQCsjE4BAKyMTlkTV14HAAAAAAAAAAAAAAAAAAAAALgdV14HACfEKja9hwAAQKLoFADA6mgVAMDK6BQAwOpoFQDAyugUAMDK6JQ1ceV1AAAAAAAAAAAAAAAAAAAAAIDbceV1AHBCjDHpPQQAABJFpwAAVkerAABWRqcAAFZHqwAAVkanAABWRqesiSuvAwAAAAAAAAAAAAAAAAAAAADcjpPXAQAAAAAAAAAAAAAAAAAAAABu55PeAwCAjCBWfHwIAMC66BQAwOpoFQDAyugUAMDqaBUAwMroFADAyuiUNXHldQAAAAAAAAAAAAAAAAAAAACA23HldQBwQgzvwAIAWBidAgBYHa0CAFgZnQIAWB2tAgBYGZ0CAFgZnbImrrwOAAAAAAAAAAAAAAAAAAAAAHA7rrwOAE6I5R1YAAALo1MAAKujVQAAK6NTAACro1UAACujUwAAK6NT1sSV1wEAAAAAAAAAAAAAAAAAAAAAbseV1wHACTGGd2ABAKyLTgEArI5WAQCsjE4BAKyOVgEArIxOAQCsjE5ZE1deBwAAAAAAAAAAAAAAAAAAAAC4HVdeBwAnxKb3AAAASAKdAgBYHa0CAFgZnQIAWB2tAgBYGZ0CAFgZnbImrrwOAAAAAAAAAAAAAAAAAAAAAHA7rrwOAE6IkUnvIQAAkCg6BQCwOloFALAyOgUAsDpaBQCwMjoFALAyOmVNXHkdAAAAAAAAAAAAAAAAAAAAAOB2XHkdAJwQwxuwAAAWRqcAAFZHqwAAVkanAABWR6sAAFZGpwAAVkanrCnDX3l906ZN6tGjh0qWLKls2bIpMDBQJUuWVI8ePbR58+b0Hh4AIIujUwAAK6NTAACro1UAACujUwAAq6NVAAAro1MAkHVl6CuvL126VJ07d1azZs00dOhQFSpUSMYYnTp1SitWrFD9+vX11VdfqV27duk9VABAFkSnAABWRqcAAFZHqwAAVkanAABWR6sAAFZGpwAga7MZYzLsRfErV66snj17atSoUQne/vrrr+vzzz/Xrl27UnS/zb0eSYvhAbCYlbELXN72n6OF03AkSStV9ITHfhbcy12dkmhVWknNfgG38HxMGxmlUxKtyizoFICUSO2/mzimgitoFYCU4JgKnkanAKQEx1RID7QKQEpwTAVPo1MAUoJOZT5e6T2A1Ni/f786duyY6O3t27fXgQMHPDgiAABuoVMAACujUwAAq6NVAAAro1MAAKujVQAAK6NTAJC1ZeiT10uXLq2lS5cmevuyZctUqlQpzw0IQKYVI5vHvpB50CkAnuLJTtGqzINOAfAkOgVX0CoAnsIxFVxBpwB4Ep2CK2gVAE/hmAquoFMAPIVOWZNPeg8gNV5++WV17dpVa9euVYsWLVSoUCHZbDZFRERo5cqVWrFihebNm5fewwQAZFF0CgBgZXQKAGB1tAoAYGV0CgBgdbQKAGBldAoAsrYMffJ6p06d9PPPP+vdd9/V22+/rYiICElScHCw6tatq7Vr16pu3brpPEoAmUGsSe8RICOiUwA8hU7BFXQKgCfRKriCVgHwFDoFV9ApAJ5Eq+AKWgXAU+gUXEGnAHgKnbKmDH3yuiTVrVs33UP14KAWajuohQqVKCBJOrzrqGZPWKBNy7cluH6l+ndr4KQeuuvuEPkH+uvk4dP67tOVWvzOd24dZ4nKxTTk/f4qX6uMLp27rO8+XanZExY6rOPr56OeLz2iZj0aKk9wkM4cPas5ry3Wj2Hhbh1bnJTOpSQ99ERLtRv8gAqVKKhT/57RnNcWadUXP7t1nFafS1fmsWn3Bur8bDuFlC2sK/9d1ebl2/TJs5/r0rnLbhun1ecRSAtW6JQkdR3VXg061NZdd4co6tp1/bX+b00b9aWO7j2e6DbPzhisFn0ax1t+aNcRDawy3G1jZd+Q+aW0U1VDK+qt8PHxlverMFRH/k78OZxaPBeRFWTkTnFcFZ8r85g3OEj/e7O3ytYopZCywVr6/g/6aNhMt45TynzzyL+bAPfJyK1i3xCfK/PYoEMtPTiopUpXKyFffx8d3nVUX4z/SptX/OnWsVp5HhPjymuCqdWgY231ebmrCpcupBMHTirshbn6denvDuvkK5JXAyb1UK1W98ovm5+O7T2htwZ8pH1b/nHbuABPycidkvi7QEqwj02ZlI6L1/8A98nIrWLfEF+VhhX0yIiHVK5GKeUrkldjO0zW+mWbEl3fqq+hptfxcpxsOQLUZ0JX1W9fS0EFc2v/1oOa+nSY9m4+kOD6HN8D7mOVTiXF1eOt1MqIxwP03rO6jmqv/q/10OJ3v3Pr3/Yy4nMRGUOGP3ndCs4cPavpo7/Usf033wHWondjjV/6nB6v/qwO/3U03vqRVyK17MPl+mf7YUVeiVLlBndr6MePKfJKlL7/bJVLYyhUvIBmH5yq5l6PJHh7YM5sen3Fi/ozfKeerDVKRcsV1oiwwYq8EqmFb39rX++F+cOVp1BuvTXgIx3fH6Gggrnl7ePl0phckdK5fHBQC/V7rbumPPaJ/t60X3fXKqNhnw7S5fNXtPHbP1waQ2aYy5TOY6X6d2vkrCH6ePhMbfzmD+ULyauhHw3U8M8e1/hOb7g0hswwj7eLkc3jPxNIS1UbVdLXU3/U35v2y9vHW31f6aZJP76gAZWGKfJqVILbfPh0mKaN/tL+vbePlz7Z9qZ+XrjB5XFktn0DXJPSTsXpU/4pXb14zf79f6cvujxu7tdKAAEAAElEQVSGzPZcpFPI6FzpFMdV8bkyj77+vvrvzEXNeW2ROj39YJqMIyvOI/9uSh6tQkbHviFtuDKPVRpV1JZVf2rG83N05cIVtezbRC9/PUpD6ozWgW2HXBpHRp/HxLh6rJWYFr0bq0XvxhrRdFyCt1eoU04vzBummS/N069Lflf9DrX0wvxhGtbwRe35fb8kKUdQdr3zywT9Gb5LY1q/pgun/lOR0oV0+cIVVx+mW9ApZHSu7F/5u0DKsI91XmrGxet/iaNVyOhcaVUc9g23BGT31z/bD2vFzHCNXfRssutb9TVUdxwvp8Twzx5Xicp36fVe7+vs8fNq1rOhJq98Sf0rDdPZ4+firc/xffLoFDKz1DQsMZn1eIDee065mqXVemBzHfjzUKruJ7M+F+9Ep6wpU5+8PmbMGEVERGjGjBlu/Tl3niQd9sJcPTiohSrUKZfgC1YHth1y+MPKycOn1aBDbVVpUMHhAKFln8bq/Gw7BZcsqIhDp7X0/e/1zUcrXBpj0x4N5Rfgqzf6fqgb16N1aNcRhZQrok7D2tp3ujVbVlPV0IrqVfpJXTp/2T42T0rpXN7fs5G++3SV1n61XpIUcfCUKtQppy4j2zvcV1aby5TOY4U6ZXXy0Cktff8HSVLEoVP67tOV6vxsO4f1sto8Au7mqU5J0pjWrzp8/2a/qVp4arrK1iilHet2J7jN1YtXdfXiVfv39drdpxx5ssd7Fyn7BqRUSjsV58Kp/3Tlv6uJ3s5zEUhbVu8Ux1XxuTKPJw+f1tSnwyRJD/Rtmuh9M4/8uwmwIqu3in1DfK7M451XDZrx/FzVfeg+1W1b0+HfAllpHhOT3LGWj6+P+rzSVc26N1T2oEAd2nlE00bN1va1f7n08zoObaM/Vm7XvElLJUnzJi1V1UaV1HFoG73W411JUpfn2uv0kbN6s/9U+3bpPU+Ap1i9U/xdIGXYxzovNePi9T/As6zeqjjsG27ZtHxbij71w6qvoTp7vOwOfgF+atiptl5qP9n+3Pti/ALVb1dLbR9voZkvzou3Dcf3QPrwZKeSHIcTDeN44CZ67xkB2QM0evZTmvLYx+rxfCeH23guIiOxxltB3OTYsWM6dOiQR3+ml5eXGnepp4Ds/vprw16ntildrYQq1iuv7T/vsi9rNaCZ+r7STWEvzFX/isMU9vwc9Xm5q5r3CnVpXBXrlNP2tX/pxvVo+7LNP25T/pC8Ci5RUJJU96Ga2rv5gDqPbKe5Rz5R2J539dgbj8ovwM+ln5lazsylr7+vrkded1gWde26ytcqI28fb0nMpTPz+Nf6v5W/aD7VanWvJCmoYG416lRXv3+/xb5OVp/HGNk89oWsIz06FSd77kBJStFHAD/Qr6m2rtqhU/+esS/L6vsGpF5K/u300ZY3NO/Yp5q88iXd07iSw21Z/bnoyU7Rqqwjo3WK46r4XJnHhDCP/LspLdApuENGaxX7hvhcmUebzabAnNkctsnq85iQhI61Rsx4QpXrlder3abof/eM0M8LN2jiD88rpEywSz+jYt1y+mPlnw7LNq/Ypor1ytu/r9u2pvb+cUAvzh+uryKm6aM/JqvVgGauPzA34ZgK7mD1TvF3Adexj01aasbF63+Jo1NwB6u3Kg77hrRjlddQ75TQ8bK7ePt4ydvHWzcSOM+kcv27nboPju/j45gK7pCenUpKQg3jeCBh9N49hnzQX799v0Vbf9oR7zaeiwmjU9aUqa+8PmvWLI/9rBKVi+m99a/KL8BX1y5HanzHN/Tv7qQ/JnDOvx8rd4Fc8vbx1hfjv9IP01fbb+v5wsP6ZMTn+mXJ75JuXvGiWMWiavNYc638fG2Kx5c3OEgRd7yj5cLJ/yRJeYKDFHHolAqXLKTKDe7W9cgbGtfxDeXOn1NDPhygnHlz6K3+H6X4Z7oqJXP5x4ptatW/mdYv3aR9W/5RuRql9EDfJvL181Hu/Dl1LuJClp3LlMzjXxv2alLP9/T8vGHyC/CVj6+P1i/bpA+G3Hr3YladR8CdPNmpOw16q7d2rNutQ7uOOLV+3uAg1Wp1r/2dk3HYN8BVKenUuRMX9PZjH2vfH//I199X9z/aSJNXvaQRTcbZ36HNcxFIexmlUxxXJS6lvU8M88i/mwCryiitktg3JMaVVj38TFsFZPe3fxKjxDzeLrFjrcKlCqlJt/rqftcgnT1xXpK08K1vdF/LamrZt4lmPD83xT8rT3CQzv//vMQ5f/I/5QkOsn9fuFRBtR3UQoumfKs5Exfr7lplNPjdfroRdUOrvvg5VY8VsDqrd4q/C6Qc+1jnuDIuXv8D0ofVW8W+Ie1Y7TXUO9dP6HjZXa5djtSu9X+rxwsP69/dx3T+5H9q0q2+7q5dRsf2RSS7Pcf3gOekZ6eScmfDOB5IHL1Pe4271FPZ6qU0uNaoeLfxXERGk6lPXndGVFSUoqKiHJbFmhh52bxTdD9H/z6uQfc+qxxBgWrQqY6enfmknmk8NskT2Ic3ekkBOQJUoU5ZDZjYQ8f3Ryh83q/KnT+XChbLr+HTHtewTwfZ1/f28XL4eIzPdrytQsUL3Pzm/9+w8fXFL+y3nzx8WgOrDLd/b4xxHIDNFneDJMnLyyZjpIk937N/5NEnz8zSiwue0fuDp8e7wrm7pGQuZ09YpDzBQXpvw6uy2Ww6f/I/rZi1Rl1GtldsTGyWnsuUzGOxCkU1+N2+mj1hoTb/uE35CufRwMmPaujHj+ntAR9l6XmME2t4VxTST1q1Ks6QD/qrZNViGtbwRae3adGnsS5fuKL1SzfZl7FvQGqkpFNH9x7X0b3H7d/v3rhXBYrm0yPPPKQd63bzXBSdQvpK705xXJUwV3qfEOaRfzelFVqF9JTerZLYNyTElXls0rW+Hh37iMa2n6wLpy9KYh7vlNixVolKReXl5aWwv99zWN/X30cXz968+lWBu/Jr+q4p9tu8fbzk7evjME8/ffmz3n38s1t3cMc82WyOy2xeXtq7+YD9j2MHth1S8Up3qe2glpb64xWdQnpKr07xd4GUYx/rHFfGxet/yaNVSE/p1Sr2DWnHaq+h3i6h42V3e73X+xox/QnNO/apYqJjtG/LQa2e84vKVi+V7LYc3yeMTiE9pXWnkpJQw8pWL8nxQALofdorUDSfnninr0a1fEU3om7Eu53nYuLolDVl+JPXr1y5ojlz5mj9+vWKiIiQzWZToUKFVL9+fXXr1k3Zs2dPcvuJEydq/PjxDstKqoJKq1IiWyQs+ka0jh+4+S7MvX/8o/I1S6vD0NZ6d9CniW4T947SQzv/VZ5CufXo2M4Kn/erbF43/2OZ8tjH2vPbfodtYmNi7f//+Tavycf35q8wf0hevbVmvAbd+6zDmOKci7igvIWCHO4rqGAuSbK/O+bsifM6c+ycfYcrSf/uPiYvLy8VKJpXx/Yn/y7TtJCSubweeV1v9f9I7/zvU+UplFvnTlxQ68fu15WLV/XfmUvKXeDmY8yKc5mSeew2qoN2/fq3Frz5tSTp4I5/de1KlN5ZN0EzX5ir2NibwcmK8wikVmo7JaVdqyRp8Hv9VKdtTT0TOlZnjp1zersH+jbVqtk/O/x3nNV7hdRx5d9Ot9vz2z4169FQEs9FIDUyQ6c4rorP1d4nhHnk301AessMrZLYN9zJlXkM7VxPw6c9rgmd33b4SNysPI8JSexYa9vqnYqJjtETNZ9zmBfp5pUHJens8XMOc9KgYy016FhHk3re+oPX7Y/3fMQFh6ssSVJQwdwOV2M6d+J8vDcp/7v7mBp2rJO6BwpYREbuFH8XSDn2sc5Jq3Hx+h+QNjJyqxLCvsE1VnsN9XYJHS+724l/TuqZJmMVEOivwFzZdC7igp6fO0wRB08luy3H90DaslqnkpJYw2xeXhwP3IHeu0fZGqWUp1CQpm5+3b7M28dbVRpVULvBD2hiz/d4LiJDydAnr//1119q3ry5rl69qtDQUBUrVkzGGJ06dUrPPvusxo0bpxUrVqhixYqJ3sfo0aM1fPhwh2UdcvdJ9dhsNpv8/HxTtL6v/81fx4VT/+n00bMqXKqQVs/5JdFtTv17xv7/Y6JjJMn+otmd/tq4V/1e7SYfXx/7zrhmi3t05tg5+4HKrvV/q9EjdRWQPUCRV27usELKFVZMTKxOH03dCQ+p4cxcxkTH2GPXpEt9/fbtFhljmMvbJDWP/oF+iol2jFZcxGw2my6cusA8Ai5Ii05JadeqJ9/vr/rta2lEk7HxPpIvKVVDKyqkbGEtv+0jBCV6hbSV0n87la5WUmdPXJDEcxFwVWbp1O04rkqbebwd88i/m4D0lFlaxb7BkSvz2KRrfT0z/Qm91v0d/f79Fofbsuo8OivuWGv/1oPy9vFWUMFc2vnLngTXjY2JdZiTC6cu6vq164nP04a9qnF/VS1+5zv7shrN79Ff6/+2f7/r179VtFwRh+2Kliusk3d8NDOQEWX0TvF3gdRjH5uwtBoXr/8BqZfRW5UQ9g2pZ4XXUOMkdrzsKZFXoxR5NUo5grKrZst79Nlzs5Ncn+N7IG1ZrVNJSaphHA84ovfus/WnHQ5Xj5ekETOe0JE9xzV/8lLduB7NcxEZild6DyA1Bg8erEaNGunkyZNaunSpPvnkE3366adaunSpTp48qUaNGmnw4MFJ3oe/v79y5crl8JXSjw3p92o3VW5wtwoVL6ASlYup7yvdVLVxJf00Z93N21/rrpEzn7Sv/9ATLVXnwRoKKROskDLBatmnsR555iH99OU6+zpfjP9KXUd1UIenWiukbGGVqFxMLfs0VqdhD6ZobHFWz/lFN6Ki9WzYYJWodJfqt6+lbqM7atGUbxzWuXj2kp6d8YSKVSiqKg0r6LHJj+rHsNUe+6iLlM5lSNnCatajoULKBKv8fWU0Zs7TKlH5Ls14fo59naw4lymdx43f/qEGHWvpwUEtFFyyoCrVK6/B7/bV7t/26eyJ85Ky5jzeLkY2j30h80iLTklp06ohHw5Qsx4NNbHHu7p6KVJ5CgUpT6Eg+QX42de5c98Qp1W/Ztq9ca8O7ToS77asvm+Aa1LaqQ5DW6teu/sUUiZYxSsWVb/XuqvRw3X09Yc/2NfJ6s9FT3aKVmUeGb1THFfF52rvS99TQqXvKaFsOQKUO38ulb6nhIpVKGq/nXnk301pgU7BFRm9VXHYN9ziyjw26VpfI2c9qU9GzNLujfvs2wTmCrSvk9XmMTFJHWsd23dCq2b/rJGzhqhBh1oKLlFQ5WqWVpeR7VSr1b0u/bwl732nGi3uUZeR7XRX+SLqMrKdqt9fRYvfvfXHrEXvfKsKdcqq2+gOKlI6WE26NVDrgffr66nL0+phpwmOqeCKjN4p/i6QMuxjnefMuHj9L+XoFFyR0VvFviG+gOwB9tfyJCm4ZEGVvqeECtyVX1LGeQ01TlLHy+5Us8U9qtmymoJLFFT1+6vqzdXjdOTv4/oxLFwSx/eu4JgKrrBSp5KSXMM4HriF3rvXtcuROrTriMNX5JUoXTx3SYd2HeG5mAQ6ZU0Z+srrv/32mzZv3iw/P794t/n5+WnMmDGqVauW28cRVChIz30+RHkL59GV/67q4PbDGtPqVW1ZtV2SlC84jwoWy29f3+ZlU7/Xuiu4ZEHFRt98N8u00V/qu09W2tf5YfpqRV69rs4jHtKA13sq8kqUDu341+E//JS4evGqnmsxQUM+6K8PN03SpfNXtHDKN1r49rf2dSKvRGpUiwka/N7NdS6evaSfF2xQ2AvzXJyZlEvpXHp7e+nh4W1VtHwRxdyI0bbwnRpa/wWHd+5kxblM6TyumLVG2XIGqN3gB/S/N3vpyoUr2rp6p6aN+tK+TlacRyC1rNIpSXro8ZaSpLfWOH5c1ht9P9SKWWskxd83SFJgrkA16FRbU58OS/B+2TfAFSntlK+fjx57o5fyh+RV1LXrOrzriJ5v85p+/2GrfR2ei0DKZfROcVwVn6u9/3jrG/b/X65maTXr0VARh07p0VI3XxRmHm/i302A52X0VknsG+7kyjy2eay5fHx99NSHA/XUhwPty1fMXKM3+n0oKevNY2KSO9Z6s99U9Xihkx57s7fyh+TVxbOXtHvDXv32/dZk7jlhf23Yq1e7vaM+E7qq98tddeJAhF7tOkV7fr/1Ec57Nx/QuI5vqP9rPdTzxYcVcfCUPho2M8krZQEZRUbvFH8XSBn2sc5zZly8/gd4RkZvFfuG+MrVLKW3wm/N4eNv95F06/goo7yGKiV/vOxOgbkD1f+17spfNJ8unbusXxb/phnPz7VfqZfje8AzrNSppDjTMI4HbqL36Y/nIjISmzHGpPcgXBUSEqKpU6eqXbt2Cd6+dOlSDR48WMeOHUvR/Tb3eiQthgfAYlbGLnB5203/lki7gSTjvmKHPPaz4F7u6pREq9JKavYLuIXnY9rIKJ2SaFVmQacApERq/93EMRVcQasApATHVPA0OgUgJTimQnqgVQBSgmMqeBqdApASdCrzydBXXh84cKB69+6tF154Qc2bN1ehQoVks9kUERGhlStX6rXXXtPTTz+d3sMEAGRRdAoAYGV0CgBgdbQKAGBldAoAYHW0CgBgZXQKALK2DH3y+rhx45QtWza9/fbbGjlypGw2myTJGKPg4GCNGjVKI0eOTOdRAsgMYo0tvYeADIhOAfAUOgVX0CkAnkSr4ApaBcBT6BRcQacAeBKtgitoFQBPoVNwBZ0C4Cl0yppsxhiT3oNICwcPHlRERIQkKTg4WCVLlnT5vvjoECBzSs3Hh/x22PV9SkrVLn7QYz8LnpOWnZJoVVpJ7Ue14iaej2kjo3RKolWZEZ0CkJzU/ruJYyqkFq0CkByOqZCe6BSA5HBMhfRGqwAkh2MqpCc6BSA5dCrzydBXXpekEydO6KOPPtIvv/yiEydOyNvbWyVLllT79u3Vp08feXt7p/cQAWQCMeIdWHANnQLgCXQKrqJTADyFVsFVtAqAJ9ApuIpOAfAUWgVX0SoAnkCn4Co6BcAT6JQ1eaX3AFJj8+bNqlChgr755htFRkZq7969ql69urJnz64RI0aoYcOGunTpUnoPEwCQRdEpAICV0SkAgNXRKgCAldEpAIDV0SoAgJXRKQDI2jL0yetPP/20hg0bpq1bt2r9+vWaNWuW9u7dq3nz5umff/7RtWvX9MILL6T3MAFkAjHGy2NfyDzoFABP8WSnaFXmQacAeBKdgitoFQBP4ZgKrqBTADyJTsEVtAqAp3BMBVfQKQCeQqesKUPP1JYtW/Too4/av+/evbu2bNmikydPKk+ePJo8ebIWLlyYjiMEAGRldAoAYGV0CgBgdbQKAGBldAoAYHW0CgBgZXQKALI2n/QeQGoULFhQJ06cUKlSpSRJJ0+eVHR0tHLlyiVJKlu2rM6dO5eeQwSQScRm7Pf6IJ3QKQCeQqfgCjoFwJNoFVxBqwB4Cp2CK+gUAE+iVXAFrQLgKXQKrqBTADyFTllThv6ttG/fXoMGDdLy5csVHh6uHj16KDQ0VNmyZZMk/f333woJCUnnUQIAsio6BQCwMjoFALA6WgUAsDI6BQCwOloFALAyOgUAWVuGvvL6K6+8ohMnTqht27aKiYlR3bp1NXv2bPvtNptNEydOTMcRAsgsYmRL7yEgA6JTADyFTsEVdAqAJ9EquIJWAfAUOgVX0CkAnkSr4ApaBcBT6BRcQacAeAqdsqYMffJ6jhw5NH/+fEVGRio6Olo5cuRwuL1FixbpNDIAAOgUAMDa6BQAwOpoFQDAyugUAMDqaBUAwMroFABkbRn65PU4AQEB6T0EAAASRacAAFZGpwAAVkerAABWRqcAAFZHqwAAVkanACBryhQnrwOAu8UYr/QeAgAAiaJTAACro1UAACujUwAAq6NVAAAro1MAACujU9bEbwUAAAAAAAAAAAAAAAAAAAAA4HZceR0AnBArW3oPAQCARNEpAIDV0SoAgJXRKQCA1dEqAICV0SkAgJXRKWviyusAAAAAAAAAAAAAAAAAAAAAALfjyusA4IQY3usDALAwOgUAsDpaBQCwMjoFALA6WgUAsDI6BQCwMjplTfxWAAAAAAAAAAAAAAAAAAAAAABux5XXAcAJMYb3+gAArItOAQCsjlYBAKyMTgEArI5WAQCsjE4BAKyMTlkTvxUAAAAAAAAAAAAAAAAAAAAAgNtx5XUAcEIs7/UBAFgYnQIAWB2tAgBYGZ0CAFgdrQIAWBmdAgBYGZ2yJn4rAAAAAAAAAAAAAAAAAAAAAAC348rrAOCEGGNL7yEAAJAoOgUAsDpaBQCwMjoFALA6WgUAsDI6BQCwMjplTVx5HQAAAAAAAAAAAAAAAAAAAADgdlx5HQCcEMN7fQAAFkanAABWR6sAAFZGpwAAVkerAABWRqcAAFZGp6yJ3woAAAAAAAAAAAAAAAAAAAAAwO04eR0AAAAAAAAAAAAAAAAAAAAA4HY+6T0AAMgIYg3v9QEAWBedAgBYHa0CAFgZnQIAWB2tAgBYGZ0CAFgZnbImfisAAAAAAAAAAAAAAAAAAAAAALfjyusA4IQY3usDALAwOgUAsDpaBQCwMjoFALA6WgUAsDI6BQCwMjplTfxWAAAAAAAAAAAAAAAAAAAAAABux5XXAcAJMcaW3kMAACBRdAoAYHW0CgBgZXQKAGB1tAoAYGV0CgBgZXTKmrjyOgAAAAAAAAAAAAAAAAAAAADA7bjyOgA4IZb3+gAALIxOAQCsjlYBAKyMTgEArI5WAQCsjE4BAKyMTlkTJ68DQAY2btw4jR8/3mFZoUKFFBERkU4jAjKW5l6PpPcQgEyPVgEArIxOAQCsjlYBAKyMTgEArIxOAQCsLiu3ipPXAcAJMca678CqVKmSVq1aZf/e29s7HUcDAEgPVu6URKsAANZuFZ0CAFi5UxKtAgBYu1V0CgBApwAAVmblTklZt1WcvA4AGZyPj4+Cg4PTexgAACSKVgEArIxOAQCsjlYBAKyMTgEArIxOAQCsLqu2ytpvKQAAi4iVzWNfKbVv3z4VKVJEJUuWVNeuXfXPP/+4YQYAAFbmyU7RKgCAK+gUAMDKOKYCAFgdnQIAWJmVj6noFADAyp2Ssm6ruPI6AFhMVFSUoqKiHJb5+/vL398/3rq1a9fW559/rnLlyunkyZN65ZVXVK9ePe3atUv58uXz1JABAFkMrQIAWBmdAgBYHa0CAFgZnQIAWJ2zraJTAID0wDGVc7jyOgBYzMSJE5U7d26Hr4kTJya4bqtWrdSpUydVqVJF999/v7777jtJ0qxZszw5ZABAFkOrAABWRqcAAFZHqwAAVkanAABW52yr6BQAID1wTOUcrrwOAE6IMZ57r8/o0aM1fPhwh2UJvfMqIdmzZ1eVKlW0b98+dwwNAGBRnuyURKsAACnHMRUAwMo4pgIAWB3HVAAAK8sox1R0CgCypozSKSlrtYqT1wHAYhL7mBBnREVFaffu3WrYsGEajwoAgFtoFQDAyugUAMDqaBUAwMroFADA6lxtFZ0CAHgCx1TO4eR1AHBCjDz7DixnjRgxQm3btlWxYsV06tQpvfLKK7p48aJ69+6d3kMDAHiQVTsl0SoAwE1WbRWdAgBI1u2URKsAADdZtVV0CgAg0SkAgLVZtVNS1m4VJ68DQAZ29OhRdevWTWfOnFGBAgVUp04dbdy4UcWLF0/voQEAIIlWAQCsjU4BAKyOVgEArIxOAQCsjE4BAKwuK7eKk9cBwAmxxpbeQ0jQvHnz0nsIAAALsGqnJFoFALjJqq2iUwAAybqdkmgVAOAmq7aKTgEAJDoFALA2q3ZKytqtsu718AEAAAAAAAAAAAAAAAAAAAAAmQZXXgcAJ8TwXh8AgIXRKQCA1dEqAICV0SkAgNXRKgCAldEpAICV0Slr4rcCAAAAAAAAAAAAAAAAAAAAAHA7rrwOAE6INbzXBwBgXXQKAGB1tAoAYGV0CgBgdbQKAGBldAoAYGV0ypr4rQAAAAAAAAAAAAAAAAAAAAAA3I4rrwOAE2JkS+8hAACQKDoFALA6WgUAsDI6BQCwOloFALAyOgUAsDI6ZU1ceR0AAAAAAAAAAAAAAAAAAAAA4HZceR0AnBBreK8PAMC66BQAwOpoFQDAyugUAMDqaBUAwMroFADAyuiUNfFbAQAAAAAAAAAAAAAAAAAAAAC4HSevAwAAAAAAAAAAAAAAAAAAAADczie9BwAAGUGMbOk9BAAAEkWnAABWR6sAAFZGpwAAVkerAABWRqcAAFZGp6yJK68DAAAAAAAAAAAAAAAAAAAAANyOK68DgBNiDe/1AQBYF50CAFgdrQIAWBmdAgBYHa0CAFgZnQIAWBmdsiZ+KwAAAAAAAAAAAAAAAAAAAAAAt+PK6wDghBjegQUAsDA6BQCwOloFALAyOgUAsDpaBQCwMjoFALAyOmVN/FYAAAAAAAAAAAAAAAAAAAAAAG6Xoa+8fv36dfn5+dm/P3DggN5//33t27dPhQsX1uOPP64aNWqk4wgBZBaxsqX3EJAB0SkAnkKn4CpaBcBTaBVcQacAeAqdgivoFABPolVwBa0C4Cl0Cq6gUwA8hU5ZU4a+8nq2bNl06tQpSdK2bdtUtWpVrV27ViEhIdq+fbvq1aun33//PZ1HCQDIqugUAMDqaBUAwMroFADAyugUAMDqaBUAwMroFABkbRn6yuvGGPv/f/HFF9W6dWt99dVXstluvlOiX79+Gjt2rH744Yf0GiKATCLGZOj3+iCd0CkAnkKn4CpaBcBTaBVcQacAeAqdgivoFABPolVwBa0C4Cl0Cq6gUwA8hU5ZU4Y+ef1227Zt07x58+wBk6ShQ4eqZcuW6TgqAABuolMAAKujVQAAK6NTAAAro1MAAKujVQAAK6NTAJD1ZOiT1202mz1a3t7eypUrl8PtuXLl0n///ZceQwOQycQaW/IrAXegUwA8hU7BVbQKgKfQKriCTgHwFDoFV9ApAJ5Eq+AKWgXAU+gUXEGnAHgKnbKmDH09fGOMypUrp7x58+r48ePasWOHw+379u1TcHBwOo0OAJDV0SkAgNXRKgCAldEpAICV0SkAgNXRKgCAldEpAMjaMvSV18PCwhy+L126tMP3GzduVIcOHTw5JAAA7OgUAMDqaBUAwMroFADAyugUAMDqaBUAwMroFABkbRn65PXevXsneftLL73kkXF0HdVeDTrU1l13hyjq2nX9tf5vTRv1pY7uPZ7kdr5+Pur50iNq1qOh8gQH6czRs5rz2mL9GBbutrGWqFxMQ97vr/K1yujSucv67tOVmj1hYbqPK86Dg1qo7aAWKlSigCTp8K6jmj1hgTYt35boNg890VLtBj+gQiUK6tS/ZzTntUVa9cXPbh1nZpzHOJXqlddba8br0M4jGlT9WbeO0+rzeLuYjP1BFUgnVumUlPL9Qt7gIP3vzd4qW6OUQsoGa+n7P+ijYTPdPk6r7xdcaX7V0Ip6K3x8vOX9KgzVkb+T/rdCalh5Lnk+pj06BVdZpVWu7F8bdKilBwe1VOlqJeTr76PDu47qi/FfafOKP906VqvvG6o0rKBHRjykcjVKKV+RvBrbYbLWL9uU5DZNuzdQ52fbKaRsYV3576o2L9+mT579XJfOXXbbOK08j648H2lV8mgVXGGVTkmuv/4Xh9dbbuJ11LTXdVR79X+thxa/+12S7WEOk0an4Ao65Ror7xt47S9tPDr2EfUa29lh2bmIC+pSZGCC6z87Y7Ba9Gkcb/mhXUc0sMpwdwxRkrXnMCG0Cq6wUqtS+poV+9eE8bpV2nPmmIo5TB6dgius1CnJtb+vxOGY6hb+TuVeqTkn0FUNOtZWn5e7qnDpQjpx4KTCXpirX5f+7rBOviJ5NWBSD9Vqda/8svnp2N4TemvAR9q35R+3jSsl6JQ1ZeiT162iaqNK+nrqj/p70355+3ir7yvdNOnHFzSg0jBFXo1KdLsX5g9XnkK59daAj3R8f4SCCuaWt4/r/6EUKl5Asw9OVXOvRxK8PTBnNr2+4kX9Gb5TT9YapaLlCmtE2GBFXonUwre/ddu4UuLM0bOaPvpLHdsfIUlq0buxxi99To9Xf1aH/zoab/0HB7VQv9e6a8pjn+jvTft1d60yGvbpIF0+f0Ubv/3DpTFkxXmME5grUCNnPamtP+1QnkJBqRpDZphHIDNJ6X7B199X/525qDmvLVKnpx9MkzFkhv2Cq82XpD7ln9LVi9fs3/93+qLL48joc8nzEcCdXNm/VmlUUVtW/akZz8/RlQtX1LJvE7389SgNqTNaB7YdcmkcmWHfEJDdX/9sP6wVM8M1dlHyL5BWqn+3Rs4aoo+Hz9TGb/5QvpC8GvrRQA3/7HGN7/SGS2PI6PPoyvORVgGZX2qOBXi95RZeR01b5WqWVuuBzXXgz0PJrsscApkbnUobvPaXdg7u/FfPNZ9g/z42JjbRdT98OkzTRn9p/97bx0ufbHtTPy/c4PLPzwxzCGQ2KX3NKg77V0e8bpW2nD2mYg6BrMHVVnFM5Yi/U7mXq+cEJqZF78Zq0buxRjQdl+DtFeqU0wvzhmnmS/P065LfVb9DLb0wf5iGNXxRe37fL0nKEZRd7/wyQX+G79KY1q/pwqn/VKR0IV2+cMXVh4ksIlOfvD5mzBhFRERoxowZ7v05rV91+P7NflO18NR0la1RSjvW7U5wm5otq6lqaEX1Kv2kLp2/+S6hk4dPx1uvZZ/G6vxsOwWXLKiIQ6e19P3v9c1HK1waZ9MeDeUX4Ks3+n6oG9ejdWjXEYWUK6JOw9rad7zOjstd7jzhPOyFuXpwUAtVqFMuwR3s/T0b6btPV2ntV+slSREHT6lCnXLqMrK9w30xj0nPY5ynP35Mq+f+otiYWNVvVyve7VltHm8Xa2zp8nORuXmqU1LK9wsnD5/W1KdvfkzXA32bJnq/WW2/4Erz41w49Z+u/Hc10duz0lzyfEx7dAruYuVjqjuvbDPj+bmq+9B9qtu2psPJ61lt37Bp+bYUXV2hQp2yOnnolJa+/4MkKeLQKX336Up1fradw3pZaR5deT7SquTRKriDJ4+pUnMswOstt/A6atoJyB6g0bOf0pTHPlaP5zsluS5zmDw6BXegU/FZfd/Aa39pJzY6VudPXnBq3asXr+rqxVtzV6/dfcqRJ3u8qxlmtTm8E62CO3iyVSl9zSoO+1dHvG6VdlJyTMUcJo9OwR082SnJ9VZxTOWIv1O5V3LnWvj4+qjPK13VrHtDZQ8K1KGdRzRt1GxtX/uXSz+v49A2+mPlds2btFSSNG/SUlVtVEkdh7bRaz3elSR1ea69Th85qzf7T7VvZ4W5uh2dsqZM/Xa7Y8eO6dChQx7/udlzB0pSkh9dUfehmtq7+YA6j2ynuUc+Udied/XYG4/KL8DPvk6rAc3U95VuCnthrvpXHKaw5+eoz8td1bxXqEvjqlinnLav/Us3rkfbl23+cZvyh+RVcImCTo/LU7y8vNS4Sz0FZPfXXxv2JriOr7+vrkded1gWde26ytcqI28fb0nMozPzKN2MfJHShfTF+AUJ3p7V5xFwh/TqlLP7heSwX3Cu+XE+2vKG5h37VJNXvqR7GldyuC0rzyXPR8DarHxMdSebzabAnNkctmHfkLy/1v+t/EXzqVareyVJQQVzq1Gnuvr9+y32dbL6PLryfExIVp9HwB3Sq1OS8/sGXm9JGq+jum7IB/312/dbtPWnHcmuyxwC6YNOxZfR9g289ue6ImWDNe/oJ/r8wIcaM+dpBZcs6PS2D/Rrqq2rdujUv2fsy7LiHAKekJ6tchb716TxupXrUnJM5YysOIeAu2WETnFMlXr8ncp1CZ1rMWLGE6pcr7xe7TZF/7tnhH5euEETf3heIWWCXfoZFeuW0x8r/3RYtnnFNlWsV97+fd22NbX3jwN6cf5wfRUxTR/9MVmtBjRz/YEhy8jUV16fNWtWuvzcQW/11o51u3Vo15FE1ylcspAqN7hb1yNvaFzHN5Q7f04N+XCAcubNobf6fyRJ6vnCw/pkxOf6Zcnvkm6+s6hYxaJq81hzrfx8bYrHlTc4SBF3vKvlwsn/JEl5goMUceiUU+NytxKVi+m99a/KL8BX1y5HanzHN/Tv7oSvFv7Him1q1b+Z1i/dpH1b/lG5GqX0QN8m8vXzUe78OXUu4gLz6MQ8hpQJVv+JPTSs0UuJfnRjVp3HOLGZ+70+SCee7lRK9gvOyOr7Bcm55p87cUFvP/ax9v3xj3z9fXX/o400edVLGtFknP0qGFlxLnk+pi06BXex8jHVnR5+pq0CsvvbP5VJYt/gjL827NWknu/p+XnD5BfgKx9fH61ftkkfDLl1JZOsPo+uPB8TktXnkVbBHdKrU5Jz+wZeb0ker6O6pnGXeipbvZQG1xrl1PrMYfLoFNyBTsWX0fYNvPbnmj2/7dPk3h/o6N4TylMot3o830nv/vqqBlQeluzJlXmDg1Sr1b32K/jFyWpzmBBaBXdIz1Ylh/2rc3jdyjUpPaZyRlabwzvRKbiDlTslcUyVVvg7Vcoldq5F4VKF1KRbfXW/a5DOnjgvSVr41je6r2U1tezbRDOen5vin5UnOEjn/39u4pw/+Z/yBAfZvy9cqqDaDmqhRVO+1ZyJi3V3rTIa/G4/3Yi6oVVf/Jyqx5pW6JQ1ZeqT150RFRWlqKgoh2WxJkZeNm+X7m/IB/1VsmoxDWv4YpLreXnZZIw0sed79o/C++SZWXpxwTN6f/B0ZcsRoILF8mv4tMc17NNB9u28fbwcPhbrsx1vq1DxAje/+f9PN/j64hf2208ePq2BVYbbvzfGOA7EZou7walx3XmVc3c4+vdxDbr3WeUIClSDTnX07Mwn9UzjsQme0DZ7wiLlCQ7Sextelc1m0/mT/2nFrDXqMrK9YmNilTt/LuYxmXn08vLS6C+H6vNxX+nYvhMJ3ldWnkfACtKqVSnZvyaH/YLzzT+697iO7j1u/373xr0qUDSfHnnmIe1YtzvLziXPRyDzSK9jqts16Vpfj459RGPbT9aF0xclsW9wVrEKRTX43b6aPWGhNv+4TfkK59HAyY9q6MeP6e0BH2X5eXTl+ZiQrD6PQHpLj1bxekvyeB3VNQWK5tMT7/TVqJav6EbUDae2YQ4Ba6NT1tw38Nqf6zYt32b//4d2Srs37NWs/R+oRe/GWjTl2yS3bdGnsS5fuKL1SzfZl2XFOQSsJq1b5Qz2r8njdSvXuHJMlZysNoeA1aRHpzimSjv8nSrlEjvXokSlovLy8lLY3+85rO/r76OLZ2++kbjAXfk1fdcU+23ePl7y9vVxmKufvvxZ7z7+2a07uGOubDbHZTYvL+3dfMB+cvyBbYdUvNJdajuopWVOXoc1ZeiT19966y09/PDDKl68uMv3MXHiRI0fP95hWUlVUGlVSmSLxA1+r5/qtK2pZ0LH6syxc0mue/bEeZ05ds6+c5Okf3cfk5eXlwoUzasrF69JkqY89rH2/LbfYdvb3631fJvX5ON789eYPySv3lozXoPufdZ+e/SNWx9vcS7igvIWCnK4r6CCuSTJ/g6Z5MZ1bH9EsvOQWtE3onX8wM2fs/ePf1S+Zml1GNpa7w76NN661yOv663+H+md/32qPIVy69yJC2r92P26cvGq/jtzSbkL3Hx8zGPi85gtZ4DK31dGZe4tqSff7y9JsnnZ5OXlpeXX52lUy1fs79TOivMYJ8bYPPazkHmkRaektGtVSvavybF53fxvIqvuF1LS/ITs+W2fmvVoKCnrziXPx7RFp+CqjHxMFSe0cz0Nn/a4JnR+2+EjXtk3OKfbqA7a9evfWvDm15Kkgzv+1bUrUXpn3QTNfGGuYmNvvviUFecxtb2/Hc9HWgXXWO2YSnJ+38DrLUnjdVTXla1RSnkKBWnq5tfty7x9vFWlUQW1G/yAWgd0V2ys49W+mMPk0Sm4gk7dlBn3Dbz2l7Yir0bp4I5/FVK2cLLrPtC3qVbN/tnh8TKHN9EquMKKrUoN9q+38LqV61w5pkpOVpvDhNApuCIjd4pjqrTD36lSLrFzLbat3qmY6Bg9UfO5eJ8GcO1ypCTp7PFzDvPSoGMtNehYR5N63jrh/fbHfD7igsNV1iUpqGBuh6uxnztxPt5FCv/dfUwNO9ZJ3QNNQ3TKmjL0yevPPvusnnvuOTVp0kQDBgxQhw4d5Ofnl6L7GD16tIYPH+6wrEPuPikey5Pv91f99rU0oslYRRw6lez6u9b/rUaP1FVA9gBFXrm5cwgpV1gxMbE6ffScrkde1+mjZ1W4VCGtnvNLovdz6t8z9v8fEx0jSfad053+2rhX/V7tJh9fH/sOuWaLe3Tm2Dn7mJMbV3qw2Wzy8/NNcp2Y6Bj7QVmTLvX127dbZIzRhVP/MY//L7F5vHrxmsM7yySp7RMtVa1JZU145C1FHDylyKtRzCPggrTolJR2rbqTM/vXxGTl/WtKm5+Q0tVK6uyJC5Ky9lzejucjkD4y8jGVdPOK689Mf0KvdX9Hv3+/xeE29g3O8Q/0U0y04wtYcS9o2Ww2XTh1IUvOY1r0/nY8HwHXWO2YKiX7Bl5vSRyvo6bO1p92xHtujZjxhI7sOa75k5cmeJIFcwi4B526KbPtG3jtL+35+vmoWIUQ7fxld5LrVQ2tqJCyhbV8+mqH5cwh4DqrtSq12L/exOtWqePKMVVystocAmklI3eKY6q0w9+pUi/uXIv9Ww/K28dbQQVzaecvexJcNzYm1mFeLpy6qOvXric+Vxv2qsb9VbX4ne/sy2o0v0d/rf/b/v2uX/9W0XJFHLYrWq6wTh4+nZqHhSzAK70HkFrTpk1T9uzZ9eijj6pIkSJ6+umntXPnTqe39/f3V65cuRy+UvqxIUM+HKBmPRpqYo93dfVSpPIUClKeQkHyC7gV1H6vddfImU/av1895xddPHtJz854QsUqFFWVhhX02ORH9WPYavvHSnwx/it1HdVBHZ5qrZCyhVWicjG17NNYnYY9mKLx3f4zb0RF69mwwSpR6S7Vb19L3UZ31KIp36RoXO7U79VuqtzgbhUqXkAlKhdT31e6qWrjSvppzrqbt98xjyFlC6tZj4YKKROs8veV0Zg5T6tE5bs04/k59nWYx6Tn0RijQ7uOOHxdOPWfbkTe0KFdRxR59eZH62TFebxdrLF57AuZS2o7JaVNq1K6f5Wk0veUUOl7SihbjgDlzp9Lpe8poWIVitpvz4r7BVea32Foa9Vrd59CygSreMWi6vdadzV6uI6+/vAH+zpZbS55PqY9T3aKVmU+GfWYqknX+ho560l9MmKWdm/cZ98mMFegfZ2suG8IyB5g32dKUnDJgip9TwkVuCu/pPjzuPHbP9SgYy09OKiFgksWVKV65TX43b7a/ds+nT1xXlLWm0dXno8SrUoOnYKrrHJMldJ9A6+3JIzXUVPv2uXIeM+tyCtRunjukv2KXsxhynFMBVfRqZSx+r6B1/7SxmNvPKqqjSoquERB3V2rjF5c8IwCc2XTillrJCV8PCVJrfo10+6Ne+09u11Wm8OE0Cm4yiqtSulrVuxfE8brVqnnyjGVxBwmh2MquMoqnZJS1iqOqRLH36ncK6lzLY7tO6FVs3/WyFlD1KBDLQWXKKhyNUury8h2qtXqXpd+3pL3vlONFveoy8h2uqt8EXUZ2U7V76+ixe/eOpl90TvfqkKdsuo2uoOKlA5Wk24N1Hrg/fp66vK0etipRqesKUNfeV2SWrdurT59+ujUqVOaOXOmwsLC9P7776tGjRoaOHCgunbtqpw5c7p1DA893lKS9NYax48geaPvh/YXYvIF51HBYvntt0VeidSoFhM0+L3++nDTJF08e0k/L9igsBfm2df5YfpqRV69rs4jHtKA13sq8kqUDu341+E//pS4evGqnmsxQUM+uPkzL52/ooVTvtHCt79N0bjcKahQkJ77fIjyFs6jK/9d1cHthzWm1avasmq7pPjz6O3tpYeHt1XR8kUUcyNG28J3amj9FxzeucM8Jj+PzsiK8wikBSt0SnJtv/Dx1jfs/79czdJq1qOhIg6d0qOlBkvKmvsFV5rv6+ejx97opfwheRV17boO7zqi59u8pt9/2GpfJ6vNJc9HwFqs0CpX9q9tHmsuH18fPfXhQD314UD78hUz1+iNfh9Kypr7hnI1S+mt8Fvz+PjbfSTdmpc753HFrDXKljNA7QY/oP+92UtXLlzR1tU7NW3Ul/Z1sto8uvJ8lGgV4C5W6JTk+r4hOVlt38DrqJ7BHAKeQ6dSxur7Bl77Sxv5Q/JpzJyhypU/l/47fVG7N+7VU3Wft18JMaHnYmCuQDXoVFtTnw5L8D6z2hwCackqrUrpa1bsXxPG61aewRwCnmOVTkkpb5UzsuK+gb9TuVdy51q82W+qerzQSY+92Vv5Q/Lq4tlL2r1hr377fmsy95ywvzbs1avd3lGfCV3V++WuOnEgQq92naI9v++3r7N38wGN6/iG+r/WQz1ffFgRB0/po2Ezk7xSPiBJNmOMSe9BuMrLy0sREREqWLCgw/J169Zp+vTpWrhwoSTp8uXLKbrf5l6PpNkYAVjHytgFLm87ZEuPNBxJ0t6v/mXyKyFDcFenJFoFZEYZpVMSrcpMOKYC4KzUdErimAqu4ZgKQEpwTAVPo1MAUoJjKqQHWgUgJTimgqfRKQApQacyH6/0HkBq2GwJX2K/YcOGmjlzpo4fP64pU6Z4eFQAANxEpwAAVkerAABWRqcAAFZGpwAAVkerAABWRqcAIGvzSe8BpEZyF43PlSuXBg4cmOQ6AOCMGCX8j2YgKXQKgKfQKbiKVgHwFFoFV9ApAJ5Cp+AKOgXAk2gVXEGrAHgKnYIr6BQAT6FT1pShT16PjY1N7yEAAJAoOgUAsDpaBQCwMjoFALAyOgUAsDpaBQCwMjoFAFmbV3oPAAAAAAAAAAAAAAAAAAAAAACQ+WXok9eNMXr//ffVu3dvffXVV5KkL774QhUrVtTdd9+tMWPGKDo6Op1HCSAziDU2j30h86BTADzFk52iVZkLrQLgKXQKrqBTADyFYyq4gk4B8CQ6BVfQKgCewjEVXEGnAHgKnbImn/QeQGq88soreuONN9SiRQsNHTpUBw8e1BtvvKFhw4bJy8tLU6ZMka+vr8aPH5/eQwUAZEF0CgBgdbQKAGBldAoAYGV0CgBgdbQKAGBldAoAsrYMffL6zJkzNXPmTHXs2FF//vmnatSooVmzZqlHjx6SpLvvvlsjR44kYgBSLdZk6A+qQDqhUwA8hU7BVbQKgKfQKriCTgHwFDoFV9ApAJ5Eq+AKWgXAU+gUXEGnAHgKnbKmDP1bOXHihGrWrClJuueee+Tl5aVq1arZb69evbqOHz+eTqMDAGR1dAoAYHW0CgBgZXQKAGBldAoAYHW0CgBgZXQKALK2DH3yenBwsP766y9J0r59+xQTE2P/XpJ27dqlggULptfwAGQisbJ57AuZB50C4Cme7BStylxoFQBPoVNwBZ0C4CkcU8EVdAqAJ9EpuIJWAfAUjqngCjoFwFPolDX5pPcAUqN79+7q1auX2rVrp59++knPPfecRowYobNnz8pms+nVV1/Vww8/nN7DBABkUXQKAGB1tAoAYGV0CgBgZXQKAGB1tAoAYGV0CgCytgx98vr48eOVLVs2bdy4Uf/73//03HPPqWrVqho5cqSuXr2qtm3basKECek9TACZQIzhXVFIOToFwFPoFFxFqwB4Cq2CK+gUAE+hU3AFnQLgSbQKrqBVADyFTsEVdAqAp9Apa7IZY0x6D8Jqmns9kt5DAOAGK2MXuLxt301903AkSQu7L8xjPwsZF60CMp+M0imJViF5dArIfFLTKYljKlgPrQIyH46pkJnQKSDz4ZgKmQ2tAjIfjqmQmdApIPOhU5lPhr7yOgB4SqzxSu8hAACQKDoFALA6WgUAsDI6BQCwOloFALAyOgUAsDI6ZU38VgAAAAAAAAAAAAAAAAAAAAAAbseV1wHACbHGlt5DAAAgUXQKAGB1tAoAYGV0CgBgdbQKAGBldAoAYGV0ypq48joAAAAAAAAAAAAAAAAAAAAAwO248joAOCFWvAMLAGBddAoAYHW0CgBgZXQKAGB1tAoAYGV0CgBgZXTKmrjyOgAAAAAAAAAAAAAAAAAAAADA7Th5HQAAAAAAAAAAAAAAAAAAAADgdj7pPQAAyAhiDR8fAgCwLjoFALA6WgUAsDI6BQCwOloFALAyOgUAsDI6ZU1ceR0AAAAAAAAAAAAAAAAAAAAA4HZceR0AnBBreK8PAMC66BQAwOpoFQDAyugUAMDqaBUAwMroFADAyuiUNfFbAQAAAAAAAAAAAAAAAAAAAAC4HVdeBwAnxBpbeg8BAIBE0SkAgNXRKgCAldEpAIDV0SoAgJXRKQCAldEpa+LK6wAAAAAAAAAAAAAAAAAAAAAAt+PK6wDghFjxDiwAgHXRKQCA1dEqAICV0SkAgNXRKgCAldEpAICV0Slr4srrAAAAAAAAAAAAAAAAAAAAAAC348rrAOCEWMM7sAAA1kWnAABWR6sAAFZGpwAAVkerAABWRqcAAFZGp6yJK68DAAAAAAAAAAAAAAAAAAAAANyOK68DgBN4BxYAwMroFADA6mgVAMDK6BQAwOpoFQDAyugUAMDK6JQ1ceV1AAAAAAAAAAAAAAAAAAAAAIDbcfI6AAAAAAAAAAAAAAAAAAAAAMDtfNJ7AACQEfDxIQAAK6NTAACro1UAACujUwAAq6NVAAAro1MAACujU9bEldcBAAAAAAAAAAAAAAAAAAAAAG7HldcBwAm8AwsAYGV0CgBgdbQKAGBldAoAYHW0CgBgZXQKAGBldMqauPI6APwfe/cd30T9+HH8nS7KnjJklz3EAVaWyBCQrSAKArIUGQJfBFkyRAT5Agq4GCrDASiifN0CCigCsjeC7L132W1+f/RHSmjaJmma3F1ez8ejD+nlLvfpCffKJ70kAAAAAAAAAAAAAAAAAAAASHO88zoAuCFOvAILAGBcdAoAYHS0CgBgZHQKAGB0tAoAYGR0CgBgZHTKmHjndQAAAAAAAAAAAAAAAAAAAABAmuOd1wHADXF2XoEFADAuOgUAMDpaBQAwMjoFADA6WgUAMDI6BQAwMjplTLzzOgAAAAAAAAAAAAAAAAAAAAAgzfHO6wDgBl6BBQAwMjoFADA6WgUAMDI6BQAwOloFADAyOgUAMDI6ZUy88zoAAAAAAAAAAAAAAAAAAAAAIM3xzusA4AZegQUAMDI6BQAwOloFADAyOgUAMDpaBQAwMjoFADAyOmVMvPM6AAAAAAAAAAAAAAAAAAAAACDN8c7rAOAGXoEFADAyOgUAMDpaBQAwMjoFADA6WgUAMDI6BQAwMjplTLzzOgAAAAAAAAAAAAAAAAAAAAAgzXHxOgAAAAAAAAAAAAAAAAAAAAAgzYUFegAAYAZ2Pj4EAGBgdAoAYHS0CgBgZHQKAGB0tAoAYGR0CgBgZHTKmLh4HQCC3K5du7R06VKdPHlScXFxTrcNGzYsQKMCACABrQIAGBmdAgAYHa0CABgZnQIAGB2tAgAYmVk7xcXrAOCGOJnjFVhvvfWWBg8erN69e2vixIkprv/RRx+pW7duypUrl/LmzSubLeHntNlshg4YACCBVTsl0SoAsAqrtopOAYA1WLVTEq0CAKuwaqvoFABYg1U7JdEqALACOmVMXLwOABaxZs0aTZs2TRUqVHB7mzfffFOjRo3SgAED0nBkAAB41ymJVgEA/Ic5FQDAyJhTAQCMjjkVAMDImFMBAIwsGDsVEugBAIAZxNltfvvyxuXLl9WmTRt99NFHyp49u9vbnTt3Ti1btvRqnwAA4/Bnp7xplbedkmgVAFiFkTslMacCgGDHnAoAYHRG7pTEnAoAgh1zKgCAkdEpY+LidQAwmOvXr+vixYtOX9evX092mx49eqhRo0Z6/PHHPdpXy5YttXDhwtQMFwAQhDxtlbedkmgVAMBzzKkAAEbHnAoAYGTMqQAARsecCgBgZHTKPWGBHgAAmIHdy3ea8MZbb72lESNGOC0bPny4Xn/9dZfrz507V+vXr9eaNWvcuv93333X8efixYtr6NChWrVqle677z6Fh4c7rdurVy/PBg8ACAh/dkryrFWedkqiVQBgRcypAABGxpwKAGB0zKkAAEbGnAoAYGR0yphsdrvdHuhBGE3dEHO+jT6A5C2Km+f1ttUWDfDhSJL3e403Er3aKl26dEqXLl2idQ8dOqRKlSpp4cKFuv/++yVJNWvW1AMPPKCJEye6vP+iRYu6NQ6bzaa9e/d6Nnj4Da0CrMcsnZLcb5U3nZJolRXQKcB6UtMpiTkVjIdWAdbDnCoBrTI/OgVYD3OqBHTKGmgVYD3MqRLQKvOjU4D10KkEVukU77wOAG6I8+MrsJJ6AtCVdevW6eTJk6pYsaJjWWxsrP744w+9//77un79ukJDQ5222bdvn0/HCwAIPH92SnK/Vd50SqJVAGBFzKkAAEbGnAoAYHTMqQAARsacCgBgZHTKmLh4HQBMrE6dOtqyZYvTso4dO6p06dIaMGCAy4BJ0uLFi1W9enVFRkb6Y5gAgCDlbackWgUA8A/mVAAAI2NOBQAwOuZUAAAjY04FADCyYO8UF68DgBvsfn4FlrsyZ86s8uXLOy3LmDGjcubMmWj5nerVq6eIiAhFR0erVq1aqlWrlqpWraqIiIi0HjIAIA1YrVMSrQIAq7Faq+gUAFiL1Tol0SoAsBqrtYpOAYC1WK1TEq0CACuhU8YUEugBAAD879ChQ/roo49UsmRJff7556pdu7ayZcumOnXq6M0339Rff/2lW7duBXqYAIAgRqsAAEZGpwAARkerAABGRqcAAEZHqwAARmaFTtnsdrs90IMwmrohLQM9BABpYFHcPK+3rfzrIB+OJHmr6r/lt33ddujQIS1ZskRLly7V0qVLdeDAAWXIkEGXLl3y+1jgHloFWI9ZOiXRKqSMTgHWk5pOScypYDy0CrAe5lTJo1XmQqcA62FOlTw6ZT60CrAe5lTJo1XmQqcA66FTyTNjp8ICPQAAMIM4g358iK8ULFhQ1apV0/Xr13X9+nWdOXNGsbGxgR4WAMBNVu+URKsAwOys3io6BQDmZvVOSbQKAMzO6q2iUwBgblbvlESrAMDM6JQxhQR6AKm1Zs0atWnTRkWLFlX69OmVIUMGFS1aVG3atNHatWsDPTwAMKy9e/dq+vTpateunQoUKKCHHnpI33zzjcqXL6+ff/5Z586dC/QQLYFOAYD3aJV/0CoA8A6d8g86BQDeo1Vpj04BgPfolH/QKgDwHq1Ke3QKALxn9k6Z+p3XFyxYoGeeeUZ16tRR7969lSdPHtntdp08eVILFy5UtWrV9NVXX6lZs2aBHioAk7PbAz0C3ypcuLAuXryo6tWrq0aNGurZs6cqVqyo0NDQQA/NUugUAH+xWqckWuUvtAqAv1itVXTKP+gUAH+xWqckWuUPdAqAP1mtVXTKP2gVAH+xWqckWuUPdAqAv9ApYzL1xetDhgzRG2+8oYEDBya67T//+Y/++9//avDgwUQMAO5y/fp1SZLNZlNoaKhCQ0MVEmL6D+MwHDoFAN6jVf5BqwDAO3TKP+gUAHiPVqU9OgUA3qNT/kGrAMB7tCrt0SkA8J4VOmWu0d5l9+7dat68eZK3P/nkk9qzZ48fRwTAquJk89uXPxw/flwrV65Uw4YN9ffff6tRo0bKnj27GjdurPHjx2vNmjWKi4vzy1isjE4B8Bd/dopWWQutAuAvdAreoFMA/IU5FbxBpwD4E52CN2gVAH9hTgVv0CkA/kKnjMnUF68XK1ZMCxYsSPL2//3vf4qKivLfgADAREqXLq2uXbvqyy+/dAra6tWr9fjjjytHjhyBHqLp0SkASB1alfZoFQB4j06lPToFAKlDq9IWnQKA1KFTaY9WAUDq0Kq0RacAIHXM3qmwQA8gNd544w21atVKy5YtU7169ZQnTx7ZbDYdP35cixYt0sKFCzV37txADxOABdjt/nlVVKCcOHFCmzdv1ubNm7Vp0yZdunRJ6dKlC/SwTI9OAfAXq3dKolVphVYB8Bert4pOpQ06BcBfrN4piValBToFwJ+s3io6lTZoFQB/sXqnJFqVFugUAH+hU8Zk6ovXW7RooT/++EOTJk3SO++8o+PHj0uS8ubNqypVqmjZsmWqUqVKmo+j1cAnVf2pR1SwdH5dv3pD21fs1McDv9DhXUeT3KbCY2X19pIRiZZ3KtNbh3YmvV1qFSlfSD3f66xS0cV16exl/ThtkT4f+bXTOuERYWo7rKXqtHlU2fNm0+nDZzR79Df6dcaSNBvXbY271lOTrvWUp8g9kqQD2w7r85HztOaXjS7Xz5E3m14a314lKkYpf4m8WvDez5rcZ2aaj5Pj6BtGP45WdvLkSS1dulRLly7VkiVLtGvXLoWHhys6OlqtWrVSrVq1/HL+tDqjdEqS7nu0jFr2a6qSFaOU894cGv7UWK3435pkt2navb6a9XhCeYrk1smDpzV79Hwt/uyPNB2n0c8L3hzHQIzX6McxOd48rvKF6s0fUYc3WilfsTw6tueEZgyZo78WrHZaJ+e9OfTCmDaKbvCgItJH6MiuY3r7hcn6d/3eNB1bsKJV/mGUVnnzb5/HsJ7h/Oo+5lNwB53yD6N0SqJVaY1O+Ua74S31/PBnnJadPX5ez977Yprt02rH0EpoVdozUqck7563uq1c1VJ6e+kI7d96SF0fejVNx2n0TnlzHGs/V13PvNpM+UvkU8yFK1r7y0ZNffVTXTp7Oc3GafTjeKdWA59U59Ft9M2kH5N9LMTzqMGFTvmH0VrlzeNCI55jA3WthySFhIbo+defUe3nHlWOvNl09tg5LZy1VF+8OV92uz3J7Yz4O79AHsekePq8oC8wpzIuWpX2jNYpf2nSrZ5a9mumnPmyaf+2w5rcZ4a2Lv8n0MPyCU+fm6r+VLQad62vYg8UUXi6MB3YdlifjfhKaxduStNxGr1R3j5XasTeS8yp0ooVOmXqi9clqUqVKgE/yBVqlNN3H/6qnWt2KzQsVB3fbK0xvw7RC+X66NqV68lu26FUL125eNXx/YVTF70eR57C9+jzfR+qbkhLl7dnyJxe/104VJuWbNXL0QNVoGQ+9ZvRQ9dirunrd35wrDfky1eUPU9Wvf3CZB3dfVzZcmdVaFiI1+PyxOnDZ/TJoC90ZHf8A5J67WtqxIIB6vbQqzqw/XCi9cPThevC6YuaPXq+WvynsU/GwHHkOLoSZ7FXYOXNm1fh4eGqVKmSWrRooZo1a6patWpKnz59oIdmOUbolCRFZkynvZsPaOHMJRo+P+VfQDXuWk+dRj+nCV2mauea3SodXVx9pnXV5XMxWvXDOq/GYIXzgqfHUfL9eK1wHJOTmsdVSanXvqbqta+pfrVfd3l7mcolNWRuH80cNld/fbta1Z6K1pAv+6jPo0P1z+rdkqRM2TJq4vKR2rRkmwY3HK3zJy/o3mJ5dPl8jJc/qW9ZrVMSrfInI7TKm3/7PIb1DOdX9zGfShtWaxWd8h8jdEqiVWmNTvnOvq0HNaDuSMf3cbFxXt9XMB1Dq3VKolX+YpROSd49byVJGbJkUP9ZL2vDb1uUPU+2VI3BCp3y9DiWq1Za/Wf11JRXZmrV9+uUM38O9Z78ol75qJtGtBjn1RiscBxvK1mpmBq+WFd7Nu1PcV2eR02e1VpFp/zHKK3y5nGhkc+xkm+v9XBXqwFPqvFLdTW2wwc6sO2QSlYqpn7TuyvmwhV9++5PLrcx8u/8pMAcx6R4+rxgSphTmRut8g+jdMpfHnumqrpN6Kj3enykbX/tVKOX6mr0T6+pc7k+OnXodKCH5xOePDd1X42yWr94k6a/Nlsx52NUv2MtvfHdQPWsPEh7Nu73av9WaJQ3z5UaufdGmFPRKWMy/cXrRjC44Sin78d3+lBfn/xEJSpGacufO5Ld9vzJC4q5cCXJ2+t3qKlnXm2mvEVz6/j+U1rw3k/6fvJCr8ZZu82jiogM17iOH+jmjVvav+2Q8pe8Vy36NHGcMCrVf0AVHiur54u9rEvn4l+tfOLAKa/25427T5YzhsxR4671VKZySZeTgRMHTunD/8yQJD3RsXaS98tx5DjC2eTJk9W6dWtlyZIl0EOBn6z5ZaNH7wrweNsa+nHaYi37aoUk6fi+kypTuaSe7f+k0zkm2M4Lnh5Hd8cbbMcxOe48rgoLD1OHN1upznOPKmO2DNq/9ZA+Hvi5Ni/b7tU+m/dupHWLNmvumAWSpLljFqhCjXJq3ruRRreZJEl6dsCTOnXojMZ3/tCxnVGOmVXRquDizZyKx7Ce4fzqPuZTcAedCj60Km3RKd+JuxWncyfOu7yNYxhcaFXw8fR5q9v+M6WLfp+zXHGxcarWLDrR7cHWKU+PY5nKJXRi/0kteO9nSdLx/Sf147RFeubVZk7rBdtxlKTIjJEa9HkvTegyRW1ea5HsujyPGnzoVPDx5nGhUc+xt6V0rUdaKFO5pFZ8t1arf1ovKf4Y1mpVTSUrFktyG6P+zu+2QBzHpKT0vCBzquBCq5AWWvRprF+m/66fP/ldkjS5z0xVqne/mnSrp+mDZwd4dL6R3HNTd7v7k5mmvzZHVZo+rCpNKjldvB5sjfLmuWij9p45VdqxQqcC//aaaWjw4MHq1KmT3/ebMWsGSXLro6omrx+nuUemaeyiYbq/Zjmn2xq8UEcd32ytGUPmqHPZPprx2mx1eKOV6j7/mFfjKlu5pDYv266bN245lq39daNy5c+hvEVyS5KqNK2kXWv36Jn+zTTn0FTN+GeSuoxrp4jICK/2mRohISGq+WxVRWZMp+0rd3l9PxxHjqMv2O3++/KH7t2769q1a/7ZGZIUqE65IzxduG5cu+G07PrVGyoVXVyhYaGSOC+4w53xchyT5+pxVb/p3VW+aimNaj1BL93fT398vVJv/fya8hfP69U+ylYpqXWLnD96bO3CjSpbtZTj+ypNKmnXuj0a+uUr+ur4x5q8bqwavFDHq/2lBX92ilYFFzPMqZLDOTZpnF/dw3zKd+gU0kIg51S0Km3RKe/dWyKv5h6eqk/3fKDBs/+jvEVzO27jGCaNORXSgpGf+7utfoeaurdYHn02Yp7L2+lUyrav2KlcBXIqusGDkqRsubOqRosqjosKpeA9jj3f76y/f1qvDb9tSXFdnkdNGZ1CWvBnq7x5XGjUc+xtyV3rkVa2/vWPHqxdXvlL5JMkRVUorPLVS2v1z+uT3Maov/O7LRDH0R2unhdkTpU05lRIC2aYU3kiLDxMJStGad1C53/36xZtVrkqpZLYynySe24qJTabTRkyp3d6TpBGufdctFF7b5Q5FZ0yJku/8/qRI0d06NAhv++369vtteXPHdq/Lel9nz12Xu90maJ/1+1VeLpwPd6uhsYuHqZ+tV53vEKm7ZCnNbXfp1r+7WpJ8a8kLlS2gBp1qatFny7zeFw58mbT8bteuXL+xAVJUva82XR8/0nlK5pH5auX1o1rN/V683HKmiuzen7wgjLnyKS3O0/2eJ/eKFK+kN5dMUoRkeG6evmaRjQfp4M7PP8Ipts4jhxHJGb3VymRrEB1yh3rFm5Ug851tGLBGv27fq9KVozSEx1rKTwiTFlzZdbZ4+c5L7jBnfFyHJN39+OqfFF5VKt1NT1XsKvOHDsnSfr67e/1cP0HVL9jLU1/bY7H+8ieN5vO/f8xuu3ciQvKnjeb4/t8UbnVpGs9zZ/wg2a/9Y1KRxdXj0mddPP6TS3+7A/vf0AkiVYZg5HnVO7gHJs0zq/JYz6FlNApYwjknIpWpS065Z1//v5XY9u/r8O7jil7nqxq81oLTfprlF4o30eZsmXkGAYZWhV4Rn7uT5LyF8+rzm+1UZ8aw5L8GHc6lbLtK3dpTNt39drcPoqIDFdYeJhW/G+N3u853bFOMB7Hms9WVYmHotQjeqBb6/M8avChU8bgz1Z587jQqOdYd671SCtf/neBMmbNoOk7JiouNk4hoSGaMWSOlsz9K8ltjPo7v0Aex+Qk9bwg89LgQ6sCz+hzKk9lzZVZoWGhid6V/NyJ807/7s0sueem3HkTkKf7NlFkxnSOdw+Xgq/1rrjzXLRRe8+cKu1YoVOWvnh91qxZKa5z/fp1Xb9+3WlZnD1WIbZQr/bZ8/3OKlqhkPo8OjTZ9Q7vOqrDu446vt+xapfuKZBTLfs21ZY/dyhrrizKXSiXXvm4m/pM6+pYLzQsxOnjKD7a8o7yFL4n/htb/H++u/iZ4/YTB07pxftecXyf6C+tzXb7BklSSIhNdrv0Vtt3deVi/H6m9p2lofP66r0enyR6hU5aOLzzqLo++KoyZcug6i0q69WZL6tvzeFeXSjAceQ4+ordbvPbvhA83OmU5PtWuePzkfOVPW82vbtylGw2m86duKCFs5bq2f5PKi42jvOCm1Iab/pMkRzHZLh6XFXioaIKCQnRjJ3vOq0bni5MF8/ET3jvKZhLn2yb4LgtNCxEoeFhTsfsty/+0KRuHyXcwV3HzGZzXmYLCdGutXscTz7u2bhfhcsVVJOu9Q3x5CCdQlox8pwqJbQqaZxfU8Z8yvdoFdJCoOZUtCpt0Snvrfllo+PP+7dKO1bu0qzd76te+5o6deg0xzAZdAppwcjP/YWEhGjQF7316etf6ci/x1yuQ6fcU6hMAfWY1FGfj/xaa3/dqJz5suvFse3Ue0oXvfPC5KA8jvcUyKnuEztqYP03dfP6Tbe24XnUlNEqpAV/tsqbx4VGPcemdK1HWqr5bFXVafOo3mozSfu3HVbxB4qo24QOOnP0XJIXnRn1d36BPI7JSep5wSLlCjCnSgadQlow8pwqNRKfHm2WuAhVSv65qfkTfkh221qtqqnd8JYa/uRYnT91UVLg5qVGapS7z0UbtfdGmVPRKWOy9MXr7njrrbc0YsQIp2VFVUbF5PlHPfR4t5MqN6mkvo8N1+kjZz3e/p+//1WdNo9Kkmwh8f9gJnSZon/+3u203p3vgPFao9EKC4//35grfw69vXSEuj74quP2WzcTPpbh7PHzypEnm9N9ZcudRZIcr+Y8c+ycTh856zhZSNLBHUcUEhKiewrk0JHdxz3+uTx16+YtHd0Tv59d6/aqVKVieqp3Q03qOs3j++I4chyRtI8//liZMmVKdp1evXr5aTRIji9b5a4b127o7c6TNfGlacqeJ6vOHjuvhl0eV8zFK7pw+pKy3hP/75XzQvJSGm/MxauSOI6uJPW4yhYSothbsepeaUCidwW7ejn+I5HOHD3rdHyqN49W9eaVNaZtwhOKd/7s544nfjV7ttxZnd7t4uyxc4kuWDy444gebV7Z+x8SKaJV5mCkOdWdeAzrGudX9zCfgjvolHnQKvOcH+iUb127cl37thxU/hL5dPrIWY5hEKJV5hCI5/7SZ45UqYeLq/iDRfXye50lxXcpJCREv9yYq4H133S8oxudSl7rgU9p2187NW/8d5KkfVsO6mrMdU38c6RmDpmjuLj4X9gH03EsUTFK2fNk04dr/+tYFhoWqvtqlFGzHk+oYeRziotzbhHPowYnOmUevmiVN48LjXqOdeXOaz3S0otj2+nL/y7Q0i/j35F2/9aDyl04l1oNfCrJi9eN+js/V/x1HJOT1POCG3/fypwqCNEqcwjEnMobF05fUuytWOVw8e/+fDLnRjO787mp5Dz2TFW98nE3jXzmHW34bYtjeaCeP3UlEI3y5Lloo/aeOVXaMnunLHXx+s2bN/Xjjz/q33//Vb58+fTUU08pY8aMyW4zaNAgvfLKK07LnsraweN9v/xeZ1V7Mlr9ag3X8f0nPd5ekoo9UFRnjp2XJJ0/eUGnDp9Rvqg8+n328iS3OXnwtOPPsbdiJcnxQPpu21ftUqdRrRUWHuY4kVSqd79OHznrGPO2FTtVo2UVRWaM1LWY+AfY+UvmU2xsnE4dTt0v5Lxls9kUERHu1bYcxwQcR9xtypQpCg1N+pWmNpvN0AEzI286JfmuVd6IvRXreBBc69lq+vuH9bLb7ZwX3JTSeG9cu8FxdCG5x1W7N+xTaFiosuXOoq3L/3G5fVxsnNPxOX/yom5cvZH0MVu5SxUfr6BvJv7oWFax7v3avmKn4/ttf+1UgZL3Om1XoGQ+nbjrY7DgW7TK/8w+p7oTrUqM86v3mE/BFTrlf4GeU9GqtEWnfC88IkyFyuTX1uU7OIZBilb5V6A75YkrF686vVOaJDXpXl8P1CqvkS3f1vF9J3XtynU65YZ0GSIUe8v5Arbbv/i32Ww6f/J80B3HDb9tSfT3q9/07jr0z1F9OXZBogvX3Rkvz6NaE53yv0C2ypvHhUY9x7py57UeaSkyQzrHRfu3xcXGKSQk5XcTNdrv/Fzx13H0xO3nBZlTBSda5V9mmlN549bNW9q1bq8eqltBfy1Y7Vj+0OMVtOK7NQEcWdq587mppNRqVU19P+mu0c9N1Oqf1jvdFsyN8va5aKP1njlV2jJ7p0ICPYDUqFq1qs6fPy9JOnXqlCpWrKhnn31WH330kV588UWVLVtWR44cSfY+0qVLpyxZsjh9efqxIT0/eMHx0UxXLl1T9jzZlD1PNkVERjjW6TT6OfWf+bLj+6d6N1TVZg8rf/G8Kly2gDqNfk41nq6s7z742bHOZyO+UquBT+mpXg2Vv0Q+FSlfSPU71FSLPo09Gt9tv89erpvXb+nVGT1UpFxBVXsyWq0HNdf8Cd87rXPxzCW9Or27CpUpoPseLaMuY9vp1xm/++VjGjqNaq3y1UsrT+F7VKR8IXV8s7Uq1Cyn32b/GX/7XcdRkordX0TF7i+i9JkilTVXFhW7v4gKlSnguJ3jyHH0Bbvd5rcvf1m7dq327duX5NfevXv9Nhar8kWnJN+0KjJjpOPfuSTlLZpbxe4vonsK5pKU+LyQv0Q+1WnzqPIXz6tSDxfX4Nn/UZHyBTX9tdmOdYLxvODpcXRnvMF4HJOT0uOqI/8e0+LP/1D/WT1V/alo5S2SWyUrFdOz/ZspusGDXu3z23d/VMV69+vZ/s1UsNS9erZ/Mz30+H36ZlLCk4XzJ/6gMpVLqPWgp3Rvsbyq1bq6Gr74uL778Bef/Nyp5c9O0SprMfOcSuIxrCc4v7qP+VTaoFPwhpHmVLQqbdEp3+gyrp0q1CirvEVyq3R0cQ2d11cZsqTXwllLOYYpYE4FbxipU5Jnz1vZ7Xbt33bI6ev8yQu6ee2m9m87pGtXrksKzk55+vzfqh/WqXrzaDXuWk95i+ZWuaql1GNSR+34+1+dOXZOUvAdx6uXryX6+3Ut5rounr3keEd/nkf1HJ2CN4zUKnceF5rlHOvOtR5pZdX36/Tc4OaKbviQ8hS+R9WejFaLPk2cLoI0y+/8Ankck5Lc84LMqZLHnAreMFKn/GX+hB/UoHMd1e9YS4VK51fXd9ord6Fc+mHKwkAPzSeSe25KStyoWq2qqf+slzW13yztWPWv4znBDFkyONYJxkZ581y0UXtvlDkVnTImU7/z+qpVq3TjRvxf4tdee02hoaE6cOCA8ubNqzNnzqhp06YaNmyYPvnkkzQdR9Nu9SVJby91/giScR0/cJx8c+bNrtyFcjluC48IU5dxzytX/hy6fvWGDmw7pNcajdbqnzc41vn5k9917coNPdOvqV74b1tdi7mu/VsOOj1Q9cSVi1c0oN5I9Xy/sz5YM0aXzsXo6wnf6+t3fnCscy3mmgbWG6ke78avc/HMJf0xb6VmDJnr1T49lS1PNg34tKdy5MuumAtXtG/zAQ1uMErrF2+WlPg4StKUDeMcfy5ZqZjqtHlUx/efVLuoHpI4jhxHuGKz+S+UwcwonZKkkpWi9PaShE51e6eDJGnhzKUa1+mDROeF0NAQPf1KExUoda9ib8Zq45Kt6l1tiNOr+IPxvODpcXRnvMF4HJPjzuOq8Z0+VJshLdRlfHvlyp9DF89c0o6Vu/T3Txvuvju3bF+5S6NaT1SHka3U/o1WOrbnuEa1mqB/Vid8XNautXv0evNx6jy6jdoOfVrH953U5D4zk31VMlKHVvmHUVrlzZxK4jGsJzi/uo/5FNxBp/zDKJ2SaFVao1O+kSt/Tg2e3VtZcmXRhVMXtWPVLvWq8prjHZM4hsGFVqU9I3VK8vx5K3cEY6c8PY4LZy1V+syRatbjCb00/nnFnI/Rht+36uOBXzjWCcbjmBKeRwWd8g8jtcqdx4VmOce6c61HWnm/1yfqMLKVen3wgrLlzqozR8/qx2mL9PkbXzvWMcvv/AJ5HJOS0vOCzKmCC61Ke0bqlL8s+2qFsuTMpLZDn1aOfNm1f2v8ue/Od7s2s5Sem7q7UY261FVYeJh6ffCien3womP57fmXFJyN8ua5aKP2njlV2rFCp2x2u92e8mrGFBISouPHjyt37twqVaqU3nnnHTVq1Mhx+9KlS9WxY0ft27fPo/utG9LS10MFYACL4uZ5vW25/73uu4GkYFuztN/XnedPpJ206pREqwArMkunJFplJcypALgrNZ2SmFPBO8ypAHiCOZUzWpX26BQATzCnckan/INWAfAEcypntCrt0SkAnqBTzqzQqZBADyC1br+C4Pz58ypatKjTbUWLFtWxY8cCMSwAMLThw4crU6ZMbq/fvXt3nT5tjVd6+hudAgDv0Cr/oVUA4Dk65T90CgC8Q6v8g04BgHfolP/QKgDwDq3yDzoFAN6xQqfCArXjQ4cOaf/+/bpy5YruuecelStXTunSpfP4fjp06KB06dLp5s2bOnDggMqWLeu47dixY8qWLZsPRw0gWJn3MypcGz58uEfrf/755+rXr59y5fLsY2XNjE4BMBOrdUqiVe6gVQDMxGqtolMpo1MAzMRqnZJoVUroFACzsVqr6FTKaBUAM7FapyRalRI6BcBM6JQxO+XXi9cPHDigKVOmaM6cOTp06JDsd/ytiIiI0KOPPqouXbqoRYsWCglJ+U3h27dv7/hzs2bNdPnyZafb58+frwceeMBn4weAYGW3YsVdoFMAYF60ilYBgJHRKToFAEYXDK2iUwBgXsHQKYlWAYCZBUOr6BQAmJcRO2Wz+2lUvXv31owZM1SvXj01bdpU0dHRyp8/v9KnT6+zZ89q69at+vPPPzVnzhyFhYVpxowZevjhh1O1z5iYGIWGhioyMtKj7eqGtEzVfgEY06K4eV5vW+bbET4cSfJ2POXZK6P8IXPmzNq0aZOioqICPZQ0Y6ZOSbQKsCKzdEqiVYFiplbRKcB6UtMpiTkVnTJWpyRaBVgRc6rUsXqr6BSAQGNOlTpW75REqwAEHnOq1LF6q+gUgECjU6ljxE757Z3XIyIitGfPHt1zzz2JbsudO7dq166t2rVra/jw4frpp5904MCBVEcsY8aMqdoeABA86BQAwOhoFQDAyOgUAMDI6BQAwOhoFQDAyOgUAMDXUv6MDh8ZN26cy4C50rBhQz399NNurfvee++pffv2+uqrryRJn332mcqWLavSpUtr8ODBunXrltdjBoDb7Hab374QGHQKgJn5s1O0KnBoFQAzo1PWR6cAmBlzKuujUwDMjk5ZH60CYGbMqayPTgEwMzplTH575/W0MHLkSI0bN0716tVT7969tW/fPo0bN059+vRRSEiIJkyYoPDwcI0Y4d+3/QcAQKJTAADjo1UAACOjUwAAI6NTAACjo1UAACOjUwAQ3AJy8fqJEyfUr18//fbbbzp58qTsdrvT7bGxsW7dz8yZMzVz5kw1b95cmzZtUsWKFTVr1iy1adNGklS6dGn179+fiAFINXvKq5jOrVu3NGrUKHXq1EkFCxZMdt22bdsqS5YsfhpZ4NEpAGZjxU5JtCo5tAqA2VixVXQqaXQKgNlYsVMSrUoKnQJgRlZsFZ1KGq0CYDZW7JREq5JCpwCYDZ0yZqcCcvF6hw4ddPDgQQ0dOlT58uWTzebdW+UfO3ZMlSpVkiTdf//9CgkJ0QMPPOC4/aGHHtLRo0d9MWQAsJywsDCNGzdO7du3T3HdyZMn+2FExkGnAMAYaFXSaBUABB6dShqdAgBjoFWu0SkAMAY6lTRaBQDGQKtco1MAYAxm71RALl5fvny5/vzzT6fgeCNv3rzavn27ChUqpH///VexsbHavn27ypUrJ0natm2bcufO7YMRAwh2drt3D7aN7vHHH9fSpUvVoUOHQA/FUOgUALOxaqckWpUUWgXAbKzaKjrlGp0CYDZW7ZREq1yhUwDMyKqtolOu0SoAZmPVTkm0yhU6BcBs6JQxBeTi9YIFCyb6yBBvPPfcc3r++efVrFkz/fbbbxowYID69eunM2fOyGazadSoUXr66ad9MGIAsKYGDRpo0KBB2rp1qypWrKiMGTM63d60adMAjSyw6BQAGAetco1WAYAx0CnX6BQAGAetSoxOAYBx0CnXaBUAGAetSoxOAYBxmLlTNrsvauKhhQsX6u2339bUqVNVpEgRr+8nNjZWY8aM0apVq1S9enUNGDBAc+fOVf/+/XXlyhU1adJE77//fqL/ISmpG9LS6zEBMK5FcfO83rbk/JE+HEnydrUY6rd9hYSEJHmbzWZTbGys38ZiJEbvlESrACsyS6ckWmUERm8VnQKsJzWdkphTBRujd0qiVYAVMadyjVYlRqcABAJzKtfolGu0CkAgMKdyjVYlRqcABAKdcs3MnfLbxevZs2eXzZbw9vsxMTG6deuWMmTIoPDwcKd1z549648hJYmAAdaUqoh97ccnBZ/2X8CQwEydkmgVYEVm6ZREqwLFTK2iU4D1pPpCC+ZUlmemTkm0CrAi5lRIDp0CEGjMqZASWgUg0JhTITl0CkCg0SnrCfPXjiZOnOivXQEAvHDt2jVFRkYGehgBQ6cAwPho1cRADwEAkAw6NTHQQwAApCCYW0WnAMD4grlTEq0CADMI5lbRKQAwPrN1ym8Xr7dv395fuwIAn7PbbSmvZEKxsbEaPXq0pkyZohMnTmjXrl2KiorS0KFDVaRIEXXu3DnQQ/QbOgXAzKzaKYlW3YlWATAzq7aKTiWgUwDMzKqdkmjVbXQKgNlZtVV0KgGtAmBmVu2URKtuo1MAzIxOGVOIP3dWvXp1DRs2TEuWLNG1a9f8uWsAgAujRo3SzJkzNXbsWEVERDiW33ffffr4448DOLLAoFMAYDy0yhmtAgBjoVPO6BQAGA+tSkCnAMB46JQzWgUAxkOrEtApADAeM3fKrxevlypVSrNnz1adOnWUPXt21axZU2+88Yb+/PNP3bx5059DAQCP2O3++/KnTz/9VNOmTVObNm0UGhrqWF6hQgX9888//h2MAdApAGblz07RqsCiVQDMik4FBzoFwKyYUwUHOgXAzOhUcKBVAMyKOVVwoFMAzIpOGVOYNxudP39eq1ev1smTJxUXF+d02/PPP5/kdp988okk6fDhw/r999+1bNkyzZo1S6+//rrSp0+vqlWrqnbt2ho0aJA3wwIAeOjIkSMqXrx4ouVxcXGmnlzQKQCwDlrljFYBgLHQKWd0CgCMh1YloFMAYDx0yhmtAgDjoVUJ6BQAGI+ZO+Xxxevff/+92rRpo5iYGGXOnFk2m81xm81mS3aydVuBAgX0/PPPO9Y9dOiQpk6dqvfee0+///47EQNgOHa7LeWVTKhcuXL6888/VbhwYafl8+bN04MPPhigUaUOnQIQjKzaKYlWJYVWATAbq7aKTrlGpwCYjVU7JdEqV+gUADOyaqvolGu0CoDZWLVTEq1yhU4BMBs6ZUweX7zet29fderUSaNHj1aGDBm83vGePXu0dOlSx9f58+dVpUoVPfbYY17fJwDAM8OHD1e7du105MgRxcXF6ZtvvtHOnTv16aef6ocffgj08LxCpwDAWmhV0mgVAAQenUoanQIAY6BVrtEpADAGOpU0WgUAxkCrXKNTAGAMZu6UxxevHzlyRL169fIqXjNmzNCSJUu0dOlSXbhwQdWqVdNjjz2mHj16qFKlSgoL83g4AOAfFn0FVpMmTfTll19q9OjRstlsGjZsmB566CF9//33qlu3bqCH5xU6BSAoWbRTEq26G60CYFoWbRWdckanAJiWRTsl0ao70SkApmbRVtEpZ7QKgGlZtFMSrboTnQJgWnTKkDyuRv369bV27VpFRUV5vLPOnTurUKFCeu2119SpUyeFh4d7fB8AAN+qX7++6tevH+hh+AydAgDroVUJaBUAGA+dSkCnAMCYaFU8OgUAxkSnEtAqADAmWhWPTgGAMZm1Ux5fvN6oUSO9+uqr2r59u+67775EIWratGmS237wwQdatmyZXn/9dQ0cOFDVq1dXzZo19dhjj6lixYqy2az7CgcA5ma3B3oEaWvt2rXasWOHbDabypQpo4oVKwZ6SF6jUwCCkdU7JdGq22gVALOyeqvoVDw6BcCsrN4piVZJdAqAuVm9VXQqHq0CYFZW75REqyQ6BcC86JQx2ex2z/7XhISEJH1nNptiY2Pdup/t27dr2bJlWrp0qZYtW6Zr166pWrVqqlWrlvr16+fJkHyubkjLgO4fQNpYFDfP622j5oz24UiSt7f1YL/t6/Dhw2rdurX++usvZcuWTZJ0/vx5Va1aVXPmzFHBggX9NhZfCYZOSbQKsCKzdEqiVakVDK2iU4D1pKZTEnMqMwmGTkm0CrAi5lSu0SrX6BQAf2NO5RqdShqtAuBvzKlco1Wu0SkA/kanXDNzp5KuURLi4uKS/HJ3oiVJZcuWVbdu3fTll19q/fr1evnll7V8+XINGDDA0yEBALzUqVMn3bx5Uzt27NDZs2d19uxZ7dixQ3a7XZ07dw708LxCpwDAWmhV0mgVAAQenUoanQIAY6BVrtEpADAGOpU0WgUAxkCrXKNTAGAMZu5UWGo2vnbtmiIjIz3e7sSJE1q6dKnja9euXYqIiNAjjzyiWrVqpWZIAJA2LPrxIX/++adWrFihUqVKOZaVKlVK7733nqpVqxbAkfkGnQIQNCzaKYlWJYVWATAdi7aKTrlGpwCYjkU7JdEqV+gUAFOyaKvolGu0CoDpWLRTEq1yhU4BMB06ZUgeX7weGxur0aNHa8qUKTpx4oR27dqlqKgoDR06VEWKFEn2av0ePXpoyZIl2rlzp8LCwvTwww/r6aefVq1atVS1alWvJm4AAO8VKlRIN2/eTLT81q1byp8/fwBGlHp0CgCshVY5o1UAYCx0yhmdAgDjoVUJ6BQAGA+dckarAMB4aFUCOgUAxmPmToV4usGoUaM0c+ZMjR07VhEREY7l9913nz7++ONkt12/fr2efPJJ/fLLLzp37pyWL1+ukSNHqnbt2gQMgKHZ7Ta/ffnT2LFj1bNnT61du1Z2e/zLzNauXavevXtr/Pjxfh2Lr9ApAMHIn52iValHqwAEIzplHnQKQDBiTmUu3raKTgEwMzplHsypAAQj5lTmwpwKQLChU8Zks98esZuKFy+uqVOnqk6dOsqcObM2bdqkqKgo/fPPP6pSpYrOnTuXVmP1m7ohLQM9BABpYFHcPK+3LfrFWz4cSfL2tRnkt31lz55dV65c0a1btxQWFv9hHLf/nDFjRqd1z54967dxpUYwdEqiVYAVmaVTEq1KrWBoFZ0CrCc1nZKYU0l0ymhoFWA9zKlco1XmRKcA62FO5RqdMi9aBVgPcyrXaJU50SnAeuiUa2buVJinGxw5ckTFixdPtDwuLs7l28/f6Y8//nBrHzVq1PB0WACQtjx6mY95TJw4MdBD8Dk6BSAoWbRTEq26G60CYFoWbRWdckanAJiWRTsl0ao70SkApmbRVtEpZ7QKgGlZtFMSrboTnQJgWnTKkDy+eL1cuXL6888/VbhwYafl8+bN04MPPpjstjVr1pTNFv+2+Em94bvNZlNsbKynwwIAeKF9+/ZurTdmzBidP39e2bJlS9sB+QCdAgBroVXOaBUAGAudckanAMB4aFUCOgUAxkOnnNEqADAeWpWATgGA8Zi5Ux5fvD58+HC1a9dOR44cUVxcnL755hvt3LlTn376qX744Ydkt82ePbsyZ86sDh06qF27dsqVK5fXAwcAf7LbbYEeQkCNHj1azzzzjKEClhQ6BSAYBXunJFoFAEYX7K2iUwBgbMHeKSk4WkWnAJhZsLcqGDol0SoA5hXsnZKCo1V0CoBZ0SljdirE0w2aNGmiL7/8Uj/99JNsNpuGDRumHTt26Pvvv1fdunWT3fbYsWP673//q5UrV+q+++5T586dtWLFCmXJkkVZs2Z1fAEAjCWpV80aEZ0CgOBEq2gVABgZnaJTAGB0wdAqOgUA5hUMnZJoFQCYWTC0ik4BgHkZsVMev/O6JNWvX1/169f3eLuIiAg9++yzevbZZ3Xo0CHNmDFDL7/8sq5fv6727dtrxIgRCgvzakgAkLaMd/5GMugUgKBDp0yHVgEIOrTKVOgUgKBDp0zHm1bRKQCmRqtMhTkVgKBDp0yHORWAoEKnDMnjd173lYIFC2rYsGFavHixSpYsqTFjxujixYuBGg4AAE7oFADA6GgVAMDI6BQAwMjoFADA6GgVAMDI6BQAILU8frlT9uzZZbPZEi232WyKjIxU8eLF1aFDB3Xs2DHJ+7h+/brmz5+v6dOna+XKlWrUqJF+/PFH5ciRw9PhAICfJD7vwZjoFIDgRKfMhFYBCE60yizoFIDgRKfMJLWtolMAzIlWmQVzKnhiUdy8QA/BEuqGtAz0EECnTIU5FYDgQ6eMyOOL14cNG6ZRo0apQYMGio6Olt1u15o1a/TLL7+oR48e2rdvn7p166Zbt27pxRdfdNp29erVmjFjhubOnauiRYuqQ4cO+uqrr4gXAMBn6BQAwOhoFQDAyOgUAMDovG0VnQIA+ANzKgCA0TGnAgAYgccXry9fvlxvvvmmunbt6rR86tSpWrhwoebPn68KFSro3XffTTTZqly5sgoVKqRevXqpYsWKjvu7W9OmTT0dFgCkLXugBxBYjz76qNKnTx/oYbiFTgEISkHeKYlW3Y1WATCcIG8VnXJGpwAYTpB3SgqOVtEpAKYW5K0Khk5JtAqAiQV5p6TgaBWdAmBadMqQnbLZ7XaP/tdkypRJGzduVPHixZ2W7969Ww888IAuX76sPXv2qEKFCoqJiXFaJyQkJOUB2WyKjY31ZEg+x0cKAdaUmo9dKzLrvz4cSfL2tx/gt30lZf369Ro2bJh++OGHQA/FY8HQKYlWAVZklk5JtCq1gqFVdAqwntR+jDVzKvMIhk5JtAqwIuZUngnGVtEpAIHEnMozwdgpiVYFo9SeGxCPv4++wZzKM8HYKjoFIJDolGfM0KmUq3KXHDly6Pvvv0+0/Pvvv3d8DEhMTIwyZ86caJ24uLgUv4wQMAAIBosWLdKrr76qwYMHa+/evZKkf/75R08++aQefvhh3bp1K8Aj9A6dAgDroFW0CgCMjE7RKQAwOlrl3Co6BQDGQqeYUwGA0dEq5lQAYGRm71SYpxsMHTpU3bp105IlSxQdHS2bzabVq1frp59+0pQpUyTFH5THHnss0baDBw/Wk08+qejo6NSPHAD8yWIfHzJr1ix17NhROXLk0NmzZ/Xxxx/rnXfeUffu3dWiRQtt2rRJ5cuXD/QwvUKnAAQli3VKolW0CoDlWKxVdIpOAbAYi3VKolWuWkWnAJiaxVpFp5hTAbAYi3VKolXMqQBYCp0yJI8vXn/xxRdVtmxZvf/++/rmm29kt9tVunRpLVu2TFWrVpUk9e3b1+W2R48eVePGjRUaGqomTZqoWbNmevzxx5UuXbrU/RQAAI9MmDBBo0eP1sCBA/XVV1+pVatWmjBhgjZs2KBixYoFenipQqcAwBpoFa0CACOjU3QKAIyOViVuFZ0CAOOgU8ypAMDoaBVzKgAwMit0yma32/36ugK73a7ly5fr+++/13fffacjR46obt26atq0qRo3bqxcuXL5czgu1Q1pGeghAEgDi+Lmeb1tkRljfTiS5O3v2D/N95E5c2Zt3rxZRYsWVVxcnNKlS6fFixe7fJeHYGOGTkm0CrAis3RKolWBZoZW0SnAelLTKYk5VTAxQ6ckWgVYEXMqZ7TKNToFIFCYUzmjU0mjVcEltecGxOPvo28wp3JGq1yjUwAChU45s0KnPH7ndUmKjY3VggULtGPHDtlsNpUtW1ZNmzZVaGhoitvabDY9+uijevTRRzV27Fjt2LFD33//vT766CO99NJLeuSRR9S0aVO1bt1a+fPn92Z4AIAUxMTEKGPGjJKkkJAQRUZGqmDBggEele/QKQAwP1qVNFoFAIFHp5JGpwDAGGiVa3QKAIyBTiWNVgGAMdAq1+gUABiDFTrl8cXru3fvVsOGDXXkyBGVKlVKdrtdu3btUsGCBfXjjz96/JbzZcqUUZkyZdS/f3+dOnVK3333nb777jtJUr9+/TwdHgCkCf9+RoV//Prrr8qaNaskKS4uTr/99pu2bt3qtE7Tpk0DMbRUoVMAgpEVOyXRKnfRKgBmYMVW0Sn30CkAZmDFTkm0yh10CoBZWLFVdMo9tAqAGVixUxKtcgedAmAGdMqYbHa7Z/9rGjZsKLvdri+++EI5cuSQJJ05c0Zt27ZVSEiIfvzxx2S3P3TokMsr/GNiYnTmzBkVKlTIk+GkCT46BLCm1Hx8SOHp/vv4kAOd0v6jQ0JCQlJcx2azKTY2Ns3H4mvB0CmJVgFWZJZOSbQqtYKhVXQKsJ7Ufow1cyrzCIZOSbQKsCLmVM5olWt0CkCgMKdyRqeSRquCS2rPDYjH30ffYE7ljFa5RqcABAqdcmaFTqX8E9xl2bJlGjt2rCNekpQzZ06NGTNGy5YtS3bbjz/+WIMGDXJ5W2xsrJo2baoZM2Z4OiQASHt2P375QVxcXIpfRo5XcugUgKDkz07RqlSjVQCCEp0yDToFICgxpzIVb1tFpwCYGp0yDeZUAIIScypTYU4FIOjQKUPy+OL1dOnS6dKlS4mWX758WREREclu+95776lLly6SpEaNGuncuXOO27JkyaLx48dr4sSJng4JAAAHOgUAMDpaBQAwMjoFADA6b1tFpwAA/sCcCgBgdMypAABGEObpBo0bN1aXLl30ySefKDo6WpL0999/q2vXrmratGmy2+7Zs0eFCxeWJP355586d+6cOnTooJkzZyp79uyKiorSv//+68WPAQBpzG4L9Ah86tNPP3W5PGvWrCpVqpRKly7t5xH5Dp0CEJQs1imJViWFVgEwLYu1ik65RqcAmJbFOiXRKlfoFABTs1ir6JRrtAqAaVmsUxKtcoVOATAtOmVIHl+8/u6776p9+/aqUqWKwsPDJUm3bt1S06ZNNWnSpGS3LVSokDZv3uwImd1u1++//65z584pe/bsWrRokYoWLerFjwEA8ETv3r1dLr98+bLi4uLUsGFDzZ49W5kzZ/bzyFKPTgGANdAq12gVABgDnXKNTgGAcdCqxOgUABgHnXKNVgGAcdCqxOgUABiHFTrl0cXrdrtdFy5c0Jw5c3T06FHt2LFDdrtdZcuWVfHixVPcvl27durbt6+KFCkiSbLZ4l/RcP78eX3wwQcaNGgQHx8CwJBs9kCPwLfu/PimO8XFxWndunV64YUXNGLECI0fP97PI0sdOgUgWFmtUxKtSgqtAmBWVmsVnXKNTgEwK6t1SqJVrtApAGZmtVbRKddoFQCzslqnJFrlCp0CYFZ0yphsdrvd7f81cXFxioyM1LZt21SiRAmPd3bjxg21a9dO8+bNk81mU6lSpbRz505JUubMmTV27Fh16dLF4/v1tbohLQM9BABpYFHcPK+3LfLROB+OJHn7X3zVb/tKyuLFi9WjRw/HOdosgqVTEq0CrMgsnZJoVWoES6voFGA9qemUxJzKLIKlUxKtAqyIOZVngrFVdApAIDGn8kwwdkqiVcEotecGxOPvo28wp/JMMLaKTgEIJDrlGTN0KsSjlUNCVKJECZ05c8arnUVEROjLL7/Upk2bFBERobp16yosLEyfffaZTp48aZiAAUAidj9+GUDx4sV1+PDhQA/DY3QKQNDyZ6doVarQKgBBi06ZAp0CELSYU5lGalpFpwCYGp0yBeZUAIIWcyrTYE4FICjRKUPy6OJ1SRo7dqxeffVVbd261eud3nffferSpYv69++vrl27qmbNmoqIiPD6/gAAvrVnzx4VKFAg0MPwCp0CgOBAq2gVABgZnaJTAGB0wdwqOgUAxhfMnZJoFQCYQTC3ik4BgPGZoVNhnm7Qtm1bXblyRffff78iIiKUPn16p9vPnj3r1v1MmjTJ6b93s9vtstlsng4PAJAKdrtdGzZsUN++fdWkSZNAD8crdAoArI1WJaBVAGA8dCoBnQIAY6JV8egUABgTnUpAqwDAmGhVPDoFAMZkpk55fPH6xIkTvdpRmTJlNHToUD399NPJvtrq33//1TvvvKPChQtr4MCBXu0LAHzObq0H1dmzZ3c5Ubh8+bJiY2P1xBNP6PXXX/f/wHyATgEIShbrlESrXKFVAEzNYq2iU4nRKQCmZrFOSbTqbnQKgOlZrFV0KjFaBcDULNYpiVbdjU4BMDU6ZUgeX7zevn17r3b0wQcfaMCAAerRo4fq1aunSpUq6d5771VkZKTOnTun7du3a/ny5dq+fbtefvllde/e3av9AABSNmHCBJcBy5Ili0qXLq0yZcoEYFS+QacAwBpoVWK0CgCMg04lRqcAwFholTM6BQDGQqcSo1UAYCy0yhmdAgBjsUKn3Lp4/eLFi27fYZYsWVwur127ttasWaMVK1boyy+/1OzZs7V//35dvXpVuXLl0oMPPqjnn39ebdu2VbZs2dzeHwD4hT3QA/CtDh06BHoIPkWnAAQ9i3VKolWu0CoApmaxVtGpxOgUAFOzWKckWnU3OgXA9CzWKjqVGK0CYGoW65REq+5GpwCYGp0yJLcuXs+WLZvLq/RdiY2NTfb2qlWrqmrVqm7dFwAgbXz11Vd68sknHR/ntH//fhUsWFChoaGSpCtXruj9999X//79AzlMt9EpALAeWpU0WgUAgUenkkanAMAYaJVrdAoAjIFOJY1WAYAx0CrX6BQAGIMVOuXWxetLlixx/Hn//v0aOHCgOnTooCpVqkiSVq5cqVmzZumtt95Km1ECQKBZ7BVYrVu31rFjx5Q7d25JUoUKFbRx40ZFRUVJki5duqRBgwYZOmB3olMAgp7FOiXRKgCwHIu1ik4BgMVYrFMSrQIAy7FYq+gUAFiMxTol0SoAsBQ6ZUhuXbz+2GOPOf78xhtv6J133lHr1q0dy5o2bar77rtP06ZNU/v27X0/SgCAT9nt9mS/Nxs6BQDWQ6sAAEZGpwAARkerAABGRqcAAEZHqwAARmaFToV4usHKlStVqVKlRMsrVaqk1atX+2RQAGA4dj9+IVXoFICg5M9O0apUo1UAghKdMg06BSAoMacyFVoFICjRKdOgUwCCEnMqU6FVAIIOnTIkjy9eL1iwoKZMmZJo+dSpU1WwYEGfDMpdN27ccPp+z549+s9//qNGjRrphRde0Lp16/w6HgBA4NEpAIDR0SoAgJHRKQCA0RmlVXQKAOCKUTol0SoAgGtGaRWdAoDgFubpBhMmTFCLFi3066+/qnLlypKkVatWac+ePZo/f77PB5ic9OnT69ixY8qdO7c2btyoatWqqWTJknr44Ye1ceNGVa1aVX/++aeio6P9Oi4AFmS3BXoEPvfrr78qa9askqS4uDj99ttv2rp1qyTp/PnzARxZ6tApAEHJgp2SaJU/0CoAfmPBVtGptEenAPiNBTsl0aq0RqcA+JUFW0Wn0h6tAuA3FuyURKvSGp0C4Dd0ypBsdrvd4zeqP3TokCZPnqx//vlHdrtdZcuWVdeuXT169dWePXs0Y8YM7dmzR5MmTVLu3Ln1yy+/qGDBgipXrpxb9xESEqLjx48rd+7catKkiSIjI/XVV1/JZov/y9apUycdO3ZMP//8s0c/X92Qlh6tD8AcFsXN83rbIh+87cORJG9/j75urzt58mRNnjxZ+/fvlySVK1dOw4YNU4MGDZLdLiQk5Q/esNlsio2NdXssRmL1Tkm0CrAis3RKolW+YPVW0SnAelLTKYk5ldlYvVMSrQKsiDmVM1qVPDoFwN+YUzmjUymjVcEhtecGxOPvo29YcU7lbackWpUSOgXA36zYKSm451Qev/O6FP/xIaNHj/Z6p8uWLVODBg1UrVo1/fHHHxo1apRy586tzZs36+OPP9bXX3/t8X1u3LhRc+fOdQRMknr37q369et7PU4AuM3m8ct8/KNAgQIaM2aMihcvLkmaNWuWmjVrpg0bNiQ7IYiLi/PXEAOCTgEINkbtlESrkkKrAAQbo7aKTrlGpwAEG6N2SqJVSUlNq+gUADMyaqvolGvMqQAEG6t1SqJVyaFTAMzGqJ2SgntOlfLl93cpUqSI3njjDR06dMjrnQ4cOFBvvvmmFi1apIiICMfyWrVqaeXKlW7fj81mc0QrNDRUWbJkcbo9S5YsunDhgtfjBACja9KkiRo2bKiSJUuqZMmSGjVqlDJlyqRVq1b5dD+NGjXSsWPHfHqfaYVOAYCx0KrEaBUAGAedSoxOAYCx0KrEUtsqOgUAvkOnEmNOBQDG4a9OScHVKjoFAL4TzHMqjy9e79u3r/73v/+paNGiqlu3rubOnavr1697dB9btmzRU089lWj5PffcozNnzrh9P3a7XSVLllSOHDl09OhRbdmyxen2f//9V3nz5vVobABgVrGxsZo7d65iYmJUpUoVn973H3/8oatXr/r0PtMKnQIA46JV8WgVABgTnYpHpwDAuGhVvNS2ik4BQNqgU/GYUwGAMaVlp6TgahWdAoC0EWxzqjBPN+jZs6d69uypTZs2afr06erVq5e6d++u5557Tp06ddJDDz2U4n1ky5ZNx44dU9GiRZ2Wb9iwQfnz53d7LDNmzHD6vlixYk7fr1q1ymUs08J9j5ZRy35NVbJilHLem0PDnxqrFf9bk+w2TbvXV7MeTyhPkdw6efC0Zo+er8Wf/ZGm4yxSvpB6vtdZpaKL69LZy/px2iJ9PtL541rCI8LUdlhL1WnzqLLnzabTh89o9uhv9OuMJWk6Nonj6AutBj6p6k89ooKl8+v61RvavmKnPh74hQ7vOprkNuWqldaLY9qoYOn8SpchnU4cOKUfpy3SNxN/TNOxGvk4JuLHjw+5fv16oolBunTplC5dOpfrb9myRVWqVNG1a9eUKVMmffvttypbtqw/hmpIdMo1zg2+4U2naj9XXc+82kz5S+RTzIUrWvvLRk199VNdOns5zcZp5GN4W857c+iFMW0U3eBBRaSP0JFdx/T2C5P17/q9SW5D85Ph54+5olWpQ6tc8+YcG4h/f0Y/L3Acfa/VwCfVeXQbfTPpR03uM9PlOq9O76F6HWomWr5/2yG9eN8raTY2Mx1H5lTmQadc8/T8Wv2paDXuWl/FHiii8HRhOrDtsD4b8ZXWLtyUpuM0+nnB0+PIvDRl7nRKYm6aIuZUppLaVlmxU5Ln59gKj5XV20tGJFreqUxvHdqZ9HOGqWWqc0MS3D33plb15o+owxutlK9YHh3bc0IzhszRXwtWO25vN7ylnh/+jNM2Z4+f17P3vphmY3JH46711KRrPeUpco8k6cC2w/p85Dyt+WWjy/WZT7mJOZVpMKdyzdNO5cibTS+Nb68SFaOUv0ReLXjv5zQ9595munMDvOLN70157JQCA8+p6FRizKkCq0m3emrZr5ly5sum/dsOa3KfGdq6/J9AD8uUrHosvekUz0enwMCdkoK3VR5fvH7b/fffr0mTJmn8+PH68MMPNWDAAE2ePFnly5dX79691bFjR8dHe9ztueee04ABAzRv3jzZbDbFxcXpr7/+Ur9+/fT888+7PYb27dsne/uwYcM8+plSIzJjOu3dfEALZy7R8Pmvprh+46711Gn0c5rQZap2rtmt0tHF1WdaV10+F6NVP6zzagx5Ct+jz/d9qLohLV3eniFzev134VBtWrJVL0cPVIGS+dRvRg9di7mmr9/5wbHekC9fUfY8WfX2C5N1dPdxZcudVaFhHr9Jv1c4jqlXoUY5fffhr9q5ZrdCw0LV8c3WGvPrEL1Qro+uXXH9SslrMdf0vw9+0d7NB3Qt5rrKVy+t3lO66FrMdf300WKvxmH24xhIb731lkaMcJ74Dh8+XK+//rrL9UuVKqWNGzfq/Pnzmj9/vtq3b69ly5YFRcSSQ6eccW7wDU87Va5aafWf1VNTXpmpVd+vU878OdR78ot65aNuGtFinFdjMPsxlKRM2TJq4vKR2rRkmwY3HK3zJy/o3mJ5dPl8TJLb0HxjoVW+QauceXqOlXz/788K5wWOo2+VrFRMDV+sqz2b9ie73gf/maGPB33h+D40LERTN47XH1+7/xGpd7PScfQ3OuUbdMqZp+fX+2qU1frFmzT9tdmKOR+j+h1r6Y3vBqpn5UHas3G/V2OwwnnB0+PIvDR57naKuanx0Crf8LZVVuyU5N1cQJI6lOqlKxcT3nnrwqmLXo8hGM4N7p57U1KvfU3Va19T/Wq/7vL2MpVLasjcPpo5bK7++na1qj0VrSFf9lGfR4fqn9W7Hevt23pQA+qOdHwfFxuXqnH5wunDZ/TJoC90ZPdxSfE/64gFA9TtoVd1YPvhROsznzIeOuUbzKmcedqp8HThunD6omaPnq8W/2nskzFwbsBt3vze9DYeOxmDJ62iU0ljTuV/jz1TVd0mdNR7PT7Str92qtFLdTX6p9fUuVwfnTp0OtDDMxUrH0tvOsXz0cbCnMo9Xl+8fvPmTX377beaMWOGFi1apMqVK6tz5846evSoXnvtNS1evFizZ892ue2oUaPUoUMH5c+fX3a7XWXLllVsbKyee+45DRkyxOsfJpDW/LIxyXcMcOXxtjX047TFWvbVCknS8X0nVaZyST3b/0mnC7Dqd6ipZ15tprxFc+v4/lNa8N5P+n7yQq/GWLvNo4qIDNe4jh/o5o1b2r/tkPKXvFct+jRxnDAq1X9AFR4rq+eLvaxL5+LfdefEgVNe7c8bHMfUG9xwlNP34zt9qK9PfqISFaO05c8dLrfZs3G/U6hOHDil6k89ovuql3H6RWAwHcdAGjRokF55xfndRJJ65ZUkRUREqHjx4pKkSpUqac2aNZo0aZKmTp2apuM0OjrljHODb3jaqTKVS+jE/pNa8N7PkqTj+0/qx2mL9MyrzZzWC6ZjKEnPDnhSpw6d0fjOHzqWpbR/mm8stMo3aJUzT8+x7v77C7bzAsfRdyIzRmrQ5700ocsUtXmtRbLrXrl4RVcuXnF8X7XZw8qUPWOid40IxuMYCHTKN+iUM0/Pr3e/I+D01+aoStOHVaVJJad5VrCdFzw9jsxLk+ZJp5ibGg+t8g1vW2XFTkmen2NvO3/ygmIuXEnyds4NCZI794aFh6nDm61U57lHlTFbBu3fekgfD/xcm5dt92pfzXs30rpFmzV3zAJJ0twxC1ShRjk1791Io9tMcqwXdytO506c9/ZHShN3v9HEjCFz1LhrPZWpXNLlxevMp4yHTvkGcypnnnbqxIFT+vA/8e/I+0TH2kmux7kB3vDm96a38djJGDxpFZ1KGnMq/2vRp7F+mf67fv7kd0nxzyFWqne/mnSrp+mDXT8ugGtWPpbedIrno42FOZV7PL54ff369ZoxY4bmzJmj0NBQtWvXThMmTFDp0qUd69SrV081atRI8j7Cw8P1xRdfaOTIkVq/fr3i4uL04IMPqkSJEt79FEkYPHiwjh8/runTp/v0fn0hPF24bly74bTs+tUbKhVdXKFhoYq9FasGL9RR+9ef0fs9P9HuDftV/MEi6jOtq67FXNeiT5d5vM+ylUtq87LtunnjlmPZ2l836oW32ihvkdw6vv+kqjStpF1r9+iZ/s30eNsauhZzTSu/X6uZQ79MNF4j4DimLGPWDJLk0UcAF3ugiMpWLaWZQ+c4lgX7cfSn5D4mxB12uz3RR48EEzrlHs4N/rF9xU51fLO1ohs8qNU/b1C23FlVo0UVrf5pvWOdYDyGVZpU0tqFGzX0y1d032NldebIWX03+Vf9/PFvSW5D842FVqUOrfINd/79cV5IGccxaT3f76y/f1qvDb9tSfGiwLs90am2NizeopMHE97dI1iPYyDQqdShU2nDZrMpQ+b0TnMwzgueY16awJNOMTc1HlqVOqltFZ1yNnn9OEVEhuvg9sP6YtR8bVq6zXEb5wZnyZ17+03vrrxF7tGo1hN05ug5VXsqWm/9/Jq6VOjreAdyT5StUlLzJ/7gtGztwo1q3ruR07J7S+TV3MNTdeP6Lf3z97+a/tpsHd930vMfLo2EhISoRsvKisyYTttX7nJrG+ZTgUenUoc5lf9wboCvePJ7Ux47GUNqWhXsnZKYUwVKWHiYSlaM0pf/XeC0fN2izSpXpVRgBmVSwXYsvbm+h+ejA4s5lXs8vnj94YcfVt26dTV58mQ9+eSTCg8PT7RO2bJl1apVqxTvKyoqSlFRUZ4OwW1HjhzRoUOH0uz+U2Pdwo1q0LmOVixYo3/X71XJilF6omMthUeEKWuuzDp7/LzaDnlaU/t9quXfrpYU/444hcoWUKMudb06YeTIm03H73rlyvkTFyRJ2fNm0/H9J5WvaB6Vr15aN67d1OvNxylrrszq+cELypwjk97uPDn1P7iPcRxT1vXt9try5w7t35byv4XZB6co6z1ZFBoWqs9GfOV4dZqkoD+ONrtfd+e2wYMHq0GDBipYsKAuXbqkuXPnaunSpfrll18CPbSAoVPu4dzgH9tX7tKYtu/qtbl9FBEZrrDwMK343xq93zNhgh2MxzBfVG416VpP8yf8oNlvfaPS0cXVY1In3bx+U4s/+8PlNjQ/eUbtlESrXKFVvuHOv79gPi+4i+PoWs1nq6rEQ1HqET3Q421z5M2m6AYPOr0bohScx/FORm0VnUqMTqWNp/s2UWTGdI5PEpI4L3iCeakzTzvF3DRlRu2URKtc8VWrgr1TZ4+d1ztdpujfdXsVni5cj7erobGLh6lfrdcd7+QW7OeGOyV37s0XlUe1WlfTcwW76syxc5Kkr9/+Xg/Xf0D1O9bS9NfmJNomJdnzZtO5/z82t507cUHZ82ZzfP/P3/9qbPv3dXjXMWXPk1VtXmuhSX+N0gvl+3h0UUNaKFK+kN5dMUoRkeG6evmaRjQfp4M7Er/r+t2YTyXNqK2iU4kxp/Ifzg3wFXd+b8pjp+TRKXNhThUYWXNlVmhYaKJPTjp34rzT43ykLNiOpSfX99zG89HOjNopKbhb5fHF63v37lXhwoWTXSdjxoyaMWNGkrc//fTTqlSpkgYOdH6CZ9y4cVq9erXmzZvn6bBcmjVrVorrXL9+PdGrFOLssQqxhfpkDEn5fOR8Zc+bTe+uHCWbzaZzJy5o4aylerb/k4qLjVPWXFmUu1AuvfJxN/WZ1tWxXWhYiNNHEH205R3lKXxP/De2+P98d/Ezx+0nDpzSi/clfASB3X7Xv0Sb7fYNkqSQEJvsdumttu86PqJvat9ZGjqvr97r8YnhXvHCcUxez/c7q2iFQurz6FC31n+lxjBFZopUmcol9MJbbXR093EtmftX0B9HIztx4oTatWunY8eOKWvWrKpQoYJ++eUX1a1b16f7GTx4sHLkyOHT+0wrVuuU5PtWcW7wn0JlCqjHpI76fOTXWvvrRuXMl10vjm2n3lO66J0XJgftMbSFhGjX2j2OX9zt2bhfhcsVVJOu9ZO8eJ3mmxetSsxqrQrUnCqlf3/pM0VyXnADxzGxewrkVPeJHTWw/pu6ef2mx9vX61BTl8/HaMWCNY5ldMq46FRiVuuUFLhW3VarVTW1G95Sw58cq/OnLkrivOAp5qUJvOkUc1Nzo1WJpbZVdCre4V1HdXjXUcf3O1bt0j0Fcqpl36ba8ucOzg13SOncW+KhogoJCdGMne86LQ9PF6aLZ+IvIr+nYC59sm2C47bQsBCFhoc5HavfvvhDk7p9lHAHdx0rm8152ZpfNjr+vH+rtGPlLs3a/b7qta+p+ROc37Xd3w7vPKquD76qTNkyqHqLynp15svqW3N4ihewM58yHzqVGHMq/+DcAF9x9/emPHYyJ391SgquVtGp1En8z9qW+N863BIMx9LT63skno82m2CeU3l88XpK8XLHsmXLNHz48ETLn3jiCY0fPz7V9++Jt956SyNGjHBaVlRlVEzl0nS/N67d0NudJ2viS9OUPU9WnT12Xg27PK6Yi1d04fQlZb0niyRpQpcp+ufv3U7bxsXGOf78WqPRCguP/9+YK38Ovb10hLo++Krj9ls3Ez6W4ezx88qRJ5vTfWXLHb+f2+/ecObYOZ0+ctZxspCkgzuOKCQkRPcUyOHVRxumJY5j0nq820mVm1RS38eG6/SRs25tc3x//EdJ7t96UNnzZFW74c9oydy/ZAuJD0swHkcHu81/+/LAJ598kqrtZ82apVy5cqlRo/iPGu3fv7+mTZumsmXLas6cOY5z/qBBg1I9Vn+xWqck37aKc4N/tR74lLb9tVPzxn8nSdq35aCuxlzXxD9HauaQOYqLi3/AHmzH8Oyxc4l+UXVwxxE92rxyktvQ/BQYtFMSrXLFaq0K1JwqpX9/MRevSgri84KbOI6JlagYpex5sunDtf91LAsNC9V9NcqoWY8n1DDyOcXFxSW5/RMda2vx5384/cw8bpJhW0WnErNap6TAtUqSHnumql75uJtGPvOONvy2xbGc84JnmJcm8KZTzE3dYNBOSbTKldS2ik4l7Z+//1WdNo9KolV3Sunc+1bbdxV7K1bdKw1wOjaSdPXyNUnSmaNnnY5L9ebRqt68ssa0Tbjg/c6f+dzxxO8YmC131kTvxn6na1eua9+Wg8pfIp9XP6cv3bp5S0f3xP+/2rVur0pVKqanejfUpK7Tkt2O+VQyDNoqOpUYcyr/4NwAX/Dm96Z34rHTHSzaKYlWuUKnvHPh9CXF3opVDheP888n8zgfiQXLsfSmUzwfnQSDdkoK7jmV2xevZ8+eXTZbyv8Tz55N+R/K5cuXFRERkWh5eHi4Ll686O6QHA4fPqxs2bIpU6ZMTstv3ryplStXqkaNGkluO2jQIL3yyitOy57K2sHjMXgr9las4+RS69lq+vuH9bLb7Tp/8oJOHT6jfFF59Pvs5Uluf/Lgaaf7kuR4Muhu21ftUqdRrRUWHuY4kVSqd79OHznr+AXQthU7VaNlFUVmjNS1mPgn1PKXzKfY2DidOuz5g3V/4Tg6e/m9zqr2ZLT61RruGJOnbDabwtPFnyKC9TgGg9GjR2vy5PiPYVm5cqXef/99TZw4UT/88IP69Omjb775JsAjdJ9VOyX5rlWcG/wvXYYIxd5y/oXV7Qf+NptN50+eD8pjuO2vnSpQ8l6nZQVK5tOJuz5SyhWaH3xolWtGalWg5lQp/fu7ce0G5wU3cBwT2/DbFqd3jZCkftO769A/R/Xl2AXJXrhe4bGyyl8in3755Hen5XTKuuiUa0bqlBS4VtVqVU19P+mu0c9N1Oqf1jvdxnnBe8E+L/WmU8xNgxutSoxOJa3YA0V15th5ScF5jk1KSufemzduKTQsVNlyZ9HW5f+4vI+42Din43L+5EXduHoj6WO1cpcqPl5B30z80bGsYt37tX3FziTHGR4RpkJl8mvr8h2e/Hh+YbPZFBERnuw6zKeCE51yjValjHMDUssXvzflsVNwoFWJ0Snv3Lp5S7vW7dVDdSvorwWrHcsferyCVny3JpktcbdgOJbedIrno4OTmTvl9sXrEydOdPzZbrerW7dueuONN5Q7d26Pd1q+fHl9+eWXGjZsmNPyuXPnqmzZsm7fz7Fjx9SsWTOtW7dONptNbdq00QcffOCI2dmzZ1WrVi3FxsYmeR/p0qVTunTpnJZ587EhkRkjlb94Xsf3eYvmVrH7i+ji2cs6dei0Oo1+TrnuzaGxHd6XJOUvkU+lo4vrn7//VabsmdSiT2MVKV/QcbskfTbiK3Wf1ElXLl7V6p83KDxduEpVilKm7Jm8+ri/32cvV7thLfXqjB6a89Y3yl8in1oPaq7PR85zWqfNkBZ6dXp3zXr9K2XNlVldxrbTrzN+98vHNHAcU6/nBy+oduvqGv7kWF25dE3Z//8VTjEXrjj2ffdxbNq9vk4ePK1D/xyRJJWvXlot+zbVgvd/dtxvsB3HRKz1qTIOhw4dUvHixSVJCxYs0NNPP60uXbqoWrVqqlmzZmAH5yGrdkryTas4N/iGp51a9cM69Zn2khp3ref4aPZuEzpox9//6syxc5KC7xhK0vyJP2jSX2+q9aCntOyrlSoVXVwNX3xcE1+a6liH5nvIop2SaFVSjNSqQM2p3Pn3F4znBY5j6l29fE37tx1yWnYt5rounr3kWH73cbytQac62rFqV6LtpeA7jolYtFV0yjUjdUryTas8Pb/WalVN/We9rA//M0M7Vv3rmINdv3rD8S4zwXhe8PQ4Mi9NzJtOMTd1g0U7JdEqV6zYKcnzc+xTvRvqxP5TOrDtkMIiwlSnbQ3VeLqyRrQY57iPoD83/D93zr2LP/9D/Wf11LR+s7R7w35lyZVZD9Yur31bDmr1zxs83ue37/6od5a9oWf7N9OK/61R1WYP66HH73P6qPgu49pp1ffrdPLgaWXLnUXPvdZCGbKk18JZS1P186ZWp1GttfrnDTp16IzSZ06vWq2qqULNchrcYFT87cynvGPRVtEp16zYKk87JUnF7i8iSUqfKVJZc2VRsfuL6OaNW45PduXcAG9583tTHjulwKKdkmiVK1bslL/Mn/CDBnzaU7vW7tGOlbvUsMvjyl0ol36YsjDQQzMdKx9LbzrF89EpoFOG5PbF6+3bt3f6vmfPnmrRooWioqI83unQoUPVokUL7dmzR7Vr15Yk/fbbb5ozZ47mzZuXwtYJBg4cqNDQUP399986f/68Bg0apJo1a2rRokXKnj27pPjY+kPJSlF6e0nCR5B0e6eDJGnhzKUa1+kD5cybXbkL5XLcHhoaoqdfaaICpe5V7M1YbVyyVb2rDXF6x9GfP/ld167c0DP9muqF/7bVtZjr2r/loL6ZlPAuC564cvGKBtQbqZ7vd9YHa8bo0rkYfT3he339TsLJ51rMNQ2sN1I93o1f5+KZS/pj3krNGDLXq316iuOYek271Zckvb3U+SNxxnX8wPGE5d3H0RZiU6fRzylv0dyKuxX/7h8fD/pCP05d5Fgn2I5jsMiUKZPOnDmjQoUKaeHCherTp48kKTIyUlevXg3w6DxDp5LHucE3PO3UwllLlT5zpJr1eEIvjX9eMedjtOH3rfp44BeOdYLtGErSrrV79Hrzceo8uo3aDn1ax/ed1OQ+M51e4UvzcRutcs2KrfL0HOvOv79gPC9wHP3j7uMoSRmyZFD1Fo/ow//McLkNx9Ga6JRrdEpq1KWuwsLD1OuDF9Xrgxcdy2+vLwXnecHT48i81DvMTXEnWpWYFTsleX6ODY8IU5dxzytX/hy6fvWGDmw7pNcajXa60Jpzg/vGd/pQbYa0UJfx7ZUrfw5dPHNJO1bu0t8/eX7huhT/zuujWk9Uh5Gt1P6NVjq257hGtZqgf1YnfLx7rvw5NXh2b2XJlUUXTl3UjlW71KvKa07vlBcI2fJk04BPeypHvuyKuXBF+zYf0OAGo7R+8WZJzKfgjE65ZsVWedopSZqyYdwd2xdTnTaP6vj+k2oX1UMS5wZ4z5vfm/LYKXjRqsSs2Cl/WfbVCmXJmUlthz6tHPmya//W+HNJoB/Dm5GVj6U3neL56OBl5k7Z7F6e5TNnzqxNmzZ5NdmSpB9//FGjR4/Wxo0blT59elWoUEHDhw/XY4895vZ95M+fX99++62io6MlSdevX9ezzz6rAwcO6LffftPNmzd17733pvgKrLvVDWnp0foAzGFRnPsPku8WNeEdH44keXv7vJLySj7Spk0b/fPPP3rwwQc1Z84cHTx4UDlz5tR3332nwYMHa+vWrX4bi69ZuVMSrQKsyCydkmiVr1i5VXQKsJ7UdEpiTmVGVu6URKsAK2JO5Rqtco1OAfA35lSu0amk0argkNpzA+Lx99E3mFO5Rqtco1MA/I1OuWbmToUEaseNGjXSX3/9pZiYGJ0+fVq///67RwGTpAsXLjheaSXFfwzI119/rSJFiqhWrVo6efKkr4cNAJbywQcfqEqVKjp16pTmz5+vnDlzSpLWrVun1q1bB3h0gUWnAMAYaFXSaBUABB6dShqdAgBjoFWu0SkAMAY6lTRaBQDGQKtco1MAYAxm7lRYoAeQGlFRUdq8ebNKlCjhWBYWFqZ58+apZcuWaty4cQBHB8BKbNb6JCKHbNmy6f3330+0fMSIES7WhqfoFAB/sWqnJFqV1mgVAH+xaqvoVNqiUwD8xaqdkmhVWqJTAPzJqq2iU2mLVgHwF6t2SqJVaYlOAfAXOmVMbl+8/sorzm9lf+PGDY0aNUpZs2Z1Wv7OO67fYj9HjhzatWuXcuXKpezZs8tmsyW5r7Nnz7o1pgYNGmjatGlq0aKF0/LbIWvRooUOHz7s1n0BQDDavHmzy+U2m02RkZEqVKiQ0qVL5+dReYdOAYA10aoEtAoAjIdOJaBTAGBMtCoenQIAY6JTCWgVABgTrYpHpwDAmMzcKbcvXt+wYYPT91WrVtXevXudliUXpgkTJihz5sySpIkTJ3owxKSNGjVKV65ccXlbWFiYvvnmGyIGAMl44IEHkj13h4eH69lnn9XUqVMVGRnpx5F5jk4BgDXRqgS0CgCMh04loFMAYEy0Kh6dAgBjolMJaBUAGBOtikenAMCYzNwpty9eX7JkSap21L59e0nSrVu3JEn169dX3rx5U3WfYWFhypIlS5K3h4aGqnDhwqnaBwBIkiz68SHffvutBgwYoFdffVXR0dGy2+1as2aN3n77bQ0fPly3bt3SwIEDNWTIEI0fPz7Qw00WnQIQ1CzaKYlW3YlWATA1i7aKTiWgUwBMzaKdkmjVbXQKgOlZtFV0KgGtAmBqFu2URKtuo1MATI1OGbJTbl+87rMdhoWpW7du2rFjh0/u77333tPatWvVqFEjPfPMM/rss8/01ltvKS4uTs2bN9cbb7yhsDC//5gAYAqjRo3SpEmTVL9+fceyChUqqECBAho6dKhWr16tjBkzqm/fvoYLWFqhUwBgLLQqMVoFAMZBpxKjUwBgLLTKGZ0CAGOhU4nRKgAwFlrljE4BgLGYuVMBObs/8sgj2rBhQ6pfHTVy5EiNGzdO9erVU+/evbVv3z6NGzdOffr0UUhIiCZMmKDw8HCNGDHCRyMHELQs+gqsLVu2uDwXFy5cWFu2bJEU//Eix44d8/fQAopOATAdi3ZKolVJoVUATMeiraJTrtEpAKZj0U5JtMoVOgXAlCzaKjrlGq0CYDoW7ZREq1yhUwBMh04ZslMBuXi9e/fu6tu3rw4fPqyKFSsqY8aMTrdXqFDBrfuZOXOmZs6cqebNm2vTpk2qWLGiZs2apTZt2kiSSpcurf79+xMxAEhC6dKlNWbMGE2bNk0RERGSpJs3b2rMmDEqXbq0JOnIkSPKkydPIIfpd3QKAIyDVrlGqwDAGOiUa3QKAIyDViVGpwDAOOiUa7QKAIyDViVGpwDAOMzcqYBcvP7ss89Kknr16uVYZrPZZLfbZbPZFBsb69b9HDt2TJUqVZIk3X///QoJCdEDDzzguP2hhx7S0aNHfTdwAEHLZtFXYH3wwQdq2rSpChQooAoVKshms2nz5s2KjY3VDz/8IEnau3evunfvHuCR+hedAmA2Vu2URKuSQqsAmI1VW0WnXKNTAMzGqp2SaJUrdAqAGVm1VXTKNVoFwGys2imJVrlCpwCYDZ0yZqcCcvH6vn37fHI/efPm1fbt21WoUCH9+++/io2N1fbt21WuXDlJ0rZt25Q7d26f7AsArKhq1arav3+/Pv/8c+3atUt2u11PP/20nnvuOWXOnFmS1K5duwCP0v/oFAAYB61yjVYBgDHQKdfoFAAYB61KjE4BgHHQKddoFQAYB61KjE4BgHGYuVNuXby+efNmt+8wpY/+uHTpknbt2qWbN28qOjpauXLlcvu+7/bcc8/p+eefV7NmzfTbb79pwIAB6tevn86cOSObzaZRo0bp6aef9vr+AcDBbgv0CNJMpkyZ1LVr10API1XoFICgZ+FOSbTqbrQKgClZuFV0yhmdAmBKFu6URKvuRKcAmJaFW0WnnNEqAKZk4U5JtOpOdAqAKdEpQ3Lr4vUHHnjA8fEerrj70R+bN29WgwYNdPz4cdntdmXJkkVff/21Hn/8ca8GP2LECKVPn16rVq3SSy+9pAEDBqhChQrq37+/rly5oiZNmmjkyJFe3TcABItdu3Zp6dKlOnnypOLi4pxuGzZsWIBG5Rk6BQDWRqsS0CoAMB46lYBOAYAx0ap4dAoAjIlOJaBVAGBMtCoenQIAYzJrp2z2pKp0hwMHDrh9h4ULF07ytoYNG+rcuXN6++23FRkZqREjRmjnzp36559/3L5/f6gb0jLQQwCQBhbFzfN62+L/neDDkSRv94A+ftvXRx99pG7duilXrlzKmzevbLaEV5rZbDatX7/eb2NJjWDrlESrACsyS6ckWuWNYGsVnQKsJzWdkphTGV2wdUqiVYAVMadyjVYloFMAAok5lWt0yhmtCj6pPTcgHn8ffYM5lWu0KgGdAhBIdMo1M3fKrXdeT24C5Ym1a9fqp59+UqVKlSRJ06dPV+7cuXX58mVlypTJJ/sAALjvzTff1KhRozRgwIBADyVV6BQAWBetckarAMBY6JQzOgUAxkOrEtApADAeOuWMVgGA8dCqBHQKAIzHzJ1y6+J1V7Zv366DBw/qxo0bTsubNm2a5DanT59WoUKFHN/nzJlTGTJk0KlTp4gYAEOzpfgZFeZ07tw5tWxpzVec0ikAwcSqnZJo1d1oFQCzsmqr6JQzOgXArKzaKYlW3YlOATAzq7aKTjmjVQDMyqqdkmjVnegUALOiU8bk8cXre/fu1VNPPaUtW7bIZrPJbo//P3v77eZjY2OT3NZms+nSpUuKjIyUJNntdseyixcvOtbLkiWLp8MCAHihZcuWWrhwobp27RroofgMnQIAa6FVzmgVABgLnXJGpwDAeGhVAjoFAMZDp5zRKgAwHlqVgE4BgPGYuVMeX7zeu3dvFS1aVIsXL1ZUVJRWr16tM2fOqG/fvho/fnyy29rtdpUsWTLRsgcffNDxZ5vNluyEDQDgO8WLF9fQoUO1atUq3XfffQoPD3e6vVevXgEamffoFABYC61yRqsAwFjolDM6BQDGQ6sS0CkAMB465YxWAYDx0KoEdAoAjMfMnfL44vWVK1fq999/1z333KOQkBCFhISoevXqeuutt9SrVy9t2LAhyW2XLFmSqsECQMBY9ONDpk2bpkyZMmnZsmVatmyZ0202m83QAUsKnQIQlCzaKYlW3Y1WATAti7aKTjmjUwBMy6KdkmjVnegUAFOzaKvolDNaBcC0LNopiVbdiU4BMC06ZUgeX7weGxurTJkySZJy5cqlo0ePqlSpUipcuLB27tyZ7LaPPfaYd6MEAKSJffv2BXoIPkenAMBaaJUzWgUAxkKnnNEpADAeWpWATgGA8dApZ7QKAIyHViWgUwBgPGbulMcXr5cvX16bN29WVFSUHnnkEY0dO1YRERGaNm2aoqKi0mKMABBwNgu/Astq6BSAYESnzIVWAQhGtMo86BSAYESnzIVWAQhGtMo86BSAYESnzIVWAQg2dMqYPL54fciQIYqJiZEkvfnmm2rcuLEeffRR5cyZU19++aXPBwgA8K1XXnlFI0eOVMaMGfXKK68ku+4777zjp1H5Dp0CAPOjVQAAI6NTAACjo1UAACOjUwAAo6NVAAAjs0qnPL54vX79+o4/R0VFafv27Tp79qyyZ88um83m08EBgGFY6BVYGzZs0M2bNx1/TopZz+l0CkBQslCnJFoFAJZkoVbRKQCwIAt1SqJVAGBJFmoVnQIAC7JQpyRaBQCWQ6cMyeOL1+906NAh2Ww2FShQwFfjAQCksSVLlrj8sxXRKQAwJ1oFADAyOgUAMDpaBQAwMjoFADA6WgUAMDKrdCrE0w1u3bqloUOHKmvWrCpSpIgKFy6srFmzasiQIY6r+VPSqVMnXbp0KdHymJgYderUydMhAUDas/vxy49mzZrl+Dgoq6BTAIKSPztFq1KNVgEISnTKNOgUgKDEnMpUUtsqOgXAlOiUaTCnAhCUmFOZCnMqAEGHThmSxxevv/zyy5o2bZrGjh2rDRs2aMOGDRo7dqw++eQT9ezZ0637mDVrlq5evZpo+dWrV/Xpp596OiQAgJf69eun3Llzq1WrVvrhhx9069atQA8p1egUAFgLrXKNVgGAMdAp1+gUABgHrUqMTgGAcdAp12gVABgHrUqMTgGAcZi5U2GebjBnzhzNnTtXDRo0cCyrUKGCChUqpFatWmnKlClJbnvx4kXZ7XbZ7XZdunRJkZGRjttiY2P1008/KXfu3J4OCQDSnM3Pr4ryl2PHjumXX37RnDlz1KpVK6VPn14tW7ZU27ZtVbVq1UAPzyt0CkAwsmqnJFp1N1oFwKys2io65YxOATArq3ZKolV3olMAzMyqraJTzmgVALOyaqckWnUnOgXArOiUMXl88XpkZKSKFCmSaHmRIkUUERGR7LbZsmWTzWaTzWZTyZIlE91us9k0YsQIT4cEAPBSWFiYGjdurMaNG+vKlSv69ttvNXv2bNWqVUsFChTQnj17Aj1Ej9EpALAWWuWMVgGAsdApZ3QKAIyHViWgUwBgPHTKGa0CAOOhVQnoFAAYj5k75fHF6z169NDIkSM1Y8YMpUuXTpJ0/fp1jRo1Si+//HKy2y5ZskR2u121a9fW/PnzlSNHDsdtERERKly4sO69915PhwQA8IEMGTKofv36OnfunA4cOKAdO3YEekheoVMAYF20ilYBgJHRKToFAEYX7K2iUwBgbMHeKYlWAYDRBXur6BQAGJvZOuXWxevNmzd3+n7x4sUqUKCA7r//fknSpk2bdOPGDdWpUyfZ+3nsscckSfv27VOhQoVks9m8GTMAwIduv+rqiy++0OLFi1WwYEG1bt1a8+bNC/TQ3EanAMDaaFUCWgUAxkOnEtApADAmWhWPTgGAMdGpBLQKAIyJVsWjUwBgTGbtlFsXr2fNmtXp+xYtWjh9X7BgQY92WrhwYf3555+aOnWq9u7dq3nz5il//vz67LPPVLRoUVWvXt2j+wOANGcP9ADSRuvWrfX9998rQ4YMatmypZYuXaqqVasGelgeo1MAgp5FOyXRqqTQKgCmY9FW0SnX6BQA07FopyRa5QqdAmBKFm0VnXKNVgEwHYt2SqJVrtApAKZDpwzJrYvXZ8yY4dOdzp8/X+3atVObNm20fv16Xb9+XZJ06dIljR49Wj/99JNP9wcAcM1ms+nLL79U/fr1FRbmVhIMiU4BgHXRKtdoFQAYA51yjU4BgHHQqsToFAAYB51yjVYBgHHQqsToFAAYh5k7FeLthqdOndLy5cv1119/6dSpUx5t++abb2rKlCn66KOPFB4e7lhetWpVrV+/3tshAQA8NHv2bDVq1Mh08XIHnQIAa6BVrtEqADAGOuUanQIA46BVidEpADAOOuUarQIA46BVidEpADAOM3fK4xHHxMSoZ8+e+vTTTxUXFydJCg0N1fPPP6/33ntPGTJkSPE+du7cqRo1aiRaniVLFp0/f97TIQFAmrNZ+ONDYmJitGzZMh08eFA3btxwuq1Xr14BGpX36BSAYGTlTkm0yhVaBcBsrNwqOpUYnQJgNlbulESr7kanAJiRlVtFpxKjVQDMxsqdkmjV3egUALOhU8bk8cXrr7zyipYtW6bvv/9e1apVkyQtX75cvXr1Ut++fTV58uQU7yNfvnzavXu3ihQp4rR8+fLlioqK8nRIAAAvbdiwQQ0bNtSVK1cUExOjHDly6PTp08qQIYNy585t6IAlhU4BgLXQKtdoFQAYA51yjU4BgHHQqsToFAAYB51yjVYBgHHQqsToFAAYh5k75fHF6/Pnz9fXX3+tmjVrOpY1bNhQ6dOn1zPPPOPWZOull15S7969NX36dNlsNh09elQrV65Uv379NGzYME+HBABpz6KvwOrTp4+aNGmiyZMnK1u2bFq1apXCw8PVtm1b9e7dO9DD8wqdAhCULNopiVYlhVYBMB2LtopOuUanAJiORTsl0SpX6BQAU7Joq+iUa2ZolS00NNBDsIS6IS0DPQTANyzaKYlWuWKGTgGAEzplSB5fvH7lyhXlyZMn0fLcuXPrypUrbt1H//79deHCBdWqVUvXrl1TjRo1lC5dOvXr108vv/yyp0MCAHhp48aNmjp1qkJDQxUaGqrr168rKipKY8eOVfv27dW8efNAD9FjdAoArIVWuUarAMAY6JRrdAoAjINWJUanAMA46JRrtAoAjINWJUanAMA4zNypEE83qFKlioYPH65r1645ll29elUjRoxQlSpV3LqPGzduaNSoUTp9+rRWr16tVatW6dSpUxo5cqROnz7t6ZAAIO3Z/fjlR+Hh4bLZbJKkPHny6ODBg5KkrFmzOv5sNnQKQFDyZ6doVarRKgBBiU6ZBp0CEJSYU5lKaltFpwCYEp0yDeZUAIIScypTYU4FIOjQKUPy+J3XJ02apCeeeEIFChTQ/fffL5vNpo0bNyoyMlK//vqrW/fxzDPP6JtvvlGGDBlUqVIlx/ITJ06oTp062rp1q6fDAgB44cEHH9TatWtVsmRJ1apVS8OGDdPp06f12Wef6b777gv08LxCpwDAWmiVa7QKAIyBTrlGpwDAOGhVYnQKAIyDTrlGqwDAOGhVYnQKAIzDzJ3y+J3Xy5cvr3///VdvvfWWHnjgAVWoUEFjxozRv//+q3Llyrl1H8eOHVPnzp0TLatZs6ZKly7t6ZAAIM3Z7P778qfRo0crX758kqSRI0cqZ86c6tatm06ePKlp06b5dzA+QqcABCN/dopWpR6tAhCM6JR50CkAwYg5lbmktlV0CoAZ0SnzYE4FIBgxpzIX5lQAgg2dMiab3W738+GSzpw5oxo1aqhevXqaMGGCjhw5otq1a+v+++/X3LlzFRLi8TX1PlU3pGVA9w8gbSyKm+f1tmWGTfDhSJK3440+ftsXXDN6pyRaBViRWTol0SojMHqr6BRgPanplMScKtgYvVMSrQKsiDkV3EWnAAQCcyp4wgytqhfeKtBDsAR7bGyghwA4MKeCu8zQKeZUgPXQKesJc2el7777zu07bNq0aYrr5MyZU7/++quqV68uSfrxxx/10EMP6YsvvjBEwAAgEb+/zMc/rl69KrvdrgwZMkiSDhw4oG+//VZly5ZVvXr1Ajw699EpAEHPop2SaFVSaBUA07Foq+iUa3QKgOlYtFMSrXKFTgEwJYu2ik65RqsAmI5FOyXRKlfoFADToVOG5NbF608++aRbd2az2RTr5itDCxQooEWLFql69eqqW7euPvvsM9lsNre2BQD4RrNmzdS8eXN17dpV58+fV3R0tCIiInT69Gm988476tatW6CH6BY6BQDWRauSRqsAIPDoVNLoFAAYA61yjU4BgDHQqaTRKgAwBlrlGp0CAGMwc6fcung9Li4u1TvKnj27y0hduXJF33//vXLmzOlYdvbs2VTvDwB8yWbRV2CtX79eEybEfzTK119/rbx582rDhg2aP3++hg0bZuiA3YlOAQh2Vu2URKvuRKsAmJlVW0WnEtApAGZm1U5JtOo2OgXA7KzaKjqVgFYBMDOrdkqiVbfRKQBmRqeMya2L131h4sSJ/toVAMBNV65cUebMmSVJCxcuVPPmzRUSEqLKlSvrwIEDAR6df9EpADAmWpWAVgGA8dCpBHQKAIyJVsWjUwBgTHQqAa0CAGOiVfHoFAAYk5k75fbF61evXtVvv/2mxo0bS5IGDRqk69evO24PDQ3VyJEjFRkZ6XL79u3bS5Ju3bqlL774QvXr11fevHlTM3YA8B+LvgKrePHiWrBggZ566in9+uuv6tOnjyTp5MmTypIlS4BH5xk6BSCoWbRTEq26E60CYGoWbRWdSkCnAJiaRTsl0arb6BQA07Noq+hUAloFwNQs2imJVt1GpwCYGp0ypBB3V/z00081depUx/fvv/++VqxYoQ0bNmjDhg36/PPPNXny5BTvJywsTN26dXOKHwAgMIYNG6Z+/fqpSJEieuSRR1SlShVJ8a/EevDBBwM8Os/QKQCwJlqVGK0CAOOgU4nRKQAwFlrljE4BgLHQqcRoFQAYC61yRqcAwFjM3Cm3L17/4osv1KlTJ6dls2fP1pIlS7RkyRKNGzdOX331lVv39cgjj2jDhg2ejRQA4HNPP/20Dh48qLVr1+qXX35xLK9Tp44mTJjg+P7w4cOKi4sLxBDdRqcAwJpolWu0CgCMgU65RqcAwDhoVWJ0CgCMg065RqsAwDhoVWJ0CgCMw8ydCnN3xV27dqlkyZKO7yMjIxUSknDte3R0tHr06OHWfXXv3l19+/bV4cOHVbFiRWXMmNHp9goVKrg7LADwDwt/fEjevHkTfZxTdHS00/dly5bVxo0bFRUV5c+heYROAQhqFu6URKtcoVUATMfCraJTidEpAKZj4U5JtOpudAqAKVm4VXQqMVoFwHQs3CmJVt2NTgEwHTplyE65ffH6hQsXFBaWsPqpU6ecbo+Li3P7I0GeffZZSVKvXr0cy2w2m+x2u2w2m2JjY90dFgDAD+x241ecTgFAcKNVtAoAjIxO0SkAMLpgahWdAgDzCaZOSbQKAMwomFpFpwDAfIzYKbcvXi9QoIC2bt2qUqVKubx98+bNKlCggFv3tW/fPnd3CwCGYDPe+Rt3oVMAghmdMgdaBSCY0Srjo1MAghmdMgdftYpOATAjWmV8zKkABDM6ZQ7MqQAEKzplTG5fvN6wYUMNGzZMjRo1UmRkpNNtV69e1YgRI9SoUSO37qtw4cKejRIAgBTQKQCA0dEqAICR0SkAgNH5qlV0CgCQFphTAQCMjjkVAMBI3L54ffDgwfrqq69UqlQpvfzyyypZsqRsNpv++ecfvf/++7p165YGDx7s0c63b9+ugwcP6saNG07LmzZt6tH9AECa4xVYhkenAAQ1OmUKtApAUKNVhkenAAQ1OmUKvm4VnQJgKrTK8JhTAQhqdMoUmFMBCFp0ypDcvng9T548WrFihbp166aBAwfKbo//P2qz2VS3bl19+OGHypMnj1v3tXfvXj311FPasmWLbDab031JUmxsrKc/BwAgDd0+PxsZnQKA4EaraBUAGBmdolMAYHTB1Co6BQDmE0ydkmgVAJhRMLWKTgGA+RixU25fvC5JRYsW1S+//KKzZ89q9+7dkqTixYsrR44cHu20d+/eKlq0qBYvXqyoqCitXr1aZ86cUd++fTV+/HiP7gsA/CLIX4F1e7JhdHQKQNAyx2k6TdEqWgXA4Mxxmk4zdIpOATA4c5ym01QwtYpOATAlc5ym00wwdUqiVQBMyByn6TQVTK2iUwBMxxyn6DRlxE55dPH6bTly5FB0dLTXO125cqV+//133XPPPQoJCVFISIiqV6+ut956S7169dKGDRu8vm8AgO9t375d9957b6CH4TY6BQDBh1bRKgAwMjpFpwDA6IKpVXQKAMwnmDol0SoAMKNgahWdAgDzMWKnvLp4PbViY2OVKVMmSVKuXLl09OhRlSpVSoULF9bOnTsDMSQASJbNeC8+8olr167pvffe05IlS3Ty5EnFxcU53b5+/XpJUsGCBQMxvIChUwDMxqqdkmhVUmgVALOxaqvolGt0CoDZWLVTEq1yhU4BMCOrtopOuUarAJiNVTsl0SpX6BQAs6FTxuxUQC5eL1++vDZv3qyoqCg98sgjGjt2rCIiIjRt2jRFRUUFYkgAEJQ6deqkRYsW6emnn1Z0dLRsNlugh2QIdAoAjINWuUarAMAY6JRrdAoAjINWJUanAMA46JRrtAoAjINWJUanAMA4zNypgFy8PmTIEMXExEiS3nzzTTVu3FiPPvqocubMqS+//DIQQwKA5Fn0FVg//vijfvrpJ1WrVi3QQzEUOgXAdCzaKYlWJYVWATAdi7aKTrlGpwCYjkU7JdEqV+gUAFOyaKvolGu0CoDpWLRTEq1yhU4BMB06ZUgBuXi9fv36jj9HRUVp+/btOnv2rLJnz26qK/8BwOzy58+vzJkzB3oYhkOnAMA4aJVrtAoAjIFOuUanAMA4aFVidAoAjINOuUarAMA4aFVidAoAjMPMnQoJ9ABuy5EjBwEDAD97++23NWDAAB04cCDQQzE8OgUAgUGr3EerAMD/6JT76BQABAatcg+dAoDAoFPuo1UAEBi0yj10CgACw8yd8us7r3fq1Mmt9aZPn57GIwEAz9gs+vEhlSpV0rVr1xQVFaUMGTIoPDzc6fazZ88GaGSBQacAmJVVOyXRqrvRKgBmZdVW0SlndAqAWVm1UxKtuhOdAmBmVm0VnXJGqwCYlVU7JdGqO9EpAGZFp4zJrxevz5w5U4ULF9aDDz4ou903fyPWrFmjiRMnasWKFTp+/LhsNpvy5MmjqlWrqk+fPqpUqZJP9gMAVtS6dWsdOXJEo0ePVp48eYL+lbB0CgCMh1Y5o1UAYCx0yhmdAgDjoVUJ6BQAGA+dckarAMB4aFUCOgUAxmPmTvn14vWuXbtq7ty52rt3rzp16qS2bdsqR44cXt/fggUL9Mwzz6hOnTrq3bu38uTJI7vdrpMnT2rhwoWqVq2avvrqKzVr1syHPwWAoGTRV2CtWLFCK1eu1P333x/ooRgCnQJgWhbtlESr7karAJiWRVtFp5zRKQCmZdFOSbTqTnQKgKlZtFV0yhmtAmBaFu2URKvuRKcAmBadMiSb3VcvhXLT9evX9c0332j69OlasWKFGjVqpM6dO6tevXoeX/Vfvnx5tW3bVgMHDnR5+3//+199+umn2rZtm0f3WzekpUfrAzCHRXHzvN72vr4TfDiS5G15u4/f9vXQQw/pww8/VOXKlf22T6MzQ6ckWgVYkVk6JdGqQDNDq+gUYD2p6ZTEnCqYmKFTEq0CrIg5lWu0yhmdAhAozKlco1OJmaVV9cJbebwNErPHxgZ6CIADcyrXaJUzs3SKORVgPXTKNTN3KsTfO0yXLp1at26tRYsWafv27SpXrpy6d++uwoUL6/Llyx7d1+7du9W8efMkb3/yySe1Z8+e1A4ZAOJfgeWvLz8aM2aM+vbtq6VLl+rMmTO6ePGi01cwolMATMmfnaJVAUerAJgSnQoadAqAKTGnChp0CoBp0amgQasAmBJzqqBBpwCYEp0ypLBA7txms8lms8lutysuLs7j7YsVK6YFCxaof//+Lm//3//+p6ioqNQOEwAs64knnpAk1alTx2m53W6XzWZTbJC/2p9OAUDg0ark0SoACCw6lTw6BQCBR6uSRqcAIPDoVPJoFQAEHq1KGp0CgMAzc6f8fvH6nR8fsnz5cjVu3Fjvv/++nnjiCYWEePZG8G+88YZatWqlZcuWqV69esqTJ49sNpuOHz+uRYsWaeHChZo7d24a/SQAgolnH25kHkuWLAn0EAyHTgEwI6t2SqJVrtAqAGZk1VbRqcToFAAzsmqnJFp1NzoFwKys2io6lRitAmBGVu2URKvuRqcAmBGdMia/XrzevXt3zZ07V4UKFVLHjh01d+5c5cyZ0+v7a9Gihf744w9NmjRJ77zzjo4fPy5Jyps3r6pUqaJly5apSpUqvho+AFjOY489FughGAqdAgDjoVXOaBUAGAudckanAMB4aFUCOgUAxkOnnNEqADAeWpWATgGA8Zi5Uza73W73185CQkJUqFAhPfjgg7LZkn49wzfffOOvIblUN6Slx9vc92gZtezXVCUrRinnvTk0/KmxWvG/NcluEx4RprbDWqpOm0eVPW82nT58RrNHf6NfZ6TdqyGKlC+knu91Vqno4rp09rJ+nLZIn4/8OuDjus2b43hbuaql9PbSEdq/9ZC6PvRqmo7Tisexaff6atbjCeUpklsnD57W7NHztfizP9J0nP4+jovi5nk91gp9Jni9rac2T+jjt31J0p9//qmpU6dq7969mjdvnvLnz6/PPvtMRYsWVfXq1f06lkAzS6ckz1vl6XkhR95seml8e5WoGKX8JfJqwXs/a3KfmakcdcqseH69jU4laNy1npp0rac8Re6RJB3Ydlifj5ynNb9sTHKb2s9V1zOvNlP+EvkUc+GK1v6yUVNf/VSXzl5Os3HSqaTRqsAxS6s87dRnez9Q3iK5Ey3/7sNf9N7LnyRa/ur0HqrXoWai5fu3HdKL973i0b49kdJ5ocJjZfX2khGJtutUprcO7TyaZuO6U857c+iFMW0U3eBBRaSP0JFdx/T2C5P17/q9LtcP1JjNcCxvazXwSXUe3UbfTPox2cdDVp9TpaZTEnOqYGGWTknePf/nL0261VPLfs2UM1827d92WJP7zNDW5f8EelimY+XjyJzKNeZUSaNV8eiU71j5HOtPVj2OnnbKqHN8yTidkphTBQsztapeeCuP1m839Gm1G/a007Kzx8+rVcGuLtfPkTebuoxtpxIPFY3/PdX7v2hK30+9Hq+7ipQvqJcndVSph///3PDRYn0xKuF49/ukm+o9n/gCof3bDqnLA57/7sceG5uq8aYlq3ZKin++r/pTj6hg6fy6fvWGtq/YqY8HfqHDu5J/3tHq1/gwp0oarYpnpk4ZeU5l5fOrZJ1rUwI1T5G861T1p6LVuGt9FXugiMLThenAtsP6bMRXWrtwU5qOlU65Rqfc49d3Xn/++eeTjZeZRWZMp72bD2jhzCUaPt+9ScmQL19R9jxZ9fYLk3V093Fly51VoWGefYTKnfIUvkef7/swyQBnyJxe/104VJuWbNXL0QNVoGQ+9ZvRQ9dirunrd35Is3F5wpvjKEkZsmRQ/1kva8NvW5Q9T7ZUjSEYj2PjrvXUafRzmtBlqnau2a3S0cXVZ1pXXT4Xo1U/rPNqDFY4jsFg/vz5ateundq0aaP169fr+vXrkqRLly5p9OjR+umnnwI8Qv+iUwnC04XrwumLmj16vlr8p7FPxmCF8wKd8o3Th8/ok0Ff6Mju+FfP12tfUyMWDFC3h17Vge2HE61frlpp9Z/VU1NemalV369Tzvw51Hvyi3rlo24a0WKcV2OwwnEMFrTKmVVb9XL0IIWEJvzbKVK+oMYuGqZl81a6XP+D/8zQx4O+cHwfGhaiqRvH64+vXa/vDl+dFySpQ6leunLxquP7C6cuej0uT2TKllETl4/UpiXbNLjhaJ0/eUH3Fsujy+djUtzWl2O2wrG8rWSlYmr4Yl3t2bQ/2fWYUwUvOuXMqp3yp8eeqapuEzrqvR4fadtfO9Xopboa/dNr6lyuj04dOh3o4ZmG1Y8jcyp4glYloFO+YfVzrL9Y+Th62ikjz/HpVNqjU86s3qr9Ww9pwBNvOr6Pi41Lct3bv6eaM+ZbNe/d0Cf7z1P4Hn22+70kL7zPkDm9xvz8mjYt3aaeVQYrf4l86vdJN12Lua75E3+UJH3YZ6Y+GTzbsU1oWKimrPuv/pz/t0/GaBRW7pQkVahRTt99+Kt2rtmt0LBQdXyztcb8OkQvlOuja1euJ7kd1/gEJ1qVwOqd8gern18l61ybkhbzFHd506n7apTV+sWbNP212Yo5H6P6HWvpje8GqmflQdqzcb9X46BT5mDmTvn14vWZM2f6c3caPHiwjh8/runTp6f5vtb8sjHZd7a5W6X6D6jCY2X1fLGXdelc/LvbnDhwKtF69TvU1DOvNlPeorl1fP8pLXjvJ30/eaFXY6zd5lFFRIZrXMcPdPPGLe3fdkj5S96rFn2aOE4Y7o4rrXh6HG/7z5Qu+n3OcsXFxqlas+hEt3Mck/d42xr6cdpiLftqhSTp+L6TKlO5pJ7t/6TThRbBdhzvZPPbZ1T415tvvqkpU6bo+eef19y5cx3Lq1atqjfeeCOAIwsMOpXgxIFT+vA/MyRJT3SsneR6wXZeoFO+cfdFfDOGzFHjrvVUpnJJl7/AKlO5hE7sP6kF7/0sSTq+/6R+nLZIz7zazGm9YDuOd7JqpyRadTerturCaecLklsNfFJHdh/X5mXbXa5/5eIVXbl4xfF91WYPK1P2jIleoe/v88Jt509eUMyFK0ncU9p5dsCTOnXojMZ3/tCxzN3zUkpjDrZjKUmRGSM16PNemtBlitq81iLZdZlTpcyqraJTzqzaKX9q0aexfpn+u37+5HdJ0uQ+M1Wp3v1q0q2ept9xgQSSZ/XjyJzK96zaKYlW3YlO+YbVz7H+YuXj6GmnjDrHN1KnJOu2ik45s3qrYmNjde7EBbfWPXHglCa/MkuSVL9DrSTXq9f+MT3Tt6nyFr1HJ/af0oIPftH3UxZ5Nb7az1VXRGS4xnee/P/nhsMqUCKfWvynkePi9SsXrzq90ULVppXiz1mzlnq1T6OycqckaXDDUU7fj+/0ob4++YlKVIzSlj93uNyGa3ySZ9VOSbTqTlbvlD9Y/fwqWefaFHfnKWnBm07d/W7101+boypNH1aVJpWcLl6nU9Zj5k5Z+iUMR44c0f79+wM9DJeqNK2kXWv36Jn+zTTn0FTN+GeSuoxrp4jICMc6DV6oo45vttaMIXPUuWwfzXhttjq80Up1XXwMlTvKVi6pzcu26+aNW45la3/dqFz5cyhvkdxuj8to6neoqXuL5dFnI1x/NATHMWXh6cJ149oNp2XXr95QqejiCg0LlcRxtKqdO3eqRo0aiZZnyZJF58+f9/+AgoyRO+UOzgvuoVPJCwkJUc1nqyoyYzptX7nL5TrbV+xUrgI5Fd3gQUlSttxZVaNFFa3+ab1jnWA/jlZGqwIrEK0KCw9TnTaP6tcZv7u9zROdamvD4i06eTDhXSkCcV64bfL6cZp7ZJrGLhqm+2uW82p/3qjSpJJ2rdujoV++oq+Of6zJ68aqwQt13No2uTEH47GUpJ7vd9bfP63Xht+2pLguc6rgRacCy+xzqruFhYepZMUorbvro1zXLdqsclVKBWhU5hNsx5E5FVJCqwLHap2Sgu8cm1aC6Ti606m7GWWOT6f8g04Flr9blb94Xs058KE+3fWuBn/eS3mL5k55o2Q06FxbHd94VjOGzdUL9/XV9KFz1f71Z1S3XeK/U+4oU7mENv+xw/ncsGjz/58b7nG5zRMda2nDb1udzllmF0ydui1j1gySpEtnLye5Dtf4BC9aFThWm1MF4/nVVwL5e6rbXM1T/MWdTt3NZrMpQ+b0TtvQKWsyc6f8+s7r/jZr1qxADyFJ+YrmUfnqpXXj2k293nycsubKrJ4fvKDMOTLp7c6TJUlthzytqf0+1fJvV0uKf0ecQmULqFGXulr06TKP95kjbzYdv+uVK+f//5XN2fNm0/H9J90al5HkL55Xnd9qoz41hiX5sWIcx5StW7hRDTrX0YoFa/Tv+r0qWTFKT3SspfCIMGXNlVlnj5/nOFr0FVj58uXT7t27VaRIEafly5cvV1RUVGAGFUSM3Cl3BP15wQ10KmlFyhfSuytGKSIyXFcvX9OI5uN0cEfid16SpO0rd2lM23f12tw+iogMV1h4mFb8b83/sXfncTbVjx/H33cWM/YZy8ww9p1ERZItEiKylazZ9ySypiwJRbKUlMpSkhZ9/UoRpZ0SUbKTnTH2ZcYMZu7vj8nlMjPuXHf5zL2v5+Mxj8y95879zCdzXj53zjlXbwy4dpa9v86jjY92SqJV3uaNVtVoca9yhGXXyvk/OLR9nqgwVWt8tyZ2mGF3uzf2C6eOntFrvd7Srg3/KjgkWA91qqPJ347WkHpj07wSgisVKBGhZn0aasm0ZVo06XOVq1ZK/Wd00+XEy/r2g59SfYwjY/bHuaz7RA2VvqeE+lcb4dD2rKkc4KOtolPeldnXVDfKnS+nAoMCdfrYGbvbTx87o/CoMK+MKTPyl3lkTeViPtopiVZ5k691SvKffay7+cM8ZqRT1zNpjW9UpySfbRWd8i5Ptmr7ut2a3PVNHdp1VOERudX+uVaa/tOL6ll5SIYOxLpeh+da6e1hC/Xr0j8kSTH7jqto+UJq0vMhrUrjtbD05IkMu+lKoKft9g329+WJCtO9D9+lSZ1ed2r8pvKHTt2oz9TO2vzzNu3bcjDNbTjG5xZ8tFMSrfImX1tT+eP+1VW8sX+9cfvU1ime4kinbvTYs80Umj3E9o7BEp3yVZm5Uz598LojEhMTlZiYaHdbsjVJAZZAtz5vQIBFVqs0qeNM21tMvP3sAr3w6bN6vf97ypojVBFF8mnwu301aE4f2+MCgwLs3jL9nc2vKbLof2f5WlL+88W5D2z3H9t/XD3vHGz73Gq94SfRYrl6h0PjuvFKct4UEBCgkR8O1PtjP9HhXUdT3SZ3vlzMowMWjl+i8KgwzVw7QRaLRaePndXKBT/oiWEtlJyUzDz6sN69e2vgwIGaO3euLBaLjhw5orVr12rIkCEaPXq0t4eH/3irVelhv3BrdCp9h3YcUZ+7hypHWDbVal1dQ+c/pWfrjkn1l1hFyhdS/xldtXD8Z1r/zSblLRCunpM7aeBbvfRaj9l+PY/+gFaZz9WdatztQa1bvlEnj552aPuGXerqwpk4rfnvl1SS9/avh3Ye0aGdR2x3b/ttp/IXyqvHn33UIwdcWwICtHP9Hs0d9ZEkac+mfSp6R2E169MozYPXbzVmf5zL/IXyqt/0rhrR6CVdTrzs0GNYU/kvOpU5mLimSs/NP9qWm3/ecUu+Po+sqeAoWmW+zNYpyff3sZ7iy/OYkU5dz6Q1Pp3yDDqVObiiVX98s8n25306qG2/7dL8HTPU8Mk6WjL96wyPKXe+nCn7hjm9NeitXrbbb9w3zNk0xbZvuPpj/n+n59vuP7b/uHrdNdT2+Y37hmu7hpv3zw2ffCBln/V/f9x0ny/w5U5db8Ab3VW8UhENqv1CuttxjI//olXmy2xrKn/Zv7qKt9YD10ttneIpjnbqevXa1lSnMY9rTIvJOnP8nCTWVb4sM3cq0x+8HhcXp0WLFmnNmjWKiYmRxWJRZGSkatasqXbt2il79uzpPn7SpEkaN26c3W3FVV4l5d63Iz959LROHD5l+6GUpAPbDisgIED5C+VR3LmLkqRpvd7S9t932z32+iu3jnpkooKCU/435ovOo6k/jFOfu68trq5cvva2DKdizihPZJjd1wqLyCXp2hnDtxrX4d0xt/Ntu1TWnKEqe28plbq7uJ56vbskyRJgUUBAgFZcWqwRjV6ynXHEPKbvUsIlTe0+W9N7z1F4ZG6dOnpGTXo9pLhz8Tp74rxy50/5/phH3zNs2DCdPXtW9erVU0JCgurUqaOQkBANGTJETz31lLeH5xNut1OS91qVHktAyj842S+kjU6l78rlKzqyJ+V5dm74V2WrllTLgU00o8+cm7ZtN6Kltvy6Q5+++oUkae/mA7oYl6jpP4/X/Oc/UnJyysLHH+fRH9Aq9zNpTRVRJJ/ufqiSxrWe4vBjHu76oL5d+JPdz7C3OpWa7b/vUv0OtR3+fm7HqaOnbzoQ4MC2w6rdqnqGvs71Y/bHuSxdpYTCI8P05vpXbLcFBgXqzjrl1bz/w2oS2l7JyfbvqMKayn/RKffz1TVVas6eOK+kK0nKc8OVlsIictuuWINb85d5ZE0FR9Eq9/KnTkn+s491N3+Yx4x06nomrfHplGfQKfdzV6tKWO5QycCKTo8rIT5R+/45oIKlCjj1eEtAgCRpep852r4u7X3D84++oqDglIMX8xbMo6mrx6hv1eG2+69cTrL9+dSxMwq/ad+QW5JS3T836lJX3334i93X8AX+0Kmr+s/spurNqurZB8boxOFT6W7LMT7+i1a5lz+tqfxp/+pKJvyeKrV1iidkpFNXPdCmhga/21fj27ymjd9ttt3Ousp3ZeZOZeqD17du3aoGDRooPj5eDzzwgIoUKSKr1arY2FgNHTpUY8eO1cqVK1WhQoU0v8bIkSM1ePBgu9ta5u7i5pFLW9bsUJ3H71do9lAlxCVIkqLLFFBSUrKOHzqlSwmXdPzQSRUoEanVi35J8+vEHjhh+3PSlZRF0dUXg2609bed6jahnYKCg2w7kqoNK+vE4VO2t7u41bhMEn/uot2ZPJLUrF8j3VWvosY/PlUxe2OVEJ/IPGZA0pUkW+zqPVFTvy/7U1arVWdizzKPPnyS44QJEzRq1Cht3bpVycnJqlChgnLkyOHtYfkEV3RK8l6r0sN+4dboVMZYLBZlyRKc6n0h2bIo6Yr9QYJXF1AWi0VnYs8wjz7cKYlWuZNpa6pGXevpTOxZ/f7Vnw5tX+mBCoouXUAr3lttd7u3OpWakncV18mjZxz6fm7Xll93qFCZgna3FSpT4Ka3O76V68fsj3O58bvNNzV8yNx+Orj9iD6evPSmA9evx5oqHT7cKjrlPr68pkrNlctXtHPDv7qnQSX9unSd7fZ7HqqkNV/45pX83MFf55E11W3y4U5JtMpd/K1Tkv/uY13NH+cxvU5dZdoa36hOST7dKjrlPu5sVas83W9rbMFZglS4XLQ2/7Ldqcfb9g3FI7X6o1/T3M5+35Dyb+Aje46luu2233ap6/gnFBQcaDsgvcpDlf7bN9i/vlapzn/7rHlTnRq/yfylU0+93l01W1TTkHpj0n1N8iqO8bkFH+6URKvcxd/WVP6yf3U1b/+eKq11irtltFNSyhXXn32vnya2n651X9v/rtXv11V0ykgB3h7A7ejfv7/q1KmjY8eOaenSpXr77bc1Z84cLV26VMeOHVOdOnXUv3//dL9GSEiIcuXKZffhzNuGhGYPVcnKxVSycjFJUlTxCJWsXEz5C+eTJHWb2F7D5l87k2H1ol907uR5DZ3bT0XKF9Kdtcur1+RO+mbeatvbIXww7hO1HdFSLZ9uoujSBVSsYhE16lJXrQc1zfD4rj7n5cQrGjqvv4rdUVg1W1RTu5GttGTalxkalztlZB6tVqv2bTlo93Em9qwuJ1zWvi0HlRCf8pYwzOOt/z5Gly6g+h1qK7pUlMreW0rPLXpGxSoW1txRi2zb+OM8+oNu3brp/PnzypYtm6pWrapq1aopR44ciouLU7du3bw9vEzPFZ2SXNOqjO4XJNm2z5ojVLnz5VLJysVUpHwh2/3+uF+gU67RbUI7VaxVTpFF86tYxSLq+lI7Vap7h75b9HPK/Tf8ffxt2QbValVNTfs0VFTxCN1Ro6z6z+iqbb/v0smjpyX55zz6C1rlXiatqSwWixp1qadV7/9od4a/lHqnJKlxt/ra9ttO2ztZXM8b+4WWA5uoRvN7FV0qSkUrFFK3ie1V57Hq+mLWcqeeM6OWTF+m8tVLq93IlipYMkr12tVSk54P6Ys3V9i2uXEuHRmzv83lxQsJNzU8IS5R506dt/1dY02Fq+iUe5m0pvKUJdOWqXH3+mrUtZ6KlItWn9c6K6JIPi17a6W3h5ap+Po8sqZCRtAq9/HHTkm+v4/1FF+ex4x26irT1vh0yjPolHuZ1Kqer3TUnbXLK6pYfpWrVkovfDxI2XJl1aoPfpIkdXuprYbO62f3mBKVi6pE5aLKmiNEYflzqUTloipSPtp2/wfjP9MTw5urxYDG/+0bCqth5wfU+pkmGRrbVas/Stk3DHmvn4rdUUg1m9+rdiNaaMn0r27a9uFu9bTt913at+VQKl8p8/PlTknSgFk9VL9DbU3qMEPx5xMUHhmm8MgwZQnNYtuGY3xwFa1yH5M65Sm+vn+VfOfYlKvSW6e4izOdqte2poYteEpvD1mgbb/tsj0mW65stm3olG/KzJ3K1Fde//3337V+/XplyZLlpvuyZMmi5557TtWqVfPIWMpULaGp3197C5K+r3WRJK2c/4OmdJulvFHhiiiSz3Z/QlyCRjQcr/4zu2vWHy/r3Mnz+unTtZr3/GLbNsvfW62E+EtqM+RR9XiloxLiErVv8wF9PuPmxZEj4s/Fa3jD8RrwRspznj8dp8+mfanPXluWoXG5U0bn0RHM463nMTAwQI8NbqZCZQsq6XKSNn3/jwbWfN7uCo3+OI/Xs/joGVgLFizQyy+/rJw5c9rdfvHiRb3//vuaO3eul0bmGzJzpyTprY1Trnt8SdXvUFsx+2LVqUTKAtEf9wt0yjXCIsM0/P0BylMgXHFn47X37/16rvEE/fnt35J00zyuXPCDsuYMVfP+D6v3q08q7kycNq7+R++O+NC2jT/O4/V8tVMSrXI3k1p1z0N3KrJofq2Ye/OVC1Lbv2bLlU21Wt+nN5+Zl+rX88Z+IThLkHpNeVL5ovMo8eIl7d9yUKMemah1yzc69ZwZtXP9Ho1tNUXdJ3ZQxxceU8zeWM0eNN/uCgo3zqUjY/bHubwV1lQZ56utolPuZVKnPOXHT9YoV94c6vjCY8pTIFz7/knZ/11/xRvcmq/PI2sq1/PVTkm0yp38sVOS7+9jPcWX5zGjnZLMXOOb1CnJd1tFp9zLpFblj86j5xYOUK58uXT2+Dlt+32XBtZ6wbbfy1MgXBGFb/g91fpXbH8uU6WkHmxXSzH7juvJ0gMkSSvmfq/E+Et6/Nmm6jGpfcq+4Z8D+t9M5y5+EH/uokY0nqABM7vpjd8m6vzpOC2Z/tVNB69ny5VVtVpW0+zBC5x6nszAlzslSY/2bSRJmvrDOLvbp3SdpZULfpB0c684xid9vtopiVa5k0md8hRf379KvnNsinTrdYq7ONOpR3o1UFBwkJ6e1VNPz+ppu/3qvEt0yldl5k5ZrFZrpv1fEx0drTfffFPNmzdP9f6lS5eqf//+Onz4cIa+boOAx10xPACGWZX8qdOPvWvANBeOJH2bXh/k9uc4d+6crFarwsPDtWvXLuXPn992X1JSkr788kuNGDFCR44ccftYfJm7OiXRKsAXZZZOSbTKl7CmAuCo2+mUxJoKzmFNBSAjWFPZo1XuR6cAZARrKnt0yjPc2aqGwW1vd3iQZE1K8vYQABvWVPZolfuxpgKQEXTKni90KlNfeb1nz57q3Lmznn/+eTVo0ECRkZGyWCyKiYnRqlWrNHHiRD3zzDPeHiYAX2DoaT6TJk3S559/ru3btytr1qyqUaOGXnnlFZUtWzbdx4WFhclischisahMmTI33W+xWDRu3LhUHomMoFMAPMbQTkm0ynS0CoDHGNoqOmU2OgXAY3ysUxKt8gQ6BcCjfKxVdMozaBUAj/GxTkm0yhPoFACPMbRTkn+vqTL1wetjx45V1qxZ9dprr2nYsGGyWCySJKvVqqioKI0YMULDhg3z8igBwH1+/PFH9e/fX/fee6+uXLmiUaNGqWHDhtq6dauyZ8+e5uO+//57Wa1WPfjgg1qyZIny5Mljuy9LliwqWrSoChYs6IlvwafRKQCgVaajVQD8HZ0yG50C4O+c7ZREqzyBTgEAayrT0SoA/o41ldnoFAD495rKYrVaDT6vwHF79+5VTEyMJCkqKkrFixd3+mvx1iGAb7qdtw+5u7/n3j5k4yzn3zrk+PHjioiI0I8//qg6derccvv9+/erSJEitkUA3MeVnZJoFeCLMkunJFrlq1hTAUjP7b7FPWsq3C7WVABuxR/WVBntlESrPIVOAbgV1lSpo1Oe4+pWNQxu64ph+T1rUpK3hwDYsKZKHa3yDNZUAG7FHzol+deaKlNfef16xYsXv+1wAYAJEhMTlZiYaHdbSEiIQkJCbvnYs2fPSpLd2VTp2bZtmw4ePKhatWpJkmbNmqV33nlHFSpU0KxZsxQeHp7B0SMtdAqAL6FVvolWAfAVdMo30SkAvsTZVmW0UxKt8hQ6BcCXsKbyTbQKgC9hTeV76BQAX8KayjEB3h7A7Xr99dfVuXNnffLJJ5KkDz74QBUqVFC5cuX03HPP6cqVK14eIQCfYPXcx6RJk5Q7d267j0mTJt16iFarBg8erFq1aqlixYoOfVtDhw7VuXPnJEmbN2/W4MGD1aRJE/37778aPHiwQ18D6aNTADzCg52iVb6HVgHwCDoFJ9EpAB6RCdZUznRKolXuRqcAeIzhnZJYU5mKVgHwCNZUcBKdAuARmaBTkv+tqTL1ldfHjx+vKVOmqGHDhho4cKD27t2rKVOmaNCgQQoICNC0adMUHByscePGeXuoAOCwkSNH3hQPR868euqpp/T333/rl19+cfi59u7dqwoVKkiSlixZombNmmnixIn6888/1aRJk4wNHDehUwB8Fa3yHbQKgC+iU76DTgHwVc60yplOSbTKnegUAF/Fmsp30CoAvoo1lW+gUwB8FWsqx2Tqg9fnz5+v+fPnq1WrVvrrr79UpUoVLViwQB06dJAklStXTsOGDSNiAG6bxeq553L0bUKuN2DAAH3xxRf66aefVKhQIYcflyVLFsXHx0uSvv32Wz355JOSUt565OpZWXAenQLgKZ7slESrfAmtAuAprKngDDoFwFNMX1M52ymJVrkTnQLgSayp4AxaBcBTWFPBGXQKgKeY3inJP9dUmfrg9aNHj6pq1aqSpMqVKysgIEB33XWX7f577rlHR44c8dLoAMD9rFarBgwYoP/973/64YcfVLx48Qw9vlatWho8eLBq1qypdevW6eOPP5Yk7dy5M8OLNtyMTgEArTIdrQLg7+iU2egUAH93u52SaJU70SkAYE1lOloFwN+xpjIbnQIA/15TBXh7ALcjKipKW7dulSTt2rVLSUlJts8lacuWLYqIiPDW8ADA7fr376+FCxdq0aJFypkzp2JiYhQTE6OLFy869Pg33nhDQUFB+uyzzzR79mxFR0dLkpYvX66HH37YnUP3C3QKAGiV6WgVAH9Hp8xGpwD4u9vtlESr3IlOAQBrKtPRKgD+jjWV2egUAPj3mipTX3m9ffv2evLJJ9W8eXN99913Gj58uIYMGaKTJ0/KYrFowoQJeuyxx7w9TAC+wMNvH+Ko2bNnS5Lq1q1rd/u8efPUpUuXWz6+SJEiWrZs2U23T5s2zRXD83t0CoDHGNopiVaZjlYB8BhDW0WnzEanAHiMj3ZKolXuRKcAeJSPtopOuRetAuAxPtopiVa5E50C4DGGdkry7zVVpj54fdy4ccqaNat+++039e7dW8OHD1elSpU0bNgwxcfHq1mzZho/fry3hwkAbmO13l5d69atq27duunxxx9X1qxZXTQqXEWnAIBWmY5WAfB3dMpsdAqAv7vdTkm0yp3oFACwpjIdrQLg71hTmY1OAYB/r6ksVleU2sc0CHjc20MA4Aarkj91+rH39Pbc2Uh/vj3IY8/17LPP6sMPP9TFixfVpk0bde/eXdWrV/fY88N5tArwPZmlUxKtwq3RKcD33E6nJNZUMA+tAnwPa6rU0arMiU4Bvoc1VeroVObVMLitt4fgE6xJSd4eAmDDmip1tCpzYk0F+B46lbrM3KkAbw8AAOA9U6dO1eHDh/X+++/r+PHjqlOnjipUqKBXX31Vx44d8/bwAACgVQAAo9EpAIDpaBUAwGR0CgBgOloFADBZZu4UB68DgAMsVs99eFpgYKCaN2+upUuX6vDhw2rfvr1eeOEFFS5cWC1atNDq1as9PygAQIZ4slO0CgDgDDoFADAZaypaBQCmo1MAAJOxpqJVAGAyOmVmpzh4HQAgSVq3bp1Gjx6tV199VRERERo5cqQiIiLUrFkzDRkyxNvDAwCAVgEAjEanAACmo1UAAJPRKQCA6WgVAMBkma1TQd4eAABkCl44K8oTYmNj9cEHH2jevHnatWuXmjVrpsWLF6tRo0ayWCySpDZt2qhFixZ69dVXvTxaAECafLRTEq0CAJ/ho62iUwDgI3y0UxKtAgCf4aOtolMA4CN8tFMSrQIAn0CnjOwUB68DgB8rVKiQSpYsqW7duqlLly7Knz//TdtUq1ZN9957rxdGBwAArQIAmI1OAQBMR6sAACajUwAA09EqAIDJMnOnOHgdABxgsfrmKVjffvutqlSpouzZs0uS9u/fr//9738qX768GjVqJEnKlSuXvv/+e28OEwBwC77aKYlWAYCv8NVW0SkA8A2+2imJVgGAr/DVVtEpAPANvtopiVYBgC+gU2Z2KsDbAwAAeM9LL72kDz74QJJ05swZVatWTVOnTlWLFi00e/ZsL48OAABaBQAwG50CAJiOVgEATEanAACmo1UAAJNl5k5x8DoAOMLqwQ8P+vPPP1W7dm1J0meffaaoqCjt379f77//vmbOnOnZwQAAnOfJTtEqAIAz6BQAwGSsqQAApqNTAACTsaYCAJiMThmJg9cBwI/Fx8crZ86ckqSVK1eqVatWCggIUPXq1bV//34vjw4AAFoFADAbnQIAmI5WAQBMRqcAAKajVQAAk2XmTnHwOgA4wGL13IcnlSpVSkuXLtXBgwf1zTffqGHDhpKk2NhY5cqVy7ODAQA4zZOdolUAAGfQKQCAyVhTAQBMR6cAACZjTQUAMBmdMhMHrwOAHxs9erSGDBmiYsWK6b777tP9998vKeVMrLvvvtvLowMAgFYBAMxGpwAApqNVAACT0SkAgOloFQDAZJm5U0HeHgAAwHsee+wx1apVS0ePHlXlypVtt9evX18tW7b04sgAAEhBqwAAJqNTAADT0SoAgMnoFADAdLQKAGCyzNwpDl4HAEd4+C09PCkqKkpRUVF2t1WrVs1LowEAOMWHOyXRKgDwCT7cKjoFAD7Ahzsl0SoA8Ak+3Co6BQA+wIc7JdEqAMj06JSRArw9AAAAAAAAAAAAAAAAAAAAAACA7+PK6wDgAIuPn4EFAMjc6BQAwHS0CgBgMjoFADAdrQIAmIxOAQBMRqfMxJXXAQAAAAAAAAAAAAAAAAAAAABux5XXAcARnIEFADAZnQIAmI5WAQBMRqcAAKajVQAAk9EpAIDJ6JSRuPI6AAAAAAAAAAAAAAAAAAAAAMDtuPI6ADjAwhlYAACD0SkAgOloFQDAZHQKAGA6WgUAMBmdAgCYjE6ZiSuvAwAAAAAAAAAAAAAAAAAAAADcjiuvA4AjOAMLAGAyOgUAMB2tAgCYjE4BAExHqwAAJqNTAACT0SkjceV1AAAAAAAAAAAAAAAAAAAAAIDbceV1AHCAhTOwAAAGo1MAANPRKgCAyegUAMB0tAqmufhIFW8PwSeEfrHO20MAXIJOAb4pICTU20PwCcmJCd4egt+jU2biyusAAAAAAAAAAAAAAAAAAAAAALfjyusA4Agrp2ABAAxGpwAApqNVAACT0SkAgOloFQDAZHQKAGAyOmUkrrwOAAAAAAAAAAAAAAAAAAAAAHA7Dl4HAAAAAAAAAAAAAAAAAAAAALhdkLcHAACZgYV3DwEAGIxOAQBMR6sAACajUwAA09EqAIDJ6BQAwGR0ykxceR0AAAAAAAAAAAAAAAAAAAAA4HZceR0AHMEZWAAAk9EpAIDpaBUAwGR0CgBgOloFADAZnQIAmIxOGYkrrwMAAAAAAAAAAAAAAAAAAAAA3I4rrwOAAyzJ3h4BAABpo1MAANPRKgCAyegUAMB0tAoAYDI6BQAwGZ0yE1deBwAAAAAAAAAAAAAAAAAAAAC4HVdeBwBHWL09AAAA0kGnAACmo1UAAJPRKQCA6WgVAMBkdAoAYDI6ZSSuvA4AAAAAAAAAAAAAAAAAAAAAcDuuvA4ADrBwBhYAwGB0CgBgOloFADAZnQIAmI5WAQBMRqcAACajU2biyusAAAAAAAAAAAAAAAAAAAAAALfjyusA4Agrp2ABAAxGpwAApqNVAACT0SkAgOloFQDAZHQKAGAyOmUkrrwOAAAAAAAAAAAAAAAAAAAAAHA7Dl4HAAAAAAAAAAAAAAAAAAAAALhdkLcHAACZgYV3DwEAGIxOAQBMR6sAACajUwAA09EqAIDJ6BQAwGR0ykxceR0AAAAAAAAAAAAAAAAAAAAA4HZceR0AHMEZWAAAk9EpAIDpaBUAwGR0CgBgOloFADAZnQIAmIxOGYkrrwMAAAAAAAAAAAAAAAAAAAAA3I4rrwOAAyycgQUAMBidAgCYjlYBAExGpwAApqNVAACT0SkAgMnolJm48joAAAAAAAAAAAAAAAAAAAAAwO248joAOMLKKVgAAIPRKQCA6WgVAMBkdAoAYDpaBQAwGZ0CAJiMThmJK68DAAAAAAAAAAAAAAAAAAAAANyOK68DgAMsnIAFADAYnQIAmI5WAQBMRqcAAKajVQAAk9EpAIDJ6JSZuPI6AAAAAAAAAAAAAAAAAAAAAMDtMvWV1y9duqQsWbLYPt+zZ49ef/117dq1SwUKFFDfvn1VpUoVL44QgM/gDCw4gU4B8Bg6BSfRKgAeQ6vgBDoFwGPoFJxEqwB4DK2CE+gUAI+hU3ACnQLgMXTKSJn6yutZs2ZVbGysJGnTpk2qVKmSfvzxR0VHR+vvv/9WjRo1tG7dOi+PEgDgr+gUAMB0tAoAYDI6BQAwHa0CAJiMTgEATEanAMC/Zeorr1ut106JeOGFF9SkSRN98sknslgskqRu3bppzJgxWr58ubeGCMBHWDgDC06gUwA8hU7BWbQKgKfQKjiDTgHwFDoFZ9EqAJ5Cq+AMOgXAU+gUnEGnAHgKnTJTpj54/XqbNm3S4sWLbQGTpIEDB6pRo0ZeHBUAACnoFADAdLQKAGAyOgUAMB2tAgCYjE4BAExGpwDA/wR4ewC3w2Kx2KIVGBioXLly2d2fK1cunT171htDAwCATgEAjEerAAAmo1MAANPRKgCAyegUAMBkdAoA/FumvvK61WpVmTJlZLFYdOHCBW3evFl33nmn7f5du3YpKirKI2O5s3Z5PT7kUZWpUkJ5C+bRmJaTteb//khz+ztqllPPlzuocLlohWQL0bH9x/XVnFX6fPpXbh1nsYpFNOD17ipbrZTOn7qgr+as0sLxn9ltE5wlSB1HP676HWorPCpMJw6d1KKJn+ubed+7dWxSxuexVstqatqnkUreVUzBIUHav+WQPhj3idav/Mut4zR9HtPStE9DNevTUJHF8kuS9m85pIXjP9UfKza57TlrtbpPXV5sqwIlI3V0zzHNe/4j/bp0nd02eQvmUY+XO6ha47uVJWsWHd55VFN7zNauP/9127gyLJn3D0HGmdQpT2rWt6EeH9JceQuEad+WQ5o9aJ7++WW7t4flEp3GPK4nx7Sxu+1UzBk9UbBnqtub2qlKD1TQ1O/H3fS4buUH6uCOI24d261kdI5dwSdaRafgJFNb1XZEC3Wf2EGfz/hKswfNT3O7R/s1UvP+DyuyWIRiD5zQoolL9O0HP7l1bJl5H+tqvtz8rDlC1WV8W9VsUU1hEbm1e+NevfnMPO1cvyfV7fNEhan3q51VukoJRZeO0tLXl6f7d9dVMtXalFbBCaZ2yt18ef/qSb48j21HtFCtlvepcLloJV68pK1rdujdER/q0M70/63xYPtaajO0uaJLF1Dc2XitX7FJbw99X+dPXXDbWDNNq+gUnESrfG8f60m+Oo+387uoO2qU1dQfxmnfPwfV556hbh1npmnUVbQKTjCpU5UrFFK7lveqbMko5cuTQ89N+p9+/n23Q4+9s1y0Zk5oq70HTqjboAVuHWeJovk0qOdDKl86SucuJOiLb/7S/E/W2m3TsvHdatXkbhWIyKVjJ87r/U9/0zc/bHHruK5yZi3A61Y3c3ZNZeLr0ZIhvaJTcIJJnfIkX10HXFWxZlk9PugRlb6nmPIWCNfYNtO19ssNDj22wv2l9erKUdq35ZD6VX/ereMsdkch9Z/WWWWrltD50xf09bvf68NJS+22qde2htoMekQFS0Uq7uxFbVj1t+aM/Mitr6VJzq2pvNGCTNMoiU4ZKlMfvD5v3jy7z0uWLGn3+W+//aaWLVt6ZCyh2UP079/7tXL+9xqz5NYvpiTEJej/Zq3Qv3/vV0JcoirWKqeBb/VSQlyivn7nW6fGEFk0vxbufVMNAh5P9f5sObPqlZUv6K/v/9FT1UaoUJkCGjKvvxLiEvTZa8ts2z3/8WCFR+bW1B6zdWR3jMIiciswyDMX6c/oPN5Zp4L+/PYvzR21SHFn4tSoaz29+MUIDag+Uns27XNqDL4wj2k5ceik3hv5oQ7vjpEkNexcV+OWDlffe4Zq/9ZDGf56DTvXVcPOdTXkwbGp3l++ehk9v3iQ5o9erF//t041W1bT8x8P0qDaL2j7upQXI3KEZdf0X8brr++36LkmE3Um9qwKlozUhTNxzn6bgDFM6pSnPNCmhvpO66rX+7+jLb/u0CO9G2ji16PU/Y5BOn7whLeH5xJ7/zmg4Q3G2z5PTkpOc1uTOyVJXco+rfhzF22fnz1+zqkxuVpG5vhWaBWQPhNbVaZqSTXp2UB7/tqX7nZN+zRUt4ntNa3X29rxx26Vq1ZKg+b00YXTcfptmWMvgt3IH/axruLrzR/8Tl8Vq1hYrzz5uk4eOa36HWtr8qrR6n7HIJ08cuqm7YNDgnX2xDktmrhErZ9p6pIx+PLaFHCUiZ1yN1/fv3qKr89jpTp36Is3v9GOP3YrMChQXV9qp5e/eV497hikhPjEVB9zR81yGrZggN4aPF+/fblBeaPzaODsnhr8Tl+Naz3FqXHQKoBW+eI+1lN8eR6d/V1UtlzZNGzBU9r43WaFR4bd1hhoFJDCpE6FhgZr997j+vq7fzRhRAuHH5c9WxaNeqaJ/vx7v8LDst/WGKIicunTOb1Vu0Xq//7NljWLXhvbRhs3H1DPoQtVuGC4nnu6sS4mXtbH/7dektTi4bvUu1NtTZ71jbbtjlGF0gU0rH8jnY9L0Jo/Ur/ogSs5sxbgdaubOTOPJr8eTa+QWZnUKU/x5XXAVaHZQ/Tv5gNa+cFPGr14oMOPy5Yrq4a+21sbv9+i8IjctzWGyCL59P6OaWqUtVPqz5UzVJOWDddfP23TgFpjVKh0lJ6d00sJ8YlaMmO5JOmOGmU09N3eenvYh/rtq43KFx2up2d21aDZ3fXiEzNua3y34syaytUtoFHwhEx98Hrnzp3TvX/06NEeGon0x4pNGbp69Z5N++wOWju2/7hqtbxPd9Yqb3fweqMuddVmaHNFFY9QzL7jWvr61/py9kqnxvhgh9rKEhqsKV1n6fKlK9q35aCiyxRU60HNbDuNqo3uUqUHKujJkk/p/OkLtrF5Skbn8cYzgueO+kj3P3qv7m9W1W5+/W0e03Ljomne8x+paZ+GKl+9jPZvPaSg4CB1eamt6revrexh2bTvn4N6d8RC/f3jVqeer9XAR7Rh1d9a/PJSSdLil5eqUp071GrgI5rYISXkTwxvoeMHT+rV7m/aHmfCXN2EE7DgBJM65SmtBzXVirmrtfy91ZJS9tNVG1ZWs74NNfe5RV4enWskX0nW6WNnHNrW1E5ddSb2rOLOxjv1PO6U3hzTqjTQKTjJtFaFZg/VyIVPa1qvt9RhVOt0t32oYx19Nedb/fjJGklSzN5Yla9eRk8Ma2H37172se7hy83PEppFtVvfp9EtJmvzz9skSR+M+1Q1m1dTs74NNf+FxTc95tj+43rzmZQX2h/u+mCaX9uv16a0Ck4wrVOe4Mv7V0/y9Xl8rskEu89f7famPot9T6WrlLC160blq5fWsX2xWvp6yi/gYvbF6qs5q9RmaHO77fy2VXQKTqJVvreP9RRfnsdb/S4qLc+81UurP/pFyUnJqtm82k33+22jrqJVcIJJnfr9z736/c+9GX7c0L4NteqnrUpOtqr2faVvur/JgxXVrmU1FYjMrZjYs/rsqz+1dPkmp8bY8IEKypIlUBNnLtflK0nae+CEChcM1xOPVrUdvN6wbgV98c1fWv3rDknS0WNnVaFsAXVoWc0jB687sxbgdaubOTOPpr4ebUyv6BScYFKnPMWX1wFXrV/5t9av/DvDjxv4Rjd9//FaJSclq0azKjfd37BTbT0++BFFFcuvY/tPaOmbK7VszndOjfHBtjWVJTRYU3vO0eVLV7R/6yFFl45Sq6cfth28Xr5aKR3bf1z/92bKPvzY/uP66r3VajP4EaeeMyMyuqZytAV+2yiJThmK0xgMUfKuYqpQo6z+/una20k17lFfXV9qp3nPf6TuFQZp3qhF6vJiWzV48gGnnqNC9TL6+8etunzpiu229d9sUr7oPIoqFiFJuv/Rqtq5fo/aDGuujw6+rXnbZ6jXlE7KEprl9r5BD7FYLMqWM6vd23Mwj6kLCAhQ3SdqKDR7iLau3SlJGjK3nyrWKKsJ7aapd+Uh+umztZq0fJSiSzn3NjwV7i+jDav+srtt/cpNqlCjrO3z+5tV1c4Ne/TCx4P1Scy7mr1hshr3qO/8NwbAa4KCg1SmSgltWGn/c79h1d+64/6yaTwq8ylYOkqLD72t9/fM0nOLnlFU8QiHH2tKp66a/ecULT48R5NXjVblunc49XzukN4c0yrAtw14o7t+//pPbfxu8y23DQ4J1qWES3a3JV68pLLVSikwKFAS+1h38fXmBwYFKDAoUJdT+ftVsWY5p78ua1MAt+Lr+1dP8cd5zJ47mySl+5bFW9fsUL5CeVWt8d2SpLCI3KrT+n6t+/pP2za0CsCt+OM+1h38aR5T+11Uahp1qauCJSP1wbhPU72fRgH+qcmDFVUwKkzzF69J9f5mDSqpZ8faeufDn9Xpqbmas/Bn9WhXSw/Xc+61uDvKFtSmfw7q8pUk223rNu5T/rw5VeC/K8BmCQ5U4uUrdo+7lHhF5UsXUGCg5w+/cWQt4Ah/3886Mo+mvh5t0jwCSJ8/rQMyqmGn2ipQIkILJ/wv1fsbd62rLuMe1/yxn6nHXSM0b8yn6jy6tR7qUMup5yt/Xylt/nm73f51w6rNylcwjyKL5pckbf1tl/JF59G9jSpLksIicql2y2pa5+RJcs5yZE3lSAtoFEyUqa+8fivPPfecYmJiNHfuXG8PJU2LDryl3PlzKTAoUB+M+8R2ZpUkdXz+Mb095H398r91klKuhlOkQiE90quBVr3/Y4afK09UmGJuOHvlzLGzkqTwqDDF7ItVgeKRqlirnC4lXNbYVlOUO19ODZjVQznz5NDU7rNv4zv1jMeebabQ7CG2s10l5vFGxSoW0cw1E5QlNFgXLyRoXKspOrDtkAqUiFS9djXVvnAfnTx6WpL02dQvdW+ju9Soaz3NHfVRhp8rPCpMp/+bm6tOHzur8Kgw2+cFSkSoWZ+GWjJtmRZN+lzlqpVS/xnddDnxsr794Kfb+l5dycIZWHCDzNCpjMidL6cCgwJvumL26WNn7H7uM7Ptv+/S5M5v6NDOowqPzK0Oo1prxq8T1KPiIIdeGDSlU6eOntFrvd7Srg3/KjgkWA91qqPJ347WkHpj07yihKekN8c5wrLTqjTQKbiLJ1tV94kaKn1PCfWvNsKh7Tes3KTG3etrzdI/tOvPf1WmSgk93LWegrMEKXe+nDoVc4Z9rJv4evMvXkjQljU71OH5x3Rg22GdPnZW9drVVLn7Sunwrhinv66/r01pFdyBNRVS44/z2GdqZ23+eZv2bTmY5jZb1+7Uyx1natTiQcoSGqyg4CCt+b8/9MaAaz8//twqOgV3oVVIjT/MY1q/i0pNdKkodZ/UQYPqjFZyUnKq2/hzo66iVXAHkztVqECYej9ZR08995GSklP/Aejc5n69Me97/fTbLknS0dizKlY4rx5tVFkrvt+S6mPSkyc8u2Ji7X9fcOpMnO2+o7FntW7jPjV7qJJ+/n23du45prIlI9XkoTsVHByosFxZdfJ0XIaf93Y4shZwhL/vZx2ZR1NfjzZlHukU3MHkTjnDH9YBzihYMlLdxj+hZx96Kc31QPuRzTVnxCL9+t87oRzbf1xFykXrkR4P6tsPf8nwc4ZH5tax/Sfsbjv9378B8kTl1rH9x7X1t116petsPfdBf9traWu/3KBZgz/I8PM5IyNrKkda4M+NkuiUqXz64PXDhw/r4MH0/5GemJioxMREu9uSrUkKsAS6c2g2g+uMVmiOUJWvXlo9JnXQkd0x+n7xr8qdL5ciiuTT4Hf7atCcPrbtA4MC7N56/p3Nr9nO+JEl5T9fnLu2kzy2/7h63jnY9rnVesNPosVy9Q5JUkCARVarNKnjTMWfS3met59doBc+fVav93/vpjNJTVKvbU11GvO4xrSYrDPHz0kS85iKQzuOqM/dQ5UjLJtqta6uofOf0rN1x6jYHYUUEBCgeTtm2m0fHBKkcydTDsjMXzif3tsyzXZfYFCAAoOD7Obquw9/0oy+71z7AjfMlcVif5slIEA71++xHXC4Z9M+Fb2jsJr1aWTMAYGAuzjSKcn7rcqom3eRlpv3m5nUHys22f687x9p29qdWrD7DTXsXFdLpi1L97EmderQziM6tPOI7e5tv+1U/kJ59fizj3r9wMr05vj4wRO0CvAwT62p8hfKq37Tu2pEo5d0OfGyQ49ZOH6JwqPCNHPtBFksFp0+dlYrF/ygJ4a1UHJSMvtYD/Dl5r/y5Osa8l4/LT48R0lXkrTrz71avegXlb6nhFNfj7Up4B6sqZAef5nHAW90V/FKRTSo9gvpblekfCH1n9FVC8d/pvXfbFLeAuHqObmTBr7VS6/1mE2rADfJDL+ncoa/7GPdzZfnMa3fRd14sEVAQIBGfjhQ74/9RId3HU31a9EowH1ua02VdEUBge453CQgwKLRg5tq7ke/6uCR06luE5YrqyLz59KIpx7WsH6NbLcHBgYoLv7aWN+f2VWR+XNJuvZj/s1HA233Hzt+Tk8+Pc/2eWr75pTbU+6Y/8la5QnLrrdf6SBZLDp9Jk7LV/+jDq3uS/Mge3dxdC1wK/6+n3V0Hk19PdqUeQTcgdf+fF9AgEUjFvTTBy99rsO7U794UO58ORVROJ8Gze6hZ2Z1t92esn+9aPt8zoZJiiiST9K1fi89fu2YgNgDJ9Srykjb5zfO+Y3NL1KuoPpN7aQPJy3VhlWblScqTD0mttXTr3fVtL7v3s637RBH11TSrVuQNUcojYKRfPrg9QULFtxym0mTJmncuHF2txVXeZWUZ97WPWZfrCRp3z8HFB6ZW53GtNH3i3+VJSDlh3lar7e0/ffddo+5/iyjUY9MVFBwyv/GfNF5NPWHcepz91Db/Veue8uqUzFnlCcyzO5rhUWkLNSuXnH05NHTOnH4lG2HIUkHth1WQECA8hfKk2YovO2BNjU0+N2+Gt/mNW38brPtdubxZlcuX9GRPSnPv3PDvypbtaRaDmyiTav/UdKVJPWrOvymM9kuXkiQJJ08cspuXmq1qqZararr5Y7XDiK8/ns+HXPz2YFhEbntsdvaZwABAABJREFUrnB76ujpm8J6YNth1W5V/fa+UVfz038owr0c6ZTk/VY56uyJ80q6kqQ8qfzcn7nhyta+IiE+UXs3H1B06QLpbmdap1Kz/fddqt+hdrrfhzdcP8cnDp+iVWmhU3ATT62pSlcpofDIML25/hXbbYFBgbqzTnk17/+wmoS2V3Ky/c/9pYRLmtp9tqb3nqPwyNw6dfSMmvR6SHHn4nX2xHnl/u+XUuxjXc8fmn/032N6tt4YhWYLUbZcWXUq5oxGfTRIMXtjnfp6rE1Fq+AWrKmQGn+ax/4zu6l6s6p69oExOnH4VLrbthvRUlt+3aFPX/1CkrR38wFdjEvU9J/Ha/7zHyn5vwNt/LZVdApukhl+T5UR/rSPdSd/mMe0fhc1o88cu+2y5gxV2XtLqdTdxfXU6ykHolgCLAoICNCKS4s1otFLtqvg+m2jrqJVcIPbWVMVLvuQipZr6I5hKVvWLCpfuoBKl4jUM70ekiQFWCwKCLDo+yXP6tmxn2rvgZSrpU6e9Y227rQ/+SX5uoPIh45foqDAAElS/rw59PqEduo26Nr3feW6/cip03HKE5bN7muF5075/PSZlH3BpUtX9PIbKzRl9krlCcumk6fj9GjDyoqLT9TZ6/YX7paRtcCt+PPrVhmZR1NfjzZhHiXRKbgFr/35vqw5s6pslRIqVbmo+k97UtK19cDX5+drZNPJ2v/f7+mn95+rHevs969JSdf2Pc+3fFVBQSknLOQtmEevrhqlfveNst1/5UqS7c+nj51Vnsjcdl8rLP/V/WvKhQifGNpMW9bu0mfTvpYk7f3noBLiE/Xady9owbhPdSrGvf/PHF1TSbduQdy5lIP8/bZREp0ylE8fvO6IkSNHavDgwXa3tczdxStjsVgsCg5J+V9yJvasjh86qQIlIrV6UdpvbxF74NpbWCT9t5O9uuO60dbfdqrbhHYKCg6y7UyqNqysE4dP2Q6i37Jmh+o8fr9Cs4cqIS7lILDoMgWUlJSs44dub9HjLvXa1tSz7/XTxPbTte7rP+3uYx5vzWKxKEuWYO3euFeBQYEKi8ilf37Znuq2yUnJdvNyJvacLl28lPZcrd2pKg9V0ufTv7LdVqVBZW1ds8P2+ZZfd6hQmYJ2jytUpoCO3fDWIoA/M6lV6bly+Yp2bvhX9zSopF+XrrPdfs9DlbTmiz+8ODL3Cc4SpCLlo/XPL2lfSdfETqWm5F3FdfLomTTv95br55hWAWZyRac2frfZ7kx9SRoyt58Obj+ijycvvenA9eslXUmy/WKh3hM19fuyP2W1WtnHupE/NT8hPlEJ8YnKEZZdVRtV1jvDFzr1dVibAt7Fmsq/+Ms8PvV6d9VsUU1D6o1J998hV4Vky6KkK/b/prr6yymLxaIzsWdoFeAlmaVTkv/sY93NH+fx6u+ibhR/7uJNrwc069dId9WrqPGPT1XM3lglxCfSKMDLUmtV4w6z3PZ8cfGJdldDl6SWje/SPXcW0QuTv9DRY2eVkHhZsSfOq2BUmFb9lPbvaI799064kpT032uMh2POpLrtlh1H1KtjbQUFBejKf/92vveuYjp+8ryOxtofoJaUlKzj/70jbP1a5bRm/R6PHROV0bXArfjr61bOzqNpr0d7ex4BE2SWNZU/rgNuJf7cRburoUtSs171dVfdChrf/nXF7DuuxPhEHT98SgWK5df3i9ek+bViD5y0/fnqa2BH/k19/77t993qMu5xBQUH6srllH1xlYcq6sSRU7ZjAEKzhdj201fZDvS+eoVxD0prTSXdugWXEi7RKBgpwNsDuB1Tp07V/v37b+trhISEKFeuXHYfzrxtSGj2UJWsXEwlKxeTJEUVj1DJysWUv3DK21F0m9hew+Y/Zdv+0X6NVL1pFUWXilJ0qSg16lJXjz/7qL778GfbNh+M+0RtR7RUy6ebKLp0ARWrWESNutRV60FNnfpeVy/6RZcTr2jovP4qdkdh1WxRTe1GttKSaV/abXPu5HkNndtPRcoX0p21y6vX5E76Zt5qj7xVQ0bnsV7bmhq24Cm9PWSBtv22S+GRYQqPDFO2XNfOiPbHeUxLtwntVLFWOUUWza9iFYuo60vtVKnuHfpu0c86vOuovl34k4YtGKBaLaspqliEylQtqSeGNVe1xnc79Xz/m/mVqjSsrCeGNVfhsgX1xLDmuuehO/X5jGsHCC6Zvkzlq5dWu5EtVbBklOq1q6UmPR/SF2+ucNW37RIWq+c+4Dtc0SnJda3yhCXTlqlx9/pq1LWeipSLVp/XOiuiSD4te2ult4fmEr2mdFKlOhUUVSxC5aqV0gufPqtsubJq5YIfJGWeTrUc2EQ1mt+r6FJRKlqhkLpNbK86j1XXF7OWOzcxLpTeHNOqtHmyU7TKt5iyprp4IUH7thy0+0iIS9S5U+dtV1i7cR8bXbqA6neorehSUSp7byk9t+gZFatYWHNHLbJtwz7WfXy9+VUbVlbVRncpqliE7nmokl5dPVYHdxzRN/O+l3Tz30dJtrVs1hyhyp0vl0pWLqYi5QvZ7vf3tSmdgjNYU/ne/tVTfH0eB8zqofodamtShxmKP59gW2tmCc1i2+bGVv22bINqtaqmpn0aKqp4hO6oUVb9Z3TVtt936eTR05L8u1WsqeAsU9ZUnuTr+1hP8eV5TO93UZJ9o6xW602vB5yJPavLCZdTXhuIT5Tk3426ik7BGW5dUwVm7DqJWUODVap4hEoVj5AkFYjIrVLFIxSRL6ckqXfH2ho1sImklAtj7j1wwu7j9Nl4XbqcpL0HTigh8bIkad7iX9Wx9X16rOk9KlwwXCWK5lOTByvqiUerOvV9rvppqy5dTtJzTzdW8SL5VPu+0ur0WHV9/MV62zaFC4ar4QMVVKhAmMqXjtLYZ5uqeJF8mrPw53S+sus4sxaQeN3qRs7Mo6mvR5vSK9ZUcAav/fnWOuCq0OwhKlGpiEpUKiJJiiqWXyUqFVH+wnklSV1fbKOh7/aWlLIe2L/1kN3HmePndCnhsvZvPaTE/9YDC1/6XE8MbaYW/RsqulSUit1RSA071Varpx92aoyrP16jy4mXNeSdXipaoZBqPFpFbYc+qs9nXvv9/29fbVTN5lXVtGd9RRXLrwr3l1bfqZ20/Y89OuXmC1ZlZE0lOdYCf26URKdMlamvvD506FANHz5c9erVU48ePdSyZUtlyZLl1g90gzJVS2jq99fegqTva10kSSvn/6Ap3WYpb1S4Iorks91vCbCo28T2iioeoeQrKVcIfXfkh/rq7VW2bZa/t1oJ8ZfUZsij6vFKRyXEJWrf5gN2B1NlRPy5eA1vOF4D3uiuWX+8rPOn4/TZtC/12WvLbNskxCVoRMPx6j8zZZtzJ8/rp0/Xat7zi516zozK6Dw+0quBgoKD9PSsnnp6Vk/b7Ve3l/xzHtMSFhmm4e8PUJ4C4Yo7G6+9f+/Xc40n6M9v/5YkvdrtTXV4vrV6vdpZ+aLz6NzJ89q2dqd+/3qjU8+3de1OTWg3XV3Gt1XnF9vq6J4YTWg7TduvexuXnev3aGyrKeo+sYM6vvCYYvbGavag+eme6QVkFiZ1ylN+/GSNcuXNoY4vPKY8BcK175+DGvXIRLszNDOzfNF59dyigcqVL5fOHj+nbb/t1NP3j7J9f5mlU8FZgtRrypPKF51HiRcvaf+WlP9P65Y7t793pVvNMa0CXCszterGfWxgYIAeG9xMhcoWVNLlJG36/h8NrPm83bsisI91H19vfrbc2dR9YnvlK5RX509d0C+f/665oz6yXWnixr+PkvTWxim2P5epWlL1O9RWzL5YdSrRXxJrU8AZmalTruLr+1dP8fV5fLRvI0nS1B/s3xJ7StdZtpOrb2zVygU/KGvOUDXv/7B6v/qk4s7EaePqf/TuiA9t29AqIONole/tYz3Fl+fxVr+LSm09dSs0CnCOSZ0qWypKr7/U1vb5gO4PSpKWr/5HE2cuV948ORSZP2eGvuaybzcr4dIVtWtxr/p2fkAJCZf17/4T+uTLDU6NMS7+kgaP/USDej2kd17tpAsXEvTxF+v18f9dO3g9IMCiJ5pXVZHoPLpyJVkb/zmgviM+VEzsuXS+sus4sxaQeN3qRs7Mo6mvR9MrZGYmdcpTfHkdcFWZe4pryspRts/7TO4gSVr5wc+a2muO8kSF2Q5kd9SK+T8q8eIlPfZME3Wf0FaJcYnau+WQ/veGcxebiz93USObvqKnpnfWG7+O0/nT8Voyc4WWzLh2IapVC39W1pyherTPQ+r5cjvFnY3Xph+26r3nP3bqOTMio2sqR1pAo2Aii9XqqTcvcr2AgADNnTtXS5cu1ddff61cuXKpY8eO6tGjhypWrOj0120Q8LgLRwnAFKuSP3X6sfUavuLCkaTv+5XDPfZccC93dUqiVYAvyiydkmiVL2FNBcBRt9MpiTUVnMOaCkBGsKaCN7CmAuAo1lTwBneuqWq3mHLrjXBLoV+s8/YQABvWVPA0XvszX0BIqLeH4BOSExO8PQSfQKd8T4C3B3C7mjRpoqVLl+rQoUMaNmyYvvnmG1WuXFnVqlXTO++8o/Pnz3t7iAAAP0anAACmo1UAAJPRKQCA6WgVAMBkdAoAYDI6BQD+K9MfvH5VRESEhg0bpm3btumHH35QhQoVNGjQIBUoUMDbQwMAgE4BAIxHqwAAJqNTAADT0SoAgMnoFADAZHQKAPxPkLcHcDssFkuqt9euXVu1a9fWzJkz9fHHH3t4VAB8kcVq9fYQkAnRKQCeQqfgLFoFwFNoFZxBpwB4Cp2Cs2gVAE+hVXAGnQLgKXQKzqBTADyFTpkpU1953XqLv1S5cuVSz549PTQaAADs0SkAgOloFQDAZHQKAGA6WgUAMBmdAgCYjE4BgH/L1FdeT05O9vYQAPgLdjdwAp0C4DHsbuAkWgXAY9jdwAl0CoDHsLuBk2gVAI9hdwMn0CkAHsPuBk6gUwA8ht2NkTL1ldcHDBign3/+2dvDAAAgVXQKAGA6WgUAMBmdAgCYjlYBAExGpwAAJqNTAODfMvXB67NmzVLdunVVpkwZvfLKK4qJifH2kAD4KIvV6rEP+A46BcBTPNkpWuVbaBUAT6FTcAadAuAprKngLFoFwFPoFJxBpwB4CmsqOINOAfAUOmWmTH3wuiStXLlSTZo00auvvqoiRYqoefPmWrZsGW8tAgAwAp0CAJiOVgEATEanAACmo1UAAJPRKQCAyegUAPivTH/w+p133qnp06fryJEjWrhwoRITE9WiRQsVLlxYo0aN0u7du709RAC+wOrBD/gUOgXAIzzZKVrlc2gVAI+gU3ASnQLgEaypcBtoFQCPoFNwEp0C4BGsqeAkOgXAI+iUkTL9wetXBQcHq02bNlqxYoX+/fdf9ezZUx9++KHKli3r7aEBAECnAADGo1UAAJPRKQCA6WgVAMBkdAoAYDI6BQD+x2cOXr9ekSJFNHbsWO3du1crVqzw9nAA+AKr1XMf8Hl0CoDLebJTtMov0CoALken4EJ0CoDLsaaCi9EqAC5Hp+BCdAqAy7GmggvRKQAuR6eMlKkPXi9atKgCAwPTvN9isahBgwYeHBEAANfQKQCA6WgVAMBkdAoAYDpaBQAwGZ0CAJiMTgGAfwvy9gBux969e709BAB+wsJJUXACnQLgKXQKzqJVADyFVsEZdAqAp9ApOItWAfAUWgVn0CkAnkKn4Aw6BcBT6JSZMvWV1wEAAAAAAAAAAAAAAAAAAAAAmUOmvvI6AHiMlVOwAAAGo1MAANPRKgCAyegUAMB0tAoAYDI6BQAwGZ0yEldeB4BM7qefflKzZs1UsGBBWSwWLV261NtDAgDAhk4BAExHqwAAJqNTAACT0SkAgOloFQDAZP7cKQ5eB4BMLi4uTpUrV9Ybb7zh7aEAAHATOgUAMB2tAgCYjE4BAExGpwAApqNVAACT+XOngrw9AADIDCzJ3h5B2ho3bqzGjRt7exgAAC+iUwAA09EqAIDJ6BQAwHSmtopOAQAkczsl0SoAAJ0yFVdeBwAAAAAAAAAAAAAAAAAAAAC4HVdeBwBHWK0ee6rExEQlJiba3RYSEqKQkBCPjQEAkMl4sFMSrQIAOIE1FQDAZKypAACmY00FADAZayoAgMnolJG48joAGGbSpEnKnTu33cekSZO8PSwAAGxoFQDAZHQKAGA6WgUAMBmdAgCYjlYBAExGpxzDldcBwBEePAFr5MiRGjx4sN1tnHkFAEiXZ08UplUAgIxjTQUAMBlrKgCA6VhTAQBMxpoKAGAyOmUkDl4HAMPwNiEAANPRKgCAyegUAMB0tAoAYDI6BQAwHa0CAJiMTjmGg9cBwAEWq4dPwcqACxcuaPfu3bbP9+7dq02bNilPnjwqUqSIF0cGAPAUOgUAMB2tAgCYjE4BAExnaqvoFABAMrdTEq0CANApU3HwOgBkcuvXr1e9evVsn19925HOnTtr/vz5XhoVAAAp6BQAwHS0CgBgMjoFADAZnQIAmI5WAQBM5s+d4uB1AHCEwWdg1a1bV1aDxwcA8ACDO0CnAACSaBUAwGwGd4BOAQAkGdsqOgUAkGRspyRaBQAQnTJUgLcHAAAAAAAAAAAAAAAAAAAAAADwfVx5HQAckeztAQAAkA46BQAwHa0CAJiMTgEATEerAAAmo1MAAJPRKSNx5XUAAAAAAAAAAAAAAAAAAAAAgNtx5XUAcIDFavX2EAAASBOdAgCYjlYBAExGpwAApqNVAACT0SkAgMnolJm48joAAAAAAAAAAAAAAAAAAAAAwO04eB0AAAAAAAAAAAAAAAAAAAAA4HZB3h4AAGQKvH0IAMBkdAoAYDpaBQAwGZ0CAJiOVgEATEanAAAmo1NG4srrAAAAAAAAAAAAAAAAAAAAAAC348rrAOAIzsACAJiMTgEATEerAAAmo1MAANPRKgCAyegUAMBkdMpIHLwOAAAAAHCpoOiC3h6CT7hy+Ii3hwAAAADAC7458pe3h+ATGhWs7O0hAIDPCv1inbeHAAAA3Cw5McHbQwDgwzh4HQAckeztAQAAkA46BQAwHa0CAJiMTgEATEerAAAmo1MAAJPRKSMFeHsAAAAAAAAAAAAAAAAAAAAAAADfx5XXAcABFqvV20MAACBNdAoAYDpaBQAwGZ0CAJiOVgEATEanAAAmo1Nm4srrAAAAAAAAAAAAAAAAAAAAAAC348rrAOAIzsACAJiMTgEATEerAAAmo1MAANPRKgCAyegUAMBkdMpIXHkdAAAAAAAAAAAAAAAAAAAAAOB2XHkdABzBGVgAAJPRKQCA6WgVAMBkdAoAYDpaBQAwGZ0CAJiMThmJK68DAAAAAAAAAAAAAAAAAAAAANyOg9cBAAAAAAAAAAAAAAAAAAAAAG4X5O0BAECmwNuHAABMRqcAAKajVQAAk9EpAIDpaBUAwGR0CgBgMjplJK68DgAAAAAAAAAAAAAAAAAAAABwO668DgCOSPb2AAAASAedAgCYjlYBAExGpwAApqNVAACT0SkAgMnolJG48joAAAAAAAAAAAAAAAAAAAAAwO248joAOMBitXp7CAAApIlOAQBMR6sAACajUwAA09EqAIDJ6BQAwGR0ykxceR0AAAAAAAAAAAAAAAAAAAAA4HZceR0AHMEZWAAAk9EpAIDpaBUAwGR0CgBgOloFADAZnQIAmIxOGYkrrwMAAAAAAAAAAAAAAAAAAAAA3I4rrwOAI5I5AwsAYDA6BQAwHa0CAJiMTgEATEerAAAmo1MAAJPRKSNx5XUAAAAAAAAAAAAAAAAAAAAAgNtx5XUAcISVM7AAAAajUwAA09EqAIDJ6BQAwHS0CgBgMjoFADAZnTISV14HAAAAAAAAAAAAAAAAAAAAALgdV14HAEdwBhYAwGR0CgBgOloFADAZnQIAmI5WAQBMRqcAACajU0biyusAAAAAAAAAAAAAAAAAAAAAALfj4HUAAAAAAAAAAAAAAAAAAAAAgNsFeXsAAJAp8PYhAACT0SkAgOloFQDAZHQKAGA6WgUAMBmdAgCYjE4ZiSuvAwAAAAAAAAAAAAAAAAAAAADcjiuvA4AjkjkDCwBgMDoFADAdrQIAmIxOAQBMR6sAACajUwAAk9EpI2X6K6//8ccf6tChg4oXL66sWbMqW7ZsKl68uDp06KD169d7e3gAAD9HpwAApqNVAACT0SkAgOloFQDAZHQKAGAyOgUA/itTX3l96dKlatOmjerXr6+BAwcqMjJSVqtVsbGxWrlypWrWrKlPPvlEzZs39/ZQAWR21mRvjwCZEJ0C4DF0Ck6iVQA8hlbBCXQKgMfQKTiJVgHwGFoFJ9ApAB5Dp+AEOgXAY+iUkSxWqzXTXhO/YsWK6tixo0aMGJHq/a+88oref/99bdmyJUNft0HA464YHgDDrEr+1OnHNi4+2IUjSd/yva957LngXu7qlESrAF+UWTol0Spf4q5WNS480BXD83tXDh/x9hAAm9vplMSaCs5hTQUgI1hTwRvc1arkmDKuGJ7fa1SwsreHANiwpoI3sKYCkBGsqeBpdApARtAp3xPg7QHcjt27d6tVq1Zp3t+iRQvt2bPHgyMC4LOsVs99wGfQKQAe48lO0SqfQqsAeAydghPoFACPYU0FJ9EqAB5Dp+AEOgXAY1hTwQl0CoDH0CkjZeqD10uWLKmlS5emef///d//qUSJEp4bEAAA16FTAADT0SoAgMnoFADAdLQKAGAyOgUAMBmdAgD/FuTtAdyOF198UW3bttWPP/6ohg0bKjIyUhaLRTExMVq1apVWrlypxYsXu30cbUe0UK2W96lwuWglXrykrWt26N0RH+rQzrTf4r3SAxU09ftxN93erfxAHdzhvreGL1axiAa83l1lq5XS+VMX9NWcVVo4/jOvj+uqTmMe15Nj2tjddirmjJ4o2DPNxzzar5Ga939YkcUiFHvghBZNXKJvP/jJreM0fR6v13ZEC3Wf2EGfz/hKswfNT3WbO2qWU8+XO6hwuWiFZAvRsf3H9dWcVfp8+lduHdut5lGSgrMEqePox1W/Q22FR4XpxKGTWjTxc30z73u3ju0myZwVhYwzpVOe1qxvQz0+pLnyFgjTvi2HNHvQPP3zy3ZvDyvT8ad5dKRVeaLC1PvVzipdpYSiS0dp6evL09zWlTJNq+gUnGRqq9r0f0hdRzTT0nd/0Nvj/pfmdsFZAtX+mYdVr2VV5cmfSydizmjx6yu18uPf3Ta2YuUKqN/4x1TmriI6fyZeyxeu0aIZ39htU69FFT3Wt74KFs+v+HMXtf7H7Xp3/FKdPxPvtnF5g6+2ypk1viQ92L6W2gxtrujSBRR3Nl7rV2zS20Pf1/lTF9w21kzTKYlWwSmmdsrdfHX/6mn+OI9N+zRUsz4NFVksvyRp/5ZDWjj+U/2xYpPbnrNWq/vU5cW2KlAyUkf3HNO85z/Sr0vX2W2Tt2Ae9Xi5g6o1vltZsmbR4Z1HNbXHbO3681+3jSvD6BScZEqr3pgnzZpvsbstXx6rfk57OaUP/yct+lw6HCMViJR6d5RaPOzece7cI42fIW3eJuXOJbVpJvXrLFmuG7o3xnWVM2uBoXP7q2GXujfdvm/LQfW8031vS56Z1gKOvPYnsaa6JVoFJ5jSKU/zx7WAO/jyPDrTfI6puAU6BSfQKd/bv3qar85lQGCAnhzbRg+2r608UWE6dfS0Vi74QR++tETWNK7qbWqnjDmGkk4ZKVMfvN66dWv99NNPmjFjhl577TXFxMRIkqKionT//ffrxx9/1P333+/2cVSqc4e+ePMb7fhjtwKDAtX1pXZ6+Zvn1eOOQUqIT0z3sV3KPq34cxdtn589fs7pcUQWza+Fe99Ug4DHU70/W86semXlC/rr+3/0VLURKlSmgIbM66+EuAR99toyt40ro/b+c0DDG4y3fZ6clJzmtk37NFS3ie01rdfb2vHHbpWrVkqD5vTRhdNx+m3ZBqee31fmUZLKVC2pJj0baM9f+9LdLiEuQf83a4X+/Xu/EuISVbFWOQ18q5cS4hL19TvfOvXcrprH5z8erPDI3JraY7aO7I5RWERuBQZl6jeNgB8xpVOe9ECbGuo7rate7/+Otvy6Q4/0bqCJX49S9zsG6fjBE94eXqbhT/PoaKuCQ4J19sQ5LZq4RK2faeqS56ZVgJmtKlO5iBq3r6F/tx6+5bYjZ3dVeL6cmj70Ix3Zd0Jh+XIoMND5n7+IQnm0YO0YNS48MNX7s+UI0YQP++nvtbs0sOlrii6eX8++1kEJFy/p8zkpvwi4494SenZ6R80Z9z/9/u0/yhcVpqcmtdEzU9ppfM/3nB6baXy5Vc6s8e+oWU7DFgzQW4Pn67cvNyhvdB4NnN1Tg9/pq3Gtpzg1DjoFmNkpd/Pl/asn+es8njh0Uu+N/FCHd6f8rDTsXFfjlg5X33uGav/WQxn+eg0711XDznU15MGxqd5fvnoZPb94kOaPXqxf/7dONVtW0/MfD9Kg2i9o+7rdkqQcYdk1/Zfx+uv7LXquyUSdiT2rgiUjdeFMnLPfJmAUk1pVqrhVc6de+zwwMO1tP1oqTZsjvThUurOc9Pc2afQUKXdOqV5N557/8FHpobYWbfsx9V8IX4iTug+Rqt0lffK2tO+Q9NwkKVtWqesT7htXRjizFpj1zDy9O/JD2+eBQQF6e9Or+umztU6Pw5fWAo6+9seaCnAPkzrlKf66FnA1X59HZ5rPMRWA69Ep39u/epIvz2Xb4S3UtHcDTe4yS/u3HFSZqiU1ZG4/xZ2N1/9mfp3qY0zulOT9Yyhhpkx98Lok3X///V4P1XNNJth9/mq3N/VZ7HsqXaWENv+8Ld3Hnok9q7izaV99r1GXumoztLmiikcoZt9xLX39a305e6VT43ywQ21lCQ3WlK6zdPnSFe3bclDRZQqq9aBmN+0wbjUud0q+kqzTx844tO1DHevoqznf6sdP1kiSYvbGqnz1MnpiWAu7g9f9cR5Ds4dq5MKnNa3XW+owqnW62+7ZtE97Nu2zfX5s/3HVanmf7qxV3i5gnp7Hqo3uUqUHKujJkk/p/OkLtrF5RRpnrgG3YkKnPKn1oKZaMXe1lr+3WpI0e9B8VW1YWc36NtTc5xZ5eXSZh7/MY0ZadWz/cb35zDxJ0sNdH0xzO79tFZ3CbTCpVaHZsmjozE6aMXyx2j3dMN1tq9QtpzvvK6mutcbrwn9XNI89dOqm7Rq0uU+P9XlQUYXz6tihU/q/eT/pq/d/cWp89VpWVZaQIL02+ENdvpSk/TuOKrpEhFr2rGs7eL3cPUUVe+iUvpiX8m5Qxw6e0vKFv+qxvvWdek5T+XKrnFnjl69eWsf2xWrp68slSTH7YvXVnFVqM7S53XZ+2ymJVsFpJnXKE3x5/+pJ/jqPN17MY97zH6lpn4YqX72M9m89pKDgIHV5qa3qt6+t7GHZtO+fg3p3xEL9/eNWp56v1cBHtGHV31r88lJJ0uKXl6pSnTvUauAjmthhhiTpieEtdPzgSb3a/U3b47zWovTQKdwGU1oVFCjlz+vYtl+slJ54VGry30sshQtKf22V3v3I/iDxz7+W3vtIOhQjRUdJHVtJ7Vs6N74vV0mJl6RJI6UsWaQyJaT9B6X5n0hd2qRcfd3RcbmLM2uB+HPxij937fdANZrfqxzh2W+60qk/rgUy8tofayoH0Co4yZROeYq/rgVczdfn0Znmc0zFLdApOIlO+db+1ZN8eS7LVy+jNV+s17qv/5SUsl+v17amylQpmeZjTO3UVd48hlISnTIUp9q5Qfbc2STJobexm/3nFC0+PEeTV41W5bp32N3XuEd9dX2pneY9/5G6VxikeaMWqcuLbdXgyQecGleF6mX0949bdfnSFdtt67/ZpHzReRRVLMLhcblbwdJRWnzobb2/Z5aeW/SMoopHpLltcEiwLiVcsrst8eIlla1WSoFBKZcV8dd5HPBGd/3+9Z/a+N3mDD+25F3FVKFGWf390xbbbd6Yx/sfraqd6/eozbDm+ujg25q3fYZ6TemkLKFZnHpOAO4VFBykMlVKaMPKv+xu37Dqb91xf1kvjSrz8ad5vJ1WpYZWAZlf/5ce1x+rt2rTLztvuW31Bndq198H9Xif+vrgj3F658dR6vF8c2UJDbZt83C7+9V52CNaMPkr9Xpwoua/skxPDmmihx6716nxlbunmDb/vkeXLyXZbvvzx23KFxWmyMJ5JElb1+9Vvqgw3VuvgiQpLF9O1XrkLq37zrmDwkzkT62SHFvjb12zQ/kK5VW1xndLksIicqtO6/ttLyxKdArArfnb/tVdmMcUAQEBqvtEDYVmD9HWtSn/thoyt58q1iirCe2mqXflIfrps7WatHyUoktFOfUcFe4vow2r7Od5/cpNqlDj2jzf36yqdm7Yoxc+HqxPYt7V7A2T1biHb53UB5hi/yGpTivpoSekweOkg+m8+/alyykHkF8vNETavE26/N8/Lz/5Upr+rjSwp/TV+9IzPaWZc6WlK5wb36Yt0r2V7Z+35r1S7AmLDsc4Pi5Pysjv+656uNuD2vjtZsUeuHalP39dC2TktT/WVABcgbWAa/jjPDrTfI6pAJBR/rh/dRdfn8t/ft2uux+sqOjSBSRJJSoVVcVa5bRu+Z+3eOQ1pnTqKm8eQwlzZforr6fnueeeU0xMjObOnevR5+0ztbM2/7xN+7YcTHObU0fP6LVeb2nXhn8VHBKshzrV0eRvR2tIvbG2Mzk7Pv+Y3h7yvn753zpJKVcZKFKhkB7p1UCr3v8xw+PKExWmmBvOsDxz7KwkKTwqTDH7Yh0alztt/32XJnd+Q4d2HlV4ZG51GNVaM36doB4VB6W6UNiwcpMad6+vNUv/0K4//1WZKiX0cNd6Cs4SpNz5cupUzBm/nMe6T9RQ6XtKqH+1ERl63KIDbyl3/lwKDArUB+M+sZ2dJnnn72OB4pGqWKucLiVc1thWU5Q7X04NmNVDOfPk0NTuszP8nIBpvNUpd8mdL6cCgwJveveM08fOKDwqzCtjyoz8ZR6dbVV6aBXgep5s1QOP3q2SdxbSwKZTb72xpKgieXXHvSV0KfGKxvd8T7nDc6j/hMeUMyybpg35SJLUbmAjvTN+qdas+FtSylXQi5SJUuMONfXtZ39keIx5InLp2EH7q7ufPnFekhSeP+W+bRv2afLT72vEm52VJSRYQcGBWrtys2aP/izDz2cqf2nVVY6s8beu3amXO87UqMWDlCU0WEHBQVrzf3/ojQHXfnboFOB6rKmQGn+fx2IVi2jmmgnKEhqsixcSNK7VFB3YdkgFSkSqXruaal+4j04ePS1J+mzql7q30V1q1LWe5o76KMPPFR4VptP/teeq08fO2s1zgRIRatanoZZMW6ZFkz5XuWql1H9GN11OvKxvP/jptr5XIDPwVKsqlZdefk4qVkg6cVp66wOpfX/pi/lSeO6bt691r/TZMumhWlKFMtKWHSlXWb98xaLTZ62KyCu99b40vJ/UsE7KYwoVkPbskz7+QmrxcMbHeOJUytXbr5cv5RxgHT+Z8vUdGZcnObIWuF6eqDBVa3y37d0nrvLHtUBGX/tjTQV4B2sqpMYf5zEjzeeYCsBz6BTS4utz+fErS5U9dzbN3TZdyUnJCggM0LznP9L3i3+95WNN65S3j6GE2Xz64PXDhw/r4MH0/3GZmJioxMREu9uSrUkKsAQ69ZwD3uiu4pWKaFDtF9Ld7tDOIzq089plL7b9tlP5C+XV488+qs0/b1PufLkUUSSfBr/bV4Pm9LFtFxgUYPcWCu9sfk2RRfOnfGJJ+c8X5z6w3X9s/3H1vHOw7XPrjW+BYLFcvcOhcbnbHys22f687x9p29qdWrD7DTXsXFdLpi27afuF45coPCpMM9dOkMVi0eljZ7VywQ96YlgLJScl++U85i+UV/2md9WIRi/pcuLlDD12cJ3RCs0RqvLVS6vHpA46sjtG3y/+1WvzGBBgkdUqTeo40/a2m28/u0AvfPqsXu//3k1X3Xcr3j4EbuBIpyTXt8rdbv7Rttz8845b8uV5vJ1WpcXvW+UjfzdgHufXVFcUYHF8uZmvQJh6j22tUR3e1OVExy6nFxBgkVVWTX76fcWfT5AkzXlxqUa93VWznv9MWbNlUUR0uJ6Z0k4DX2lre1xgYIDi/ttekt76doQiCqUcMXH1R/zz7ZNt98ceOqU+D71s+/zG/YLlhv1CkdKR6vNiay2a/o02/LhdeSJzqceo5how6QlNH5rxg8JM5sutusrRNX6R8oXUf0ZXLRz/mdZ/s0l5C4Sr5+ROGvhWL73WYzadum5MgCuxpkJ6/HUeD+04oj53D1WOsGyq1bq6hs5/Ss/WHaNidxRSQECA5u2Yabd9cEiQzp1MuWhI/sL59N6Wabb7AoMCFBgcZNei7z78STP6vnPtC9z0byP72ywBAdq5fo/t4Pg9m/ap6B2F1axPI7MOXveDvxvwDmfXVMGJyQoJcfzNk+tUv/bnMpLuukNq1F76vxVSlydu3r5v55SDydv2layS8oanHJD+3kdSYIB06ox0NNai5ydbNfrVa4+7kiTlzH7t86adpaPHUv589ceoynUHtheIlJYtuPb51X+uXnX1MVdvv9W4PMnRtcD1Gnapqwtn4rRm6bWTpf1xLeDMa3+sqRxAq+AGrKmQHn+Zx4w2n2Mq0uCDfzfgfXQKt+Krc1n3iRqq36G2JnWYoX1bDqnUXcXUd1oXnTxy+pYHmZvWKW8fi2rjA38vfJFPH7y+YMGCW24zadIkjRs3zu624iqvksr42xP0n9lN1ZtV1bMPjNGJw6du/YAbbP99l+p3qC1JsgSk/CBP6/WWtv++22675KRk259HPTJRQcEp/xvzRefR1B/Gqc/dQ233X7nufRRPxZxRnsgwu68VFpFLkm66Qk5a4/K0hPhE7d18wPY2GDe6lHBJU7vP1vTecxQemVunjp5Rk14PKe5cvM6eOK/c+VO+P3+ax9JVSig8Mkxvrn/FdltgUKDurFNezfs/rCah7ZWcnJzqY2P2xUqS9v1zQOGRudVpTBt9v/hXr/19PHn0tE4cPmVbZEnSgW2HFRAQoPyF8ujw7hjHJgUwlCOdklzbKnc6e+K8kq4kKc8NZ7KGReS2nV2JW/OHebydVqWFVgHu4eyaqmTOaiqdu3oaj7hZ6UqFFZ4/p17/eojttsCgQFW8r6SadamtR0s+q+Rk+xcVTh07p5MxZ20HrkvSwd3HFBAQoHxRYYq/kHL7zGGLtX3TfrvHXr9fGN35bQUGp7yAmS8qtyZ/+rT6P3zt4PWky0nXnjP2nML/2w9cFZY3h6RrV2Bv07+Btv7xr5a8nXIlg33bj2hW/CW9+vlALZjylU7HnnN4XkzlD62SMrbGbzeipbb8ukOfvvqFJGnv5gO6GJeo6T+P1/znP7L9/aVTgGuxpkJq/H0er1y+oiN7UvbvOzf8q7JVS6rlwCbatPofJV1JUr+qw+3aI0kX//t308kjp+y6U6tVNdVqVV0vd7x2wPv1TTkdc/PVrMIictu9Rnrq6Gkd2HbIbpsD2w6rdivH/60IZGbOrqlGP5tHY4Y4f5nxbFml0sWlfYdSvz80RJowQho7RDp5SsqfV/rkSyl7NqvCc6ccvC5JLw5Nuar79QKvO/7j7VekK//9E/XYCanzQOnzd6/dH3TdbyHz5Uk5MP16J09fu8+RcXmKs7/ve7jrg/p24U92/273x9esnHntjzUV4B2sqZAaf5pHZ5rPMRWA59AppMXX57Ln5E76+JWl+uHjNZJSmhNRNJ/ajmh5y4PXTetUarx5LCrM4tMHrzti5MiRGjx4sN1tLXN3yfDXeer17qrZopqG1Btj2wlkVMm7iuvk0TOSpDOxZ3X80EkVKBGp1Yt+SfMxsQdO2P6cdCXloIqrv5y40dbfdqrbhHYKCg6y7UiqNqysE4dPpTvm68flacFZglSkfLT++SX9M22SriTZFhP1nqip35f9KavV6pfzuPG7zXZnOEnSkLn9dHD7EX08eanDBwNaLBYFh6TsIrw1j1vW7FCdx+9XaPZQJcSl/BItukwBJSUl6/ihjJ8gcls4Awte5KpWuduVy1e0c8O/uqdBJf26dJ3t9nseqqQ1X/yRziNxPX+YR1e16np+3yo6BS9KrVOPVxiZoa+x6Zeddlc3l6TBU9vr4O5j+nT2dzcduC5JW9f/q1pN71JotixKiE+5ekx0ifxKSkrWiZgzupRwWSeOnlFU0bz6fumGNJ879vBp25+TrqTsf47uO5Hqttv/3KfOw5oqKDhQV/47qP2eOuV0IuaMjh1M+ZkPyZpFSUlJdo9L+u9FnxuvMphZ+UOrMrrGD8mWxfb356pk2/93i87EnvHvTkm0Cl7Fmsq/MI/2LBaLsmQJ1u6NexUYFKiwiFz655ftqW6bnJRs150zsed06eKltFu0dqeqPFRJn0//ynZblQaVtXXNDtvnW37doUJlCto9rlCZAjp2w1sKex2dghel1qng0/fc1te8dEn694BUpVL62wUHSVERKX/+erVU934pICDlYPLI/FYdPCI1a5D246Ojrv056L+D2osWSn3bu+6Qpr8jXbosZQlOue3X9VJEPqvd10lvXJ7g7O/7Kj1QQdGlC2jFdW/JLvnna1bOvPbHmsoBtApexJrKv/jLPLriGB+OqbgOnYIX0Sn/4+tzGZot5KbfjSYnJSsgIGO/aDShU6nxyrGodMpIPnXw+uXLl/XVV19p165dKlCggFq2bKns2bOn+5iQkBCFhITY3ZbRtw0ZMKuHHmxXS2NaTFb8+QSF/3dGSdzZeNtb8HSb2F75CubR5C5vSJJaDmyiY/uOa/+WgwrKEqT6HeuozmPVNa71FNvX/WDcJ+o3o5viz13UuuUbFRwSrLJVSyhHeA4tmbYsQ2OUpNWLflGn0Y9r6Lz++mjS54ouXUDtRrbSwvGf2rZxZFzu1GtKJ/325QbFHjihsIhcaj+qtbLlyqqVC36QdPM8RpcuoHLVSmn777uUIzyHWg9qqmIVC9vul/xvHi9eSNC+LfZvm5MQl6hzp87bbr9xHh/t10ixB07o4PbDkqSKtcrp8Wcf1dI3ltu+hjfmcfWiX9Th+dYaOrefFoz9RLnz5VSvyZ30zbzVnn0rRsBFnOmU5JpWecqSacs0/P0B2rl+j7at3akmvR5SRJF8WvbWSm8PLVPx9Xl0plWSVLJyMUlS1hyhyp0vl0pWLqbLl67YruJHq4Db57o1VcaWmhfjErV/x1G72xLiE3X+dJzt9i7DmypvVG5NHfShJOn7pRvUbmAjDZ7aXgtfW65ceXKo+6jmWvnxb7qUkPK25AtfW64+L7ZW/PlErf9+q4JDglS6UhHlyJ1V/3vnhwyN8epztn/mYQ1+rYM+fmOVoovn1xNPNdCiGd/Ytvn923808JW2eqRTTW34cbvyRORS77GttH3jPp06lvmvun6VL7fKmTX+b8s2aNCc3mrap6HtLe77Tuuibb/v0smjKSdI0Cng9rGmgqP8dR67TWindcs36vjBk8qaM6vqta2pSnXv0HONJ+jwrqP6duFPGrZggOYMWaDdG/cpV76cuvvBitq7+YDWLd+Y4ef738yv9NqPL+qJYc215v/+UI3m9+qeh+7UoNov2LZZMn2ZZvz6ktqNbKkfP1mrstVKqUnPhzS999uu/NYBY7hqTZUcn7EjtSe/KdWtIRWMTLma+VvvSxfipBYPp9z/2hzp2HHplVEpn+89KG3eJlWqIJ07L83/RNq1V3r5uvOQ+3eRJs6UcmSXat8nXb4k/bMjZfsuT2RoeJKkpg9Jby6Qnpsk9eoo7T8kzVko9et87URfR8blTs6sBa5q3K2+tv2286bXvCT/Wws489ofayrAM1hTwVG+Po/ONJ9jKgD3o1PICF+ey9++3KD2z7VS7IET2r/loErdXVytBzXTN/OunSydWTrl7WNRYbZMffB6jRo19PXXXyssLEzHjx9X/fr1tWPHDhUtWlQHDx7UqFGjtGbNGkVHR7t1HI/2bSRJmvqD/VuQTOk6y3bQdd6ocEUUyWe7LzhLkHpNeVL5ovMo8eIl7d9yUKMemWj3S4Ll761WQvwltRnyqHq80lEJcYnat/mAPp/xlZwRfy5ewxuO14A3umvWHy/r/Ok4fTbtS3322rWdjyPjcqd80Xn13KKBypUvl84eP6dtv+3U0/ePsp3Vc+M8BgYG6LHBzVSobEElXU7Spu//0cCaz9tduccf5/FWbpxHS4BF3Sa2V1TxCCVfSbnC0rsjP9RXb6+ybeONeUyIS9CIhuPVf2bKNudOntdPn67VvOcXO//NO8uJqwADpnTKk378ZI1y5c2hji88pjwFwrXvn5T93/VnZ+LWmMebWyVJb228toApU7Wk6neorZh9sepUor8kP28VnYKTMlOr8kTmUkR0uO3zhPhLeq79m+r74mOa8dUQnT8dp5+WbdL7U679zH+z+DclJlzWY70fVPfnHlXCxUTt235US99L/y310hJ/PkGjOrypfi89ppnLntWFs/H6/J0f9Pmc723bfPvpOmXLHqJmnWurxwstFHfuov76dZfmTvrC+W/eQL7cKmfW+CsX/KCsOUPVvP/D6v3qk4o7E6eNq//RuyM+tG3j152SaBWckpk65Sq+vH/1JH+dx7DIMA1/f4DyFAhX3Nl47f17v55rPEF/fvu3JOnVbm+qw/Ot1evVzsoXnUfnTp7XtrU79fvXzr1muXXtTk1oN11dxrdV5xfb6uieGE1oO03b11176+Gd6/dobKsp6j6xgzq+8Jhi9sZq9qD56V7hySvoFJxkSqtijktDXpTOnJXCw6TKFaTFs69dGf34SenodRc9S06S5n+ccrB4UJB0393SR7Ok6ALXtnm8qZQ1RJq7WHr1LSlbqFS6hPTkY86NMWcO6b1XpRenS4/3lnLlkLq0SfnIyLjcyZm1gCRly5VNtVrfpzefmZfq1/X7tUAqWFM5gVbBCaZ0ypP8dS3gar4+j840n2MqboFOwQl0yvf2r57ky3P5xtPvqcv4tnp6Vg+FReTWySOn9NWcVVr44me2bTJLp4w5hpJOGclitWbea+IHBAQoJiZGERER6tWrl/744w8tX75cUVFROnnypB599FGVK1dO7733Xoa+boOAx900YgDetCr501tvlIbGBfq7cCTpW350lseeC+7lrk5JtArwRZmlUxKt8iXualXjwgPdNGL/cuXwEW8PAbC5nU5JrKngHNZUADKCNRW8wV2tSo4p46YR+5dGBSt7ewiADWsqeANrKgAZwZoKnkanAGQEnfI9GXvfQYP9+OOPeumllxQVlXIZibx582rChAlavXr1LR4JAA6wWj33AZ9EpwC4lSc7Rat8Fq0C4FZ0CreJTgFwK9ZUcAFaBcCt6BRuE50C4FasqXCb6BQAt6JTRsr0B69bLBZJ0pkzZ1S8eHG7+4oXL66jR496Y1gAAEiiUwAA89EqAIDJ6BQAwHS0CgBgMjoFADAZnQIA/xXk7QHcri5duigkJESXL1/W/v37VaFCBdt9R48eVVhYmPcGB8B3cFYUnESnAHgEncJtoFUAPIJWwUl0CoBH0CncBloFwCNoFZxEpwB4BJ2Ck+gUAI+gU0bK1AevP/nkk7YzsJo3b64LFy7Y3b9kyRLdddddXhgZAAB0CgBgPloFADAZnQIAmI5WAQBMRqcAACajUwDg3zL1wevz589P9/6xY8cqMDDQM4MB4NuSOQMLGUenAHgMnYKTaBUAj6FVcAKdAuAxdApOolUAPIZWwQl0CoDH0Ck4gU4B8Bg6ZaQAbw/gdgwYMEA///xzmvdnz55doaGhHhwRAADX0CkAgOloFQDAZHQKAGA6WgUAMBmdAgCYjE4BgH/L1Aevz5o1S3Xr1lWZMmX0yiuvKCYmxttDAuCjrNZkj33Ad9ApAJ7iyU7RKt9CqwB4Cp2CM+gUAE9hTQVn0SoAnkKn4Aw6BcBTWFPBGXQKgKfQKTNl6oPXJWnlypVq0qSJXn31VRUpUkTNmzfXsmXLlJzMXwIAgPfRKQCA6WgVAMBkdAoAYDpaBQAwGZ0CAJiMTgGA/8r0B6/feeedmj59uo4cOaKFCxcqMTFRLVq0UOHChTVq1Cjt3r3b20MEAPgxOgUAMB2tAgCYjE4BAExHqwAAJqNTAACT0SkA8F+Z/uD1q4KDg9WmTRutWLFC//77r3r27KkPP/xQZcuW9fbQAPiCZKvnPuCT6BQAt/Jkp2iVz6JVANyKTuE20SkAbsWaCi5AqwC4FZ3CbaJTANyKNRVuE50C4FZ0ykg+c/D69YoUKaKxY8dq7969WrFihbeHAwCAHToFADAdrQIAmIxOAQBMR6sAACajUwAAk9EpAPAPQd4ewO0oWrSoAgMD07zfYrGoQYMGHhwRAJ9l5awoZBydAuAxdApOolUAPIZWwQl0CoDH0Ck4iVYB8BhaBSfQKQAeQ6fgBDoFwGPolJEy9cHre/fu9fYQAABIE50CAJiOVgEATEanAACmo1UAAJPRKQCAyegUAPi3TH3wOgB4THKyt0cAAEDa6BQAwHS0CgBgMjoFADAdrQIAmIxOAQBMRqeMFODtAQAAAAAAAAAAAAAAAAAAAAAAfB9XXgcAR1it3h4BAABpo1MAANPRKgCAyegUAMB0tAoAYDI6BQAwGZ0yEldeBwAAAAAAAAAAAAAAAAAAAAC4HVdeBwAHWJOTvT0EAADSRKcAAKajVQAAk9EpAIDpaBUAwGR0CgBgMjplJq68DgAAAAAAAAAAAAAAAAAAAABwO668DgCOsFq9PQIAANJGpwAApqNVAACT0SkAgOloFQDAZHQKAGAyOmUkrrwOAAAAAAAAAAAAAAAAAAAAAHA7rrwOAI5I5gwsAIDB6BQAwHS0CgBgMjoFADAdrQIAmIxOAQBMRqeMxJXXAQAAAAAAAAAAAAAAAAAAAABux8HrAAAAAAAAAAAAAAAAAAAAAAC3C/L2AAAgU7Ame3sEAACkjU4BAExHqwAAJqNTAADT0SoAgMnoFADAZHTKSFx5HQAAAAAAAAAAAAAAAAAAAADgdlx5HQAcYE22ensIAACkiU4BAExHqwAAJqNTAADT0SoAgMnoFADAZHTKTFx5HQAAAAAAAAAAAAAAAAAAAADgdlx5HQAcYU329ggAAEgbnQIAmI5WAQBMRqcAAKajVQAAk9EpAIDJ6JSRuPI6AAAAAAAAAAAAAAAAAAAAAMDtOHgdABxgTbZ67MMZb775pooXL67Q0FBVqVJFP//8s4tnAABgMk92yplW0SkAgMmdkmgVAPg71lQAANOZ3CmJVgGAv2NNBQAwmemdkvyzVRy8DgCZ3Mcff6xnnnlGo0aN0saNG1W7dm01btxYBw4c8PbQAACgUwAA49EqAIDJ6BQAwHS0CgBgMjoFADCdv7aKg9cBwBHWZM99ZNBrr72m7t27q0ePHipfvrymT5+uwoULa/bs2W6YCACAkTzZqQy2ik4BACQZ2ymJVgEAxJoKAGA+Qzsl0SoAgFhTAQDMZnCnJP9tFQevA4BhEhMTde7cObuPxMTEVLe9dOmSNmzYoIYNG9rd3rBhQ61Zs8YTwwUA+CFHW0WnAADewJoKAGA61lQAAJOxpgIAmI41FQDAZKypHBPk7QGYaFXyp94eQroSExM1adIkjRw5UiEhId4eTqbGXLqGP8yjJ/cLY8eO1bhx4+xuGzNmjMaOHXvTtidOnFBSUpIiIyPtbo+MjFRMTIw7hwkvo1X+gXl0DX+YR0/vExxtFZ3yX8sPzvD2ENLlD/sFT2AeXcNf5pE1FUzDmso/MI+u4Q/zyJoKpgmI2untIaQrs+wXVmX8YmcelVnm0XT+Mo+sqWAa1lT+gXl0DX+YR9ZUMA2d8g/Mo2v4wzya2inJv1tlsVqtVm8PAhlz7tw55c6dW2fPnlWuXLm8PZxMjbl0DebRtRITE2862yokJCTVfyAcOXJE0dHRWrNmje6//37b7RMmTNAHH3yg7du3u328QGrYL7gG8+gazKPrOdoqOgVTsV9wDebRNZhH12NNBV/AvsE1mEfXYB5djzUVMjv2C67BPLoG8+h6rKngC9g3uAbz6BrMo+uxpkJmx37BNZhH12AeXY81lWO48joAGCatWKUmX758CgwMvOlMq9jY2JvOyAIAwFUcbRWdAgB4A2sqAIDpWFMBAEzGmgoAYDrWVAAAk7GmckyAtwcAAHBelixZVKVKFa1atcru9lWrVqlGjRpeGhUAACnoFADAdLQKAGAyOgUAMB2tAgCYjE4BAEznz63iyusAkMkNHjxYnTp1UtWqVXX//fdrzpw5OnDggPr06ePtoQEAQKcAAMajVQAAk9EpAIDpaBUAwGR0CgBgOn9tFQevZ0IhISEaM2aMw28tgLQxl67BPHrXE088oZMnT+rFF1/U0aNHVbFiRX399dcqWrSot4cGP8Z+wTWYR9dgHr2LTsFE7Bdcg3l0DebR+2gVTMS+wTWYR9dgHr2LTsFE7Bdcg3l0DebR+2gVTMS+wTWYR9dgHr2LTsFE7Bdcg3l0DebR+/y1VRar1Wr19iAAAAAAAAAAAAAAAAAAAAAAAL4twNsDAAAAAAAAAAAAAAAAAAAAAAD4Pg5eBwAAAAAAAAAAAAAAAAAAAAC4HQevAwAAAAAAAAAAAAAAAAAAAADcjoPXAQAAAAAAAAAAAAAAAAAAAABux8HrBouJidHAgQNVqlQphYaGKjIyUrVq1dJbb72l+Ph4SVKxYsU0ffr0mx47duxY3XXXXZ4dsIG6dOkii8Uii8Wi4OBgRUZGqkGDBpo7d66Sk5Nt2xUrVsy23fUfL7/8shdHb6br59RisShv3rx6+OGH9ffff9u2sVgsWrp0qfcGCcAj6JRr0CrXo1UArqJVt49OuR6dAnAVnbp9dMr16BSAq+iUa9Aq16NVAK6iVbePTrkenQJwFZ1yDVrlerQKpuDgdUP9+++/uvvuu7Vy5UpNnDhRGzdu1LfffqtBgwbpyy+/1LfffuvtIWYaDz/8sI4ePap9+/Zp+fLlqlevngYOHKimTZvqypUrtu1efPFFHT161O5jwIABXhy5ua7O6dGjR/Xdd98pKChITZs29fawAHgQnXItWuV6tAoArXIdOuV6dAoAnXIdOuV6dAoAnXItWuV6tAoArXIdOuV6dAoAnXItWuV6tAomCPL2AJC6fv36KSgoSOvXr1f27Nltt995551q3bq1rFarF0eXuYSEhCgqKkqSFB0drXvuuUfVq1dX/fr1NX/+fPXo0UOSlDNnTtt2SN/1cxoVFaXhw4erTp06On78uPLnz+/l0QHwBDrlWrTK9WgVAFrlOnTK9egUADrlOnTK9egUADrlWrTK9WgVAFrlOnTK9egUADrlWrTK9WgVTMCV1w108uRJrVy5Uv3797cL2PUsFouHR+VbHnzwQVWuXFmff/65t4eS6V24cEEffvihSpUqpbx583p7OAA8gE55Bq1yHVoF+B9a5X50ynXoFOB/6JT70SnXoVOA/6FTnkGrXIdWAf6HVrkfnXIdOgX4HzrlGbTKdWgVvIWD1w20e/duWa1WlS1b1u72fPnyKUeOHMqRI4eGDx9uu3348OG2269+TJw40dPDznTKlSunffv22T5PbR5/+OEHr43PZMuWLbPNUc6cOfXFF1/o448/VkAAuxTAH9Apz6FVzqNVgH+jVZ5Bp5xHpwD/Rqc8g045j04B/o1OeQ6tch6tAvwbrfIMOuU8OgX4NzrlObTKebQKJgjy9gCQthvPslq3bp2Sk5PVoUMHJSYm2m4fOnSounTpYrftzJkz9dNPP3limJmW1Wq1m+PU5jE6OtrDo8oc6tWrp9mzZ0uSTp06pTfffFONGzfWunXrVLRoUS+PDoCn0Cn3o1XOo1UAJFrlbnTKeXQKgESn3I1OOY9OAZDolCfQKufRKgASrXI3OuU8OgVAolOeQKucR6tgAg5eN1CpUqVksVi0fft2u9tLlCghScqaNavd7fny5VOpUqXsbsuTJ497B+kDtm3bpuLFi9s+T20ekbrs2bPbzVWVKlWUO3duvfPOO3rppZe8ODIAnkCnPIdWOY9WAf6NVnkGnXIenQL8G53yDDrlPDoF+Dc65Tm0ynm0CvBvtMoz6JTz6BTg3+iU59Aq59EqmIDr/Bsob968atCggd544w3FxcV5ezg+afXq1dq8ebNat27t7aH4BIvFooCAAF28eNHbQwHgAXTKM2iVa9EqwL/QKvejU65FpwD/Qqfcj065Fp0C/Aud8gxa5Vq0CvAvtMr96JRr0SnAv9Apz6BVrkWr4A1ced1Qb775pmrWrKmqVatq7NixqlSpkgICAvTHH39o+/btqlKlireHmGkkJiYqJiZGSUlJOnbsmFasWKFJkyapadOmevLJJ23bnT9/XjExMXaPzZYtm3LlyuXpIRvv6pxK0unTp/XGG2/owoULatasmZdHBsBT6JRr0SrXo1UAaJXr0CnXo1MA6JTr0CnXo1MA6JRr0SrXo1UAaJXr0CnXo1MA6JRr0SrXo1UwAQevG6pkyZLauHGjJk6cqJEjR+rQoUMKCQlRhQoVNGTIEPXr18/bQ8w0VqxYoQIFCigoKEjh4eGqXLmyZs6cqc6dOysg4NqbD4wePVqjR4+2e2zv3r311ltveXrIxrs6p5KUM2dOlStXTp9++qnq1q3r3YEB8Bg65Vq0yvVoFQBa5Tp0yvXoFAA65Tp0yvXoFAA65Vq0yvVoFQBa5Tp0yvXoFAA65Vq0yvVoFUxgsVqtVm8PAgAAAAAAAAAAAAAAAAAAAADg2wJuvQkAAAAAAAAAAAAAAAAAAAAAALeHg9cBAAAAAAAAAAAAAAAAAAAAAG7HwesAAAAAAAAAAAAAAAAAAAAAALfj4HUAAAAAAAAAAAAAAAAAAAAAgNtx8DoAAAAAAAAAAAAAAAAAAAAAwO04eB0AAAAAAAAAAAAAAAAAAAAA4HYcvA4AAAAAAAAAAAAAAAAAAAAAcDsOXgcAAAAAAAAAAAAAAAAAAAAAuB0HrwMuUrduXT3zzDPeHgYAAGmiVQAAk9EpAIDJ6BQAwHS0CgBgMjoFADAdrQI8i4PXYZTY2Fj17t1bRYoUUUhIiKKiotSoUSOtXbvW20O7pc8//1zjx4/39jAAAG5GqwAAJqNTAACT0SkAgOloFQDAZHQKAGA6WgXAUUHeHgBwvdatW+vy5ctasGCBSpQooWPHjum7777TqVOnvD20NF2+fFnBwcHKkyePt4cCAPAAWgUAMBmdAgCYjE4BAExHqwAAJqNTAADT0SoAjuLK6zDGmTNn9Msvv+iVV15RvXr1VLRoUVWrVk0jR47UI488YtumV69eioyMVGhoqCpWrKhly5bZvsaaNWtUp04dZc2aVYULF9bTTz+tuLg42/3FihXTxIkT1a1bN+XMmVNFihTRnDlz7MYxfPhwlSlTRtmyZVOJEiX0wgsv6PLly7b7x44dq7vuuktz585ViRIlFBISIqvVetNbh5w+fVpPPvmkwsPDlS1bNjVu3Fi7du1y0+wBADyBVgEATEanAAAmo1MAANPRKgCAyegUAMB0tApARnDwOoyRI0cO5ciRQ0uXLlViYuJN9ycnJ6tx48Zas2aNFi5cqK1bt+rll19WYGCgJGnz5s1q1KiRWrVqpb///lsff/yxfvnlFz311FN2X2fq1KmqWrWqNm7cqH79+qlv377avn277f6cOXNq/vz52rp1q2bMmKF33nlH06ZNs/sau3fv1ieffKIlS5Zo06ZNqX4/Xbp00fr16/XFF19o7dq1slqtatKkiV0MAQCZC60CAJiMTgEATEanAACmo1UAAJPRKQCA6WgVgAyxAgb57LPPrOHh4dbQ0FBrjRo1rCNHjrT+9ddfVqvVav3mm2+sAQEB1h07dqT62E6dOll79epld9vPP/9sDQgIsF68eNFqtVqtRYsWtXbs2NF2f3JysjUiIsI6e/bsNMc0efJka5UqVWyfjxkzxhocHGyNjY212+6BBx6wDhw40Gq1Wq07d+60SrL++uuvtvtPnDhhzZo1q/WTTz5xYCYAAKaiVQAAk9EpAIDJ6BQAwHS0CgBgMjoFADAdrQLgqCAvHjcP3KR169Z65JFH9PPPP2vt2rVasWKFJk+erHfffVexsbEqVKiQypQpk+pjN2zYoN27d+vDDz+03Wa1WpWcnKy9e/eqfPnykqRKlSrZ7rdYLIqKilJsbKztts8++0zTp0/X7t27deHCBV25ckW5cuWye66iRYsqf/78aX4f27ZtU1BQkO677z7bbXnz5lXZsmW1bdu2jE0KAMAotAoAYDI6BQAwGZ0CAJiOVgEATEanAACmo1UAHBXg7QEANwoNDVWDBg00evRorVmzRl26dNGYMWOUNWvWdB+XnJys3r17a9OmTbaPv/76S7t27VLJkiVt2wUHB9s9zmKxKDk5WZL022+/qW3btmrcuLGWLVumjRs3atSoUbp06ZLdY7Jnz57uWKxWa5q3WyyWdB8LADAfrQIAmIxOAQBMRqcAAKajVQAAk9EpAIDpaBUAR3DldRivQoUKWrp0qSpVqqRDhw5p586dqZ6Bdc8992jLli0qVaqU08/166+/qmjRoho1apTttv379zs15itXruj3339XjRo1JEknT57Uzp07bWeBAQB8B60CAJiMTgEATEanAACmo1UAAJPRKQCA6WgVgNRw5XUY4+TJk3rwwQe1cOFC/f3339q7d68+/fRTTZ48Wc2bN9cDDzygOnXqqHXr1lq1apX27t2r5cuXa8WKFZKk4cOHa+3aterfv782bdqkXbt26YsvvtCAAQMcHkOpUqV04MABLV68WHv27NHMmTP1v//9L8PfS+nSpdW8eXP17NlTv/zyi/766y917NhR0dHRat68eYa/HgDADLQKAGAyOgUAMBmdAgCYjlYBAExGpwAApqNVADKCg9dhjBw5cui+++7TtGnT9P/s3Xd8TYf/x/H3zV5IIlbsvdWeJbaiZocqLVod6B7an1K6KB066bdVq0pbRVsdqkVQW1HUSkjsEBkSIvv8/kiFK0Nk3ZOb1/PxyOP7zbnn3HzuSXpfOXHuuZ06dVKjRo00adIkPfLII/rkk08kScuWLVOrVq00dOhQNWjQQOPHj1dKSookqUmTJlq/fr2CgoLUsWNHNWvWTJMmTVKFChVyPMOAAQP07LPP6oknnlDTpk21efNmTZo0KVePZ968eWrRooXuvPNOtWvXToZh6Ndff83w1iUAgKKDVgEAzIxOAQDMjE4BAMyOVgEAzIxOAQDMjlYBuBUWwzAMWw8BAAAAAAAAAAAAAAAAAAAAALBvXHkdAAAAAAAAAAAAAAAAAAAAAFDgOHkdAAAAAAAAAAAAAAAAAAAAAFDgOHkdAAAAAAAAAAAAAAAAAAAAAFDgOHkdAAAAAAAAAAAAAAAAAAAAAFDgOHkdAAAAAAAAAAAAAAAAAAAAAFDgOHkdAAAAAAAAAAAAAAAAAAAAAFDgOHkdAAAAAAAAAAAAAAAAAAAAAFDgOHkdAAAAAAAAAAAAAAAAAAAAAFDgOHkdAAAAAAAAAAAAAAAAAAAAAFDgOHkdAAAAAAAAAAAAAAAAAAAAAFDgOHkdAAAAAAAAAAAAAAAAAAAAAFDgOHkdAAAAAAAAAAAAAAAAAAAAAFDgOHkdAAAAAAAAAAAAAAAAAAAAAFDgOHkdAAAAAAAAAAAAAAAAAAAAAFDgOHkdAAAAAAAAAAAAAAAAAAAAAFDgOHkdAAAAAAAAAAAAAAAAAAAAAFDgOHkdAAAAAAAAAAAAAAAAAAAAAFDgOHkdVi5duqRnnnlG/v7+cnNzU9OmTfXNN9/kaNvOnTvLYrFk+REWFpaj+5kyZYrmz5+f45ljYmL0yiuvqE6dOvLw8FDFihV1zz336N9//83T49u1a5e6d+8uLy8veXt7a/DgwTp27FiO55KkJUuWqH379vL09JSXl5d69uyp1atXZ7pu8+bN9fTTT0tK25eNGjXK9r4bNWqk+vXrZ1i+YsUKWSwWtWvXLsNtX331lSwWi3766adbehwAYBZ56ZQkrVu3Tj169FDZsmXl5eWlJk2a6KOPPlJKSkqO74NO0SkAyE5eW/X777+rQ4cOcnd3V6lSpdSvX79Mm5EdWkWrACAzsbGxGj9+vHr27KkyZcrIYrFoypQpt3Qf58+f18iRI+Xn5ycPDw+1a9dOa9asuaX7oFN0CgCyktdWnTp1Ss8884wCAgLk7e0ti8VyS825ilbRKgDITF47tXz5cg0dOlS1atWSu7u7qlWrpmHDhikoKOiW5qBTdAoAspLXVv3555/q0aOH/P395erqqrJly6pr16769ddfb2kOWkWrgJzg5HVYGTx4sBYsWKDJkyfrt99+U6tWrTR06FAtXrz4ptvOmjVLW7ZssfpYs2aNnJ2d1bZtW5UvXz7LbVeuXJkhdIZhaNGiRdq8eXO2X7dfv3764IMP9Mgjj+iXX37R22+/rT179qhdu3Y6fvx4rh7foUOH1LlzZyUmJuq7777T3LlzdeTIEXXs2FHh4eE33RdSWoiHDRum2rVra/Hixfrxxx/VokULDRo0SBcvXrRaNyQkRLt379Zdd92Vo/uWpC5duujQoUMZXhQQGBgoT09P7dy5U7GxsRluc3BwUKdOnXL8dQDATPLSqT///FPdu3dXcnKyvvjiC/3www/q3Lmznn76aT333HPZbkun6BQA5FReWvXjjz+qd+/eKlu2rJYtW6bPPvtMQUFB6tixo44ePZrttrSKVgHAzUREROjzzz9XQkKCBg4ceMvbJyQkqFu3blqzZo0+/PBD/fjjjypXrpzuuOMOrV+/Pttt6RSdAoCcyGurgoOD9fXXX8vFxUV9+vS5pW1pFa0CgJvJa6emT5+uuLg4vfLKK1q1apXefPNN7d69W82bN7/pxSvoFJ0CgJzIa6siIiLUsGFDzZw5U6tXr9b//vc/OTs7q2/fvlq0aFG229IqWgXcMgP4zy+//GJIMhYvXmy1vEePHoa/v7+RnJx8y/c5f/58Q5IxZ86cbNc7dOiQcf/99xu9evUy7rvvPuPxxx83br/9duOJJ54wTp8+neV2QUFBhiRj4sSJVss3b95sSDLef//9XD2+e+65x/Dz8zMuXryYviw0NNRwdnY2xo8ff9PHvXXrVsNisWSYyzAMY+/evUZcXJzVshkzZhhly5Y1UlJSDMMwjICAAKNhw4bZfo1ly5YZkowlS5ZYLW/SpInx9NNPG87Ozsavv/5qdVuNGjWMFi1a3HR+ADCjvHZq2LBhhqurq3Hp0iWr5T179jRKliyZ7bZ0ik4BQE7ktVV169Y1mjRpYqSmpqYvCw0NNVxcXIz7778/221pFa0CgJtJTU1Nb0x4eLghyZg8eXKOt//0008NScbmzZvTlyUlJRkNGjQwWrdune22dIpOAUBO5LVVV59nDcMwduzYYUgy5s2bl6NtaRWtAoCbyWunzp07l2HZ6dOnDWdnZ+Phhx/Odls6RacAICfy2qrMJCYmGhUrVjQ6duyY7Xq0ilYBt4orryPdihUr5OXlpXvuucdq+ahRo3TmzBlt27btlu/zyy+/lJeXl4YMGZLtenXr1tXXX3+tsWPHavny5VqyZInee+89ffzxx/L3989yO2dnZ0lSqVKlrJZ7e3tLktzc3NKX5fTxJScn6+eff9Zdd92lkiVLpq9XtWpVdenSRStWrMj2sSQnJ2vRokVycXHRs88+q+Tk5PSP1NRUNW7cWO7u7lbbLFu2TIMGDZKDQ9b/Sa5YsUIeHh4aPXq0kpOT1blzZ1ksFgUGBqavExERoX379qlv375q0aKF1q1bl37byZMndezYMXXp0iXb+QHArPLaKWdnZ7m4uGR4Dvb29rbqRWboFJ0CgJzIS6siIiJ0+PBh9e7dWxaLJX151apV1ahRI/3www9KSUnJcntaRasA4GYsFotVY27VihUrVLduXau3q3VyctLw4cO1fft2nT59Ostt6RSdAoCcyGursnuevRlaRasA4Gby2qmyZctmWObv769KlSrp5MmT2W5Lp+gUAOREXluVGWdnZ3l7e8vJySnb9WgVrQJuFSevI93+/ftVv379DLFp0qRJ+u23IigoSBs3btR9990nLy+vm6774IMPatasWRo0aJCGDh2q5557Tk899ZTOnj2b5XZVq1bVgAEDNHPmTK1bt06XLl3SoUOH9NRTT6lKlSq67777bvnxHT16VFeuXElffuO6wcHBio+Pz3SePXv2yNnZWZ988okSEhJUunRpOTs7p3989tlnGbY5deqUtm/fnu3bhsycOVP33HOPJkyYoDlz5sjJyUm+vr5q0qSJVaTWr18vR0dHtW/fXgEBAVZxu7oeAQNQVOW1U48//rgSExP11FNP6cyZM4qOjtZXX32lFStWaPz48dluS6foFADkRF5alZiYKElydXXNcJurq6vi4uJ09OjRLLenVbQKAAra/v37s3xul5Tt29zTKToFAGZHq2gVANjCsWPHdPz4cTVs2DDb9egUnQKAwpSamqrk5GSdOXNGkydP1pEjR/T8889nuw2tolXAreLkdaSLiIiQr69vhuVXl0VERNzS/X355ZeSpIcffvim6x48eFBDhgzRqlWrVK9ePbVp00YbN25Uq1atFBISku22S5cuVd++fdW1a1eVKFFC9evX1/nz57V+/Xr5+Pikr5fTx3f1f7Na1zAMRUVFZTpLpUqVtGPHDlWoUEHt27fXjh07rD5GjhyZYZtly5bJ29s707CkpqbqySef1Msvv6wFCxZo4sSJVrd36dJFR44cSY98YGCgWrZsKU9PTwUEBGjXrl2KiYlJv83R0VEdO3bMdHYAMLu8dqpNmzZau3atVqxYoYoVK8rHx0ejRo3SW2+9ddMDLTpFpwAgJ/LSqnLlysnX11ebNm2yWh4dHZ3+x7bstqdVtAoAClpeOken6BQAmB2tolUAUNiSk5P18MMPy8vLS88++2y269IpOgUAhalPnz5ydnZWxYoV9cEHH+jbb79V3759s92GVtEq4FZx8jqsZPfWIbfytiLJyclasGCBGjZsqLZt2950/f79+2eInMVi0QMPPKD27dtnu+2YMWO0bNkyzZw5U+vXr9e3334rFxcXde3aVcePH8/xY7jxttzsCz8/PzVt2lQuLi4qVaqUmjZtmv7RokULeXh4ZNhm2bJlGjBgQIZXhcXHx2vgwIH6+uuvtXr1ag0bNizDtlejd/VVVoGBgercubMk6fbbb5ckbdiwIf22li1bqkSJElk+LgAwu7x06u+//9agQYPUokULrVy5UmvXrtX//d//aeLEiXrjjTey3ZZO0SkAyKnctsrBwUHjxo3TmjVr9MYbb+j8+fMKDg7W8OHDFRcXl75OVmgVrQKAwpDbztEpOgUAZkeraBUAFCbDMPTwww9r48aNWrhwoSpXrpzt+nSKTgFAYfr444+1fft2/fjjj+rVq5eGDBmiJUuWZLsNraJVwK1yuvkqKC5Kly6d6RWSIiMjJWX+aqSs/PrrrwoLC9NLL710y3NMmTIlx+uuWrVKX375pZYuXaq77747fXnPnj1VrVo1TZkyRfPmzZOU88dXunRpSZlfLSoyMlIWi0Xe3t6ZzrNnzx41a9ZMknT8+HE5Ozun37Zjxw61bNnSav2wsDBt2rRJ48ePz3Bf58+f18mTJ9W9e/csIx4QECAHBwetW7dOPXv21P79+zVjxgxJUokSJdSsWTMFBgaqSZMmCgkJ0ZAhQzK9HwAoCvLaqXHjxqlcuXJasWKFHB0dJaUdCDg4OGjKlCkaNmyYatSocdM56FQaOgUAGeW1Va+++qouXbqkN998U6+++qokqW/fvho1apTmzJmjihUr5mgOWpWGVgFA/sqvvx3SqTR0CgDMi1aloVUAUDAMw9Do0aO1aNEiLViwQAMGDLil7elUGjoFAAWndu3a6f+/f//+6t27t8aNG6chQ4Zke6Glq2hVGloFZI8rryNd48aNdfDgQSUnJ1st37dvnySpUaNGOb6vL7/8Ui4uLnrggQfydcYb7dmzR5LUqlUrq+Xe3t6qVauW9u/fn74sp4+vZs2acnd3T19+47q1atWSm5tbpvNcfeuQwYMHy8XFRX/99Zd27Nihv//+O0O8JGnFihXy9PRUjx49MtxWpUoVrVy5UoGBgRo8eLDi4+MzrFOqVKn0SAUGBsrBwUEdOnRIvz0gIEDr1q3TunXrJCnTtycBgKIir53as2ePWrRokX7i+lWtWrVSamqqDh48mL8Di07RKQDFTV5b5eTkpPfff18RERHau3evzpw5o59//lknTpxQ9erVValSpXyfmVbRKgDIqcaNG2f53C7d2t8Oc4pO0SkAMDtaRasA4FZcPXF93rx5mjNnjoYPH16gX49O0SkAyA+tW7dWVFSUwsPD8/2+aRWtQvHFyetIN2jQIF26dEnLli2zWr5gwQL5+/urTZs2ObqfsLAw/frrrxo4cGD6K5kKir+/vyRp69atVssjIiJ05MgRq5M7cvr4nJyc1K9fPy1fvlyxsbHp6504cULr1q3T4MGDs5zHz89PLVu21JgxY5SYmKht27apZcuWat68efo6ISEhSkhIkJT2tiF33nmnXF1dM72/nj176vfff9eGDRt055136vLlyxnW6dKli4KCgrR48WK1aNHC6q1BAgICtGfPHv3www9ydna2ihsAFDV57ZS/v7927typlJQUq+VbtmyRpAI5IZBO0SkAxUt+HVN5eXmpcePGqlChgnbt2qU1a9bo6aefLoiRaZVoFQDk1KBBg3To0CFt27YtfVlycrIWLVqkNm3apDclP9EpOgUAZkeraBUA5JRhGHrkkUc0b948/e9//9OoUaMK/GvSKToFAHllGIbWr18vb2/vAjkPkFbRKhRjBnCdHj16GD4+Psbnn39urF271njkkUcMScaiRYus1nvooYcMR0dHIzQ0NMN9vP3224YkY/Xq1QU+b2xsrFG1alXDx8fHePfdd421a9caX3/9tdG0aVPD0dHRWLdundX6OX18Bw8eNLy8vIxOnToZv/76q7F8+XKjUaNGhr+/v3H+/PkczTZu3DjD0dHRePzxx42VK1caa9asMSZPnmx4e3sbFy9eNC5cuGA4OTkZ33//fYZtAwICjIYNG6Z/vmPHDqN06dJG+/btjejoaKt1f/nlF0OSYbFYjBdffNHqtqioKMPBwcGwWCxGhw4dcjQ3AJhZXjr10UcfGZKM3r17Gz/88IOxevVq46WXXjKcnJyM7t27F8i8dIpOASh+8tKqdevWGTNmzDBWrVpl/Pbbb8Zrr71meHh4GH379jWSk5MLZF5aRasAFC+//vqrsXTpUmPu3LmGJOOee+4xli5daixdutS4fPly+nqZdSo+Pt5o2LChUblyZePrr782/vjjD2PQoEGGk5OTERgYWCDz0ik6BaD4yUurDMNIX3f69OmGJGPcuHHpywoCraJVAIqXvHTqiSeeMCQZDz30kLFlyxarj127dhXIvHSKTgEofvLSqv79+xuTJk0yli1bZgQGBhqLFy82evbsaUgyPv300wKZl1bRKhRfnLwOK7GxscZTTz1llC9f3nBxcTGaNGliLFmyJMN6I0aMMCQZISEhGW6rU6eOUa1aNSM1NbUQJjaMs2fPGk888YRRq1Ytw83NzfD39zf69u1rbNmyJcO6OX18hmEYO3fuNLp162Z4eHgYJUuWNAYOHGgEBwfneK7U1FRjyZIlRocOHQxfX1/Dw8PD6Natm/HHH38YhmEYc+bMMTw8PKx+MbjqxoAZhmHs37/fKF++vNG8eXMjPDw8fXlMTIzh5ORkSDJ+/vnnDPfVtGlTQ5Lxyiuv5Hh2ADCrvHZq2bJlxu233274+fkZnp6eRsOGDY033njDuHTpUoHNTKfoFIDiJS+t2rRpk9GmTRujZMmShqurq9GoUSPj3XffNRITEwt0ZlpFqwAUH1WrVjUkZfpxfZOyOqYKCwszHnzwQcPX19dwc3Mz2rZtm/68XFDoFJ0CULzktVVZbVuQ1/OiVbQKQPGRl05lt23VqlULbGY6RacAFC95adX06dONVq1aGT4+Poajo6NRunRpo1evXpk+f+YnWkWrUDxZDMMwbu1a7QDyQ58+feTu7p7hrUwAADADOgUAMDtaBQAwMzoFADA7WgUAMDM6BQAwO1oF5A0nrwMAAAAAAAAAAAAAAAAAAAAACpyDrQcAAAAAAAAAAAAAAAAAAAAAANg/Tl4HAAAAAAAAAAAAAAAAAAAAABQ4Tl4HAAAAAAAAAAAAAAAAAAAAABQ4Tl63M/Pnz5fFYsnyIzAwMH3datWqaeTIkQU2y6xZszR//vwCue8pU6bIYrEUyH2HhobKYrHk6+x79+7VqFGjVL16dbm5ucnLy0vNmzfXjBkzFBkZmek2zZs3l8Vi0bvvvpvp7Td+r52cnFSpUiWNGjVKp0+fTl8vMDAw25+Jq4/zwoULKleunDp27KjU1FSrr5WYmKjbbrtN1atXV2xsbP7sFADFEp3KOzpFpwAULFqVd7SKVgEoOHQq7+gUnQJQsGhV3tEqWgWg4NCpvKNTdApAwaJVeUeraBWKBidbD4CCMW/ePNWrVy/D8gYNGhTaDLNmzZKfn1+BRrIgVKhQQVu2bFHNmjXz5f6++OILjR07VnXr1tWLL76oBg0aKCkpSTt37tRnn32mLVu2aMWKFVbb7NmzR7t375Ykffnll3rhhReyvP+r3+srV65ow4YNmjZtmtavX699+/bJ09Mzfb2pU6eqS5cuGba/+jj9/Pz0v//9T4MGDdLMmTP1/PPPp68zefJk7du3T2vWrFGJEiXytD8AQKJTeUGn6BSAwkGrco9W0SoABY9O5R6dolMACgetyj1aRasAFDw6lXt0ik4BKBy0KvdoFa1CEWHArsybN8+QZOzYseOm61atWtUYMWJEgc3SsGFDIyAgIEfrJiYmGklJSTm+78mTJxtF4cd38+bNhqOjo3HHHXcY8fHxGW5PSEgwfvzxxwzLx40bZ0gy+vbta0gyNm3alGGdrL7XkyZNMiQZixYtMgzDMNatW2dIMpYuXZqjmYcPH264ubkZBw4csHoMTz75ZI62B4Ds0ClzoVMAkBGtMhdaBQDW6JS50CkAyIhWmQutAgBrdMpc6BQAZESrzIVWAQXHId/PhkeRFhMToxdeeEHVq1eXi4uLKlasqGeeeUaXL1+2Wi81NVUff/yxmjZtKnd3d3l7e6tt27b66aefJKW9Lcm///6r9evXp79FRbVq1SRdeyuLr776Ss8//7wqVqwoV1dXBQcHS5Lmzp2r2267TW5ubvL19dWgQYN08ODBbOd++OGH5evrq7i4uAy3de3aVQ0bNkz/fOnSpWrTpo1KlSolDw8P1ahRQw899FD67Zm9dUh4eLgeffRRVa5cWa6uripTpow6dOigP//8M9u5pk6dKovFos8//1yurq4ZbndxcVH//v2tlsXHx2vx4sVq0aKFZs6cmb5Pcqpt27aSpOPHj+d4m+t99NFH8vX11YgRIxQTE6MRI0aoRo0aevvtt3N1fwCQn+gUnaJTAMyOVtEqWgXAzOgUnaJTAMyOVtEqWgXAzOgUnaJTAMyOVtEqWoWiwsnWA6BgpKSkKDk52WqZxWKRo6NjltvExcUpICBAp06d0oQJE9SkSRP9+++/evXVV7Vv3z79+eefslgskqSRI0dq0aJFevjhh/X666/LxcVFu3btUmhoqCRpxYoVuvvuu1WqVCnNmjVLkjI8gf/f//2f2rVrp88++0wODg4qW7aspk2bpgkTJmjo0KGaNm2aIiIiNGXKFLVr1047duxQ7dq1M5396aef1ty5c7V48WKNHj06ffmBAwe0bt06ffrpp5KkLVu2aMiQIRoyZIimTJkiNzc3HT9+XGvXrs12fz7wwAPatWuX3nrrLdWpU0fR0dHatWuXIiIistwmJSVFa9euVYsWLVS5cuVs7/96y5cvV1RUlB566CHVrl1bt99+u7799lt98MEH8vLyuun2V38RKFOmjNXy1NTUDD8TkuTkZP004OPjoy+++EJ9+/ZV8+bNFRISoo0bN8rDwyPHjwEAboZOpaFT19ApAGZDq9LQqmtoFQAzoVNp6NQ1dAqA2dCqNLTqGloFwEzoVBo6dQ2dAmA2tCoNrbqGVsHu2PrS78hfV99OIrMPR0dHq3VvfOuQadOmGQ4ODhneiuL77783JBm//vqrYRiGsWHDBkOS8corr2Q7S1ZvHXL1rSw6depktTwqKspwd3c3+vTpY7X8xIkThqurq3H//fenL8vsrUMCAgKMpk2bWi0bM2aMUbJkSSM2NtYwDMN49913DUlGdHR0lnOHhIQYkox58+alL/Py8jKeeeaZbB/vjcLCwgxJxn333XdL23Xt2tVwc3MzoqKiDMO49j398ssvrda7unzr1q1GUlKSERsba/z8889GmTJljBIlShhhYWGGYVzb31l9nDx5MtM5evbsaUgynnjiiVuaHwCyQ6foFJ0CYHa0ilbRKgBmRqfoFJ0CYHa0ilbRKgBmRqfoFJ0CYHa0ilbRKhQXXHndTi1cuFD169e3Wnb1lVNZ+fnnn9WoUSM1bdrU6lU6vXr1ksViUWBgoHr37q3ffvtNkjRu3Lg8zXjXXXdZfb5lyxZduXJFI0eOtFpeuXJlde3aVWvWrMn2/p5++mkNHjxYmzZtUocOHRQTE6OvvvpKo0aNSn/VUqtWrSRJ9957rx5++GF16NBBFStWvOmsrVu31vz581W6dGl1795dLVq0kLOz8y082pwJCQnRunXrNHToUHl7e0uS7rnnHj311FOaO3eu1VucXHX1rUKuaty4sWbPnq1y5cpZLZ8+fbq6du2aYfsb15Okf/75R+vWrZODg4PWr1+vxMREubi45OGRAYA1OkWn6BQAs6NVtIpWATAzOkWn6BQAs6NVtIpWATAzOkWn6BQAs6NVtIpWwd452HoAFIz69eurZcuWVh8tWrTIdptz585p7969cnZ2tvooUaKEDMPQhQsXJEnh4eFydHRU+fLl8zRjhQoVrD6/+jYcNy6XJH9//2zfpkOSBgwYoGrVqqW/Tcj8+fN1+fJlq9B26tRJP/zwg5KTk/Xggw+qUqVKatSokZYsWZLtfX/77bcaMWKE5syZo3bt2snX11cPPvigwsLCstzGz89PHh4eCgkJyfa+rzd37lwZhqG7775b0dHRio6OVlJSkvr3769Nmzbp0KFDGbZZuHChduzYod27d+vMmTPau3evOnTokGG9GjVqZPiZaNmyZYYQJyUlacSIEfL399fy5cu1f/9+vfHGGzl+DACQE3SKTt2ITgEwG1pFq25EqwCYCZ2iUzeiUwDMhlbRqhvRKgBmQqfo1I3oFACzoVW06ka0CvaGK68jnZ+fn9zd3TV37twsb5ekMmXKKCUlRWFhYZnGJqdufDVY6dKlJUlnz57NsO6ZM2fSv35WHBwcNG7cOE2YMEHvvfeeZs2apW7duqlu3bpW6w0YMEADBgxQQkKCtm7dqmnTpun+++9XtWrV1K5du0zv28/PTx988IE++OADnThxQj/99JNefvllnT9/XqtWrcp0G0dHR3Xr1k2//fabTp06pUqVKmU7f2pqqubPny9JGjx4cKbrzJ07VzNmzLBadvWXlfzy+uuva+/evfrzzz/VtWtXPf7443r77bc1aNAgNW/ePN++DgDcKjpFpyQ6BcDcaBWtkmgVAPOiU3RKolMAzI1W0SqJVgEwLzpFpyQ6BcDcaBWtkmgVig6uvI50d955p44eParSpUtn+iqdatWqSZJ69+4tSZo9e3a29+fq6qorV67k+Ou3a9dO7u7uWrRokdXyU6dOae3aterWrdtN72P06NFycXHRsGHDdPjwYT3xxBPZzhcQEKDp06dLknbv3p2jOatUqaInnnhCPXr00K5du7Jd9//+7/9kGIYeeeQRJSYmZrg9KSlJK1eulCT9/vvvOnXqlMaNG6d169Zl+GjYsKEWLlxo9bYu+W3nzp16++23NXbs2PS3GZkxY4YqVaqkkSNHZvoYAKCw0Ck6RacAmB2tolW0CoCZ0Sk6RacAmB2tolW0CoCZ0Sk6RacAmB2tolW0CkUJV163U/v378/0ia5mzZoqU6ZMpts888wzWrZsmTp16qRnn31WTZo0UWpqqk6cOKHVq1fr+eefV5s2bdSxY0c98MADevPNN3Xu3DndeeedcnV11e7du+Xh4aEnn3xSktS4cWN98803+vbbb1WjRg25ubmpcePGWc7s7e2tSZMmacKECXrwwQc1dOhQRURE6LXXXpObm5smT55808ft7e2tBx98ULNnz1bVqlXVr18/q9tfffVVnTp1St26dVOlSpUUHR2tDz/8UM7OzgoICMj0Pi9evKguXbro/vvvV7169VSiRAnt2LFDq1atyvJVUle1a9dOs2fP1tixY9WiRQuNGTNGDRs2VFJSknbv3q3PP/9cjRo1Ur9+/fTll1/KyclJEyZMkL+/f4b7euyxx/TUU0/pl19+0YABA266L24UFBSkrVu3ZlheqVIlVapUSQkJCRoxYoSqVq2aHnVJ8vLy0ty5c9WtWze98cYbvI0IgHxBp+jUjegUALOhVbTqRrQKgJnQKTp1IzoFwGxoFa26Ea0CYCZ0ik7diE4BMBtaRatuRKtgdwzYlXnz5hmSsvz44osv0tetWrWqMWLECKvtL126ZEycONGoW7eu4eLiYpQqVcpo3Lix8eyzzxphYWHp66WkpBgzZ840GjVqlL5eu3btjJUrV6avExoaavTs2dMoUaKEIcmoWrWqYRiGsW7dOkOSsXTp0kwfw5w5c4wmTZqk3++AAQOMf//912qdyZMnG1n9+AYGBhqSjLfffjvDbT///LPRu3dvo2LFioaLi4tRtmxZo0+fPsbGjRvT1wkJCTEkGfPmzTMMwzDi4+ONxx9/3GjSpIlRsmRJw93d3ahbt64xefJk4/Lly5nOcKM9e/YYI0aMMKpUqWK4uLgYnp6eRrNmzYxXX33VOH/+vBEeHm64uLgYAwcOzPI+oqKiDHd3d6Nfv36GYVz7Xu/YsSPbr311f2f18corrxiGYRgvvvii4eDgYLUvrjd27FjDycnJ+Pvvv3P0mAEgM3SKTt2ITgEwG1pFq25EqwCYCZ2iUzeiUwDMhlbRqhvRKgBmQqfo1I3oFACzoVW06ka0CvbKYhiGIcCOPP/885o9e7ZOnjyp0qVL23ocAACs0CkAgNnRKgCAmdEpAIDZ0SoAgJnRKQCA2dEqoHhwsvUAQH7ZunWrjhw5olmzZumxxx4jXgAAU6FTAACzo1UAADOjUwAAs6NVAAAzo1MAALOjVUDxwpXXYTcsFos8PDzUp08fzZs3T15eXrYeCQCAdHQKAGB2tAoAYGZ0CgBgdrQKAGBmdAoAYHa0CiheOHkdAAAAAAAAAAAAAAAAAAAAAFDgHGw9AAAAAAAAAAAAAAAAAAAAAADA/nHyOgAAAAAAAAAAAAAAAAAAAACgwHHyehExZcoUWSwWW4+RZ2Z4HBaLJcuPkSNHpq83cuRIeXl5ZXk/Xl5eVusHBgZa3Zejo6PKlCmjfv36aefOnQX4iApHaGho+mObMmVKpus89NBD6etcdeedd6pEiRJKTk62Wnf37t2yWCyqUKFChvvZuHGjLBaLPvroI0nS/PnzZbFY7GI/AvbKDM/v+cEMj4NO5Q6dAnAzZniOzw9meBy0KndoFYDsmOH5PT+Y4XHQqdyhUwCyY4bn9/xghsdBp3KHTgG4GTM8x+cHMzwOWpU7tApAdszw/J4fzPA46FTu0CmYESevo1CNHj1aW7ZssfUYuvvuu7Vly5YMH5MmTcrzfU+dOlVbtmxRYGCgJk2apM2bNysgIEBBQUH5MLntlShRQvPnz1dqaqrV8kuXLmnp0qUqWbKk1fIuXbro0qVLGQIUGBgoT09PhYWF6dChQxluu7otABQmOlX00SkA9o5WFX20CoA9o1NFH50CYM/oVNFHpwDYO1pV9NEqAPaMThV9dApmwsnrKBRxcXGSpEqVKqlt27Y2nkYqV66c2rZtm+GjZs2aeb7v2rVrq23bturYsaOeeuopzZw5U3FxcVq0aFE+TJ7/rn5vcmrIkCE6fvy41qxZY7X822+/VUpKivr372+1/GqIrobpqsDAQA0YMEAVKlTQunXrMtzm5+enRo0a3dJsAJBbdIpO0SkAZkeraBWtAmBmdIpO0SkAZkan6BSdAmB2tIpW0SoAZkan6BSdQkHg5HUT+Pbbb9WuXTt5enrKy8tLvXr10u7du/N1223btqlfv34qXbq03NzcVLNmTT3zzDM5nvHqW0fMmDFDb731lqpUqSI3Nze1bNkyw5PZ1bcI2bVrl+6++275+PikxyGrtw9ZvHix2rVrJy8vL3l5ealp06b68ssvrdb5888/1a1bN5UsWVIeHh7q0KFDhq9tRi1btpQknTt37pa2u/qWGX/88YdGjRolX19feXp6ql+/fjp27FiG9XOyf7L73uRU3bp11b59e82dO9dq+dy5czV48GCVKlXKannTpk3l4+NjFbHU1FRt3LhRnTt3VkBAgFXEEhMTtWXLFnXu3DnDz0psbKzGjBkjPz8/lS5dWoMHD9aZM2duaX4At45O0anM0Ck6BZgJraJVmaFVtAowCzpFpzJDp+gUYBZ0ik5lhk7RKcBMaBWtygytolWAWdApOpUZOkWncHOcvG5jU6dO1dChQ9WgQQN99913+uqrrxQbG6uOHTvqwIED+bLt77//ro4dO+rEiRN6//339dtvv2nixIm3/KQqSZ988olWrVqlDz74QIsWLZKDg4N69+6d6VuCDB48WLVq1dLSpUv12WefZXmfr776qoYNGyZ/f3/Nnz9fK1as0IgRI3T8+PH0dRYtWqSePXuqZMmSWrBggb777jv5+vqqV69euQqZYRhKTk7O8GEYxi3f182EhIRIkurUqZOr7R9++GE5ODho8eLF+uCDD7R9+3Z17txZ0dHR6evc6v7J6fcmu5l++OEHRUVFSZIOHz6szZs36+GHH86wroODgzp16qS//vpLycnJkqQ9e/YoKipKAQEBCggI0Pr169PX37p1q65cuZLpW4eMHj1azs7OWrx4sWbMmKHAwEANHz78lucHkHN0ik7dDJ26hk4BtkGraNXN0KpraBVQ+OgUnboZOnUNnQIKH52iUzdDp66hU4Bt0CpadTO06hpaBRQ+OkWnboZOXUOnkIEBmzlx4oTh5ORkPPnkk1bLY2NjjfLlyxv33ntv+rLJkycb13+7bmXbmjVrGjVr1jSuXLmS61lDQkIMSYa/v7/V/cTExBi+vr5G9+7dM8z66quvZrifGx/HsWPHDEdHR2PYsGFZfu3Lly8bvr6+Rr9+/ayWp6SkGLfddpvRunXrW3oskrL8+Oqrr9LXGzFihOHp6Znl/Xh6ehojRoxI/3zdunWGJOPbb781kpKSjLi4OGPTpk1G3bp1jQYNGhhRUVG3NOe8efMMScagQYOslm/atMmQZLz55puGYdza/snue3MzV38G3nnnHSM2Ntbw8vIyPvnkE8MwDOPFF180qlevbqSmphrjxo0zbnxq+eCDDwxJxubNmw3DMIz33nvPqFChgmEYhnHgwAFDkrF//37DMAzjtddeMyQZBw4cyLAvxo4da3W/M2bMMCQZZ8+eveXHA+Dm6BSdyg6dolOAGdAqWpUdWkWrAFujU3QqO3SKTgG2RqfoVHboFJ0CzIBW0ars0CpaBdganaJT2aFTdAo3x5XX81lKSorVK3pSU1OzXPf3339XcnKyHnzwQatt3NzcFBAQYPV2C7nd9siRIzp69Kgefvhhubm55fnxDR482Op+SpQooX79+mnDhg1KSUmxWveuu+666f398ccfSklJ0bhx47JcZ/PmzYqMjNSIESMy7Ns77rhDO3bs0OXLl2/pcdx7773asWNHho8+ffrc0v1kZsiQIXJ2dk5/C4+YmBj98ssv8vb2ztX9DRs2zOrz9u3bq2rVqulvuZGb/ZOT7012vLy8dM8992ju3LlKTk7WwoULNWrUqEzfGkZS+quprv5cBgYGKiAgQJJUv359lS1bNv3xBAYGqly5cqpfv36G++nfv7/V502aNJEkq1frAcgenbqGTtGpq+gUYC606hpaRauuolWAedCpa+gUnbqKTgHmQaeuoVN06io6BZgLrbqGVtGqq2gVYB506ho6RaeuolMoKE62HsDe1KxZ0+o/qMmTJ2vKlCmZrnv17TtatWqV6e0ODlm/tiCn24aHh0uSKlWqlP3gOVS+fPlMlyUmJurSpUsqVapU+vIKFSrc9P5yMt/Vx3r33XdnuU5kZKQ8PT1v+vWuKlOmjFq2bJntOk5OThnCfL3k5GQ5OztnWD59+nR17dpVcXFxWr16taZNm6aBAwdq27ZtcnV1zfGMV2W1zyMiIiTlbv/k5HtzMw8//LBuv/12vfXWWwoPD9fIkSOzXLdx48by8/PTunXr9NJLL2njxo2aNm1a+u2dOnVSYGCgHnnkEW3ZskUDBw7M9H5Kly5t9fnV/XnlypU8Px6guKBTdIpOZUSnAHOhVbSKVmVEqwDzoFN0ik5lRKcA86BTdIpOZUSnAHOhVbSKVmVEqwDzoFN0ik5lRKdQUDh5PZ+tXLlSCQkJ6Z/7+/tnua6fn58k6fvvv1fVqlVv6evkdNsyZcpIkk6dOnVL95+VsLCwTJe5uLjIy8vLanlWr8bJar7KlStnus7Vx/rxxx+rbdu2ma5Trly5m36tW1WuXDnFx8crMjJSvr6+VrdFREQoISEh069bo0aN9EB26tRJ7u7umjhxoj7++GO98MILtzxHVvu8Vq1aknK3f3LyvbmZDh06qG7dunr99dfVo0ePLL9/V79eQECAVq1ape3btys6Ojr9FViSFBAQoClTpmjLli2Kj49Pf8UWgPxHp66hU3Tq+q9HpwDzoFXX0Cpadf3Xo1WAOdCpa+gUnbr+69EpwBzo1DV0ik5d//XoFGAetOoaWkWrrv96tAowBzp1DZ2iU9d/PTqFgsDJ6/mscePGOV63V69ecnJy0tGjR2/57Rxyum2dOnVUs2ZNzZ07V88991yuXgF0veXLl+udd95JfwuR2NhYrVy5Uh07dpSjo+Mt31/Pnj3l6Oio2bNnq127dpmu06FDB3l7e+vAgQN64okn8jT/rejevbumTp2qb7/9VmPGjLG67bvvvktf52bGjx+v+fPn6+2339Zjjz2mEiVK3NIcX3/9tdX3ePPmzTp+/LhGjx4tyXb7R5ImTpyo77//Ptu3f7mqS5cuWrZsmd555x2VLVvW6u1BAgICFBERoY8//jh9XQAFg07dGjp1c3QKQH6jVbeGVt0crQKQn+jUraFTN0enAOQnOnVr6NTN0SkA+Y1W3RpadXO0CkB+olO3hk7dHJ0CssbJ6zZUrVo1vf7663rllVd07Ngx3XHHHfLx8dG5c+e0fft2eXp66rXXXsvztp9++qn69euntm3b6tlnn1WVKlV04sQJ/f777/r6669vaWZHR0f16NFDzz33nFJTUzV9+nTFxMRkOWdO9sGECRP0xhtv6MqVKxo6dKhKlSqlAwcO6MKFC3rttdfk5eWljz/+WCNGjFBkZKTuvvtulS1bVuHh4frnn38UHh6u2bNn39LXPXfunLZu3ZphecmSJdWgQQNJaU+k/fv319NPP63Q0FAFBATIMAxt2LBBM2fOVP/+/dW5c+ebfi1nZ2dNnTpV9957rz788ENNnDjxlmbduXOnRo8erXvuuUcnT57UK6+8oooVK2rs2LGSVCD7J6eGDx+u4cOH52jdq2FasWJFhrc6adSokUqXLq0VK1aoYsWKql27dr7PCuDW0Sk6lRN0CoAt0SpalRO0CoCt0Ck6lRN0CoCt0Ck6lRN0CoAt0SpalRO0CoCt0Ck6lRN0CsiGAZv74YcfjC5duhglS5Y0XF1djapVqxp333238eeff6avM3nyZCOzb1dOtjUMw9iyZYvRu3dvo1SpUoarq6tRs2ZN49lnn83xjCEhIYYkY/r06cZrr71mVKpUyXBxcTGaNWtm/P7771brXp01PDw8w/1k9TgWLlxotGrVynBzczO8vLyMZs2aGfPmzbNaZ/369Ubfvn0NX19fw9nZ2ahYsaLRt29fY+nSpTl+HIZhGJKy/OjQoYPVuomJicbUqVONhg0bGq6uroarq6vRsGFDY+rUqUZiYqLVuuvWrTMkZTlPmzZtDB8fHyM6OjpHc86bN8+QZKxevdp44IEHDG9vb8Pd3d3o06ePERQUlGH9nOyf7L43N3P1Z+Cdd97Jdr1x48Zl+j02DMMoX768Icn45JNPMtw2cOBAQ5IxbNiwDLdd3Rc7duywWn51n69bty7nDwTALaNTdCozdOoaOgXYHq2iVZmhVdfQKsC26BSdygyduoZOAbZFp+hUZujUNXQKsD1aRasyQ6uuoVWAbdEpOpUZOnUNnUJWLIZhGAJuIjQ0VNWrV9c777yjF154wdbjFAvz58/XqFGjtGPHDrVs2dLW4wCAqdGpwkenAODW0KrCR6sAIOfoVOGjUwCQc3Sq8NEpALg1tKrw0SoAyDk6VfjoFHBzDrYeAAAAAAAAAAAAAAAAAAAAAABg/5xsPQBsLzk5OdvbHRyKxmsccvI4zPBYDMNQSkpKtus4OjoW0jQ5n8disRTSRABgjU4VLjoFALeOVhUuWgUAt4ZOFS46BQC3hk4VLjoFALeOVhUuWgUAt4ZOFS46BeQf2/8XDZsKDQ2Vs7Nzth+vv/66qlWrJsMwTPvWITl9HGawYMGCm866fv16jRw5UoZhFPhbh6xfv/6m8yxYsKBAZwCArNCpwkenAODW0KrCR6sAIOfoVOGjUwCQc3Sq8NEpALg1tKrw0SoAyDk6VfjoFJB/LIZhGLYeAraTmJiovXv3ZruOv7+//P39C2mi3ClKjyMiIkIhISHZrlO3bl2VKFGiUOaJjY3V4cOHs12nevXqKl26dKHMAwDXK0rP79kpSo+DTgHArSlKz/HZKUqPg1YBQM4Vpef37BSlx0GnACDnitLze3aK0uOgUwBwa4rSc3x2itLjoFUAkHNF6fk9O0XpcdApIP9w8joAAAAAAAAAAAAAAAAAAAAAoMA52HoAAAAAAAAAAAAAAAAAAAAAAID94+R1AAAAAAAAAAAAAAAAAAAAAECBc7L1AGbUu8EEW49gHwzD1hPYjeTDwbYewS78kbo019umhtXJx0my51D+SKF9LRRdHQe9a+sR7MLGFS/YegS70LPdG7YewS6s3jIp19sWZqckWoWba/DKTFuPYBeS3W09gX3wOcKxaX7YtvC5PG3PMRXMps4yfofND4lxzrYewS64B7naegS7cPD1Z3O9LcdUMJt+G5+09Qh24VBYOVuPYBdST3jYegS7cPR5jqlgXx7dOcLWI9iFx8uus/UIdsHNkmLrEexCg8qnc70tx1Qwm/H/3GPrEezCb8cb2HoEuxB7kX/wyw+hD7yc623plDlx5XUAAAAAAAAAAAAAAAAAAAAAQIHjyusAkAOpSi20r8WrigAAt6owOyXRKgDAreOYCgBgZhxTAQDMjmMqAICZcUwFADAzOmVO7CcAAAAAAAAAAAAAAAAAAAAAQIHjyusAkAMpRuG9AosnZgDArSrMTkm0CgBw6zimAgCYGcdUAACz45gKAGBmHFMBAMyMTpkTV14HAAAAAAAAAAAAAAAAAAAAABQ4TvIHgBxIlWHrEQAAyBKdAgCYHa0CAJgZnQIAmB2tAgCYGZ0CAJgZnTInrrwOAAAAAAAAAAAAAAAAAAAAAChwXHkdAHIgVam2HgEAgCzRKQCA2dEqAICZ0SkAgNnRKgCAmdEpAICZ0Slz4srrAAAAAAAAAAAAAAAAAAAAAIACx8nrAAAAAAAAAAAAAAAAAAAAAIAC52TrAQCgKEgxDFuPAABAlugUAMDsaBUAwMzoFADA7GgVAMDM6BQAwMzolDlx5XUAAAAAAAAAAAAAAAAAAAAAQIHjyusAkAOp4hVYAADzolMAALOjVQAAM6NTAACzo1UAADOjUwAAM6NT5sSV1wEAAAAAAAAAAAAAAAAAAAAABY4rrwNADqTwCiwAgInRKQCA2dEqAICZ0SkAgNnRKgCAmdEpAICZ0Slz4srrAAAAAAAAAAAAAAAAAAAAAIACx5XXASAHUnkFFgDAxOgUAMDsaBUAwMzoFADA7GgVAMDM6BQAwMzolDlx5XUAAAAAAAAAAAAAAAAAAAAAQIHjyusAkAMpBq/AAgCYF50CAJgdrQIAmBmdAgCYHa0CAJgZnQIAmBmdMieuvA4AAAAAAAAAAAAAAAAAAAAAKHBceR0AciDV1gMAAJANOgUAMDtaBQAwMzoFADA7WgUAMDM6BQAwMzplTlx5HQAAAAAAAAAAAAAAAAAAAABQ4LjyOgDkQIoMW48AAECW6BQAwOxoFQDAzOgUAMDsaBUAwMzoFADAzOiUOXHldQAAAAAAAAAAAAAAAAAAAABAgePkdQAAAAAAAAAAAAAAAAAAAABAgXOy9QAAUBSk8O4hAAATo1MAALOjVQAAM6NTAACzo1UAADOjUwAAM6NT5lTkr7y+Y8cODRs2TNWrV5e7u7s8PDxUvXp1DRs2TDt37rT1eACAYo5OAQDMjE4BAMyOVgEAzIxOAQDMjlYBAMyMTgFA8VWkr7z+ww8/6N5771W3bt309NNPq1y5cjIMQ+fPn9fq1avVoUMHfffddxowYICtRwVQxKXaegAUSXQKQGGhU8gNOgWgMNEq5AatAlBY6BRyg04BKEy0CrlBqwAUFjqF3KBTAAoLnTIni2EYRfai+I0aNdLw4cP18ssvZ3r79OnTtXDhQv3777+3dL+9G0zIj/FQdH+0TCf5cLCtR7ALf6QuzfW2x05VyMdJslej0tlC+1ooWAXVKUnqOOjdvI4HSRtXvGDrEexCz3Zv2HoEu7B6y6Rcb1uYnZJolb0oyE41eGVmXseDpGR3W09gH3yOcGyaH7YtfC5P23NMhdwoyFbVWcbvsPkhMc7Z1iPYBfcgV1uPYBcOvv5srrflmAq5UZCd6rfxybyOB0mHwsrZegS7kHrCw9Yj2IWjz3NMhcJXkK16dOeIvI4HSY+XXWfrEeyCmyXF1iPYhQaVT+d6W46pkBsF2anx/9yT1/Eg6bfjDWw9gl2Ivcg/+OWH0Acyf67ICTplTg62HiAvgoODNXjw4CxvHzhwoI4ePVqIEwGwVymyFNoH7AedAlBYCrNTtMp+0CkAhYlOITdoFYDCwjEVcoNOAShMdAq5QasAFBaOqZAbdApAYaFT5lSkT16vWbOmfvjhhyxv//HHH1WjRo3CGwgAgOvQKQCAmdEpAIDZ0SoAgJnRKQCA2dEqAICZ0SkAKN6cbD1AXrz++uu67777tH79evXs2VPlypWTxWJRWFiY/vjjD61evVrffPONrccEYAdSDVtPgKKITgEoLHQKuUGnABQmWoXcoFUACgudQm7QKQCFiVYhN2gVgMJCp5AbdApAYaFT5lSkT16/6667tGHDBn344Yd6//33FRYWJkkqX7682rVrp/Xr16tdu3Y2njL37n0kQB26N1SlGmWUGJ+kA3tOaO57q3Q69EL6Os+9dZd6DGphtd2hf07o2aGfFfa4pnXvIwHq0KPRtf24+3jG/Tj17sz3432zC3tc07rv5YG6fVAbVa5XUQlXEnVg82HNeflrnTpyJn2d2we1Vt9He6h2ixoq5VdSjzd7UUf/CbXd0ICN2Xunhg9urU5t66hqJV8lJCZr/6HTmr1wg06eiUpfx6eUh8Y82EmtmlaTl6er/vn3lD6Ys0anzkbbbnDYpfse7KAOAfVUuWppJSYk68C+U5oza41OnYiwWq9yVT+NHtdNTZpVkcVi0fGQcL05cZnCz8XYaHLAduy9U5I0pHUT3demiSp6l5QkBZ+P0Ox127TxSGiGdacM6KZ7WzfRtF8C9dXm3YU8qbkNbd5EQ1s0UaX/9mNQeIQ+3bhNG46GSpLe7tdTg29raLXNnlNnde98/qh8vcFdm2hw19vkXyZtPx47HaEvf9iqLXtD09cZPaidBnZurBKebvr36Fm9s3CtQk5HZHGPgP0rDq263mN1O+j5Rl01P2ibpu5dnb78yfqddG/15irl4qZ/Ik/rtd2rFBwbbsNJzWV4nWYaVqeZKnmWkiQFXbygj/ZuUuCZY5IkPzcPvdy8izpWqKaSLm7afu6kJu/4Q6GxUdndbbFzX6smuq/Vdb83hUdoVuA2bQwKzbDulH7dNKRVE037LVALt/B7E4qv4tapyF+P6cLyYHl3r6Ky99XLcPu5hQd0ccMplRlSVz49qtpgwqLhsXrt9ULjrpp/ZJve+ueP9OVPNuikITWapfU+4oym7P5NwTEXsrmn4uX+25po2G23qWLJ/45LIyL0yZatWh8amr5OTV9fje/UUW0qVZLFYlHQhQg9+fPPOhsba6OpAdsrTq068eNphXx3UhXvKK9aD1STJB36LFjnNlo/l5ao6aXmrzeywYTm9f1CJy37ytlqWSkfQ599Fy9JMgxp2VdOWvOLky5fkmrVS9WoJ5NUuRpngV3vmwUu+vYrF6tl3j6pmrc0TlLafvx2oYtW/+qky7EW1a6XqkefSlCVaqm2GBcwheLUKUk6suK8Di4JU40+fmo80j99eeypeB34+qwuHLgsw5BKVnZTy2eryMPPJZt7K74ertVRzzTorq+ObtGMf1dJkrpVqK97qrZUg1IV5OPqqbsDZ+twTJiNJzUX/oYKMyrSJ69LUrt27ewqVNdr3LK6Vi7ZqiP7T8nR0UEjnu6pt+aM0mP9PlDClaT09XZsPKyZryxL/zwpKcUW45pW41Y1tHLxlmv78ZleeuvLh/TYnTOt9+OGw5r5yvfpn7MfrTXp1FA/zfpdh3cEy9HJUaPeHKq3f5+o0Q2fVXxcgiTJzdNN/24+rA3fb9FzX4yx8cT5K0UWW4+AIsqeO9W0YWWt+G23DgaHydHRQY8Ou13vT75HDzw1T/EJac+vU/9voJKTU/R/037Q5bgEDenfUjOn3Gu1DpAfGjerop+W7dCRg2fl6OigkY931rQP7tcj93+m+Pi0n7UKFX00838jtGrlHi2cs16XL8WrSjU/JSUm23j6vKNTyC177pQknYu5pJm//6XjEdGSpIHNG+iTYf1116dfK/j8tROCu9WvqSaVy+tczCUbTWpuYbGX9N7av3Q8KlqSNKhJA826t78GfvG1gi+k7ccNwSF6eeW1Ey2TUjieutH5yEua9d1fOnk+7Q99fW9vqHeeGaAHJi1SyOkIPdC3le6/o7le/+J3nTgbpYcGtNHH4+/SvS/NU1x80f+9iVYht+y9VVc19qmge6s306Hoc1bLH6nTXqNqt9XLO39SyKUIja3XUfM6DtMdq2fpcnKijaY1l7NxsZq+K1DH//uHlLtqNtbnne9S31/mKejiBX3e+S4lpabqkcBlupSUqNH1W2lR9/vUY+UcXUku+s+v+SUs5pLe/+MvnYiMliQNaNpAnwztr7tmf63g8Ot+b6pXU00q2d/vTXQKuVVcOhUfclHRG07JpZJXprdf2n1e8SEX5ejtWsiTFS2NfSpoSI3mOnhD7x+t204P1Wmjl3b8pJDYSI2tf7vmdxqmXqtm0/v/hMVe0jsb/1Jo9H+9b9BQnw0coP5fLVJQRISqlCqlb+8boqX79+vDzZsVm5Comr6+Skwu+n/3u4pWIbeKQ6tijl7S2XXn5VnFI8NtPk1Kqd5jNdM/tzg5FOZoRUalaql6ZXpC+ucO1+2mld866ddlTnr8hURVqGRoxWInTX3JVe/Pi5d7xl1erFWulqLXZsSnf+7gcO0E/xXfOuunZc568sV4+Vcy9P3Xzprykps+nRdnF/uRTiG3ikOnJCkqOE7H/4xQyapuVssvhyVo46tHVbWrr+reW17OHg6KPZ0gR2d6lZmG3v66u2oLHb5ofWK6u6Oz9kSe0Ooz/+q1pgNsNJ25Ffe/odIpc+KZzsQmPTZff/6wSyeCzyvkcJhmvrJM5fx9VLtBRav1khJTFHXhUvrHpYtXbDSxOU16dJ71fpzwfdp+bHjjfkxmP2ZjQp+3tHpBoI4fOKVje4/r3YdmqVzVMqrdokb6On8u2qBFb3yvXX/us+GkAArLC28s02/r/lXoyQgdDQ3XtI9XqXzZkqpbs5wkqbK/jxrV9dd7//tTh4LDdPJMlN7//E+5uzure8eMV2cC8uKVZ5foj1/36nhIuI4Fn9N7b65UuQreql2vQvo6ox7rou2bgzXn0zU6eiRMYWeitX1zsKKj4mw4OYCCFHjomDYcCdXxiGgdj4jWh39sVlxikppULp++TtmSnnqlXxeN/26VkjnhOlPrgo5p/dFQhUZGKzQyWjMD0/Zj00rX9mNiSoouXI5L/7gYn5DNPRZPf+05ps17Q3QyLFonw6L12febFBefpEY101p1X69mmvfTdgXuDNax0xF67fPf5ebipF7t+L0JsHcejs56t9UgTdr1iy4mWf89akSt1pp96C+tPnNIQTHhGr/zR7k7OuvOylwp8Ko1p4IVeOaYQmKjFBIbpXf3bFBccqKalfFX9RI+al6moiZu+117I8J0LCZSE7evlqezi/pXq2/r0U0l8PAxbQgKVWhEtEIjovXhmrTe33b9700lPDWxbxeN/57fm4DiJDU+WWfn7FO5BxvK0cM5w+1JUfE6v/igyo9uLIsj/xicFQ9HZ73XZqAm7vxFMYnxVreNqN1asw/+pdWnDysoJlwv7fhJ7o7O6leF3l+19tgxBYaEKDQqWqFR0Xpv06a049IKacdTz9/eQYEhIZq+YaMOnA/XyYsXFRgSoogr/FsfYO9S4lN0aFaw6oyuISdPxwy3Ozg7yMXbJf3D2avIX9+xQDg6SN6+1z5KeqctNwzptxVOGjg0Wa07pqpydUNjXkxSYoK0aW3G/V3cOTpKPr5G+kcp77TlhiH9vNxZd9+fqHYdU1S1eqqeGp+ghHiLNqzlZxKwd8nxKfr74xO67bFKcr6hVQe/CVO5ZiXUcHgFeVd3l2c5V5VvXlKupXhuuJG7o4vebn6XXvvnJ8Xc8DfUn0/t1WdH1mtr+DEbTWd+/A0VZmTXJ69PmDBBDz30kK3HyDceJdKuWBF7w0nVTVpV15KNE/TFr8/pqdcGqZSvpy3GKzI8SqS9ii3DfmxdQ0v+ekVf/Pa8nnqd/XgznqXSXv4bG2lfV1nKSooshfaB4sPeOuXpkdapmEtp//ji7JR24JWYdO3qNqmphpKTUtSkfsWMdwDkI0+v/35viknrvcUitW5fS6dPRmrqzPv13S/P6aM5D6l9p7q2HDPfFGanaFXxYW+dcrBY1LtxHbm7OOmfE2clpT03vH33HZq78W+rK7Ejaw4Wi/o2qCMPZyftPnU2fXnrqpW05dnH9PuYkXqzb3f5erjbcErzc7BY1KNNXbm7Oml/8Bn5lyklP28vbdsfmr5OUnKKdh8+pca1/bO+oyKETqEg2EurJjfrrcCwIG0+H2K1vLKnt8q6l9Bf5679o0tSaoq2Xziu5qUrFfaYRYKDxaJ+1erL3clZu8JPy8Ux7R/6ElKuOy41DCWlpKhV2cq2GtP0HCwW9WlURx4uTtpz8trvTdPvukNzN/1tdSV2e8ExFQqCvXTq/NcH5dnYT54NSme4zUg1FPblPvn0qibXiplflR1pJjfvrcCzwTnqfWJqiraHH1czep8pB4tFd9atK3dnJ+0+c0YWSZ1r1FBoVJTm3TVY28c8rmX3D1WPWjVvel9FCZ1CQbCHVgXND5FvU2/5NCqV6e3RB2O0ecxObX9+jw5/cUyJF4v+lUMLQtgZi8YMcdNTD7jqo7ecde5s2nPB+TCLoiMtatzy2otXnV2k+k1SdeSAXZ9ulCtnTzvooSEeemy4h95701VhZ9L247mzFkVFOqhpC+v92LBJig79ax8vAuCYCgXBHjolSXvnnFG5ZiVVtkkJq+VGqqGwXbHyquCqzW8d02+j/9X6CUE6u/2ijSY1t1ea9NXGc0HaeoET1POqOP4NlU6Zk12/TOf06dM6efKkrcfIN4+O76v9f4fqePC1txPcufGINv6+X+fPRKt8JR898FR3vT1vtJ66+xMlJXH1m8w8+lIf7d8ZouNB1+/Hw9r4+760/VjRRw881UNvzx+tp+5iP2bl8fdGaN/Ggwr9137+GwMKm7116olRnfXPgVMKOXFBknT8dKTOnr+ox4Z30juzVys+IUlD+rdUaV8vlfbhBUIoWI891VP79pxQ6LFwSZK3j6c8PF015IH2mv95oObMWqNWbWvq1Wn36MUnFmrf7hM2nhgwH3vpVO1ypbXksfvk4uSkuMREPfX1Sh0Nj5Qkje7YSimphhZt2W3jKc2vTpnS+nbUfXL9bz+OW7pSRy+k7ccNR0O16mCQTl+MUSXvUnomoJ0WDr9bg75crCSuymqlZiU/zXn1Prk4O+lKfKJe+nClQs5EqnGttKsFRl60fjeQyItxKu9X0hajAkWCPbSqb6WGauBdQXetnZPhNj/XtJMAIxKsLxwQkXBZ/h6Zn5hRXNX1LqPldzwgV0cnxSUn6rHA5Qq+GCEni4NOXbqo8c0CNGHbKl1JTtLo+q1V1sNLZd05Lr1R7bKlteSRa71/csl1vzfdnvZ701db+b0JyCl76FTM9rOKPxGrKhPbZHp71KoQWRwc5N2tSiFPVrT0rdxADX3Ka/CfX2a4zc8trfcX4i9bLb+QcFkV6b2VOn5++n7otU6N/WmlgiMj5efhIS8XFz3WurXe/2uTZmzYqE7Vq2lW//4a9t1SbT91ytajA6ZV1Ft1fssFXQq5rOZvNM70dt/bvFWmTWm5+bnqSniCQpee1D9TD6jFm43l4MyJ11fVqpeqMeMTVaGSoYtRFq342kmTn3bVO3PidTEy7eSrUt6G1TalfAxdOMeJWderXT9FT49PkX8lQ9FRFi392kX/97S7PpwTp+iotH3l7WO9H719DIWzH4EsFfVOSdKpTdGKDrmigGm1MtyWEJOslPhUBf14XvWHlFfDYRV0bk+str93XB0m15BfA14gfNUd/o3UoFQF3bfhc1uPUqTxN1SYjV3/Rr5gwQKtXbs223USEhIUExNj9ZGampztNrYwdmJ/Va9bXtNf+MZq+YZV+7Rjw2EdDz6nbYGHNOnRBapYrbRaBfC24pkZO6m/qtetkHE//rZPO9Yf1vGg//bjY/NVsaqfWnVmP2bmyU8eVvUmVTT1/g9sPUqxN2XKFFksFquP8uWvvZ2zYRiaMmWK/P395e7urs6dO+vff/+14cS4Xk46JWXRqhRzterZR7upZrUyeu39n9OXpaSkauL0n1TZ30e/LXpSf3zzjJo1rKwtfx9TSqqRzb0BefPEC3eoeq2ymvbq8vRlFoe0P/5t3nhEy7/ZpmNB5/TtV5u1bVOQ7hzYwlajFgu0qujKU6eSzdOp0AtRGvzJIg393zf6dvteTb27l2qW8VUD/7J6oH0zTVj2u61HLBJCIqI04ItFunfeN1ry915N799LNf18JUm/HjiiwOAQBYVHaF3QMY3+5gdVK+2jLrWq23hq8zl+NlIPTFykh19fouVr9+rVR3upur9v+u3Gjb8iWSwZlyFf0amiLU+tSrJ9q8q7l9Qrt/XUizt+UGJq1i/2yfDUoLSfTVxzLCZCfX6Zq0G/LdSiI7v1Xoc7VatUaSUbqXp8/XLVKOmrvUOe1cGhL6htuSpad/qoUtiHGYRGRGnw7EW674tv9M2OvZo2+L/fmyqU1QNtm+n/VvB7ky3QqqIrL51KSbT9i0CTIuMVvuSwKoxuLAfnjFcEjQ+NUdSfJ1T+oYayWDjpKivl3UtqYtOeemHbrfbekmFZcRcSGal+Xy3S3YuX6Ot/9mrGHb1Uy9dXDv/9/P0ZfFTzdu3SwfBw/W/7Dq09dkz339bExlPbPzpVtBXlVsVHJCh44XHVG1tLDi6Zn/ZStp2fSjfzkWdlD/k191Hj8fV05Wy8IvZEF+6wJte0daradExVleqGGjdP1fg3EyVJG1Zfuxbmjak3DImLilpr0TpF7TqlqGqNVN3WIkUT30p7Z+B1fzhfWymT/civUQWLThVteelUsgmOqa5cSNT++WfU4snKcsykVUZq2v+Wb1lKNe8so1LV3FVnYFmVb15Coavt713vcqucW0m93Li3Xt61TIkmPKezKOFvqOZUnFtl11dez4lp06bptddes1pW0+921S7T0UYTZTTmlX5q26WeXnzwC104F5PtulEXYnX+TLQqVs349o3FXdp+rK8XH/j85vsxPFbnz7IfMzPuo4fUtl9LPR8wWRdOR9p6nEKTapj3qLFhw4b6888/0z93dLz2DwkzZszQ+++/r/nz56tOnTp688031aNHDx0+fFglSpTI7O5gQpm1qnLdHqpav6eNJrL2zOiu6tCqpp585VuFR1hfEfDIsXN66LmF8vRwkbOTo6Jjruh/04fp0NEwG00Lezf2uV5qd3sdPT9moS6Ex6Yvj4mOU3Jyik6EhFutfyL0ghrdVvTf6srMnZJolb3LrFN+t/dUmU532Ggia0kpqToReVHSRf17+pwaVSyvB9o309HwSPl6emjNi6PT13VydND43p30YPtm6vHuXNsNbUJJqak6EZW2H/efPafG/uU1onUzvfrrmgzrhl+6rDMXY1TV17vQ5zS75JRUnTofLUk6FHJO9WuU05CezbXwlx2SpNLeHoq4eO2Ki74l3RUZczmzuypyzNwqOmX/MmuV7z2dVXpIVxtNlKaRTwX5uXlpedfrWuTgoFZ+VTW8Ziv1Wj1LUtoV2MPjrx1r+bp6KiLBPp4b8ktSaqqOx0ZLkvZFhqlJ6Qp6qF5LTdj2u/ZHnlOfX+aphLOrnB0cFJlwRT/0flB7I87admgTsvq96cw5Na5YXg+0baZjFyJV2tNDa5+74femXp30YNtm6j6z6P/eZOZOSbTK3mXWqdojW6nuQ5lf7bywJByPUUpsoo6/sfXawlRDV4KiFL32pPzuqq2U2EQdG7/R6vbw7w4r6s/jqjG9U+EPbUKNfMrLz81LK7rf0PsyVTS8Viv1WjVbklTGzdOq96VdPTJcjb24S0pN1fHoaEnSvnPn1KR8OY1s3lyvrV2rpJQUBUdYn+BzNCJSLSv622DSgmHmVtEp+5dZq5o/0kQtHm1qm4EkXQq5rKSYJP09cd+1hanSxUOxOr06TJ0WtEm/qM1Vrj4uaVdhD7tSyNMWLW7uUuXqqQo7bVHLDmknrEVHWeRT+trJazHRFpXy4WS27Li5S1Wrp+rsKQe1aZ92smV0pEW+1+3Hi3a0H+kUbCmzTrV/rL46jGloo4nSRB+7ooSLyVr/clD6MiNVijh4WSGrLqjvV41kcZRKVHK12s6ropsiD3MscFVDb3+VdvXSt50eS1/m5OCoFqWramj11mrx8xtK5aW/OVKc/4Zq5k5JxbdVRf7k9cuXL2vx4sXavHmzwsLCZLFYVK5cOXXo0EFDhw6Vp2f2b13wf//3f3ruueeslt3T+s2CHPmWjHmln9p3b6CXRs7RudNRN12/RCl3lSlfSpHXnawFaczE/mn7ccQXOduP3h7sx0w88fHD6jCwtV7oMllhoedtPQ7+4+TkZPWKq6sMw9AHH3ygV155RYMHD5aU9srUcuXKafHixXrssccybIP8l9dOSZm3qvfwWQU18i155pFu6tSmlp6a9K3Onr+Y5XqX49Ku0lCpgrfq1iynOYv/KqwRUYyMe/4OdQioqxfGfqWws9FWtyUnp+rwwTOqVMX6hWmVqvjqXFjWP7vIH7TKvAqqU63f+l9BjZxnFovk7OSon3Yf1JbgE1a3fTFqsH7afVArdtnHq9ULkkWSi2PGqy9Kkre7myqULKHwS/xx9WYsssjZ2VFnwi/qQvQltW5YVUeOp73QysnRQc3qVtKn3228yb0gr+iUuRVUq5r/+l5BjZxjW86HqO8fn1kte7tFfx2LvaDPj2zWyctROn8lVh3KVdfBi2kvAHa2OKi1X1W9sz/ji4dwTVqnrP/0HZuUIEmqVsJHjX3L6709G2wwWRFjkVycHPXTnoPacvSG35seHKyf/jmo5fzeVCholXkVVKfu2/FyQY2cYx71fVX1tXZWy8Lm/SuX8p7y7V1NTqVc5dnI+u8sp2buUsm2FVTq9oqFOaqpbTkfqj6/Wx8jv92qn47FRujzQ5t1Ir33NXQg+pyk/3pfpqre2Xfzq0wWZxZZ5OLoqKTUVO07d07VfX2sbq/u46PTMfw7X2GgU+ZWUK16dv/Ygho5R7wbllLLt63fXeHw50flXsFdVfr5ZzhxXZKSYpMUH5kgF2+XwhqzSEpKlM6ccFC9RskqW96Qt6+hfX87qnqttBOwk5Okg3sdNHR0ko0nNbekROnUCQfVb5ykchUM+fim6p9djqpRO+1Sy0lJ0r97HfXgIwk2ntT+0SlzK6hOTTk8soAmzjm/xl7q8m4dq2W7Z5+Ul7+rag8oK0dnB3nX9NClM9bPA5fOJsjdj1ZdtTX8mAat+9Rq2RtNByrk0gXNDf6LE9fzgL+hmkdxbVWRPnn9wIED6tGjh+Li4hQQEKAqVarIMAydP39eL774oqZMmaLVq1erQYMGWd6Hq6urXF2tX8Hk4GCO3TJuUn917nubXn9ika5cTpCPn5ck6XJsvBITkuXm4aLh47rpr9X7FRkeq3IVfTTymZ6KiYrT5j/5R4Orxr064L/9+FX2+/GPfxV5PiZtPz7bK20//sF+vOrJT0er69DbNXngDMXFxsunnLck6fLFOCXGp52UWsLHS2Wr+Km0f9ofCCvVTbuiRWRYtKLORdti7HyTUojve5aQkKCEBOtfTjN7rroqKChI/v7+cnV1VZs2bTR16lTVqFFDISEhCgsLU8+ePa3uJyAgQJs3by7yASsK8qNTUhatcrR9q557tLu6d6qnCdN+UNyVRPl6e0iSLsUlKjEx7Q9YndvXUfTFKzp3IUY1q/rpqYe7auP2YO3457gtR4cdevKF3urSs5Emv/StrsQlyMc37Q8Zly8nKDEh7efx+6+3aMIbd2nfnhP6Z1eoWratqbYd6uiFcQttOXq+KMxOSbTKXhRop5xs3ylJeqZHB208EqqzF2Pl6eqsPk3qqlX1Snp0/gpdvBKvi1firdZPTknRhUuXFXrh5i94LU6e69JBG4JDdTYmVp4uzurbsK5aV62kh5eskIezs57s1Fa/HwpW+KXLquhdUs917qCouCv643CwrUc3lTF3d9CWvaE6FxkrDzcX9WhbV83rV9Iz7yyXJH3z+26N7NdaJ89F62RYlEb2b6P4xGT9vuWQjSfPHxxTITcKtFXOtm/V5eREBcVYvzNQXEqiohKvpC9fELxdj9e9XccvRSr0UqQer3u7rqQk6eeT+20xsim92LSTAs8c09nLsfJ0dlG/avXVtlwVjVj7nSSpT5W6iky4otOXL6qed1lNbtVdq08GaePZUNsObjLPdO+gjUH//d7k4qw+jeuqdbVKevSrFYq+Eq/orH5virCP35s4pkJuFGSnHF0yf6FoYXJwc5JrResreDm4OMrRyzl9uaOX9QkVFkeLnEq5yqX8zU8wKS4y6/2V5CRFJ8Rd633Qdj1er4NCY9N6P6Z+B11JSdLKE/T+qudv76D1IaE6GxsrTxcX9atbV20qV9Ko5WnHU1/s2KkP7+yrHadOa+vJk+pUrZq61qyh+7/7zsaT5x+OqZAb9twqJ3dHOVX2sFrm4Oog5xJO8qzsoZT4FIUuOyW/1r5y9XZWfHiCQr47KWcvZ/m19LXR1Oa06H9Oat42VX5lDcVESysWO+tKnNSpZ4osFqn3oGT9uMRJFSqmqnxFQz8scZKLq9Sha4qtRzeV+f9zUcu2ySpT1tDFaIuWfu2iuDiLuvRMlsUi3Tk4Sd8vdlGFiqmqUNHQssXOcnUz1Klrsq1HzxdmPqaiU+ZVkJ1yMsExlbO7o5yrWM/h6OoglxJOKlnFTZJUq38Z7Zx5QqXrR8ivkZfO74nVub9j1GFKTVuMbEpxKYkKjrW+wOqVlERFJ8alLy/p7K4K7qVU1i3tWLWaV9oLrS8kXFJEwiWBv6GauVNS8W2V7f+VJg/GjRunTp06acGCBXJxsf4DWWJiokaOHKlx48Zp3bp1Npowb+4c2laSNGPhI1bL35vwvf78YZdSU1JVrXY5devfTJ4l3RQZHqu9245p2vPf6Mp/V7jF9fvxUavl7/3f0mv7sU55dRvQXJ4l3BR54b/9+NwS9uN1+o/pJUl6L9D6rXbeGfWpVi8IlCS1699SL84bl37bxG+elSQtfO07ffXa0sIZ1A5k9pZGkydP1pQpUzKs26ZNGy1cuFB16tTRuXPn9Oabb6p9+/b6999/FRaWdlW2cuXKWW1Trlw5HT/OicOFwd47Nah3U0nSx2/eZ7V86ke/6bd1aS/+Ke3jqSdGdZZvKU9FRF3WqsB/tWDplkKeFMVBv7taSpLemzXCavk7b/yoP37dK0natP6wPprxi+57sIPGPtdLp45H6PUJS/Xv3pOFPm9RR6vsg713SpJKe3no7Xt6qUwJT8XGJ+pI2AU9On9FhiuHInulPT00Y0AvlfXyVGxCog6fv6CHl6zQ5pATcnVyVJ2yfhrYpIFKuLkq/NJlbQs9qWdW/KLLiVx96Xq+pTw1+bE75OftqUtXEhV8MlzPvLNc2/9N+3n86pcdcnVx0vgRXVXCw03/HgvTUzOWKS6e/Xir6JT9KA6tupkvjmyWm6OTJjftrVIu7von8rQe+utrXU7mb1ZX+bl7amaHfirj7qnYpAQdigrXiLXf6a///mGlrIeXJrbsJj83T52/cknLj+3Xx/s22XZoE/Lz9ND0wdf93nTugh79aoU283tTgaBV9oFOIb98fniLXB2dNaX5Hem9H7VhMb2/jp+Hp97rfYfKeHrqUmKiDoWHa9Ty5dp0PK1Tq4ODNenPPzWmdWu92qWLjkVFatxPK/X36TM2nrxoolP2o1i3ysGiyyfjdO6vcCVfTpGLt7O8G5RU/Sdry8nd9ic0mknkBYs+nuqi2BipZCmpdv1Uvf5RgsqUS7uSbb8hyUpMlOZ+7KLLsVLNeqma8HaC3D1ucsfFTES4Re9PdVPsRYtKljJUp36qpn8cp7L/7cdBQ5KUmGDR5x+56lKsRbXrp2ry2/Hsx1zKaavolLkV6079x791Kd32SEUF/XBe++adkZe/q1o9X1Wl6/GC4FvRpXxdvdlsUPrn77a8V5I06/A6zT4caKOpzIW/oRYujqlyxmIYRpF97wQPDw/t3Lkzy1dY7d+/X61bt1ZcXNwt3W/vBhPyYzwU3R8t00nmioX54o/U3J9Av+NEtfwb5CaalDt8S6++ut7ly5dVs2ZNjR8/Xm3btlWHDh105swZVahQIX2dRx55RCdPntSqVavyfXZYK6hOSVLHQe/mdTxI2rjiBVuPYBd6tnvD1iPYhdVbJuV628LslESr7EVBdqrBKzPzOh4kJbvbegL74HOEY9P8sG3hczdfKRscUyE3CrJVdZbxO2x+SIxztvUIdsE96ObPT7i5g68/m+ttOaZCbhRkp/ptfDKv40HSobByN18JN5V6grPq8sPR5zmmuopOFZ6CbNWjO0fcfCXc1ONl7feEzMLkZuEq8PmhQeXTud62qBxT0SlzKchOjf/nnryOB0m/Hc/+qvfImdiL/INffgh94OVcb1tUOiUVr1Y52HqAvPDx8VFQUFCWtwcHB8vHx6cQJwKAvHN1dVXJkiWtPnISL0ny9PRU48aNFRQUpPLly0tS+quwrjp//nyGV2ShYNApAPaKVtkHOgXAXtEp+0GrANgrWmUf6BQAe0Wn7AetAmCvctsqOmUudAqAveKYKmeK9MnrjzzyiEaMGKF3331X//zzj8LCwnTu3Dn9888/evfdd/XQQw/pscces/WYAOxAqmEptI+8SEhI0MGDB1WhQgVVr15d5cuX1x9//JF+e2JiotavX6/27dvndZcgB+gUgMJSmJ2iVfaDTgEoTHQKuUGrABQWjqmQG3QKQGGiU8gNWgWgsBSVYyo6ZS50CkBhKSqdkopXq5xsPUBeTJkyRe7u7nr//fc1fvx4WSxp33jDMFS+fHm9/PLLGj9+vI2nBICC88ILL6hfv36qUqWKzp8/rzfffFMxMTEaMWKELBaLnnnmGU2dOlW1a9dW7dq1NXXqVHl4eOj++++39ejFAp0CAFplZnQKAOiU2dEqAKBVZkanAIBOmR2tAlDc0Slzo1MAULxbVaRPXpekl156SS+99JJCQkLSL49fvnx5Va9e3caTAbAnKcrbq6IKyqlTpzR06FBduHBBZcqUUdu2bbV161ZVrVpVkjR+/HhduXJFY8eOVVRUlNq0aaPVq1erRIkSNp68+KBTAAqDWTsl0Sqzo1MACotZW0WnzI9WASgMZu2URKvMjk4BKCxmbRWdMj9aBaAw0CnkFp0CUBjM2impeLfKYhiGYesh8uLs2bOaPXu2/vrrL509e1aOjo6qXr26Bg4cqJEjR8rR0fGW77N3gwkFMGkxVLR/tEwl+XCwrUewC3+kLs31tpuP18jHSbLXvuqxQvtaKHgF0SlJ6jjo3XyetHjauOIFW49gF3q2e8PWI9iF1Vsm5XrbwuyURKvsSUF1qsErM/N50uIp2d3WE9gHnyMcm+aHbQufy9P2HFMhtwqqVXWW8TtsfkiMc7b1CHbBPcjV1iPYhYOvP5vrbTmmQm4VVKf6bXwynyctng6FlbP1CHYh9YSHrUewC0ef55gKtlFQrXp054h8nrR4erzsOluPYBfcLCm2HsEuNKh8OtfbckyF3CqoTo3/5558nrR4+u14A1uPYBdiL/IPfvkh9IGXc70tnTInB1sPkBc7d+5U/fr1tXLlSsXHx+vIkSNq3ry5PD099cILL6hjx46KjY219ZgA7ECK4VBoH7AfdApAYSnMTtEq+0GnABQmOoXcoFUACgvHVMgNOgWgMNEp5AatAlBYOKZCbtApAIWFTplTkd5TzzzzjJ599lnt3r1bmzdv1oIFC3TkyBF98803OnbsmK5cuaKJEyfaekwAQDFFpwAAZkanAABmR6sAAGZGpwAAZkerAABmRqcAoHgr0iev79q1Sw888ED65/fff7927dqlc+fOycfHRzNmzND3339vwwkB2ItUORTaB+wHnQJQWAqzU7TKftApAIWJTiE3aBWAwsIxFXKDTgEoTHQKuUGrABQWjqmQG3QKQGGhU+ZUpPdU2bJldfbs2fTPz507p+TkZJUsWVKSVLt2bUVGRtpqPABAMUenAABmRqcAAGZHqwAAZkanAABmR6sAAGZGpwCgeCvSJ68PHDhQjz/+uFatWqV169Zp2LBhCggIkLu7uyTp8OHDqlixoo2nBAAUV3QKAGBmdAoAYHa0CgBgZnQKAGB2tAoAYGZ0CgCKNydbD5AXb775ps6ePat+/fopJSVF7dq106JFi9Jvt1gsmjZtmg0nBGAvUmSx9QgogugUgMJCp5AbdApAYaJVyA1aBaCw0CnkBp0CUJhoFXKDVgEoLHQKuUGnABQWOmVORfrkdS8vL3377beKj49XcnKyvLy8rG7v2bOnjSYDAIBOAQDMjU4BAMyOVgEAzIxOAQDMjlYBAMyMTgFA8VakT16/ys3NzdYjALBzKYaDrUdAEUanABQ0OoW8oFMACgOtQl7QKgAFjU4hL+gUgMJAq5AXtApAQaNTyAs6BaCg0Slz4rsCAAAAAAAAAAAAAAAAAAAAAChwdnHldQAoaKmy2HoEAACyRKcAAGZHqwAAZkanAABmR6sAAGZGpwAAZkanzIkrrwMAAAAAAAAAAAAAAAAAAAAAChxXXgeAHEjhtT4AABOjUwAAs6NVAAAzo1MAALOjVQAAM6NTAAAzo1PmxHcFAAAAAAAAAAAAAAAAAAAAAFDguPI6AORAisFrfQAA5kWnAABmR6sAAGZGpwAAZkerAABmRqcAAGZGp8yJ7woAAAAAAAAAAAAAAAAAAAAAoMBx5XUAyIFUXusDADAxOgUAMDtaBQAwMzoFADA7WgUAMDM6BQAwMzplTnxXAAAAAAAAAAAAAAAAAAAAAAAFjiuvA0AOpBgWW48AAECW6BQAwOxoFQDAzOgUAMDsaBUAwMzoFADAzOiUOXHldQAAAAAAAAAAAAAAAAAAAABAgePkdQAAAAAAAAAAAAAAAAAAAABAgXOy9QAAUBSk8FofAICJ0SkAgNnRKgCAmdEpAIDZ0SoAgJnRKQCAmdEpc+K7AgAAAAAAAAAAAAAAAAAAAAAocFx5HQByINXgtT4AAPOiUwAAs6NVAAAzo1MAALOjVQAAM6NTAAAzo1PmxHcFAAAAAAAAAAAAAAAAAAAAAFDguPI6AORACq/1AQCYGJ0CAJgdrQIAmBmdAgCYHa0CAJgZnQIAmBmdMie+KwAAAAAAAAAAAAAAAAAAAACAAseV1wEgB1IMi61HAAAgS3QKAGB2tAoAYGZ0CgBgdrQKAGBmdAoAYGZ0ypy48joAAAAAAAAAAAAAAAAAAAAAoMBx5XUAyIFUXusDADAxOgUAMDtaBQAwMzoFADA7WgUAMDM6BQAwMzplTpy8nolkHw9bj2AXrpR3s/UIdsPL2dHWIwAwmfWzP7f1CHah/qs8v+YH72r87gTAWkKTOFuPYBdS4pxtPYJdiItiPwLIqLJvlK1HsAsnUn1tPYJdSCrhYusRAJhM3ZLnbT2CXQi+4GfrEexCnE+yrUcAYEJV3SNsPYJdGL3/QVuPYBcuxrrbegS7cHSIrScA8o+P82Vbj2AXSnlcsfUIdiEpmfNSgMxw8joA5ECKwSuwAADmRacAAGZHqwAAZkanAABmR6sAAGZGpwAAZkanzInvCgAAAAAAAAAAAAAAAAAAAACgwHHyOgAAAAAAAAAAAAAAAAAAAACgwDnZegAAKApSZbH1CAAAZIlOAQDMjlYBAMyMTgEAzI5WAQDMjE4BAMyMTpkTV14HAAAAAAAAAAAAAAAAAAAAABQ4rrwOADmQYvBaHwCAedEpAIDZ0SoAgJnRKQCA2dEqAICZ0SkAgJnRKXPiuwIAAAAAAAAAAAAAAAAAAAAAKHBceR0AciCF1/oAAEyMTgEAzI5WAQDMjE4BAMyOVgEAzIxOAQDMjE6ZE98VAAAAAAAAAAAAAAAAAAAAAECB48rrAJADqYbF1iMAAJAlOgUAMDtaBQAwMzoFADA7WgUAMDM6BQAwMzplTlx5HQAAAAAAAAAAAAAAAAAAAABQ4LjyOgDkQAqv9QEAmBidAgCYHa0CAJgZnQIAmB2tAgCYGZ0CAJgZnTInvisAAAAAAAAAAAAAAAAAAAAAgALHldcBIAdSDV7rAwAwLzoFADA7WgUAMDM6BQAwO1oFADAzOgUAMDM6ZU58VwAAAAAAAAAAAAAAAAAAAAAABY4rrwNADqTIYusRAADIEp0CAJgdrQIAmBmdAgCYHa0CAJgZnQIAmBmdMieuvA4AAAAAAAAAAAAAAAAAAAAAKHCcvA4AAAAAAAAAAAAAAAAAAAAAKHBOth4AAIqCVIPX+gAAzItOAQDMjlYBAMyMTgEAzI5WAQDMjE4BAMyMTpkT3xUAAAAAAAAAAAAAAAAAAAAAQIHjyusAkAMpsth6BAAAskSnAABmR6sAAGZGpwAAZkerAABmRqcAAGZGp8yJK68DAAAAAAAAAAAAAAAAAAAAAAocV14HgBxINXitDwDAvOgUAMDsaBUAwMzoFADA7GgVAMDM6BQAwMzolDnxXQEAAAAAAAAAAAAAAAAAAAAAFDiuvA4AOZDCK7AAACZGpwAAZkerAABmRqcAAGZHqwAAZkanAABmRqfMie8KAAAAAAAAAAAAAAAAAAAAAKDAFekrrycmJsrFxSX986NHj+rjjz9WUFCQKlSooDFjxqhFixY2nBCAvUiVxdYjoAiiUwAKC51CbtEqAIWFViE36BSAwkKnkBt0CkBholXIDVoFoLDQKeQGnQJQWOiUORXpK6+7u7vr/PnzkqQ9e/aoSZMmWr9+vSpWrKi9e/eqffv22r59u42nBAAUV3QKAGB2tAoAYGZ0CgBgZnQKAGB2tAoAYGZ0CgCKtyJ95XXDMNL//6RJk9SnTx999913sljSXinx0EMPafLkyfrtt99sNSIAO5FiFOnX+sBG6BSAwkKnkFu0CkBhoVXIDToFoLDQKeQGnQJQmGgVcoNWASgsdAq5QacAFBY6ZU5F+uT16+3Zs0fffPNNesAk6emnn1avXr1sOBUAAGnoFADA7GgVAMDM6BQAwMzoFADA7GgVAMDM6BQAFD9F+iUFFoslPVqOjo4qWbKk1e0lS5bUxYsXbTEaAAB0CgBgerQKAGBmdAoAYGZ0CgBgdrQKAGBmdAoAircifeV1wzBUp04dWSwWXbp0Sfv27VPjxo3Tbw8KClL58uVtOCEAe5FqWG6+EnADOgWgsNAp5BatAlBYaBVyg04BKCx0CrlBpwAUJlqF3KBVAAoLnUJu0CkAhYVOmVORPnl93rx5Vp/XrFnT6vOtW7dq0KBBhTkSAADp6BQAwOxoFQDAzOgUAMDM6BQAwOxoFQDAzOgUABRvRfrk9REjRmR7+6uvvlpIkxSM+x5or9sD6qly1dJKSEjWgX2nNGf2Gp06EWm1XpWqpTV6bDc1aVpFFgeLjoeE641JyxV+LsZGk5vL8EGtFdC2jqpW9FVCYrL2HT6t2V9t0MkzUenr+JTy0JgHOqn1bdXk5emqfw6c0swv1+jU2WjbDW4yQx7upA7dGqhS9TJKTEjSgT0nNPeD1ToVeiF9neffGKweA5pbbXdw70k9O/x/hT1uvkuRg61HQBFk7536ZJ706XzrVyf6+RrauEJKSpY+nCNt2CqdOit5eUrtWkjPPyaV9bPRwCZ1X6smuq9VE1X0TnsbtODwCM0K3KaNQaEZ1p3Sr5uGtGqiab8FauGW3YU8qbkN6n6bBve4TRX80vbjsVMRmrt8i7b+E5q+zsN3tdOAbk1U0tNV/waH6d15axRyKsJGE+cvOoXcsvdWXe/x+u31YpMumndku97c/Uf68qcadtR9NZuplLOb9kSe0ZS/Vyko5kI291T8DK/bVMPqNVUlr1KSpKDoC/poz2YFng6RJHk4OeullgHqWaW2fFzddOpSjOYf+FuLDu+x4dTmc2+7JhrSvon8fdNadTQsQp/9sU1/HQqVJI3p2Va9m9VVuVIllJySogOnzuuj3zZp34kwG06df2gVcqM4dUqShlbpptE1+2rZyQ2aFfyDJOnBar3UpWxTlXHzVnJqio7EntLckF91KOaEbYc1scfqtdcLjbtq/pFteuufa81/skEnDanRTKVc3PRPxBlN2f2bgml+uvubNtH9TW9Tpf/eojsoIkIfb96qDSGh6evU9PXV+ICOal25kiwWi4IvROjJn37W2dhYG02df+gUcqO4dSpoxTkdWnJW1fv4qdHISunLY0/F6+DXZxRx4JIMQypR2U0tnq0mDz8XG05rXo/UuV3PNeymhcFbNW3f75KkHv71dG+1Fmro7S8fVw8NWvuZDl08Z+NJzWV4vaYafsNx6Yd7Nivw1LXj0pdbBqhn1WvHpfMO/K1Fh/bYcOr8RauQG8WpVfuWRWr31xGq39dbrR4uI0laODgo03WbP+inRgN9CnO8ImNUzU56sm5PLQ7ZrHcP/ioni4PG1umuDmXrqJK7ry4lx2vbhaP66PBqXUgo+scBBaU4/i2aTiE3ilOnJGnvsijtWhSp+neWUpuH006amD/oaKbrtnzQV40G0arMDK/WRY/X6q3vTmzUR0dWytHioEdr9lJbv3rydy+ty8nx2hkZpNlBvykikXMns/JonQ56rlE3LQjeqml7V0tKOzYdUr2FGnpXkI+rhwau+Z/dHJvSKXMq0iev27smTavqp+U7dfjgGTk6OmjUo1309sxhGj3sM8XHJ0mSKlT00czZI/Tbz3u0YM56Xb6coCpV/ZSUkGzj6c2jWcPKWr5qtw4Fh8nRwUGP3H+7Zr56j4Y/PU/xCWn7cdpLA5WckqKX3/5Bl68k6L5+LfXB5Hut1inuGresppXfbNORf0/LwdFBI5/srrc+G6lHB32ohCvX9tGOv47o/UnL0z9PSkqxxbgACkmt6obmvnftc0fHtP+Nj5cOHJHGPCjVqyVdjJWmfSKNnSB9/7ltZjWrsJhLev+Pv3QiMlqSNKBpA30ytL/umv21gsOvnVjdrV5NNalUXudiLtloUnMLj4zVrCUbdSosWpLUp1MDzXhhoEb831cKORWh4f1aaWifFnrjs1U6eTZKIwe11YcT7tZ9z81VXDytB+xdY98Kuq9GMx2Mtv4Dy6P12umhum00fttKhV6K1LgGHbSg8/3q8etnupycaKNpzedsXKym/71Bx2PSXgB8V61G+rzbYPX9ab6CoiM0qXVXtatQRc9u+FmnLl1UR//qeqNdD527ckl/nAi28fTmce7iJX3wy186cSFaktS/VQN9NKq/7nn/ax09F6Hj4VGaunydTkVclKuzkx4IaKb/PTpYfafNU9TlK7YdHkCBq1uisvr6t9XRS2eslp+KC9fHQct19kqEXBycdXflAE2/7TE9uHWqLiZdttG05tXYp4KG1Giesfl12+mhOm300o6fFBIbqbH1b9f8TsPUa9Vsmv+fsNhLemf9Xzoendb7wQ0b6rNBAzRgwSIFRUSoincpfXP/EC3dt18fbtqs2IRE1Sztq4QU/g4NFAfRwXE6/meESlZ1s1p+OSxBm14NUpWupVX33vJy8nDUpdPxcnTm7bgz08jbX/dWa65DF61foOru6KLdESf1++kDeqN5fxtNZ25nL8dq+s4NCv3vuPTu2o30RbfB6vNj2nHpq23SjkufWf/fcWnF6nqzXQ+di+O4FCgOLgTFK+iPi/Kpav3CqXu+rG71+eldl7V51nlVbetVmOMVGQ1KVdTgyq10JOZs+jI3R2fVK+WvOUGBOhIbppLObnqhfl990HK4hm+abcNpzYu/RQPIzIWgeB1ZHSOfatatunduVavPT++K06ZPw1W1Ha3KTL2SldS/YhsFx177G6qbg4vqlKioBcfWKOjSWZV0ctdTdftpetORGr39IxtOa16NfPx1b/XmOhR947Gps3ZFnNSq0wf0ZvN+NpoOxYldv6RgwoQJeuihh2w9Rq5NeH6JVv+6V8dDLuhY8Hm9O3WlypUvpdp1K6SvM+rRztq+5ajmzFqro0HnFHYmWtu3BCs6Os6Gk5vL828u02/r/lXIyQgFHw/XtE9XqXyZkqpbs5wkqXIFHzWq66/3Pv9Th46G6eSZKL33xZ9yd3NW99vr2Xh685g4ZqH++Gm3jh89r5AjYXr/1eUq5++t2g0qWq2XlJisqIhL6R+XYuzjJItUw1JoHyg+inqnJMnJUSpT+tqHr3fa8hJe0tz3pd5dpepVpKYNpYlPSf8etuiMfbwwM98EHj6mDUGhCo2IVmhEtD5cs1lxiUm6rXL59HXKlvDUxL5dNP77VUpO4UVBmflr1zFt2ROik2FROhkWpf99t0lX4hPVqFba701DejfX/B+2af2OYB07FaE3Zq+Sm4uTenaob+PJ80dhdopWFS/20CoPJ2fNbDtAE3b+oouJ8Va3jarTWrMObNLq04d15GK4Xty2Uu6OzupftaGNpjWnNSePKvDUMYXERCkkJkrv7tqouORENSvjL0lqXtZfy4L3a2vYSZ26FKMlR/7Rwcjzaly6/E3uuXhZf+CYNh4K1fEL0Tp+IVof/5bW/CZV0/bTr7sPa2vQCZ2KvKij5yL0zo8bVMLdVXX87eNta+gUCoI9dEqS3BxdNKHBML1/+DvFJln/TW/t+V3aFRWks/GROh53TrODf5SXk7tqePnbaFrz8nB01nttBmrizl8Uc0PzR9RurdkH/9Lq04cVFBOul3b8JHdHZ/Wr0shG05rP2qPHtD4kRKFR0QqNitb7f21SXGKSmvqnHVM9d3sHrT8WohnrN+rA+XCdvHhRgcdCFBnH3/5oFbJiL51Kjk/Rro+P67bHKsvZ09HqtkPfnFXZZiXVYLi/SlX3kGc5V5VrXkqupZxtNK15eTg6651Wg/Xq7pUZOvXTyb2adXiDNocfs9F05rfm5FGtu+649J2/045Lm19/XBp03XHp4bTj0iZ+9nNcSqdQEOyhVUlXUrXxgzC1HVNOLl7WnXL3cbL6OLnjsso3cleJ8nTqRu6OLnqr6T16Y98Pikm61qlLyQkau32+/gjbr+OXL2hf9ClNP/CzGpSqqPJupWw4sTkV579Fc0yFgmAPnZLSWrVh5nm1H1tGLp7Wp2p6+DhZfZzYflkVaFWm3B1dNLnhUM04+L1ik6/9PepySrye3T1Ha8/v1cm4cP0bc0IzD/+oeiUrqZyrt+0GNikPR2e923KQJu362ar5kvTTyX2adWiDtpy3v2NTOmVOdn3y+unTpxUaGmrrMfKNp6erJCn2v5OBLRapTftaOnUyQtPeH6rvfn5WH30+Su071rHlmKbn6ZG2H2Ni056AnZ3TDmITEq9dJSg11VBScoqa1K+Y8Q4gSfLwSrvCSuxF639UbdKyur4JfFlzfnpGT08eqFK+nrYYDygS7KFTx09JnQZL3YdIz70mnTyT9bqxlyWLxVBJXiScJQeLRX0a1ZGHi5P2nEy7soXFIk2/6w7N3fS31ZXYkTUHi0Xd29WVm6uz9gWdkX/ZUvLz8dL2fcfT10lKTtHug6fUuA4n/QDZsYdWvdb8Dq07E6zN50Ktllf29FZZdy/9FXbtDzCJqSnaFn5CzUtXKuQpiw4Hi0X9qteTu5Ozdp1PC//Oc6fVvXItlfNIi3y78lVUvZSvNpwOseWopuZgseiOpnXk7uKkf46fzXC7k6OD7m7XWDFX4nX4TLgNJgSKBnvolCQ9XfsubY04qF1Rmb+l/VVOFkf19W+nS0lXMlyhHdLk5r0VeDZYm89b9yet+SX01znr5m8PP65mND9TDhaL+tarKw9nJ+0+c0YWSZ1r1lBIVJTm3T1Y28Y+ru+HDVX3WjVtPSpgavbSqX1zTqlss5Iq06SE1XIj1dC5XTHyquCqrW8d1e+j92vjhCM6uz3aNoOa3KSmfbQ+LEhbwjlOyiur49LwtN+Jdpw7re5VMh6Xrue4FMiWPbRq2xfnVamFp/xv88h2vSvRyTr192XV6laykCYrWl5u2E9/nT+s7RFHb7qul5ObUo1UxSbH33Td4oa/RQP5yx46JUlbPw9XpZYeOWxVnGp3L5HtesXVc3UHanPEIe2MvPk7K11rlX1cdCE/vdq0jwI5NoVJONl6gIK0YMECW4+Qrx5/qof2/XNCoSFp/3Dt7eMpDw9XDRneXvO/CNSc2WvVsk1NTZ56j1588ivt3XPCxhOb05MjO+ufA6cUcvKCJOn46UidPX9Rjw/vpHc+W60rCUm6r19L+fl4qbQPJ15n5bEXe2v/rlAdDz6fvmzHX0e0cfV+nTsbrfIVffTguO6aPuchPTlklpKSivaVglPt+7U+sJGi3qkm9aW3J0jVKkkXoqTPvpLuHyf9NF/yueFiCwkJ0vufS3d2l7x4as2gdtnSWvLIfXJ1clJcYqKeXLJSR8MjJUmjb2+llFRDX23dbeMpza9mZT99/vpQuTg76Up8ol5+/yeFno5U49ppJ6hHXrxstX7kxTiV97OPP1TTKRSUot6qOys3UEOf8hr4x9wMt5VxSwvShXjr54aI+Mvy97CP54b8VNfHT8v7Dpero5PikhL12NofFHwx7UVVU7b9qbc73KFtQ8YqKTVFqYahlzet0s7zp208tfnULl9ai566Ty7/Nf+ZeSt17Fxk+u2d6lfXOw/0kZuzs8JjL+vR/y1X9GX7+IdAWoWCUNQ7JUldyjZVrRKVNPbvmVmu07Z0A01s8IBcHZ0VmRir8f98ppiky1muXxz1/a/5g//8MsNtfm5pJ7Hd2PwLCZdV0YMrBV6vjp+flg67dmw65oeVCo6IlJ+nh7xcXPRY69aa+dcmzdiwUZ2qVdOsgf01/Jul2n7qlK1HzzM6hYJgD506vSlKF0OuqOO0jBdNSohJVkp8qoJ/PK+6Q8qr/rAKOr8nVjvfC1W7ybXk14ArWFzVp2JDNShVQfcEfmHrUYq0uj5+WnFn2nHp5aREPbbmBwVF/3dcujXtuHT7fdeOS1/6a5V2nrOf41JahYJQ1FsV8lesIo8lqO+Myjdd9+i6GDm7O6hqW/p0o54VGqteqQp6YNNnN13XxcFJT9XrqVVn9upyckIhTFd0FPe/RdMpFISi3ilJOrYxVhHHEnXnOze/eGrwulg5uzuoSltOqLhRt3K3qU7Jinpk+8c3XdfFwUmP1+qjP8L2KC6FVl2vT6WGauBdXnevm2PrUQodnTInuz55PScSEhKUkGD9RJWamiwHB3Ptmiefu0PVa5bVs2OuhdnBIe0tBrZsPKLl326XJB0NOqeGjSvpzoEtOHk9E8+N7qaaVcto7CtL0pelpKRq4js/6eWxvfTbwieVnJKqv/ce15Zd9vcWGPll3IQ7Vb12eT0/0voPrRt+35/+/48Hn1fQv6e14PcX1LpTXW1ac6CwxwTsRmatck5IlaurbX+56tT22v+vI6lpQ6nX/dKPq6SRQ67dlpQsPf+6lJoqvfpsoY9ZJIRGRGnw7EUq4eamng1qadrgXnpw7lK5OjnpgbbNdNdnX9t6xCLh+JlIjXj5K3l5uqpL69qaNOYOjX392/TbDcN6fYtFkm5YCOCWZdYpIylZFmfbHlNVcC+hSc17aMT6JUpMzfqFlDc+C/BGbpk7djFSfX6cr5IubupdrY7e69hHQ35douCLEf/P3n1HR1HuYRx/tqSTSggpQAidAKHXSO8tFFGadEEEBZSOFRFREBEbigVQVFQElSsiCCR0aVIklPRGeu9t9/6xGFgSINlsdmZ2ns85nCuz7Weu5Mu7eWcW0307ol0dT8z662fE5WShi3s9rOk+CEl5uTgZH/XoJ5eRiOR0jNu4E/Y21hjo1wRvThyMGZ/8VLaB/VxYDMZt3AlnOxs83q0N3p0yHJM/+B5pObw6CFF1VPj+X1EJlJbCtqqOlRPmNx2DZZc+Q7Gm5IH3u5QeijnnN8LRwg7DPbrhlVZT8dyFzcgozjHhtOLlbuOAl9sNwoxj31Wx+QquBu4TkZaGgB07YW9lhSHNmmLDsMGYtOtHZBXo/vz8FRqGbRcuAgCuJyWjg5cnJrbzM4vN60RCqqhTJUWlUFuqBJpIJz+lCP9uj0O3lxpDZVnB+5Aa3f+4d3JA4xFuAADHhrZIv5mLqIMp3Lx+h7uNA1b6DcHTJ3c+tFP0aOGZaRj6y33r0j++R0hGKmb4dkR7N0/MPKRbl3Z1r4c3ewxCUn4uTt7mupSousTYqtyUYpz7MhkDXvWquFP3CT2SBZ+e9pW6r5zUtXbEUt/hmHd2O4oesi4FALVCiXXtnoQCCqy7ts9EE0oD34smEpYYOwUAuSklOPtlKga95gF1JfoTcjgbjXrVqtR95cTNyhELmwXgxX++eGSrVAolXm89CQoosPHGXhNNKA3uNg5Y5TcYs05+y7UpiYa4dmhX0caNGzFu3Dh4e3sb/Bzr1q3D6tWr9Y751OuLxg36VXc8o5n/wmB0e6wZFs//GinJ2WXHMzPyUFJSiqjIFL37R0emoLXfo88ulptFs/rBv3NjPPfKD0hO0//h3s3wRMxY8jXsbC1hoVYhIysfW9dNxo2wBIGmFa9nVwxHtz4tsWTGF0hJzHrofdNScpB0OwOeDWqbaLqaU6rl0pGqzhidAipu1auLXfDaEnH92bK1AZr6AJH3/My6uAR44TUgNh7YtolXXX+Q4lINotMyAWTi2u1EtPFyx5Ru7RGekobadrY48uLTZfdVq5RYNrgXpnZrjwGbyl+9Qc5KSjWITcwAANwIT0TLRu4YP6QDvtl3DgBQ28kOqRl3r2rh7GCLtMw8IUY1OnaKDFVTayqnx/vC5Yn+1R2vWlq7eMDVuhZ+HTir7JhaqUSXOg0wpUknDNy/BYDuqjfJBXfXBy7WduWugENAsUaDqOwMAMDV1AT4ubpjZquOWP33ESzt0AvPHNmLo7G6E4BvpCfD16Uu5rTuzM3r9ykp1SAmVdf84NhEtK7vjqd6tscbuw8DAPKLShCTmomY1ExciU7A/1ZMx5gurfHlkXPCDm4EbBUZoibXVA2ndkOj6d2r9bzV1cy+Hpwt7fFpp7tn+aqUKvg5NcJoL38MCVoGDbQo0BThdn4Kbuen4HpWFHZ0XYmhHl3xffRhAacXj9bO7nC1roW9A+5ZNymV6FynAZ5q0hmDD1Tc/NpWtmz+fYo1GkRlZAAA/k1MRBuPupjWsQPe+OsIiktLEZqaqnf/0NQ0dKrnKcCkxsdOkSFqslPdn/FFj2dbV+t5qysjPA9FmSU4vuJm2TGtBki9novIAykY+o0fFCqgVj1rvcfV8rJG2k1+f/1PKyfd2nR33zllx9RKJTq5emNSoy5o++ub0PB0qkq5f13ato47ZvjeWZd27IVnDu/FkYrWpWayeZ2tIkPUZKv6PtsU/eeX/2QOU0kNK0RBZil+X3r3gn5aDZAYnI8bf2Rg8g9NoFTp/twkBucjK64YvV7kJy/dr6WjJ2pb1cK3/s+WHVMrVejg4o0nvbui24HXoYEWaoUSb7efAC9bZzzz91e86vp9+F40O0WGqclO9ZvXBAPmN63W81ZXyp1W7VtydwOFrlUFuLE/E1N+bFSuVX0W1xVqXNFq7lAPLlb2+KLLgrJjaqUKbZ18MLZeD/Q7sgoaaKFSKLGmzVPwtHHBgotbedX1+/y3Nv257+yyY/+tTSc36gK/X9aa9dqUnRInSW9eX7p0KZYvX46+ffvi6aefxpgxY2BpaVml51i5ciVefPFFvWNjBr9nzDGr5bkXB8O/V3Msee4bJMRn6N1WUqLBzeu3Uf++jcFe9V2QmJBpwinF74Wn+6NXlyZ4/rUfEJ/04K9Nbl4RAKCehxOaN66Lz3edMNWIkjBv5Qj06OeLZbO+RGJc+iPvb+9ogzrujkhLyX7kfYnMkTE6BVTcKov0DsYa02iKioDwaKCjn+73/21cj4oDdrwPOPM9wcpTAJZqFX67dB2nw/Q/SeXzqWPx2+Xr2HPxmkDDSYdCAVhYqHA7KRMp6Tno3MYbtyKTAOhOAmjfsh4++f64wFMSCaum1lTtfttkzDENcioxEkMPbNU79k6XEQjLSsXWG6cRnZuBpPwcPObug+CMRACAhVKJrnUaYP2VI0KMLCkKKGCpVMFCqYSlSgXtfR9vodFqoFDwjaBHutP8B96sUDz0diJzV5NrqlGnXzbWmAa7mB6CWWfX6x1b2mICYvKSsCv6yAN/WKCAAhYi+9RIIZ1OisSwPz/TO/Z255EIz07F1hunEJ2bjqT8bPjXbXS3+QolutTxxoarbP7DKKCApUqFYo0GVxMS0cjFWe92HxdnxGXyfT+Sr5rs1Ks3ZxprTIPVaWOP3u821zt2aUs0anlao8koN6gslHBqbIuc2/obAnLjC2HramHKUUXtdHIEAv76RO/Y2o6jEJGdgi9unTTrzQE17b9O/bcuvf9rWarVQMl1KclcTbZqU9j4B9zbNDz8bDFyUwO9Y6c+SoRjPUu0Gu1cthkQAEIPZ6J2Yyu4+FiZekzRO5sShieOfaB37HW/sYjMTcH2sGN6G9cb2NXGnL+/RGYxPyHwfnwvmsgwNdmpzeFPGGtMg3n62WDU+/X0jp34KBmOXhZoM8ZJr1W3/spmqx7gfFooppzeqHdsle+TiMpLwreRgXob1+vZumLBhc+QVWweF7AzpjPJERj51xa9Y291DEB4dirXpiQYyf+U44svvsAvv/yCKVOmwMHBAU899RSefvpptG5duStSWFlZwcpK/xu/UiQ//Hl+8RD0G9gar634EXl5RXB20V2uNjenEEVFuo/B+Om7M3jpjbG4cikaly9GonO3xuju3wyLn/9GyNFFZfHsARjQswVWvv0L8vKL4OJkCwDIySsq+zr27d4MGVn5SEzJQqMGrlg4sx+OnwvFucvmcTUGY5j/0kj0HeqH1Qu/RX5uIZxr6z7yMzenAEWFJbC2scRT8/rh5KFrSEvJRl1PZ0xfMBCZGXk4dThY4OmrT8MzsMhA1e0UUHGrNHnCf1TU+k+APj0Az7pAajrw6ddATi4weghQUgIsehUIvgVseRsoLQWS71ygzdEBsOTPr8osGuCP4yGRiM/Mhp2lBYa1aY4uDethzjd7kZFfgIz8Ar37l5SWIiUnF5Gpjz6JSE7mjn8Mpy9FIDE1G3Y2lhjQvTna+9bHC2/vAQD88MdFTBvVBbHx6YhJSMe00V1RUFSCgyevCzy5cbBTVB01saZSWAi/psotKcKtzGS9Y3klxcgoyi87vu3WWTzb0h+R2emIzEnDsy17IL+0GL9F8QShey3t0BOBcRGIz82CnYUlRvq0RDf3+ph26CfkFBfhTHw0Vnbug4LSEsTmZKGbe32MbdwKb549KvToorJgqD9O3IhEQkY27KwsMKR9c3RuXA/Pfr4XNpZqzO7fFYHXwpCcnQsnWxuM9/dDXcdaOHg5ROjRjYKtIkPV1JpKaSl8q/JLCxGZq/+pfwWlRcgqzkNkbgKslZaY3HAATqVcQ2phFhwtbBHg5Y86Vo4ISrokzNAilFtShJAs/ebnlxQjozCv7PiOkLOY28Ifkdlpd5rvj/zSYuyL/leIkUVpcU9/BIVHIj47G3aWlhjRojm61q+Hmbt1a6rPz53H5pHDcS42DmeiY9DLpyH6NW6Eybt+FHhy42CnyFA11SmhP94eANQ2Kjg0sNE/ZqWEpf3d440D3HBhUxRqt6wF19a1kHQpC4kXMtH99SZCjCxKeSVFCMmuoFNF+WXHHS2s4WHrCDdrewCATy1XAEBKQQ5SCs3jaqzVtbRjTwTG3l2XBjTSrUunHtStS0/HR2NV5z4oKClBXE4WurrXx+NNWmGNGa1L2SoylLm2ysJGCWfv+2ayVsKqlkrveFFeKaJO5aDjdFdTjygJeaVFCMtJ0juWX1qMzKI8hOUkQaVQYn2HiWjh4ImF57+BCkrUttTtE8gszkeJtlSIsUWH70WzU2Q4c+0U8IBWWSlgZX9/qzSIOpWDTtNr3/8UBN17qBG5iXrHCjS691AjchOhUijxpt8UNLP3wvJL26BUKOByp1VZbFWZB76HWnT3PdTya1Pdf5PmsDZlp8RJ+J/SVNOwYcMwffp0JCUlYfv27di2bRs+/PBDdOzYEbNnz8aECRNgb28v9JgGCRjbCQCw8eOpesc3rP0NB/dfAQCcPHYTmzfsx8Qp/pj/wiDERqdi9Uu7ce1KjMnnFasxQ9oBAD5aM0Hv+NqP/sAfR3ULgdrOdnhueh+4ONohNSMXBwKvYfvu06YeVdRGju8KANiw7Wm94xtf/hmHfvsHGo0GPk3qYsDIdrCzt0Zacg6unAvHW0t/QP6dK9oTyZE5dyohGVjyBpCRCTg7AW19gV1bAC93IC4eOHJS95e/MbP0H7fjfS26tDf9vGLlameLd8YORh17O2QXFOFWYgrmfLMXp+674jo9nIujLV6bPxS1neyQk1eEsOhkvPD2Hpy7qjsRbee+c7CyVGPJzP6wt7NGcFg8Fr21G3kFxQJPTiQ8c27Vo2y9cRrWKjVWdxwCR0trXEqNw/Sg75Fbwr+/3svVxg6beg5HHVs7ZBcV4kZ6MqYd+gkn7nz0+vNB+7CsYy+832sEnKysEZeThQ0Xj2PnzUvCDi4yte1t8dakwajjYIfs/CKExKfg2c/34vStaFiqVfBxc0ZA55FwtrNGRm4BrsUkYtrHPyIsMVXo0YkEJedOlUKD+rZueL11ZzhY2CGrOBc3s2Kw6J+PEJWX+OgnoDJbb56GlcoCr3cYAkdLG1xOi8OMY9+x+fdwtbXDu8OHwM3ODtmFRbiRkoyZu/fgZJRubXooJBSvHvwLc7t1wSv9+iI8PQ3P/boPF+JuCzw5kbDk3CkA8OjiBL/ZpQj9JRH/botFLU8rdFrsg9otagk9mqT09WiOdR1Hl/3+vS7jAAAfXQ/ExzeCBJpKXOrY2GFTr+Fwu2ddOvXgPevSQN26dHNv3bo0NicLGy4cx84bl4QdnEgE5N6qyBM50GoBn8fM99+xJrlZO6BP3ZYAgB96Pqd32+wzX+JCWoQQY0kS34smqpjcOwUAEXda1agn11GGqGPliJ51WgEAtnd7Qe+25y98in/Sw4UYS5L6eTTHuk6jyn6/qet/a9MgfHSda1MyPoX2/s/2lhClUomEhAS4ubnpHT9+/Di+/PJL7N69GwCQk5NTpecd6P+m0WaUs3x3a6FHMBu1QjKEHsEsHLhi+J/t5y9ONuIkD/dhh29N9lpUs2qqUwCgSWhmlBnlrtUnzwo9gllwCtEIPYJZOP39YoMfa8pOAWyVOampVjX+Ya3RZpSz0jx+VIkx2P/Lr6MxXN34wqPv9BBcU5EhanJN1f/oi4++Ez1SdIqL0COYBW2krdAjmIXQpYb/ueaaigxRk51acnm8UWaUu9/DfYUewSzkpds8+k70SFEzl1Xr8VxTkSFqslVrr40wyoxy93NUO6FHMAuZ2WyVMYSNf8ngx3JNRYaoyU6tCx5mlBnl7vfblb8CPj1YShZPTDCGG2NfNfix7JQ4KYUeoDoUioov59+zZ09s374dt2/fxqZNm0w8FRERkQ47RUREYsdWERGRmLFTREQkZuwUERGJHVtFRERixk4REcmbpDevP+qi8Q4ODpg9e7aJpiEiItLHThERkdixVUREJGbsFBERiRk7RUREYsdWERGRmLFTRETyphZ6gOrQaDRCj0BEMlGKis/4JHoYdoqITIWdIkOxVURkKmwVGYKdIiJTYafIEOwUEZkSW0WGYKuIyFTYKTIEO0VEpsJOiZOkr7xORET61q1bB4VCgUWLFpUdmz59OhQKhd6vbt26CTckERHJFjtFRERix1YREZGYsVNERCR2bBUREYkZO0VERGImt05JevO6VqvFhx9+iGnTpuHHH38EAHzzzTfw9fVFixYtsGrVKpSUlAg8JRGZA41WYbJfhjp37hy2bt0KPz+/crcNGTIE8fHxZb/2799fnS8HVRI7RUSmYspOGdoqdkqc2CoiMhWxdwpgq8SInSIiU+GaigzBThGRKYm9UwBbJUZsFRGZCtdUZAh2iohMhZ0SJ7XQA1THm2++iQ0bNmDQoEFYuHAhIiIisGHDBrzwwgtQKpXYtGkTLCwssHr1aqFHJSKqUTk5OZg8eTI+//xzvPnmm+Vut7Kygru7uwCTyRs7RUSkw06JF1tFRKTDVokTO0VEpMNOiRM7RUR0F1slTmwVEZEOOyVO7BQRkY5cOyXpzevbt2/H9u3bMXbsWFy+fBkdO3bEjh07MHnyZABAixYtsGzZMkaMiKpNozXdB1UUFhaisLBQ75iVlRWsrKwe+Jj58+dj+PDhGDBgQIURCwwMhJubG5ycnNC7d2+sXbsWbm5uRp+d9LFTRGQqpuwUUPVWsVPixVYRkalwTUWGYKeIyFS4piJDsFNEZEpcU5Eh2CoiMhWuqcgQ7BQRmQo7JU6m/X/FyOLj49GpUycAQNu2baFUKtGuXbuy2zt06IDbt28LNB0RkWHWrVsHR0dHvV/r1q174P137dqFixcvPvA+Q4cOxbfffosjR45g48aNOHfuHPr161cukmR87BQRmauqtIqdEje2iojMEddU5oOdIiJzxTWVeWCniMhccU1lPtgqIjJXXFOZB3aKiMwVO1U5kr7yuru7O4KDg9GgQQOEhISgtLQUwcHBaNWqFQDg2rVrZnGGAREJTwOFyV5r5cqVePHFF/WOPejMq5iYGCxcuBAHDx6EtbV1hfcZP3582T+3bt0anTp1gre3N37//XeMHTvWeINTOewUEZmKKTsFVL5V7JT4sVVEZCpcU5Eh2CkiMhWuqcgQ7BQRmRLXVGQItoqITIVrKjIEO0VEpsJOiZOkN69PmjQJU6dOxahRo3D48GEsX74cS5YsQWpqKhQKBdauXYtx48YJPSYRUZU86qMX73XhwgUkJSWhY8eOZcdKS0tx7NgxfPTRRygsLIRKpdJ7jIeHB7y9vRESEmLUuak8doqIzFVlW8VOiR9bRUTmiGsq88FOEZG54prKPLBTRGSuuKYyH2wVEZkrrqnMAztFROaKnaocSW9eX716NWxsbHDmzBk888wzWL58Ofz8/LBs2TLk5eVh5MiRWLNmjdBjEpEZKNWa9gysyurfvz+uXr2qd2zGjBlo0aIFli9fXi5gAJCamoqYmBh4eHiYakzZYqeIyFTYKTIUW0VEpsJWkSHYKSIyFXaKDMFOEZEpsVVkCLaKiEyFnSJDsFNEZCrslDhJevO6SqXCSy+9pHdswoQJmDBhgkATERGZlr29PVq3bq13zM7ODrVr10br1q2Rk5OD119/HY8//jg8PDwQGRmJVatWwdXVFWPGjBFoavlgp4hI7tgp8WOriEju2CpxY6eISO7YKXFjp4iI2CqxY6uISO7YKXFjp4hI7uTeKUlvXiciMhWNVin0CAZRqVS4evUqvv76a2RkZMDDwwN9+/bFDz/8AHt7e6HHIyIiI2GniIhI7NgqIiISM3aKiIjEjq0iIiIxY6eIiEjM2Clx4uZ1IiIzExgYWPbPNjY2+PPPP4UbhoiI6D7sFBERiR1bRUREYsZOERGR2LFVREQkZuwUERGJmZw6xc3rRESVoNEqhB6BiIjogdgpIiISO7aKiIjEjJ0iIiKxY6uIiEjM2CkiIhIzdkqcpHk9fCIiIiIiIiIiIiIiIiIiIiIiIiIiIiKSFG5eJyIiIiIiIiIiIiIiIiIiIiIiIiIiIqIapxZ6ACIiKdCAHx9CRETixU4REZHYsVVERCRm7BQREYkdW0VERGLGThERkZixU+LEK68TERERERERERERERERERERERERERERUY3jldeJiCpBo+UZWEREJF7sFBERiR1bRUREYsZOERGR2LFVREQkZuwUERGJGTslTrzyOhERERERERERERERERERERERERERERHVOF55nYioEjRanutDRETixU4REZHYsVVERCRm7BQREYkdW0VERGLGThERkZixU+LE/1eIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqMbxyutERJWg0SqEHoGIiOiB2CkiIhI7toqIiMSMnSIiIrFjq4iISMzYKSIiEjN2Spx45XUiIiIiIiIiIiIiIiIiIiIiIiIiIiIiqnG88joRUSVowDOwiIhIvNgpIiISO7aKiIjEjJ0iIiKxY6uIiEjM2CkiIhIzdkqceOV1IiIiIiIiIiIiIiIiIiIiIiIiIiIiIqpxvPI6EVElaLQ8A4uIiMSLnSIiIrFjq4iISMzYKSIiEju2ioiIxIydIiIiMWOnxIlXXiciIiIiIiIiIiIiIiIiIiIiIiIiIiKiGsfN60RERERERERERERERERERERERERERERU49RCD0BEJAX8+BAiIhIzdoqIiMSOrSIiIjFjp4iISOzYKiIiEjN2ioiIxIydEideeZ2IiIiIiIiIiIiIiIiIiIiIiIiIiIiIahyvvE5EVAk8A4uIiMSMnSIiIrFjq4iISMzYKSIiEju2ioiIxIydIiIiMWOnxIlXXiciIiIiIiIiIiIiIiIiIiIiIiIiIiKiGscrr1cgx9tG6BHMQrYXz40wFnWeg9AjyB7PwCKx8fnfbKFHMAsKz1KhRzALFjkqoUeQPXaKxMbLNUPoEczC7VRHoUcwC4W1LYQegcBWkfj0cI0QegSzEJ/J96yMIbd2idAjyB47RWLjZpEl9Ahmwd6mUOgRzEJJCd/7EwO2isTGUZUn9AhmobZtrtAjmIWCIm59Eho7RWJTV801lTE4W+ULPYJZKLRhp4TGTokTdxcTERERERERERERERERERERERERERERUY3jaR1ERJWgAc/AIiIi8WKniIhI7NgqIiISM3aKiIjEjq0iIiIxY6eIiEjM2Clx4pXXiYiIiIiIiIiIiIiIiIiIiIiIiIiIiKjG8crrRESVoNHyDCwiIhIvdoqIiMSOrSIiIjFjp4iISOzYKiIiEjN2ioiIxIydEideeZ2IiIiIiIiIiIiIiIiIiIiIiIiIiIiIahyvvE5EVAk8A4uIiMSMnSIiIrFjq4iISMzYKSIiEju2ioiIxIydIiIiMWOnxIlXXiciIiIiIiIiIiIiIiIiIiIiIiIiIiKiGscrrxMRVQLPwCIiIjFjp4iISOzYKiIiEjN2ioiIxI6tIiIiMWOniIhIzNgpceKV14mIiIiIiIiIiIiIiIiIiIiIiIiIiIioxnHzOhERERERERERERERERERERERERERERHVOLXQAxARSQE/PoSIiMSMnSIiIrFjq4iISMzYKSIiEju2ioiIxIydIiIiMWOnxIlXXiciIiIiIiIiIiIiIiIiIiIiIiIiIiKiGscrrxMRVYKWZ2AREZGIsVNERCR2bBUREYkZO0VERGLHVhERkZixU0REJGbslDjxyutEREREREREREREREREREREREREREREVON45XUiokrQgGdgERGReLFTREQkdmwVERGJGTtFRERix1YREZGYsVNERCRm7JQ48crrRERERERERERERERERERERERERERERFTjeOV1IqJK0Gh5BhYREYkXO0VERGLHVhERkZixU0REJHZsFRERiRk7RUREYsZOiROvvE5ERERERERERERERERERERERERERERENY5XXiciqgQtz8AiIiIRY6eIiEjs2CoiIhIzdoqIiMSOrSIiIjFjp4iISMzYKXHildeJiIiIiIiIiIiIiIiIiIiIiIiIiIiIqMbxyutERJWg4RlYREQkYuwUERGJHVtFRERixk4REZHYsVVERCRm7BQREYkZOyVOvPI6EREREREREREREREREREREREREREREdU4bl4nIiIiIiIiIiIiIiIiIiIiIiIiIiIiohqnFnoAIiIp0PLjQ4iISMTYKSIiEju2ioiIxIydIiIisWOriIhIzNgpIiISM3ZKnHjldSIiIiIiIiIiIiIiIiIiIiIiIiIiIiKqcbzyOhFRJWh4BhYREYkYO0VERGLHVhERkZixU0REJHZsFRERiRk7RUREYsZOiZPkr7x+7tw5TJ48GT4+PrCxsYGtrS18fHwwefJknD9/XujxiIhI5tgpIiISO7aKiIjEjJ0iIiIxY6eIiEjs2CoiIhIzdoqISL4kfeX1X375BU8++ST69++PhQsXom7dutBqtUhKSsLBgwfh7++PH3/8EaNGjRJ6VCKSOK1W6AlIitgpIjIVdooMxVYRkamwVWQIdoqITIWdIkOwU0RkSmwVGYKtIiJTYafIEOwUEZkKOyVOkt68/vLLL+ONN97AihUryt22aNEivPPOO1i1ahUjRkREgmCniIhI7NgqIiISM3aKiIjEjJ0iIiKxY6uIiEjM2CkiInlTCj1AdYSGhmLs2LEPvH306NEICwsz4UREZK40UJjsF5kPdoqITMWUnWKrzAtbRUSmwk6RIdgpIjIVrqnIEOwUEZkSO0WGYKuIyFS4piJDsFNEZCrslDhJevN648aN8csvvzzw9l9//RWNGjUy3UBERET3YKeIiEjs2CoiIhIzdoqIiMSMnSIiIrFjq4iISMzYKSIieVMLPUB1vPHGG5gwYQKCgoIwaNAg1K1bFwqFAgkJCTh06BAOHjyIXbt2CT0mEZkBrVbeZ0VlZGTg7NmzSEpKgkaj0btt6tSpAk0lfuwUEZmK3DsFsFWGYquIyFTk3ip2yjDsFBGZitw7BbBVhmCniMiU5N4qdsowbBURmYrcOwWwVYZgp4jIVNgpcXZK0pvXH3/8cRw7dgybN2/Ge++9h4SEBACAu7s7unfvjqCgIHTv3l3gKQ03ZkBbjB3QFh6uDgCA8LhUfLXnNM5cjiy7z6zHu2NUPz842FnhWmgC3t12GBFxqQJNLE7ju/thfHc/eDrrvo6hian49NDfOHEzEgAwb2A3DGnXHO5O9iguKUVwXBI++OMkrsYkCDi1+Ex6sit6+TdDg3q1UVhUjGvBt/HZV0GIiUsru4+NtQXmzOiNx3o0hYO9NRISs/Dzbxfw2++XhBucqm3fvn2YPHkycnNzYW9vD4XibtAVCgUXWg9h7p16qmU7PNWyHerV0n1/DUlPxeZ/TiEwNgIAYKu2wIrOvTCoYVM4W1kjNicL265dxM7rlwScWnye8m2Lya3aoZ79na9jWio+uHAagTF3v47Lu/XCoIZN4GxtjdjsLGy/ehE7gy8LObboPNnDD0/28IOni+7rGJaQis8O/o0TNyIBAM8Ovqf3paUIjk3Ch/tP4mo0e28O2CrDmXur7jXZuy+eaTIMP0Ufx4chvwEAZvgMRL+67eBm7YQSTQluZsfh87A/cD0rRuBpxWtuix5Y4tcP2279jbWXDpUdX9CqF8Y3ag9HC2tcTruN1y/+gZCsFAEnFZ+JHfwwsYMf6jneaX5yKj4+8TeOhUcCAN4eMQhj/VrpPeZSXDye3ME356WOnTKcnDoFANf3pODqd0loOtwF7We4lx3Pii3ElZ2JSA7Og1YDONS3QvcX68GujoWA04rX7KaP4YVWA/B12Bm8ffUAAGCAR0s82bAjWjl5wtnKFmOPfoobmVwL3OupFu3wVIt2qFfLEQAQkpGCzZfuW+N36o1B3ves8YMvYOeNSwJOTcbCVhlGbp26/HM6zu9MR6sRDug2yxUA8OWY8Arv23mqC/zGOJlwOumY1qg35jcbjO8jT2LTjd+hUijxbNOB6FGnObxsXJBTUoBzqaH46NafSCnMFnpc0XqmRQ8sadMP22/9jbWX765Nn/e9sza1tMbl1Nt4/Z8/EMq1qeSxU4aTU6vO787G6W+y0HakHXo97QQA+HBUXIX39Z/mgA5j7U04nXRMaNAfsxqNwJ7YIGwJ/QUAMKXhYPRxa486Vk4o0ZQiJCcW28J/x43saGGHFTGuS+WHrTKMnDoFAKd/ysOxr3PRMcAGA2bXAgAU5WsRtCMHt84UoSBbAwc3FTqNtEH7YTYCTyteafvDkbInFE4DGsBtQotytyd+HYzMY7GoM745nAd6CzChNExv1Bvzm+vWpu9dv7M2bTYQ/vesTc+mhuKjm1ybmgOxdkrSm9cBoHv37mYVqnslp2Xjk13HEZuQAQAY1ssX6xePxrSV3yAiLhVPjeyMiUM7Ys1nBxATn47pY7ph86pxmLD4K+QVFAs7vIgkZORg0/4TiE7JAACM6uSLD6cHYNz73yIsMRWRyel465ejiE3NhJWFGlN7tsfW2WMx7J1tSM/NF3Z4EWnXpj5+2fcPbtyKh0qlxNPTemHD2icw/ZmvUFCo++9t/px+aN+2Adau/x8SEjPRqaMPXpg/EKmpOTh5JlTgf4Pq0cj4DKzFixdj5syZeOutt2Brayv0OJJjzp2Kz83GO2eDEJmVAQAY16wVPh84BsP27kBIRipe7dYX3T0aYFHg74jNzkRPr4Z4038gEnNzcCha2t8TjCk+Nxvv/H0MUZkZAIDHm7fC1iGjMXz31whJT8Ur/n3R3bM+XjiyX/d1rNcQa3oOQGJeDg5Fhgk7vIgkZuTg/d9PIOZO7wM6+WLzzAA8uVHX+6jkdLy1R9d7aws1pvRuj0+fGYsRb5lH7+XcKYCtqi5zbtV/WtjXQ4BXN4Rm39Y7HpOXjPdv/oLb+amwUlngyfo9sbH9bEw89Q4yi3MFmla82jh7YHyjDriekah3fE6L7pjZrCuWnf0NEdlpmO/7GLb3noxBf2xBbkmRQNOKT0JWDjYePYGo9AwAwJg2vvjkiQCM/vJbhKboTkI/FhaBFf87WPaY4tJSIUatEXJuFTtVPXLoFACkheYj/K90OHpb6R3PSSjCkZcj4dPfCa2erAMLOxWyYguhspTvn6mHae3kiScadiy3AcBGbYF/0mLw5+1grGkfINB04hafm413zh9DZFY6AGBc09b4vP9YDPt1u26N37Wfbo0f9D/E5mSip5cP3uw+ULc2NYM1vpw7BbBV1SGXTiWHFODGwWy4NLTUOz7xqwZ6v4+9mI/jHyejYXc7U44nGS0dvDCmXmeEZMWXHbNWWaC5gye+CjuKW9nxcFDb4IWWw7GxwxRMO/2JgNOK1wPXps11a9Pl53Rr03ktH8P2XpMx+IB5rE3l3Cp2qnrk0KrEkCJc+zMXtRvqb3+Zud1d7/dRFwpw+KMMNO7BDYEVaWZfH8M8uiMsR3/Tf2xeMj4K2YP4/FRYKS3weP3eeLvtXEz7ey3fQ62AXNelcu4UwFZVhxw6BQDxt4px+UA+6jRU6R0//EUOoq8WYeRiezi6qRDxTxEObslBLRclmnazesCzyVdBRCYyjsXCsl6tCm/P+ScJBRGZUDnxa/cwvo5eGF2/M27dtzZt4eCJL0OPIiQ7HvYWNnix5XBs7DgF005Jf23KTomzU0qhB6AHO3ExHKcvRSAmIR0xCen47MeTyC8oQuumHgCA8UM6YPuvfyPoXCjCY1OxZssBWFuqMahHS4EnF5eg6+E4fiMSUSkZiErJwAcHTiGvqBhtG+gWq/sv3cSZkGjEpmUiLDEV6/cdg72NFZp5uAo8ubgse2U3Dvz1LyKjUxEWkYy3N+2He11HNGtat+w+rVp64sBf/+LS1RgkJGXhf39cRmh4Epo3dX/IM5PYxcXFYcGCBaKKF4nD4egwHI2NQERWOiKy0rHh/AnkFRehg5snAKCDmyd+DrmGM/ExiM3Jwvc3r+B6WhL86tR9xDPLy+GocARGRyAiMx0Rmel496zu69i+rq73Hep64ueb13Dmdgxis7Pw/fUruJ6ahDZ1+L31XkHB4ThxPRJRyRmISs7Ah3/oeu/X8E7vL97E3yHRiLvT+w2/3um9J3tvDtgqehgblSVeaT0J66/vRnaJ/skqfyVewoX0EMQXpCEyNxEfhexDLbUNGtfyEGha8bJVW+C9bqPx0vnfkVVUoHfb9KZd8Mn1EzgYdxMhWclYdvY32KgsMLJBa4GmFaejoeEICotEZFoGItMysClI16p2XnebXlRSipTcvLJfmQWFAk5MxsJO0aMU52twZnMcOs31gKWd/g+wrn6XBI8OtdB2Sl04N7JBrbqW8OxoD2tHyV+TxOhsVZZY3+lxvHZpH7KK9Vu1L+YKttwMwunkiq8QTMDhmDAcjQ2/u8a/cBx5JUXoUOfeNf6/OJPw3xr/sm6N78q1qTlgq+hhivM1CNyUjMfmucLSTv/HirbOar1fUWdz4dHaGg7u/HSQ+9moLLGm7XisvbYXWfesTXNLCvH8+W34K+EqonNT8G9mDN4N3oeWjvVQ19pRwInFyVZlgY1dR+PlCtam05p2wZZ71qbLz3Ftai7YKXqYonwNDr6Xhr7znWBdS79Tds4qvV/hZwtQr40VHN25nrqftcoSK1s+hU23fkTOfe+hHk26iH/SbyGhIBVReQn4NPQX2Klt0MjOU6BpxYvrUvliq+hhivK12LcxG0Oety/Xqts3itG6nzUatLGEY10V2g2xgZuPGvGhJQJNK16aghLEf3EVdae2gsq2/JqzOL0ASd9dh/vTbaBQyXuj8sPYqCzxRtvxeOvfvcgu1l+bPndOtzaNyk3Bvxm6takv16ZmQaydMuvN66tWrcLMmTOFHsMolAoFBnRvDmsrC1wNuQ1PN0e4OtfC2StRZfcpLinFP9dj0aYZFwkPolQoMLRtM9hYqnEpKr7c7WqVEk90a4Os/ALcvJ0swITSUctWd5ZadvbdRdfVa3Hw79YErrV1Z7i182uA+l4uOHcxQpAZjUmrNd0vsRk8eDDOnz8v9Bhmydw6NbJRC9hYWOBiku6qtucS4zDAuzHq2uq+J3T3qA8fBxcExUYKOKm4KRUKjGzcXPd1TNR16nx8LAY0bIK6dne+jp714ePogmMxkQJOKm5KhQJD2ul6fzmy4t6P625evTdlp9gqeTGHVr3QfAxOp1zHhfSQh95PrVAhwKsbsovzEZZz+6H3laPXOwxFYHwoTiXp/92+vp0T3GzscSLh7g9dijSlOJschQ6u9Uw9pmQoFQoM920GWws1/om726ou3vVweuEz+POZ6Xhz6AC42JrPlcDYKXaqJphDpwDg4hfx8OhQC3X99K8YpNVoEX8xB7U8LBG0Jgq/zryJv1aEI+5slkCTitvLbYchKOEWNwIYgVKhwEifFrBRW+Bi8j1r/AZN7q7x3RvAx9EFQXHSf98P4JqKraoZ5tKpU1tTUL+TDbzaPvwHnPkZJYi5kIfmAxxMNJm0LPMNwMnkGziX+uhPUqxlYQ2NVoOc+za9EfDao9amieXXpu1rm8falJ1ip2qCObQq6LMMNOxojQbtrB96v7yMUkSdL4DvAHFt2BGL55uOw9+p1/FP+q2H3k+tUGGYZ3fklOQjLJfvod5PzutSrqnYqppgDp0CgEOfZqNxJ0s0bGdZ7rZ6vhYI/bsI2aml0Gq1iLpShPTbpWjUvvx95S7p2+uwa+MKO9/a5W7TarRI+PIqnAc3hJVXxVdlJ51lvgE4mXQDZyuzNlXfWZuWSH9tyk6Js1NmfUppXFwcYmJihB6jWhrXd8XW1RNhaaFGfkERVmz6DZFxaWjTVLdBPS1T/2OY0rLy4O7KNwbv19S9Nr59bgIs1WrkFRVh4Y59CE9KK7u9d0sfbJg8DNYWFkjOzsWcrXuQkSf9b7w1ad6cfrjybwwiolLKjn3w6V9YsnAIdu+ch5KSUmi0Wmx4/wCuXot7yDORGP32229l/zx8+HAsXboUwcHBaNOmDSws9M9gDAgwv481MxVz6FRzZ1fsDZgMK5UaucVFeObQLwjJSAUAvH76MN5+bDDOTnoWxRrd94Tlx//E+UR+T7hfcxdX7BkzCVYqNfKKi/DMn78iNP3O1/HkEbzdezD+njIXxaWl0ECLFYEHcT6BX8f7NfWojW8W3O39om37EJ54t/e9fH2wfsrd3j/z6R5k5LL3UsVWmYbUW9Wvbls0s/fCnHMfPPA+3Wu3xGutJ8NaZYHUwmws/mcrMovzTDil+A2v74tWTu4Y89eX5W5ztda9CZhSoL82TSnIhZedo0nmk5JmdWrjh2kTYHWnVfN/3oewFF2rjoVF4sD1EMRlZaGeoyMW9e6OryePw5ivvkNxaanAk1NVsVOmIfVOAUD0iUxkRBRgwNs+5W4ryCxFSTo1WCIAAQAASURBVIEGN35JQesJbvB7qi4SLuXg5IZY9HndG26t7ASYWJyGerWGr6MHngz6XOhRJK25syv2jnjq7hr/8D1r/DN/4W3/ITg7Yd7dNf6JA1zjSxhbVfPMoVNhx3OQGl6IgA1ej7xvyNEcWNgo4d2NmwLvN9DdD80dPDH99KM/at1SqcZzzQbjz/jLyC3lJzHda3h9X7RydsfYqqxNC3PhZcu1qRSxU6Yh9VbdOpaH5PBiPPmu2yPve/1IHixsFGjc3XwuFGAsfdzao2ktL8y/uOmB9+la2xcv+U6FldICaUVZWH55C7KKcx94fzniulR+2KqaJ/VOAUDwsQIkhJVg2nvOFd4+YE4tHPgoG59MT4NSBSgUwJDn7VGvFT/N6l5ZZ+NREJ2NBi93rfD29AMRUCiVcOrfwMSTSctADz+0cPTEtFOVW5vObz4Yf96+jNwSrk2lSAqdMuvN6zt27HjkfQoLC1FYqP8HTFNaAqVKHF+aqNtpmLbyG9SytULfLk3xytwhmLfmh7Lb7z9RQwGI8/QNgUUkp+PxTTvhYGONgW2aYO34wZi+5aeyDexnQ2Pw+KadcLazwbiubfDulOGY9MH3SMvNf8Qzy9PCeQPQ2KcOnl/yrd7xx0d1hG8LT6x8/WckJmahbZt6eGH+IKSl5eLCpagHPBuJ0ejRo8sde+ONN8odUygUKOVGGoNVplNAxa3SFpdAYSF8q8Iz0zB07w44WFphaMNm2Nh7GMb/vgshGamY0aoj2rt5YubBPYjLyUJX93p4s8dAJOXl4uRtfk+4V3hGGob99DUcrKww1KcZNvYdivG//YDQ9FRMb9MB7ep6YNYfexCXnYUuHvWxpucAJOXl4GRctNCji0pEUjqe2LgT9tbWGNC2Cd6cOBgzP/6pbAP7udAYPLFR1/ux3drg3anDMXnz90jLYe+liK0yDYPXVEUlUFoK2yk3K0csaDYKi//5HEWaB3+84j/poZh1dhMcLeww0qsrVreZgmfOfYAM/vAFAOBh44BX2g/C9KDvUKR58J+lcmtThYJL0wpEpKZj1Jc74WBljcEtmuCdkYMxeedPCEtJw/7rd69sFZKcin/jE3H0uVno28QHB2+GCjg1GYKdMo3qrKlKikqhtlTVxFiVlpdSjH+2JaD3K95QWVbwAZl3vpF6dbZH85G6Kwo5+1gj9WYewg6mc/P6He42DljZZghmn/rmoc2nRwvPTMPQX7bDwdJat8bvOQzj//het8b3vbPGP/TzPWv8QUjK5xpfqtiqmle9TmmgrqgNJpSTUoIzX6ZiyGvulZrl1uFsNOlVS/C5xcbN2hEvthyBBee/emSnVAol1radAAUUWH/tt4feV27cbRzwcrtBmHGsimtTKModI2lgp0yjOq0qLtLAQsDv+dnJJTj2RSZGrXaF2lLxyPsH/5WH5r1tK3VfOalj5YR5TcZgxeVPUfyQTl1OD8Xc8+/C0cIOQz264WXfaVhw8X1kFOeYcFrx4rpUntiqmiflTgFAVnIpDn+eg/FvOD2wP+f35eP2zRI8/ooDHOqoEHOtGIc+zUEtF2WFV2qXo+K0AiR/fxP1XuwIpUX593MLIrOQ/lc0vF/tBoWCnX+QutaOWNxyBJ4/V8m1absJUEKBd4K5NpUqKXRK+F1vAlu3bh1Wr16td8yr9UDUbzNYoIn0lZRqEJuYAQC4EZGIlo3dMX5IB3yz7xwAoLajHVIz7m6qcHawRVomrxJ4v5JSDWJSMwFk4lpsIlrVd8dTPdvjjZ8PAwDyi0sQk5qJmNRMXIlOwO/LpmNsl9b44ug5YQcXoQXP9od/tyZYsPR7JKfcXYxaWqrx9LReeGXNXpw5p/sYrPDIZDRpVBfjH+8s+c3rWq28/oKj0WiEHoHuUVGrHEYOgFPAIIEmuqtYo0FUVgYA4GpKItrW8cCMVh2x+swRLO3UE8/89QuOxOi+J9xIS4ZvbTfMadOZP9i+j97XMTkRfm7umNmmA1afPIqlXXrimT9/xdHo/76OKfB1rYM5bTtz8/p9Sko1iEnR9T44NhGt67tjcq/2WPPTnd4XlSAmJRMxKZm4EpWAfSunY0zX1vjysPR7L7dOAWyVmFTUqQZTusN7mr9AE+k0s68HF0t7fN55YdkxtVKFtk4+GFOvBwYcXQkNtCjQFCMuPxVx+akIzorGd92XYbhnF3wbdVTA6cWjlbM7XK1r4ZeBT5cdUyuV6FynAaY06YxBf2wBANSxtkNywd31QW0rW6QU8gSA+xVrNIhO17Xq34REtPFwx7TO7fHqH4fL3Tc5Nxe3M7Pg7exk8jlrgtxaxU6JS0Wt6jm3OXrPaynQRDrp4fkozCzFoWV3P05cqwGSr+ch9I80jP22BRQqwKGeld7j7L2skHKD7//9p5WTJ1yta+GnPs+UHVMrlehU2xuTfLqg3W9roOG2tUop1mgQlZ0BALiamoC2ddwxw7cjVv99BEs79sIzh/fiSOydtWl6Mnxd6mJOa/NY48utUwBbJSYVdWrAvMYYOL+pQBPppIQVoiCzFL8uufsJC1oNkBBcgOD9WZj+ow+UKt2fnYTgfGTGFaPv4kdf+VZuWjp4orZVLezoPr/smFqpQnvnhniiQTc8dvBVaKCFSqHEunYT4WnjjHnnvuBV1+/T+s7adO+A8mvTp5p0xuADD1mbFpjH2lRurWKnxKWiVg2d3xDDniv/CVKmkhRWjPxMDX54MansmFYDxF0rwpXfczFvt2dZp+KuFSIjrgRDlroINa5oNbWvB2dLe3zS6cWyYyqFCm0cG2GU12MYFrT0znuoRbidn4Lb+Sm4nhWF7V1WYYhHV+yKLv+elhxxXSq/TgFslZhU1KmA5+pj1PPCXoU7IbQEeRlabF+UXnZMqwFirhXj4v/ysegHVxz7JhdjVzmgcWfd+39uPmokhZfg7N48bl6/ozAqC6XZRYhac+buQY0W+SHpyDgSA9fHm6I0uwjhy47r3Z78402k/xWFRu/0Mv3QItTiztr06x73rU1ddGtT/z8rWJue/cJsrrrOTomTWW1eLy4uxu+//46QkBB4eHhgzJgxsLN7+BWIVq5ciRdffFHv2MDZW2pyzGpRALBQq3A7KRMp6Tno3MYbt6J0CzK1Son2Levhk++PP/xJCAoAluoHX11LoVA89Ha5WvjsADzWoykWLd+FhMRMvdvUaiUsLFTQ3Hd5xVKNBgql/AJgDkJDQ9GkSROhxzArhnQKqLhVrb/9uKbGrBYFAEuVChZKJSxVFX1P0ELJs10f6f6vo/a+r6NGq+VZw5Xw39fxgbez95LHVhmfsdZUw06+VpNjVsqF9FBMO/Ou3rEVvuMRnZuE76KOPuSHBQpYKs1qqVwtp5MiMfTAZ3rH3ukyEuFZqfjsxilE56YjKT8b/nUbITgjEQBgoVSiSx1vrL9yRIiRJUWheHCrnGys4eFgj+Qc89hoIUfslPEZc021LuSpmhqz0tza2GHwe430jp39+DYcvKzQYnRtqCyUcGlsg+zbRXr3yYkvgl0dfnTwf04nhyPgsP5H3a7tMAoROSn44tZJs98gUJMUUOiv8e/7WpZqNVzjSxxbZVzG7NRH4U/U1JiV5ulngzHv19M7dvyjZDh6WcBvjFPZhkAAuPVXNlwbW6K2j9X9TyN751LDMOHEZr1jr7Z5HJE5yfg64pje5oD6tq549uwXyCzmpwTe73RSJIb9qb82fbvzSIRnp2Lrg9amCt3adMNVrk2lip0yPmO26svIgJoas1Lq+1lh0gf6J0399UE6nOup0XGsvV6ngv/Kg1tjC9Tx4Trqfv+kh2D2uXf0ji1pPhExeUn4Iebwg9dTCsCC76GW4bpUvtgq4zJmp76PHlJTY1aad1sLzPzIWe/Y/vezUbueCl3H2UKr0UJTAt0Pte+hUOo2uZOObUsXeK/urncsYds1WLrbwWVoQ6gdrWDXurbe7bGbLsKhmwccH/My5aiidi41DBOOV7A2zU3G1+H6a9MGdq6Yy7WpWRB7pyT9t8kePXpg//79cHJyQnJyMvr374+bN2/C29sbMTExeOmll3Dq1Cl4eT34G5GVlRWsrPTfTFOqxPFlmTv+MZy+FIHE1GzY2VhiQPfmaO9bHy+8vQcA8MOBi5g2qgtiE9IRk5COaaO6oqCoBAdPXRd4cnFZOMQfx29GIiEjG3ZWFhjarjk6N66HuV/shY2FGnP6d8XR4DAkZ+XCyc4GE7r7oa5jLfx5JUTo0UVl0fyBGNCnJV56Yy/y84vg4qz7C2JObiGKikqQl1eES1ei8eysPigqLEFCUhbatamPwf1b4ePPpX/VSjmegdWsWTN4eXmhb9++Zb8aNmwo9FiSYoxOARW3SmEhfKuWduqJwJhwxOdmw87CEgGNW6CbR31M/XM3coqLcDo+Gqu69EZBaQnisrPQ1aMeHm/qizV/Bwo9uqgs7fIYAqMjyr6OI5u0QDfP+pi2/2fkFBfhzO0YrOyu+zrGZmehm2c9jG3mizdPBQo9uqgsGOaPE9fv9N7aAkPaNUenJvXw7Na9sLFUY/aArgi8dqf3tjYY76/r/cFL5tF7OXYKYKuMocbWVJbCdyq/tBARuYl6xwpKi5BVnIeI3ERYKy0wxac/TiYHI7UoC44Wdhjt1R11rBxxNOmKQFOLT25JEUKykvWO5ZcUI70or+z49pCzeLalPyJz0hCZnYZnW/ojv7QY+6L/FWJk0Xqxtz+OhUciPisbdpYWGO7bHF0a1MOsXXtha2GB53t2w583Q5GckwsvRwe82Mcf6Xn5OHQrVOjRjUKOrWKnqq8m11RqS+FPYrSwUcGxgf4caislLO1VcGxgDQBoPqo2zmyKhWtLW7i1tkPCpRzcPp+NPqsbCjCxOOWVFCE0O0nvWH5pMTKK8suOO1rYwMPWEW7W9gCAhrV0P9BKKchBSiE/5h4AlnbsicDYCMTnZunW+I1aopt7fUw9+NPdNX7nPigoKUFcTha6utfH401aYc1Z6b/vB8izUwBbVV012ylhP94eACxtlHDx1r/Sn9pKAWt7/eNFeRpEnMpFl+m1738KApBXWoTwHP21aX5pETKL8xCekwiVQom3201CCwdPvHjxa6gUCtS2rAUAyCzOR4lWmI/uFpsHrU0zCu+uTXeEnMXcFv6IzE5DZI75rU3l2Cp2qvpqslUWArfK0laJ2t76M1hY6zpV2/vuJvWiPA1CT+bjsRmOph5REvJLCxGZm6B3rEBThKySXETmJsBaaYlJ3gNwOvUaUguz4GBhhwAvf9SxcsKxpMsCTS0+XJfKs1MAW1Vd5twpALCyVaJORa1yUKKOt+7naPVbWyBwWy4srBRwqKNCzL/FuHa0AP1m1RJiZFFSWqth5WWvf8xSBVUti7Ljqlr6a1eFSgG1oxUs3R998oNc5JUWIewBa9OwO2vTd9rr1qYvXPgaKpjX2pSdEmenhN9RUA1nzpxBUZHuykMvvfQSVCoVoqKi4O7ujtTUVAQEBODVV1/Fl19+KfCkhnFxsMVr84aitpMdcvKKEBaTjBfe3oNz/+o+hnXnvnOwslRjyYz+sLezRnBYPBat2428gmKBJxeX2va2WDdhMOo42CG7oAi34lMw94u9OB0SDUu1Cj5uzgjoNBLOdtbIyC3Av7GJmPbJjwhLTBV6dFEZPaI9AGDz+ol6x9/euB8H/tK98ffG2/swe3ovvLRsBBzsrZGYlIUvdhzHb79fMvW4ZARBQUEICgpCYGAgnnvuORQUFKBBgwbo169fWdAetUiQO3PvVB0bW2zqMxxutnbILirEjbQUTP1zN07E6Tr1/JH/YVnnntjcZzicrKwRm5OFDedPYOf1S8IOLjKuNnbY1H8Y6tjaIbuoCDdSkzFt/884EXvn63hoH5Z17YX3+w+Dk5U14rKzsOHsCewM5puC93Kxt8Xaybre5+Trev/s1r04c0vX+4ZuztjY+W7vr8UkYvpH7L3UsVXVZ+6tehgNtPC2dcOQNp3gaGmHrOJc3MiKxfMXPkHkfZve6eG23jgNa5UFVncYAkdLG1xOjcP0oO+QW1L06AfLSG07W6wfORhuteyQXViEm0kpmLVrL05FRsNKrUIzN1eMbuMLe2srJOfk4u+oGCza+ztyi7jGlyp2qvrk3Kn/1OvqgA6zPXBjbyoubUuAvacleiypjzotbYUeTVL6ejTHWx1Gl/3+vc66Kxp/fCMQH98IFGYokaljY4dNve5Z46cnY+rBn3Di9p21aeA+LOvYC5t7j7i7xr9wHDtvXBJ2cKoWtqp62Cmd8BM50GqBxj25ucIQbtYO6F3XFwDwrf8Cvdvmnv0cF9MihBhLkrbePA0rlQVe/29tmhaHGce4NpUydqr62Crg1vF8QAs062Uj9CiSVAoN6tvWxUD3znCwqIXs4lzczI7GC/98iKi8hEc/AZXhutQ8sVXVw04BAcscELQjB/vezUZBjgYOdVToOcUO7YZaCz0aycy9a9PvHtNfmz7zN9emUiX2Tim0Wq1kP59GqVQiISEBbm5uaN68Od577z0MHz687PbAwEDMmDEDERFV+8PTfdJGY48qS9lewp/FZi5c/+VmBWMI/GOZwY9t9evrxhvkEa6NMt1rVVZxcTFOnz6NwMBABAYG4syZMygsLESTJk1w8+ZNoccTrZrqFAB4f7HBmKPKlqJEnmdXGpvDLeGvWmkOrrz3gsGPNWWnALbKnNRUq3odXmrsUWXpdiqvCGUMylBeWcMYbq0yvFMA11TslGFqck31ytUxxhxVtn4Oayv0CGYhN40nIxhD1ExpvPcHsFXmoiY7tT54qDFHla3d0e2FHsEspGezU8YQ8sTL1Xo811TslCFqslUf3ehnzFFl69cErqmMIS6D76MaQ/Do1w1+LNdUbJUharJTX916zJijytbeRK6pjCEhx/7Rd6JHOjf0LYMfy06Js1OSvvI6ACgUuk1nGRkZ8PHx0bvNx8cH8fHxQoxFRGRWLCws0KtXL3Tu3Bndu3fHn3/+ic8//xyhoaFCjyZ67BQRkWmwVYZjq4iIah47ZTh2iojINNgqw7BTRESmwU4Zjq0iIjINtsow7BQRkWmIsVOCbV6PiYlBZGQk8vLyUKdOHbRq1QpWVlZVfp7p06fDysoKxcXFiIqKgq+vb9lt8fHxcHJyMuLURCRX0v2MiuopKCjAqVOncPToUQQGBuLcuXPw8fFB7969sWXLFvTu3VvoEWsMO0VEUiLXTgFsFVtFRFIh11axU+wUEUmDXDsFyLdV7BQRSY1cWyXXTgFsFRFJi1w7Bci3VewUEUkJOyXOTpl083pUVBQ+/fRTfP/994iJiYH2nv8qLC0t0bNnT8yZMwePP/44lErlI59v2rRpZf88atQo5OTk6N3+888/o127dkabn4hITnr37o1z586hcePG6NWrF55//nn07t0bdevWFXq0GsNOERFJC1vFVhERiRk7xU4REYmd3FrFThERSYvcOgWwVUREUiO3VrFTRETSIvZOKbRa05xXsHDhQmzbtg2DBg1CQEAAunTpAi8vL9jY2CAtLQ3//vsvjh8/ju+//x5qtRrbtm1D586dq/Waubm5UKlUsLa2rtLjuk/aWK3XJZ1sr0f/RYQqx/XfYqFHMAuBfywz+LEt96424iQPd33MayZ7rYexsLCAh4cHRo8ejT59+qBXr15wdXUVeqwaI6VOAYD3Fxuq9dqkoyhRCD2CWXC4pRJ6BLNw5b0XDH6sKTsFsFVCkVKreh1eWq3XJZ3bqY5Cj2AWlKF2Qo9gFm6tMrxTANdU7JS4OgUAr1wdU63XJp2fw9oKPYJZyE2zFXoEsxA1Uxrv/QFslRCk1qn1wUOr9dqkszu6vdAjmIX0bHbKGEKeeLlaj+eayrw7BUivVR/d6Fet1yadXxO4pjKGuAy+j2oMwaNfN/ixXFOZf6uk1qmvbj1Wrdcmnb2JXFMZQ0KOvdAjmIVzQ98y+LHslDg7ZbIrr1taWiIsLAx16tQpd5ubmxv69euHfv364bXXXsP+/fsRFRVV7YjZ2fEH1EREhsrIyMDx48cRGBiId955BxMnTkSzZs3Qu3dv9OnTB717967we7pUsVNERNLDVt3FVhERiQ87dRc7RUQkTnJqFTtFRCQ9cuoUwFYREUmRnFrFThERSY/YO2WyK6/XlA8//BDnz5/H8OHD8eSTT+Kbb77BunXroNFoMHbsWLzxxhtQq6u2R59XXjcOXnndeHjldeOozpXXW+x5w4iTPNyNsa+a7LWqIjs7GydOnMDRo0cRGBiIy5cvo2nTpvj333+FHk3UaqJTAK+8biy88rpx8MrrxlGdK6+bslMAW2VuaqJVvPK6cfDK68bBK68bR3WvvM41FTtlqJpaU/HK68bBK68bB6+8bhzVufI611Q6bFXV1VSneOV14+CV142DV143jupeeZ1rKnbKUDXVKl553Th45XXj4JXXjaM6V17nmkqHraq6muoUr7xuHLzyunHwyuvGUZ0rr7NTOmLrlMmuvF4T1qxZgw0bNmDQoEFYuHAhIiIisGHDBrzwwgtQKpXYtGkTLCwssHq1aS/7T0Rkjuzs7ODi4gIXFxc4OztDrVbj+vXrQo8lauwUEZFpsVVVx1YREZkOO1V17BQRkWmxVVXDThERmRY7VXVsFRGRabFVVcNOERGZltg6Jcjm9cTERCxZsgSHDx9GUlIS7r/4e2lpaaWeZ/v27di+fTvGjh2Ly5cvo2PHjtixYwcmT54MAGjRogWWLVvGiBFRtUn6IyoMpNFocP78eQQGBuLo0aM4efIkcnNz4eXlhb59++Ljjz9G3759hR6zRrBTRCQ1cuwUwFaxVUQkJXJsFTvFThGRdMixU4B8W8VOEZEUybFVcu0UwFYRkfTIsVOAfFvFThGR1LBT4uyUIJvXp0+fjujoaLzyyivw8PCAQqEw6Hni4+PRqVMnAEDbtm2hVCrRrl27sts7dOiA27dvG2NkIiLZcXJyQm5uLjw8PNCnTx+899576Nu3Lxo3biz0aDWOnSIikga2iq0iIhIzdoqdIiISO7m2ip0iIpIGuXYKYKuIiKRCrq1ip4iIpEHsnRJk8/qJEydw/PhxveAYwt3dHcHBwWjQoAFCQkJQWlqK4OBgtGrVCgBw7do1uLm5GWFiIiL52bBhA/r27YtmzZoJPYrJsVNERNLAVrFVRERixk6xU0REYifXVrFTRETSINdOAWwVEZFUyLVV7BQRkTSIvVOCbF6vX79+uY8MMcSkSZMwdepUjBo1CocPH8by5cuxZMkSpKamQqFQYO3atRg3bpwRJiYiudNqDTtTVMqeeeYZoUcQDDtFRFIjx04BbBVbRURSIsdWsVPsFBFJhxw7Bci3VewUEUmRHFsl104BbBURSY8cOwXIt1XsFBFJDTslToJsXn///fexYsUKfPbZZ2jYsKHBz7N69WrY2NjgzJkzeOaZZ7B8+XL4+flh2bJlyMvLw8iRI7FmzRrjDU5EJCMzZ86s1P2++uqrGp7E9NgpIiJpYKvYKiIiMWOn2CkiIrGTa6vYKSIiaZBrpwC2iohIKuTaKnaKiEgaxN4pk21ed3Z2hkJx9wyG3NxcNG7cGLa2trCwsNC7b1paWqWeU6VS4aWXXtI7NmHCBEyYMKH6AxMR3av6J41Kzvbt2+Ht7Y327dsb5axZsWOniEjSzP/bdIXYKraKiCTE/L9Nl8NOsVNEJCHm/226QnJqFTtFRJJn3t+mKySnTgFsFRFJnPl/m66QnFrFThGRpJn3t+gHEnunTLZ5/f333zfVSxERyda6deuwatUqLFy4sOz7rlarxerVq7F161akp6eja9eu+Pjjj9GqVauHPtfcuXOxa9cuhIeHY+bMmXjqqafg4uJign8LYbBTREQ1z5idAtgqIiIyPq6pDMdOERHVPK6pDMdOERGZBtdUhmOriIhqHtdUhmOniIhqntw6ZbLN69OmTTPVSxERGZ1Wq3j0nQR27tw5bN26FX5+fnrH169fj/feew/bt29Hs2bN8Oabb2LgwIG4efMm7O3tH/h8n3zyCTZt2oQ9e/bgq6++wsqVKzF8+HDMmjULgwYN0jur1hywU0QkZXLsFMBWERFJiRxbxU4REUmHHDsFyKtV7BQRSZ0cWyWnTgFsFRFJmxw7BcirVewUEUkZOyXOTilN+WKPPfYYXn31VRw9ehQFBQWmfGkiIrOWk5ODyZMn4/PPP4ezs3PZca1Wi/fffx8vvfQSxo4di9atW2PHjh3Iy8vDd99998jntbKywsSJE3Ho0CEEBwejVatWmDdvHry9vZGTk1OT/0qCYKeIiGpGTXUKYKuIiMg4uKYyDnaKiKhmcE1lHOwUEVHN4ZrKONgqIqKawTWVcbBTREQ1Q66dMunm9ebNm+O7775D//794ezsjD59+uCNN97A8ePHUVxcbMpRiIiqRKs13a/CwkJkZWXp/SosLHzofPPnz8fw4cMxYMAAveMRERFISEjAoEGDyo5ZWVmhd+/eOHXqVJW+BgqFAgqFAlqtFhqNpkqPlQp2ioikypSdMqRVpugUwFaxVUQkZmLuFMA1lbGwU0QkVVxT6Zh7q9gpIpIyMXcK4JrKWNgqIpIqrql0zL1V7BQRSRU7pSO2TqkNeVBGRgbOnj2LpKSkcv8SU6dOfeDjvvzySwBAbGwsjhw5gqCgIOzYsQOvv/46bGxs0KNHD/Tr1w8rV640ZCwiIrOwbt06rF69Wu/Ya6+9htdff73C++/atQsXL17EuXPnyt2WkJAAAKhbt67e8bp16yIqKuqRsxQWFpZ9dMiJEycwYsQIfPTRRxgyZAiUSpOe/1Ql7BQRUc2qSqtqslMAW8VWERGVxzVV9bFTREQ1i2uq6jOkVewUEVHlcE1VfVxTERHVLK6pqo9rKiKimsNOVU6VN6/v27cPkydPRm5uLuzt7aFQKMpuUygUD11s/adevXqYOnVq2X1jYmLw2Wef4cMPP8SRI0cYMSISHa1W8eg7GcnKlSvx4osv6h2zsrKq8L4xMTFYuHAhDh48CGtr6wc+573fqwFAq9WWO3a/efPmYdeuXWjQoAFmzJiBXbt2oXbt2pX8txAOO0VEcmTKTgGVb1VNdgpgq9gqIpISrqnYKXaKiMSMayp5tYqdIiIp4ppKPp0C2Coikh6uqeTVKnaKiKSGnRJnp6q8eX3x4sWYOXMm3nrrLdja2hr8wmFhYQgMDCz7lZGRge7du6N3794GPycRkTmwsrJ64JuA97tw4QKSkpLQsWPHsmOlpaU4duwYPvroI9y8eROA7kwsDw+PsvskJSWVOyvrfp9++ikaNGgAHx8fBAUFISgoqML77dmzp1Kzmgo7RURU8yrbqprsFMBWsVVERBXjmqp62CkioprHNVX1GKNV7BQR0YNxTVU9XFMREdU8rqmqh2sqIqKaxU5VTpU3r8fFxWHBggUGxWvbtm04evQoAgMDkZmZCX9/f/Tu3Rvz589Hp06doFZXeRwiItMw8RlYldW/f39cvXpV79iMGTPQokULLF++HI0aNYK7uzsOHTqE9u3bAwCKiooQFBSEd95556HPPXXq1EqdpSU27BQRyZIMOwWwVWwVEUmKDFvFTrFTRCQhMuwUIL9WsVNEJGkybJXcOgWwVUQkYTLsFCC/VrFTRCRZ7JQoVbkagwcPxvnz59GoUaMqv9isWbPQoEEDvPTSS5g5cyYsLCyq/BxERHSXvb09WrdurXfMzs4OtWvXLju+aNEivPXWW2jatCmaNm1advbspEmTHvrc27dvr9IssbGx8PT0hFKprNLjjI2dIiISj5rsFMBWsVVERNXHNVV57BQRkXhwTVUxQ1vFThERGR/XVOVxTUVEJB5cU1WMayoiInGQe6eqvHl9+PDhWLp0KYKDg9GmTZtyIQoICHjgYz/++GMEBQXh9ddfx4oVK/DYY4+hT58+6N27Nzp27CjqXf5ERFK1bNky5OfnY968eUhPT0fXrl1x8OBB2NvbG/V1fH19cenSJYPejDMmdoqISFpM1SmArSIiIsNwTcVOERGJGddUlW8VO0VEJAyuqbimIiISM66puKYiIhIzc+6UQqvVaqvygIftqlcoFCgtLa3U8wQHByMoKAiBgYEICgpCQUEB/P390bdvXyxZsqQqIxld90kbBX19c5HtJeyZgubE9d9ioUcwC4F/LDP4sY2+f8uIkzxc+MRVJnstY7K3t8fly5cFX2jJoVMA4P3FBqFHMAuKEi6gjcHhlkroEczClfdeMPixpuwUwFZVlxxa1evwUkFf31zcTnUUegSzoAy1E3oEs3BrleGdArimqgx2yrReuTpG6BHMws9hbYUewSzkplXtY7qpYlEzpfHeH8BWVZcxWiX2Tq0PHir0CGZhd3R7oUcwC+nZ7JQxhDzxcrUezzXVo5lTpwDxt+qjG/2EHsEs/JrANZUxxGXwfVRjCB79usGP5ZqqcsypVWLv1Fe3HhN6BLOwN5FrKmNIyDH+JmM5OjfU8NawU5Vj6k5VeXexRqN54K/KLrQA3S79Z599Fj/88AMuXryI5557DidOnMDy5curOhIREVEZdoqIiMSOrSIiIjFjp4iISOyM0Sp2ioiIagrXVEREJHZcUxERkRioq/PggoICWFtbV/lxiYmJCAwMLPt169YtWFpaomvXrujbt291RiIiqhlV+owKEgt2iohkg52SLLaKiGSDrZIkdoqIZIOdkixDWsVOEZEksVWSxDUVEckGOyVZXFMRkSywU6JU5c3rpaWleOutt/Dpp58iMTERt27dQqNGjfDKK6+gYcOGmDVr1gMfO3/+fBw9ehQ3b96EWq1G586dMW7cOPTt2xc9evQwaOFGRER0L3aKiIjEjq0iIiIxY6eIiEjsDG0VO0VERKbANRUREYkd11RERCQGVd68vnbtWuzYsQPr16/H7Nmzy463adMGmzZteuhi6+LFixg9ejT69u0Lf39/2NraGjY1EZGJabUKoUcQPYVCHF8jdoqI5Iidqhy2iohIOGzVo7FTRETCYacqR+qtYqeISMrYqkeTeqcAtoqIpIudqhypt4qdIiKpYqcqx9SdqvLm9a+//hpbt25F//79MXfu3LLjfn5+uHHjxkMfe/r06apPSEREkqDViuMzVtgpIiJ6ELaKiIjEjJ0iIiKxk3qr2CkiIvMm9U4BbBURkbmTeqvYKSIi82bqTlV583pcXByaNGlS7rhGo0FxcfFDH3vs2LFKvUavXr2qOhYRUc0SxxrC5EpKSmBtbY1Lly6hdevWD71vcHAwPD09TTTZg7FTRCRLMu0UwFY9CFtFRKIj01axUxVjp4hIdGTaKUBerWKniEjSZNoqOXUKYKuISMJk2ilAXq1ip4hIstgpUXaqypvXW7VqhePHj8Pb21vv+E8//YT27ds/9LF9+vQpu7T8g3bpKxQKlJaWVnUsIiKqAWq1Gt7e3pX6vly/fn0TTPRo7BQRkbywVeWxVURE4sFOlcdOERGJi5xaxU4REUmPnDoFsFVERFIkp1axU0RE0iPmTlV58/prr72GKVOmIC4uDhqNBnv27MHNmzfx9ddf43//+99DH+vs7Ax7e3tMnz4dU6ZMgaurq8GDExGZklarEHoEwbz88stYuXIldu7cCRcXF6HHeSR2iojkSM6dAtgqIiIpkHOr2CkiIvGTc6cA+bSKnSIiKZNzq+TSKYCtIiLpknOnAPm0ip0iIqlip8TZqSpvXh85ciR++OEHvPXWW1AoFHj11VfRoUMH7Nu3DwMHDnzoY+Pj47F371589dVXWL9+PYYNG4ZZs2ZhyJAhZWdmERGRuHzwwQcIDQ2Fp6cnvL29YWdnp3f7xYsXBZqsYuwUEZH8sFVsFRGRmLFT7BQRkdjJpVXsFBGRNMmlUwBbRUQkVXJpFTtFRCRNYu1UlTevA8DgwYMxePDgKj/O0tIS48ePx/jx4xETE4Nt27bhueeeQ2FhIaZNm4bVq1dDrTZoJCKimlXxJx7JwujRo4UeocrYKSKSHRl3CmCr2CoikgQZt4qdYqeISAJk3ClAPq1ip4hI0mTcKrl0CmCriEjCZNwpQD6tYqeISLLYKaFHqJBCq9UK+n9NREQEZs2ahaCgICQnJ4visvTdJ20UegSzkO2lFHoEs+H6b7HQI5iFwD+WGfzYhl+/bcRJHi5y6gqTvRY9mhg7BQDeX2wQegSzoCjhGeDG4HBLJfQIZuHKey8Y/FhTdgpgq8RGjK3qdXip0COYhdupjkKPYBaUoXaPvhM90q1VhncK4JpKzsTYKQB45eoYoUcwCz+HtRV6BLOQm2Yr9AhmIWqmNN77A9gqMRFrp9YHDxV6BLOwO7q90COYhfRsdsoYQp54uVqP55pKvsTaqo9u9BN6BLPwawLXVMYQl8H3UY0hePTrBj+Wayr5Emunvrr1mNAjmIW9iVxTGUNCjr3QI5iFc0PfMvix7JQ4Vfl0J2dn5wo/6kOhUMDa2hpNmjTB9OnTMWPGjAc+R2FhIX7++Wd89dVXOH36NIYPH47ff/9dNAFLacNN18ZQai3zU1aMKCvHQugRCPLe4JqRkYHdu3cjLCwMS5cuhYuLCy5evIi6devCy8tL6PH0yKFTAPD9wC1Cj2AWppyZJfQIZuH9BV8LPYKZqM6mQHl3CmCrxNaqnnXChB7BLPyW20boEcxCtmeR0CMQALm3ip0SV6cAwEWdK/QIZsHZLl/oEcxCQb6l0COQzDsFyKtVUuhUJ9twoUcwC0G2TYUewSxk5VkLPQIBkHur5NQpQBqtamqVIPQIZuFQnyNCj2AWOuyv3glCZAzy7hQgr1ZJoVP2Kr5nZQyu1jlCj2AW0gtthB6B2ClRdqrKm9dfffVVrF27FkOHDkWXLl2g1Wpx7tw5HDhwAPPnz0dERASeffZZlJSUYPbs2XqPPXv2LLZt24Zdu3bBx8cH06dPx48//iiqeBERkb4rV65gwIABcHR0RGRkJGbPng0XFxfs3bsXUVFR+PprcW1aZaeIiOSHrWKriIjEjJ1ip4iIxE4urWKniIikSS6dAtgqIiKpkkur2CkiImkSa6eqvHn9xIkTePPNNzF37ly945999hkOHjyIn3/+GX5+fvjggw/KLba6deuGBg0aYMGCBejYsWPZ890vICCgqmMREVENefHFFzF9+nSsX78e9vZ3P8pm6NChmDRpkoCTVYydIiKSH7aKrSIiEjN2ip0iIhI7ubSKnSIikia5dApgq4iIpEourWKniIikSaydqvLm9T///BPvvPNOueP9+/fH4sWLAQDDhg3DihUrKnx8dHQ01qxZ88DnVygUKC0trepYREQ1Syv0AMI5d+4cPvvss3LHvby8kJAgvo8EZKeISJZk3CmArbofW0VEoiTjVrFT+tgpIhIlGXcKkFer2CkikiwZt0pOnQLYKiKSKBl3CpBXq9gpIpIkdkqUnVJW9QEuLi7Yt29fueP79u0r+xiQ3NxcvR36/9FoNI/8xYAREYmLtbU1srKyyh2/efMm6tSpI8BED8dOERHJD1vFVhERiRk7xU4REYmdXFrFThERSZNcOgWwVUREUiWXVrFTRETSJNZOVfnK66+88gqeffZZHD16FF26dIFCocDZs2exf/9+fPrppwCAQ4cOoXfv3uUeu2rVKowePRpdunSp/uRERKYk4zOwRo0ahTfeeAM//vgjAN2ZstHR0VixYgUef/xxgacrj50iIlmScacAtoqISBJk3Cp2iohIAmTcKUA+rWKniEjSZNwquXQKYKuISMJk3ClAPq1ip4hIstgpUXaqyldenz17NoKCgmBnZ4c9e/Zg9+7dsLW1RVBQEGbNmgUAWLx4MX744Ydyj719+zZGjBgBDw8PzJkzB7///jsKCwur/29BREQ15t1330VycjLc3NyQn5+P3r17o0mTJrC3t8fatWuFHq8cdoqISH7YKraKiEjM2Cl2iohI7OTSKnaKiEia5NIpgK0iIpIqubSKnSIikiaxdqrKV14HAH9/f/j7+1f5cdu3b4dWq8WJEyewb98+LF68GHFxcRg4cCACAgIwYsQIuLq6GjISEVHN0iqEnkAwDg4OOHHiBI4cOYKLFy9Co9GgQ4cOGDBggNCjPRA7RUSyI+NOAWwVW0VEkiDjVrFT7BQRSYCMOwXIp1XsFBFJmoxbJZdOAWwVEUmYjDsFyKdV7BQRSRY7JcpOKbRabZUvil9aWopffvkF169fh0KhgK+vLwICAqBSqao8wPXr17Fv3z78+uuvOH/+PLp27YqAgABMnDgRXl5eVX4+Y2i6bpMgr2tuSq1l/nkLRuR0S97fQI3l4pYXDH5sw23rjTjJw0XOWGay1zJX5t4pADgV1Uiw1zYnU87MEnoEs/B516+FHsEs9Gt40+DHmrJTAFtlDObeqpeujBXkdc3Nb5FthB7BLGSn2Qo9glmInL68Wo/nmkpazL1TALDp+iDBXtuc7I5tL/QIZiE+xVHoEcxC+MRVBj+WayrpMVarxNqpI5HNBXttc7IxerDQI5iFsBRuQDKGG2NfrdbjuaaSFjmsqf6M8BXstc3JYJ9goUcwCx32vyz0CGbh4rA3DX4s11TSY+5rqp/COgr22uZkf5qf0COYhZDMOkKPYBZODDC8NeyUOFX5yuuhoaEYNmwY4uLi0Lx5c2i1Wty6dQv169fH77//jsaNG1fp+Vq2bImWLVti2bJlSE5Oxm+//YbffvsNALBkyZKqjkdEVCOqfpqPeTl8+DA2bdpUtnBp0aIFFi1aJPgZWBVhp4hIjuTeKYCtYquISOzk3ip2ip0iInGTe6cA+baKnSIiqZB7q+TaKYCtIiJpkHunAPm2ip0iIilgp8TZKWVVH7BgwQI0btwYMTExuHjxIv755x9ER0fDx8cHCxYseOTjY2JiKjyem5uL/Px8zJo1C7/++isDRkQkEh999BGGDBkCe3t7LFy4EAsWLICDgwOGDRuGjz76SOjxymGniIjkh63SYauIiMSJndJhp4iIxEtOrWKniIikR06dAtgqIiIpklOr2CkiIukRa6eqfOX1oKAgnDlzBi4uLmXHateujbfffhv+/v4PfewXX3yBwMBA7Ny5s9xtpaWlCAgIwMKFCzFjxoyqjkVEVLNkfAbWunXrsGnTJjz33HNlxxYsWAB/f3+sXbtW77gYsFNEJEsy7hTAVv2HrSIiUZNxq9gpHXaKiERNxp0C5NMqdoqIJE3GrZJLpwC2iogkTMadAuTTKnaKiCSLnRJlp6p85XUrKytkZ2eXO56TkwNLS8uHPvbDDz/EnDlzAADDhw9Henp62W0ODg5499138f7771d1JCIiqkFZWVkYMmRIueODBg1CVlaWABM9HDtFRCQ/bJUOW0VEJE7slA47RUQkXnJpFTtFRCRNcukUwFYREUmVXFrFThERSZNYO1XlzesjRozAnDlz8Pfff0Or1UKr1eLMmTOYO3cuAgICHvrYsLAweHt7AwCOHz+O9PR0jBo1qixmjRo1QkhIiAH/GkRENUyrMN0vkQkICMDevXvLHf/1118xcuRIASZ6OHaKiGTJlJ1iq6qNrSIiWWKnyh1np4iIRIRrKlm0ip0iIkljp8odN7dOAWwVEUkY11SyaBU7RUSSxU6JslPqqj7ggw8+wLRp09C9e3dYWFgAAEpKShAQEIDNmzc/9LENGjTAlStXykKm1Wpx5MgRpKenw9nZGYcOHYKPj48B/xpERFRTWrZsibVr1yIwMBDdu3cHAJw5cwYnT57E4sWL8cEHH5Tdd8GCBUKNWYadIiKSH7aKrSIiEjN2ip0iIhI7ubSKnSIikia5dApgq4iIpEourWKniIikSaydqtLmda1Wi8zMTHz//fe4ffs2rl+/Dq1WC19fXzRp0uSRj58yZQoWL16Mhg0bAgAUCt1ZBhkZGfj444+xcuVKfnwIEZHIfPnll3B2dkZwcDCCg4PLjjs5OeHLL78s+71CoRB8ocVOERHJE1vFVhERiRk7xU4REYmdXFrFThERSZNcOgWwVUREUiWXVrFTRETSJNZOVXnzetOmTXHt2jU0bdq0Ugusey1evBiXLl1C27ZtoVAoMGLECOTl5aFz586wt7fHu+++i5kzZ1bpOYmITEGhFXoC4URERAg9QqWxU0QkV3LuFMBWsVVEJAVybhU7xU4RkfjJuVOAfFrFThGRlMm5VXLpFMBWEZF0yblTgHxaxU4RkVSxU+LslLJKd1Yq0bRpU6Smphr0YpaWlvjhhx9w+fJlWFpaYuDAgVCr1fjmm2+QlJSEOXPmGPS8REQkPAcHB4SHhws6AztFREQPw1YREZGYsVNERCR2Um8VO0VEZN6k3imArSIiMndSbxU7RURk3kzdqSpdeR0A1q9fj6VLl2LLli1o3bq1QS/apk0bzJkzB8uWLQMA9OnTB5aWlgY9FxGRScj8DKzK0GrF8UVip4hIlsTxLVj02CoiIgGJ41uwqLFTREQCEse3YNEzl1axU0QkSeL4Fixq5tIpgK0iIgkSx7dg0TOXVrFTRCQ54vj2K3qm7lSVN68/9dRTyMvLQ9u2bWFpaQkbGxu929PS0ir1PJs3b9b73/tptVooFIqqjkdERDLHThERkdixVUREJGbsFBERiZ0xWsVOERFRTeGaioiIxI5rKiIiEoMqb15///33DXqhli1b4pVXXsG4ceMeerZVSEgI3nvvPXh7e2PFihUGvRYRkdFp+ZdqqWCniEiW2ClJYauISJbYKslgp4hIltgpSTGkVewUEUkeWyUZXFMRkSyxU5LCNRURyQ47JUpV3rw+bdo0g17o448/xvLlyzF//nwMGjQInTp1gqenJ6ytrZGeno7g4GCcOHECwcHBeO655zBv3jyDXoeIiOSNnSIiIrFjq4iISMzYKSIiEjtDWsVOERGRqXBNRUREYsc1FRERiUGlNq9nZWVV+gkdHBwqPN6vXz+cO3cOp06dwg8//IDvvvsOkZGRyM/Ph6urK9q3b4+pU6fiqaeegpOTU6Vfj4jIJLRCDyB+Qn7kEztFRLLHTlUKW0VEJCC26pHYKSIiAbFTlSLlVrFTRCR5bNUjSblTAFtFRBLHTlWKlFvFThGRpLFTlWLqTlVq87qTk1OlBystLX3o7T169ECPHj0q9VxERCQdWq1wpWeniIioMtgqIiISM3aKiIjEzhxaxU4REZkvc+gUwFYREZkzc2gVO0VEZL5M3alKbV4/evRo2T9HRkZixYoVmD59Orp37w4AOH36NHbs2IF169bVzJRERELjGVgVOnfuHDp37gwA+OOPP+Dl5SXIHOwUEckeO/VAbBURkUiwVRVip4iIRIKdeiC2iohIJNiqCrFTREQiwU49EFtFRCQC7NQDCdmpSm1e7927d9k/v/HGG3jvvfcwceLEsmMBAQFo06YNtm7dimnTphl/SiIiEkxOTg5UKhVsbGzKjl26dAmvvPIK9u/fX3bW7WOPPSbUiOwUEZHMsVVERCRm7BQREYkdW0VERGLGThERkdixVUREJGZi7ZSyqg84ffo0OnXqVO54p06dcPbsWaMMRUQkOloT/hKJ2NhY+Pv7w9HREY6OjnjxxReRl5eHqVOnonPnzrCyssKJEyeEHrMcdoqIZMmUnWKrqo2tIiJZYqfYKSIiMeOaiq0iIhI7doqdIiISM66p2CoiIjFjp0TZqSpvXq9fvz4+/fTTcsc/++wz1K9f3yhDVVZRUZHe78PCwrBo0SIMHz4cTz/9NC5cuGDSeYiIzMmKFSuQk5ODzZs3w9/fH5s3b0bPnj2hVqtx69Yt7N69u+wjpMSEnSIikg+2qvrYKiKimsNOVR87RURUs9iq6mGniIhqFjtVfWwVEVHNYquqh50iIqpZYu+UuqoP2LRpEx5//HH8+eef6NatGwDgzJkzCAsLw88//2z0AR/GxsYG8fHxcHNzw6VLl+Dv749mzZqhc+fOuHTpEnr06IHjx4+jS5cuJp2LiMyQViH0BCZ39OhR/Pjjj/D398e4cePg6emJJ554AitWrBB6tIdip4hIlmTYKYCtMga2iohMRoatYqeqj50iIpORYacAtqq62CkiMikZtoqdqj62iohMRoadAtiq6mKniMhk2ClRdqrKV14fNmwYbt26hYCAAKSlpSE1NRWjRo3CrVu3MGzYsEo/T1hYGF5++WVMnDgRSUlJAIADBw7g2rVrlX4OrfbuNfZfeeUVDBs2DBcvXsTWrVtx9uxZTJ48Ga+99lrl/+WIiKhMQkICGjduDABwd3eHjY0NRo0aJfBUj8ZOERHJB1vFVhERiRk7xU4REYmdnFvFThERiZ+cOwWwVUREUiDnVrFTRETiJ/ZOVfnK64Du40Peeustg180KCgIQ4cOhb+/P44dO4a1a9fCzc0NV65cwRdffIHdu3dX+TkvXbqEXbt2QaG4e5bEwoULMXjwYIPnJCKSO5VKVfbPSqUS1tbWAk5TeewUEZF8sFVsFRGRmLFT7BQRkdjJsVXsFBGRdMixUwBbRUQkJXJsFTtFRCQdYu5UlTevN2zYEDNnzsSMGTNQv359g150xYoVePPNN/Hiiy/C3t6+7Hjfvn2xefPmSj+PQqEoi5ZKpYKDg4Pe7Q4ODsjMzDRoRiKieym0j76PudFqtejfvz/Ual0q8vPzMXLkSFhaWurd7+LFi0KM90DsFBHJkRw7BbBVbBURSYkcW8VOsVNEJB1y7BQg31axU0QkRXJslVw7BbBVRCQ9cuwUIN9WsVNEJDXslDg7VeXN64sXL8b27dvxxhtvoG/fvpg1axbGjBkDKyurSj/H1atX8d1335U7XqdOHaSmplb6ebRaLZo1awaFQoGcnBxcvXoVbdq0Kbs9JCQE7u7ulX4+IiK66/6PXxLTx4Y8DDtFRCQfbBVbRUQkZuwUO0VEJHZybRU7RUQkDXLtFMBWERFJhVxbxU4REUmD2DtV5c3rzz//PJ5//nlcvnwZX331FRYsWIB58+Zh0qRJmDlzJjp06PDI53ByckJ8fDx8fHz0jv/zzz/w8vKq9Czbtm3T+33jxo31fn/mzBmMGTOm0s8nNpPa+2FiBz/Uc9SdWRaSkoqPTvyNY+GRAIB3hg/CWL9Weo+5FBePJ77eZepRRW2ynx8m+7WF150z9EJSU/Hh32cQFBlZdp/GLi5Y/lhPdK1XDwqFAiGpqXj+9//hdna2QFOLz7hefniipx88auu+juHxqdi6/2+cuhYJtVKJeQE94N/aB/VcHZGTX4i/b0Tjg19OICUzV+DJjUSGZ2DdHzCpYKdM55evlfh1p0rvmIOzFpt/KAEAaLXAr98oEbRfidwcoFELLaY8VwqvhgIMKyFzW/bAUr++2HbrLN7851DZ8QWtemJC4/ZwtLDGpbTbeP3CAYRkpQg4qbgd2AX8ug3oOxp48lndsax0YO+XwPULQF4u0LQ1MH4+4Fb5P9biJcNOAWwVW1U1N/Ym49/vktBkmAvazfAoO54VW4irOxORHJwLaAGH+lbo9kI92NaxfMizydesJj2xyHcAvgk7jfXXDgAA+nu0xBPeneDr6AFnKzuMC9yCm1kJAk8qPk81b4fJzdujXi1HAEBIRgo+uHwKgXHhAABXa1us6NQHPT0bwsHSGmcTY/Damb8QmZ0u5NjGI8NWsVPsVFVd3J2Jszsz0GaEPfyfdgEAfDo6qsL7dpvmhHZjHE05nmRMadgHc5sOxY9RJ7D51j6oFErMaTwY3V2bw9O2NnJLCnAuNQSfhv6BlEK+9/cgz/p2x9K2fbHt5lmsufhX2fGFrXtiQuN2cLS0xqXU23jt/J/msTaVYacA+baKnTKM7N5rqSFp+8ORtjcEjv0boM6ElgCA1N9CkXMuASVpBVCoFbDydkDt0U1h3chJ2GFFbE4zf7zYuj92hJ7BuisHAQADPVtgvE9HtHLygLOVLUYf/gw3MhMFntSIZNgquXYKYKsMcXCXBv/brkXv0Qo8PlcJAMhK1+K3L7W4cVGL/FygcWtg3Dwl3LwUAk9L5m5G4154vvkgfBdxCu9e3w+1Qol5zQbA360Z6tm4IKekAH+nhOGDmwfNZ10qw04B8m0VO2WYoB+KcGhHEbqPssDwZ3QnChTma3FwWxGuny5BXrYWznUV6BZgia7DLQSeVrxif4tF9I/R8BjsAZ8puv8GQz4LQfLxZL371WpcC36r/YQYURKeatgXc5sMxY/Rx/HBPe+hdnNtAU8b3Xuo59NCsCXkD6QWZQk9bvWxU6JU5c3r/2nbti02b96Md999F5988gmWL1+OLVu2oHXr1li4cCFmzJhR9tEe95s0aRKWL1+On376CQqFAhqNBidPnsSSJUswderUSs8wbdq0h97+6quvVunfSWwSsnPwbuAJRKVnAADGtPbFlnEBGPXVtwhN0Z2pFhQWgRW/Hyx7THFpqRCjilp8Tg7WnziBqAzdD/zH+rbCZwGjMPLbnQhJTUUDR0f8+OR4/HjtX7x/+hSyi4rQxMUFhSUlAk8uLknpOfjglxOISc4AAIzs5otNcwMw8a1vkZSejRYN3PDF/r9xKy4ZDrZWWPJEH7z/7Cg89Xb5sy2JTIGdMg0vby2WvnP3+6VCefe2/T8q8eceJWYtKYW7lxb7vlPh3RVqvPVVCWxsBRhWAtq4eGBCo/a4nqH/Q5U5LbpjZvOuWPb3PkTmpGG+rz929JmEgfs/RW5JkUDTilfkTeDEfsDrnvdLtFrg09WASgXMfR2wtgUO7wE2rwBe/RywshZsXJIxtsp00kLzEX4oHY7e+lcNyUkoQuArEWjYzwm+4+vAwlaF7NhCKC2VD3gmeWvl5Ilx3h1xM1N/Y7qNygKX0qJx8PY1rG4nrjP2xSQ+NxvvXAhC1J3N6I83bo2t/cZi+L7tCMlIwdZ+Y1Gs0WD24T3IKS7C0606Y+fg8Rj4y5fILykWeHqSI3bKtJJCCnH9YDZqN9T/wdTUbfX0fh99MR+BH6WiUXcuqirSwqEeAup1RUj27bJj1ipLNHfwwvaIIwjNvg17C1ssbDYS77Sbjll/fyjgtOLl5+KBCY3b43q6/tr0mZbdMLNFFyw78z9EZKdhfit/fN13Igb8/hnXpiQIQ1vFTlUd32sxjoKITGQdi4VlvVp6xy3r2qLOxJawqGMDTZEGmX9F4vb7F+C9tidU9jyx+n6tnT3xpE8H3Mgovza9mBqDA3HBeLPDSIGmI7qLayrTibqpxak/tPDU65QWX6zWQKUGZr+mhLUtcHSPFh+v1GDVViWsrLmBnWqGr6MXxtbvjFtZ8WXHrFUWaOHoiS9CAnErOwEOFtZY0nI43u/0FJ46uUXAaUnuuKYyndhbpTh3oBjuPvo/f9q/tRARV0oxbqkVnOsqEXqxFPs+LoSDiwItuxu8rdNsZYdlI/FoImwblH9v1MnPCU3mNCn7vULN1j9IC4d6CPDqitB730NVWqKZvRd2hB9GSE48HNQ2WNBc9x7q02c/EHBaMmcGf5crLi7G3r17sW3bNhw6dAjdunXDrFmzcPv2bbz00kv466+/KvyIEABYu3Ytpk+fDi8vL2i1Wvj6+qK0tBSTJk3Cyy+/bPC/jLk5Ehqu9/tNx05hUoe2aOfpXrZ5vai0FCm5eUKMJxlHwvW/jhtPncTktm3R3t0DIampWOzvj8DICLxz/HjZfWIyM009pugdu6r/dfz4t1MY16st2vi449f4VMz7YI/e7e/8cBQ7V0yCu7M9EtLN5GxhmfHx8alwIeLo6IjmzZtjyZIl6NSpkwCTVQ47ZRpKFeDoUv64Vgsc2qvEiIkadHpMdwrj00tLsXC8GmeOKNF3hMbEk4qfrdoCm7qNwqrzv2O+72N6t81o1gWfBJ/EwbibAIClf+/D36MWIcC7Fb4P+0eIcUWrIB/Y9g4weRHwx/d3jyfFARHXgVc+Azwb6o5NfA5YNh44dxR4bKgQ01J1sVVsVWWU5Jfi7Aex6DjXE9d/1r/qwr/fJ8K9fS34Tbn7sZO16nJjQEVsVJZ4u8PjWH35N8xp1kvvtv/FXgEAeNo4CTCZdByODdP7/bv/HMdTLdqjfR1PlGhK0cHNCwN/+RIhGbqr17585iAujH8eAT4t8UPIFSFGpmpip9ipyirO1+DwphT0nl8bF37Uf0/K1ln/064i/86DV2trOLjz6kv3s1FZ4rXWE/BO8M+Y5tOv7HhuSQEWXfxC777v3fwVX3Z9HnWtnZBYkGHiScXNVm2BTd0DsOrsfsxv5a9324zmXfDJtZP4M/bO2vTMPpwds5BrUwmTa6vYqarhey3GoSkoQeIXV+A2tRXSftdfG9h39dT7veuTLZB1Ig6FsdmwbVnblGOKnq3KAu92GoNXLv4Pz7boqXfbbzFXAQBetvx0GnMh104BbFVVFOZr8fV6DSYuVOLP7+/+7Ck5Doi8Aaz8VAmPhrr/jp58Dlg1QYsLR7XoMZQb2sj4bFSWWNvuCay5+guebtKn7HhOSSHmnd2ud993gv+Hnf7Pwt3aEQkF3J8iVXJtFTtVNYX5Wvy0vgCjF1ghcJf+yf8xNzRo398Cjfx0Wzg7D1Xi3B/FiAsp5eb1+5QWlCJkSwgaz2qM2F9iy92utFDC0ok/43sUG5UlXms1Eeuv78Y0n/5lx3NLC/DCP/rvoW66+Su+6LIAda2ckFiYYeJJyRjE3qkqf5e7ePEitm3bhu+//x4qlQpTpkzBpk2b0KJFi7L7DBo0CL169Xrgc1hYWODbb7/FmjVrcPHiRWg0GrRv3x5NmzY17N/iAVatWoWEhAR89dVXRn1eISgVCgxt0RS2Fmpcirt7hmbXBvVwZsEzyCosxNnoWLwXdBJpefkCTipuSoUCw5o2g41ajYvxt6EA0NenEbaeP4ftY8bC180NsZmZ2HLuLA6FhT3y+eRKqVBgQMemsLFU40p4fIX3qWVjBY1Gi+z8QhNPR8ayaNGiCo9nZGTg3Llz6N69Ow4ePIi+ffuadrBHYKdMKzEOeGGCGmoLoFELLR6fWQo3DyA5AchMU6B1x7tvFFpYAs39tAgNVqDvCAGHFqnVHYbg6O1QnEqM1Nu8Xt/OCW42tXAi4e5JREWaUvydHI0Otetxg8B9dn0EtO4CtOyg/wPV/y5Ya3HPelWpAlQWQNg1/kBVqtgqtqoy/vkyHu4daqGuXy29zetajRYJF3PQbFRtHH8zEhkRBbB1s0SLMa7w6uIg4MTi9JLfcBxPDMGZlPBym9ep6pQKBYY3bAEbtQUuJsXBUqnbnFpYevcTbTRaLYo1pehctx43r0sUO8VOVdbxrWlo0NEG9dralNu8fq+8jFJEX8hH3wWuJpxOOha3GI3TKTdwPi1Ub/N6RWqpraHRapBdzPdR77e602AcvR2Gk4mRepvX/1ubHk+IKDtWpCnF30nR6FDHi2tTiZJrq9ipquF7LcaR/N112PrVga1v7XKb1++lLdEg81gMlDZqWNWzN+GE0vBqu2EITAjB6eSIcpvXyfzItVMAW1UVP32sRasuCjTvoMCfFXRKrdcpBdRqIPwa0IOdohqwotVInEi6ibOpYXqb1ytSti4tKTDNcFQj5Noqdqpq9n1SiOZd1GjSXl1u87q3rxI3/i5Bx0Fq2NdWIOJKKVLiNBj2jNUDnk2+wreHw7mdM5xaO1W4eT3zeibOzjsLta0aDi0c0OCJBrB05Gb2+73YfDROpf73Hmr/h973bqv4HqpUib1TVd683rlzZwwcOBBbtmzB6NGjYWFR/io/vr6+mDBhwiOfq1GjRmjUqFFVR6i0uLg4xMTE1Njzm0KzOrXx49QJsFKrkVdUhHl79iE0NQ0AEBQeiT9uhCAuMwv1nRyxqFd3fDNpHMZs+w5FpaUCTy4uzWu7YveEu1/HZ/ftQ2haGlxtbVHL0hJzO3fBeydP4p0Tx9G7YUNsGRmAST/9hLNx5WMnZ008a2P70gmwtFAjv7AIiz/bh4iEtHL3s1SrsGD0Yzhw7gZyC8zjI4MVWqEnML2FCxc+9PY1a9bg9ddfF91Ci50ynUYttJi9rBR162mRla7Avu+UWLtIjbWflyAzTXfmnoOz/mMcnYCUJNPPKnYj6vuilbM7Rh8qv/CuY20HAEgpyNU7nlqQC09bbq6817lAICYUWPFh+dvc6wMudYFfvgImLdR9dPXhPUBWGpBZPmWSI8dOAWwVwFY9SszJTKSHF6D/2+W/RoWZJSgp0ODmLyloNcENbSbXRcKlHJx+Nwa9X2uIOq3sBJhYnIZ4toavowcmHNsq9CiS19zJFXuGT4GVSo28kiI8c2QvQjNToVYoEZuTiWUdemPV6QPILynG0606w822Ftxsagk9tlHIsVXsFDtVGaHHc5ESVoSx73o88r43j+TAwkYJn+7lPxZX7vrXbYtm9p54+uxHj7yvpVKNZ5sOxaGES8gr5UUX7jWigS9aO7tj1J/byt1Wx6bitWlKQS687KR/hVs5dgpgq9ipR5Pzey3GlH02HoXRWaj3UrcH3if3chISPr8CbVEpVI5W8HyhE1T23Ghxr2H1WsHXyR3jjn7x6DubITm2Su6dAtiqR7kQqEFMqBZLPlCWu61ufcDFDdi3TYsJCwBLa+DoHi2y0oGsNBn+gaIaN8ijDVo4emDKyU8feV9LpRoLWgzCgdtXkFtiHutSOXYKYKvYqUe7ElSM+FAN5m62qfD24XOt8MsHhVg/NQ9KFaBQAKMXWqFhK1WF95erlNMpyI3Mhd8bfhXe7tzWGbW71IaVqxUKkwsRvTsa19ZdQ9s1baG0KP/3BLnqX7ctmjl4YfbZChb597FUqjG3yTCzeQ+VnaqY0J2q8ub18PBweHt7P/Q+dnZ22Lat/Bvc/xk3bhw6deqEFStW6B3fsGEDzp49i59++qmqY1Vox44dj7xPYWEhCgv1/4BpS0qgUIvjozciUtMR8NVOOFhZY3DzJlg/YjAm7/wJoalp2H/9Vtn9QlJScTU+EYHzZ6FPYx8cvBUq4NTiE56ehhE7d8LB2gpDmjTFhsGDMfGnH5F15//7v8LC8NU/FwEA15OT0cHDE5P9/Lh5/T6RiemY+NZO1LKxRv/2TfDGtMF4+r2f9Dawq5VKrJs1DAoFsG7XEQGnpZo2btw4bN68WegxyjG3TgEVt6qoUAtLK2E/0tCvyz1/u/PRoknLUiybrsbJg0o0aqm77f4JtdAtuOguDxt7vNJhIKYFfY8izYNPPrv/79L8MupLSwJ+2gIseEv/il//UamBOa8AO98DlowDlEqgRXugVWfTz0qmw1ZVn6FrqpKiUqgthX1jLS+lGJe2xaPnyw2hsiz/xpT2zjdWz04OaDZCdwVbJx8bpN7MR/ihNG5ev6OutQNWtBmKOae/RpGm5NEPoIcKz0rDsN+2wcHSGkO9m2Fjz+EY/8d3CM1Mxdyje7HefyiuTFqEEo0GJ+MjcTSWnwhmztip6qvOmqqkSAN1BX0wpZzkEpz8Ig3DX68LteWj/4Z/83AOmvayq9R95cTNyhGLmo/ECxe/fGSrVAolVreZBAUUePf6L6YZUCI8bO3xaseBmHr0EWtTrf7qVAFAW27FSubCXFslhU4VFWpgaSVsp/hei3EUp+UjZdcNeL7QEUqLB6+TbVq4oP6r3aHJLkbm8VgkfHYZ9VZ1hdqBV1wEAHcbB6zyG4xZJ799aKdIXsy1UwBbVRnpyVrs+VSLeW8pYVHBGkmlVmDmK0p8v0mDFU9ooVQCzdoDvuwU1YC61o5Y6jsc885uf+S6VK1QYl27J6GAAuuu7TPRhCQUc22VFDpVXKiBhcBrqoxkDX7/rAjT37SusFUAcOa3YsTeKMVTr1nDyU2ByH9Lse+TQti7KNCkvTj2LgqtMLUQEd9EwHe5L5QPeD/XtdvdT6q0q2+HWj61cGHRBaRfSkftzrVNNaqouVk5YmGzALz4zxeVeg/19da691A33throglJCEJ3qsrf5R4Vr8oICgrCa6+9Vu74kCFD8O6771b7+ati3bp1WL16td4x536DUHvAEJPO8SDFGg2i0zMBZOLfhES08XDHtM7t8cqBw+Xum5ybi9uZWWjo4mTyOcWuWKNBVGYGkAlcTUyEn3tdTG/fAauPHkFxaSlCUlP17h+WloaOXp7CDCtiJaUaxCTr/nu8Hp2IVg3dMalfe6z9Tvffo1qpxNuzh8PL1RHPvL/bbK66DgDQ8gfDUmFunQIqbtXMhU6Y9YLzAx4hDCsboF5DLRJvA+39dT+4zkwHnO5ZC2RlAA5OgownWq1dPOBqXQu/DpxVdkytVKJLnQaY0qQTBu7fAkB3Bfbkgpyy+7hY25W74p2cRYcC2RnAuufuHtNogNCrQNBvwIf/A7ybAi9tAfJzdR8Zau8EvLMAaNBMqKmNiJ2SFHNrVUWdemxuC/R6tqVJ57hfeng+CjNLcXj53c2/Wg2Qcj0PYQfSMHpnSyhUgEN9/Y0A9vUskXojz9TjilYrJ0/UtqqFH3o9U3ZMrVShY21vTPTpgo7/WwMNN6xVWrFGg6jsDADA1dQE+Ll6YKZvJ6w6/Sf+TU3EsN+2w97CEhZKFdIK8/HL8Cm4kpIg7NDGwlZJhrl1Cqi4VYPmNcKQ5xqbfJZ7JYcVIT9Tg58Xx5cd02qA+OBC/Ls/G7N/agClSvdnJ/5aATLiSjBgiXl8GoMxNXfwgouVPb7s+nzZMbVShXbOPhhbvzv6Hn4JGmihUiixxm8yPGycseDC52ZxxSBjau3sAVdrO/w2eGbZMbVSiS5uDTClaScM+F139cA6NrWQfM9atLa5rE3ZKUmpbquk0KmpC10wbZHrAx5hGrJ/r8VICqOyUJpdhJg3z9w9qNGiICQdmUdj0HjLQCiUCiit1LB0UwNugHVjJ0S9dBxZJ+LgMqzmrmQpJa2cdO+h/tx3dtkxtVKJTq7emNyoC/x+WWv+a1O2SjLksqaavMAVUxbVMfks/4kJ0XVqw3OasmMaDRD2rxbHfyvFe/uUaNBUgeWfqJCfq73TKQU2LixF/ab880TG1dJR9x7qt/7Plh1TK1Xo4OKNJ727otuB16GBFmqFEm+3nwAvW2c88/dXZnPVdQDslMTIYU017nl3PLlQ2H1ft0M0yM3QYsuC/LJjGg0Q9a8Gf+8rxsu77XBoRxEmvWyN5l10WzjdfVSID9Pg5J5ibl6/IyciB8VZxbj8yuW7BzVA1s0sxB+KR/ft3aFQ6n8PsnS2hJWrFfIT8kE6zR3qwcXKHl90WVB2TK1Uoa2TD8bW64F+R1bdfQ+1zVPwtHHBgotbzec9VHZKlCr9Xc7Z2RmKSlwqNS3t0Z8FmJOTA0vL8pdpsLCwQFZWVmVHKhMbGwsnJyfUqqX/w5vi4mKcPn0avXr1euBjV65ciRdffFHvWIfNn1V5BlNRKABLVcVXZnCysYaHgz2ScszghwU1TAEFLFUqFGs0uJKYiEYu+htAGzo743ZWtkDTSYcCgIVa99/jfxvXG7g5Yc6m3cjMLRB2OKpxu3fvRuvWrYUeo4y5dgqouFUXE9pWeY6aVlwExMco0KyNFnXcAUcXLa5dVMK7ie6Nw5Ji4OYVBZ6YpXnEM8nLqcRIDD2wVe/YO11GICwrFVtvnEZ0bgaS8nPwmLsPgjMSAQAWSiW61mmA9Vf4CRf/adEOePm+v8J9s1H30aCDngSU9/z16c6n3SMpDogKAUZOM9mYZGJsVeUZe0219taUKs9gbG5t7DBwo/6mxPOfxMHe0wrNR7tCZaGEc2MbZMfpv+mSc7sItq78aPb/nEkOx5ijH+sdW9NuNCJyUvBV6Anz3xxQwxQov8bPLtadBNzQ3hltartj4z/HBZiMTIGdqryaWFN9FjG2ynMYm1dbazy52UPv2NEPU+HkZYH2Yx3KNq4DwPW/clCnsSVcfdio+11IC8VTp97TO/ZSqycQlZuMnZGBehvX69u64vnzW5FVzBPV7ncqMRJD9n+ud2x91+EIy0rFZ9fPIDrnnrVp+j1rU7cGeOfSUSFGJhMw11ZJoVOn4jtWeQ5j43stxmHbsjbqv95D71jStn9h6WEHpyE+5TZZlNFqoS3h+6j/OZMcgZF/bdE79lbHAIRnp+KLWye5NpUpc+0UII1WBd3uUuU5jKlZO2DFp/pXX/1uowZu9RUY8KRCbz1lY6f756Q4LaJDgGFTuXmJjOtsShieOPaB3rHX/cYiMjcF28OO6W1cb2BXG3P+/hKZxdxQKQfm2iopdOp/sb2rPIexNW6nwvOf2Ogd27OpEK71lOj1hAU0GqC0pPwn1ytUuk3upOPUyglt1+nvjwndGgpbT1t4jvCscE1VnF2MwrRCWDrxvdT/nE8LxZTTG/WOrfJ9ElF5Sfj23vdQ2zyFerauWHDhM76HKgNCd6rSm9fff//9sn/WarV49tln8cYbb8DNza3KL9q6dWv88MMPePXVV/WO79q1C76+vpV+nvj4eIwaNQoXLlyAQqHA5MmT8X/27ju+qXr/4/g7SdM9oS2UXWSWPWS4EBUFHCjugXhduHGC4gIX7r3Q31Uc914UxYEi4gAUBRVZyixQ9ioU6F5Jfn9UqqEFOpKck5zX8/Hg8bAnox9Q++KbfM/JK6+8UhmznJwcDRw4UC7XoT8+LiIiQhER3lfas4WZ48yl2wccqx/WbdD2vDzFhDt1esf26tuima764BNFO526+fh++nr1WmXnF6hpQrzuGHCs9hYW6Zs1a40e3VTuPPZYzd2wQdvy8hTrDNcZ7durb7Nm+tcn0yRJby5cqBdPP12/btmqBZs364RWrXRy69a6ZOqHBk9uLjcNO1Y/Ld+gHTl5iol06rTe7dWrXTPd9NIncthtevLaM9SheapGv/qpHHabGsZHS5L2FxSr3BUCf6uy4OueL774YrXH9+/fr99++01fffWVvv766wBPdWih2imp+laF7zX+hbUpb9jVvZ9HDVM8yt1n0/T/2lVUKB07yC2bTRp0jltf/M+uRk08atTUoy+mOBQRIfU7KQR+JvhQQXmp1uzP9jpWWF6mfaVFlcffXvOrru94rDbk7dWG/Bxd3/EYFbnK9PnG5UaMbEqR0VLTVt7HwiOlmLi/j//+gxSXICWlStuypA9fl7r1lzKMfz+4/izYKYlWmaVV1XUqLPzQH4UeKM4ohxJaeM/hiLArPM6hhBaRkqT2ZyVrwXNblJyRo9ROMdqxJF/bf8/TgPGtDJjYnApdpVqbt8vrWJGrVPtKCyuPxzujlBaVoNTIOElSq9iKj13ZXZKvPSX5QoW7ep6gOVvWa3thrmLCwnVmekf1a9xCI7+p+AjVoS3bK6ekUFvzc9UhKUUP9j1FszZl6sdtG4wd3Fcs2Co6ZY5OSYdqlbEfGyxJ4VF2NWjp/QZKWIRNkXHex0sL3Vr/c6H6/8tcn75lFoWuUmUV7PQ6VuQqVW5ZobIKdsphs+vRrpepXXxTjVk8WXabTQ3CK/4byi0rUrnn8P/9WEWN1qarf9UNGcdoQ16ONuTt1Q0Zx6ioPETWphbslGTdVgVDp8JzjO+U5V9r8RF7ZJgimsZ5HbNFOGSPcSqiaZzcJeXa++V6xXRLlSMxQq78MuXO2aTyvSWK7dXYoKnNp6C8VJm53p0qKi/TvtLCyuMJzkilRf+9Nk0/sDYtztfukhC48JcFW2XVTklB0qo9xrYqMtqmJq28j4VHSjHxUpNWFe+hLf7Bo9gDndogTXvNra79pY69jH+PDaGl0FWqdfkHv4Zapv2lhVqXv0sOm11P9rxYHeKbaPTC9+SQXQ3/WpfuD5V1qQU7JVm3VcHQKWeE8WuqiGibGrXyfp/KGSlFx/99vFUXu2a+VaqwCCkx1a4Nf7i05LtyDbkmorqntCRHlEMxzWO8j0U4FBYbppjmMXIVu7R52mY1PLqhnIlOlWSXaNPUTXLGOtWwd0ODpjafIldJlddQi93er6E+0nWE2sU11dglb4fea6h0yotZOlXjXdojR3pfJuHmm2/Wueeeq9ata/9xdffff7/OPfdcrVu3TieddJIk6bvvvtP//vc/TZ06tcbPc/fdd8vhcOiXX37Rvn37dM899+jEE0/UN998o6SkijdzPJ7g/S8vOSZaT515mlJjY5RXUqpVu3brqg8+0U8bNikizKH2Kck6p3OG4iIjlJ1foF82btboT79UQWmZ0aObSnJ0jJ45bbBSYmKUV1qq1buz9a9Ppmnepk2SpFnr1ur+777V9Uf30YMDB2p9To5umD5dC7dtM3hyc2kQF62HrzhNyfExyi8uVebW3brppU/0y6pNSmsQrxO7VVzV8oP7vK+yec2zU/V75hYjRkY9Pffcc9Uej4+PV4cOHTRv3jz17ds3wFMdGp0KvL3ZNk16zK683Io3qY7q6NF9L5QruVHF7UMvcKusRHrvZYcK8qSjOnh0x8RyRUUbO3cwemPVfEU6wjSh12AlhEdqyZ6tumLu/1RQXmr0aEFlf4708SQpd5+U0EDqe4o09BKjp0J90CpaVV9N+8ar57VpWv3Jbi15a4fimkSo/53Nldwx5sgPRqWBjdvrkR7nVH79dO8LJEmvrp6t11bPMWgq80mOjNFzJ5yhlKgY5ZWWaNXebI38Zqrmbd8gSUqNjtV9fU5ScmSMdhXla9q65Xpp6U/GDo16oVN0ylfW/lggeaQ2x9OnukiJSNDxqZ0kSe/0v9XrtpsWTtLivesNmCo4TVq5QJEOpx7qfWBtuk0j50xhbRrErNoqOuU7vNbiA3abSncUKHf+ErnyS+WICVdkq3g1HdNHEU1jj/x4VDoprb0m9h5W+fVzfc+TJL28cq5eXjnXqLFQD1btlESrfCU3x6NP3vAob58U30Dqc7JNp13CxnUEXmpkvE5s1FGS9MHxN3ndds2Cf+v3nCwjxoIPWLVVdMp3LhwbqVmTSzX1qRIV5XmUmGrToMvD1WeoOS68GxTsUuHmQu2at0uuApeciU4lZCSo3U3t5Igy/mJbwSIlIkHHp1S8hjq5321et938++u8hhqkzN4pm6eOP+Xj4uK0dOnSOi22JOnLL7/UY489piVLligqKkpdu3bVgw8+qAEDav6xHU2bNtUnn3yiPn0qPpKqpKREF154oTZu3KjvvvtOZWVlatKkyRHPwDpY24nV/0tD7bgiQ/svEIGUuIZFtC8seu22I9/pEFo/9+yR7+Qj62+7/ch3whGFcqck6eeNdft9wduIBVcZPUJIeLPvu0aPEBJOarW6zo8NZKckWuUrodyqe5cNr9X9Ub3PN3QxeoSQkJfDmXO+sOGKsfV6PGuq4BPKnZKk51aeWuvHoKqPtvQweoSQsH13gtEjhIT1F4+r82NZUwWn+rTK7J36fkP7Wj8GVT2z6TSjRwgJ63YnGz1CSFg1/IEj3+kwWFMFn1BfU32dVfMr6+LQTktfYfQIIaHnjPuMHiEkLBr6SJ0fy5oqOIXymmrqOj4Oyhdm5HQ1eoSQkLk/xegRQsK8U56s82PplDkZdprO6aefrtNPP71ez7F///7KM62kio8B+eijj3T++edr4MCBev/99+s7JgDAougUAMDsaBUAwMzoFADAzOgUAMDsaBUAwMzoFACgvuxGD1AfrVu31rJly7yOhYWFaerUqWrdurXOOOMMgyYDgOCXkZGhnJycyq+vvfZaZWdnV369a9cuRUdzFcvDoVMA4F+0qv5oFQD4D52qPzoFAP5Fq+qHTgGAf9Gp+qNVAOBftKp+6BQA+JfZO1XjK6/ffrv3pexLS0v16KOPKiHB+yNNn322+kvsN2jQQGvWrFFycrKSkpJks9kO+b3++Qd2OEOGDNEbb7yhc8891+v4gZCde+652rJlS42eCwAOx+YxeoLAW7VqlcrLyyu/njJliu6++26lpFR8nI3H41FxcbFR41VBpwBYmRU7JdEqWgUgmFixVXSKTgEIHlbslGStVtEpAMHOiq2yUqckWgUguFmxU5K1WkWnAAQzOlXBbJ2q8eb1xYsXe319zDHHaP369V7HDhem5557TnFxcZKk559/vhYjHtqjjz6qwsLCam8LCwvTtGnTiBgA+IjHU7Xkh/u5H2h0CgBAq2qPVgFA4NCp2qNTABBYodwqOgUAwS+UOyXRKgAIBaHcKjoFAMHPbJ2q8eb12bNn1+sbjRw5UpIqd/Kfdtppaty4cb2eMywsTPHx8Ye83eFwqGXLlvX6HgAgSbLoGVjBhE4BsDQ6FRRoFQBLo1WmR6cAWBqdCgr1aRWdAhD0aJXpsaYCYGl0KiiwpgJgWXTKlOyB/oZhYWG6/vrrVVJS4pPne+mllzRy5Eh9+OGHkqT33ntPGRkZ6tChg8aNG+d12XsAQM3ZbLYqZ1eZ6axgf6FTABA8aBWtAgAzo1N0CgDMzoqtolMAEDys2CmJVgFAMLFiq+gUAAQPs3eqxlde96W+fftq8eLF9T476uGHH9ZTTz2lU089VaNHj1ZWVpaeeuop3XbbbbLb7XruuefkdDo1YcIEH00OwLIseAaWx+PRySefrLCwilQUFRXpzDPPVHh4uCSF9CKBTgEIOhbslESraBWAoGLBVtEpOgUgiFiwU5J1W0WnAAQlC7bKqp2SaBWAIGTBTknWbRWdAhB06JQk83XKkM3rN9xwg+644w5t2bJFvXr1UkxMjNftXbt2rdHzTJ48WZMnT9bw4cO1dOlS9erVS++8844uvfRSSVKHDh00ZswYIgYAdfDggw96fT1s2LAq9zn33HMDNU5A0SkACA60ilYBgJnRKToFAGZn1VbRKQAIDlbtlESrACBYWLVVdAoAgoPZO2XI5vULL7xQknTLLbdUHrPZbPJ4PLLZbHK5XDV6nu3bt6t3796SpG7duslut6t79+6Vt/fs2VPbtm3z3eAALMtmwTOwDg7Ykfz000/q3bu3IiIi/DRR4NApAMHGip2SaJVEqwAEDyu2ik7RKQDBw4qdkqzbKjoFIBhZsVVW7ZREqwAEHyt2SrJuq+gUgGBDp2om0J0yZPN6VlaWT56ncePGWrFihVq0aKHMzEy5XC6tWLFCnTp1kiQtX75cqampPvleAIDDGzJkiJYsWaLWrVsbPUq90SkACE20qipaBQDmQaeqolMAYC6h0io6BQChKVQ6JdEqAAhVodIqOgUAoSnQnarR5vVly5bV+AmP9NEfeXl5WrNmjcrKytSnTx8lJyfX+LkPdskll+jyyy/XsGHD9N1332ns2LG68847tWfPHtlsNj366KM677zz6vz8AFDJYzN6AtPzeIw7TY1OAbA8OlUjtKoqWgUgYGjVEdGpqugUgIChUzUSCq2iUwCCFq06olDolESrAAQpOlUjodAqOgUgKNGpGgl0p2q0eb179+6VH+9RnZp+9MeyZcs0ZMgQ7dixQx6PR/Hx8froo490yimn1Gn4CRMmKCoqSgsWLNCoUaM0duxYde3aVWPGjFFhYaHOPPNMPfzww3V6bgBA8KBTAACzo1UAADOjUwAAs/NFq+gUAMBfWFMBAMyONRUAwGxqtHndVx/3cffdd6tFixaaOnWqIiMjNWHCBN10001atWpVnZ7P4XDo3nvv9Tp20UUX6aKLLvLFuADwN+NOgEUN0CkAlkenTI9WAbA8WmVqdAqA5dEp0/NFq+gUgKBGq0yNNRUAy6NTpseaCoCl0SlTqtHm9ZYtW/rkmy1cuFAzZsxQ7969JUlvvfWWUlNTlZ+fr9jYWJ98DwCA9dApAIDZ0SoAgJnRKQCA2fmiVXQKAOAvrKkAAGbHmgoAYDY12rxenRUrVmjTpk0qLS31On7WWWcd8jG7d+9WixYtKr9u2LChoqOjlZ2dTcQAIMjZbDajR/BCpwAAB6NVAAAzo1MAALML9lbRKQAIbcHeKYlWAUCoC/ZW0SkACG2B7lStN6+vX79e55xzjv744w/ZbDZ5PBXX1D8wuMvlOuRjbTab8vLyFBkZKUnyeDyVx3JzcyvvFx8fX9uxAMCvbHx8yBEd6IHR6BQAK6JTNUOrAMA4tOrI6BQAGIdO1Uywt4pOAQhmtOrIgr1TB+5DqwAEIzpVM8HeKjoFIFjRqZoJdKfstX3A6NGjlZ6erp07dyo6OlrLly/XDz/8oN69e2vOnDmHfazH41G7du2UlJSkpKQkNWjQQPn5+erRo4eSkpKUmJiopKSkuv5eAAB+Ul5erm+//VaTJk1SXl6eJGnbtm3Kz8+vvE9eXp5at25t1IiV6BQAWBOtolUAYGZ0ik4BgNlZoVV0CgCClxU6JdEqAAhmVmgVnQKA4GXGTtX6yuvz58/X999/r5SUFNntdtntdh133HGaOHGibrnlFi1evPiQj509e3a9hgUAw1j4DKyNGzdq8ODB2rRpk0pKSjRo0CDFxcXpySefVHFxsV5//XWjR/RCpwBYkoU7JdEqAAgKFm4VnQKAIGDhTknWaRWdAhDULNwqq3RKolUAgpiFOyVZp1V0CkDQolOm7FStN6+7XC7FxsZKkpKTk7Vt2za1b99eLVu21OrVqw/72AEDBtRtSgCAYUaPHq3evXtr6dKlatiwYeXxc845R1dffbWBk1WPTgGA9dAqAICZ0SkAgNlZpVV0CgCCk1U6JdEqAAhWVmkVnQKA4GTWTtV683rnzp21bNkytW7dWn379tWTTz6p8PBwvfHGG6b4aBMA8Aebhc/Amjdvnn766SeFh4d7HW/ZsqW2bt1q0FSHRqcAWJGVOyXRKgAIBlZuFZ0CAPOzcqckWgUAwcDKraJTAGB+Vu6URKsAwOzolDk7VevN6/fdd58KCgokSY888ojOOOMMHX/88WrYsKE++OADnw8IADCW2+2Wy+WqcnzLli2Ki4szYKLDo1MAYD20CgBgZnQKAGB2tAoAYGZ0CgBgdrQKAGBmZu1UrTevn3baaZX/3Lp1a61YsUI5OTlKSkqSzWbz6XAAYBoWPgNr0KBBev755/XGG29Ikmw2m/Lz8/Xggw9q6NChBk9XFZ0CYEkW7pREqwAgKFi4VXQKAIKAhTsl0SoACAoWbhWdAoAgYOFOSbQKAEyPTpmyU/b6PHjz5s3asmWLGjRoQLwAwACvvfaaunbtqvj4eMXHx6t///766quvKm+/4oorZLPZvH7169evVt/jueee09y5c5WRkaHi4mJdcsklatWqlbZu3aonnnjC178ln6JTAGA8WnV4tAoAjEWnDo9OAYDxaNXh0SoAMBadOjw6BQDGCkSnJFoFAKg7K6+par15vby8XPfff78SEhLUqlUrtWzZUgkJCbrvvvtUVlZWo+e48sorlZeXV+V4QUGBrrzyytqOBAD+5wngr1po1qyZHn/8cS1cuFALFy7USSedpGHDhmn58uWV9xk8eLC2b99e+WvGjBm1+h5NmjTRkiVLdNddd2nUqFHq0aOHHn/8cS1evFipqam1GzgA6BQASwpkp2hVvdEqAJZEp+iU6BQAE2NNZalW0SkAQYlOWaZTEq0CEIRMuqYKRKck67WKTgEIOibtlGTtNZXN4/HU6o/ruuuu0yeffKKHHnpI/fv3lyTNnz9f48eP17Bhw/T6668f8TkcDoe2b99e5Te+e/duNW7cWOXl5bUZyefaTnzO0O8fKlyRtfw/EYeUuIazG31h0Wu31fmx7R4J3M+FNffVfU5JatCggZ566ildddVVuuKKK7Rv3z59+umnvhkuCFihU5L088bWRo8QEkYsuMroEULCm33fNXqEkHBSq9V1fmwgOyXRqvqyQqvuXTbc0O8fKj7f0MXoEUJCXk600SOEhA1XjK3X41lTBQ8rdEqSnlt5qtEjhISPtvQweoSQsH13gtEjhIT1F4+r82NZUwWX+rYqGDr1/Yb2Ro8QEp7ZdJrRI4SEdbuTjR4hJKwa/kC9Hs+aKnhYZU31dVaG0SOEhNPSVxg9QkjoOeM+o0cICYuGPlLnxwbTmsrqnZKssaaauq6X0SOEhBk5XY0eISRk7k8xeoSQMO+UJ+v82GDqlGSdVoXV9gH/+9//NGXKFA0ZMqTyWNeuXdWiRQtddNFFhw1Ybm6uPB6PPB6P8vLyFBkZWXmby+XSjBkzTHnGGQDYAnguRklJiUpKSryORUREKCIi4rCPc7lcmjp1qgoKCioXGJI0Z84cpaamKjExUQMGDNCjjz5aq5+1EydOVKNGjaqcIfvWW28pOztbY8fWbxOLr9EpAFYUyE5JtKq+aBUAK2JNRafoFAAzY01ljVbRKQDBjDVV6HdKolUAglcwrKn81SnJOq2iUwCCVTB0SrLemspe2wdERkaqVatWVY63atVK4eHhh31sYmKiGjRoIJvNpnbt2ikpKanyV3Jysq688krdeOONtR0JAELKxIkTlZCQ4PVr4sSJh7z/H3/8odjYWEVERFSeIZuRUXG1gyFDhug///mPvv/+ez3zzDP67bffdNJJJ1UJ5OFMmjRJHTp0qHK8U6dONbo6RKDRKQDwP1pVP7QKAPyLTtUPnQIA/6NV9VPXVtEpAKgZOlU/rKkAwP9q0yp/d0qyTqvoFADUDGuqmqn1lddvvPFGPfzww3r77bcrzwQoKSnRo48+qptuuumwj509e7Y8Ho9OOukkffzxx2rQoEHlbeHh4WrZsqWaNGlS25EAIKTcc889uv32272OHe7Mq/bt22vJkiXat2+fPv74Y40cOVJz585VRkaGLrzwwsr7de7cWb1791bLli315Zdfavjw4TWaZ8eOHUpLS6tyPCUlRdu3b6/h7ypw6BQA+B+tqh9aBQD+Rafqh04BgP/Rqvqpa6voFADUDJ2qH9ZUAOB/tWmVvzslWadVdAoAaoY1Vc3UaPP6wb/Jb7/9Vs2aNVO3bt0kSUuXLlVpaalOPvnkwz7PgAEDJElZWVlq0aKFbDZbXWYGgJBWk48J+afw8HC1adNGktS7d2/99ttveuGFFzRp0qQq901LS1PLli2VmZlZ4+dv3ry5fvrpJ6Wnp3sd/+mnn0yz8KBTABBYtKr2aBUABA6dqj06BQCBRatqzxetolMAUDN0qvZYUwFAYNWmVf7ulGSdVtEpAKgZ1lQ1U6PN6wkJCV5fn3vuuV5fN2/evFbftGXLlvrxxx81adIkrV+/XlOnTlXTpk313nvvKT09Xccdd1ytng8A8DePx3PIjwbZs2ePNm/eXO3ZVIdy9dVX69Zbb1VZWZlOOukkSdJ3332nMWPG6I477vDJzPVFpwAguNAqWgUAZkan6BQAmB2tql+r6BQA+BedYk0FAGbm605J1msVnQIA/7LKmqpGm9fffvttn37Tjz/+WCNGjNCll16qRYsWVf5B5+Xl6bHHHtOMGTN8+v0AoN48Rg9QvXHjxmnIkCFq3ry58vLyNGXKFM2ZM0czZ85Ufn6+xo8fr3PPPVdpaWnasGGDxo0bp+TkZJ1zzjk1/h5jxoxRTk6ObrjhBpWWlkqSIiMjNXbsWN1zzz3++q3VCp0CYHkm7ZREqw6gVQAsz6StolMV6BQAyzNppyRadYAvW0WnAAQlk7aKTlVgTQXA8izcKcl6raJTAIKOSTslWXtNVaPN69XJzs7W6tWrZbPZ1K5dO6WkpNT4sY888ohef/11XX755ZoyZUrl8WOOOUYPPfRQXUcCAMvZuXOnRowYoe3btyshIUFdu3bVzJkzNWjQIBUVFemPP/7Qu+++q3379iktLU0DBw7UBx98oLi4uBp/D5vNpieeeEL333+/Vq5cqaioKLVt27ZWH29iBDoFAOZAqw6NVgGA8ejUodEpADAHWnVodW0VnQIA36FTh8aaCgCMF4hOSdZrFZ0CAN+x8pqq1pvXCwoKdPPNN+vdd9+V2+2WJDkcDl1++eV66aWXFB0dfcTnWL16tU444YQqx+Pj47Vv377ajgQAfmcz6RlY//73vw95W1RUlL7++muffa/Y2FgdffTRPns+f6FTAKzIrJ2SaFV1aBUAKzJrq+hUVXQKgBWZtVMSrapOfVtFpwAEI7O2ik5VxZoKgBXRqQpWaRWdAhBszNopydprqlpvXr/99ts1d+5cTZ8+Xccee6wkad68ebrlllt0xx136LXXXjvic6SlpWnt2rVq1aqV1/F58+apdevWtR0JAOBjw4cP1+TJkxUfH6/hw4cf9r7Tpk0L0FQ1Q6cAwBpoFa0CADOjU3QKAMzOyq2iUwBgflbulESrACAYWLlVdAoAzC8YOlXrzesff/yxPvroI5144omVx4YOHaqoqChdcMEFNVpsjRo1SqNHj9Zbb70lm82mbdu2af78+brzzjv1wAMP1HYkAPA/E5+B5Q8JCQmy2WyV/xxM6BQAS7JYpyRaRasABB2LtYpO0SkAQcZinZKs3So6BSAoWaxVVu6URKsABCGLdUqydqvoFICgQ6cMnqZ6td68XlhYqEaNGlU5npqaqsLCwho9x5gxY7R//34NHDhQxcXFOuGEExQREaE777xTN910U21H8rmwDrlGjxASXEVOo0cIGfmFUUaPAIt5++23JUkej0fjx49XSkpKjT7G0Ays0ClJ+nJ/d6NHCAnRUaVGjxASrvz6GqNHCAkbRhk9QXChVeZuVWo4aypfSI3LM3qEkFBYFG70CLAgOmXuTklStL3E6BFCQpMYmu8LO/fGGT0CLMjKrQqGTu1xxRo9QkhIjWJN5QubwpKMHgEWZOVOScHRqlJPrbeaoBr/+u1fRo8QEiLCqv4/B/iblVsVDJ1yyG30CCHBYbPgjl8/sPPnCAMEQ6fstX1A//799eCDD6q4uLjyWFFRkSZMmKD+/fvX6DlKS0v16KOPavfu3fr111+1YMECZWdn6+GHH9bu3btrOxIA+J8ngL9MxOPxqG3bttq6davRo9QYnQJgSYHsFK2qN1oFwJLolNGj1BidAmBJrKks1So6BSAo0SmjR6kx1lQALIk1laVaRacABB06ZcpO1fp02BdeeEGDBw9Ws2bN1K1bN9lsNi1ZskSRkZH6+uuva/QcF1xwgaZNm6bo6Gj17t278vjOnTt18skn688//6ztWAAAP7Db7Wrbtq327Nmjtm3bGj1OjdApALAWWkWrAMDM6BSdAgCzs2Kr6BQABA8rdkqiVQAQTKzYKjoFAMHDzJ2q9ZXXO3furMzMTE2cOFHdu3dX165d9fjjjyszM1OdOnWq0XNs375dV111VZVjJ554ojp06FDbkQDA72yewP0ymyeffFJ33XVX0Cww6BQAKwpkp2hV/dEqAFZEp+gUnQJgZqyprNUqOgUgGNEp63RKolUAgg9rKmu1ik4BCDZ0ypydqvWV1yUpKipK11xzTZ2/6YwZM3TCCSfotttu03PPPaetW7fqpJNOUrdu3TRlypQ6Py8AwPcuu+wyFRYWqlu3bgoPD1dUVJTX7Tk5OQZNdmh0CgCshVbRKgAwMzpFpwDA7KzWKjoFAMHFap2SaBUABBurtYpOAUBwMWunarR5/fPPP6/xE5511llHvE/Dhg319ddf67jjjpMkffnll+rZs6f+85//yG6v9cXgAcD/THhWVKA8//zzRo9wRHQKgOVZuFMSrZJoFYAgYOFW0Sk6BSAIWLhTkvVaRacABCULt8pqnZJoFYAgZOFOSdZrFZ0CEHTolNEjVKtGm9fPPvvsGj2ZzWaTy+Wq0X2bNWumb775Rscdd5wGDRqk9957TzabrUaPBQAEzsiRI40e4YjoFABYG62iVQBgZnSKTgGA2VmxVXQKAIKHFTsl0SoACCZWbBWdAoDgYdZO1Wjzutvtrvc3SkpKqjZShYWFmj59uho2bFh5zIwflwIAVuZyufTJJ59o5cqVstls6tixo4YNG6awsBplxO/oFACAVtEqADAzOkWnAMDsQr1VdAoAgluod0qiVQAQ7EK9VXQKAIKbGTsVsO9s1kvPA0BN2Cz88SF//vmnhg0bph07dqh9+/aSpDVr1iglJUWff/65unTpYvCEvkGnAAQzK3dKolUAEAys3Co6BQDmZ+VOSdZoFZ0CEOys3CordEqiVQCCm5U7JVmjVXQKQDCjU+bsVI03rxcVFem7777TGWecIUm65557VFJSUnm7w+HQww8/rMjIyGoff+DS8+Xl5frPf/6j0047TY0bN67P7ACAALj66qvVqVMnLVy4UElJSZKkvXv36oorrtC1116r+fPnGzxhBToFANZFqwAAZkanAABmZ4VW0SkACF5W6JREqwAgmFmhVXQKAIKXWTtV483r7777rr744ovKgL388svq1KmToqKiJEmrVq1SkyZNdNtttx3+G4aF6frrr9fKlSvrMTYABJiFz8BaunSpV7ykio+EevTRR3X00UcbOJk3OgXA0izcKYlWAUBQsHCr6BQABAELd0qyVqvoFICgZeFWWalTEq0CEKQs3CnJWq2iUwCCEp0yZafsNb3jf/7zH1155ZVex/773/9q9uzZmj17tp566il9+OGHNXquvn37avHixbWbFABgiPbt22vnzp1Vju/atUtt2rQxYKLq0SkAsC5aBQAwMzoFADA7q7WKTgFAcLFapyRaBQDBxmqtolMAEFzM2qkaX3l9zZo1ateuXeXXkZGRstv/3vvep08f3XjjjTV6rhtuuEF33HGHtmzZol69eikmJsbr9q5du9Z0LAAIDAufgfXYY4/plltu0fjx49WvXz9J0oIFC/TQQw/piSeeUG5ubuV94+PjjRqTTgGwNgt3SqJVtApAULBwq+gUnQIQBCzcKcl6raJTAIKShVtltU5JtApAELJwpyTrtYpOAQg6dMqUnarx5vX9+/crLOzvu2dnZ3vd7na7VVJSUqPnuvDCCyVJt9xyS+Uxm80mj8cjm80ml8tV07EAAH524COjLrjgAtlsNkmSx1NR9TPPPLPya6N/ftMpALAuWlWBVgGAOdGpCnQKAMzLaq2iUwAQXKzWKYlWAUCwsVqr6BQABBezdqrGm9ebNWumP//8U+3bt6/29mXLlqlZs2Y1eq6srKyaflsAMAWbhc/Amj17ttEj1AidAmBlVu6URKsAIBhYuVV0CgDMz8qdkqzXKjoFIBhZuVVW65REqwAEHyt3SrJeq+gUgGBDp8zZqRpvXh86dKgeeOABnX766YqMjPS6raioSBMmTNDpp59eo+dq2bJl7aYEABhmwIABNbrfDTfcoE6dOik5OdnPE1WPTgGAddEqAICZ0SkAgNlZrVV0CgCCi9U6JdEqAAg2VmsVnQKA4GLWTtV48/q4ceP04Ycfqn379rrpppvUrl072Ww2rVq1Si+//LLKy8s1bty4Wn3zFStWaNOmTSotLfU6ftZZZ9XqeQDA7yx+BlZNvP/++7rzzjsNW2jRKQCWRqdqhFYBgIFo1RHRKQAwEJ2qkVBrFZ0CEFRo1RGFWqckWgUgiNCpGgm1VtEpAEGDTtVIoDtV483rjRo10s8//6zrr79ed999tzyein+jNptNgwYN0quvvqpGjRrV6LnWr1+vc845R3/88YdsNpvXc0mSy+Wq7e8DAGCwAz/LjUKnAABHQqsAAGZGpwAAZhcqraJTABCaQqVTEq0CgFAVKq2iUwAQmgLdqRpvXpek9PR0zZw5Uzk5OVq7dq0kqU2bNmrQoEGtvuno0aOVnp6ub7/9Vq1bt9avv/6qPXv26I477tDTTz9dq+cCgIDgDKygQKcAWBadChq0CoBl0aqgQKcAWBadChq+aBWdAhCUaFVQYE0FwLLoVNBgTQXAkuiUKdVq8/oBDRo0UJ8+fer8TefPn6/vv/9eKSkpstvtstvtOu644zRx4kTdcsstWrx4cZ2fGwAAOgUAMDtaBQAwMzoFADC7+rSKTgEA/I01FQDA7FhTAQCMZjfim7pcLsXGxkqSkpOTtW3bNklSy5YttXr1aiNGAoDDsnkC9wvGo1MAgk0gO0WrzIFWAQg2dMpa6BSAYMOaylroFIBgRKeshVYBCDasqayFTgEINnTKnOp05fX66ty5s5YtW6bWrVurb9++evLJJxUeHq433nhDrVu3NmIkAAAq0SkAgNnRKgCAmdEpAICZ0SkAgNnRKgCAmdEpAIAvGLJ5/b777lNBQYEk6ZFHHtEZZ5yh448/Xg0bNtQHH3xgxEgAgHq67LLLFB8fb/QYPkGnACA00SoAgJnRKQCA2YVKq+gUAISmUOmURKsAIFSFSqvoFACEpkB3ypDN66eddlrlP7du3VorVqxQTk6OkpKSZLPZjBgJAA7Pwh/p8fbbbys2Nlbnn3++1/GpU6eqsLBQI0eOlCS99tprRoznF3QKQNCxcKckWkWrAAQFC7eKTtEpAEHAwp2SrNcqOgUgKFm4VVbrlESrAAQhC3dKsl6r6BSAoEOnTNkpe0C/22E0aNCAgAGACT3++ONKTk6ucjw1NVWPPfaYARMZg04BgHnRqgq0CgDMiU5VoFMAYF60ik4BgJnRqQq0CgDMi1bRKQAwM7N2KqBXXr/yyitrdL+33nrLz5MAQO3YLHwG1saNG5Wenl7leMuWLbVp0yYDJvIfOgUgWFm5UxKtqg6tAmA2Vm4VnaqKTgEwGyt3SrJOq+gUgGBm5VZZpVMSrQIQvKzcKck6raJTAIIVnTJnpwJ65fXJkydr9uzZ2rdvn/bu3XvIX7Xx22+/6dJLL1V6erqioqIUHR2t9PR0XXrppVq4cKGfficAYB2pqalatmxZleNLly5Vw4YNDZjIf+gUAAQnWkWrAMDM6BSdAgCzs0qr6BQABCerdEqiVQAQrKzSKjoFAMHJrJ0K6JXXr7vuOk2ZMkXr16/XlVdeqcsuu0wNGjSo8/N9+umnuuCCC3TyySdr9OjRatSokTwej3bt2qVZs2bp2GOP1Ycffqhhw4b58HcBwJIsfAbWRRddpFtuuUVxcXE64YQTJElz587V6NGjddFFFxk8nW/RKQBBy8KdkmgVrQIQFCzcKjpFpwAEAQt3SrJOq+gUgKBm4VZZpVMSrQIQxCzcKck6raJTAIIWnTJlp2wejyeg/2pKSko0bdo0vfXWW/r55591+umn66qrrtKpp54qm81Wq+fq3LmzLrvsMt19993V3v7EE0/o3Xff1fLly2v1vB0/mVCr+6N6JUVOo0cIGWFZUUaPEBLW3HtbnR/b5Y7nfDjJ4f3xTN3n9IfS0lKNGDFCU6dOVVhYxTlPbrdbl19+uV5//XWFh4cbPKFvBUOnJOneZcNr/RhU9fmGLkaPEBLytscZPUJI2DDqzjo/NpCdkmiV0YKhVS+sOqVW90f1Pt/e1egRQsKGXaFzZRsjrbvw3no9njUVnTJTpyRp0uoBtX4Mqvp2T4bRI4SExVuaGj1CSFh7wX11fixrKuu0Klg6NXVdr1o/BlXNyGFN5QsLt7cweoSQ8MdZ9Xv/mTWVNTolBU+rpq/nZ6wvTNtD831h1d5GRo8QEuaf+nidH8uayjqtCpZOTVvXo9aPQVUz9nYzeoSQsGZ/itEjhIQfTn6qzo+lU+bsVMA3r//Txo0bNXnyZL377rsqKyvTihUrFBsbW+PHR0ZGatmyZWrXrl21t69evVrdunVTcXFxreZi87pvsHndd9i87hv12rx+ewBfFHzWXAE7YM2aNVq6dKmioqLUpUsXtWzZ0uiR/M6snZLYvO4rbF73DTav+0a9Nq8HsFMSrTITs7aKzeu+weZ132Dzum/Ue/M6ayo6ZaJOSWxe9xU2r/sGm9d9o16b11lTSbJeq8zcKTav+wab132Dzeu+Ue/N66ypLNcpydytYvO6b7B53TfYvO4b9dq8zppKkvVaZeZOsXndN9i87htsXveNem1ep1OSzNcpu5Hf3GazyWazyePxyO121/rxRx11lD799NND3v7ZZ5+pdevW9ZgQAHBAq1at1LVrVw0ePNjweAUKnQKA4EKraBUAmBmdolMAYHZWaxWdAoDgYrVOSbQKAIKN1VpFpwAguJitU2GB/ob//PiQefPm6YwzztDLL7+swYMHy26v3V76hx56SBdddJHmzp2rU089VY0aNZLNZtOOHTv0zTffaNasWZoyZYqfficArKR2H24UWgoLC3XzzTfrnXfekVRxFlbr1q11yy23qEmTJof8CKdgRacABCMrd0qiVbQKQDCwcqvoFJ0CYH5W7pRkrVbRKQDBysqtslKnJFoFIDhZuVOStVpFpwAEIzplzk4F9MrrN9xwg9LS0vTEE0/ojDPO0JYtWzR16lQNHTq01gGTpHPPPVc//PCD4uLi9Oyzz2rkyJG6/PLL9eyzzyo2NlZz587V8OHD/fA7AQDruOeee7R06VLNmTNHkZGRlcdPOeUUffDBBwZO5nt0CgCCE62iVQBgZnSKTgGA2VmlVXQKAIKTVTol0SoACFZWaRWdAoDgZNZOBfTK66+//rpatGih9PR0zZ07V3Pnzq32ftOmTavxc/bv31/9+/f31YimdU2743R7p5P17toFmvjH15KkQU066IJWvdQpsYmSIqJ1zveva9X+nQZPaj6XtumpS9v2VNPYBElS5v5svfTHPM3dvl6SlBwZozHdB+r4xumKD4/Ur7s2acLvs7Qhb6+RY5vOxT276uKeXdUsMV6SlJm9R6/M+0U/rNsgSXr8jFM1vFsnr8cs2bpdF0wOkbMgPUYPYJxPP/1UH3zwgfr16yeb7e9z0TIyMrRu3ToDJ/M9OlU/qz7J1p//3aU2Qxuo+7/SKo/nbinRH+/vVPaKAskjxTePUL/bmik6JdzAac3rqjbH69aMU/Teuvl6cvlMSdLJaR11fsveykhIU1JEjM6b85pW5+4weFJzuSyjmy7N6K5mcX91au8evfj7fM3ZnCVJig5zamzfE3RqqzZKiozUlrxcTf5zkd5fsdTIsX3Hwp2SaFV1aFVVv3+Uq1/e26+uZ8bquKuTJEmvDttc7X37j0xQj+HxgRwvaFzc4mRdfdTp+njzD3p17aeSpMtbnaaBqd2VEpmocrdLa/K26K2sGVqVu8nYYU3suo7H6K6uA/X2ml/1yOJvKo/f0ul4XXRUDyU4I7UkZ5vG/z5Tmbm7DZzUhyzcKjpVFZ2q3q9T8zXvvXz1ODNaA6+p6FBpkVs/vpOvdb8UqyjPrYRUh3qcEaNuQ6MNnta8dn2xQTs+Xq/kQc3U5JJ2VW7fMnmVcuZuU9rFbZVyanMDJgwO13U4Rnd2PUlvr/lFjy75Z6tO0IWtK1q1NGebxi/6KjRaZeFOSdZpFZ2qn7kflOqbd0rVf5hTp4+KkCSVFHk06+1SrZxfrsI8j5Ia2dTvrHD1Pd1p8LTmteXzLdr04SalnZam9BHpkqTMSZnK/jHb636xR8Wq64SuRowYFCz5GqqFW2WVTkm0qj6++6BcX0126fhhDg27rmIbTN5ej758q1xrFrlVVCC17mzT2deHKaVpQK/xGFTolG9cnn6irm87WB9snKfnV38hh82uUW1O1THJHdQkuoHyy4q1MGetXs38SrtL8owe1zcs3CnJOq2iU/Uz54Myff1OmY4ZFqYzR1Xslcjb69HMt0uVucit4gKPWnW266zrwpVMqw5p82dbteHDTWoyuLGO+qtVq19fq10HtSruqFh1f6iLESMGhUtbDtSoNkM1ddOPeinzc0nSv9IH6aRG3ZUamahyd7lW523Vm+u+0src6t9PDSp0ypSdCujm9csvv9zrN4+a6ZzYRBe06qlV+71fYIlyhGvxns36eusKPdzzLIOmM7/tRbl6culsbfxrM/rw9C6adML5OnPmv5W5f7deP+FclbvdGvXDR8orK9FVHfrqvZMu0alfvKEiV5nB05vHjrx8PTN7njbu3SdJOqdrhl49/yyd/X//0drdeyRJP6zL0t3TZ1U+pszlMmJU+Fh2drZSU1OrHC8oKAi5n+l0qu5y1hZp/Td7ldAywut4/o5Szbk/S61OSlTGhSlyRjuUt6VE9nAWW9XplNhE57XspdVVmu/UkpxNmrVtuSZ0H2bQdOa2vSBPT/zygzbm7pMknduuk9447Wyd/vG7yty7R/cfM1D9mzTXbd/P0Ja8/Tq+eSs9fNwp2lmQr282hs6LRlZFq3AkOzNLtOLrfDVs5b2B4orJTby+3vh7kWa/vFetj2FDYHXaxzXX6U36aV3+Nq/jWwqz9VLmNG0v2qNwu1PnNR+gJ7qN0uULHtP+sgKDpjWvLg3SdFHrHlq5z/vk82s79NeV7ftqzC/TtSE/RzdmHKt3TrxEg2a8roLyUoOmhS/QKdTEjswyLfu6SMmtvF+unfPvPG1eVqohtycoPtWhjYtL9d3ruYppYFebfpGHeDbrKlyfqz1ztymyeWy1t+9flK3C9bkKS+Rk6sPpkpSmC1v3rL5V7fpqzK+fKysvRzdmHKfJAy7VqV+9RquCnFVaRafqbssal36bWabG6d6v6c14o0RZy1w6764IJTWya+0il6a/UqL4BjZ17B/QtyCDQt66PO2cvVPRLaquORO7JqrNtW0qv7aF8d/qofAaqvVYpVMSraqrTavdWvCVS2npf//ZeTweTX6oTPYw6YoHnIqMkX6Y5tKkcWW6a1K4IiL5cz4YnfKNjvHNNKxZH2Xmba88Fulwqn18U729/jtl5m1XnDNKt7Y/U092H6krf3nZwGnhK1ZpFZ2qu81rXPp1ZrkaH9Sq9x4ukcMhjXggXJHRNs37pFz/Hlei2yZFKpxWVZG3Ll/bZ+9UTDWtSuqaqHajjqr8mlYdWoe4ZjqraT+tzfN+v29zYbaeX/2pthXtUYTDqQuaH69nelyji39+gvf7gpxZOxXQV44mT54cyG+ncePGaceOHXrrrbcC+n19Kdrh1FNHD9cDi6fruvYneN32+eZlkqQm0QlGjBY0vt+61uvrZ5bN1aVte6pHw6Yqd7vVM7mZTvvyDWXur7hC0AMLZ+q34aN1ZqsMfbguRK7G6gOzM9d7ff3cnJ91cc9u6t60ceXm9dJyl3YXFBoxnt/ZLHwG1tFHH60vv/xSN998syRVRuvNN98MuTNg6VTdlBe59OuLW9TruiZa+bH32ax//m+nGveIVdcRjSuPxTZik0B1ohzherznuZqw9HNd2867+V9s+av5UYkGTBYcvtvo3amnf5unyzK6qUdqmjL37lHPRk308ZrlWrC94qzg/61cpks6dlWXlMYhsXndyp2SaJU/hUKryorc+vbZHJ14YwP9PjXX67boJIfX1xt+LVbTLhFKaMwmi4NFOsI1LuNSPbv6Q13acpDXbd/vWuT19WtrP9PQJv3UOraJFu/NDOSYphcd5tRz/YZp3MIvdWPGcV63/atdH7264ifN2rpaknTXL9P1y7BbdVbLTvrfusVGjOtTVm4VnfKfUOiUVHF19RnP7NOgm+L1y4f5XrdtX1WmTidFqXmXihOFuw4O07KvC7VzbRmb1w/iKi7XpjeWq9kVHbRr+oYqt5ftLdG299co/Y5uynpuWeAHDBLRYU492+9s3VtNq65o20evrpxX2aoxv36uBWfdpjNbdNaU9Yuqe7qgYeVOSdZpFZ2qm5Iij6Y+Wayzb4nQnCneJ6psXuVWj5Odat21Yg119BC7fvuqTFszXWxeP4ir2KXM1zJ11FVHacunW6rcbnfaFc7JVUdk5ddQrdwqq3RKolV1UVLk0X+fKtf5o5369n/llcd3b/Vo4yqP7nzdqcYtK06+Gn6jTeMvLtWSOW71Hew41FNaEp3yjShHuMZ3uVCPL5+mK1qfVHm8oLxEo3//t9d9n131ud7qd5MaRSZoZ/H+QI/qc1bulGSdVtGpuikp8uiDJ0s1/JZwfT/l74uo7t7q0eZVbt36WqQa/dWqYTc49cgl5Vo6x6WjB7Om+idXsUurX81U26tba/OnW6vcbnfaaFUNRDnCdX/nS/Tkyo90efrJXrd9u3OJ19cvZ07XGU376qjYNC3a673/MtjQKXN2KqR/ym3dulWbNwf3xxbc332o5u7I1PzsrCqb11F7dptNQ1t0VFSYU4t2b1W4vWJRWuL6eyHr9nhU5nard0pzNq8fgt1m05CObRXtDNPirX+fMdynZTPNv3WUcotL9NumLXp2zk/KKSwycFL4wsSJEzV48GCtWLFC5eXleuGFF7R8+XLNnz//kB8DhZoJhU5J0uJ/b1fjnrFq1DXWa/O6x+3RjkX5ajesoX58ZIP2ZRUrOjVcHc5JVtM+8QZObE73dj1dP+7M1ILd66u88YLasdtsOr11O0U5nVq0s6JTC3ds0Skt2+jDVX9qZ2G++jdprvSEBpqwZbbB08IXaJX/hEKrfpi0Vy17Rap598gqm9f/qXCfSxsXFumk0Q0COF3wGN32XC3Ys1KL9mZW2bz+T2E2h05v0l/5ZUVVrtAOaULPwZq9ba1+3rnBa0Ng85hEpUbFat6Ov0/GKnW79Ev2JvVs2CwkNq9bGZ3yn1DolCR9/3quWveOUMvuEVU2rzfNcGrdr8XqNChKsQ3s2vxHqfZuc2ngNRGHeDbr2vbeGsV3S1ZcpwZVNq973B5temO5Uga3UGTT6q/Kjgrjew7RnO1r9fOurGpaFVelVb9mb1TP5GZBv3nd6miVf4RKp6a/WqL2fcLUpkdYlc3rLTPsWvVLuXqdGqa4hjZlLXNp91a3ho6iUwdbP3m9kronKbFzYrWbAvev3K9fb/hVYdFhiu8Qrxbnt1B4AhsvDsZrqNZEp/wnFFo17ZVydTzarnY97Pr2f38fL/9rb2CY8+8rSdodNjnCpKzlbF4/GJ3yjTs7DtPPu1frt5y1XpvXqxMbFim3x628suIATQd/olX+EQqdkqTPXi1Vhz4Otenh8Nq87jrQqn/8OLU7bAoLkzasYPP6wdZOzlJS9yQldU6sdvP6vpW5WnD9bwqLDlNCh3i1vKCFwhOc1TyTtd3W/hzN371Sv+/NrLJ5/Z/CbA6d1bSf8ni/LySYtVMh/VPunXfeMXqEehnatJMyEtJ0/pw3jR4l6LVPSNFHp45UhCNMheWluv7Hj7U2d7fCbHZtyd+nu7oN1L2/fqUiV6mu6tBXqVGxSo3ijayDtUtpqA+uuEgRYWEqLC3VjR9N17rdOZKkH9Zt0MxVmdq6P1fNEhN064D+evfS83TOW/9Vmctl8OSoj2OOOUY//fSTnn76aR111FGaNWuWevbsqfnz56tLly5GjxfUgr1TkrT5p/3au75YJz/eusptJfvLVV7s1upPd6vTRanqcmkj7ViSr/lPb9aAB1sppVOMAROb0+AmnZWRkKaLfnjD6FGCWvsGyZp29iUVvS8r1aivP9PafRWfDjL+p+/1+Amn6ZcR16nM5ZJbHt09d5YW7qi6sEXwoVX+E+ytyvyhUNnry3Te042OeN/V3xfIGWVX6/5VP2rQ6gamdlebuGa64ffnDnmffg0zdF/GCEU4nMopzdOYpa8rl48Q9HJG8wx1Smqss7+pepWYlMiKvxftLvb+M9tTXKAm0Zz0F+zolP8Ee6ckadUPRdq5vlyXPtOw2tsHXhOvb17erzf/lS27Q7LZpEE3J6hpBpsE/mnfLztVtDFPbR7sXe3t2TM2yuawqeGgZgGeLLic3jxDnRIb65xv/13ltuTIitdKD27V7uICNY3hk0GDHa3yj1Do1LK5Zdq+1q3rXoiq9vbTr4vQpy+W6MnLCys7dfboCLXqxIbAf9o9f7cKNhSo60Ndq709qVuSGvZpqIjkCJVkl2jTR5u0fOJydXu4m+xOe4CnNS9eQ7UuOuU/wd6qxXNc2rrOo9EvVN32ktrcpqRUacbkcp13c5jCI6UfPnEpb6+Um2PxS28ehE75ximNu6p9XFNd+cvLR7xvuD1M17cdrFnbl6rQVRKA6eBvtMo/gr1TkrR0brm2rXXrxheqfoJiSnObElNt+vrtMp1zc7ickdK8T8qVt1fKo1Veds3frfysfPV4uPpWNeiWqJS+Fa0qzi7Wxqmb9cdjy9Xjka606h9OatRN7eKa6trfXjzkffo37KgHO1+qSIdTe0rydMfiN7S/rDCAU8IfzNqpkN68XhMlJSUqKfH+y6C7rFx2p7F/NI2j4nVP18G6+qf3Vepm4299rc/bozO++rfiwyM0uHkHPdXvTF387ftam7tbN/w4TY/3O11Lzr9d5W63ftqRpTnbgvujLvwla89eDfu/9xUfGanT2rfRE2eepkvfn6p1u3M0Y+WayvtlZu/Rn9t3avZNV2lgm3TNWh0Cf54W/3thly5dQmJhEKyqa1V5qUth4ca+CVS4u0xL3t6u4+9rJUd41b/we/76/6ZJ73i1OyNZkpSYHqU9q4u0/pscNq//pVFkvO7uMkTXzn9Xpe7yIz8Ah7R+X46GfvSu4sMjNKR1Oz0zcIgu/PwDrd23R1d07qnujdJ01cxp2pqXqz5pzfXwcadoV2G+ftq6yejR68/inZJolZGq75RbYdW0IZDysss17//26swJKQoLtx3x/iu/LVC7AdE1uq+VpEQk6sa252jMkkkqO0ynluxdq2sXPqMEZ4xOT+un+ztdrpt+f0H7yvIP+RgrSYuK0/09B2nk3P8ddo1/8I/zkPqv0eKtolPGqq5VZaVuOQ1vlUtz3szTuQ8lHbI/i78o1PY1ZRp2X6LiUxzasrxU372eq5gku1p256q2klS6p1jb/rtG6Xd0l91ZdZ1cuCFXu7/Zorbjj678OFRUlRYVr/t7nKor5v63dq2y2SrX/0EtFH4P9USrjFNtp0rcckYY26l92W59OalUVzwSKechOrXg8zJtWeXSZQ9GKjHVpg1/ujT91RLFNbCpTQ/LvwUpSSrZU6Ks97KUMTZD9kP83SO5X3LlP8c0j1Fseqx+v/V37V2yVw2Prv4EN6vhNVRZvlV0ylhmbNW+bI8+m1Suax91VtspR5hNI+9z6sPny/XABaWy26W2PWzq0JsNbP9Ep3wjNSJBt7U/U6N/f+uInXLY7Hqo68Wy22x6auWngRkwECzeKYlWGcmMnZIq1lRfTCrVlYdYUznCbLrs3gh9/EKJHrqwSHa7dFQPu9rRKi8le0q0/t0N6nx3x0O2KqX/P1sVrbj0WP06epFyluxVMq2SVNGqW9oN0x2L3zxsqxbvXaurfn1OCc4Yndm0ryZ0GaFRv72ofcF+wSo6ZcpOBf0rRwUFBfrvf/+rn3/+WTt27JDNZlOjRo107LHH6uKLL1ZMzOE3xk2cOFETJkzwOtbwggFKuWigP8c+ok6JaUqOjNVHA6+tPBZmt6t3cktd0rqPun32iNz8X1VjZW63NubvlST9kbNDXRum6Yr2R+u+377Sn3t36Iyv/q04Z4ScdodySgo17dSR+iNnh8FTm0+Z261Ne/dL2q8/t+9UlyaNNfLoHnrgq++q3Dc7v0Db9ueqZYPEgM+J+svNza3xfePjuRLk4dS3U1L1rTruug464fqO/hq7RvauL1LJfpe+G7uu8pjHLe1eWah1M3N09vsdZXNI8c29N1TENQvXnlWcmXlAp8QmahgRqw9OGFV5LMzuUK+GLXVxeh/1+uJhml9DZW63NubukyT9sXunuqY01pVdemrCz7N1V5/jNWrWZ5q9qeIj7lfl7FZGwxRd2+3o0Ni8bkG0ynf8saY67cZ0Dbmp6qdyBFL2ulIV7Xdr6u07K4953NK25SX648t8jfqomeyOihcLty0v0b6t5Tr1Lk6sOli7uGZKCo/T671vqzzmsDvUNbG1zm56rAbPHSO3PCp2l2pb0W5tK9qtlbkb9U7fezQkra/+t6nqWsGKOjeoWON/NuiqymNhdrv6pLTQiDa9NWjGa5IqrsCeXfz3hv8GkTFVrnCL4ECnfMdfa6rTb2yhM29u5aepa2bnujIV7nfr/dv2VB7zuKUty8u05MtC3TQlVfPey9NZ9ySq9dEVV2dKSXcqO6tcCz8pYPP6X4o25qk8t0yZExb+fdDtUcGafdr93ValnX+UyvNKtfLOn71u3z4lU7tnbVbHp48J/NAm1CmpsZIjY/XpoKsrj4XZ7To6pYVGtDlap35VfasaRkRrdwmtCka0yjf81anzbm6sC0Y38dfYNbIt062CfR69dktR5TG3W9r4p1u/TC/TfR/F6Jt3SnXJfZFq36fi7cbG6Q5tX+fWT9PK2Lz+l/ysfJXllmnp/Uv/PuiWclfnavs329V/cn/Z7N4bWcKTwhWRHKGiHUVCBV5DtR465Tv+atVFt6TqktFH/rRDf9mS6Vb+Pun5m8sqj7ndUtafLv003aXHPw9Xs7Z23f5KuIoKPHKVSbGJNr1wa6mat+Wk1gPolG90iG+qBhFxervfTZXHwuwOdU9qpXOb99eAb++TWx45bHY92vVSNYlqoJsWvslV14McrfINf3Xqgpsb6cLRaf4au0a2/tWql28prjzmdksb/nRrwfRyPfxZlJq2teuWl6NUXOBRebkUm2DTK7cWq1lbNrAfkJdVoLLcMi2+b9nfB93S/lW52jZrh457p99hWlUsVGgX10wNwuP05tGjK4+F2R3qlpiuc5odo1Nm3/PX+31l2lq0R1uL9mhF7ib9t/8Ynd6kj/6zcbaB06MugqFTQf3K0YoVKzRo0CAVFhZqwIABatGihTwej3bt2qW77rpL48eP16xZs5SRkXHI57jnnnt0++23ex07euZT/h79iOZnZ+msb1/1OvZor2HKytut/1vzEy/A1JNNNoU7vK/ElFdWsTBoFZekLg3S9OyyH4wYLajYpCp/jgckRkUqLT5O2fkh8uaVxf6XS0xMPOLVyDwej2w2m1wuPh3iUHzRKan6Vj26ZoQ/R6+R1C4xGvTMUV7HFr66VXFNItT+7GQ5nHYlHRWlvK3eL7zkbytVdDIfcX/Aguz1Omf2K17HHu5+trLyd+uttfNofj3YbBWdctrtCnc45DnocoBuj0e2ULmmrQX/M6FVvuGvNdWbG8728+RH1qxrpC580fsNtO9fzFFSM6d6DI+r3LguSSu/zVfKUU4lp9Ongy3am6mrfn3S69hdHS7S5sJdmrLp+0N2yiabnPagfsnBp37euUFDZnp/tP0Tfc7Qutw9emPVfG0q2KddRfk6rnG6VuyrOOHCaberb0oLPbnseyNG9j2LtYpO+YY/11Tvbjzdn6PXSIuu4br8Je8r/3z9wn41aBamo8+NkdstuctV5c0Xm12W+3/qcGI7Jqndw328jm3+90pFpEUrdWhLhSVGKK5zA6/b1z+zREnHNFbScca+iWkm83dt0JCZk7yOPdHnTK3P3aNJq37WpoK92lWUp2MbtfZqVZ+UlqHRKgv+P0Wr6s+fnfpiywB/jl4jR3V36OZXo7yOTXuuRMnN7DrhfKfcbslVXvH6yz/ZHBUbMlAhsVOiuk3s5nVs7RtrFd0kWk3OaFKl85JUllemkpwShSeyRj2A11BluVbRKd/wZ6u+3WrsSaBtutt1x2tOr2MfPFuu1OY2DTzf4fXaX1RMxT9nb3VrS6ZHg0fwmtUBdMo3Fuas1aU/P+d17N5O52ljQbbe3zDXa+N6s5iGuum3N5VbFmIX+rJYpyRa5Qv+7NRXW4735+g10qa7Q6NfjfQ69tFzpUppZtOA851erYr8q1W7t7q1da1bgy73bpyVJXZKUM/HvVu15o21ik6LUrMzm9KqGvp971qNXPC017G7My7UpoJd+u/G2YdZU9kUHgrv99GpahndqaD+L+vGG2/UCSecoHfeeUfh4d4/bEpLS3XFFVfoxhtv1OzZhz7zIyIiQhER3lcpsjuN/2MpLC9VZl6217Gi8jLtKy2qPJ7gjFRadIJSI+MkSemxFR+Bsbs4n6vd/MOd3QZo7rb12laYq9iwcJ3RMkN9U1voX3OmSJKGNO+gnJJCbSvIVfvEFD3Qa5C+2bJG83ZkGTy5udx+4rH6Yd0Gbc/NU0y4U6d3aq8+LZvpqimfKNrp1M0n9NPXq9YqO79ATRPidfvAY7W3sEjfrF5r9Oiog8P93ETN+aJTUvWtCguv/sSRQHJGOZTQwnsOR4Rd4XEOJbSoWIS1PytZC57bouSMHKV2itGOJfna/nueBoxvZcDE5lToKtXavF1ex4pcpdpXWlh5PN4ZpbSov5vfKrZig8vuknztKckXpLv6HKc5m7K0PT9PMeHhOvOoDuqX1lwjZ3ys/LJSLdi2Wff0G6Di8nJtyc9Vv7RmGt4uQ4/Mn2P06KgjWuUb/lpThR3iY/sCKTzaroYtvX9Pzki7IuO8j5cWurXupyId86/EAE8YHIpcJdpQ4P2pVMWuUuWWFWpDwQ5F2sN1aatT9PPu5dpTkqsEZ7TOanqsUiISNHfXEmOGNqGC8lKt2e+9xi/8a41/4Pjba37V9R2P1Ya8vdqQn6PrOx6jIleZPt+43IiRUU90yjf8uaZymqRVyS2953BG2hQZZ1dyy4o3qJp1duqHt/MUFi7Fpzi0ZXmpVswu0olXcsWuAxxRYXI0i/U6Zo9wKCzWqci/jofFer/hZ3PYFZYQocg0PnXlgILyUmXmVn09em9pYeXxyZl/tSo/RxvycnR9x2NV5CrT9E1/GjEy6olW1Z9fO2Xwx9tLUkS0TY1aeb/254yUouP/Pt6qi10z3ypVWISUmGrXhj9cWvJduYZcw6eDHOCIciimuXdvHBEOhcWGKaZ5jFzFLm2etlkNj24oZ6JTJdkl2jR1k5yxTjXszcfbH8BrqNZDp3zDr63abWyrIqNtSmt10FVWI6WYOJvSWlXMtvRHl2ISbEpKsWn7Brc+e71cnfvb1b6X8Z01CzrlG4WuUq3P3+l1rNhVptyyQq3P3ymHza7Hul2m9vFNdOeid2S32dQgvGK9mltWpHIPG5uDEa2qPyusqRpX06roeJsa/9WqP34sV0yCTYkpNu3Y4Nb0SWXK6OdQu57G7wcxi7Aoh8KaR3sdc0Q4FBYXppjm0XIVu7Tx481K7tNQ4YlOFWeXaMOHB1rV4BDPaj1FrhJlFRzcqor3+7IKdirS7tSI9JP1U/YK7SnNVYIzRmc37a+UiATN3rXsEM8KMwuGThm/S7sefvnlFy1cuLBKwCQpPDxc48aNU58+fap5ZGgYmNZeE3udXfn1s33OkyS9vHKOXlk116CpzCc5MkbP9D9TKVGxyisr0ep9u/SvOVM0b8cGSVJqVKzu7XmKkv/6yNtpWX/o5T/nGTu0CTWMidaTZ52m1NgY5ZWUavWu3bpqyif6OWuTIsIcapeSrLO7ZCguMkLZ+QX6ZcNm3TrtSxWUlh35yYOAzWJnYA0Y4H1lnx9//FGTJk3SunXr9NFHH6lp06Z67733lJ6ebtCEwcHqnZKkpn3j1fPaNK3+ZLeWvLVDcU0i1P/O5kruyAaB2hjYuL0e6XFO5ddP975AkvTq6tl6bfUcg6Yyl+SoGD130lClRMcor7RUq/Zka+SMjzVv60ZJ0s3fTteYvifo+ZOHKjEiUlvzcvXUr/P0/oqlR3jm4GC1Tkm0yldolZT5Y6HkkdqeEH3kO6MKl9xqHp2q8Z2PVrwzRrllBVqdu1m3Ln5ZGwt3HvkJUOmNVfMV6QjThF6DlRAeqSV7tuqKuf9TQXmp0aP5hNVaRad8g05Jp9+VqHnv5mvGM/tVnO9WfIpDx10Wp65Doo78YMDHKlrl1ISeg5UQHqWle7bqirn/DYlWWa1TEq3yBTolXTg2UrMml2rqUyUqyvMoMdWmQZeHq8/QoH77MbDsUuHmQu2at0uuApeciU4lZCSo3U3t5Ihiw0pthPprqFZrFZ3yDau3KjfHo8/fKFf+PimugdT7ZIdOuZifrbVCp3wiJSJBJ6RWXDn6vWNGe912w29vaPHe9UaM5VNW65REq3zB6p2SKlr15Ztlyt/nUVySTT1Oduiki7nqeq3YpYLNhdo1L1vlBS6F/9Wqjje3UxitqjG3PGoZnarBXXorIbzi/b5VuVt08++vakNB8L/fR6fM2amgfvUoKSlJmZmZh/x4kLVr1yopKSnAU/nPyHnveH396aal+nRTaGy48qe7f5lx2NvfWbNQ76xZGKBpgte9X35zyNtKyl26asonAZwGgfTxxx9rxIgRuvTSS7V48WKVlJRIkvLy8vTYY49pxozD/z9mZVbrlCSdOKHqX2rST0pS+kmh9fv0tyt/nuz19Webl+izzUsMmSVYjJ379WFvzy4q1F1zZgZoGgQarao7q7Xq7EdTqxzrdFqsOp0WW829cSh3LHm18p/L3OUa/+dk44YJYpfOfr/KsReX/6gXl/9owDTwJzpVd1brlCRd8Jj3letikhw6bXSCQdMEr6Pu7nnY2zs+fUyAJglul855r8qxF5f/oBeX/2DANPAnWlU3VuzU1U94n/Qb18Cuc2+PNGia4NX5vs6V/+wIdyhjbPX/DeHweA3VOuhU3VmtVTc86b358fhhYTp+WFBviTEEnfKNGxe+UfnPO4r3qv+suw2cBv5Gq+rGap2SpGuf8F4/HTvMqWOHsVm9trre16nynx3hDnW5m1bVxehFr1f+c6m7XPf98a6B08CfzNop4z8jox6uueYajRw5Uk8//bSWLl2qHTt2aOfOnVq6dKmefvppXXnllRo1apTRYwIIBZ4A/jKZRx55RK+//rrefPNNOZ1//6X5mGOO0aJFiwyczPzoFICACWSnaFVIoVUAAoZO0ak6oFMAAoY1Fa2qAzoFIKDoFJ2qA1oFIGBYU9GqOqBTAAKGTpmyU0F9mun48eMVFRWlZ599VmPGjJHNZpMkeTweNW7cWHfffbfGjBlj8JQAENxWr16tE044ocrx+Ph47du3L/ADBRE6BQCBQavqjlYBgP/RqbqjUwAQGLSqbugUAAQGnao7WgUAgUGr6oZOAUBgmLVTQb15XZLGjh2rsWPHKisrSzt27JAkNW7cWOnp6QZPBiCU2Ex4VlSgpKWlae3atWrVqpXX8Xnz5ql169bGDBVE6BSAQLBypyRaVV+0CkAgWLlVdKp+6BSAQLBypyRaVR90CkCgWLlVdKp+aBWAQLBypyRaVR90CkAg0ClzdiroN68fkJ6eTrgAwA9GjRql0aNH66233pLNZtO2bds0f/583XnnnXrggQeMHi9o0CkA8B9a5Ru0CgD8g075Bp0CAP+hVfVHpwDAf+iUb9AqAPAfWlV/dAoA/MesnbIb9p195KWXXtLIkSP14YcfSpLee+89ZWRkqEOHDho3bpzKy8sNnhBASPAE8JfJjBkzRmeffbYGDhyo/Px8nXDCCbr66qs1atQo3XTTTUaPZ3p0CkBABLJTtCrk0CoAAUGn6FQd0SkAAcGailbVEZ0CEDB0ik7VEa0CEBCsqWhVHdEpAAFBp0zZqaC+8vrDDz+sp556SqeeeqpGjx6trKwsPfXUU7rttttkt9v13HPPyel0asKECUaPCgBB7dFHH9W9996rFStWyO12KyMjQ7GxsUaPZXp0CgACh1bVDa0CgMCgU3VDpwAgcGhV7dEpAAgcOlU3tAoAAodW1R6dAoDAMWOngnrz+uTJkzV58mQNHz5cS5cuVa9evfTOO+/o0ksvlSR16NBBY8aMIWIA4APR0dHq3bu30WMEFToFAIFFq2qPVgFA4NCp2qNTABBYtKp26BQABBadqj1aBQCBRatqh04BQGCZrVNBvXl9+/btlX+Y3bp1k91uV/fu3Stv79mzp7Zt22bQdABCic2EH+kB86NTAAKFTqGuaBWAQKFVqAs6BSBQ6BTqgk4BCCRahbqgVQAChU6hLugUgEChU+ZkN3qA+mjcuLFWrFghScrMzJTL5ar8WpKWL1+u1NRUo8YDAFgcnQIAmB2tAgCYGZ0CAJgZnQIAmB2tAgCYGZ0CAGsL6iuvX3LJJbr88ss1bNgwfffddxo7dqzuvPNO7dmzRzabTY8++qjOO+88o8cEEAo4Awt1QKcABAydQh3RKgABQ6tQB3QKQMDQKdQBnQIQULQKdUCrAAQMnUId0CkAAUOnTCmoN69PmDBBUVFRWrBggUaNGqWxY8eqa9euGjNmjAoLC3XmmWfq4YcfNnpMAIBF0SkAgNnRKgCAmdEpAICZ0SkAgNnRKgCAmdEpALC2oN687nA4dO+993odu+iii3TRRRcZNBGAkMUZWKgDOgUgYOgU6ohWAQgYWoU6oFMAAoZOoQ7oFICAolWoA1oFIGDoFOqATgEIGDplSnajBwAAAAAAAAAAAAAAAAAAAAAAhL6gvvI6AASKjTOwAAAmRqcAAGZHqwAAZkanAABmR6sAAGZGpwAAZkanzIkrrwMAAAAAAAAAAAAAAAAAAAAA/I4rrwNATXAGFgDAzOgUAMDsaBUAwMzoFADA7GgVAMDM6BQAwMzolClx5XUAAAAAAAAAAAAAAAAAAAAAgN9x5XUAqAGbh1OwAADmRacAAGZHqwAAZkanAABmR6sAAGZGpwAAZkanzIkrrwMAAAAAAAAAAAAAAAAAAAAA/I4rrwNATXACFgDAzOgUAMDsaBUAwMzoFADA7GgVAMDM6BQAwMzolClx5XUAAAAAAAAAAAAAAAAAAAAAgN+xeR0AAAAAAAAAAAAAAAAAAAAA4HdhRg8AAMHAxseHAABMjE4BAMyOVgEAzIxOAQDMjlYBAMyMTgEAzIxOmRNXXgcAAAAAAAAAAAAAAAAAAAAA+B1XXgeAmuAMLACAmdEpAIDZ0SoAgJnRKQCA2dEqAICZ0SkAgJnRKVPiyusAAAAAAAAAAAAAAAAAAAAAAL/jyusAUAM2zsACAJgYnQIAmB2tAgCYGZ0CAJgdrQIAmBmdAgCYGZ0yJ668DgAAAAAAAAAAAAAAAAAAAADwO668DgA1wRlYAAAzo1MAALOjVQAAM6NTAACzo1UAADOjUwAAM6NTpsSV1wEAAAAAAAAAAAAAAAAAAAAAfsfmdQCoAZsncL9q47XXXlPXrl0VHx+v+Ph49e/fX1999VXl7R6PR+PHj1eTJk0UFRWlE088UcuXL/fxnw4AwGiB7BStAgDUBZ0CAJgZayoAgNnRKQCAmZl1TUWnAACSeTslWbtVbF4HgCDWrFkzPf7441q4cKEWLlyok046ScOGDauM1JNPPqlnn31WL7/8sn777Tc1btxYgwYNUl5ensGTAwCsglYBAMyMTgEAzI5WAQDMjE4BAMyMTgEAzM7KrWLzOgDUhCeAv2rhzDPP1NChQ9WuXTu1a9dOjz76qGJjY7VgwQJ5PB49//zzuvfeezV8+HB17txZ77zzjgoLC/Xf//63Pn8aAACzCWSnaBUAoC7oFADAzFhTAQDMjk4BAMzMpGsqOgUAkGTaTknWbhWb1wEgRLhcLk2ZMkUFBQXq37+/srKytGPHDp166qmV94mIiNCAAQP0888/GzgpAMCqaBUAwMzoFADA7GgVAMDM6BQAwMzoFADA7KzWqjCjBzCj3k02Gz1CSFi4rbnRI4SMoobhRo+AACopKVFJSYnXsYiICEVERFR7/z/++EP9+/dXcXGxYmNj9cknnygjI6MyUo0aNfK6f6NGjbRx40b/DI+ASY/MNnqEkNAkYb/RI4SEzILqfz4hdNEqHEmHiG1GjxASfo5sY/QIIeHaXj8aPUKIuNfoAWqMTqEmGjtZC/hCrLPY6BFCQnh4udEjIMBoFY7EIbfRIwCVbLZaXjYOQY9OAYHj4GesTzjs/N3JamrTKjplTS6u5wsTcdjolNWwpqoZflIDQA3YPIH7NXHiRCUkJHj9mjhx4iFna9++vZYsWaIFCxbo+uuv18iRI7VixYq/Z7fZvO7v8XiqHAMABLdAdopWAQDqgk4BAMyMNRUAwOzoFADAzMy8pqJTAAAzd0qybqu48joAmMw999yj22+/3evYoc68kqTw8HC1aVNxVc7evXvrt99+0wsvvKCxY8dKknbs2KG0tLTK++/atavKGVkAANQGrQIAmBmdAgCYHa0CAJgZnQIAmF1tWkWnAACBxpqqZrjyOgDUhMcTsF8RERGKj4/3+nW4gFUd1aOSkhKlp6ercePG+uabbypvKy0t1dy5c3XMMcf4408JAGCUAHaKVgEA6oROAQDMjDUVAMDs6BQAwMyCaE1FpwDAgoKoUxXjWqNVXHkdAILYuHHjNGTIEDVv3lx5eXmaMmWK5syZo5kzZ8pms+nWW2/VY489prZt26pt27Z67LHHFB0drUsuucTo0QEAFkGrAABmRqcAAGZHqwAAZkanAABmRqcAAGZn5VaxeR0AasDmMXqC6u3cuVMjRozQ9u3blZCQoK5du2rmzJkaNGiQJGnMmDEqKirSDTfcoL1796pv376aNWuW4uLiDJ4cAOBLZu2URKsAABXM2io6BQCQzNspiVYBACqYtVV0CgAg0SkAgLmZtVOStVvF5nUACGL//ve/D3u7zWbT+PHjNX78+MAMBADAQWgVAMDM6BQAwOxoFQDAzOgUAMDM6BQAwOys3Co2rwNATZj4DCwAAOgUAMD0aBUAwMzoFADA7GgVAMDM6BQAwMzolCnZjR4AAAAAAAAAAAAAAAAAAAAAABD6uPI6ANSAzW30BAAAHBqdAgCYHa0CAJgZnQIAmB2tAgCYGZ0CAJgZnTInrrwOAAAAAAAAAAAAAAAAAAAAAPA7rrwOADXhMXoAAAAOg04BAMyOVgEAzIxOAQDMjlYBAMyMTgEAzIxOmRJXXgcAAAAAAAAAAAAAAAAAAAAA+B1XXgeAGrBxBhYAwMToFADA7GgVAMDM6BQAwOxoFQDAzOgUAMDM6JQ5ceV1AAAAAAAAAAAAAAAAAAAAAIDfsXkdAAAAAAAAAAAAAAAAAAAAAOB3YUYPAABBwcPnhwAATIxOAQDMjlYBAMyMTgEAzI5WAQDMjE4BAMyMTpkSV14HAAAAAAAAAAAAAAAAAAAAAPgdV14HgBqwcQIWAMDE6BQAwOxoFQDAzOgUAMDsaBUAwMzoFADAzOiUOXHldQAAAAAAAAAAAAAAAAAAAACA33HldQCoCc7AAgCYGZ0CAJgdrQIAmBmdAgCYHa0CAJgZnQIAmBmdMiWuvA4AAAAAAAAAAAAAAAAAAAAA8DuuvA4ANWDjDCwAgInRKQCA2dEqAICZ0SkAgNnRKgCAmdEpAICZ0Slz4srrAAAAAAAAAAAAAAAAAAAAAAC/48rrAFATHk7BAgCYGJ0CAJgdrQIAmBmdAgCYHa0CAJgZnQIAmBmdMiWuvA4AAAAAAAAAAAAAAAAAAAAA8DuuvA4ANWDjBCwAgInRKQCA2dEqAICZ0SkAgNnRKgCAmdEpAICZ0Slz4srrAAAAAAAAAAAAAAAAAAAAAAC/C+orr5eWlio8PLzy63Xr1umll15SZmam0tLSdP3116tXr14GTgggZHAGFuqATgEIGDqFOqJVAAKGVqEO6BSAgKFTqCNaBSBgaBXqgE4BCBg6hTqgUwAChk6ZUlBfeT0qKkq7du2SJC1ZskRdu3bV3Llz1bRpUy1btkzHHHOMfv31V4OnBABYFZ0CAJgdrQIAmBmdAgCYHa0CAJgZnQIAmBmdAgBrC+orr3s8f58Scf/992vo0KH68MMPZbPZJElXXnmlHnzwQX311VdGjQgAsDA6BQAwO1oFADAzOgUAMDtaBQAwMzoFADAzOgUA1hbUm9f/acmSJZoyZUplwCRp9OjROu200wycCkCosPHxIagnOgXAn+gUfIFWAfAnWoX6olMA/IlOwRdoFQB/olWoLzoFwJ/oFOqLTgHwJzplTnajB6gPm81WGS2Hw6H4+Hiv2+Pj47V//34jRgMAgE4BAEyPVgEAzIxOAQDMjlYBAMyMTgEAzIxOAYC1BfWV1z0ej9q1ayebzab8/Hz98ccf6tKlS+XtmZmZaty4sYETAggZbk7BQu3RKQABQ6dQR7QKQMDQKtQBnQIQMHQKdUSrAAQMrUId0CkAAUOnUAd0CkDA0ClTCurN62+//bbX10cddZTX1wsWLNA555wTyJH8Ztv0zdoydYMandpELS87qsrtWW9nKnv2DrW4pLUaD25qwITB4Zp2x+n2Tifr3bULNPGPryVJg5p00AWteqlTYhMlRUTrnO9f16r9Ow2e1Hwuy+imSzt1V7O4ijMdM3P26MXf52vO5ixJUnSYU2P7naBTW7VRUmSktuTlavIfi/T+iqVGjg0YykqdkqQFUwv047sF6nVWlE66Jk6SVFrk1g/vFChzQYmK89yKT3Wo55lR6jE02uBpzevC5qfoytZn6JMtc/X6uk8kSZe1HKwTU3soJSJRZW6X1uZv1ttZM7Q6b6PB05rX9Rn9dVe3gXp79a96eNG3lcdHdz5eFx3VXQnhkVqyZ5seXPi1MnN3GzgpYCwrtWrWFLe+mOzRgLNtOve6ig8hy93r0ef/9mjVIo+KCqSjOkvn3WBXalPbEZ7NunZ+sVHbP1qv5EHN1OzStlVu3zx5tfbM2aYmF7dR6mnNDZgwOPzwYYm+fadE/YaFa+i1kZKkkiKPvplcrFXzy1WY51Fiql39zgpXn9PDDZ4WMI6VOiVJ339QppmTy3XcMIfOuq7i//28vR7NeKtMaxa5VFwgpXe2a9j1TqU0DeoP1PSrLZ9v0aYPNynttDSlj0iXJGVOylT2j9le94s9KlZdJ3Q1YsSgcE3b43Rbp1P07roFevyPmZKkU9I6er2OOnz261q1f4fBkwLGslKr5nxQpq/fKdMxw8J05qi/OzXz7VJlLnKruMCjVp3tOuu6cCXTqUOiU75xVZvjNbrjIL2/fr6eXP6VJOnkxh11XsujlZGYpqTwGJ0/91WtzqVTsDYrdeq7D8r11WSXjh/m0LDrKrbB5O316Mu3yrVmkVtFBVLrzjadfX0Y66nD2PzZVm34cJOaDG6so/7q1OrX12rXQZ2KOypW3R/qUt1TQNJlrQbqujZD9OGmH/XimumSpCtbD9LJjbopNTJR5e5yrc7dqjfWzdSK3M0GTwsYx0qdkqS5H5Tqm3dK1X+YU6ePipBU8b7ArLdLtfKv9wWSGtnU76xw9T3dafC05kWrfOOSlifpmqNO10ebf9ArmZ9Jkkamn6qTUnsoJTJB5W6X1uRt0b/Xf6WVuZsMnhahKqg3r48cOfKwtz/wwAMBmsS/8tfnadfs7YpqHlPt7Xt/362CdXlyJvGG9uF0TmyiC1r1rPKGSpQjXIv3bNbXW1fo4Z5nGTSd+W0vyNMTv/ygjfv3SZLObd9Jbww+W6d/9K4y9+7R/ccOVP8mzXXb9zO0JW+/jm/WSg8ff4p2Fubrmw3rjB3eFzgBC3VglU5J0vY1ZVo2s0gprbz/ajH7//K16Y8ynX5HvBJSHdqwuFTfvJan2AYOte0XYdC05tUurrmGpvXX+vytXse3Fu3SK5kfa3vxHkXYnTqn2QBN7Hqd/vXrI9pfVmDQtObVtUGaLjqqh1bu9T4ZbVTHfrqyQx+NWfCFsvJydGOnY/XuwIt1ypeTVFBeatC0PkKnUEdWadXG1R79/JVHTdL/PubxePR/E9xyhEnXPGhXZLQ0e5pHr9zj1rg37IqIZAP7wQrX52rPnG2KPMTadN/v2SpYlytnImvTw9m6xqWFM0vVKN37jdKZbxYra1m5zr0zSomN7Fq3qFxfvFqsuAY2dewfAi9U0yrUgVU6JUmbV7v1y1cupaX/3R+Px6N3HiqRI8ymKx6IUESM9OO0cr05rlR3TopQOK2qIm9dnnbO3qnoFlVPmE7smqg217ap/NoWxp/foXRObKLzW/Wq+jpqmFOLczbr620r9HCPEHsdlU6hjqzSqs1rXPp1ZrkaH9Sp9x4ukcMhjXggXJHRNs37pFz/Hlei2yZF0qlq0Cnf6JTQROe17K3VVToVriU5m/TN9j81vtvZxgznT7QKdWCVTm1a7daCatZTkx8qkz1MuuIBpyJjpB+muTRpXJnumhTOa3/VyFuXr+2zdyqmmk4ldU1Uu1F/byqlU4fWIb6ZzmraV2vztnkd31yQredWf6ptRTmKsDt1QYvj9WzPq3XRT09qXyi810enUAdW6ZQkbVnj0m8zy9T4oPcFZrxRoqxlLp13V4SSGtm1dpFL018pUXwDmzr2D+ptnX5Bq3yjfVxzndGkn9Yd1Kothdl6Yc00bS/aowiHU+c1H6Anu1+ry+ZPDP59KXTKlDil1ORcxS6te2210q9sq7CYqlEqzSnRhnfXqfV17WVz8EP3UKIdTj119HA9sHi6ckuLvW77fPMyvbr6B/2cvd6g6YLDdxvXa86mLGXt36us/Xv19K/zVFhWqh6N0iRJPRs10cerl2vBts3akper/61cppV7dqlLCh/hA4S60iK3vnwmV6feHK/IWO8WbVtVpk4nRapFl3AlNHKo2+AopaaHaefaMoOmNa9Ie7jGdhih59d8oLzyIq/bZu9apMX71mhH8R5tLNyhN9Z9qpiwKKXHNDFoWvOKDnPquf5nadyvM7T/oOb/q30fvbr8J329ZbXW7M/WXQumKyrMqbNadjJoWgCBUFLk0btPunXxaLuiY/8+nr1V2rBKuuAmu1q2t6lRc5suuMmmkiLp99m8gnEwV3G5Nk5aoeb/ai9HdNWN1KV7S7T1/Uy1vC5DcvBSw6GUFHn00VNFGnZzlKIO+nvT5lUudT85XOldw5TUyK7eQ8LVKN2ubWtdBk0LIFBKijz631OlOm+00+tnw+6tHm1a5dE5NznVvL1dqc3sOudGp0qLPFo8h58NB3MVu5T5WqaOuuoohUVXfR3V7rQrPDG88pczNgRODPKDaEe4nux9rh5cMl25Zd5rqumbl+m11XM1n9dRAUspKfLogydLNfyW8Cqd2rzKrbNvClfzdg6lNLNr2A1OlRR7tJROVUGnfCPKEa6JPc/T+KWfKbfM+zXUL7Ys1aTMOVpApwBLKSny6L9Plev80U5F/eO1v91bPdq4yqNzbwpTi7/WU8NvDFNpkbRkjtu4gU3KVezS6lcz1fbq1tXuS7E7bXSqBqIc4Xqw08V6cuVHVd7r+2bnEi3MWattRTnKKtipl9ZMV2xYlI6KTTNoWgCBUlLk0dQni3X2LRGKjPW+bfMqt3qc7FTrv94XOHqIU41b27U1kzXVwWiVb0Q6wnVvp0v19Kqpyisv9Lrtu52LtWhvprYX52hDwU69mvnZX61iXwr8I6TfUR43bpyuvPJKo8eolw3vrFVi9yQldE6qcpvH7dG6SauVNrSZoptVf+U7VLi/+1DN3ZGp+dlZRo8SEuw2m848qr2inE4t2rldkrRw+xad0qqNGsVU/E2rf5PmSk9ooB82bzBwUt+xeQL3C9YRCp2SpG9fz1fr3uFq1b3qVVabZji17pcS5e1xyePxaNOyUuVsc6lVD67IerCb2p6nX3NWaPG+NYe9X5jNoaFpxyi/vEjr87cd9r5WNKH3aZq9bZ1+2rnB63jzmESlRsXqxx1//12g1O3SL7s2qWdK0wBP6XuB7BStspZQaNXUVzzq1Mem9j29NwqX/3UeVdg/kmR32BQWJq1fHsABg8SW9zIV362h4jo1qHKbx+3RpjdWKHVIc0U1ZW16OF++Vqx2R4fpqB5VX1htkeHQql/KlLvbLY/Ho/VLy7Vnm1tteobG1VXoFPwhFDolSZ++UqYOR9vVtofD6/iBVjn/8T6L3WGTI0zasJzNFgdbP3m9kronKbFzYrW371+5X7/e8KsW3blIa/9vrUr3B/mnL/nJfd2Gau6ONZbboM6aCv4SCq367NVSdejjUJuDOuU6zJpqwwo2WhyMTvnGvV1O14+71uiX3dbqlESn4B+h0Klpr5Sr49F2tevhvfWl8rU/59+vCR5YT2Wxnqpi7eQsJXVPUtIhOrVvZa4WXP+bFt6xWJlvrlPpfi5SVZ3b25+tn/es0sKctYe9X5jNoWFN+yqvrEhrQ+S9PtZU8IdQ6JQkTX+1RO37hKlNNe8LtMywa9Uv5V7vC+ze6labXqHxvoAv0SrfuLXdcC3YvUKL9mYe9n5hNofOaNJf+SHSKjplTiH9k27r1q3avHmz0WPU2Z4Fu1S4MV+dxveo9vbtX26RzWFTo1M5u+VwhjbtpIyENJ0/502jRwl67Rska9o5lyjCEabCslKN+vozrd27R5I0/qfv9fiA0/TLiOtU5nLJLY/unjNLC3dsNXhqwLyCvVOStPKHYu1cV6YRz1bdyCZJJ18bp69fztPrV+yR3SHZbNJpN8epWSc2r//TgJQeahPbTDcvevaQ9+nbIEP3ZIxUhN2pnNJc3bPsVeWWB/lHM/nYGS0y1DmpsYZ9/XaV21KiKjZT7i72/jPbXVygpjEJAZkPCEbB3qrf57i1ea1Hd75Y9bztRs2lBqnS9Lc9uugWKTxSmj3No9y9Um4Oryr8094FO1W0MU/tHuhV7e27ZmySzW5T8qBmAZ4suPwxt0zb1ro06vnqN/gPHRWpz18q1tMj8yv/3jRsdKRadgrpl26Aegn2TknSkjnl2rrOrZtfiKhyW2pzm5JSbfpqcrmG3+xUeKT04yflytsr5dEqL7vn71bBhgJ1fahrtbcndUtSwz4NFZEcoZLsEm36aJOWT1yubg93k90Z0td3qZUhTTsrIyFNF8zldVTAV4K9VUvnlmvbWrdufCGyym0pzW1KTLXp67fLdM7N4XJGSvPoVLXolG8MbtJZHROa6OIfJxk9ChAygr1Ti+e4tHWdR6NfqPraScV6SpoxuVzn3Rym8Ejph09cyuO1vyp2zd+t/Kx89Xi4+k416JaolL4VnSrOLtbGqZv1x2PL1eORrnTqH05u1E3t4pvqml9fOuR9jknuqPGdL1Gkw6k9JXm6bfGb2l9WeMj7A1YX7J2SpGVzy7R9rVvXvRBV7e2nXxehT18s0ZOXF1a+L3D26Ai16uSo9v5WRat8Y2Bqd7WNa6brFj5/yPv0a9hRD3QaoQiHU3tK83TnkknKLWNfCvwjpN8Bfeedd454n5KSEpWUlHgdc5W65Ag3NgIle0q08f316jCms+zhVX+IFmTlaeesrer0UA/ZbLZqngGS1DgqXvd0Hayrf3pfpW6u9FFf6/flaOjUdxUfEaEh6e30zMAhuvDzD7R27x5d0aWnujdK01VfTdPWvFz1SWuuh48/RbsK8/XT1k1Gj15/Hl7EgO/VpFNS9a0qK3XLWU0fAik326Xv38zT+Q8lKiy8+hb9Pr1I21aX6Zz7ExSf4tCW5aX65vV8xTRwVHulditKiUjU9W2Ga9yy11TmKT/k/ZbsW6sbFj6leGeMhqT1170dr9Ati5/T/rL8AE5rXmnRcXqg1yBdPvt/h22+56Cf5zZJHoXAz3g6BT+p65qqtMSt8AhjO7U326Npr3t0w2N2OavplCPMpivvt+t/z7l19/ke2e1Sux5SxtEGDGtipXuKtfW/mTrqzu6yV7NOLtyQp+xZW9R+Qm/WpoexP9utGW8Ua+TD0dX+9yhJCz4v1eZVLl3yQJQSU+3a+KdLX7xarLgke7VXag86tAp+UK81VYlbToNbtS/brc8nlenqRyMO2aoR94Vr6vOlGn9Bsex2qU0Pu9r35g2XfyrZU6Ks97KUMTaj2tdRJSm5X3LlP8c0j1Fseqx+v/V37V2yVw2PbhioUU2tcVS87ukyWNf8/J5K3Ydem4YsOgU/qeuayiyd+mJSqa58JPKQnbrs3gh9/EKJHrqwSHa7dFQPu9rRKS90yjcaRcZrbOehGrXgHWt2SqJV8ItgXlPty/bos0nluvZR5yE7NfI+pz58vlwPXFAqu11q28OmDnTKS8meEq1/d4M6393xkJ1K6f/PTkUrLj1Wv45epJwle5VMpyRJqREJGt3uLN2++P8O26lFOWv1r1+eV6IzRmc27aOHulyma399SftCYVMgnYIfBHOnpIo11ZeTSnXFIdZUkrTg8zJtWeXSZQ9GKjHVpg1/ujT91RLFNbBVe6V2K6JVvpESkaib2p2tMUsmqewwrVqyd52u/u0ZJThjdEaTfnqw8wjdsPBF7Qv2fSl0ypQs/1Nu4sSJmjBhgtexLlf1ULdreho0UYXCDXkqzy3Tnw8s/vugW8pbvV87v92m5hemqyy3TEtu+9Xr9k3/W68ds7aq+7N9Aj+0CXVKTFNyZKw+Gnht5bEwu129k1vqktZ91O2zR+QOhQ1rAVLmdmtj7j5J0h/ZO9U1tbGu7NJTE36arbv6HK9RX3+m2ZsqPqpxVc5uZSSn6NpuR4fG5nXAQNW16sybmuusm1saNFGFnWvLVbjPo3dv3Vt5zOOWNi8v06IvinTLByn68b18nT0uQUcdXXEVwdT0MO1aX67fPilk8/pf2sQ2V1J4nF7udUflMYfNoS4JrXVW0+N0xg93yi2PStyl2la8W9uKd2tV3ka9dfS9Gty4nz7Y/K2B05tH56Q0JUfG6PPT/v7ouDC7XX1SW2hE29465cvXJUkpUbHK/sfV1xtGxlS5GjuA2qmuU5fekqwRt6YYNFGFzZlS3j7pqZv+/hhgt1ta96dHP37u0rPT7WrR1qaxrzpUVOBReZkUl2jTM6Ndat6WTdgHHFibrh6/8O+Dbo8K1uzT7u+2qsn5rVWeV6rld8z3un3blLXKnrVFnZ7pH/ihTWjbWpcK9nn0+ui/m+N2Sxv/dOnX6aUaNzVO371boovujVL7Pk5JUuN0h7avd+mnaSWhsXkdMFB1rbrwlka6eHRjgyaqsCXTo/x90os3//3mmtstZf0p/Ty9SI99Hqlmbe267ZVIFRV45CqTYhNteunWYjVry4aLA/Kz8lWWW6al9y/9+6Bbyl2dq+3fbFf/yf1ls3u3PTwpXBHJESraURTgac2rU2ITJUfGauqJoyqPhdnt6t2wpS5J76Punz/M66iAn1TXqQtubqQLR6cZNFGFrZlu5e+TXr6luPKY2y1t+NOtBdPL9fBnUWra1q5bXo5ScYFH5eVSbIJNr9ApL3TKNzISm6hhRKymHH9d5bEwu0O9GrbURa36qPeXD9EpwI+qa9VFt6TqktGNDJpI2vJXp56/uazyWMV6yqWfprv0+OfhatbWrttfCfdaT71waymv/f1DXlaBynLLtPi+ZX8fdEv7V+Vq26wdOu6dfofpVLFQoX18MzWIiNP/9bml8liY3aFuieka3uwYnfT9OLnlUbG7TFuL9mhr0R4tz92k/x0zRmc07aP3N8w2cHog+FXXqfNubqwLRjcxaKIK2zLdKtjn0Wu3/P33+or3Bdz6ZXqZ7vsoRt+8U6pL7otU+z4V7wE0Tndo+zq3fppWxub1v9Aq32gX10wNwuM0qfdtlcccdoe6JrbWOU2P1alzxv7VqlJtK9qjbUV7tDJ3k97rd7eGNumj/2783sDpEaqC+qfcM888o/POO08tW9Z9894999yj22+/3evYdUtH13e0eovPSFTnx7w30Ge9uUaRadFKO6OZnAnhSuiS5HX76qf+VPIxqUo+wbhFotnMz87SWd++6nXs0V7DlJW3W/+35ideyKonm6Rwh0NOu13hDkeVq9m6PZ6Qufqijf9UUAe+6JRUfav+s2lIvZ7TF1p2c+qKlxt4HZv5fK4aNHOoz3kx8rg9cpdXfLTVP9nsksfN/1QHLNm3Rtf+9rjXsTvaX6LNRTv14abvDtkqm01y2oP6r3I+9fPODRo8w/uj7Z/se7rW5e7RpJULtCl/n3YV5eu4xulasXenJMlpt6tvags9sST4XxSkU6grf62p5m4z/mTadt2lu1/33jDx32fcSm1u0ykX2GR3/B2oqJiKf9611aNNmdLQy0Pj77C+EJeRpPaPeF+OftO/VymycbRST28hZ2KE4rp4/31g/dNLlXRMYzU43tjNNmbSuluYbnwlxuvYJ88XKaWZQ8edFy63W3KVV/w96Z/s9tC5GAStQl34c001a+tx9XpOX2jT3a7bX4vwOvbhs6VKbW7XieeHVduq7K1ubcn06LQRfHTwAYmdEtVtYjevY2vfWKvoJtFqckaTKm9eSVJZXplKckoUnshJ1QfMz16vs7476HXUnsOUlW+N11HpFOrKX2uqr7YcX9/R6q1Nd4dGvxrpdeyj50qV0symAec7vToV+Vendm91a+tatwZd7gzorGZGp3zjl+z1Gj7nZa9jD3U/R1n52Xp77byQ75REq1A3/lxTfbv1mHo9Z3216W7XHa959+aDZ8uV2tymgec7DrueGjyC91YOSOyUoJ6Pe3dqzRtrFZ0WpWZnNqVTNbQwZ61GzH/G69i4jAu0sXCX/rNhzqHf65MUHiLv9dEp1IU/O/XFlgH1ek5fOKq7Qze/GuV1bNpzJUpuZtcJ5zv/fl/g4P0UjopN7qhAq3xj0d5M/euXp7yOje14oTYV7tL/Ns4+TKtsIbEvhU6ZU1D/l3XXXXdp7NixGjhwoK6++mqdc845Cg+v3Q+diIgIRUR4v0nkqOaj0APNERWm6Gbe/3rsEQ6FxYYpulnFG97OOO/FmM1hkzMhXFFp0QGb0+wKy0uVmZftdayovEz7Sosqjyc4I5UWnaDUyDhJUnpsxUeJ7C7O1+4SrsR6wF19jtOcTVnaXpCnGGe4zmzTQf2aNNfIGR8rv6xUC7Zt1j39B6jYVa4tebnq16SZhrfL0CM/zzF6dMAwvuiUVH2rnIf4OKRACo+2K6Wl9xzOSJui4u1KaVnRsOadnZr7dr7CImyKT3Foy5+lWjG7WCdeFWvEyKZU5CrRxsIdXseK3aXKKyvUxsIdirCH65KWgzR/95/KKc1VvDNGZzQ5VskRifoxe4kxQ5tQQXmp1uz3bn7hX80/cPzt1b/qhoxjtCEvRxvy9uqGjGNUVF6mzzcuN2JkwBT8taYK32N8pyKjbWrSyvtYeKQUEy81aVXxQtbiHzyKTZCSUqVtG6Rpr7nVtb/UsReb1w9wRIUpqpl3t+3hDjlinZXHw2IP2pjisCssIVyRrE0rRUTb1KiV92sN4ZE2RcX/fbxVF4dmvVUiZ7hNial2bfijXEu+L9PgqyOre0rAEvy6ptptjlY1bnXQVYEibYqOkxq3qphv2Y8uxSRIiSk27djg0eevl6lTf7va9TL+9UuzcEQ5FNPc+wQhx1+vo8Y0j5Gr2KXN0zar4dEN5Ux0qiS7RJumbpIz1qmGvfnY4AMKy0u1Nm+X17EiV8Wa6sDxBGeU1+uorWIr/vwqXkcN8o8OBurIX2sqoz/eXqr4O2zVTknR8bbKTv3xY7liEmx/dcqt6ZPKlNHPoXY96dQBdMo3Cl3VdKq8VPv/0al4Z5TSohKUUtmpv97vK8nXHjoFiwrlNVVktE1p1XQqJs6mtL86tfRHl2ISbEpKsWn7Brc+e71cnfvb1b6X8Z01i7Aoh8Kae7+G54hwKCwuTDHNo+Uqdmnjx5uV3KehwhOdKs4u0YYPD3SqwSGe1XqKXCXKKtjpdazYXarcskJlFexUpN2py9NP1k/ZK7S7NFcJzhid06y/UiISNHvnskM8KxD6/Nopk6ypDn5fwPnXmurv9wXsmvlWqcIi9Nf7Ai4t+a5cQ66JqO4pLYlW+UaRq0QbCg7al+KqaNWGgh2KtIfrslYn66fdy5VTmqf4sGgNa3asUiISNHfX0kM8K1A/Qb15XZL+7//+T59++qlGjBih+Ph4XXbZZbr66qvVuXNno0dDkBiY1l4Te51d+fWzfc6TJL28co5eWTXXoKnMJzkqRs+dPFQp0THKKy3Vqj3ZGjnjY83bslGSdPM30zWm7wl6/uShSoyI1Na8XD316zy9v4KAwdqs3qkzxsTrx3cK9OXTuSrOdys+xaHjRsSq+5CoIz8YkiS3x61mUam6v9O/FO+MVV5ZgdbkbdIdS16ssukdhzdp5QJFOpx6qPdgJYRHasmebRo5Z4oKykuNHg0wlJVblZvj0SdveJS3T4pvIPU52abTLmHjOoxx/pgofftOiT56ukhFeR4lptp18uUROnooV62EtVm5U1JFq6a/Ua78fR7FNbCp18kOnXxx0L+kG1h2qXBzoXbN2yVXgUvORKcSMhLU7qZ2ckSxubI2Bqa112M9z678+tmjz5ckvbJqjl5ZNceYoQATsHKrcnM8+vLNsopOJdnU42SHTrqYv7/WCp3ymRMbtdcjPYZXfv1UrwskSa+tnq3X1gT/Jy8CdWX1Tn3+Rrny90lxDaTeJzt0ysX8bK0Vu1SwuVC75mWrvMCl8L861fHmdgqjUzXmlkctY1I0JG2EEsJjlFtWqJW5m3Xj769V2fQOWI2VOyVJF46N1KzJpZr6VMlf7wvYNOjycPUZyut/NUarfMIlt5pHp2pCl6OV4IxRblmBVudu1i2LXtEGWgU/sXk8wfsB1Ha7XTt27FBqaqp27dqlyZMn6+2339aaNWvUq1cvXXPNNbrooosUFxdXq+cd8cvVfprYWhZua270CCGjaGfMke+EI9pw3Z11fuzAU5/w4SSHN3vW2IB9L/iXvzolSf+3xviPDg4FU7f3MnqEkJC5LdXoEULC+ovH1fmxgeyURKtCib9a9XVWhp8mtpa3dpxg9AghYXjK70aPEBIubPNbvR7Pmgp14c811Wfru/t+YAv6dE8Po0cICb9srd/HY6PCirPH1/mxrKlQV/5q1bR1/Hz1hek53Y0eIST8voP3+3xh2ZkP1evxrKlQF/5cU01f39UPE1vPZzk9jR4hJKzax/tUvjDvlCfr/FjWVKgLf3Zq6jr2AfjC13u7GD1CSFiXy6dq+cLsk56p82PplDkZ/xkZPpKamqoxY8Zo5cqVmjNnjjIyMnTbbbcpLS3N6NEAAKBTAADTo1UAADOjUwAAs6NVAAAzo1MAADOjUwBgPUH9GRM2W/Uf53788cfr+OOP14svvqgPPvggwFMBCEW24P2QChiITgEIFDqFuqJVAAKFVqEu6BSAQKFTqCtaBSBQaBXqgk4BCBQ6hbqgUwAChU6ZU1Bfed1zhP+o4uPjdc011wRoGgAAvNEpAIDZ0SoAgJnRKQCA2dEqAICZ0SkAgJnRKQCwtqC+8rrb7TZ6BABWwY8b1AGdAhAw/LhBHdEqAAHDjxvUAZ0CEDD8uEEd0SoAAcOPG9QBnQIQMPy4QR3QKQABw48bUwrqK6/ffPPN+vHHH40eAwCAatEpAIDZ0SoAgJnRKQCA2dEqAICZ0SkAgJnRKQCwtqDevP7KK6/oxBNPVLt27fTEE09ox44dRo8EIETZPJ6A/ULooFMAAiWQnaJVoYVWAQgUOoW6oFMAAoU1FeqKVgEIFDqFuqBTAAKFNRXqgk4BCBQ6ZU5BvXldkmbNmqWhQ4fq6aefVosWLTRs2DB98cUXfLQIAMAU6BQAwOxoFQDAzOgUAMDsaBUAwMzoFADAzOgUAFhX0G9e79Kli55//nlt27ZN77//vkpKSnT22WerefPmuvfee7V27VqjRwQQCjwB/IWQQqcABEQgO0WrQg6tAhAQdAp1RKcABARrKtQDrQIQEHQKdUSnAAQEayrUEZ0CEBB0ypSCfvP6AU6nUxdccIFmzpyp9evX65prrtF//vMftW/f3ujRAACgUwAA06NVAAAzo1MAALOjVQAAM6NTAAAzo1MAYD0hs3n9n1q0aKHx48crKytLM2fONHocAKHA4wncL4Q8OgXA5wLZKVplCbQKgM/RKfgQnQLgc6yp4GO0CoDP0Sn4EJ0C4HOsqeBDdAqAz9EpUwrqzestW7aUw+E45O02m02DBg0K4EQAAPyNTgEAzI5WAQDMjE4BAMyOVgEAzIxOAQDMjE4BgLWFGT1AfWRlZRk9AgCLsHFSFOqATgEIFDqFuqJVAAKFVqEu6BSAQKFTqCtaBSBQaBXqgk4BCBQ6hbqgUwAChU6ZU1BfeR0AAAAAAAAAAAAAAAAAAAAAEBzYvA4AAAAAAAAAAAAAAAAAAAAA8LswowcAgKDg4fNDAAAmRqcAAGZHqwAAZkanAABmR6sAAGZGpwAAZkanTIkrrwMAAAAAAAAAAAAAAAAAAAAA/I4rrwNADdjcRk8AAMCh0SkAgNnRKgCAmdEpAIDZ0SoAgJnRKQCAmdEpc+LK6wAAAAAAAAAAAAAAAAAAAAAAv+PK6wBQEx6P0RMAAHBodAoAYHa0CgBgZnQKAGB2tAoAYGZ0CgBgZnTKlLjyOgAAAAAAAAAAAAAAAAAAAADA77jyOgDUBCdgAQDMjE4BAMyOVgEAzIxOAQDMjlYBAMyMTgEAzIxOmRJXXgcAAAAAAAAAAAAAAAAAAAAA+B1XXgeAGrB5OAULAGBedAoAYHa0CgBgZnQKAGB2tAoAYGZ0CgBgZnTKnLjyOgAAAAAAAAAAAAAAAAAAAADA77jyOgDUBGdgAQDMjE4BAMyOVgEAzIxOAQDMjlYBAMyMTgEAzIxOmRJXXgcAAAAAAAAAAAAAAAAAAAAA+B2b1wEAAAAAAAAAAAAAAAAAAAAAfhdm9AAAEBTcRg8AAMBh0CkAgNnRqv9n777Do6j3PY5/dtMbCb0Teu8dkS5NQJqoiDSxUsR2bKhgOaIcr+0oYANUBBERBEREkaaCgIBY6IROKKEllLT93T84LCwphGTLJHm/nmefe5md2Xx35OybgdkZAICV0SkAgNXRKgCAldEpAICV0SlL4srrAAAAAAAAAAAAAAAAAAAAAACP48rrAJAFNmN8PQIAABmiUwAAq6NVAAAro1MAAKujVQAAK6NTAAAro1PWxJXXAQAAAAAAAAAAAAAAAAAAAAAex5XXASAr+AYWAMDK6BQAwOpoFQDAyugUAMDqaBUAwMroFADAyuiUJXHldQAAAAAAAAAAAAAAAAAAAACAx3HldQDICr6BBQCwMjoFALA6WgUAsDI6BQCwOloFALAyOgUAsDI6ZUmcvJ6ONgW3+XqEPOHohXBfj5Bn7LgQ4OsRAFhMIb8EX4+QJ0QFXvD1CHmCf2Cqr0cAYDFJhkNNdwj2S/b1CHnCy//c7OsR8oTbK/t6AgDIuwL8OaYC4CrYzrGAO/jZ+Mdpd/D3c/h6BAAWdMHw79ewDn8brQIAWJe/nU4B6eGMAgDICv4cAQCwMjoFALA6WgUAsDI6BQCwOloFALAyOgUAsDI6ZUl2Xw8AAAAAAAAAAAAAAAAAAAAAAMj7uPI6AGSBzXB7UQCAddEpAIDV0SoAgJXRKQCA1dEqAICV0SkAgJXRKWviyusAAAAAAAAAAAAAAAAAAAAAAI/j5HUAyApjvPe4DuPHj1eTJk0UERGhYsWKqVevXtq2bZvLOkOGDJHNZnN5NG/e3J17BwDga97sFK0CAGQHnQIAWJlFj6noFADAyYKdkmgVAOB/OKYCAFiZRTsl5e9WcfI6AORiK1as0IgRI7RmzRr98MMPSklJUadOnXT27FmX9bp06aLDhw87H4sWLfLRxACA/IZWAQCsjE4BAKyMTgEArI5WAQCsjE4BAKwuP7fK39cDAACyb/HixS6/njp1qooVK6bff/9drVu3di4PCgpSiRIlvD0eAAC0CgBgaXQKAGBldAoAYHW0CgBgZXQKAGB1+blVXHkdALLCorcOudrp06clSYUKFXJZvnz5chUrVkxVq1bVvffeq6NHj+bo5wAALMbCt7m6Gq0CgHyKTgEArCyXHFPRKQDIx3JBpyRaBQD5FsdUAAAryyWdkvJXq7jyOgBYTGJiohITE12WBQUFKSgoKNPtjDF69NFHdeONN6p27drO5V27dlW/fv0UHR2tmJgYPffcc2rfvr1+//33a74mAADpoVUAACujUwAAq8tOq+gUAMBbOKYCAFgdx1QAACvjmCpruPI6AGSFF799NX78eEVGRro8xo8ff80RR44cqc2bN2vmzJkuy2+//XZ169ZNtWvXVo8ePfTdd99p+/bt+vbbbz21twAA3ublbwrTKgDAdaNTAAArywXHVHQKAPI5i3dKolUAkK9xTAUAsLJc0Ckp/7WKK68DgMU8/fTTevTRR12WXetbUqNGjdL8+fO1cuVKlSlTJtN1S5YsqejoaO3YsSPHswIA8idaBQCwMjoFALC6620VnQIAeBPHVAAAq+OYCgBgZRxTZQ0nrwNAVji896OycpuQS4wxGjVqlObOnavly5erQoUK19wmLi5O+/fvV8mSJXM6KgDAKrzYKYlWAQCygWMqAICVWfSYik4BAJw4pgIAWBnHVAAAK7Nop6T83Sq7rwcAAGTfiBEjNH36dM2YMUMRERGKjY1VbGyszp8/L0lKSEjQ448/rtWrV2vPnj1avny5evTooSJFiqh3794+nh4AkB/QKgCAldEpAICV0SkAgNXRKgCAldEpAIDV5edWceV1AMgCmzG+HiFdkyZNkiS1bdvWZfnUqVM1ZMgQ+fn56c8//9Snn36qU6dOqWTJkmrXrp1mzZqliIgIH0wMAPAEq3ZKolUAgIus2io6BQCQ6BQAwPpoFQDAyugUAMDKrNopKX+3ipPXASAXM9eIa0hIiL7//nsvTQMAQFq0CgBgZXQKAGBldAoAYHW0CgBgZXQKAGB1+blVnLwOAFlh4W9gAQBApwAAlkerAABWRqcAAFZHqwAAVkanAABWRqcsye7rAQAAAAAAAAAAAAAAAAAAAAAAeR9XXgeArHDwDSwAgIXRKQCA1dEqAICV0SkAgNXRKgCAldEpAICV0SlL4srrAAAAAAAAAAAAAAAAAAAAAACP48rrAJAVhm9gAQAsjE4BAKyOVgEArIxOAQCsjlYBAKyMTgEArIxOWRJXXgcAAAAAAAAAAAAAAAAAAAAAeBwnrwMAAAAAAAAAAAAAAAAAAAAAPM7f1wMAQK7A7UMAAFZGpwAAVkerAABWRqcAAFZHqwAAVkanAABWRqcsiSuvAwAAAAAAAAAAAAAAAAAAAAA8jiuvA0BW8A0sAICV0SkAgNXRKgCAldEpAIDV0SoAgJXRKQCAldEpS+LK6wAAAAAAAAAAAAAAAAAAAAAAj+PK6wCQFQ6+gQUAsDA6BQCwOloFALAyOgUAsDpaBQCwMjoFALAyOmVJuf7K6+vWrdOAAQNUoUIFhYSEKDQ0VBUqVNCAAQO0fv16X48HAMjn6BQAwOpoFQDAyugUAMDqaBUAwMroFADAyugUAORfufrK6/PmzdNtt92mDh06aPTo0SpevLiMMTp69KiWLFmili1b6ssvv1TPnj19PSqA3M44fD0BciE6BcBr6BSyiVYB8BpahWygUwC8hk4hm2gVAK+hVcgGOgXAa+gUsoFOAfAaOmVJufrk9WeffVYvvviinnrqqTTPPfzww3rttdf0zDPPEDEAgE/QKQCA1dEqAICV0SkAgNXRKgCAldEpAICV0SkAyN/svh4gJ3bu3Kk+ffpk+HyvXr20a9cuL04EIM8yxnsP5Bl0CoDXeLNTtCpPoVUAvIZOIRvoFACv4ZgK2USrAHgNnUI20CkAXsMxFbKBTgHwGjplSbn65PVKlSpp3rx5GT7/zTffqGLFit4bCACAK9ApAIDV0SoAgJXRKQCA1dEqAICV0SkAgJXRKQDI3/x9PUBOvPjii7rjjju0YsUKderUScWLF5fNZlNsbKx++OEHLVmyRF988YWvx3SLNbPPatWnZ9XolhC1vzdCkpR03qGVn5zVjjWJuhDvUIFifmrYI0QNbg718bTWdXvZm3R3xe6ae2CFJu+aK0m6K7qL2hZroKJBUUp2pGpnwn5NjVmkbfF7fTytdT1Ys4X+Va+dpm5bq5c2/OhcPrp2K91Rqb4iA4O1Ke6Qxq7/XjvOHPfhpG7k4FtRuH75qVOStHxWsr7/JFk39PRXj/sDJUnxJ40WT03Sjg0OXThrVL62Xbc8EKgipXP19+c86sjCvTr81W4V6VhGZQZUSfP8/mnbFLf8kEr1r6xincv6YMLc4f5qLfVY7faatuM3vbJ5iXP5qBqtdVuFhooMDNYfJw7qhY2LtTP+mA8ndRM6hWzKT61aOitF301LVauefur5wMVD4fiTRt9OSdH2DQ6dPytVrG1Trwf9VZROZejg/P3aP3uvSnQupfJ3XfxL453vb9fxn4+6rBdeKUK1x9XzxYi5wrDKrfRwzZv02a7VmvD3YklSh5I11C+6sWpGllTBoDDdunyStp2J9fGkbkSrkA35qVOS9NOsZC2elqIbe/rplgcuH1MtmpKs7RtSdeGsVKG2XT0fDKBVmTgw/4D2fblPJTuXVIWBFSRJO97foWOrXP/cH14pXHVfqOuLEXOFuyu11ugaHTV996/6zz/fSZI6lKipW8s1Vo2oUioYGKbbVr6Xd1pFp5BN+alVP36Rqm+nOdS6l129H/CTdLFTCz5O1bYNRufPSpVq29RnuJ+Klrb5eFrr2v/NQe35cp9KdSmhSv/r1LbJO3X0qk5FVApX/Rfr+GLEXGFopdYaVa2TZsT8qte3LJK/za7hVW9Sy2JVVSakkBJSLui347v0zrYlOp4Y7+tx3YNWIRvyU6dWzErSD58kqUXPAHW7P0iSlHjeaMnUJG1ZnaJz8UYFi9vU/JZANesW4ONprYtOuced0e11X+Wb9dW+lXp3x3xJ0pAKndS+eH0VDY5SiiNF2+MP6KNdi7XlzD4fT+smdArZkJ86JdEqd6FV7nFHuQ4aVrG7vj6wQpN2zpMkDSzf2XkOZYojVTsSDmjq7m+1NT4PtIpOWVKuPnm9b9++Wrlypd5++2298cYbio29+BflJUqUUIsWLbRixQq1aNHCx1Pm3OHtydq8+LyKlnf9z7XsowTt+zNZ3R4roMhiftqzMUk/TIpXeCE/VWke5KNpratqRFndXLKFdiccdFl+8PxRvbdjjg5fiFOQPUC9y7TR+LoPaOjal3U6+ayPprWuuoVK6o5KDbTl5BGX5ffXaK67qzfVE2sWKib+hEbUaqlP2/XXTd++r7MpST6aFvCt/NIpSdq/PVVrF6eoRIXL/zBljNFnLyXKz08a+HyggkNt+nluij5+JlGPvB+swGD+Eetq53afUdzyQwouG5bu86d+P6azu84oICrQy5PlLnUKltRtFRpo6ynXVt1b9QYNrdJcT62fr5iEOA2v3kpTWw1QlyUTaRXyrfzSqn3bHFrzXapKXtWpaS8my+4vDXk+QMFh0sqvU/X+M8n61/uBCqJTaSTsjtfRZbEKLZv2C9ORdQuq0r2Xv3Rl92f/ZaRWVCndGt1I2067nuwX4hegTSf2acmhv/VC/Z4+mg6wlvzSKUnav82h39Jp1ScvJsrP36YhzwcpKExa9XWKPnwmSY+/H8QxVTrid8XryLIjCi2XtlVRdaNU+b7Kzl/baFWGakWW1q3RjdOcmB7iF6BNJ/dpyeG/Na5eL98MB1hMfmnVvm0Orf7OoVIVLi8zxujjF1Ll5y8NG+un4FCbln/t0KSnU/TkB/4cU6UjfleCDi87orB0OlWwbpSq3l/J+Ws6lbGakaXVp2wTbT9z2Lks2C9A1SNL6aMdy7U9PlYFAoL1eI1ueqvxXbrrl0k+nBbwrfzSqQPbU7VucbJKVHD9ku+iDxIVszlVt/4rSAWL27VzQ6oWvJeoAoVsqtEiV58q4xF0yj2qRZRVj9LNtTP+kMvy/eeO6e1tc3XofJyC/ALUr2xr/afBvRrw66ucl4J8K790SqJV7kKr3OPSOZS7rjqH8sC5Y3p3x9c6fP7iOZR9y7bRq/Ue0ODf/k2r4BG5/lOuRYsWeSZU6Uk679C3/3dGnUYV0JpZrh8Ch7Ymq1b7YJWrc/EEtnpdQvTH4vM6sjOZk9evEmwP1JPVB+qt7bPUP7qTy3PLjm5w+fUHu+apa8kWqhBWSptO7fDmmJYX6h+gN1vcomfWLtKIWi1dnhtarakm/v2Lvj+wTZL0rzULtLb3aN0SXUszd230xbiAJeT1TkkXvw08a0KS+jwUqJ++SHYuP37QaP9Whx6eFKzi0RcPwnoOD9DLd6boj+WpatIl1/8xxK1SL6Ro7/v/qOzQaoqdn/buH0knE3Vw+g5VfLyedr+x2QcT5g6hfgF6vUlvPbfhWz1Y/UaX5wZXbqpJW3/WkkNbJUlPrP9Gq7s9qu5la2tWzIb0Xg7IF/J6qxLPG834T4r6jQ7QjzNTnMuPHzTau9Xo8ckBKvG/TvUZYdO4/knatNyhZl38fDWyJaVeSNXOSdtUcVgVHfgm7RUW7P42BfLlqmsK8QvUqw376oU/5uu+qq1dnlt44GLfS4VE+WAywLryeqeki62a+Z8k3To6QEuvatW+rUaPTg50tqr3iAC92P+CNi5PVTOOqVykXkjVjkk7VGlYJR2YdyDN8/YAO63KghC/QI1vcKte2DxP91Zp6/LcwoN/SKJVwNXyeqsSzxtNn5Cq20b76YeZDufyYwelvVuNnpjsr5LlL54UcOtIu567w6GNy4yad+VEgSulXkjVtok7VOWeito/72Ca5+0BHFNlRYhfoP5dv59e+nOe7qnc1rk8ISVRw9dOc1n3tX8WanrLB1UiOFKxF057d1DAQvJDp2ZPuKBeDwVp+ReuF6nZv9WhBh0CVLHuxWOnJl3tWvddsg7uSOWEwKvQKfcI8QvUs7Xv1OtbZmtghZtcnlt6xPWcifd2zFe30s1UKbykNpzc6c0xAUvJ652SaJW70Cr3CPYL1NM17tKb27/UgOiOLs9dfQ7l5J3z1LVkc1UMK6WNnEMJD+D+shb34+QEVWwcqPL10364lq4ZoF2/JSo+LlXGGO3bnKQTh1JVvgEfxFcbWeVWrT3xjzae2p7pev42P91c8gYlpJzX7oRDma6bH73QuLOWHdqlX47scVleNixKxULCtSo2xrksyZGq347uU8Oipb08pYcY470HkMt8MzFJ1Zv6qXID15P8Uv93Hrv/FVmy+9nk7y/t+SfVixPmDgc+26EC9QorolahNM8Zh9G+D/5Rsa5lFVI6/auy46KxDbpqeewO/Xo0xmX5xVZF6Ocju53Lkh2pWnt8rxoWLuPtMd3Pm52iVchlvn4vRTWa2FW1gevhb8qlTgVcPqHC7meTn78U87dDcBXzyS5F1SukyNpR6T5/ZutprR/+mzb9a712f7xDyae5o0V6xtTtplVHdmjN8d3XXjmvoVNAhua9l6zqTeyqctUx1aVWBVxxl+BLrdpDq9LYPW23CtYvqKgMWnV6y2mtHb5WGx7foJ0f7VQSrUrXM7W7a+XR7fotv7WKYyogQ1+9l6oaTe2q1jD9Y6qAq/7uz89f2k2n0tg5LUYF6xdUwQw6dWrLGa15cJ3WP7ZROz7cpaTTyemul989VauHfj66TWvjdl1z3XD/YDmMQ/EpF7wwmRfQKSBdCyYmqlpTf1VukPYEv+iadm39LUVnjjtkjNHuP1J0/KBDlRtxMuDV6JR7jK7WR2uOb9HvJzM/wc/f5qcepZsrIfm8duWV81I4pgIyRKvcg1a5x6gqt+q3uC3aeDIL51CWaqGElPPadTYPtIpOWVKe/qR75plnFBsbqylTpvh6lGzZsvKCjuxK1sA30p7EJkkd7ovQ9+/Ga/KQONn9JJtN6jwqQmVqcfL6ldoUbaDK4WU0asMbGa7TrFBNPV1zsILsATqRdEZPb56oMync7uJK3cvVVO2CJdTz+6lpnisacvFEyuMXXPfZ8QtnVTos0ivzAblRbu+UJP2xIkWHdjo04u3gNM8VLWtTVDGbvp+arN6jAhUQLP08N0XxJ6X4E/xh7Uon1xzR+b3xqvp8o3SfP7pon2x2m4p0zAMnWXtQtzK1VDOqpPr+9FGa54oEhUuS4hITXJbHJZ5VqVBaBWQkt7dq4/JUHdxlNPrttIe+xcraVLCYtGhaim4d5a/AYGnl3FTFn5TO0CkXx1cf09k9CarzQv10n4+qV1CFmxVRUOEgJR67oP1z9umf8X+pzkv1ZQ/gO/OXdClVWzUjS+qOlR/4ehQgz8jtnZKkTctTdHCXQ6PeTnsXxYutsum7aSnqMypAgcHSKo6p0nV89XGd3XNWdV+sm+7zBesVVOGmhRVUJEiJxxK176t9+nv836r3Uj1adYUupeqoRmQp3fnzZF+PAuQZub1VG5Y7dHCn0SPvpL0zVfGyUsFi0sKpqbrtIT8FBkvLv3b875jKB8Na2NHVx5UQk6AGL6XfqUL1olS02cVOXTh2QXtn79efr/ytBi/XpVNX6FSyjqpHltTAX67dqUC7vx6q3kmLD23W2ZREL0wH5E65vVObVyTr8E6HHng7JN3nuz0QpHnvJGrCoHPO8yl6jQ5S+VrccfFKdMo92hevr6oRpfXAurczXKdF4Rp6vvZdCvILUFxivB7b+IFOJ5/z4pRA7pLbOyXRKnehVe7RtlgDVQkvrREb3sxwnWaFa2pMzUHOcyif/GOSziRzDiU8I0+fvH7w4EHt378/03USExOVmOj6lxbJSQ4FBPr2g+vMsVT99GG8+r0YJf/A9G+t+PuC8zq0LVm9n4tUgaJ+OvB3kn6YnKCwQn7pXqk9PyoaFKUHK/fRM5snKdmkZLjeplM7NXz9f1QgIExdS7bQmBpD9NDGN3U6OSHDbfKTkqERer5RRw1aNlNJjoyvlmyu+uaQTZJRHvnHVL4VBQ/ISqekDFqV6FBAkG9bdeqYQwvfT9LdLwcrIJ1W+fnbdNeYIM15O1Ev3n5edrtUqYFdVRtzcHClpLgLOjhjhyo9Xl/2wLQHoef2xOvYkgOq9kJj2WzcbjkjJUIKaEy9Trr75xmZt+qqX9uUtl+5Ul54D7CkbB9TWaJTRt+8n6L7/h2QYacGPxugL99K0fO3Jclul6o0sKk6nXKRGJeovdN3q/oTtWTP4Di5SPOizv8/tGyYwipGaOPD63Rq0wkValLEW6NaWvHgAnqqTlfdt/pTJTkyPjbN02gVPCAvHFPNfz9Z9/w7KMNWDXw2ULPfStK42y7IbpcqN7CrGq1ykRiXqJjPYlTzyZqZtOpyj8LKhim8Qrh+f/h3ndx0UoWbFPbWqJZWPLiAnqh1sx5Y80n+bBWdgofk5mOqk8eM5k5O1QOv+GfYqaHP+euLN1M0pl+K7HapagObajTh76+ulBiXqN2f7lHtp2pk2KmiLa7sVKgiKoRr7egNOrHppIrQKUlS8eBI/atmNw1fO+2anfK32TW+/m2yyabxfy/w0oReQKvgAbn5mOrUMYe+fT9JQzL4NypJWjM/WQe2puquscGKKmbTnr9StWBioiIK2dK9+m1+RKfco2hQpEZW7al/bfwg005tPLlL96x9Q5EBYepWupnG1RmoB9e9o1N54bwUOgUPyM2dkmiVu9Aq9ygaFKXhlXvrqT8mKzmTVv1xcqceWP+6IgPC1LVkcz1bc7Ae2vBW7m8VnbKkPP0p98knn1xznfHjx+uFF15wWdZjZFndMiraU2NlyZGdKTp3yujTh086lxmHtP/vZG1YeF4PzSqqVZ8lqNczkarU5OKVmYpV8NfR3SlaN/ccJ6//T+XwsioYGKF3Gz3mXOZn81OdyIq6pfSN6r7ycTlklOhI0qELx3XownFtjd+rKU3GqEuJ5pq1/0cfTm8dtQuWVJHgMM3vfLdzmb/drqbFymlglca66duLV7koGhKuY1dcfb1wcFiaq7EDuCwrnZLSb9Vto4rr9tElPTFWlh3c4VDCKendhy7fdtXhkPb85dCaBSl66ZsQla5i10PvhujCWaOUFCk80qb3Hr6gMlU42eKSc3vilXImWdvGrb+80GF0dvspHV96UKX6VVRKfJL+fmy1y/OHvtipY0sOqNb/tfD+0BZ0sVXh+rr9Pc5l/na7mhSJ1l2VmqjzkomSLl6B/diFywdWhYLCFJdIq4CMZPeY6o6HiunO0cU9NVaWHPhfp94adfm2gA6HFPNXqn5ZkKpX5weqTBW7Hn0vUOfPGqUmS+FRNr39cJLKVuFki0vOxiQo+Uyy/nx+0+WFDil+2xnF/nBIzaa2lM3uur8CowIVVCRI54/kkVuzu0GtqFIqHBSuWa3vdy7zt/upUeFo9a/QVI0WviRHXvniL+BFOTmmuv2h4uo/uoQnxsqyAzuMEk5J74y6/I9rF1sl/brgvF6ZH6wyVex65L1gl1b9l2MqFwn/a9Ufz/1xeaFDOrPtjA7/cFgtprVI26qC/2tV7HkvT2tdNSNLq3BQuGa2esC5zN/up0aFonVH+WZqsugFWgVkQ3aPqe58qKgGPFzMU2NlyaVOvTHy8j9qOxzS7r+Mfp7v0H8W+KtsFZv+NTHApVNvjk7hmOoK8TFnlXwmWRuf3Xx5oUM6vfWMDi2J1Y2fNM+kUxxTXVIj8uIx1ectH3Qu87f7qWGhaN0W3UzNF4+TQ0b+NrtebXCHSocW1P2/TeGq68A15OSY6tZRJXTb6FKeGCtLDu1w6Owpo0kPXf4zvcMh7f3Lod8WJOvZr8L0wydJuvPZYFVrevG0mBIV/HR4l0O/fJ3MCYH/Q6fco1pEGRUKjNAHTR52LvOz+6luVAX1LtNSHZc9JYeMLjiSdPB8nA6ej9M/Z/ZpeosndXOpppqx9yffDQ9YWG7ulESr3IVWuUeViDIqGBihiY0fdS67dA5lz9I36uYV/3K26tD54zp0/ri2nNmraU2fUZeSzfTFvqU+nB55Vb7/lHv66af16KOPuiz7fF9XH01zWXS9AA15t5DLssVvnVGhMn5qemuYjMPIkXLxdiFXstkl4+AfES7ZdGq77lv3qsuyx6rdqf3nj+jLfUsz/AcXm00KsOf7/3k4/Xpkj7os+tBl2YRm3bTrTJze37JG+xJO6ej5BN1YooL+OXlEkhRgt6tZsXJ6bdMyX4zsfnwDCz6UXqu+O9DKR9NcVrm+n0ZPDHZZ9tWbSSpaxqY2/QJk97scqeCwi///8YMOHdzpUMdBAV6d1coiahZUtZebuCzb9/FWBZcIVbFu5RQQFaSIOq5/Jtj9+h8qeEMJFWrl2y8wWMnqozHq9oPrLYNfbXSLdscf1wfbf9X+syd19Hy8WhavoC2nYyVJATa7mhaJ1n/+ygMHWnQKPpRep348eIOPprmscn27Hpvk2ptZb6SoWFmb2vXzc+lUyP86deygQwd2GHUZyLHAJZG1IlX3lQYuy3Z9uEMhpUJUqluZNH8hKEnJ8clKPJGowCh6f8maY7vVe9l7Lsteqt9LMQnHNWXnz/njZEBaBR9Kr1VLDt7oo2kuq1zfrkcnBbks+/KNJBUra1fbfv6ZtqrzQG4dfElUrSjVG1/PZdnOD3YqtFSoSnUvdY1WcQGQS347vkt9V/zXZdkL9XprT8JxTd21Ku+3ik7Bh9Lr1LJDzX00zWVV6tv0xGTXY6OZ/5eqYmWlDrdldExltH+HUddBfMnqkqhakWr4qmuntn+wU6ElQ1SmR2k6lUVrj+9Sv5XvuCwbV7eP9pw9rmm7VrqcuF4urLDu++1jnU7OY19So1XwofRatfBAGx9Nc1Gl+n4aNTHEZdnXbyaqSBm7WvcLkMMhpaZ3PoXfxRMHcRGdco/fT+7U0DWvuyx7subt2nf2qGbuXZbxeSmyKTCvnJdCp+BDVuyURKvchVa5x8aTO3Tvutdclj1erb/2nzuqWfszPodSeeUcSjplSXngd9ZlycnJ+vbbb7Vjxw6VLFlSvXv3VlhYWKbbBAUFKSjI9R+JAjK4xYQ3BYbaVTTadY6AYJtCCthVNPrif7aytQO0YmqC/INsKlDUTwf+StI/yy6o7bBwX4xsSedTE7X3XKzLsguOJMUnn9Pec7EKsgfqzuiOWn38L51IOqMCAWHqXqqligRFadWxTb4Z2oLOpiRp++ljLsvOpSTrVNJ55/Kp29ZqeM0btCf+hPbEn9TwmjfofEqy5u/92xcjA5aUnU5JGbTKx7e4kqSgUJtKlL/qG6zBUmjXOGMgAAEAAElEQVQBm0qUvzjfn6tSFBZpU1RRm2L3OLTg/WTVbO6nqg050eISvxB/hZRxbbc90E9+4QHO5f7hV53852eXf2SggkuGemtMyzubkqQdZ65qVWqSTiaddy7/ZOdaPVDtRu1NOKE9CSf0QLUbdT41WQv3/+WLkQFLctsx1XHfdyo41KaS6XQqLMKmkv/r1B+rUhUWaVPBojYd3uPQN5NTVLuFXdUa+X5+q/AL8VdoWde/OrAH2eUfHqDQsmFKvZCqA1/vU6EmhRUQFajE4xe0/8u9CggPUKFG3IrxknOpSdoZf9Rl2fnUJJ1KOudcXiAgRCVDIlUsOEKSVD784v47npiguMRcfjtGwE3cekxlkValPaayKTRCzmOqzatSFRap/x1TGc2fnKxaLeyq2ohjqkv8QvwUVtb194FfkJ/8w/0V9r9W7f96vwo3KayAqAAlHkvUvtn7FBAeoMKNadUl6bcqOd1WFb3UqrCLt2SmVcBlbjumirNGp0qWd10WGCyFFbh8rLVppUPhkVJUMZsO7zGaOylVdVrYVJ1jKif/ED/5l3X9Ozy/ID/5R/grrGyoUi+kau+c/SrStLACowJ04Vii9nx5qVOFMnjV/OdcapJ2JaTt1Omkc9qVcFR+NrsmNOyv6gVKafT6z+QnuwoHXvy71dPJ55ViUn0xNmA5eenfqYJCbSpe3vW4KOB//0Z1aXn5OnYtnpIk/yApqphde/5M1aalKep6b1B6L5kv0Sn3OJ+aqJizV52XkpqkM8lnFXM2VsH2QN1VoYN+Pfa34pLiVSAgVL1K36CiQZFafvSPDF4VyH/yUqckWuUutMo9zqcmas/VrXIk6UzKWe35X6vujL5Jq+P+VlzixXMobyndUkWDorSSVsFDcvXJ6zfccIMWLVqkqKgoHTt2TB06dNC2bdsUHR2t/fv3a8yYMfr1119VunRpX4/qEd2fKKBVn5zVt6+f0YUEhwoU9dONA8NVv2vItTeGJMlhHCoTUkzP1RqqAgHhik8+q+3x+/TYpnfSnPSOzL2/ZY2C/QL0YuMuigwM1qa4Qxq8/AudTUny9WjuwdcakQ35vVOSdOaE0bcfJivhlFFEQZsadPBT+/5chRW+8eH2XxXs56+x9bsqMjBEf5w4qLt//jxvtIpOIZvye6vOnDCa/0GKEk5JEYWkxh38dFN/Tga8Hja7dO7AWR37+ahSz6UoICpQBWpEqsrI6vILydV/5eB17UpU08sNejt//Xrj2yRJE7ct06Rty300lRvRKmRDfu+UdLFVCz5IuXhMVcimRh381KE/n6/XxS6d239OR38+qtSzqQqIClBkzUhVHVlVfiF0/3q0LV5dL9Xv4/z1hEa3S5Imbf9Jk7fn8rsv0ilkU35v1ZkTRt984FD8KalAIalxB7s63en7k0RyFbt0dv85Hf35mFLOpirwf52qMaqq/OlUlhULLqC2xWtIkma1Guny3L1rPtbvJ2J8MZZ70SpkQ37v1O1PBmvJtCTN/k+izscbRRWzqeOgQDW9mWOqLKNTbuGQQ+VCi6lzncaKDAzTmeSz2npmv0b9PlF7zh7x9XjuQaeQDfm9UxKtcgta5RapcqhsaHF1LNHEeQ7ltvh9emTjf/PGOZR0ypJsxuTea+Lb7XbFxsaqWLFiuu+++7Ru3Tp99913KlGihOLi4nTLLbeoevXq+vjjj6/rdT/a3spDE+cvsw838vUIecaOQ8V8PUKesLv/M9netmvJEW6cJHPfHX7Paz8LnuWpTknS17saeGDi/GfW0Wa+HiFP2Hgo7/6FgTdt7/tctrf1ZqckWpWXeKpVC3bX9dDE+ctXx5v4eoQ8YUNsGV+PkCf8ecsLOdqeYypkhyePqb7ZXd/9A+dD8+I4NnWHDUdolTv80f2lbG/LMRWyy1OtWhRT20MT5y9fxzX29Qh5woajdModNtz8co6255gK2eHJY6rZuzgXwB2+P1nH1yPkCTtPF/H1CHnC8g6vZ3tbjqmQHXTK+uiUe+xNKOjrEfKEH9q+me1t6ZQ15ZnLH6xYsUIvv/yySpQoIUkqXLiw/v3vf+unn37y8WQA8gRjvPdAnkSnAHiUNztFq/IsWgXAo+gUcohOAfAojqngBrQKgEfRKeQQnQLgURxTIYfoFACPolOWlOtPXrfZbJKkU6dOqUKFCi7PVahQQYcPH/bFWAAASKJTAADro1UAACujUwAAq6NVAAAro1MAACujUwCQf/n7eoCcGjJkiIKCgpScnKy9e/eqZs2azucOHz6sqKgo3w0HIO/gW1HIJjoFwCvoFHKAVgHwClqFbKJTALyCTiEHaBUAr6BVyCY6BcAr6BSyiU4B8Ao6ZUm5+uT1QYMGOb+B1bNnTyUkJLg8P2fOHNWvX98HkwEAQKcAANZHqwAAVkanAABWR6sAAFZGpwAAVkanACB/y9Unr0+bNi3T58eNGyc/Pz/vDAMgb3PwDSxcPzoFwGvoFLKJVgHwGlqFbKBTALyGTiGbaBUAr6FVyAY6BcBr6BSygU4B8Bo6ZUl2Xw+QE6NGjdKqVasyfD4sLEzBwcFenAgAgMvoFADA6mgVAMDK6BQAwOpoFQDAyugUAMDK6BQA5G+5+uT19957T23btlXVqlX12muvKTY21tcjAQDgRKcAAFZHqwAAVkanAABWR6sAAFZGpwAAVkanACB/y9Unr0vSkiVLdPPNN+v1119XuXLl1LNnTy1cuFAOh8PXowHIQ4xxeO2BvIVOAfAGb3aKVuU9tAqAN9ApZBedAuANHFMhJ2gVAG+gU8guOgXAGzimQnbRKQDeQKesKdefvF6nTh299dZbOnTokKZPn67ExET16tVLZcuW1ZgxY7Rz505fjwgAyMfoFADA6mgVAMDK6BQAwOpoFQDAyugUAMDK6BQA5F+5/uT1SwICAnTbbbdp8eLF2r17t+699159/vnnqlatmq9HA5AXOIz3HsiT6BQAj/Jmp2hVnkWrAHgUnUIO0SkAHsUxFdyAVgHwKDqFHKJTADyKYyrkEJ0C4FF0ypLyzMnrVypXrpzGjRunmJgYLV682NfjAADggk4BAKyOVgEArIxOAQCsjlYBAKyMTgEArIxOAUD+4O/rAXIiOjpafn5+GT5vs9nUsWNHL04EIM8yfCsK149OAfAaOoVsolUAvIZWIRvoFACvoVPIJloFwGtoFbKBTgHwGjqFbKBTALyGTllSrj55PSYmxtcjAACQIToFALA6WgUAsDI6BQCwOloFALAyOgUAsDI6BQD5W64+eR0AvMbh8PUEAABkjE4BAKyOVgEArIxOAQCsjlYBAKyMTgEArIxOWZLd1wMAAAAAAAAAAAAAAAAAAAAAAPI+rrwOAFlhjK8nAAAgY3QKAGB1tAoAYGV0CgBgdbQKAGBldAoAYGV0ypK48joAAAAAAAAAAAAAAAAAAAAAwOO48joAZIFxOHw9AgAAGaJTAACro1UAACujUwAAq6NVAAAro1MAACujU9bEldcBAAAAAAAAAAAAAAAAAAAAAB7HldcBICuM8fUEAABkjE4BAKyOVgEArIxOAQCsjlYBAKyMTgEArIxOWRJXXgcAAAAAAAAAAAAAAAAAAAAAeBwnrwMAAAAAAAAAAAAAAAAAAAAAPM7f1wMAQK7g4PYhAAALo1MAAKujVQAAK6NTAACro1UAACujUwAAK6NTlsSV1wEAAAAAAAAAAAAAAAAAAAAAHseV1wEgK4zD1xMAAJAxOgUAsDpaBQCwMjoFALA6WgUAsDI6BQCwMjplSVx5HQAAAAAAAAAAAAAAAAAAAADgcVx5HQCywDiMr0cAACBDdAoAYHW0CgBgZXQKAGB1tAoAYGV0CgBgZXTKmrjyOgAAAAAAAAAAAAAAAAAAAADA47jyOgBkhXH4egIAADJGpwAAVkerAABWRqcAAFZHqwAAVkanAABWRqcsiSuvAwAAAAAAAAAAAAAAAAAAAAA8jiuvA0AWGIfx9QgAAGSITgEArI5WAQCsjE4BAKyOVgEArIxOAQCsjE5ZE1deBwAAAAAAAAAAAAAAAAAAAAB4HFdeB4CsMA5fTwAAQMboFADA6mgVAMDK6BQAwOpoFQDAyugUAMDK6JQlceV1AAAAAAAAAAAAAAAAAAAAAIDHcfI6AAAAAAAAAAAAAAAAAAAAAMDjbMYY4+shcH0SExM1fvx4Pf300woKCvL1OLka+9I92I8ArsbngnuwH92D/QjganwuuAf70T3YjwDSw2eDe7Af3YP9COBqfC64B/vRPdiPANLDZ4N7sB/dg/0I4Gp8LrgH+9E92I/wFU5ez4XOnDmjyMhInT59WgUKFPD1OLka+9I92I8ArsbngnuwH92D/QjganwuuAf70T3YjwDSw2eDe7Af3YP9COBqfC64B/vRPdiPANLDZ4N7sB/dg/0I4Gp8LrgH+9E92I/wFbuvBwAAAAAAAAAAAAAAAAAAAAAA5H2cvA4AAAAAAAAAAAAAAAAAAAAA8DhOXgcAAAAAAAAAAAAAAAAAAAAAeBwnr+dCQUFBGjt2rIKCgnw9Sq7HvnQP9iOAq/G54B7sR/dgPwK4Gp8L7sF+dA/2I4D08NngHuxH92A/ArganwvuwX50D/YjgPTw2eAe7Ef3YD8CuBqfC+7BfnQP9iN8xWaMMb4eAgAAAAAAAAAAAAAAAAAAAACQt3HldQAAAAAAAAAAAAAAAAAAAACAx3HyOgAAAAAAAAAAAAAAAAAAAADA4zh5HQAAAAAAAAAAAAAAAAAAAADgcZy8bmGxsbEaPXq0KleurODgYBUvXlw33nijJk+erHPnzkmSypcvr7feeivNtuPGjVP9+vW9O7AFDRkyRDabTTabTQEBASpevLg6duyoKVOmyOFwONcrX768c70rH6+++qoPp7emK/epzWZT4cKF1aVLF23evNm5js1m07x583w3JACvoFPuQavcj1YBuIRW5Rydcj86BeASOpVzdMr96BSAS+iUe9Aq96NVAC6hVTlHp9yPTgG4hE65B61yP1oFq+DkdYvavXu3GjRooCVLluiVV17Rxo0b9eOPP+qRRx7RggUL9OOPP/p6xFyjS5cuOnz4sPbs2aPvvvtO7dq10+jRo9W9e3elpKQ413vxxRd1+PBhl8eoUaN8OLl1Xdqnhw8f1tKlS+Xv76/u3bv7eiwAXkSn3ItWuR+tAkCr3IdOuR+dAkCn3IdOuR+dAkCn3ItWuR+tAkCr3IdOuR+dAkCn3ItWuR+tghX4+3oApG/48OHy9/fX+vXrFRYW5lxep04d9e3bV8YYH06XuwQFBalEiRKSpNKlS6thw4Zq3ry5OnTooGnTpumee+6RJEVERDjXQ+au3KclSpTQk08+qdatW+vYsWMqWrSoj6cD4A10yr1olfvRKgC0yn3olPvRKQB0yn3olPvRKQB0yr1olfvRKgC0yn3olPvRKQB0yr1olfvRKlgBV163oLi4OC1ZskQjRoxwCdiVbDabl6fKW9q3b6969erp66+/9vUouV5CQoI+//xzVa5cWYULF/b1OAC8gE55B61yH1oF5D+0yvPolPvQKSD/oVOeR6fch04B+Q+d8g5a5T60Csh/aJXn0Sn3oVNA/kOnvINWuQ+tgq9w8roF7dy5U8YYVatWzWV5kSJFFB4ervDwcD355JPO5U8++aRz+aXHK6+84u2xc53q1atrz549zl+ntx+XL1/us/msbOHChc59FBERofnz52vWrFmy2/lIAfIDOuU9tCr7aBWQv9Eq76BT2UengPyNTnkHnco+OgXkb3TKe2hV9tEqIH+jVd5Bp7KPTgH5G53yHlqVfbQKVuDv6wGQsau/ZbV27Vo5HA4NGDBAiYmJzuX/+te/NGTIEJd133nnHa1cudIbY+ZaxhiXfZzefixdurSXp8od2rVrp0mTJkmSTpw4oYkTJ6pr165au3atoqOjfTwdAG+hU55Hq7KPVgGQaJWn0anso1MAJDrlaXQq++gUAIlOeQOtyj5aBUCiVZ5Gp7KPTgGQ6JQ30Krso1WwAk5et6DKlSvLZrNp69atLssrVqwoSQoJCXFZXqRIEVWuXNllWaFChTw7ZB6wZcsWVahQwfnr9PYj0hcWFuayrxo1aqTIyEh9+OGHevnll304GQBvoFPeQ6uyj1YB+Rut8g46lX10Csjf6JR30Knso1NA/kanvIdWZR+tAvI3WuUddCr76BSQv9Ep76FV2UerYAVc59+CChcurI4dO+rdd9/V2bNnfT1OnvTTTz/pzz//VN++fX09Sp5gs9lkt9t1/vx5X48CwAvolHfQKveiVUD+Qqs8j065F50C8hc65Xl0yr3oFJC/0CnvoFXuRauA/IVWeR6dci86BeQvdMo7aJV70Sr4Aldet6iJEyeqZcuWaty4scaNG6e6devKbrdr3bp12rp1qxo1auTrEXONxMRExcbGKjU1VUeOHNHixYs1fvx4de/eXYMGDXKuFx8fr9jYWJdtQ0NDVaBAAW+PbHmX9qkknTx5Uu+++64SEhLUo0cPH08GwFvolHvRKvejVQBolfvQKfejUwDolPvQKfejUwDolHvRKvejVQBolfvQKfejUwDolHvRKvejVbACTl63qEqVKmnjxo165ZVX9PTTT+vAgQMKCgpSzZo19fjjj2v48OG+HjHXWLx4sUqWLCl/f38VLFhQ9erV0zvvvKPBgwfLbr9884Hnn39ezz//vMu2999/vyZPnuztkS3v0j6VpIiICFWvXl2zZ89W27ZtfTsYAK+hU+5Fq9yPVgGgVe5Dp9yPTgGgU+5Dp9yPTgGgU+5Fq9yPVgGgVe5Dp9yPTgGgU+5Fq9yPVsEKbMYY4+shAAAAAAAAAAAAAAAAAAAAAAB5m/3aqwAAAAAAAAAAAAAAAAAAAAAAkDOcvA4AAAAAAAAAAAAAAAAAAAAA8DhOXgcAAAAAAAAAAAAAAAAAAAAAeBwnrwMAAAAAAAAAAAAAAAAAAAAAPI6T1wEAAAAAAAAAAAAAAAAAAAAAHsfJ6wAAAAAAAAAAAAAAAAAAAAAAj+PkdQAAAAAAAAAAAAAAAAAAAACAx3HyOgAAAAAAAAAAAAAAAAAAAADA4zh5HXCTtm3b6uGHH/b1GAAAZIhWAQCsjE4BAKyMTgEArI5WAQCsjE4BAKyOVgHexcnrsJSjR4/q/vvvV7ly5RQUFKQSJUqoc+fOWr16ta9Hu6avv/5aL730kq/HAAB4GK0CAFgZnQIAWBmdAgBYHa0CAFgZnQIAWB2tApBV/r4eALhS3759lZycrE8++UQVK1bUkSNHtHTpUp04ccLXo2UoOTlZAQEBKlSokK9HAQB4Aa0CAFgZnQIAWBmdAgBYHa0CAFgZnQIAWB2tApBVXHkdlnHq1Cn9/PPPeu2119SuXTtFR0eradOmevrpp9WtWzfnOvfdd5+KFy+u4OBg1a5dWwsXLnS+xq+//qrWrVsrJCREZcuW1UMPPaSzZ886ny9fvrxeeeUV3X333YqIiFC5cuX0wQcfuMzx5JNPqmrVqgoNDVXFihX13HPPKTk52fn8uHHjVL9+fU2ZMkUVK1ZUUFCQjDFpbh1y8uRJDRo0SAULFlRoaKi6du2qHTt2eGjvAQC8gVYBAKyMTgEArIxOAQCsjlYBAKyMTgEArI5WAbgenLwOywgPD1d4eLjmzZunxMTENM87HA517dpVv/76q6ZPn65//vlHr776qvz8/CRJf/75pzp37qw+ffpo8+bNmjVrln7++WeNHDnS5XX+7//+T40bN9bGjRs1fPhwPfjgg9q6davz+YiICE2bNk3//POP3n77bX344Yd68803XV5j586d+vLLLzVnzhxt2rQp3fczZMgQrV+/XvPnz9fq1atljNHNN9/sEkMAQO5CqwAAVkanAABWRqcAAFZHqwAAVkanAABWR6sAXBcDWMhXX31lChYsaIKDg80NN9xgnn76afPHH38YY4z5/vvvjd1uN9u2bUt324EDB5r77rvPZdmqVauM3W4358+fN8YYEx0dbe666y7n8w6HwxQrVsxMmjQpw5kmTJhgGjVq5Pz12LFjTUBAgDl69KjLem3atDGjR482xhizfft2I8n88ssvzuePHz9uQkJCzJdffpmFPQEAsCpaBQCwMjoFALAyOgUAsDpaBQCwMjoFALA6WgUgq/x9eN48kEbfvn3VrVs3rVq1SqtXr9bixYs1YcIEffTRRzp69KjKlCmjqlWrprvt77//rp07d+rzzz93LjPGyOFwKCYmRjVq1JAk1a1b1/m8zWZTiRIldPToUeeyr776Sm+99ZZ27typhIQEpaSkqECBAi4/Kzo6WkWLFs3wfWzZskX+/v5q1qyZc1nhwoVVrVo1bdmy5fp2CgDAUmgVAMDK6BQAwMroFADA6mgVAMDK6BQAwOpoFYCssvt6AOBqwcHB6tixo55//nn9+uuvGjJkiMaOHauQkJBMt3M4HLr//vu1adMm5+OPP/7Qjh07VKlSJed6AQEBLtvZbDY5HA5J0po1a3THHXeoa9euWrhwoTZu3KgxY8YoKSnJZZuwsLBMZzHGZLjcZrNlui0AwPpoFQDAyugUAMDK6BQAwOpoFQDAyugUAMDqaBWArODK67C8mjVrat68eapbt64OHDig7du3p/sNrIYNG+rvv/9W5cqVs/2zfvnlF0VHR2vMmDHOZXv37s3WzCkpKfrtt990ww03SJLi4uK0fft257fAAAB5B60CAFgZnQIAWBmdAgBYHa0CAFgZnQIAWB2tApAerrwOy4iLi1P79u01ffp0bd68WTExMZo9e7YmTJignj17qk2bNmrdurX69u2rH374QTExMfruu++0ePFiSdKTTz6p1atXa8SIEdq0aZN27Nih+fPna9SoUVmeoXLlytq3b5+++OIL7dq1S++8847mzp173e+lSpUq6tmzp+699179/PPP+uOPP3TXXXepdOnS6tmz53W/HgDAGmgVAMDK6BQAwMroFADA6mgVAMDK6BQAwOpoFYDrwcnrsIzw8HA1a9ZMb775plq3bq3atWvrueee07333qt3331XkjRnzhw1adJE/fv3V82aNfXEE08oNTVVklS3bl2tWLFCO3bsUKtWrdSgQQM999xzKlmyZJZn6Nmzpx555BGNHDlS9evX16+//qrnnnsuW+9n6tSpatSokbp3764WLVrIGKNFixaluXUJACD3oFUAACujUwAAK6NTAACro1UAACujUwAAq6NVAK6HzRhjfD0EAAAAAAAAAAAAAAAAAAAAACBv48rrAAAAAAAAAAAAAAAAAAAAAACP4+R1AAAAAAAAAAAAAAAAAAAAAIDHcfI6AAAAAAAAAAAAAAAAAAAAAMDjOHkdAAAAAAAAAAAAAAAAAAAAAOBxnLwOAAAAAAAAAAAAAAAAAAAAAPA4Tl4HAAAAAAAAAAAAAAAAAAAAAHgcJ68DAAAAAAAAAAAAAAAAAAAAADyOk9cBAAAAAAAAAAAAAAAAAAAAAB7HyesAAAAAAAAAAAAAAAAAAAAAAI/j5HUAAAAAAAAAAAAAAAAAAAAAgMdx8joAAAAAAAAAAAAAAAAAAAAAwOM4eR0AAAAAAAAAAAAAAAAAAAAA4HGcvA4AAAAAAAAAAAAAAAAAAAAA8DhOXgcAAAAAAAAAAAAAAAAAAAAAeBwnrwMAAAAAAAAAAAAAAAAAAAAAPI6T1wEAAAAAAAAAAAAAAAAAAAAAHsfJ6wAAAAAAAAAAAAAAAAAAAAAAj+PkdbhISEjQww8/rFKlSik4OFj169fXF198kaVt27ZtK5vNluEjNjY2S68zbtw4TZs2LcsznzlzRmPGjFHVqlUVGhqq0qVLq1+/fvr7779z9P42bNigm266SeHh4YqKilKfPn20e/fuLM8lSTNnztQNN9ygsLAwhYeHq1OnTlqyZEm66zZs2FCjR4+WdHFf1q5dO9PXrl27tmrUqJFm+dy5c2Wz2dSiRYs0z3322Wey2WyaP3/+db0PALCKnHRKkpYtW6aOHTuqWLFiCg8PV926dfXOO+8oNTU1y69Bp+gUAGQmp636/vvv1bJlS4WEhCgyMlI9evRItxmZoVW0CgDSEx8fryeeeEKdOnVS0aJFZbPZNG7cuOt6jaNHj2rIkCEqUqSIQkND1aJFCy1duvS6XoNO0SkAyEhOW3XgwAE9/PDDatOmjaKiomSz2a6rOZfQKloFAOnJaae+/vpr9e/fX5UrV1ZISIjKly+vAQMGaMeOHdc1B52iUwCQkZy26scff1THjh1VqlQpBQUFqVixYmrfvr0WLVp0XXPQKloFZAUnr8NFnz599Mknn2js2LH67rvv1KRJE/Xv318zZsy45rYTJ07U6tWrXR5Lly5VQECAmjdvrhIlSmS47YIFC9KEzhij6dOn69dff8305/bo0UNvvfWW7r33Xn377bd69dVXtWnTJrVo0UJ79+7N1vvbunWr2rZtq6SkJH355ZeaMmWKtm/frlatWunYsWPX3BfSxRAPGDBAVapU0YwZM/TNN9+oUaNG6t27t06fPu2ybkxMjDZu3Ki+fftm6bUlqV27dtq6dWuaLwUsX75cYWFhWr9+veLj49M8Z7fb1bp16yz/HACwkpx06scff9RNN92klJQUffjhh5o3b57atm2r0aNH69FHH810WzpFpwAgq3LSqm+++UZdu3ZVsWLFNGfOHE2ePFk7duxQq1attGvXrky3pVW0CgCuJS4uTh988IESExPVq1ev694+MTFRHTp00NKlS/X222/rm2++UfHixdWlSxetWLEi023pFJ0CgKzIaat27typzz//XIGBgbr55puva1taRasA4Fpy2qnXXntN586d05gxY7R48WK9/PLL2rhxoxo2bHjNi1fQKToFAFmR01bFxcWpVq1aevPNN7VkyRK9//77CggIULdu3TR9+vRMt6VVtAq4bgb4n2+//dZIMjNmzHBZ3rFjR1OqVCmTkpJy3a85bdo0I8l89NFHma63detWc+edd5rOnTubO+64wzzwwAPmxhtvNCNHjjQHDx7McLsdO3YYSebZZ591Wf7rr78aSeaNN97I1vvr16+fKVKkiDl9+rRz2Z49e0xAQIB54oknrvm+16xZY2w2W5q5jDFm8+bN5ty5cy7LJkyYYIoVK2ZSU1ONMca0adPG1KpVK9OfMWfOHCPJzJw502V53bp1zejRo01AQIBZtGiRy3MVK1Y0jRo1uub8AGBFOe3UgAEDTFBQkElISHBZ3qlTJ1OgQIFMt6VTdAoAsiKnrapWrZqpW7eucTgczmV79uwxgYGB5s4778x0W1pFqwDgWhwOh7Mxx44dM5LM2LFjs7z9e++9ZySZX3/91bksOTnZ1KxZ0zRt2jTTbekUnQKArMhpqy59zhpjzLp164wkM3Xq1CxtS6toFQBcS047deTIkTTLDh48aAICAsywYcMy3ZZO0SkAyIqctio9SUlJpnTp0qZVq1aZrkeraBVwvbjyOpzmzp2r8PBw9evXz2X50KFDdejQIf3222/X/Zoff/yxwsPDdfvtt2e6XrVq1fT5559r+PDh+vrrrzVz5kz93//9n/773/+qVKlSGW4XEBAgSYqMjHRZHhUVJUkKDg52Lsvq+0tJSdHChQvVt29fFShQwLledHS02rVrp7lz52b6XlJSUjR9+nQFBgbqkUceUUpKivPhcDhUp04dhYSEuGwzZ84c9e7dW3Z7xv+TnDt3rkJDQ3XPPfcoJSVFbdu2lc1m0/Lly53rxMXF6c8//1S3bt3UqFEjLVu2zPnc/v37tXv3brVr1y7T+QHAqnLaqYCAAAUGBqb5DI6KinLpRXroFJ0CgKzISavi4uK0bds2de3aVTabzbk8OjpatWvX1rx585Samprh9rSKVgHAtdhsNpfGXK+5c+eqWrVqLrer9ff311133aW1a9fq4MGDGW5Lp+gUAGRFTluV2efstdAqWgUA15LTThUrVizNslKlSqlMmTLav39/ptvSKToFAFmR01alJyAgQFFRUfL39890PVpFq4DrxcnrcPrrr79Uo0aNNLGpW7eu8/nrsWPHDq1atUp33HGHwsPDr7nuoEGDNHHiRPXu3Vv9+/fXo48+qoceekiHDx/OcLvo6Gj17NlTb775ppYtW6aEhARt3bpVDz30kMqVK6c77rjjut/frl27dP78eefyq9fduXOnLly4kO48mzZtUkBAgN59910lJiaqcOHCCggIcD4mT56cZpsDBw5o7dq1md425M0331S/fv30zDPP6KOPPpK/v78KFSqkunXrukRqxYoV8vPz0w033KA2bdq4xO3SegQMQG6V00498MADSkpK0kMPPaRDhw7p1KlT+uyzzzR37lw98cQTmW5Lp+gUAGRFTlqVlJQkSQoKCkrzXFBQkM6dO6ddu3ZluD2tolUA4Gl//fVXhp/tkjK9zT2dolMAYHW0ilYBgC/s3r1be/fuVa1atTJdj07RKQDwJofDoZSUFB06dEhjx47V9u3b9dhjj2W6Da2iVcD14uR1OMXFxalQoUJpll9aFhcXd12v9/HHH0uShg0bds11t2zZottvv12LFy9W9erV1axZM61atUpNmjRRTExMptvOnj1b3bp1U/v27RUREaEaNWro6NGjWrFihQoWLOhcL6vv79L/zWhdY4xOnjyZ7ixlypTRunXrVLJkSd1www1at26dy2PIkCFptpkzZ46ioqLSDYvD4dCoUaP01FNP6ZNPPtGzzz7r8ny7du20fft2Z+SXL1+uxo0bKywsTG3atNGGDRt05swZ53N+fn5q1apVurMDgNXltFPNmjXTTz/9pLlz56p06dIqWLCghg4dqn//+9/XPNCiU3QKALIiJ60qXry4ChUqpF9++cVl+alTp5x/2ZbZ9rSKVgGAp+Wkc3SKTgGA1dEqWgUA3paSkqJhw4YpPDxcjzzySKbr0ik6BQDedPPNNysgIEClS5fWW2+9pVmzZqlbt26ZbkOraBVwvTh5HS4yu3XI9dxWJCUlRZ988olq1aql5s2bX3P9W265JU3kbDabBg4cqBtuuCHTbR988EHNmTNHb775plasWKFZs2YpMDBQ7du31969e7P8Hq5+Ljv7okiRIqpfv74CAwMVGRmp+vXrOx+NGjVSaGhomm3mzJmjnj17pvlW2IULF9SrVy99/vnnWrJkiQYMGJBm20vRu/Qtq+XLl6tt27aSpBtvvFGStHLlSudzjRs3VkRERIbvCwCsLied+v3339W7d281atRICxYs0E8//aSnn35azz77rF566aVMt6VTdAoAsiq7rbLb7RoxYoSWLl2ql156SUePHtXOnTt111136dy5c851MkKraBUAeEN2O0en6BQAWB2tolUA4E3GGA0bNkyrVq3Sp59+qrJly2a6Pp2iUwDgTf/973+1du1affPNN+rcubNuv/12zZw5M9NtaBWtAq6X/7VXQX5RuHDhdK+QdOLECUnpfxspI4sWLVJsbKyefPLJ655j3LhxWV538eLF+vjjjzV79mzdeuutzuWdOnVS+fLlNW7cOE2dOlVS1t9f4cKFJaV/tagTJ07IZrMpKioq3Xk2bdqkBg0aSJL27t2rgIAA53Pr1q1T48aNXdaPjY3VL7/8oieeeCLNax09elT79+/XTTfdlGHE27RpI7vdrmXLlqlTp07666+/NGHCBElSRESEGjRooOXLl6tu3bqKiYnR7bffnu7rAEBukNNOjRgxQsWLF9fcuXPl5+cn6eKBgN1u17hx4zRgwABVrFjxmnPQqYvoFACkldNWPf/880pISNDLL7+s559/XpLUrVs3DR06VB999JFKly6dpTlo1UW0CgDcy11/d0inLqJTAGBdtOoiWgUAnmGM0T333KPp06frk08+Uc+ePa9rezp1EZ0CAM+pUqWK8/+/5ZZb1LVrV40YMUK33357phdauoRWXUSrgMxx5XU41alTR1u2bFFKSorL8j///FOSVLt27Sy/1scff6zAwEANHDjQrTNebdOmTZKkJk2auCyPiopS5cqV9ddffzmXZfX9VapUSSEhIc7lV69buXJlBQcHpzvPpVuH9OnTR4GBgfr555+1bt06/f7772niJUlz585VWFiYOnbsmOa5cuXKacGCBVq+fLn69OmjCxcupFknMjLSGanly5fLbrerZcuWzufbtGmjZcuWadmyZZKU7u1JACC3yGmnNm3apEaNGjlPXL+kSZMmcjgc2rJli3sHFp2iUwDym5y2yt/fX2+88Ybi4uK0efNmHTp0SAsXLtS+fftUoUIFlSlTxu0z0ypaBQBZVadOnQw/26Xr+7vDrKJTdAoArI5W0SoAuB6XTlyfOnWqPvroI911110e/Xl0ik4BgDs0bdpUJ0+e1LFjx9z+2rSKViH/4uR1OPXu3VsJCQmaM2eOy/JPPvlEpUqVUrNmzbL0OrGxsVq0aJF69erl/CaTp5QqVUqStGbNGpflcXFx2r59u8vJHVl9f/7+/urRo4e+/vprxcfHO9fbt2+fli1bpj59+mQ4T5EiRdS4cWM9+OCDSkpK0m+//abGjRurYcOGznViYmKUmJgo6eJtQ7p3766goKB0X69Tp076/vvvtXLlSnXv3l1nz55Ns067du20Y8cOzZgxQ40aNXK5NUibNm20adMmzZs3TwEBAS5xA4DcJqedKlWqlNavX6/U1FSX5atXr5Ykj5wQSKfoFID8xV3HVOHh4apTp45KliypDRs2aOnSpRo9erQnRqZVolUAkFW9e/fW1q1b9dtvvzmXpaSkaPr06WrWrJmzKe5Ep+gUAFgdraJVAJBVxhjde++9mjp1qt5//30NHTrU4z+TTtEpAMgpY4xWrFihqKgoj5wHSKtoFfIxA1yhY8eOpmDBguaDDz4wP/30k7n33nuNJDN9+nSX9e6++27j5+dn9uzZk+Y1Xn31VSPJLFmyxOPzxsfHm+joaFOwYEHz+uuvm59++sl8/vnnpn79+sbPz88sW7bMZf2svr8tW7aY8PBw07p1a7No0SLz9ddfm9q1a5tSpUqZo0ePZmm2ESNGGD8/P/PAAw+YBQsWmKVLl5qxY8eaqKgoc/r0aXP8+HHj7+9vvvrqqzTbtmnTxtSqVcv563Xr1pnChQubG264wZw6dcpl3W+//dZIMjabzfzrX/9yee7kyZPGbrcbm81mWrZsmaW5AcDKctKpd955x0gyXbt2NfPmzTNLliwxTz75pPH39zc33XSTR+alU3QKQP6Tk1YtW7bMTJgwwSxevNh899135oUXXjChoaGmW7duJiUlxSPz0ipaBSB/WbRokZk9e7aZMmWKkWT69etnZs+ebWbPnm3Onj3rXC+9Tl24cMHUqlXLlC1b1nz++efmhx9+ML179zb+/v5m+fLlHpmXTtEpAPlPTlpljHGu+9prrxlJZsSIEc5lnkCraBWA/CUnnRo5cqSRZO6++26zevVql8eGDRs8Mi+dolMA8p+ctOqWW24xzz33nJkzZ45Zvny5mTFjhunUqZORZN577z2PzEuraBXyL05eh4v4+Hjz0EMPmRIlSpjAwEBTt25dM3PmzDTrDR482EgyMTExaZ6rWrWqKV++vHE4HF6Y2JjDhw+bkSNHmsqVK5vg4GBTqlQp061bN7N69eo062b1/RljzPr1602HDh1MaGioKVCggOnVq5fZuXNnludyOBxm5syZpmXLlqZQoUImNDTUdOjQwfzwww/GGGM++ugjExoa6vIHg0uuDpgxxvz111+mRIkSpmHDhubYsWPO5WfOnDH+/v5Gklm4cGGa16pfv76RZMaMGZPl2QHAqnLaqTlz5pgbb7zRFClSxISFhZlatWqZl156ySQkJHhsZjpFpwDkLzlp1S+//GKaNWtmChQoYIKCgkzt2rXN66+/bpKSkjw6M62iVQDyj+joaCMp3ceVTcromCo2NtYMGjTIFCpUyAQHB5vmzZs7P5c9hU7RKQD5S05bldG2nryeF62iVQDyj5x0KrNto6OjPTYznaJTAPKXnLTqtddeM02aNDEFCxY0fn5+pnDhwqZz587pfn66E62iVcifbMYYc33XagfgDjfffLNCQkLS3MoEAAAroFMAAKujVQAAK6NTAACro1UAACujUwAAq6NVQM5w8joAAAAAAAAAAAAAAAAAAAAAwOPsvh4AAAAAAAAAAAAAAAAAAAAAAJD3cfI6AAAAAAAAAAAAAAAAAAAAAMDjOHkdAAAAAAAAAAAAAAAAAAAAAOBxnLyex0ybNk02my3Dx/Lly53rli9fXkOGDPHYLBMnTtS0adM88trjxo2TzWbzyGvv2bNHNpvNrbNv3rxZQ4cOVYUKFRQcHKzw8HA1bNhQEyZM0IkTJ9LdpmHDhrLZbHr99dfTff7q/9b+/v4qU6aMhg4dqoMHDzrXW758eaa/Jy69z+PHj6t48eJq1aqVHA6Hy89KSkpSvXr1VKFCBcXHx7tnpwDIl+hUztEpOgXAs2hVztEqWgXAc+hUztEpOgXAs2hVztEqWgXAc+hUztEpOgXAs2hVztEqWoXcwd/XA8Azpk6dqurVq6dZXrNmTa/NMHHiRBUpUsSjkfSEkiVLavXq1apUqZJbXu/DDz/U8OHDVa1aNf3rX/9SzZo1lZycrPXr12vy5MlavXq15s6d67LNpk2btHHjRknSxx9/rMcffzzD17/03/r8+fNauXKlxo8frxUrVujPP/9UWFiYc71XXnlF7dq1S7P9pfdZpEgRvf/+++rdu7fefPNNPfbYY851xo4dqz///FNLly5VREREjvYHAEh0KifoFJ0C4B20KvtoFa0C4Hl0KvvoFJ0C4B20KvtoFa0C4Hl0KvvoFJ0C4B20KvtoFa1CLmGQp0ydOtVIMuvWrbvmutHR0Wbw4MEem6VWrVqmTZs2WVo3KSnJJCcnZ/m1x44da3LDb99ff/3V+Pn5mS5dupgLFy6keT4xMdF88803aZaPGDHCSDLdunUzkswvv/ySZp2M/ls/99xzRpKZPn26McaYZcuWGUlm9uzZWZr5rrvuMsHBweaff/5xeQ+jRo3K0vYAkBk6ZS10CgDSolXWQqsAwBWdshY6BQBp0SproVUA4IpOWQudAoC0aJW10CrAc+xuPxseudqZM2f0+OOPq0KFCgoMDFTp0qX18MMP6+zZsy7rORwO/fe//1X9+vUVEhKiqKgoNW/eXPPnz5d08bYkf//9t1asWOG8RUX58uUlXb6VxWeffabHHntMpUuXVlBQkHbu3ClJmjJliurVq6fg4GAVKlRIvXv31pYtWzKde9iwYSpUqJDOnTuX5rn27durVq1azl/Pnj1bzZo1U2RkpEJDQ1WxYkXdfffdzufTu3XIsWPHdN9996ls2bIKCgpS0aJF1bJlS/3444+ZzvXKK6/IZrPpgw8+UFBQUJrnAwMDdcstt7gsu3DhgmbMmKFGjRrpzTffdO6TrGrevLkkae/evVne5krvvPOOChUqpMGDB+vMmTMaPHiwKlasqFdffTVbrwcA7kSn6BSdAmB1tIpW0SoAVkan6BSdAmB1tIpW0SoAVkan6BSdAmB1tIpW0SrkFv6+HgCekZqaqpSUFJdlNptNfn5+GW5z7tw5tWnTRgcOHNAzzzyjunXr6u+//9bzzz+vP//8Uz/++KNsNpskaciQIZo+fbqGDRumF198UYGBgdqwYYP27NkjSZo7d65uvfVWRUZGauLEiZKU5gP86aefVosWLTR58mTZ7XYVK1ZM48eP1zPPPKP+/ftr/PjxiouL07hx49SiRQutW7dOVapUSXf20aNHa8qUKZoxY4buuece5/J//vlHy5Yt03vvvSdJWr16tW6//XbdfvvtGjdunIKDg7V371799NNPme7PgQMHasOGDfr3v/+tqlWr6tSpU9qwYYPi4uIy3CY1NVU//fSTGjVqpLJly2b6+lf6+uuvdfLkSd19992qUqWKbrzxRs2aNUtvvfWWwsPDr7n9pT8IFC1a1GW5w+FI83tCkvz9XT8GChYsqA8//FDdunVTw4YNFRMTo1WrVik0NDTL7wEAroVOXUSnLqNTAKyGVl1Eqy6jVQCshE5dRKcuo1MArIZWXUSrLqNVAKyETl1Epy6jUwCshlZdRKsuo1XIc3x96Xe416XbSaT38PPzc1n36luHjB8/3tjt9jS3ovjqq6+MJLNo0SJjjDErV640ksyYMWMynSWjW4dcupVF69atXZafPHnShISEmJtvvtll+b59+0xQUJC58847ncvSu3VImzZtTP369V2WPfjgg6ZAgQImPj7eGGPM66+/biSZU6dOZTh3TEyMkWSmTp3qXBYeHm4efvjhTN/v1WJjY40kc8cdd1zXdu3btzfBwcHm5MmTxpjL/00//vhjl/UuLV+zZo1JTk428fHxZuHChaZo0aImIiLCxMbGGmMu7++MHvv37093jk6dOhlJZuTIkdc1PwBkhk7RKToFwOpoFa2iVQCsjE7RKToFwOpoFa2iVQCsjE7RKToFwOpoFa2iVcgvuPJ6HvXpp5+qRo0aLssufXMqIwsXLlTt2rVVv359l2/pdO7cWTabTcuXL1fXrl313XffSZJGjBiRoxn79u3r8uvVq1fr/PnzGjJkiMvysmXLqn379lq6dGmmrzd69Gj16dNHv/zyi1q2bKkzZ87os88+09ChQ53fWmrSpIkk6bbbbtOwYcPUsmVLlS5d+pqzNm3aVNOmTVPhwoV10003qVGjRgoICLiOd5s1MTExWrZsmfr376+oqChJUr9+/fTQQw9pypQpLrc4ueTSrUIuqVOnjiZNmqTixYu7LH/ttdfUvn37NNtfvZ4k/fHHH1q2bJnsdrtWrFihpKQkBQYG5uCdAYArOkWn6BQAq6NVtIpWAbAyOkWn6BQAq6NVtIpWAbAyOkWn6BQAq6NVtIpWIa+z+3oAeEaNGjXUuHFjl0ejRo0y3ebIkSPavHmzAgICXB4REREyxuj48eOSpGPHjsnPz08lSpTI0YwlS5Z0+fWl23BcvVySSpUqleltOiSpZ8+eKl++vPM2IdOmTdPZs2ddQtu6dWvNmzdPKSkpGjRokMqUKaPatWtr5syZmb72rFmzNHjwYH300Udq0aKFChUqpEGDBik2NjbDbYoUKaLQ0FDFxMRk+tpXmjJliowxuvXWW3Xq1CmdOnVKycnJuuWWW/TLL79o69atabb59NNPtW7dOm3cuFGHDh3S5s2b1bJlyzTrVaxYMc3vicaNG6cJcXJysgYPHqxSpUrp66+/1l9//aWXXnopy+8BALKCTtGpq9EpAFZDq2jV1WgVACuhU3TqanQKgNXQKlp1NVoFwEroFJ26Gp0CYDW0ilZdjVYhr+HK63AqUqSIQkJCNGXKlAyfl6SiRYsqNTVVsbGx6cYmq67+NljhwoUlSYcPH06z7qFDh5w/PyN2u10jRozQM888o//7v//TxIkT1aFDB1WrVs1lvZ49e6pnz55KTEzUmjVrNH78eN15550qX768WrRoke5rFylSRG+99Zbeeust7du3T/Pnz9dTTz2lo0ePavHixelu4+fnpw4dOui7777TgQMHVKZMmUzndzgcmjZtmiSpT58+6a4zZcoUTZgwwWXZpT+suMuLL76ozZs368cff1T79u31wAMP6NVXX1Xv3r3VsGFDt/0cALhedIpOSXQKgLXRKlol0SoA1kWn6JREpwBYG62iVRKtAmBddIpOSXQKgLXRKlol0SrkHlx5HU7du3fXrl27VLhw4XS/pVO+fHlJUteuXSVJkyZNyvT1goKCdP78+Sz//BYtWigkJETTp093WX7gwAH99NNP6tChwzVf45577lFgYKAGDBigbdu2aeTIkZnO16ZNG7322muSpI0bN2ZpznLlymnkyJHq2LGjNmzYkOm6Tz/9tIwxuvfee5WUlJTm+eTkZC1YsECS9P333+vAgQMaMWKEli1bluZRq1Ytffrppy63dXG39evX69VXX9Xw4cOdtxmZMGGCypQpoyFDhqT7HgDAW+gUnaJTAKyOVtEqWgXAyugUnaJTAKyOVtEqWgXAyugUnaJTAKyOVtEqWoXchCuv51F//fVXuh90lSpVUtGiRdPd5uGHH9acOXPUunVrPfLII6pbt64cDof27dunJUuW6LHHHlOzZs3UqlUrDRw4UC+//LKOHDmi7t27KygoSBs3blRoaKhGjRolSapTp46++OILzZo1SxUrVlRwcLDq1KmT4cxRUVF67rnn9Mwzz2jQoEHq37+/4uLi9MILLyg4OFhjx4695vuOiorSoEGDNGnSJEVHR6tHjx4uzz///PM6cOCAOnTooDJlyujUqVN6++23FRAQoDZt2qT7mqdPn1a7du105513qnr16oqIiNC6deu0ePHiDL8ldUmLFi00adIkDR8+XI0aNdKDDz6oWrVqKTk5WRs3btQHH3yg2rVrq0ePHvr444/l7++vZ555RqVKlUrzWvfff78eeughffvtt+rZs+c198XVduzYoTVr1qRZXqZMGZUpU0aJiYkaPHiwoqOjnVGXpPDwcE2ZMkUdOnTQSy+9xG1EALgFnaJTV6NTAKyGVtGqq9EqAFZCp+jU1egUAKuhVbTqarQKgJXQKTp1NToFwGpoFa26Gq1CnmOQp0ydOtVIyvDx4YcfOteNjo42gwcPdtk+ISHBPPvss6ZatWomMDDQREZGmjp16phHHnnExMbGOtdLTU01b775pqldu7ZzvRYtWpgFCxY419mzZ4/p1KmTiYiIMJJMdHS0McaYZcuWGUlm9uzZ6b6Hjz76yNStW9f5uj179jR///23yzpjx441Gf32Xb58uZFkXn311TTPLVy40HTt2tWULl3aBAYGmmLFipmbb77ZrFq1yrlOTEyMkWSmTp1qjDHmwoUL5oEHHjB169Y1BQoUMCEhIaZatWpm7Nix5uzZs+nOcLVNmzaZwYMHm3LlypnAwEATFhZmGjRoYJ5//nlz9OhRc+zYMRMYGGh69eqV4WucPHnShISEmB49ehhjLv+3XrduXaY/+9L+zugxZswYY4wx//rXv4zdbnfZF1caPny48ff3N7///nuW3jMApIdO0amr0SkAVkOraNXVaBUAK6FTdOpqdAqA1dAqWnU1WgXASugUnboanQJgNbSKVl2NViGvshljjIA85LHHHtOkSZO0f/9+FS5c2NfjAADggk4BAKyOVgEArIxOAQCsjlYBAKyMTgEArI5WAfmDv68HANxlzZo12r59uyZOnKj777+feAEALIVOAQCsjlYBAKyMTgEArI5WAQCsjE4BAKyOVgH5C1deR55hs9kUGhqqm2++WVOnTlV4eLivRwIAwIlOAQCsjlYBAKyMTgEArI5WAQCsjE4BAKyOVgH5CyevAwAAAAAAAAAAAAAAAAAAAAA8zu7rAQAAAAAAAAAAAAAAAAAAAAAAeR8nrwMAAAAAAAAAAAAAAAAAAAAAPI6T1/OxcePGyWaz+XoMr9qzZ49sNpumTZvm61Guadq0abLZbFq/fr3bXvPS+8/oMW7cOOe6bdu2Ve3atdN9nePHj6dZ/9K8lx7+/v4qWbKk7rjjDu3YscNt7wFA/kKrrI1WAcjv6JS10SkA+R2dsjY6BQC0yupoFYD8jk5ZG50CAFpldbQKyJy/rwcAvKlkyZJavXq1KlWq5OtRfGrUqFG688470ywvU6ZMjl976tSpql69ui5cuKBffvlF//73v7Vs2TJt3bpVBQsWzPHrA0BeR6suolUAYE106iI6BQDWRKcuolMAYF206iJaBQDWRKcuolMAYF206iJahbyAk9eRrwQFBal58+a+HsPnypUr57H9ULt2bTVu3FjSxW9wpaamauzYsZo3b56GDh3qkZ8JAHkJrbqIVgGANdGpi+gUAFgTnbqITgGAddGqi2gVAFgTnbqITgGAddGqi2gV8gK7rweAZ8yaNUstWrRQWFiYwsPD1blzZ23cuNGt2/7222/q0aOHChcurODgYFWqVEkPP/zwdc05adIk1atXT+Hh4YqIiFD16tX1zDPPOJ8/duyYhg8frpo1ayo8PFzFihVT+/bttWrVKuc6ycnJKlasmAYOHJjm9U+dOqWQkBA9+uijktK/dcilW6j8/fff6t+/vyIjI1W8eHHdfffdOn36dJrXGzZsmAoVKqTw8HB169ZNu3fvTnMbjWPHjum+++5T2bJlFRQUpKJFi6ply5b68ccfr2v/SNLJkyc1dOhQFSpUSGFhYerRo4d2797tss6l23ysW7dOrVq1UmhoqCpWrKhXX31VDofjun+mO12K2ZEjR3w6BwDroVUX0SpaBcCa6NRFdIpOAbAmOnURnaJTAKyLVl1Eq2gVAGuiUxfRKToFwLpo1UW0ilYh7+Lk9TzolVdeUf/+/VWzZk19+eWX+uyzzxQfH69WrVrpn3/+ccu233//vVq1aqV9+/bpjTfe0Hfffadnn332uj6kvvjiCw0fPlxt2rTR3LlzNW/ePD3yyCM6e/asc50TJ05IksaOHatvv/1WU6dOVcWKFdW2bVstX75ckhQQEKC77rpLc+bM0ZkzZ1x+xsyZM3XhwoUsfeunb9++qlq1qubMmaOnnnpKM2bM0COPPOJ83uFwqEePHpoxY4aefPJJzZ07V82aNVOXLl3SvNbAgQM1b948Pf/881qyZIk++ugj3XTTTYqLi8vy/rlk2LBhstvtmjFjht566y2tXbtWbdu21alTp1zWi42N1YABA3TXXXdp/vz56tq1q55++mlNnz49zWs6HA6lpKSkeXhCTEyMJKlq1aoeeX0AuROtuoxW0SoA1kOnLqNTdAqA9dCpy+gUnQJgTbTqMlpFqwBYD526jE7RKQDWRKsuo1W0CnmYQZ6yb98+4+/vb0aNGuWyPD4+3pQoUcLcdtttzmVjx441V/4WuJ5tK1WqZCpVqmTOnz+f7VlHjhxpoqKirmublJQUk5ycbDp06GB69+7tXL5582YjyXzwwQcu6zdt2tQ0atTI+euYmBgjyUydOtW57NJ+mDBhgsu2w4cPN8HBwcbhcBhjjPn222+NJDNp0iSX9caPH28kmbFjxzqXhYeHm4cffvi63tvVpk6daiS5vE9jjPnll1+MJPPyyy87l7Vp08ZIMr/99pvLujVr1jSdO3d2/vrS+8/osWrVKpfXrFWrVrqzHTt2LM17vjTvmjVrTHJysomPjzeLFy82JUqUMK1btzbJyck52R0A8hBaRauuRKsAWA2dolNXolMArIZO0akr0SkAVkSraNWVaBUAq6FTdOpKdAqAFdEqWnUlWoW8jCuv5wKpqaku35DJ7FYQ33//vVJSUjRo0CCXbYKDg9WmTRvnN5Zysu327du1a9cuDRs2TMHBwdl+X02bNtWpU6fUv39/ffPNNzp+/Hi6602ePFkNGzZUcHCw/P39FRAQoKVLl2rLli3OderUqaNGjRpp6tSpzmVbtmzR2rVrdffdd2dpnltuucXl13Xr1tWFCxd09OhRSdKKFSskSbfddpvLev3790/3vU2bNk0vv/yy1qxZo+Tk5CzNkJ4BAwa4/PqGG25QdHS0li1b5rK8RIkSatq0aZr3sHfv3jSvOXr0aK1bty7No379+tme85LmzZsrICBAERER6tKliwoWLKhvvvlG/v7+OX5tANZFq2jVlWgVAKuhU3TqSnQKgNXQKTp1JToFwIpoFa26Eq0CYDV0ik5diU4BsCJaRauuRKuAizh5PReoVKmSAgICnI8XX3wxw3Uv3bqjSZMmLtsEBARo1qxZGUbierY9duyYJKlMmTI5el8DBw7UlClTtHfvXvXt21fFihVTs2bN9MMPPzjXeeONN/Tggw+qWbNmmjNnjtasWaN169apS5cuOn/+vMvr3X333Vq9erW2bt0qSZo6daqCgoLSDUx6Chcu7PLroKAgSXL+nLi4OPn7+6tQoUIu6xUvXjzNa82aNUuDBw/WRx99pBYtWqhQoUIaNGiQYmNjszTLlUqUKJHusqtvQ3L1/Jfew9X7Sbr4365x48ZpHuHh4c51/P39lZqamu5Ml24zEhAQkOa5Tz/9VOvWrdNPP/2k+++/X1u2bMnyfwMAuRetolXpLaNVAKyCTtGp9JbRKQBWQafoVHrL6BQAK6FVtCq9ZbQKgFXQKTqV3jI6BcBKaBWtSm8ZrUJ+x9chcoEFCxYoMTHR+etSpUpluG6RIkUkSV999ZWio6Ov6+dkdduiRYtKkg4cOHBdr5+eoUOHaujQoTp79qxWrlypsWPHqnv37tq+fbuio6M1ffp0tW3bVpMmTXLZLj4+Ps1r9e/fX48++qimTZumf//73/rss8/Uq1cvFSxYMMdzShcDkZKSohMnTrhELL0oFSlSRG+99Zbeeust7du3T/Pnz9dTTz2lo0ePavHixdf1c9N7/djYWFWuXPn638R1KF68uNatWydjjGw2m8tzBw8edK5ztRo1aqhx48aSpHbt2ik1NVUfffSRvvrqK916660enRmA79AqWpXeMloFwCroFJ1KbxmdAmAVdIpOpbeMTgGwElpFq9JbRqsAWAWdolPpLaNTAKyEVtGq9JbRKuR3XHk9F6hTp47LN2QyC1jnzp3l7++vXbt2pfvtmksfLDnZtmrVqqpUqZKmTJniEtacCAsLU9euXTVmzBglJSXp77//liTZbDbnt6Au2bx5s1avXp3mNQoWLKhevXrp008/1cKFCxUbG5vl24ZkRZs2bSRd/GbVlb744otMtytXrpxGjhypjh07asOGDdf9cz///HOXX//666/au3ev2rZte92vdT1uuukmnTlzJt3gfvnll7Lb7Wrfvv01X2fChAkqWLCgnn/++UxvewMgd6NVtOpKtAqA1dApOnUlOgXAaugUnboSnQJgRbSKVl2JVgGwGjpFp65EpwBYEa2iVVeiVcBFXHk9jylfvrxefPFFjRkzRrt371aXLl1UsGBBHTlyRGvXrlVYWJheeOGFHG/73nvvqUePHmrevLkeeeQRlStXTvv27dP333+f5gM3I/fee69CQkLUsmVLlSxZUrGxsRo/frwiIyPVpEkTSVL37t310ksvaezYsWrTpo22bdumF198URUqVHDevuJKd999t2bNmqWRI0eqTJkyuummm7K5J9Pq0qWLWrZsqccee0xnzpxRo0aNtHr1an366aeSJLv94ndBTp8+rXbt2unOO+9U9erVFRERoXXr1mnx4sXq06fPdf/c9evX65577lG/fv20f/9+jRkzRqVLl9bw4cOz/V727dunNWvWpFletGhRVapUSZI0YMAATZw4UbfddpueeuopNWnSROfPn9eiRYv04YcfatSoUapYseI1f1bBggX19NNP64knntCMGTN01113ZXtuAHkDraJVWUGrAPgKnaJTWUGnAPgKnaJTWUGnAPgSraJVWUGrAPgKnaJTWUGnAPgSraJVWUGrkCcY5Enz5s0z7dq1MwUKFDBBQUEmOjra3HrrrebHH390rjN27FiT3m+BrGxrjDGrV682Xbt2NZGRkSYoKMhUqlTJPPLII1me8ZNPPjHt2rUzxYsXN4GBgaZUqVLmtttuM5s3b3auk5iYaB5//HFTunRpExwcbBo2bGjmzZtnBg8ebKKjo9O8ZmpqqilbtqyRZMaMGZPm+ZiYGCPJTJ06Nc1+OHbsmMu6U6dONZJMTEyMc9mJEyfM0KFDTVRUlAkNDTUdO3Y0a9asMZLM22+/bYwx5sKFC+aBBx4wdevWNQUKFDAhISGmWrVqZuzYsebs2bNZ3j+Xfv6SJUvMwIEDTVRUlAkJCTE333yz2bFjh8u6bdq0MbVq1UrzGlfvp0vvP6PHgAEDXLY/c+aMeeKJJ0yVKlVMYGCgCQ0NNY0bNzaTJ082Docj3XnXrVuXZo7z58+bcuXKmSpVqpiUlJQs7wMAeRutolXG0CoA1kWn6JQxdAqAddEpOmUMnQJgbbSKVhlDqwBYF52iU8bQKQDWRqtolTG0CnmbzRhjMjyzHcA1zZgxQwMGDNAvv/yiG264wdfjAACQBq0CAFgZnQIAWBmdAgBYHa0CAFgZnQIAWB2tAnyDk9eB6zBz5kwdPHhQderUkd1u15o1a/Sf//xHDRo00IoVK3w9HgAAtAoAYGl0CgBgZXQKAGB1tAoAYGV0CgBgdbQKsA5/Xw+AvCklJSXT5+12u+x2u5emcZ+IiAh98cUXevnll3X27FmVLFlSQ4YM0csvv5zl1zDGKDU1NdN1/Pz8ZLPZcjouACATtCpjtAoAfI9OZYxOAYDv0amM0SkAsAZalTFaBQC+R6cyRqcAwBpoVcZoFeAeXHkdbrdnzx5VqFAh03XGjh2rcePGeWcgi5k2bZqGDh2a6TrLli1T27ZtvTMQAORDtCpztAoAfItOZY5OAYBv0anM0SkA8D1alTlaBQC+RacyR6cAwPdoVeZoFeAenLwOt0tKStLmzZszXadUqVIqVaqUlyaylri4OMXExGS6TrVq1RQREeGliQAg/6FVmaNVAOBbdCpzdAoAfItOZY5OAYDv0arM0SoA8C06lTk6BQC+R6syR6sA9+DkdQAAAAAAAAAAAAAAAAAAAACAx9l9PQAAAAAAAAAAAAAAAAAAAAAAIO/j5HUAAAAAAAAAAAAAAAAAAAAAgMf5+3oAK1qxp6qvR8gTWgX7eoK8Y3ZCpK9HyBNur7wu29s6Yr33uWAvsd1rPwu51wO/D/T1CHnC5Eaf+XqEPKHJd8/4eoQ8YV3XV7K9rTc7JdEqXFv5T1/19Qh5gt+xQF+PkCc4Ao2vR8gTYkY9lqPtOaaC1TS6701fj5AnBJx1+HqEPOFCQa4x4w6b3n0k29tyTAWradfpNV+PkCekBvP56g7J4exHd1g9g2Mq5C2dG4319Qh5gmPjP74eAXD6wTE729tyTAWr6VrtKV+PkCckleJ8NXcwdpuvR8gTflqa/f9d0ylr4m8bAAAAAAAAAAAAAAAAAAAAAAAex5XXASALHPLelcT4VhEA4Hp5s1MSrQIAXD+OqQAAVsYxFQDA6jimAgBYGcdUAAAro1PWxH4CAAAAAAAAAAAAAAAAAAAAAHgcV14HgCxINd77BhYfzACA6+XNTkm0CgBw/TimAgBYGcdUAACr45gKAGBlHFMBAKyMTlkTV14HAAAAAAAAAAAAAAAAAAAAAHgcJ/kDQBY4ZHw9AgAAGaJTAACro1UAACujUwAAq6NVAAAro1MAACujU9bEldcBAAAAAAAAAAAAAAAAAAAAAB7HyesAAAAAAAAAAAAAAAAAAAAAAI/z9/UAAJAbOOTw9QgAAGSITgEArI5WAQCsjE4BAKyOVgEArIxOAQCsjE5ZE1deBwAAAAAAAAAAAAAAAAAAAAB4HFdeB4AsSDXG1yMAAJAhOgUAsDpaBQCwMjoFALA6WgUAsDI6BQCwMjplTVx5HQAAAAAAAAAAAAAAAAAAAADgcVx5HQCywCG+gQUAsC46BQCwOloFALAyOgUAsDpaBQCwMjoFALAyOmVNXHkdAAAAAAAAAAAAAAAAAAAAAOBxXHkdALIglW9gAQAsjE4BAKyOVgEArIxOAQCsjlYBAKyMTgEArIxOWRNXXgcAAAAAAAAAAAAAAAAAAAAAeBxXXgeALHDwDSwAgIXRKQCA1dEqAICV0SkAgNXRKgCAldEpAICV0Slr4srrAAAAAAAAAAAAAAAAAAAAAACP48rrAJAFqYZvYAEArItOAQCsjlYBAKyMTgEArI5WAQCsjE4BAKyMTlkTV14HAAAAAAAAAAAAAAAAAAAAAHgcV14HgCxw+HoAAAAyQacAAFZHqwAAVkanAABWR6sAAFZGpwAAVkanrIkrrwNALrdy5Ur16NFDpUqVks1m07x58zJdf8iQIbLZbGketWrVcq4zbdq0dNe5cOGCh98NACCvoVMAAKujVQAAK6NTAAAro1MAAKujVQAAK8vPneLkdQDI5c6ePat69erp3XffzdL6b7/9tg4fPux87N+/X4UKFVK/fv1c1itQoIDLeocPH1ZwcLAn3gIAIA+jUwAAq6NVAAAro1MAACujUwAAq6NVAAAry8+d8vf1AACQG6TK+HqEDHXt2lVdu3bN8vqRkZGKjIx0/nrevHk6efKkhg4d6rKezWZTiRIl3DYnAMBz6BQAwOpoFQDAyugUAMDqrNoqOgUAkKzbKYlWAQDolFVx5XUAsJjExESdOXPG5ZGYmOixn/fxxx/rpptuUnR0tMvyhIQERUdHq0yZMurevbs2btzosRkAALmLN1tFpwAA14tjKgCA1XFMBQCwMjoFALA6WgUAsDI6lTWcvA4AWZBqvPcYP36881tSlx7jx4/3yPs6fPiwvvvuO91zzz0uy6tXr65p06Zp/vz5mjlzpoKDg9WyZUvt2LHDI3MAAHLGm53yZqvoFADkHXmxUxKtAoC8gmMqOgUAVken6BQAWBnHVLQKAKyMTlmzU7n+5PV169ZpwIABqlChgkJCQhQaGqoKFSpowIABWr9+va/HA4Dr9vTTT+v06dMuj6efftojP2vatGmKiopSr169XJY3b95cd911l+rVq6dWrVrpyy+/VNWqVfXf//7XI3PkZXQKQF7krVbRKc+jUwDyIo6p8hZaBSAv4pgq76BTAPIiOpW30CoAeRGtyjvoFIC8iE5ljb+vB8iJefPm6bbbblOHDh00evRoFS9eXMYYHT16VEuWLFHLli315ZdfqmfPnr4eFUAu5/DizwoKClJQUJDHf44xRlOmTNHAgQMVGBiY6bp2u11NmjSx3DewrI5OAfAWb3ZK8k6r6JTn0SkA3sQxFa3KDloFwFs4pqJT2UGnAHhTXjumolPeQasAeAvHVLQqO+gUAG+hU9bsVK4+ef3ZZ5/Viy++qKeeeirNcw8//LBee+01PfPMM0QMANKxYsUK7dy5U8OGDbvmusYYbdq0SXXq1PHCZHkHnQKA7KNTnkenACBnaJXn0SoAyD465Xl0CgCyj055B60CgOyjVZ5HpwAg+/JCp+y+HiAndu7cqT59+mT4fK9evbRr1y4vTgQgr0qVzWuP65WQkKBNmzZp06ZNkqSYmBht2rRJ+/btk3TxViSDBg1Ks93HH3+sZs2aqXbt2mmee+GFF/T9999r9+7d2rRpk4YNG6ZNmzbpgQceuO758jM6BcBbvNmp620VnbIuOgXAm6zaKYlWWRmtAuAtHFPRqeygUwC8iU7RqeygVQC8hWMqWpUddAqAt9Apa3YqV5+8XqlSJc2bNy/D57/55htVrFjRewMBgA+sX79eDRo0UIMGDSRJjz76qBo0aKDnn39eknT48GFn0C45ffq05syZk+G3r06dOqX77rtPNWrUUKdOnXTw4EGtXLlSTZs29eybyWPoFADQKSujUwBwEa2yLloFAHTKyugUANApq6NVAECrrIxOAUD+7pTNGGN8PUR2zZkzR3fccYc6deqkTp06qXjx4rLZbIqNjdUPP/ygJUuW6Isvvsj0W1rpWbGnqocmzl9aBft6grxjdkKkr0fIE26vvC7b227bX8qNk2SuWtlDXvtZ8CxPdUqSHvh9oAcmzn8mN/rM1yPkCU2+e8bXI+QJ67q+ku1tvdkpiVblFZ7sVPlPX/XAxPmP37FAX4+QJzgCc+1fe1hKzKjHcrQ9x1TIDk+2qtF9b3pg4vwn4KzD1yPkCRcK5uprzFjGpncfyfa2HFMhOzzZqXadXvPAxPlPajCfr+6QHM5+dIfVMzimgvd5slWdG431wMT5j2PjP74eAXD6wTE729tyTIXs8GSnulZ7ygMT5z9JpThfzR2M/frvGIu0flqa/f9d0ylr8vf1ADnRt29frVy5Um+//bbeeOMNxcbGSpJKlCihFi1aaMWKFWrRooWPp7x+2/+UlsyW9u6QTp+w6cGxRg1uyHj9qa9Lq39I+yFXspzRCx96cFCLW/eHNGWm9Pd26VicTf992eimVplvs+AH6eOZ0t4DUniY1Kqp9K/hUsF83OI9f6Xo5zlJOrwzVfEnjPo/G6IaLQIy3SYl2Wj5jET9sSxZCSeNChSxqc3tQWrYiZNvkL/k1U6d2nJG+xbGKj7mrJJOJav2I1VUtEnBrG27LV6bXtqisLKhajI+7a1rgOvVoGB5DazYStULlFbR4AJ6/PfPtOLolgzXb1e8lvqWa6qqBUopwO6n3fFH9eHOpVpzfIcXpwasIa92SpKaFiur+2o1U53CxVU8NEL3LZujJfsz/t950ZAwPdu4vWoXKqEKBQpp2pb1enH9Ui9ObB0D6tXTvU0aq1hYmHbExemlZcu1/uDBDNe/pXp13dekicoXjFJ8YqJW7tmj8StW6tSFC851hjRsoAH16qlURAGdvHBe323frv+s+llJqaneeEs+cVederqvQRMVCwvT9hNxemnVMq07lPF+HFinvgbVra8yBQroUHy83lv/m77eevkfLztXqqzhjZqpfFSU/O1+2nPqpD7auF5zt2XcPCAvyEut6temrgZ2bqwikWHafShOr89aoU070/9caFS1jD54vF+a5X2fn6Y9sSclSf5+dg3t0kTdb6ipolHh2ht7Uu98vUqr/97r0ffha31vqqcB3ZqocFSYYg7G6c3PlumPbenvx4Y1ymjis7enWX7741O19/AJSVLPdnXU9caaqli2iCRpW8wRTZr1s/7ZHeu5N2EBt7Wqq8EdLv5+3HU4Tv+Zs0Ibd2XcqQB/P93ftZlublJDRSJCdeRUgj76fq2+WfN3mnU7N6qq14Z207I/duqRDxd48m0APpeXOiVJPXs00O39mqpwoXDt2Xtc705aqj//OpDuurVrldb997RV2bKFFRzkryNHz2jBt5v01dfrXdbr27uxbuleX8WLFdDpM+e1YtU2ffjxCiUn591jgV5d66t/nyYqVDBce/Yd138/+kmb/8n4M/aS2jVK651X7lDM3uMa9vAnzuWtW1TRXbc2V+mSUfL3t+vAoVOaNW+dlizPXyc79rmpngZ0v/xngLc+zfjPAA1qlNHE59L+GeCOx6dq76ETnh4VsJS81Kru/Zqo38CWKlQkXHt3H9Pk17/TX5v2pbtuy3Y11P3WJqpYrYQCAvy0d/cxTf9gmX5fvctlvbDwYA0Z0UEt29dQRESwYg+d0gdvfq91v/DvBZLU48FO6vd4TxUuGaU9fx/QpEem6q+ft/p6rFyH/QhkLC91Kj3d7myuW4e1VqGiEdq744jef2Wh/v59T7rr3tCxlrr1b65KNUoqINBfe3cc0fR3f9SGn/NXk27p2VC33d5MhQuHa8+eY5r47o/6888Mjktrl9G997dTubKFFRTsryNHzmjhgo2a89XlC5t27lxHTzzVPc22XTpNyNPHpbfc0kC333ZpPx7XexMz34/33dtWZcv97/j+yBktXLhJX81xvUBsWFiQhg1rrVY3VlNERLAOHz6lyZN/0m9rd3vjLSGPytUnr0tSixYtcnWo0pN4QSpTUbqhkzT5pWuvf/uDUp+7L19JzpEqvfig1Ki1B4fMBc6fl6pVlnrfLI1+7trr/75ZeuoV6akRUruW0pFj0rg3pOcmSO/+2/PzWlXSBaMSFexqeFOAvnjlfJa2+XL8eSWcMur1/+zdd3QU1f/G8WfTSK+Q0JvSe5PelF6UqkgRRREV/SJ27Niwd1R+FsAGqAiISBMEpCkdQg8hBNJ7SCCBlN8fwcSQBGLI7s5u3q9z9hwye2fzmZtlnpndO3emucm/uoPSk3OVk23bsx1mi6vgUDb2mFPZmTnyrOOuaj0rK/j9kFKvl3UuS4c/DZVvM29dTM0yY4WoSNwcXXQsNVrLz+zWm23HXbV9G/+6+is+RJ8cW6OzFzM0tGY7vdtugu7c9qmOpUZZoGLzIKdQVvaYU5Lk7uSsw0kx+vHEfs3pdfUZOSo5OCkx47xmH9imu5t2sECFxjS4UUM927uXXli3TrsiInV7y5b6asRw9Z83X1FnzxZp365Gdb09cIBe3bBR606cUJCXp17p00ez+vXT/b/8IilvcPsT3bvrydVrtDsyUvX8/PTmgP6SpFc3bLTk5lnM4AaN9Fz33np+wzrtjIrQ2OYtNXfoCPX7bp4i04r247jmrfR4l26asX6t9sdEq1VQVc26sZ9SMjK0LizvQ7/kjAzN3vmXTiQl6mJ2tm6sV19v9hmghPPntCncNgaqklUoK3vIqr7tG+rR23rp9e/Xa29IpEb2aKGP/jdMo1/8WtGJRfcL/xj+7FylZ1zI/znpbMHnMvff0kWDOjbRK9+sVVh0kjo3q6O3779Zk95YqKOn48y6PdbSp1MjPTyht96au077j0Vo2I0t9d4TI3T7E/MUk1ByP45+9Culn8/M/zk5taAf2zappbXbjmj/15G6cCFb44d00AdPjdTYJ+crLinNrNtjLf3aNtTjI3vptUXrtTc0UqO6tdDsB4ZpxCtfKzqp+H58c9JgBXi5a+Z3a3U6Lln+Xm5ydCg6C281Py89MqyHdoUU/2WYkZFTKCt7yClJ6t2zsabed5Pe/2iNgg9GaOjg1nrj1dG6854vFBtXdN+QkXFRS5btVujJOJ3PuKAWzWvqkWn9lZFxUb/+tk+S1OfGprr37p56853fFHwoQrVq+uvJxwZJkj75bL1Ft89SbuzWSA/dc6Pe/Wytgg9H6OYBrfTmC6N0x9SvFBtfclZ5uLvomYcHafe+U/Lz9Sj0XOrZDH3z43aFn0nQxawcdelQX09NG6iklHPasSfMzFtkDDd1aqSH7+itt77KOwYYflNLvfvkCI19/MrHALc+UvIxgC0iq1BW9pBVPfs2032PDtDHr6/Qwb3hGjyyvV75aLwmj56tuOiUIu1btK2j3X+d0NzZvyvtbIb639xGM98bq2kTP9eJo3kDI52cHDXrkzuUnJSuV55YpPiYVFWp6qPz6ZlFXq8i6nlrF93/3l36aOrnOrjlqAZP6avXfntGdzebrrjT8dYuz2ZUpH4kp1BW9pBTxekxsKWmzBii2TOX6dDuMA0a01Evf36Xpgx+V3FRxWRXh3ras/W45r+3Wmmp59V3RHu9+OlETb/1E504XDFmcO7Vu4kemNpHH76/WsHBZzRkaBvNeuM2Tbrzc8XGphZpn5FxUUuX7FJoaKwyzl9UixY19fAjA5SRcVErft2b3y4tLUN33vF/hda154HrvXo11tQH+uiDD1crODhCQ4e01uuzbtVdk74ouR+X7lJoaJzOZ+T14/SH++t8xgWtWJF3fu/k5KC33hyj5OR0vThzieLjzqpKoLfOnbtQ5PWMipwyJpsfvG6PWnTIe5SWu4ekf32WtWerdC5N6tqv3EuzKT065T1Ka98hqUZVacKovJ9rVpNuG5o3E3tF1rC9sxq2/2em9at/sHd8Z5bCgrP08JdecvfK2/H7BZmxQAAWF9DaVwGtff/zeke/CFNQlwCZHKT4XcnlXhcqpq3xx7Q1/lip2797eEWhnz85tkY9A5uoR2ATmx68DqCwDZGh2hBZ+iv9z6SnaOaO3yVJt17f0lxlGd6kdu3044Fg/XAgWJL0yoYN6l63jsa1aqW3N28u0r5NtWo6k5qq+Xv2SJLOpKZqwf79urdDwQltm+rVtSsiUsuP5M0mFJGaquVHjqhV1aoW2CLruKd1O/1w6IAWHTogSXr5zw3qUbuuxrVopbe2Fe3H4Y2bakHwfq04flSSdDo1RW2qVtOUdjfkD17/K6LwIMB5+/ZoZONmal+ths0MXgcqsvF922rZ5mAt3Zy3f33nh43q3KyORvVsqY+XbClxvcSz55V2vviBE4M7NdGXv/2tLcFhkqSfNu5X52Z1NL5vOz331apy3wYjuH1gOy3fcEC/bMjbv77/7QZ1allXI/q00qeLiu5f/5GUek5p54rvxxc++a3Qz7O+WKMbOzZQ+2a1tXKzfc5oO+HGtlqyLVhLtuW9H99avFGdm9TR6O4t9dEvRd+PXZrUUfvra2jwi18p9VI/RiYW/aLLwWTSa3cO1Ke/bVPb62rIy62SeTcEQLkaPbKDflu1X7+t2i9Jmv3ZOnVoX083D22jL77aVKR9yIlYhZyIzf85JuaQundtqBbNa+YPXm/apLqCD57Ruj8OX2qTqvV/HFbjRtUssEXWcest7bXi9wNasTYvqz764g/d0Kaehg1qrf/7+s8S13vsgX76fdMh5eTkqlvHBoWe2xt8utDPPy3frQE3NlfLpjUqzOD12wflHQMs/+cY4JsN6niNxwAAbMuI8V20etkerVq6W5L02Tur1K7z9RoyqoPmfvx7kfafvVP4nGju7HXq3LOxOvVolD94vf8tbeTl46bpk75QdlaOJCm2mIHwFdXI6UO06qv1Wvll3gVnn06fp/b9Wmno/f301dPfW7k620E/AhXX8Lu6ac3inVp9aRbwOa/9qrbdGmrw7Z00793VRdrPee3XQj/Pf2+1Ot/UVB1vbFJhBq+PGn2DVv62T79dOqf8ZPbvat+hnobe3EZfflF0MqSQkBiFhMTk/xwTk6Ju3RupRYtahQavS1JSUrpZazeS0aNu0MqV+/Tbb5fO7z9Zp/b/nN9/Wbp+7N6toVq2qJU/eH3ggJby9nbVQ//7RtnZecdNMcUMhAf+q6LTo9iRp59+WpMmTbJ2GRa3ZZXUuI0UwIDh/6RNcyk6Ttq4XcrNleITpdUbpZ72d4GfWR3566KqX++ozT9l6q07zuqDyWla9UWGLmba9szrgDlUpJyK2hCn87GZqjuyhrVLAQoxySR3p0pKuXDO2qUAhlORcgqSs4ODmgcFafOpwgOhN586pbbVqxe7zu7ISFX19FSvevUkSQHu7hrQoKH+CC24cGBXRISaBwWq5aXB6rV8fNSrXj39cfKkmbbEupwdHNQ8MEh/Xjag/M/wU2pXrfh+dHF0VGZW4bvSZGRlqVVQVTkVM6utJHWpWVv1/fz1d2RE+RQO2ChbyConRwc1rh2k7YcK7xe2HwpXy+uK3y/84/vnxmn1W/fq0+kj1b5RzULPOTs56sLFy/YdF7LU+vorv6atcnJ0UKN6QfrrQOF+/OvAKbVocOVt/vrVCfr14yn6aMYotW1a64ptXSs5ydHRQanpGddcsxE5OTqoSa0gbTt82fvxcLha1Su+H3u1uE4Hw2N1Z58OWvPKZC17/k5NH95dlZwdC7WbMrCTktLOa+m2g2arH7A1tpBTUt4Mag0bVNXO3YWP0XfuOqnmTUv3Wd711wWqedMa2re/YKD1gYMRatigav5g9WpVfdTxhuu0/e8T5Ve8gTg5Oajh9VWLDCjfsSdMzRuX3I8Db2qu6tV8NW/B1lL9nrYta6tWDT/tO2h7d7koi3+OAf7eX8wxQMMrHwPMf22Cls+eoo+evvoxAFBR2UJWOTk5qkHjatq1vfCdgHdtP6GmLUv3f9tkMsnNw0VnUwomauvUo5EO7z+tB58crIVrHtecRQ9ozF3d5eDArJxOzk5q2K6+dq3ZV2j5rrX71axzIytVZXvoR+Da2UJOFcfJ2VENmtXQ7s3HCy3fveW4mrapU6rXyMuuSjqbXDG+w3ZyclDDhlW1c2fh89JdO0+qWfOaJaxV2PXXB6lZ8xravy+80HI3Nxd9v+ABLfxhql59bbSuv95+B1QW9GNYoeU7d4WpWbNSnt9fH6RmzWpo3/6CfuzSpYEOHorQtP/1008/PaQvv7hbY8d25rgJ18yuZ16PiIjQ6dOnr97QjiQnSME7pHuesnYltqdNc+mtZ6VHXpQuXJCysk26sWuunplm7cpsS1J0jsIPZcvJxaTbn3HXudQc/fpJhs6n5Wr4w27WLq/MuH0IzKGi5NS5qAydWHhabV9oIgdH/i/BWMbV6yZXRxf9Hn3A2qVcE3IK5lBRcgp5/Nzc5OTgoPhzhWefiE8/pyp13YtdZ3dklB75baU+GDJYlRwd5ezoqLUhIZq5/o/8Nr8ePSp/dzctGnObTJKcHR317d69mvP3DnNujtUU9GPhD5Tjz6erinvdYtfZFB6m25q10JrQEAXHxapFYJBubdpcLo6O8nN1U9ylv4mXi4u23TVFLo6OysnN1XMb1mnzaduZdZ2sgjnYQlb5errJydFBCamF9wsJqekK8C7+y6r4lHS98vVaHQ6PlbOTowZ3aqJPp4/Sve/8qD3H8y5a2X7wlMb1bafdxyN0Ji5ZNzSurV6tr5ODyT7/r/l65fVjYkrhfkxMSVeAT91i14lPTtesL9boyMkYOTs5amC3pvp4xmg98Ooi7T1S/MU/D4zpobjENO0Itp3963/hd+n9mHj2svfj2XRVLuH9WKOyj9pcV10XsrL0yOe/yNfDTU/fdqN83F314ndrJUmt61fXsM7NdNvr35p9G8yFnII52EJOSZKPt7scHR2UlFR435CUlC4/P48S1srzw3cPyMfHTY6ODpr/7Zb8mdsl6Y8Nh+Xr46YP3x0nkylv8OGy5bu1YNFfZtkOa/PxztvHJiUXPqdKTEmXv2/x/Vizmq+mTOyhB59aoOyckicA8nB30eK598vF2VHZObl677O12rnXPrPqciUdAySlpMu/hGOAhOR0zfo87xjAxdlRA7o11UdPj9bUV0o+BrAFZBXMwRayytvXXY5OjkpOKLx/TU5Ik1+AZ6leY+T4LnJ1ddHGtQUXWlar6afW1epp/coDevZ/36pG7QA9+ORgOTo56LvPi85KWpH4VPaSo5OjkmKSCy1PikmWX1Vfq9RkiypaP5JTMAdbyKniePvlZVdSwtlCy5Pjz8qvSsNSvcaISd3l6uasTSv3X72xHfDx+ee8tHDeJyWly/8q56ULf5iav/7X8zfnz9wuSeHhCXrz9V8VejJOHu4uGjGygz74aILuvedLRUQkmWVbrOmK/eh/5X5ctPCB/PXnf705f+Z2SapWzVdt2tTR7+sOasaMH1Szpr/+979+cnR00DfflHxnUSMhp4zJrgevz58//6ptMjMzlZlZ+JZxFzJz5FLJNiel37ZWcvOUWnexdiW2JyRMevVD6YGJUrcbpLiEXL31qfTiO9KrT1q7OtuRmyvJJI163E2uHiZJjhpwj7Ro1nkNud9VzpUIA+Afpckpqfisyr6QLUcXxxLWMI7cnFwdmn1C9UbVlHs1272ABfapX7WWuvf6m/TY7m+UdKHi3CoMKK1ryanci1kyOdv16abdyr1svITJJJU0hOJ6f389f2NvfbxtuzaFhSnQw0NP9eyhl/v00Yw1ayRJHWvW1AMdO+qFdeu0NypadX199VzvXopLT9fH2+1z0Iok5V7WayaZSuzHj/7eriruHvp59FiZTCbFn0vXT4cP6r52NygnNye/XdqFCxq88Bu5Ozura63aerZ7T4WnJuuviIox4yJQnGvJqpzsLDk4Wi6rLt8HmK4wyPxUTJJOxRR8eXIgNEpBfl6a0K9d/uD1txZt0HN39NHilyYqN1c6E5esX7Yc1M1dm5mjfMPIvSyoTKaS96/hUUkKjyrox+CQKAUFeGncoA7FDlwbP6SD+nZupKmv/KALF7PLs2zDKe79ePkxwD8cLj339LyVSsu4IEl6++dNevvuIZr1w3o5Ojjo1TsG6KUFvyvZTmesB8rqmnIqJ0sODpY9p7p8H6tSXBD1v0e/k5urs5o2qaHJd/dURESS1m84LElq1bKWxt/eWe9/tEaHj0SqRg0/PXh/H01ITNc335VulnFbVKQbZSpyfiBJDg4mPffYEH31/RadibzyoIlz5y/o7ofny83VRe1a1dbUSb0VGZ2ivcG2N5CnrIr2YcnvzyLHAMfzjgHGDi7+GACoyGwpq4o7Fyj5U6sCvfo314QpvfTiIwuU8q+BXCaTSclJ6frg1V+Uk5OrkCNRCqjipVF3dK3wg9f/UfTQwFT0eAFXRT8CZWdLOVWcsv7/7zm4lcY/2EczH/haKYkV7DvsIt1T8md//3j4f9/Kzc1FTZpW1+TJvRURkaQ/1h+SJB0+HKnDhyPz2wYHn9Fn/zdJw0a01+yP1pZr6UZS9Duqou/Hy017+Du5ubmoaZPqumdyL0VGJGn9H3nn9yYHk5KS0vXuu6uUk5Or48djFBDgqdtu7Wgzg9dhTBV+NMGsWbM0c+bMQssmTvPXXQ8HWKmissvNlbasljrdJDk5W7sa2/N/30ptm0t33573c6PrJDdXafxDJk27J1eBtveWsAovfwd5B+RcGriep0otB+XmSqnxOQqoYfzBtsXJyWXQPaynuKxqN7mF2k9pZaWKSi/rfLbOhqYrLSxdx+eFSbp0UJwrbRj/t1rNaCy/Zt5WrREVU9+qLfRcixF6as8C/Z1g+7erJqdgTcXllM+wm+Q7vI+VKkJZJJ0/r6ycHFXxKDzzQoC7u+LTi78t5X0db9CuiEh9vnOnJOlofLzOrVunH8aM0btbtiguPV3Tu3bR0kOH9cOBYEnSsfh4uTk769W+fTR7+1+l+IrRtuT3o/tl/ejmXmRW+39kZmfpyXWr9cwfa1XZzV2x59J1e7OWOnshU4nnC25nnSvpVEqyJOlwfJyu9wvQA+062szgdbIK1lRcVlVt20/V2w0w++9OTjuvrOwcVfYufBcLfy/3IrOxX8mBk1Ea1LFxodd99JPlcnFylI+nq+KS0/XQiG6KiE8tt9qNJPlsXj8GXDZzrZ+3uxJTSv8lXnBIlAZ0bVJk+dhB7TXx5hv00KyfFHI6/prrNaqkS+/HAK/L3o+e7ko4W/z7MT41XbEpafkD1yXpZHSiHBxMCvL1kpuLs2pU9tEHU27Jf/6fOwDs/GCahr08T2fiU8ywNeWLnII1FZdTderfpHrX9bXI709JPafs7Jwis7D5+boXma3tctHRef+/T4bFy8/PXRMndM0fvD5pYnetWXcwfzb2k2HxcnV11qPTBujb77de9YtzW5OSmrePvXxWQD8fdyUlF93Huru5qEmDampQP0gPT8k7f3YwmeTgYNL6JY/qsRd+1O5Lt2nPzZUiopIlSSEnY1WnZoDGj+pYIQav5x8D+BTt1/90DHA8SgO6FT0GsCVkFaypuKyqX7WHrq/ey+y/OzX5nLKzsuVXufAs6z7+HkpKuPJ+oGffZpr+/C169ckftOfv0ELPJcanKTsrWzn/uvNF+Mk4BVT2kpOTo7Ky7PuC1itJiT+r7Kxs+V82O7hvoI+SY4x/bG8UFa0fySlYU3E5dZ1/VzWo3M0q9aQm5WWXf2WvQst9AjyVHJ92xXV7DGyph18dqdemfae920LMWaahpKTknZf6XX5e6vcfzktPxsnPz0MTJ3bLH7x+udxc6eiRKNWs4Vc+hRvMP/3o71f4uMnXz6NM/fjP4PXEhDRlZeUUPm4KT1BAgKecnByUlZVT7GsaCTllTDY/eD09PV3ff/+9tm7dqujoaJlMJgUFBalr1666/fbb5eFx5VsezJgxQ4888kihZX9FtTVnyWZzbL8UG2lStwF29omfhWRkSo6Xjat2+GcCfrq01Go3cdTBzReVeT5XldzydvzxETkyOUjelW3zjgbAtbjWnJKKz6pHD95nrpLLlZObozq80bzQsoi1sUo+mKpmD18vtyqVrFQZKrJ+1VrquRYj9ezehdoSd9Ta5QBWZa6cavHjh+YqGWZyMSdHwTEx6lqnttaEFHwg2rVOHf0eUvxFPm5OzsrOLfyB1D8fXP3zEZCbs7NyLhuVkpObI5NMdjnL0MWcHAXHxqhbrTpaE1rQj91q19Ha0Ct/0JyVk6Po9LwProc2bKT1J0OveirqcvlJLGCHzJVVPafPMVfJhWRl5+hIeIw6Nq2jP/YW7E87NqmtjftKfxFlo1qBii9mgNaFrGzFJafLydFBN7VtoLU7j5VL3UaTlZ2joydjdEPzOtq4s2B/ekOLOtq0q/Rf5DWsG6j45ML9OG5we901rJOmvbFYR07GlFvNRpSVnaPDp2PUuXEd/bH/X+/HxrW14UDx78e9oZHq06aB3Fycdf7CRUlSnUBfZefkKCb5rHJzpZGvfl1onQeHdJG7q4ve/GmDopPOFveygN0wV04NHfGRuUouIisrR8eOR6t927ravOV4/vJ2betqy7bjV1izMJPJJJd/3YHL1dVZuTmXnQtk58pkss8ZR7OycnQsJFrtW9fRn9sL+q196zra/HfRrEo/l6mJD84ttGzYoNZq27K2nn/9F0VdYVCbySQ5O1eMc4F/jgE6tLjsGKB5Hf15jccAQEVhrqwa2fMNc5VcSFZWto4fiVLbjtdp6x9H8pe37Vhf2zaW/Pl+r/7N9cjzwzTrmZ/09+aieXZoX7h6DWhRKJNq1qmshLjUCj1wXZKyLmbp2K5Qte3bUluW/p2/vG2fltr6yw4rVmZb6EegdMyVU6PbvWSukq8q62K2jh+MUJuu12vr7wfzl7ftcr22rSt+ULWUN+P69NdG6Y1HFmjHFTLOHmVl5ejYsWi1a19PWzYXfL7Zrl09bdlS+s87TSaTnF2ufK503fVBOnkytsy1Gll+P7arq81b/t2PdbV1S+nP72WSnP91fh988IxuurFZ3t2aL53K16zpr/j4szYxcB3GZdOD1w8dOqS+ffvq3Llz6tmzp2rXrq3c3FzFxsbq8ccf14svvqg1a9aoadOmJb5GpUqVVKlS4YFzLonWHWCbcV6KK7hjheKjpdMnJHcvKSBQ+vkrKTlemvRE4fU2r5bqNc5VjboWLdew0s9J4f+6+9+ZKOnwccnHW6oeJL37f1JMnPTGM3nP9+4iPf+WtGCp1O0GKS5BmvWR1LJJrgIrW2UTDCHzfK4SIwuCJik6R1EnsuXmZZJvoIPWzstQakKuRj7qJklq0ctZGxZmaul759V7fCWdS83Vmq8y1bavs5wr2e5VTNlXuAUlUJLyyCmp+KxyvMoBtzllZWTrfHTBrcAz4jJ1Nixdzp5Ocq1cSScWnlZm4gU1feA6mRxM8qxVeEY3F28nObg4FFkOlIWbo4tquRfcHqW6u78aelVTysVzislI0dSG/VTF1Vsv7v9JUt7A9ZktR+udw78qOPm0AlzyrjrOyLmo9KzMYn+HLSCnUBbmzCmTs3VPNd2dnFXXq2DWhFqevmrqF6jkCxmKTE/VE216KsjdS49u+TW/TVO/wPx1/V3d1dQvUBdyshWSkmDx+q3lq1279PbAgToQE6M9kVEa07KFqnt56ft9+yRJj3Xrpqqennps1SpJ0vrQE3q1b1+NbdVSf4adUqCHh57t3Ut7o6IUm543KGDdiVBNatdWh2JjtTcqSnX8fDW9S1etCz1RZFC7vfhi7y6923egDsTGaHd0pG5v1lLVPb30fXBePz7eOa8fH12b14/1fP3UKqiq9kZHycfVVXe3bqeG/pXzn5ek+9vdoAOxMTqVkixnR0f1rlNPIxo31XMb1lllG8uCrEJZmDOrHBwtl1Xfrt2tlycN0KFTMdp/IkojerRQVX8v/bQxbybaB4d3VRVfT70wd7Uk6fab2igqIVUnIhPk7OioQZ0aq0+7Bnrs0+X5r9m8XlVV8fXUsdNxquLrqSlDO8lkMmn+6p0W2y5LW7Byl164f6AOn4xR8PFI3XJjSwUFeGnJurz96/23dVMVP0+99Fne/vO2AW0VFZeqk2fi5eTkqAHdmujGGxrqqfeW5b/m+CEddO+oLnph9m+KikuRv0/eeer5jIs6n3nR8htpAd+s361X7xigg+Ex2n8ySiO7tlA1fy/99Gfe+/Ghm7sq0MdTz32T9378bccRTR7QUS+N76dPf9smXw83TR/eQ8u2HVTmxbxBPSeiCh8vnT2fWexyIyOnUBZmzSkL397+x8U7NOOJITp6LFoHD0VqyOBWCgr01vJf90qS7pnUQ1UCvDTrrRWSpGFD2ygmLlXh4YmSpBbNa+rWUTdoybJd+a+5dXuIRo/ooOMnYnX4SKRqVPfTpIndtXVbSKHZ2uzJD8t26pnpg3U0JFoHj0RqaP9WCqzirWUr87Lq3ju6q7K/l157/zfl5konwwvf7SM55ZwuXMgutHzcqI46GhKtiKhkOTs5qlP7+urfu5ne+dR+b3F/uQW/7dILDwzUkdAYHTgeqWE3tlRQ5cuOAfw99dKn/zoGiE9V6Jl4OTteOgboWPgYwBaRVSgLe8mqn7/dqsdfHqFjhyJ1eP9pDRrRXoFVfbTip7wBwHc92EeVq3jprReWSMobuP74SyP06dsrdeTAGfkF5H0PkJl5UefS8o5Vf/1ph26+raPuf2ygli36SzVq+2vMXd21bOFfFtsuI1v83q968uuHdGznCR3edkyD7u2jwNqV9etna6xdmk2pSP1ITqEs7CWnirNk7mY99uatOh4cocN7TmngbR1VpZqvfruUM3c+0l8BQT5658kfJOUNXH/sjVv12WvLdWRfeP4dRzIzCrLL3v304996asZQHTsapUMHIzR4SGsFBnlr+fI9kqS77+mpylW89MasvO/2bhnWVrExqQoPz/v8qXmLmhp96w1auqTgvHTCHd10+HCEIs4kyd3dRcNHttf11wfqww9WW34DLeTHn/7WjKeG6uixaB06FKEhg1vnnd9f6sd77u6pypW99Pobl/rxlraKjS3oxxbNa+rW0Tdo6dKCfvzllz0aPqydHpzaV0uW7lSNGv4aO7azlvxsO59Fk1PGZNOD16dOnaoePXpo/vz5cnFxKfTchQsXdOedd2rq1Kn6448/rFRh2Zw6Jr3zRMF/mB/n5P27c99c3fWYlJIoJcYVXudcurR7szTGNibitYiDR6WJDxf04xuz8/49bECuZs3IG5we9a8LqYYPzBvw/t0S6c1PJC9PqVNb6dEplq7cWCKPZ2vujIJbWq76IlNSplrf5KwRj7jpbGKuUuIKBrdXcjNp4ivuWvFZhuY8nC43L5Oad3fWTROYXRkVj73m1NnQdO19pWB2i5Bv825fW7VHZTW5r74uJF9UZsKFklYHylUTnxqa03Fy/s+PNBksSfr1zC7NPLBYlSt5qaqrb/7zI2rdICcHRz3Z7BY92azgtvb/tAcqEnvNKUlqGVBNC/uPzf/5uQ43SZJ+Cjmgx7auUKCbp2p4eBda57ehkwrWr1xNw+o305m0FHX7+VPLFG0AK44ek6+rmx7q1ElVPDx0PCFBd/+8RJFn82ZMDfTwUDXvgttcLj54SB4uLprQurWe7tlTqZmZ2hZ+Wm/++Wd+m9nbtytXuXqka1cFeXoq8fw5rQsN1Tubt1h8+yxlxfGj8nN11f9uyOvHYwkJmrT8Z0X8qx+rexa8/xxMJt3Tpr3q+/rpYk6Otkec1qifFijibGp+G3dnZ73U6yZV8/RURlaWTiQlafralVpxvGLNvoKKx16yau3OY/L1cNXkwR1V2cdDJyIT9L+Plio6MW+/UNnHQ1X9C/avzk6OenhUD1Xx9VTmxSyFRibofx8u0ZbgsPw2Ls6OeuCWLqpRxUfnMy9q84GTeu6rVUo7b79fZv2+/ah8PF119/BOCvD1UOiZBD3y1s+Kjr/Uj74eqhpQsH91dnLUQ2N7qIq/pzIvZOnkmQRNf/Nnbdt3Mr/NyD6t5OLspFkP31zod32xeKu++HmbZTbMwtbszns/ThnYUZW9PRQSlaAHP1mqqEszpFfx9lC1f70fz1+4qPs+XqynRvfWd0+MVUp6htbsPqbZv9pvlgOlZS85JUl/bDwib2833TGuq/z9PRR2Kl5PPfujYmLzjkkD/D0VGFiwjzU5mDR5Uk9Vreqj7OxcRUYm6fMvN2j5ir35bb75bqtyc6W7J3ZX5cqeSk45r23bQ/TF3E2W3jyLWb/5qLy93DTxti4K8PfQyVPxevKlxYqJu9SPfp4KquJ1lVcpzK2Ssx65r6+qBOTlWfiZRL3y7gqt31xxzgXWXToGmDSi4Bjg0TcLjgECfD0U9K9jAKfLjgFCzyTokTd/1ra9J0v6FYDdspes2rj2oLx83TVuck/5V/bSqROxevZ/3yk2Ou8uFf6VPVWlqk9++0Ej2uftC54aooeeGpK/fM3yPXrnxaWSpLiYVD099WtNeXSAPlt4v+Ljzmrpgu36Yf5mi26bUW38Yau8Azw1/rlR8q/mp7Dg03pm8GuKvezCK1wZ/Qhcmb3kVHE2rdwvLz93jX3gJvkHeinsWLSev3eeYiOTJUn+VbwVWM03v/2g2zrKydlRD74wTA++MCx/+dqfd+ndGT9atngr2fDHYXl7u2nCHV3l7++psLA4zXjqB8XGXDqfCrjsvNRk0t2Te106L81RVGSyvvh8g369NEhbkjw9K+mRRwbKz99D6emZCgmJ0fRp3+nokSiLb5+lbNhw6fx+wqXz+7B4zZhRcH7vf1k/OphMuufungX9GJWsL77YqOW/FvRjXNxZPfHkIj1w/0364vO7FR9/Vj//vFMLF263+PbBvphybfi+fO7u7tq5c2eJV1gFBwfrhhtu0Llz54p9viQbwxqWR3kVXndXa1dgP35M87l6I1zVbdeX/fZbO8Lrll8hV9GhdpjFfhfMy1w5JUn37ZpwreVB0mftvrF2CXahw8qnrV2CXdgx8LWyr2vBnJLIKnthzpyq+/Xr11oeJDnGuVy9Ea4qx8VmP/YwlJMPPXpN63NOhbIwZ1a1u/e9ay0PkpzTuS1secjws+6dQO3F3o+nl3ldzqlQFubMqd793rjW8iAp25X9a3m46Ek/lodt33NOBcszZ1b1b/fCtZYHSTl7Dlm7BCDf2pyyD5DlnAplYc6cGtjoqWstD5IuVGe8WnnIdWDW7/Kwfl3Z/1+TU8Zk0582+Pn56fjx4yU+HxISIj8/vxKfBwDAnMgpAICRkVMAAKMjqwAARkZOAQCMjqwCABgZOQUAFZuTtQu4FpMnT9bEiRP17LPPqm/fvgoKCpLJZFJ0dLTWrl2r1157TQ8//LC1ywRgB3JyuQoO/x05BcBSyCmUBTkFwJLIKpQFWQXAUsgplAU5BcCSyCqUBVkFwFLIKZQFOQXAUsgpY7Lpwesvvvii3Nzc9O677+qJJ56QyZT3JsvNzVXVqlX11FNP6YknnrBylQCAioqcAgAYGTkFADA6sgoAYGTkFADA6MgqAICRkVMAULHZ9OB1SXryySf15JNP6uTJk4qOjpYkVa1aVfXq1bNyZQDsSba4AgtlQ04BsARyCmVFTgGwFLIKZUVWAbAEcgplRU4BsBSyCmVFVgGwBHIKZUVOAbAEcsqYbH7welRUlD799FNt3rxZUVFRcnR0VL169TRs2DDdeeedcnR0tHaJAIAKjJwCABgZOQUAMDqyCgBgZOQUAMDoyCoAgJGRUwBQcTlYu4BrsXPnTjVp0kTLly9XRkaGjh07prZt28rDw0OPPfaYunfvrrNnz1q7TAB2IDvXwWIP2A9yCoClWDKnyCr7QU4BsCRyCmVBVgGwFM6pUBbkFABLIqdQFmQVAEvhnAplQU4BsBRyyphsuqcefvhhTZ8+XXv27NHWrVs1f/58HTt2TAsXLlRoaKjOnz+vZ5991tplAgAqKHIKAGBk5BQAwOjIKgCAkZFTAACjI6sAAEZGTgFAxWbTg9d3796tCRMm5P88duxY7d69WzExMfLz89Obb76pn376yYoVAgAqMnIKAGBk5BQAwOjIKgCAkZFTAACjI6sAAEZGTgFAxeZk7QKuRWBgoKKiolS/fn1JUkxMjLKysuTt7S1JatCggRITE61ZIgA7kWPb1/rASsgpAJZCTqEsyCkAlkRWoSzIKgCWQk6hLMgpAJZEVqEsyCoAlkJOoSzIKQCWQk4Zk03/VYYNG6b77rtPq1at0h9//KFx48apZ8+ecnNzkyQdPXpUNWrUsHKVAICKipwCABgZOQUAMDqyCgBgZOQUAMDoyCoAgJGRUwBQsdn0zOuvvPKKoqKiNHToUGVnZ6tz58769ttv8583mUyaNWuWFSsEYC+yZbJ2CbBB5BQASyGnUBbkFABLIqtQFmQVAEshp1AW5BQASyKrUBZkFQBLIadQFuQUAEshp4zJpgeve3p6atGiRcrIyFBWVpY8PT0LPd+vXz8rVQYAADkFADA2cgoAYHRkFQDAyMgpAIDRkVUAACMjpwCgYrPpwev/cHV1tXYJAOxcdq6DtUuADSOnAJgbOYVrQU4BsASyCteCrAJgbuQUrgU5BcASyCpcC7IKgLmRU7gW5BQAcyOnjIm/CgAAAAAAAAAAAAAAAAAAAADA7Oxi5nUAMLccmaxdAgAAJSKnAABGR1YBAIyMnAIAGB1ZBQAwMnIKAGBk5JQxMfM6AAAAAAAAAAAAAAAAAAAAAMDsmHkdAEohm2t9AAAGRk4BAIyOrAIAGBk5BQAwOrIKAGBk5BQAwMjIKWPirwIAAAAAAAAAAAAAAAAAAAAAMDtmXgeAUsjO5VofAIBxkVMAAKMjqwAARkZOAQCMjqwCABgZOQUAMDJyypj4qwAAAAAAAAAAAAAAAAAAAAAAzI7B6wAAAAAAAAAAAAAAAAAAAAAAs3OydgEAYAtyuNYHAGBg5BQAwOjIKgCAkZFTAACjI6sAAEZGTgEAjIycMib+KgAAAAAAAAAAAAAAAAAAAAAAs2PmdQAohexck7VLAACgROQUAMDoyCoAgJGRUwAAoyOrAABGRk4BAIyMnDImZl4HAAAAAAAAAAAAAAAAAAAAAJgdM68DQClkc60PAMDAyCkAgNGRVQAAIyOnAABGR1YBAIyMnAIAGBk5ZUz8VQAAAAAAAAAAAAAAAAAAAAAAZsfM6wBQCjm5XOsDADAucgoAYHRkFQDAyMgpAIDRkVUAACMjpwAARkZOGRN/FQAAAAAAAAAAAAAAAAAAAACA2THzOgCUQjbX+gAADIycAgAYHVkFADAycgoAYHRkFQDAyMgpAICRkVPGxF8FAAAAAAAAAAAAAAAAAAAAAGB2zLwOAKWQnWuydgkAAJSInAIAGB1ZBQAwMnIKAGB0ZBUAwMjIKQCAkZFTxsTM6wAAAAAAAAAAAAAAAAAAAAAAs2PmdQAohRyu9QEAGBg5BQAwOrIKAGBk5BQAwOjIKgCAkZFTAAAjI6eMib8KAAAAAAAAAAAAAAAAAAAAAMDsmHm9GAcyalq7BLuwPKWKtUuwGweSq1m7BLtw2/XWrgAoPyc6ZFi7BLtQd/bb1i7BPuT6W7sCAAbj91cla5dgFxwzc61dgl04X5nr9gEU5RmVZe0S7EIuu9hyYSLyAVymUlSqtUuwC5nVva1dgl1wSblo7RIAGJBDAllVHnI7trR2CXbBdIFzfACXOXfe2hXYBed4R2uXYBdynRiiCxSH/xkAUArZfBsLADAwcgoAYHRkFQDAyMgpAIDRkVUAACMjpwAARkZOGRN/FQAAAAAAAAAAAAAAAAAAAACA2THzOgCUQo5M1i4BAIASkVMAAKMjqwAARkZOAQCMjqwCABgZOQUAMDJyypiYeR0AAAAAAAAAAAAAAAAAAAAAYHbMvA4ApZCdy7U+AADjIqcAAEZHVgEAjIycAgAYHVkFADAycgoAYGTklDHxVwEAAAAAAAAAAAAAAAAAAAAAmB0zrwNAKWRzrQ8AwMDIKQCA0ZFVAAAjI6cAAEZHVgEAjIycAgAYGTllTPxVAAAAAAAAAAAAAAAAAAAAAABmx8zrAFAKObkma5cAAECJyCkAgNGRVQAAIyOnAABGR1YBAIyMnAIAGBk5ZUzMvA4AAAAAAAAAAAAAAAAAAAAAMDtmXgeAUsjmWh8AgIGRUwAAoyOrAABGRk4BAIyOrAIAGBk5BQAwMnLKmPirAAAAAAAAAAAAAAAAAAAAAADMjpnXAaAUcnK51gcAYFzkFADA6MgqAICRkVMAAKMjqwAARkZOAQCMjJwyJv4qAAAAAAAAAAAAAAAAAAAAAACzY/A6AAAAAAAAAAAAAAAAAAAAAMDsnKxdAADYgmyZrF0CAAAlIqcAAEZHVgEAjIycAgAYHVkFADAycgoAYGTklDEx8zoAAAAAAAAAAAAAAAAAAAAAwOwYvA4ApZCT62Cxx3+1adMmDR06VNWrV5fJZNLSpUuv2H7Dhg0ymUxFHkeOHCnUbvHixWratKkqVaqkpk2basmSJf+5NgCAZVgyp/5rVpFTAACJcyqyCgCMjXMqcgoAjI6cIqcAwMg4pyKrAMDIyClj5hSD1wHAxqWnp6tVq1b6+OOP/9N6R48eVVRUVP6jQYMG+c9t27ZNt912myZMmKB9+/ZpwoQJuvXWW/XXX3+Vd/kAADtHTgEAjI6sAgAYGTkFADAycgoAYHRkFQDAyCpyTjlZuwAAsAXZMlm7hBINHDhQAwcO/M/rBQYGytfXt9jn3n//ffXt21czZsyQJM2YMUMbN27U+++/rwULFlxLuQAAMyCnyCkAMDqyiqwCACMjp8gpADA6o2YVOQUAkIybUxJZBQAgp4yaU8y8DgAGk5mZqdTU1EKPzMzMcv89bdq0UbVq1XTTTTfpjz/+KPTctm3b1K9fv0LL+vfvr61bt5Z7HQAA22OJrCKnAABlxTkVAMDoOKcCABgZOQUAMDqyCgBgZORU6TB4HQBKISfXwWKPWbNmycfHp9Bj1qxZ5bYt1apV0//93/9p8eLF+vnnn9WoUSPddNNN2rRpU36b6OhoBQUFFVovKChI0dHR5VYHAKD8WDKnzJ1V5BQA2Cd7ySmJrAIAe8Q5FTkFAEZHTpFTAGBknFORVQBgZOSUMXPKydoFAAAKmzFjhh555JFCyypVqlRur9+oUSM1atQo/+fOnTvr9OnTevvtt9WjR4/85SZT4Vum5ObmFlkGAKiYzJlV5BQA4FpxTgUAMDrOqQAARkZOAQCMjqwCABgZOVU6DF4HgFLIzrXcjSoqVapUrgMrSqNTp0769ttv83+uWrVqkautYmNji1yVBQAwBkvmlGT5rCKnAMD2cU5FVgGAkXFORU4BgNHZ8zkVOQUAto9zKrIKAIyMnDJmTln2rwIAMKQ9e/aoWrVq+T937txZa9euLdRmzZo16tKli6VLAwCAnAIAGB5ZBQAwMnIKAGBk5BQAwOjIKgCAkdlqTtn0zOsXLlyQi4tL/s8nTpzQRx99pOPHj6tatWq6//771a5dOytWCMBe5MhYt834t7S0NIWEhOT/fPLkSe3du1f+/v6qXbu2ZsyYoYiICH399deSpPfff19169ZVs2bNdOHCBX377bdavHixFi9enP8a06ZNU48ePfTGG2/olltu0bJly/T7779r8+bNFt8+W0ZOAbAUcoqcKiuyCoClkFVkVVmQUwAshZwip8qCnAJgSUbNKnLK2MgqAJZi1JySyCojI6cAWAo5ZcycsumZ193c3BQbGytJ2rt3r1q2bKmNGzeqRo0a2r9/v7p06aK///7bylUCgHnt3LlTbdq0UZs2bSRJjzzyiNq0aaPnn39ekhQVFaXw8PD89hcuXNBjjz2mli1bqnv37tq8ebNWrFihESNG5Lfp0qWLFi5cqLlz56ply5aaN2+eFi1apI4dO1p242wcOQUA5JTRkVUAQFYZGTkFAOSUkZFTAEBOGR1ZBQBklZGRUwBQsXPKlJubm2vtIsrKwcFB0dHRCgwM1NChQ+Xq6qoffvhBJlPelRKTJk1SVFSUVq5c+Z9e9+MjN5qj3AonLLOKtUuwGweSq129Ea5qdc/3y7zui8G3lF8hV/tdzZdZ7HfBvMyVU5LU12F0eZdbIR2fbawDM5tls0eTxhL2wGNlXteSOSWRVfbEXFnVZup75ii3wnHMZAdbHs5XNu5sCrbk4OvTr2l9zqlQFuY8p+o59K3yLrdCyrXpqVGM46IHHVketn3/aJnX5ZwKZWHOnBrQ4pnyLrdCyqzube0S7IJjRra1S7ALv298+prW55wKZWHOrBpY99o+J0Ce7Gr+1i7BLpguZFm7BLuwetfMMq/LORXKwqw5VWtaeZdbIeX6elq7BLuQ6+Rk7RLswuo95JS9sZv/GXv37tXChQvzA0zKm/6+f//+VqwKgL3I5ttYXCNyCoA5kVMoD2QVAHMiq3CtyCkA5kRO4VqRUwDMjazCtSKrAJgTOYVrRU4BMCdyyphs+q9iMpnyQ8vR0VHe3oVnUPD29lZKSoo1SgMAgJwCABgeWQUAMDJyCgBgZOQUAMDoyCoAgJGRUwBQsdn0zOu5ublq2LChTCaT0tLSdODAAbVo0SL/+ePHj6tq1apWrBCAvcjJNV29EXAZcgqApZBTKCuyCoClkFUoC3IKgKWQUygLcgqAJZFVKAuyCoClkFMoC3IKgKWQU8Zk04PX586dW+jn6667rtDP27dv1/Dhwy1ZEgAA+cgpAIDRkVUAACMjpwAARkZOAQCMjqwCABgZOQUAFZtND16fOHHiFZ9//vnnLVRJ+Yo4mKndS9IUF3JB6Uk5GjTDX9d1ciux/ZkDmVrybHyR5eNmB8q/prM5SzW0hENpOvFLrJJPnlNmUpbaP1ZX1W7wLdW6iUfStPXFEHnVclXPtxqbt1CDa+5TX6Nr3agGnrUUUMlHLwZ/qW0JB0ps38y7nu6uP1S13INUycFZsZlJWhG5VUsiNlqw6vKXLQdrlwAbZK85dTVD7++n0Y/dooBqvgo7eEafTp+r4M1HrF2WIYxv1lpTWndQoLuHjiXF66Utf2hHVESJ7Sc0a62JLdqoppe3ItLOavau7fr52KH85xfefJs61ahVZL31p0I16befzbINRjC+WWtNaXOpHxNL0Y/N/9WPZ89q9u7t+vnooUJtvF0q6bGO3TSgfgP5VHLV6bMpemXLBm0IP2nuzSkX5BTKyp6yanT3lprYp70q+3joRFSC3v5po/acKHnf4OzkqHsHdtTgG5oowMtdMclp+nL131q27aAk6cZW1+vu/jeoVhUfOTk6KjwuSd+s260Vfx+21CZZxaherTShf3tV9vVQaGSC3lm4QXuPF9+P7RrV1JzHby2yfOSzc3UqOin/59v7tNGoXq0U5O+t5LTzWr/rmD5evFkXsrLNth3WNqZTS93Vo72qeHkoJCZBr/+6UbvDiu/HV0f307B2zYosD4lJ0C3vfS1J6tPsek3ufYNqB1x6P8Ynad6fu7V8j+28H8kqlIU95dSwQa01ZkQH+ft5Kiw8Xh9/vl77D5WcU/9o3qSGPpg1RidPxeueafPzlw/p11L9b2ymenUqS5KOhsTo86836cjxaLNtgxEMG9hatw8v6MePvixlPzauoQ9fy+vHu6cX9GOPTg00fnQn1ajqKycnB52JTNaiZTu0ZsOhK7ya7RvRp5XGDemgAF8PnYxI0Ptf/6F9R4vvxzZNauqT524rsnzMY3N1KjJRklSvRoAmj+6ixvWCVK2Kj97/+g8tWrXbrNtQ3sgplIU95ZQkDbmto0bd2U3+Vbx06kSsPntjhQ7uPlVs2643NdXg2zqqfqNqcnZxVPiJWH37yTrt2hqS32bAyPbqM7SN6jQIkiSFHIrQ3A/W6ljwGYtsj7XcMqSNbht9gwL8PRV2Kl4ff7ZOB0rY5ubNamjK3b1Uq1aAXCs5KSY2VctX7NVPS3YWajdyeHvdPLi1ggK9lZJ6Xhv/PKrPv9qoixft95zq5mFtNXpMp7x+DIvTJx//ruD9p4tt27xFTd0zpbdq1w5QJVdnxUSnasXy3Vr84478Nt26N9Lt47uoRg0/OTo5KOJMkn764S/9vibYUpt0zcgqlIU9ZdXg8V01akpv+Qd669SxaM15aakO7ggttq1fFW9NfvZmNWheS9XrVdYv8/7UnJeWFmrTZ1QHPfr22CLr3tzocV3MzDLHJhjS0BHtNHpcZ/kHeOnUyTh9+v5qBe8rfn/brGUt3TP1JtWqk7e/jY1O0Yqlu/Xzwr8sXLX1DRndQaMndJV/ZU+dCo3TZ2+vVPDe8GLbdu3dRENGdVD9RlXl7OyoU6Fx+vb//tCubScKtfPwdNWdU29S1xubyMvLVdGRyfq/91Zrx5bjltika0ZOoSzsKqfu6KZRU24syKmZP+vg3yXkVKC3Jj83TA1a1FT1elX0y1ebNGfmkhJfu+fNbfTU7Du1dfV+vXzPl+baBEPgvLR8DBndQaMnXsqpE5dyak8JOXVjEw0ZfVlOfVY4p/oOba3HXip6IcmQji/r4gXbOG4ip4zJpgev26uLGbmqXNdZTW5y18rXE0u93vhPAuXiXvAfzc27Yv+ny8rMkXddN9Xq7a+d74SVer2L57K1Z3a4KrfwUmbyRfMVaCNcHSspNC1Sa6L/1vPNJl21fUbOBf0SsVkn0yOVkX1BzXzqaVrDW5WRc0Ero7ZZoGIA1tTz1i66/7279NHUz3Vwy1ENntJXr/32jO5uNl1xp4teaFWRDLmukZ7v2lvP/fm7dkZFaFyzVpo3eKT6LpyryLSzRdqPb9ZKT3Tqrhkb1mhfbLRaB1XVrJ79lZKZoXWn8k50p6xeJheHgrz3dXXTylsn6rcTRy22XZY25PpGer5bbz236XftjI7QuKatNG/ISPVdUMp+DKyqWb36KyWjoB+dHRz0zc2jlXD+nO5f/Yui09JUzdNL6RcvWHrzAJRRv7YN9fioXpq1aL32nojUyG4t9PHUYRr58teKTiq6b5CkN+8eLH8vd838dq3C45Ll7+Ump3/tU1POZeiL1X8pLDpJF7Oz1b15fb04vp8Sz57TtsPFf1Bm6/p2aKhHx/TS69+t076QSI3o0VIfThuu0c/PV0xi8f0oSSOe+Urp5wv2mUlnz+f/e0DHxnpwZHe9NHeN9p+IVO0gP704qb8k6d1Ftn2Ba0kGtGyop4b00svL1mtPWKRu7dhCc+4appvf/VpRKUX7cdYvG/Teys35Pzs6OOjnaeO1+sCx/GUp5zP0f3/8pZOxee/Hnk3q65VR/ZSYdk5bjtvn+xGwJ727NdKD99yo9z5bq+BDERo6oJXeeHGUJk79SrFxJe9fPdxd9PT0Qdq975T8fD0KPde6RS2t23RYwYcjdeFilm4fcYPefmm07pw6V/GJaebeJKu4sVsjPXT3jXp3zloFH47Qzf1b6c3nR+mOB79SbPyV+/GZhwdp9/5T8vMp3I+paRn65sftCj+ToItZOerSvr6e+t9AJaWc0449YWbeIuu4qVMjPXxHb7311TrtPxah4Te11LtPjtDYx+cpJqHkfrz1ka+Ufj4z/+fk1IK8d63kpMjYFK3/65imje9lzvIBmEmP/i005clBmv3Kch3cc0qDRnfQK59O1L23fKC46JQi7Zu3q6vd20I074M1SjuboX7D2urFjyfo4bGf6cSRKElSyw71tGHlfh2aFa4LFy5q9F099NqcOzVl+IdKiE219CZaRO+ejTX1vpv0/sdrFHwwQkMHt9Ybr4zWnZO/KDbzMzIuaskvuxV6Mk7nMy6oRbOaemRaf2VkXNSvK/dJkvr0bqp7J/XUm+/+puBDEapVw19PPjZIkvTJnPUW3T5L6dW7ie5/sK8+fG+VDgaf0eChbTTrjdt098T/U2wx752MjItatmSXQk/EKiPjopq3qKmHHx2ojIyLWrF8ryTp7Nnz+v7bLTodnqCLF7PVqXMDPf7kECUnpWvnDtuYvAKoyHoMaa0pzw/T7Od+0qGdJzVoXBe9PO9eTen7uuIik4u0d67kqJTEdC2cvVbD7+5Z4uump57X5JtmFVpWkQau97ypqe57uL8+eus3Hdx/RoOHt9Wr747VPWM/VVxMCfvbn3boZEisMs5fUPNWtTXtyUHKOH9Bvy3bY4UtsI6efZvpvkcH6OPXV+jg3nANHtler3w0XpNHzy72uKlF2zra/dcJzZ39u9LOZqj/zW00872xmjbxc504mncBupOTo2Z9coeSk9L1yhOLFB+TqipVfXQ+PbPI6wEwnh5D22jKC8M1+5kfC3Lq6/s05cZZiotMKtLe2cVJKQlpWvjRWg2/p9cVXzuwhp/ueXaYDvwVcsV29oDz0vLRs18z3ff4AH0861859fF4TR55hZzafkJzP/pdaWmXcuqDsZo2oSCnJCn9bIbuHv5RoXVtZeA6jMuuRzc//fTTmjTp6oNtjaZuO1d1Hu+t6zuXPNt6cdx9HOXhV/BwcDSZqULbENTGW43HVFO1jr7/ab39/3daNbr6ya+Bu3kKszE7Ew9rfthv2hK/v1TtT6RFaEPcbp06F62YzEStj92lnYlH1NynvpkrNa+cXJPFHqg4bDWnrmTk9CFa9dV6rfxyvcKPROjT6fMUdzpeQ+/vZ+3SrO6eVu31w5EDWnT4gE4kJ+qlLX8oKu2sxjdrXWz74Q2b6vtD+/XriaM6fTZFy0OO6ocjB3Rfmxvy26RkZiju/Ln8R/dadXQ+66JWnDhW7Gvag3tatdcPhy/1Y9K/+rF562LbD2/UVN8f3K9fQ47qdOqlfjx8QPe1LejHW5u0kG8lV927cql2RUcqIi1VO6MjdDghzkJbde0smVNkVcViK1k1/qa2WrotWEu2ButkTKLeXrxR0UlnNbp7y2Lbd2laR+2ur6GHPlmiv46GKyoxVQdPxWjfyaj8NruOn9Ef+07oZEyizsSnaMGGPToeEac211W31GZZ3Li+7bRsc7CW/RmssKhEvbtog2KSzmpUr1ZXXC8x9bwSUs/lP3Jyc/Ofa3ldde0LidTqv48oKiFVfx06pdV/H1GTOkHm3hyrmditrRbvDNbiHcEKjUvU679uVFTKWd3Wqfj3Y1rmBcWnnct/NKsZJG83Vy3ZeTC/zY7QM1p38IRC4xJ1OjFF327Zo2PRcWpb13bej+QUzMFWcurWYe3129oDWrHmgE6dSdTHX/yhuPizumVg6yuu9+jUfvp94yEdPBJZ5LlX3lmhpb/tVcjJWIWfSdRbH6+Wg4NJ7VrVMdNWWN+tt7TXit8PaMXavH786Mu8fhx2lX587IF++n1T8f24N/i0/tx+XKfOJCoyOlk//bpboWFxatmkhpm2wvpuH9ROyzcc0PINB3QqMlHvf7NBsQlnNaLPlfM+KfWcElMKHv/O+8OhMfr4+036fdtRXbTRO6twTgVzsJWckqQRd3TV6p93adXPO3X6ZJzmvPmb4qJTNOS2jsW2n/Pmb/pp7p86djBCkeEJmvfhWkWeSlDHXgV3sn3zqR/166K/FHo0SmdOxuuDF5fI5GBS6462/V3BlYwe0UG/rd6v31btV/jpBM3+bJ1i487q5iFtim0fciJW6zccVtipeMXEpOr39Ye0Y+dJtWheM79N06bVFXzwjNb9cVgxManauTtM6zccVqOGVS21WRY38tYbtOq3fVq5Yp/CTyXo049/V2xcqobe0rbY9iHHY/THukM6FRavmOgUrVt7UDt3nFTzlgV3rNy3N1xb/jym8FMJiopM1pLFOxQaGqvmLYre1dKoyCmYg61k1fB7emnND39p9aK/dPpErOa8tFRxUckaPL5rse1jzyRpzswlWvfzTqWfzSjxdXMlJcWdLfSoSEbe3kmrlu/RquV7dfpUvD57f43iYlM1dET7YtufOBatDWsP6tTJuLz97eoD2vlXqJq3qm3hyq1rxPguWr1sj1Yt3a3TYfH67J1ViotJ1ZBRHYpt/9k7q/Tj11t07FCkIk8nau7sdYoMT1SnHo3y2/S/pY28fNw089EFOrTvtGKjU3Rwb7hCj8dYarOuGedUMAebyanJvbRm0XatXrhdp0NiNGfmEsVFJmnwhJJyKlFzXvxZ6xbvUPq/JgO6nIODSU98eIe+eWelosMTzFW+YXBeWj5GjO+i1Uv3aNWS3Tp9Ml6fvb1KcdGpGjK6hJx6e5V+nH8pp8ITNffjSznVs1GhdrnKVVJCWqGHLSGnjMmuB69HREQoLCzM2mVYzMLpsfryzigteS5eZ/ZzBWZZhP+RoPSYTDUcbb8f+lnadZ411NSnng4kn7h6Y6CCsbeccnJ2UsN29bVrzb5Cy3et3a9mnRuVsFbF4OzgoOZVgvTn6bBCy/88HaZ2VYsfdObi6KjMrMJXqmZkZalVYLVCMwP/262NW2h5yBGdz7LPO4dcsR+DSuhHB0dlZl/Wj9mF+7FP3eu0OyZSL3W/STvuvF+rb7tTD7TtKAcTJxWALWSVk6ODmtQKKjIb+vbD4WpVv/h9Q88W1+lQeKzu7NtBq1+drKXP36npw7urkrNjib/nhka1VDfIX7tCIsq1fqNwcnRQ4zpB2n7wsn48eEotrzJg/7vnx2vV2/fqk0dHqV2jwl/87z0eoSZ1AtWsXt45Vo3KPuraop42H7DPme2cHR3UtEaQtl42G/rW4+FqXad0A81HdmiubSHhikou+QvTjtfVUt0q/tp50j7fj0Bp2UROOTmo4fVVi8zivWNPmJpfYYD0wJuaq0Y1X81fsLVUv6dSJSc5OTooNa3kL7xsmZOTgxpeV1U79oYVWr5jb5iaN75yP1av6qt5C0vXj21b1latGn7ad9A+bx3s5OigRvWC9Pf+wjn114FTatHwyjk1/7UJWj57ij56epTaNrWdgX6ANdlCTkl5M302aFpdu7cWnslv99YQNWldusFoJpNJbh6VdDal5Byq5OosJyfHK7axZU5ODmrYoKp27ip8rrNz10k1b1q6i6Kuvy5QzZvW0L4Dp/OXHQiOUMMGVdW4UTVJUrWqPurY4Tpt/8s+v3NxcnJQw4bVtHNHaKHlu3acVNN/Deq/kusbBKlZsxravze8xDZt2tZVzVr+2r+/5DZARWALWeXk7KgGzWtq95+F7zi7+8+jatqu7jW9tpu7i+Ztfk7fbHtBL355j65rZr8XsV7OyclBDRpV0+6/L9vf/nVCTVuUbn97XcOqatqipvbvqTh3BXRyclSDxtW0a3vh46Zd20+oacvSnSflHTe5FDom6tSjkQ7vP60HnxyshWse15xFD2jMXd3l4MD3VKjYbCanWtTS7k2X5dSmo2ravt41vfbYhwcoJTFNaxZtv6bXsQWcl5YPJydHNWhSTbu2FZNTrf5DTrm7FOkjNzcXff3bdH276hG99MFYXdeIsZW4dk7WLsCc5s+fb+0SLMLDz0G9p/oq8DpnZV/M1dEN57Xk+XiNeLWyajSrZO3ybEZaVKYOfx+lrjOvr/Cz1peHbzu9KB9nTzmaHPRt2Cqtirbtg6kc+77WB1ZibznlU9lLjk6OSopJLrQ8KSZZflV9rVKTUfi5usnJwUFx584VWh53/pwqu3sUu86m02Ea06SF1pwMUXB8jFpUCdLoxs3l4ugoP1c3xZ1LL9S+VWBVNQ6ooic3rDbbdlhbfj+ev6wfz51T5Vql6Me44vuxtrePunjV1tLjh3XXip9Vz8dXL/XoIycHB324c5slNu2akVMwF1vIKj9PNzk5OigxtfC+IeFsugK8i599tkZlH7W+rroyL2bpkf/7RX6ebppx243y9nDVzG/X5rfzdHXR6tcmy9nJUTk5uZq1aL3+OmKfX2z75vdj4XxJTD2nyj7F35UqPjldr8xfq8OnYuTi5KhBnZvo00dHacpbP2jP8bxB1Wt2HJWfl5u+ePI2mZT3wdmPf+zV/JU7zL1JVuHrntePCWeLvh8rN7z6bMiVvTzUrWFdPbFwZZHnPCu56I+nC96PLy9br20htvN+JKtgDraQUz7el/avyYX3r0nJ6fL3Lf4YtkY1X907sYceemqBsnNyi21zuSkTeyouIU279trnoIF/+jHpsn5MTE6Xv1/x/Vizmq+m3NFDD864cj96uLto8Vf3y8XZUdk5uXrvs7Xauc8++9HX69L7MaVwTiWlpMvfp26x6yQkp2vW52t05GSMXJwdNaBbU3309GhNfWWR9h6xn4uoyCmYgy3klCR5+7nnfaZ32axpSQlp8g/wLNVrjJzYVa5uLtq0+kCJbSZN76+E2FTt2W6fg659vN3l6OigpOTL9rHJ6fIrIav+8cO3D8jHx02Ojg6a/+0W/baq4E64f2w8LF8fN334zjiZTHnnVMuW79aCH/4yy3ZYm4+PuxydHJSUeNmxU1K6/P2v3I8LfnxQPr55f4ev5/2plSsKT7Li4VFJC396SM4ujsrJztWH76/S7p1h5b0JZkNWwRxsIau8/TzycuqyWdGT487Kr7J3mV/3zIlYvfPYAoUdjZK7p6uG3dVDb//0P00d+JYiw+KvtWzD8/YteX/r53/l/P9u2bT8/e23X27SquV7zVipseT1m6OSEwr3W3JCmvxKe9w0votcXV20cW3BXRer1fRT62r1tH7lAT37v29Vo3aAHnxysBydHPTd5xvLdRvMhZyCOdhETvn/k1OphZYnx5+VXxWvMr9u0/b11H9MJ03t/+a1lmgTOC8tH//0Y3LiNeTUhC5ydXPRxjUFOXU6LF5vv7BUYSExcveopGFjO+nduXfr/jGfKjI8sVy3wVzIKWOy68HrpZGZmanMzMKzlF+8kCNnF9t5w/rVdJZfTef8n6s1rqSz8dnasySNweullJuTq90fhqnR6KryrO5q7XLswqN7P5SbYyU18aqjSfWHKvJ8vDbE7bZ2WYBNKi6rcnKz5WAqeXZYa8q9bEyAyWRS7uULK6zC/WCSinbYJR/u3K4qbh5aMmKsTCaT4s+la/HRg7qvzQ2Fbs/+j9sat9CRhDjti402Q90Gc9n2502QfoV+dL+sH48c1H1tC/rRZDIp/vw5zdiwRjm5uQqOi1Ggh6emtO5gM4PXAWsqNqeys+TgaNnTzcv3AiaZStrFysGU99wz81YqLeOCJOmdxZv01j1D9Pqi9cq8mC1JSs+8oDGzvpVbJRd1bFRLj47ooTPxKdp13D5nY5WKy/ESo0qnYpJ0KiYp/+cDoVEK8vfShP7t8wevt2tUU3cN7qjXv1un4NBo1Qr01WNjeik+JV1f/mqfgy2kYt6PppLfj/82rF1Tnc3I1PpDIUWeS79wQSM//FbuLi7qeH0tPTG4h84kpmhHqP2+H4HyYoisKrpjUG4xx7AODiY9//gQzf1+i85EJhV5vji3j7hBN/VorGlPL9KFSxlmr0p7vungYNJzjw7RVwuu3o/nzl/Q3Q/Pl5ubi9q1rK2pk3orMiZFe4NPX3E9W1b0vVfyRB7hUUkKjyrow+DjUQoK8NLYwR3savA6YE3F5lROlhwcLP0V3uWft5hK+LSlsF4DW2r8/Tdp5rRvlXLZF+T/GHVXd/Ua2FJPTPpCFy9kFdvGXhTJpVLc2e9/j34nNzdnNW1SQ5Mn9VREZJLWbzgsSWrVspbG395Z73+8RoePRKpGdT89eH8fTUhM1zffl+7OIraouKS62jnV9Ie+kZu7i5o0raF77u2lyIgk/bHuUP7z585laso9X8rNzVlt2tbVfQ/0UVRksvZdYYZ2AHmK/54qSw4my2XV5cewJlNxx7Wld2TPKR3514zhh3ae1EcrHtXNE7vrs5lLyvy6tuby3DLl7XGvuM6j982Xq7uLmjSrobsfuFERZxK14V8DsSuCIv1munq/SVKv/s01YUovvfjIAqUkFRw3mUwmJSel64NXf1FOTq5CjkQpoIqXRt3R1WYGrwPWZIic+g/frVyNm0clPf7BBH3wxEKlJhV/jmW/OC8tD8XmVCnekL0GNNeE+3rpxemFc+rIgTM6cqDgu6iDe09r9oIpumVMR336ZtHJmIDSsunB6++8845GjRqlOnWuPntZSWbNmqWZM2cWWjZwal0NevDabt1hbVUbuujoxnNXbwhJUtb5bKWcOK/gk2cU/FXezjY3V1Ku9OuYver07HWq3LzsV8RVRDEZeVdWhaVHydfFS+PrDrDpwevZuczGj/+uPHJKKj6r6qmJrlOza3rd8pYSf1bZWdnyv2yWdd9AHyXHpFinKINIyjivrJwcVblslvXKbu6KP198XmdmZ+mJDav19Ka1quzmrthz6RrbtKXOXshU4mXruDo5acj1jfXeji1m2wYjuGI/nrtCP/6xWk9vLLkf49LTdTEnp9BFASeSEhXo4SlnBwddzMkx30aVE3IKZWWuc6qg9v1U7YYB11peqSSlnVdWdo4CvAvPDu7v5a7Es8XvG+JT0hWbkpY/cF2STkYnysHBpCBfL4XHJUvKOyc4HZeXYcfOxKlekL8m9etgl4PXk//pR5/C+1g/L3clpJb+3DI4NEoDOzXJ//m+W7rot22HtezPYEnSiYh4uVVy1jMT+uirFX+V+cNbo0o+l9ePlb0uez96uish7er9OKJ9My3fc1gXs4tmT26uFJ6Q9348EhWn+oH+mtyrg80MXierUBbmPKeq3aCP6jbqd02vWxopqXn7hctnB/fzcS8yM6skubu5qHGDarq+fpCm3ddHUt5FVw4OJq1b+qgee/5H7dlfMMDqtuEdNG50Rz363A8KDYsz78ZYUVn6sUmDampQP0gP31u4H9f//Kgee+FH7T6Q14+5uVJEdLIkKeRkrOrUCtD4UR3tcvB68tkS8t7HXYkppf8yNPh4lAZ0a3L1hjaEnEJZmDOnrqvSTdcH9bim1y2t1KRzys7Kll9A4e9AfP09isx6d7ke/Vvo4ZnD9dqjC0ucuW7kxG4ac09PzZg8VyePxZRb3UaTknpO2SVl1VUGnERf+uz0ZFi8/HzdNXF81/zB65MmdteadQfzZ2M/GRYvV1dnPTptgL5dsNXuzqlSUs4pOyunyCzrvn4eV+/H6Ev9GBonPz8P3XFn90KD13NzpciIvAuyToTEqnadyrp9XBebGbxOVqEszJpVPh3VwLfzNb1uaaQmped991Sl8CzrPpW9lBx/toS1/rvc3Fwd2xeu6vWqlNtrGllq8qX97WWzsPr6uReZjf1y0VHJkqSwE7Hy8/fQhLt7VpjB63n9li2/yoX7zcffQ0kJV+63nn2bafrzt+jVJ3/Qnr9DCz2XGJ+m7Kxs5fzrrmHhJ+MUUNlLTk6Oysoy/oXq5BTKwqw55XWDGvh0uqbXLY3UxEs5FXhZTgWUPaeq1amsqrUD9OLcyfnLTA55/8d+PfmuJvd6VVGnEspetAFxXlo+CvqxmJy6Sr737Hcpp574QXv+Cr1i29zcXB07GKkatQOuuWZLIaeMyXamFy/G448/ruuuu059+/bVokWLdOHChauvdJkZM2YoJSWl0KPvvdcWikYQF3pBHn42/ee1KCc3R/V8u5F6vFnwqNM3QB7VK6nHm43ke7371V8EJTLJJGeLzxIDWF955JRUfFbVU+NyrvbaZV3M0rFdoWrbt2Wh5W37tNTBbUetVJUxXMzJUXBcjLrVrFtoebeadbUrOvKK62bl5Cg6PU05ubkaen1jrT8VWuTq4iHXNVIlR0ctOXao2NewF/n9WKtuoeXdatbVrpj/2I9hBf24MzpCdX18C801WM/XTzHpaTYxcB24FuY6pwpq18cM1RYvKztHh0/HqFPjwudxnRrX1r7Q4vcNe0MjVcXHQ26VCu5gVSfIV9k5OYpJLvnDRJPJJBcnY9755FplZefoyKkYdWxau9Dyjk3raP+JK+9j/61RrUDFJxd8AOZaybnIDA85OTmSyXRpJif7cjE7R4ciYtTl+sLvxy7X19beU1fuxw71a6pOZT8t3hFcqt9lkknOdvp+BP5hznOq2tffWM7VFi8rK0fHQqLVvk3h/UL71nUUfLjorNXp5zJ159S5uud/8/Mfv6zaq1NnEnTP/+br8NGo/LZjhnfQHbd11hMv/qSjIfb7pYt0qR9PRKt9q2L6sZjZv9PPZWriQ3N198Pz8x/LLvXj3Q/P16FjUUXW+YdJstv9a1Z2jo6ejFGHFoX78YbmdXTgWOnzvmHdwnkPVFTmzKn6VbqUc7Uly8rK1vFDkWrT+fpCy9t0vl6HrzCot9fAlnr0lZF646kf9PefxX/2N+rObho7pbeevX++jh+y77s1ZGXl6NjxaLVvW7fQ8nZt6yr4P2y7yWSSi3PB9ynFn1PlymT6Z5ZX+5KVlaNjx6LUrn3hScbata+nQ8H/4cJdk+TsfOU8N5WiDWDrzJlV1/l0KOdqi5d1MVvHg8+oTbeGhZa37dZQh3aFlevvuq5pDSXFppbraxpVVlaOjh+NUtsO9Qstb3tDfR06UPr9rclkkrNLxdmXZmVl6/iRKLXteF2h5W071teh/SVfAN2rf3M9+uJwvf7MYv29+XiR5w/tC1e1Wv6Fsr1mncpKiEu1iYHrQFmZNae825dztcXLupit4wdOq033RoWWt+3eSId2nizTa54+EaP7+ryuqQPeyn9sXxus/VtDNHXAW4qLTC6Hyo2F89LykZWVreOHo9S202U51am+Du27Qk4NaK5HZw7X608Xn1PFqd+oqhLjyu9CQlRMNj+a9IsvvtDSpUs1YcIEeXt7a/z48brnnnvUvHnzUq1fqVIlVapUqdAyZxfrDvq+cD5HKVEFt6dIjclWXOgFuXo5yKuKk7Z+naK0hGz1m+4vSdr7S5q8Ah0VUNtZ2Vm5OrrhnE5sy9DAp/yttQmGkJWRrfTogtvCnIu9oJSwc3L2dJJ7ZRcd/j5SGYkX1ebBOjI5mORd263Q+pW8neToXHR5RePq4KLqbgVXmFd19Vd9jxo6m5WuuMxk3VVviCq7+Oito99JkoZW76bYzCSdPpf3pWlz7/oaVau3lkX8aZX6y0sOV2ChjK41p6Tis8rBZMwPgha/96ue/PohHdt5Qoe3HdOge/sosHZl/frZGmuXZnVf7Nupd28apP1x0dodHamxTVuqupeXvju4T5L0RMfuCvLw1KPr826rVM/HT60Cq2pvbJR8Krnqnpbt1dC/cv7z/3ZrkxZaczJEyZkZFt0ma8jvx9ho7Y75Vz8GX+rHTpf6cd2/+jGoqvbGXOrHVu3VMKBwP357cJ8mtmirF7rdqPkH9qiur58eaNtR8w7Yzh1DyClcC3OcUzk4WvZU89t1u/XKxAE6FB6j/aFRGtGthar6e+mnzXkz0z10c1cF+nrqua9XS5JW7jyiyQM7aub4fvpsxTb5errp4WE9tGzbQWVezPsyYFK/DjoYHqMzcSlydnJQt2b1NLhjE81auN6i22ZJ363dpZfuHqjDYZf6sUdePy7ekLePnTqimwJ9PfXCV6skSbf3aaPI+FSFRibI2clRAzs10U3tG+rxT37Jf80/94VqbN+2Ohoeq+CTUaoV6Kv7hnXVpn0nCt3xwp7M37xbr986QMERMdp3KkqjO7ZQNV8vLfor7/34cP+uCvTx1NM/rC603oj2zbUvPEohMUVnTLmnVwcdPBOj04kpcnZ0UI9G9XRz2yZ6eantvB/JKpSV2c6pLJhVPyzdqWceGayjx6N18EikhgxopcAq3vplZd7+dfId3VUlwEuvvfebcnOlk+HxhdZPSj6nCxeyCy2/fcQNmjS+q15+e4WiY1Ll75s3O+n5jAs6n3HRYttmST8s26lnHh6soyHROng0UkP7t1JgZW8tW5XXj/dO6K7KAV567f3i+zE5pWg/jhvZUUdDohURnSxnJ0d1aldf/Xs30zufrbXotlnSgt926YUHBupIaIwOHI/UsBtbKqiyl5asy+vH+2/rpir+nnrp07y8v21AW0XFpyr0TLycHR01oFsT3dixoZ56b1n+azo5OqhezbyZlpycHFXF31MN6lTR+YyLOhOTbPFtLAtyCmVltpyy8GQwP3+9RY/PGqXjByN0eF+4Bo7uoMBqPlrxw9+SpLum9VNAoLfefuYnSXkDBB57dZQ+e2OFjuw7nT+rW2bmRZ1Ly/teZtRd3XXHg330xpM/KCYiKb/N+XMXlHG+bINSjO7Hn3doxuNDdPRYtA4ejtSQQa0UFOit5Sv2SpLuuauHqlT20qy3VkiShg1to5jYVIWfzruTbYvmNXXrqBu0ZNmu/Nfcuj1Eo0d00PGQWB0+EqkaNfw0aWJ3bd0eUmh2Vnuy+Ie/9eQzN+vY0SgdOhihwUPaKDDQW8t/yfus7u7JvVS5ipfeeG25JOnmYe0UG5ui05dmn2zespZuva2jlv5c0I+3j+uso0ejFBWRLCdnR93Q6Tr17d9CH7y7yvIbWEZkFcrKfN9TWS6rlnyxQY+9O07H95/W4d1hGji2i6pU99Nv322VJN35xGAFBPnonUe/z1+nftPqkiRX90ry8fdU/abVlXUhW+GXLvwdO62/juwJU+TJeLl7VdItd/ZQ/aY1NPv5xRbbLmtbvGC7nnhhmI4didShAxEaPKyNAoN89OuSvP3npPtvVEAVL731Ut6x/9CR7RUXk6LwsEv721a1NGpsJy37cYfVtsEafv52qx5/eYSOHYrU4f2nNWhEewVW9dGKn/L64a4H+6hyFS+99cISSXkD1x9/aYQ+fXuljhw4U+xx068/7dDNt3XU/Y8N1LJFf6lGbX+Nuau7li38yzobWQbkFMrKLnLq8w167P3xOr4/XId3hWnguC6qUsNPv32bd9f0O58cooCqPnpn+nf569RvWkOS5OpRST4BnqrftIayLmYp/HiMLmZm6dTRwhMvpKeel6Qiy+0J56Xl4+dvt+rxV66QUw/1UeVAL7313KWcGnApp94qOafG3dtLRw6cVkR4otw9KmnY7R11XcOqmj1rhXU2sgzIKWOy+cHrgwYN0p133qnY2FjNmzdPc+fO1UcffaR27dpp8uTJGjNmjLy8vK7+QgYSG3JRS54t+BJl81d5t7lrfKO7+k7zU3pSjtLiC66uzM7K1Za5KUpLzJaTi0n+tZ019LkA1W3vavHajST5xDltm1lwO5BDX+fNHlSzp5/aTK2jjKSLOh9vn0FUnhp61dZbrR/M//m+64dLktZE/613jn4vfxdvVXH1y3/eJJMm1Ruiqq7+ys7NUeT5eH0V+qtWRG21eO2AEdhjTl3Jxh+2yjvAU+OfGyX/an4KCz6tZwa/ptjLBg1URL+eOCpfVzdNa9dZVTw8dCwxXnet+FkRaXmzeAS6e6iGZ8HtxBxMJk1u1V71ff11MSdH2yPDNXLJ9zpztvCsH/V8/HRDtZoav/xHi26PtfwaclS+ldw0rf2lfkyI112/XqEfHS7rx4hwjfy5cD9GpZ3VHct/1HNde2vVbRMVnZ6muft367M9f1t8+wBrsIesWrP7mHw8XHXvwI6q7O2hkKgEPfTJUkUl5l3xX9nHQ1X9CrbhfOZF3f/RYj05ure+fXKsUtIztHb3Mc1eviW/jauLs56+7UYF+nop82KWwmIS9ey8VVqz+5jFt89S1u44Jh8PN90ztJMq+3joRGSCpn2wRNH/7sd/3bLR2clRD9/aU1V8PZV5MUuhEfGa9sESbTlQMJvIl79uV25uru4f3lVVfD2VfPacNu0L1SdLthT5/fZi1f5j8nV31f03dVQVLw8dj07QffOWKurSrP5VvD1Uzbfw/ynPSi7q2/x6vb58Q7Gv6e7irOeG3aggn7z3Y2hcop5atEqr9tvv+xH4hz3k1B+bj8rH2013jOmiAH8PnTwVrydnLlZMXN4xaYC/pwKr/LdtuGVQa7k4O+nlGbcUWj73+y2at8A+P4NZv/movL3cNPG2f/XjS//qRz9PBVX+b/3o5uqsR+7rqyoBnsq8kKXwiES98t4Krd9sv3cPW7f9qHw8XTVpRCcF+Hoo9EyCHn3zZ0VfupV1gK+HggIKzqmcnBz10NgequKf10ehZxL0yJs/a9vegryv7Oepr2fdkf/zuCEdNG5IB+0+dFpTX/nBchsHWIE95JQkbVp9QN6+7hp3X2/5VfHSqZAYPffA14qNSpYk+VfxUmA1n/z2g0Z3kJOzox589mY9+OzN+cvXLtutd57NG/Q39LaOcnFx0nPvjS30u779ZJ2+/dR2LsL8L/7YeETeXm66Y1xX+ft7KOxUvJ569kfFxP478wv2sSaTSZMn9VTVqj7Kzs5VZGSSPv9qQ/5gd0n65vutys2V7r6zuyoHeCo55by2bQ/RF/M2WXrzLGbDH4fl7eOm8Xd0k3+Ap8JOxunpJxcpNiavH/0DPBUYWPjzv7sn91bVaj7Kyc5RZGSyvvi/Dfr1l4KJKVxdXfS/6QNUpYqXMjOzdDo8Qa+/8os2/HHY4tsHWJo9ZNWmX/fKy9dDY6f1l38Vb4Udi9Lzd/2fYiOSJEn+gd4KrOFXaJ3Zvz2e/++GLWup97B2ijmTqDu7vSxJ8vR20/9eu1X+VbyVfva8ThyK0OO3faRj+0qe3dXebFx3SN4+bho3qYf8Azx1KjROzz66QLHReeNT/AM8FRhU+HurSffdqKrVfZWdnaPIiCR9+cl6rVi6q6RfYZc2rj0oL193jZvcU/6VvXTqRKye/d93Bf1W2VNVqv7ruGlE+7zzqqeG6KGnhuQvX7N8j955cakkKS4mVU9P/VpTHh2gzxber/i4s1q6YLt+mL/ZotsGWINd5NTyPfLyu5RTgT4KOxql5yfOKcipoGJyavUT+f9u2LK2eg9vr5jTCbqzy0sWrd1IOC8tHxvXHJSXj7vG3Xspp0Ji9exD3yk2qoScGtleTs6OeujpIXro6X/l1C979M4LSyVJnl6umvbczfIL8NS5tAyFHInWY/d8paMH7Xsme5ifKffye83ZEAcHB0VHRyswMLDQ8j///FNffvmlfvop70qbtLS0//S6Hx+xzG2D7V1YZpWrN0KpHEiuZu0S7MLqnu+Xed1pe24vv0Ku4oM2Cyz2u2Be5sopSerrMLpcaqzojs/uaO0S7IPNHk0aS9gDj5V5XUvmlERW2RNzZVWbqe+VW40VmWMmO9jycL4ysymUh4OvT7+m9TmnQlmY85yq59C3yqXGii7XujewtBsXPejI8rDt+0fLvC7nVCgLc+bUgBbPlEuNFV1mde+rN8JVOWZkX70Rrur3jU9f0/qcU6EszJlVA+te2+cEyJNdzd/aJdgF04Usa5dgF1bvmlnmdTmnQlmYNadqTSuXGiu6XF9Pa5dgF3KdbH5+aUNYvYecsjc2/T/DZCr+C+ju3bure/fu+vDDD7Vo0SILVwXAHuXwbSzKgJwCYCnkFMqKrAJgKWQVyoKcAmAp5BTKgpwCYElkFcqCrAJgKeQUyoKcAmAp5JQx2fRf5WqTxnt7e2vy5MkWqgYAgMLIKQCA0ZFVAAAjI6cAAEZGTgEAjI6sAgAYGTkFABWbTc+8npOTY+0SAFQQ2Sr+ik/gSsgpAJZCTqGsyCoAlkJWoSzIKQCWQk6hLMgpAJZEVqEsyCoAlkJOoSzIKQCWQk4Zk03PvA4AAAAAAAAAAAAAAAAAAAAAsA02PXg9NzdXH330kSZOnKgffvhBkvTNN9+oadOmaty4sZ5++mllZWVZuUoA9iAn12SxB+wHOQXAUiyZU2SVfSGrAFgKOYWyIKcAWArnVCgLcgqAJZFTKAuyCoClcE6FsiCnAFgKOWVMTtYu4Fq88soreuutt9SvXz9NmzZNJ0+e1FtvvaXp06fLwcFB7733npydnTVz5kxrlwoAqIDIKQCA0ZFVAAAjI6cAAEZGTgEAjI6sAgAYGTkFABWbTQ9enzdvnubNm6cRI0Zo3759ateunebPn69x48ZJkho3bqwnnniCEANwzXJybfpGFbAScgqApZBTKCuyCoClkFUoC3IKgKWQUygLcgqAJZFVKAuyCoClkFMoC3IKgKWQU8Zk03+VqKgotW/fXpLUqlUrOTg4qHXr1vnPt23bVpGRkVaqDgBQ0ZFTAACjI6sAAEZGTgEAjIycAgAYHVkFADAycgoAKjabHrxetWpVHTp0SJJ0/PhxZWdn5/8sSQcPHlRgYKC1ygNgR3JkstgD9oOcAmAplswpssq+kFUALIWcQlmQUwAshXMqlAU5BcCSyCmUBVkFwFI4p0JZkFMALIWcMiYnaxdwLcaOHas77rhDt9xyi9atW6cnn3xSjz32mBISEmQymfTqq69q1KhR1i4TAFBBkVMAAKMjqwAARkZOAQCMjJwCABgdWQUAMDJyCgAqNpsevD5z5ky5ublp+/btmjJlip588km1bNlSTzzxhM6dO6ehQ4fq5ZdftnaZAOxAdi5XReG/I6cAWAo5hbIiqwBYClmFsiCnAFgKOYWyIKcAWBJZhbIgqwBYCjmFsiCnAFgKOWVMNj143dHRUc8880yhZWPGjNGYMWOsVBEAAAXIKQCA0ZFVAAAjI6cAAEZGTgEAjI6sAgAYGTkFABWbg7ULAAAAAAAAAAAAAAAAAAAAAADYP5ueeR0ALCUnl2t9AADGRU4BAIyOrAIAGBk5BQAwOrIKAGBk5BQAwMjIKWPirwIAAAAAAAAAAAAAAAAAAAAAMDtmXgeAUsjJNVm7BAAASkROAQCMjqwCABgZOQUAMDqyCgBgZOQUAMDIyCljYuZ1AAAAAAAAAAAAAAAAAAAAAIDZMfM6AJRCjrgCCwBgXOQUAMDoyCoAgJGRUwAAoyOrAABGRk4BAIyMnDImZl4HAAAAAAAAAAAAAAAAAAAAAJgdM68DQCnk5HIFFgDAuMgpAIDRkVUAACMjpwAARkdWAQCMjJwCABgZOWVMzLwOAAAAAAAAAAAAAAAAAAAAADA7Zl4HgFLIyeVaHwCAcZFTAACjI6sAAEZGTgEAjI6sAgAYGTkFADAycsqY+KsAAAAAAAAAAAAAAAAAAAAAAMyOmdcBoBRyck3WLgEAgBKRUwAAoyOrAABGRk4BAIyOrAIAGBk5BQAwMnLKmJh5HQAAAAAAAAAAAAAAAAAAAABgdsy8DgClkCOuwAIAGBc5BQAwOrIKAGBk5BQAwOjIKgCAkZFTAAAjI6eMiZnXAQAAAAAAAAAAAAAAAAAAAABmx+B1AAAAAAAAAAAAAAAAAAAAAIDZOVm7AACwBTm53D4EAGBc5BQAwOjIKgCAkZFTAACjI6sAAEZGTgEAjIycMiZmXgcAAAAAAAAAAAAAAAAAAAAAmB0zrwNAKXAFFgDAyMgpAIDRkVUAACMjpwAARkdWAQCMjJwCABgZOWVMzLwOAAAAAAAAAAAAAAAAAAAAADA7Zl4HgFLgCiwAgJGRUwAAoyOrAABGRk4BAIyOrAIAGBk5BQAwMnLKmJh5HQAAAAAAAAAAAAAAAAAAAABgdsy8XoyVsc2tXYJdOHiqurVLsBsOTjnWLqHC4wosGE3EjC7WLsEu+ByxdgX2Icvd2hWAnILReEZkWbsEIJ8p29HaJUBkFYzH/XCstUuwC5l1Aqxdgl1wSbpg7RIqPHIKRmNKTrN2CXbBpZKztUuwCw7pmdYuASKrYEDnM6xdgV1wjE6ydgn2wZnMtzZyCkaTm3rW2iXYBVMW3/eVB5NrJWuXUOGRU8bEzOsAAAAAAAAAAAAAAAAAAAAAALNj5nUAKIUccQUWAMC4yCkAgNGRVQAAIyOnAABGR1YBAIyMnAIAGBk5ZUzMvA4AAAAAAAAAAAAAAAAAAAAAMDtmXgeAUsjJ5QosAIBxkVMAAKMjqwAARkZOAQCMjqwCABgZOQUAMDJyypiYeR0AAAAAAAAAAAAAAAAAAAAAYHbMvA4ApcAVWAAAIyOnAABGR1YBAIyMnAIAGB1ZBQAwMnIKAGBk5JQxMfM6AAAAAAAAAAAAAAAAAAAAAMDsGLwOAAAAAAAAAAAAAAAAAAAAADA7J2sXAAC2gNuHAACMjJwCABgdWQUAMDJyCgBgdGQVAMDIyCkAgJGRU8bEzOsAAAAAAAAAAAAAAAAAAAAAALNj5nUAKAWuwAIAGBk5BQAwOrIKAGBk5BQAwOjIKgCAkZFTAAAjI6eMiZnXAQAAAAAAAAAAAAAAAAAAAABmx8zrAFAKuVyBBQAwMHIKAGB0ZBUAwMjIKQCA0ZFVAAAjI6cAAEZGThkTM68DAAAAAAAAAAAAAAAAAAAAAMyOwesAUAo5Mlns8V9t2rRJQ4cOVfXq1WUymbR06dIrtv/555/Vt29fValSRd7e3urcubNWr15dqM28efNkMpmKPDIyMv5zfQAA87NkTv3XrCKnAAAS51RkFQAYG+dU5BQAGB05RU4BgJFxTkVWAYCRkVPGzCkGrwOAjUtPT1erVq308ccfl6r9pk2b1LdvX/3222/atWuXevfuraFDh2rPnj2F2nl7eysqKqrQw9XV1RybAACwY+QUAMDoyCoAgJGRUwAAIyOnAABGR1YBAIysIueUk7ULAABbkJP732fvs5SBAwdq4MCBpW7//vvvF/r5tdde07Jly7R8+XK1adMmf7nJZFLVqlXLq0wAgBmRUwAAoyOrAABGRk4BAIzOqFlFTgEAJOPmlERWAQDIKaNi5nUAMJjMzEylpqYWemRmZprt9+Xk5Ojs2bPy9/cvtDwtLU116tRRzZo1NWTIkCJXaAEAKi5LZhU5BQD4rzinAgAYHedUAAAjI6cAAEZHVgEAjIycKh0GrwNAKeTmmiz2mDVrlnx8fAo9Zs2aZbZte+edd5Senq5bb701f1njxo01b948/fLLL1qwYIFcXV3VtWtXHT9+3Gx1AADKzpI5ZemsIqcAwD7Ya05JZBUA2APOqcgpADA6coqcAgAj45yKrAIAIyOnjJlTTtYuAABQ2IwZM/TII48UWlapUiWz/K4FCxboxRdf1LJlyxQYGJi/vFOnTurUqVP+z127dlXbtm310Ucf6cMPPzRLLQAA22GprCKnAABlwTkVAMDoOKcCABgZOQUAMDqyCgBgZORU6TB4HQAMplKlSmYbWPFvixYt0t13360ff/xRffr0uWJbBwcHdejQwXBXYAEArMMSWUVOAQDKinMqAIDRcU4FADAycgoAYHRkFQDAyMip0mHwOgCUQk6uydollKsFCxZo0qRJWrBggQYPHnzV9rm5udq7d69atGhhgeoAAP8VOUVOAYDRkVVkFQAYGTlFTgGA0dlTVpFTAGB/7CmnJLIKAOwNOWXMnGLwOgDYuLS0NIWEhOT/fPLkSe3du1f+/v6qXbu2ZsyYoYiICH399deS8gLsjjvu0AcffKBOnTopOjpakuTm5iYfHx9J0syZM9WpUyc1aNBAqamp+vDDD7V3717Nnj3b8hsIALBp5BQAwOjIKgCAkZFTAAAjI6cAAEZHVgEAjKwi55SDtQsAAFuQm2uy2OO/2rlzp9q0aaM2bdpIkh555BG1adNGzz//vCQpKipK4eHh+e3nzJmjrKwsTZ06VdWqVct/TJs2Lb9NcnKy7r33XjVp0kT9+vVTRESENm3apBtuuOEaexIAYA6WzKn/mlXkFABA4pyKrAIAY+OcipwCAKMjp8gpADAyzqnIKgAwMnLKmDllys3NzbV2EUYzeNP/rF2CXTh4qrq1S7AbDk451i7BLoTe/nSZ1+20ekY5VnJl2/vPstjvgu1q+sx71i7BLjinWbsC+5Dlbu0K7MPBWdPLvK4lc0oiq3B13Ye9Ze0SgHwZfo7WLsEu7Jj7yDWtzzkVjGbg9Y9buwS7kFknwNol2AWHi9nWLsEu/L7pmTKvyzkVjGZgrWlXb4Srygnys3YJdsEhPdPaJdiFlYevbd/PORWMZmDQ/dYuwT64u1m7Avvg7GztCuzCymNvlHldzqlgNAN8Jlm7BLtgIqfKh2sla1dgF1aefLfM65JTxuRk7QIAwBbklGH2PgAALIWcAgAYHVkFADAycgoAYHRkFQDAyMgpAICRkVPG5GDtAq7Vjh07NG7cONWrV09ubm5yd3dXvXr1NG7cOO3cudPa5QEAKjhyCgBgdGQVAMDIyCkAgJGRUwAAoyOrAABGRk4BQMVl0zOvL126VLfeeqtuuukmTZs2TUFBQcrNzVVsbKzWrFmjrl276ocfftAtt9xi7VIB2LjcXGtXAFtETgGwFHIKZUVWAbAUsgplQU4BsBRyCmVBTgGwJLIKZUFWAbAUcgplQU4BsBRyyphsevD6s88+q5deeklPPfVUkecefvhhvfHGG3r66acJMQCAVZBTAACjI6sAAEZGTgEAjIycAgAYHVkFADAycgoAKjYHaxdwLUJCQjRixIgSnx82bJhOnDhhwYoA2KscmSz2gP0gpwBYiiVziqyyL2QVAEshp1AW5BQAS+GcCmVBTgGwJHIKZUFWAbAUzqlQFuQUAEshp4zJpgevX3fddVq6dGmJzy9btkz169e3XEEAAPwLOQUAMDqyCgBgZOQUAMDIyCkAgNGRVQAAIyOnAKBic7J2AdfipZde0pgxY7Rx40b169dPQUFBMplMio6O1tq1a7VmzRotXLjQ2mUCsAO5uVwVhf+OnAJgKeQUyoqsAmApZBXKgpwCYCnkFMqCnAJgSWQVyoKsAmAp5BTKgpwCYCnklDHZ9OD1kSNHatOmTfrggw/07rvvKjo6WpJUtWpVde7cWRs3blTnzp2tXCUAoKIipwAARkdWAQCMjJwCABgZOQUAMDqyCgBgZOQUAFRsNj14XZI6d+5sd0F1/liiklaHKfNUqrJTMlX1gdbybBNUcvvjSUpYfEwXotOVeyFbTgFu8ulRU75961quaAO6IbCW7m3WUS38gxTk7qV7NyzWmtPHS2xfxc1Dz7a7Uc39q6qet7/mHdmpl3aus2DFxtShSi3d26STmvtVVZC7l6Zs+klrI46V2L6Kq4eeadNHzf2rqq6Xv+Yf26GXd/9uwYrNI4crsFBG9pJTYzq21KRu7VXFy0MhsQl6fcVG7ToVUWzbV0f20/C2zYosD4lJ0M0ffi1JGtamqV4b1b9Im9YvfKgLWdnlW7yB3Nqtpe68sb0qe3voRHSC3vx5o/aEFt+PkuTs6KgpAzpqcPsmquztrpjkNH2x5m8t/etgfhsvt0p6cHAX3dSygbzdKykiIUXvLNukzYfCLLBF1jGmU0vd1f1f78dfN2p3WAnvx1H9NKxd8e/HW97Pez/2aXa9Jve6QbUDfOTk6Kjw+CTN27xby/ccNut2lCdyCtfCXrJq2MDWun1YBwX4eSrsdLw+/HK99h8qeR/7jxaNa+jDV8foZHi8Jk2fX2ybm7o11ouPDdWffx3X07OWlnPlxkI/lo9RvVtp/MD2quzrodCIBL37/QbtPV58P7ZtVFNznrq16GvMmKtT0UmSpCFdm+qFewYUadN18gc2c+xEVqGs7CWnBo/rrFH39JJ/oJdOHY/RnFd+0cGdJ4tt61fFS5NnDFWD5jVUvW5l/TJ/i+a8+kuRdsPu7KbBYzurSnU/pSala/Oq/Zr71kpdvJBl7s2xmptvbqPbbu2ogABPhYXFa/Ynv+vAgTPFtm3evKbundxLtWoHyLWSk2JiUvXrr3v10+Idhdp5eFTS3Xf3UPdujeTl5aqoqGR99tl6/fV3qCU2ySpuHtZOo2/vpAB/T4WFxemTj9YqeP/pYts2b1FT99x3o2rXDlAlV2fFRKdoxS97tPjHv/PbdOvRSLeP76oaNfzk6OSgiDNJ+mnRdv2+JthSm3TNyCmUlb3klCQNvqObRk25Uf6B3jp1LFpzZv6sgyXsC/0CvTX5uWFq0KKmqterol++2qQ5M5eU+No9b26jp2bfqa2r9+vle7401yYYwpBRHTR6Qhf5V/bSqdBYffbOKgXvDS+2bdfeTTRkVHvVb1hVzs5OOhUaq2//b4N2bT+R3+bNOXeqVbu6Rdb9a/MxPf/w9+baDMMZfHsnjZrUXf5VvHQqJFZzZv2qg7vCim3bpW8zDR7TUdc1riZnFyedConVtx//rt1bSv6O0BaQVSgre8qqfxt8Zw+NmtpX/oE+OnU0SnOe+1EH/woptq1foLcmzxylBi1rq3r9Kvrliw2a89yPFq7YGAaP76JR9/YuyPuXl+rgjiucmz5zS17e162sX+Zt1pyXlxZp5+HlqomPD1LX/i3l6eOm6NOJ+uLVX7Rjg+18x/JfDR7bSaPu7llwjv/ach3cGVZsW78qXpr81GA1aFZT1esG6Jevt2rOa8sLtXF0ctBtU3qrz/B2Cgjy1pmTcfrqrZXa9WfJ4zKMhpxCWdlqTg25p7dG/W+A/IN8depIhD57aoEObiv5eLNF14a697UxqtO4hhKik/XjByv121cbCrXx8HHTnc+NVNehbeXp66HoU3H6/JlF2rH2gCTJwdFBE2bcot63dpJfoI8SY1K09rvNWvDWr8rNzTXn5lrM4IndNeqBPnn5fixKc57/SQf/OlFsW79Ab01+YURBvn+5QXOeX1yozYBxXXTT6I6q06i6JClkf7jmzfpFx/aeMvu2WBN5XxQ5ZUw2P3jdHuVkZqtSTS95d62h6E/3XrW9QyVH+fSuLZeaXnKo5KiMkCTFfnNIpkqO8ulRy/wFG5S7k7MOJ8Xox5D9mtNrxFXbV3JwUmLGec0O3qa7m3SwQIW2Ia8fY/VT6H592n3kVdu7ODopIfOcZh/cokmNb7BAhQDMbUCLhpoxqJdeWr5ee05F6tYOLTRn4jAN/eBrRaWcLdJ+1q8b9N7qzfk/Ozo4aMlD47U6uPAHLGczMjX4vXmFltnK4Kuy6N+moZ4Y3kuv/rhee09GalSXFvrkvmEaPutrRScV7UdJeuuuwQrwcteLC9bqdHyy/D3d5OjgkP+8k6ODPntghBLPntNjc39VTPJZVfXzUnrGBQttleUNaNFQTw3upZeXXXo/dmyhOXcO083vlfB+XL5B760q/H78edp4rT5Q8H5MOZeh//vjL52MS9LF7Gz1bFxfr4zsp8S0c9py3L5PXAF7cWPXRvrfpBv17py1OnAkQjf3b6W3nhulCQ99pdj44vexkuTh7qJnHh6k3ftPyc/Xo9g2QVW89cCdvbT3YPEDuuwJ/Vg++t7QUI+M7aU3vlmnfccjNaJXS33wyHDd+sx8xSSW3I8jn/pK6ecLMjzp7PlCz6edy9SoGXMLLbPnYyfAnvQY1EpTnrlZs19cokO7wjRoTCe9/OXdmjLgbcVFJRdp7+zipJTENC38ZL2GT+pe7Gv2vrmN7np8kN576gcd2n1KNetV0SNv5F0I83+vLi92HVvXq1djTX2gjz74cLWCgyM0dEhrvT7rVt016QvFxqYWaZ+RcVFLl+5SaGiczmdcVIsWNTX94f46n3FBK1bskyQ5OTnorTfHKDk5XS/OXKL4uLOqEuitc+fs95yq141NdP9DffXhu6t0MPi0Bt/cVrPeHKO775hTYj8u+3mnQk/EKiPjopq3qKWHHxuojIyLWrF8jyTpbOp5ff/NFp0Oj9fFi9nq1KWBHn9qqJKTzmnnDvu9CACwJz2GttGUF4Zr9jM/6tDOkxo0rote/vo+TblxluIik4q0d3ZxUkpCmhZ+tFbD7+l1xdcOrOGne54dpgMlDCi0Jz37NtN9jw7Qx6+v0MF94Ro8or1e+XC8Jo+erbiYlCLtW7Spo91/hWru7HVKO5uh/kPbaOZ7YzXtzs914mjerJMvP75ITs6O+et4+7jp0+/v15+/H7LYdllbj4EtNOWpwZr98jId2n1Kg27rqJfn3KkpQ99TXFQx/dq+nvZsDdH899Yo7ex59R3eTi9+coemj/lEJw5HWWELAJS3Hre005SXR2v2Uwt16O8TGnRHd728YKqmdH9JcRHF5FYlJ6UknNXC91dq+JSbrFCxMfQY3FpTnhum2c8vzsv7sV308tx7NaXfG4qLTC7SPv/cdPbvGj6pR7Gv6eTsqNe+uU/JCWl69YF5io9OUZVqvjqXnmnmrbGeHoNaasrTQzV75tKCXPp8kqYMevcK5/jpWvjZeg2/s1uxrznx4f7qfUsbffjsYp0OjVO7bg313Ow79Ohtn+jE4UgzbxGA/6rHiA6aMut2zX70Gx3cHqJBd/XSKz9N170dn1XcmcQi7YPqVNbLP07Xyvmb9Obkz9Ws0/Wa+s4EpcSf1ZZfdknK25/OWvqYkuNS9codnyg+MklVavjrXFpG/uvcOn2QBk3qpXfu+1KnjkSoQZu6emT23UpPPa9ln9n+pKI9bm6rKS+N0uwZi3RoxwkNmtBNL383VVN6vlx8vv+TUx+u0vDJNxb7mi27NNSGJTt1eOdJXci8qNEP9NWrCx/Ufb1eUUJ00XMJe0Dew5Y4XL2J7Xr66ac1adIka5fxn3m0qKKA4Q3k2bbk2db/rVJtb3l1rKZKNTzlXNlNXp2qy71ZgDKOF91xVyQbIkP1zt4/tfp06a5GPZOeopk7f9fPocE6e4Gd6z82RoXq3QMbtfrM0VK1j0hP0cu712pJGP0IXI2t5NSdXdtq8a5gLd4ZrNC4RL3+20ZFpZzVmI4ti22flnlB8Wnn8h/NawTJ29VVS3YfLNQuNze3ULv4tHOW2ByrmdCrrZZsD9aS7cE6GZOot5ZsVHTSWd3atfh+7NK4jtpdV0NT5yzRX8fCFZmYquDwGO0LK/iCZXin5vJxd9X0L5Zr78lIRSWd1Z7QSB2LjLfUZlncxO5ttXjnv96Pv+a9H2/rVLr3Y7Oal96PuwrejztOntG6QycUGpeo04kp+nbrHh2LjlPbutUttVmAYdlKVt12S3ut+P2Afv39gE6dSdRHX/6h2PizGj6g9RXXe/z+flq76ZCCjxb/BYCDg0nPTx+srxZuUVQxAw3sDf1YPsb2a6dlm4K1bFOwwqIS9e6CDYpJPKtRN7a64nqJqeeVkHou/5Fz2Uwpucot9HxCqn0fOwGlYSs5NXxSD635cYdW//C3Tp+I1ZxXf1FcVLIGjyt+VqnYiCTNeeUXrVu6S+lnM4pt07hNHR3aFaYNy/cqNiJJuzcf04Zf96pB85rm3BSrGj3qBq1cuU+//bZf4eEJmv3JOsXGpurmoW2KbR8SEqP1fxxW2Kl4xcSk6PffD2rnzpNq2aJgso+BA1rK29tVzz3/sw4ejFBMbKqCg88oNDTWUptlcSNv7ahVK/Zq5Yq9Cj+VoE8/WqvYuFQNHda22PYhx2P0x7pDOhUWr5joFK1bG6ydO0LVvGVBP+7bG64tfx5V+KkERUUma8lPOxQaGluoDVAR2UpOSdLwyb20ZtF2rV64XadDYjRn5hLFRSZp8ISuxbaPPZOoOS/+rHWLdyj9sosu/83BwaQnPrxD37yzUtHhCeYq3zBGjOus1ct2a9Wy3TodFq/P3l2luJgUDRnVvtj2n727Sj9+vUXHDkUq8nSi5n6yTpHhCerU/f/Zu++wJu4HjuOfhL03CAgoblBcuPfee+9ZZ9U66qxad2tbtbWt+mtdbd11tO6997ZOnICCbBBQUSC/P6LRyEog6y6f1/PwPHLc+OZK8+aSu0spxTzJL14hIS5F8VWpWjG8fv0WJw7dynadYtShXx0c2HYJ+/++hPBHMVixYBdiniehVffq2c6/YsEu/L3yBEJuPkVEaBzWLjmAiLA4VGtQRscjJzJ8QmrVxzoMa4QD689g/7rTCL//HCumb0HMswS06p/9CVfR4fFY8dUWHN5yHqkvcu6W2HUYXA8HNp/H/k3n5cemc3a8OzbNoffPErBi9g4c3nYpx2PTpl2qws7RGrOHrsLty08Q/SwBty49xmMRn3DdYUAdHPj7IvZvuSjfj/N3yrvUM/suRT9LwIp5O3F4x5Uc92PDdpWwaflRXDx+D8/D47F7wzlcPhWCjjlc0E5kLAy1Ux1HNsP+P09i3x8nER4SiRVTNiDmWTxaD2qQ7fytBtZH9NM4rJiyAeEhkdj3x0kc+OskOo/68En1TfvUga2TDWb1/Bm3zz9AdHgcbp27j8c3P9wQqEyVYji35xouHLiBqLA4nPrnMq4cvYmSFYto+yHrRIehjXBgw1nsX38G4fejsGLGVvlxab/snwujn8ZjxfS/cXjLhRyPSxeOXIPda0/i0a2nePogCj9OWAepVIIKHx1ziQ17T0Ii6pPXnz17hidPnuh7GDqXFvYCrx8mwrKks76HQiQaMpnuvsh4CKFTZiZSBHh54PQD5btPn3kQhgq+qp3Y2zG4LM4+DENEovKdRq3NzXFowiAcmTgYv/ZphzKebhobt6ExNZGijI8Hzt5T3o9n74WhfNHs92P9csVwOzwaAxpVwcFZn+Hfaf0xrl0dWHx0p6V6Zf1x40kkpnRpiCNzh2Dr5D4Y1KQKpBJxfuTR+9/HM5/cDf3MfdV/Hzu9+32MTMz5zrfVivmgiJszLj1+VqDx6pIuO8VWGRchtMrUVIqSxQrhwrUnStMvXnuCsqW9c1yuZcOy8CrkiDUbz+Q4T/+uNZH44hV2H/pPU8M1WNyPmmFqIkXpIh44f0u5VedvhSKoWO6t+mtWb+xdPAS/ftkZlUtnPdnPysIc/343GLt++AyLxrRHSV9h/e3ETpE2CKJTZiYoUdYbV04p31zhyqkQBFTyy/d6b196jOJlC6Pku5ODC/k4o0q90rhw7G6BxmuoTE2lKFmyEC598jHsly4/QWBgzp36WPHiHggM9Mb1G2GKaTVrlsCt288wZnRT/P33KKz8fRB69qwBqVScx1Ty/eiJS598TPDli48QoOKFD8VLeCAwsDBuXAvLcZ6KlYqgsI8zblzPeR5Dw2Mq0gYhdAp416pyPrhyQvkGNldO3ENAcNECrbvnF82RFJ+CA5vOFWg9QmBqaoISpb1w+ZzyR9pfPvcQASpezCORSGBlY4HkXE6sbNauIo4fuIm0128LNF6hMDUzQYlAL1w5fV9p+pXT9xFQ0VeldUgkElhZWyA5UdgnrLJTpA1CadXHTM1MUCLIF1eOKX8CxZXjdxAQ7K+nURk++bFpYVw5+cmx6cl7CKhcJN/rrd64LO5cDcXI2Z2w/uIsLNv3JbqNaCTeYyozE5QI9M7apVMhCKiY/2N8M3MTvElLV5r25vVbBBbgv42u8ZiKtMEQO2VqZoISFfxw5YjyxaRXjtxCmarFs12mTJViWea/fPgWSlQsAhNT+Xv/1VtUwN0LDzHyh97YcH8xlp+djW7jWyk9n946dx8V6paBdzH5zXCLlvVBYPUSuHhA+O+9yPvugyvH7yhN13TfLazMYWJqguQEcd4ciL3PGTtlmEz1PQBtWrt2rb6HoFOPvzyGjJQ3QIYMzm2Lw6GOeO+0REQkBkLolKO1FUxNpIj75K7ocSmpcLXN+0UYVzsb1ClRBBM371Wa/ig2HtO27kdIVCxsLSzQu2ZF/DWkGzr+/BdC4xI1+RAMgpPNu/34yR1S45JT4WqX/X4s7OKAiv5eeJOejrEr/4WjrRWmdm4IB2tLzNxwUDGPVwkf7Ll8FyOX74CfmyOmdGkIU6kUK/af1/rj0rVcfx9z2I8fc7WzQe2SRTBx094sP7O1MMfRKZ/BzNQEmZkyzPnnCM4+EM6JFkTaIoRWOdjJnxsSElOVpickpcLZySbbZQp7OmJo37r4fOoGZGRm/wpCudLeaNW4HAaONfx9oAncj5rh+G4/xr9Q3o9xSS/hUtY622XiklIxb/VB3AmNgrmpCVrWLINfv+yMYd9uxtUQ+YVUTyITMHvlfjx4GgMbSwt0b1IRK6d2R8+ZfyI8KlHbD4vIYAmhU/ZONjAxNUFCrPLFk4lxKXBytcv3eo/vvg4HZ1t8v3EEJBIJTM1MsGvdGWxZcbSgQzZIDg7WMDGRIiHhk04lpMLZOftOvbdp4wjF8mv/OIU9e24ofubp6YiKFf1w6PAtTJmyGYULO2P06KYwMZHizz9Pa+Wx6JODgzVMTKVISEhRmp4QnwpnZ9tcl93w9yg4OMr34x+rT2Lv7mtKP7exscDGraNhZm6CzAwZflq8D1cuPc5+ZURGQgidAgB753etinmhND0xNhlObvlvVUBwUTTrXh0jmy0s6BAFwd5R/hybGK/cqsT4VDi55v4c+16n3jVgaWmG4wezv6t6qUBvFC3ugcVz/i3weIVCvl9NkBCr3C51/pbqOKA2LK3NcWLfjbxnJjIyQmnVx+ydbd9165NjrJhkOLk76GlUhi/HY9MC9r6QrzPKFy6OozuuYMaA3+BdxBUjZneCiYkJ1i89UNBhGxx7p4J3KTuXT4Wg44A6uHnxESLD4lGhRnFUbxQAExNR34+UKE+G2Cl7Fzv580C08qfMJsS8gLNH9h1y8nDIcryVEJ0EUzNTOLjYIj4qCZ5F3OBRtwyObjmH6V2WwLuYB0Z+3xsmJlKsX7gTALB58R7Y2Fvht0vzkJmRCamJFGvnbMOxrcI/L+BD3z85Lo1JhpObvca2M2BaO8Q9T8LVk+K8AQh7T0Ij6pPXVZGWloa0tDSlaRlvMmBibpLDEoar8MSqyEzLwOtHiYjbdh9mbtawq+ap72ERiYJMJpyrxUh8smtVZno6pKa6y/inVwZKJBKocrFgh4oBSH6dhsN3HihNvxH+HDfCnyu+vxL2DFtH9kKv6hUwf/exgg/YQH26zyTIeT9KJRLIZMCUP/Yi5fUbAMAPO07g+wGtMf/vI0h7mwGpRIL4lJeYvfEQMmUy3HkaDTcHW/RrGCzKk9ffy3Y/qvAL2b6S/PfxyO0HWX6W+uYNOi39C9bm5qhWzAcTW9XF0/gkXHz8VDOD1jJ2ivQp205lpENqotvDzaxPAxLIsnlykEolmDGuNVZtOI3wiIRs12VlaYavxrbEwl/3IymHjxoUK+5Hzcj6t1N2+1Yu9HkCQp9/2If/PYyEh7MdejcPVpy8fvNRJG4+ilTMc/3BM/z1dW90bVQRP6wXxomqbBXpU7atkqVDKtHhMdUn30tQsDuwlKvmj24jGuGXr7fj3rUwePm5Yuj0toiPTsaGXw4VZKgGTfbJnlRlP475Yh2srMwRUMYLgz+rj4hnCThyVH4XJ4lUgoSEVCxatA+ZmTLcvx8FFxdbdOtaTZQnr7+X7TF+Hjty7Kg/YGVljjIB3hg8tAEinsXj6OEPd7t8+TINQwf9Disrc1SsXATDRjZGZEQCrudyh3ZDwk6RPhlCp4Ac/obNZ6usbCzw5Y998OPEjXjxyYVHYvfp86lEgpwPBj5Sv1lZ9BlSH1+P34ikHPZZs3YV8fhBFO7dEs6nBWpKlr+lJFn3dXbqtSyP3iMbY9bnfyApXti/i2wV6VP2rcqAVKK/cyqyHBuo+Lxg7LJ2Ku9jgdxIpBIkxqbgp6mbkZkpw4ObT+Hs4YDOQxqI+mS2LPsRWX8n1bFi7k6MntcJ/9s3AZDJEBkWj4PbLqFJx+ACjlR32CnSJ710St3XVrJ5/pVPlk+XSCVIjHmBH0evkT+fXguFSyFHdB7dXHHyer1OVdGwaw18O/h/CL3zDMXK+WLoNz0QF5mIQxty/nRcIcn+vRXN9L3ziMao3z4YEzstwdtPPu1CbNj7rNgpwySqk9ffvn2L3bt34/79+/D09ESHDh1gY5P7nXcWLFiAWbNmKU0r3r8qSg6ops2haoWZm/wubhaF7ZDx4g3idz7gyetERAYkP50Csm+Va+2mcKvbXFtDVUh8+QrpGZlwtVO+U6izjXWWu19np2PlQPx77Q7eZmTmOp9MBvz3NAp+ro4FGa7BSkh9tx/tP9mPdtaIS85+P8a8SEV0UorixHUAeBQVD6lUAg9HO4TFJCLmRSrSMzKR+dGBxqOoeLg52MDURIr0PPa70Ch+H20/2Y+2Kv4+Bgdi59Xsfx9lMiAsTn6F/N3IGPi7O+Oz+lUEc/I6kaZo6pjKp1Rj+JVuqs2hKiQly58bnB2Vx+nkYI2ExKzPDdZW5ihTwhMl/D3wxZDGAOQXDEmlEhzdOh7jv96CFymv4eXhiG+mdVQsJ333QuLRrePRa+RKRDxP1N6D0gPuR81IfLcfXRyU96OzvTXik1T/GMr/HkaiRY0yOf5cJgNuP46Cr4djfodKJEiaPKYq5lQDJZxraWuoCi8SUpGRngHnT+7A5uBii8S45ByWylvfL5rhyI7L2L/5AgDgSchzWFibY/TcTtj462HRnbSRlPQSGRmZcHZSvnOto5NNlruxf+r5c/nf+Y8fx8DJyQb9+tVWnLweH5eC9PRMZH70CSJhYXFwcbGFqakU6eniOqZKSnqJjPTMLHdZd3Syzns/Rr7bj49i4ORsg74D6iqdvC6TARHP5BdjPXwQBV8/V/ToXVMwJ68TaYJGO2VXFSUcqmtrqEpexL9rlbvy3ewcXOyQGJu/Vnn6uaKQrwu+Xv2ZYprk3ceJ73q8CJ/Vn4fI0Lj8D9oAvUiUP8c6uSg/xzo42SAhLiWHpeTqNQnE2OntMG/SZly98CjbeSwszFC/aVn8sVwYF69qiny/ZsD5k7vXOzjbIjGP/Vq3RTl8Mbcj5o9dj2tnH2pzmESCodFWWVdGCdsq2hpqjl7Ep8ifFz65C6uDqx0SP7lbK32gODb9dL+52CIxNvfn09wkRCcj/W2G0jFV+IMoOLvbw9TMBOlvM/K9bkP0IuFdl9yyOcYvwH5MSkjFnBF/wMzcFPZO1oiLeoGBE1og6mn2Nw0hEiuNdsq8AopbVtT4GF/EJSMjPQNOn9xl3dHVDgnR2XcoISopy6eDOLrZI/1tOl68u8Ay/nkSMtKVn0/D7kXCuZCj4vl08Oyu2Lx4D45vffd64O1ncPdxQbdxrQR/8rqi758el7raITEm/6+hvtdpWCN0G90MU7stxZM7EQVen6Fi70loBP0ZMzVr1kRiYiIAICYmBpUrV0a3bt3w22+/4bPPPkNAQACePcv97gNTpkxBUlKS0lexXsK5ejE3MpG9uUKkTzKZRGdfJB6a6BSQfatcajbW8ujl3mZk4nZEFGoW91OaXrO4L66F5f5HfZWiheHn6oStl26qtK3Snm6ISRb23W9ykp6RiTvhUaheSnk/Vi/li+uPs9+P1x5FwM3BBlbmZoppfm6OyMjMRFSi/ADt2uMI+Lg6QPLRU4efuxOik1JEd+I68NHvYwnt/z5KIIGZqXA+iUeXnWKrxEVbx1Q+JRrqYPRy6emZCHn4HFUqKD83VKngh5t3s4499WUa+o5ejYFj1yq+/tl/DaFP4zBw7FrcDolE2NO4LPOcvvgAV2+GYeDYtYiOFd8bYdyPmpGekYm7T6JQLdBXaXrVAD/ceKj6C6KlfN0Rm5T730Ulfd3ynMeQsFOUH9o8pirmpJsbV6S/zcD9m89QsXYJpemVapfE7Suh+V6vhZU5ZJnKJ6hnZmRCIpEoHR+IRXp6JkJCnqNy5SJK0ytXLoJb6tx9VgKYmX24n8vNW0/h7e2ktM8KF3ZGbGyy6E5cB97vx0hUDi6qNL1ycFHcvqnOhbsSmJnlfrwk+WRfGzoeU1F+aLVT9rp7nyr9bQbu/xeOinVKKU2vVKcUbl96nK91hj+MwrDG32Bk8+8UX+cO3sSNMw8wsvl3iIlI1MDIDUt6egbu341ApWrFlKZXqlYMt2+E57hc/WZlMX5me3wzbSsunL6f43x1mwTCzMwUh/fe0NiYhSD9bQbu34pAxZqf/C1VszhuX835Aql6Lctj3PwuWPjlJlw8fk/bw9QJdoryQ6utsqmk5dFnL/1tBu7fCEPFesoX/VeqWwa3L2V/ARC9PzZ9ioq1SypNr1S7JG5ffpLv9d669BheRVwVdxAGAO+iboiLShLliWzyLj3L2qVaJXD7av6P8d97+yYdcVEvYGIqRa1mZXH28K0Cr1NXeExF+aHNTvlbBGllzOlvM3D/WigqNghQml6xQSDuXMj66d8AcOfiQ1RsEKg0rVLDQNy/+gQZ6fLnytvn78OrqLvy82lxD8RFJiqeTy2szZEpU369KjMzU3GhsJDJ+x6OinVLK02vVLd0gfveaXhj9BjbAtN7/oL718V9kwX2PmfslGES9Mnr586dw5s38ruRTps2DSYmJggNDUVISAiePn2KwoULY8aMGbmuw8LCAvb29kpfJub6PVEp83U60sJeIC1M/kZ+euwrpIW9wNs4+cesx24LQdTK/xTzJx4NQ+r1aLyJSsWbqFS8OP0MiQeewK6al17GbyisTc0Q4OSOACd3AICPrSMCnNzhZS2/umhixXr4oWZrpWXez29tZgZnS2sEOLmjuIOLzsduSKxNzVDG0R1lHN/vRweUcfywH78sXx/fV2+jtMz7+W1MzeFsYY0yju4obu+q87ET6ZsmOgVk3yqpqe7eAF5z+go6Vy6LjpUD4e/mjEkt68HTwQ6bLsjfKBnbtBYWdG6WZblOlcvielgkHkRnvYvSiIbVUau4Hwo7OaC0pxvmdmyC0p5uinWK0Z/HrqBj9bJoXy0QRT2cMaFDPXg62WHLafljHt26Fub2+rAf91y+i6TU15jdsyn8PZxRqZg3xrWrix3nbiHt3QHA5lPX4WhjhUkd68PPzRF1AopicJMq2HTyul4eoy6sPXkFnYLLosP738dW9eDpaIdN5+X78YtmtTC/S9bfx45V3v0+RmX9fRxcrwpqFPdFYScHFHVzQr/aldC2UhnsunpX64+HSN+0dUwlNdHtiUqb/rmE1o2D0LJRWfgVdsaogQ3g7mqPHfvlz4dDe9fBtDEtAcjvCvo4LFbpKyHpJd68zcDjsFi8Tnur+PfHXympaXj56g0eh8WK8mQ2gPtRU9YfuIx2dcuhTZ1AFPF0xtju9VDIxQ5bj8r348jOtfH14A+foNOjSUXUq1gMPh6O8PdywcjOtdGoSklsOXxNMc/gdtVRvawfvN0cUNLHDdMHNkVJHzdsPSrev52IAC0fU0l016rtq06gWZeqaNq5CnyKuWPItDZw83TEnvVnAQD9J7TA+O+6Ky3jX8YL/mW8YGltDgdnG/iX8YJvcXfFz88fuY1WvWqgXqvy8CjshIq1SqDv2GY4d/iW0h1wxGTL3xfQsmV5NG8eBF9fF4wY3gge7vbYufMqAGDwoHqYPOnDa33t2lVCjRrF4e3tBG9vJzRvVg5du1TFoUMfLmj999+rsLe3xOcjm6BwYSdUq1YMPXvWwD//XNH549OVrZvPo0XrCmjesjx8/Vww/PPGcHd3wM53j3nQkPqYNPXDa31tO1RG9Zol4F3YCd6FndCsRRC6dq+Gwwc/7McevWqiUnBReHo6wsfXBZ26VkWTZuVw6IBqFw8TCZVYOgUA2387hmbdq6Npt2rwKe6BITM7wM3bCXv+Og0A6D+pNcYv7qW0jH+AN/wDvGFpYwEHF1v4B3jDt4QHAOBtWjpC70UqfaW+eIWXqa8Rei9SMG9uq2vburNo3r4SmratCJ8irhg6rhncCzlg99ZLAIABIxvhy1kdFPPXb1YWX87qgP8tOYC7N5/CycUWTi62sLaxyLLu5u0q4szxu0hOeqWzx2Motq89iWadgtG0Y2X4+LthyORW8r+lNp0HAPQf2wzjv+mimL9ey/KY8E0X/LZwD+5eD4OTqy2cXG1hbZt1vxKJnXZbpb9zKrYvP4xmvWqhaY8a8ClRCENmd4ZbYSfsWXsSANB/WjuMX9pPaRn/wMLwDyz8oVuBheFbspA+hq83238/jmbdqqFpl6ryY9Ov2sHNywl71svv1tv/y1YY/0MPpWU+HJtafHRs6qH4+e51Z2DnaI1hM9vDu6gbqjQog24jG2PXn6d1+th0afvqk2jWpQqadgqW78cpreVd2nAOANB/fHOMX9hVaRn/Mp7wL+P50X70hG+xD8f4pYJ8ULNpIAr5OCMwuAjmrhwEiVSCv387rtPHRqRrQu3Utl/2o3nfumjauzZ8SnpiyPzucC/sjN2rjgEABszshAnLByvm373qGDx8XDBkXjf4lPRE09610axPHfy9dL9inl0rj8LO2RbDvu0B72IeqNo0CN3Ht8LO348o5jm/9xq6j2+Nqk2D4OHrgpqtK6HDyGY4s0scr2NtX3EYzXrWRNPuNeBTwgNDZnWCm7cz9vxxCgDQf2pbjP+pr9Iyyn23y9L3ziMao9+k1lg87i9EhcfDyc0eTm72sLQW77EBe09CIpxbn+Th+PHjWLRoEQoVkj8Bubi4YN68eRgwYICeR6a+16EvEPH9RcX3sZvldwSwq+EFj4HlkJGYhrfxH704lSlD3Lb7eBv7ChITCczcrODSsQTs6/roeugGJcjFExub9lR8Pz24EQDg74f/YcKZ3XC3soW3jfLHZOxpPVBp+fZFA/E0JQm1ty/TzaANUDlnT2xo1Fvx/VeVmgAA/n50AxPP74Kbpa3iRPb3drf48EdYORdPtCtSFk9TElF356+6GbQWZPKqKCogIXdq338hcLS2xPAG1eBmZ4P7UXEY+scORLy7+7ernQ08HZQ/Hs/WwhxNAotjwe5j2a7TztICs9o3hqudNZJfv8GdyGj0/W0L/nsape2Hozf7r4bAwcYSQ5pVg5uDDR5ExmHkih2ITHi3H+1tUMjpw3589eYthv66FZM7N8D6CT2RlPoaB66F4OfdHw4AohJTMGzZNnzZoR62TOqD6KQUrDt+FasPXdL549OVff+FwNHGEsMbffh9HLZmByLf/T662dnA0zH738dvdh3Ldp3W5maY3q4hPBzskPY2HY9i4jF50z7s+y9E2w9HY9gp0gQht+rI6Xuwt7dC/2414eJkg8dhsZg4Zyui3n1UsIuzLTw++ShXyor7UTMOXgiBg40VBretDlcHGzx8FocvFm/H87h3zXewQSGXD/vR1NQEY7rVg5uTLdLepONRRCzGLN6OMzc+3OXSzsoCU/s1gYuDNVJevcG9sGgM+WYzbj9+rvPHl19sFRWUkDt1Ys912DlZo+fnjeHsbo8nIc8xY/BKRL+766yzmz3cvRyVlvll51jFv0uW80GDdpUQ9TQe/esvAABs+OUwZDKg77jmcPFwQFJ8Cs4fuYO1P+zV1cPSuWPH7sLe3gp9+9SCs7MNnjyJxZQpWxD17iOZnV1s4f7RRwtLJRIMHlQPhQo5ICMjE5GRifj99+PYueuqYp6YmGRMnLQJI4Y3wu+/DUJsbDK2bbuEjRvP6fzx6cqxI3dgb2+N3v1qw9nFFk8ex2DqpI2IjvpoP3700ddSiQSDhtRHIU9HZGZkIiIiEb+vOIpd/354Y9TSygyjxzWHm5sd0tLSER4Wh2/m/oNjR+7o/PHlFztFBSXkTgHAiZ1XYedkg55jmsHZ3QFP7kViRr8ViH6WAABw9rCHu7eT0jK/7J+o+HfJIF806BCMqPA49K85W6djNyTHD96CnYM1eg2uB2dXW4Q+jMZXY9Yh+nkSAMDZ1Q5uhT48x7bsGAxTUxOMmtwKoya3Ukw/sPMafpi1Q/G9t68Lylb0w5SRf+jssRiSE3v/g52jDXqOaARnNzs8uR+FGcPWfPS3lB3cPR0V87fsVhWmZib4fEY7fD6jnWL6we2XsWjq3zoeveawVVRQQm/Vx078c1nerXGt4Oxhjyd3IzGj5y+IfhoPAHB2d4C7t7PSMr8cmab4d8kKfmjQqSqiwuLQv8pXOh27Pp3YfU1+bDq6KZzd7PEkJBIzBv72offudnD3+qT3eyYo/l0yyAcN2leWH5vWmQsAiI1MxLS+KzB0env8uncC4p4n4Z/VJ7Bl+RGI1Yk9N2DnaI2eIxt9OMb/bHWOXQKAX/75QvHvkuUKo0HbivL92PBbAIC5hSn6fdEMhXyc8erlG1w8fhfffbkRqcmvdfSoCo6dooISUqdObLsIe2db9JrYFk6FHBB65xmmd1mC6HD5TdScPRzgXvhDh6JCYzG9y2IMXdADrT9riPjniVg2aT1O/3tZMU/sswRM6/ADhizojmVnZiM2MgE7lh/ClsV7FPP8OnE9+k7rgJE/9Iajmz3inidi7+pjWPftv7p78Fp04t8r7/reQv78ei8SM3r/+knfP+nUoSmKf5cs74cGHavIj0uryi96aN2/LswszPDV758pLffX97ux7oc9ECP2PnvslGGSyGQywd6KRyqVIioqCm5uHdsIuAABAABJREFUbvDw8MDRo0cREPDhYzlCQ0NRqlQpvH6t3h90rU6M1vRQjdKtUOO+87smSU3FeUdCXXvUY2q+lw3852vNDSQPt9rpblukXdrqFAAETFusyaEaLbMUfY9AHNKt9T0Ccbi1YGzeM+VAl50C2Cox0Var6rT/TtNDJcq31076/XQ1sbi4elyBlucxFeWHNo+pWhT/UpNDNVppfsb9iYWaIhXpHYh17dCJaXnPlAMeU1F+aLVTPmM0OVSjlenhlPdMlCdpapq+hyAKe+8sKNDyPKai/NBqqzyGa3KoxsvaSt8jEAczM32PQBT2hnyb72V5TEX5oc1ONXcYmPdMlCcJO6UZluK907su7X28KN/LslOGSW93Xg8PD8eTJ0/w8uVLuLm5ITAwEBYW6v+P2r9/f1hYWODt27cIDQ1VilhkZCQcHR01OGoiMlbCvcyH8oudIiIhYaeME1tFRELCVhkfdoqIhISdMj7sFBEJDVtlfNgqIhISdsr4sFNEJCTslGHS6cnroaGhWL58OTZs2IDw8HB8fNN3c3Nz1KlTB0OGDEGnTp0glUrzXF+/fv0U/27Xrh1SUpRvn7p161ZUqFBBY+MnIiJxY6eIiMjQsVVERGTI2CkiIjJk7BQRERk6toqIiAwZO0VERJokkcl0c13BmDFjsHr1ajRt2hRt27ZF1apV4e3tDSsrK8THx+PmzZs4efIkNmzYAFNTU6xevRpVqlQp0DZTU1NhYmICS0tLtZZrdWJ0gbZLcrdCvfQ9BNGQmmbqewii8KjH1HwvW2b7LA2OJHd3OszU2bboAyF1CgACpi0u0LZJziwl73kob+nW+h6BONxaMDbfy+qyUwBbpS9CalWd9t8VaLtEmvTayUTfQxCFi6vHFWh5HlOJn5A6BQAtin9ZoG2TXJqfi76HIArStxn6HoIoHDoxLd/L8phK/ATXKZ8xBdo2yWV6OOl7CKIgTU3T9xBEYe+dBQVansdU4ie4VnkML9C26R1rK32PQBzMzPQ9AlHYG/JtvpflMZX4Ca1TzR0GFmjbJCdhpzTDUv1PJaCs9j5elO9l2SnDpLM7r5ubm+Phw4dwc3PL8jN3d3c0bNgQDRs2xMyZM7Fnzx6EhoYWOGI2NjYFWp6IiIwHO0VERIaOrSIiIkPGThERkSFjp4iIyNCxVUREZMjYKSIi0rS8P6NDQ7777rtsA5adli1bonPnzirNu3TpUvTr1w+bN28GAPz5558ICAhA6dKlMXXqVKSnp+d7zEREZDzYKSIiMnRsFRERGTJ2ioiIDBk7RUREho6tIiIiQ8ZOERGRpuns5HVtmDNnDqZNm4bU1FSMGTMG3377LcaOHYtevXqhX79++P333zFnzhx9D5OIREAmk+jsS+y2bduGoKAgfQ9DJ9gpItIVXXZK7K0ypk4BbBUR6Q47pRnsFDtFRNrBYyrNMaZWsVNEpEvslGYYU6cAtoqIdIfHVJpjTK1ip4hIV9gpzdFkp0w1shY1RUVFYcKECTh8+DCio6Mhk8mUfp6RkaHSetasWYM1a9agY8eOuH79OipXroy1a9eiV69eAIDSpUtj4sSJmDVrlsYfAxER5ey3337DgQMHYGZmhjFjxqBatWo4cuQIxo8fj3v37qFPnz76HmKu2CkiInETeqcAtoqISMzYqQ/YKSIiwyT0VrFTRETiJvROAWwVEZHYCb1V7BQRkbjpqlN6OXm9f//+CAsLw/Tp0+Hp6QmJJH9XG0RGRiI4OBgAUL58eUilUlSoUEHx80qVKiEiIkITQyYiIyfLexZ65/vvv8fUqVMRFBSEO3fu4J9//sG0adOwaNEijBo1CiNHjoSrq6u+h5krdoqIhIadUp0YOgWwVUQkPGyVatgpZewUEekKO6U6MbSKnSIiIWKrVCOGTgFsFREJDzulOjG0ip0iIqFhp1Sny07p5eT1U6dO4eTJk0rByY9ChQrh9u3b8PX1xf3795GRkYHbt28jMDAQAHDr1i24u7trYMRERKSqlStXYvny5Rg4cCCOHTuGhg0b4siRI3jw4AEcHR31PTyVsFNEROIlhk4BbBURkVixU8rYKSIiwyOGVrFTRETiJYZOAWwVEZGYiaFV7BQRkXjpslN6OXndx8cny0eG5EfPnj3Rt29ftGvXDocPH8akSZMwYcIExMXFQSKRYN68eejcubMGRkxExk4my9+VosYoNDQUjRs3BgDUr18fZmZmmDdvnmAOtAB2ioiEh51SnRg6BbBVRCQ8bJVq2Cll7BQR6Qo7pToxtIqdIiIhYqtUI4ZOAWwVEQkPO6U6MbSKnSIioWGnVKfLTunl5PUlS5Zg8uTJWLFiBYoUKZLv9cyaNQtWVlY4d+4chg4dikmTJiEoKAgTJ07Ey5cv0aZNG8yZM0dzAyciojy9fv0alpaWiu/Nzc3h5uamxxGpj50iIhIvMXQKYKuIiMSKnVLGThERGR4xtIqdIiISLzF0CmCriIjETAytYqeIiMRLl53S2cnrTk5OkEg+XMGQmpqKYsWKwdraGmZmZkrzxsfHq7ROExMTTJs2TWla9+7d0b1794IPmIjoYwW/aNSo/P7777C1tQUApKenY82aNXB1dVWaZ/To0foYWo7YKSISNHZKLULsFMBWEZHAsVUqY6c+YKeISGfYKbUIsVXsFBEJHlulMiF2CmCriEjg2Cm1CLFV7BQRCRo7pRZddUpnJ68vWbJEV5siIiI98vX1xW+//ab4vlChQvjzzz+V5pFIJAZ3sMVOEREZB6F2CmCriIiMATtFRESGTqitYqeIiIyDUDsFsFVERMZCqK1ip4iIjIMuO6Wzk9f79eunq00REWmcTCbJeyYCADx58kTfQ8gXdoqIhIydUp1QOwWwVUQkbGyVatgpIiL9YKdUJ9RWsVNEJHRslWqE2imArSIiYWOnVCfUVrFTRCRk7JTqdNkpnZ28DgC1a9dGw4YN0aBBA9SoUQOWlpa63DwREVGu2CkiIjJ0bBURERkydoqIiAwZO0VERIaOrSIiIkPGThERkSbp9OT1UqVKYf369Zg7dy4sLCxQrVo1RdSqV68OMzMzXQ6HiEhlMpm+RyAcs2fPzna6g4MDSpUqhaZNm0Iqlep4VKphp4hIqNgp1Qm5UwBbRUTCxVaphp0iItIPdkp1Qm4VO0VEQsZWqUbInQLYKiISLnZKdUJuFTtFRELFTqlOl53S6cnrK1euBAA8ffoUR44cwfHjx7F27Vp8/fXXsLKyQs2aNdGwYUNMmTJFl8MiIiIN2r59e7bTExMT8ezZMwQGBmL//v1wd3fX8cjyxk4REYmfkDsFsFVERGLHThERkaETcqvYKSIi8RNypwC2iojIGAi5VewUEZH46bJTEplM/esKEhMTceHCBURHRyMzM1PpZ3379lV7EOHh4VixYgWWLl2KlJQUZGRkqL0OTWp1YrRety8Wt0K99D0E0ZCaZuY9E+XpUY+p+V622KZ5GhxJ7h52m6azbelaZGQkevbsiWLFiuH333/X2nbE3ikACJi2WN9DEAWzFH2PQBzSrfU9AnG4tWBsvpfVZacA8bZKV50CxN+qOu2/0+v2iT722slE30MQhYurxxVoeR5TFRw7pVktin+p7yGIQpqfi76HIArSt/r/f0IMDp3I//M/j6k0Q6itMshO+YzR9xBEIdPDSd9DEAVpapq+hyAKe+8sKNDyPKYqOKF2CjDQVnkM1/cQxMHaSt8jEAfe7Vkj9oZ8m+9leUylGUJtlSF2qrnDQH0PQRQk7JRmWFroewSisPfxonwvy05phqY7pfad13fu3IlevXohNTUVdnZ2kEgkip9JJBKVA/bw4UMcO3ZM8ZWYmIgaNWqgXr166g6JiIgEwtPTE3PnzkWfPn20tg12ioiI8ksXnQLYKiIiyh92ioiIDJ2QWsVOEREZHyF1CmCriIiMkZBaxU4RERkfTXdK7ZPXx48fj4EDB2L+/PmwtlbvNpurV6/G0aNHcezYMSQlJaFWrVqoV68eRo4cieDgYJiaqj0cIiISGG9vb0RHR2tt/ewUEREVhLY7BbBVRESUf+wUEREZOkNuFTtFRESG3CmArSIiIsNuFTtFRESa7JTa1Xj27BlGjx6t9oEWAAwaNAi+vr6YNm0aBg4cCDN+dA8RCYVMkvc8pJLr16+jSJEiWls/O0VERomd0hhtdwpgq4jISLFVGsFOERFpCTulMYbcKnaKiASNrdIIQ+4UwFYRkYCxUxpjyK1ip4hIsNgpjdFkp6TqLtCsWTNcunQpXxv75ZdfUL16dXz99ddwd3dHmzZt8MMPP+DSpUuQyWT5WicRERmWFy9eZPsVHh6Obdu24YsvvkCPHj20tn12ioiIcqPvTgFsFRER5YydIiIiQyfkVrFTRETiJ+ROAWwVEZExEHKr2CkiIvHTZafUvvN6q1at8OWXX+L27dsoV65clquo2rZtm+Oyw4cPx/DhwwEAt2/fxvHjx3Hs2DF89913eP36NWrVqoUGDRpgwoQJ6g6LiEir+He26hwdHSGRZH/FmkQiwdChQzFx4kStbZ+dIiJjxE6pTt+dAtgqIjJObJVq2CkiIv1gp1Qn5FaxU0QkZGyVaoTcKYCtIiLhYqdUJ+RWsVNEJFTslOp02SmJTM1Ln6TSnG/WLpFIkJGRofYgIiIi8Ouvv2Lp0qVISUnJ1zo0qdWJ0XrdvljcCvXS9xBEQ2qaqe8hiMKjHlPzvaz/hvkaHEnuCjJOQ3D8+PFsp9vb26NEiRKwtbXV6vaNoVMAEDBtsb6HIApmKfoegTikq//pp5SNWwvG5ntZXXYKEHar9N0pwDhaVaf9d3rdPtHHXjuZ6HsIonBx9bgCLc9jKtWwU7rToviX+h6CKKT5ueh7CKIgfav//yfE4NCJaflelsdUqhNjqwyyUz5j9D0EUcj0cNL3EERBmpqm7yGIwt47Cwq0PI+pVCPGTgEG2iqP4foegjhYW+l7BOLwyYm3lD97Q77N97I8plKdGFtliJ1q7jBQ30MQBQk7pRmWFvoegSjsfbwo38uyU6rTZafUvvN6ZmbBT6KNiorCsWPHFF8hISEwNzdHtWrV0KBBgwKvn4hI43gFlsrq1aun1+2zU0RklNgplem7UwBbRURGiq1SCTtFRKQn7JTKxNAqdoqIBImtUokYOgWwVUQkQOyUysTQKnaKiASHnVKZLjuV86VUKnj9+rVa848cORIBAQHw8vJC37598d9//6Fz5844ePAgEhIScOzYMcycObMgQyIiIj1buHAhXr16pfj+xIkTSEv7cGeW5ORkjBgxQidjYaeIiOhThtQpgK0iIiJl7BQRERk6IbeKnSIiEj8hdwpgq4iIjIGQW8VOERGJny47pfbJ6xkZGZgzZw68vb1ha2uLR48eAQCmT5+OlStX5rrslStX0L59e+zbtw8JCQk4deoU5syZg4YNG8LS0jJ/j4CISAdkMonOvoRuypQpSE5OVnzfunVrPHv2TPH9y5cvsWLFCq1tn50iImOky04JvVX67hTAVhGRcWKnVMNOERHpB4+pVCfkVrFTRCRk7JRqhNwpgK0iIuHiMZXqhNwqdoqIhIqdUp0uO6X2yevz5s3DmjVrsHDhQpibmyumlytXDr///nuuy549exbz589HkyZNYG1trf5oiYjI4Mlksly/1zZ2ioiIcqPvTgFsFRER5YydIiIiQyfkVrFTRETiJ+ROAWwVEZExEHKr2CkiIvHTZadM1V3gjz/+wP/+9z80atQIw4YNU0wPCgrC3bt3c132xIkTKm2jbt266g6LiEi7dH+8QPnEThGRUWKnBIWtIiKjxFYJBjtFREaJnRKU/LaKnSIiQWOrBIPHVERklNgpQeExFREZHXbKIKl98vqzZ89QvHjxLNMzMzPx9u3bXJetX78+JBL5bfFzOiNfIpEgIyND3WEREREBYKeIiMjwsVVERGTI2CkiIjJ0+W0VO0VERLrAYyoiIjJ0PKYiIiJDoPbJ64GBgTh58iT8/PyUpm/ZsgUVK1bMdVknJyfY2dmhf//+6NOnD1xdXdXdPBGRXshkEn0PQVB+//132NraAgDS09OxZs0axXN+cnKyVrfNThGRMWKn1KPPTgFsFREZJ7ZKdewUEZHusVPqEWqr2CkiEjK2SnVC7RTAVhGRcLFT6hFqq9gpIhIqdko9uuqU2ievz5w5E3369MGzZ8+QmZmJbdu24d69e/jjjz+wa9euXJeNjIzE9u3bsWrVKixcuBAtW7bEoEGD0Lx5c8WVWUREJGy+vr747bffFN8XKlQIf/75Z5Z5tIWdIiKi3Oi7UwBbRUREOWOniIjI0Am5VewUEZH4CblTAFtFRGQMhNwqdoqISPx02SmJLKfP8cjF/v37MX/+fFy+fBmZmZmoVKkSZsyYgaZNm6q8jvDwcKxevRpr165FWloa+vXrh1mzZsHUVO3z6TWu1YnR+h6CKNwK9dL3EERDapqp7yGIwqMeU/O9bJE/vtHgSHL3pO9knW1LrMTeKQAImLZY30MQBbMUfY9AHNKt9T0Ccbi1YGy+l9VlpwC2ShPE3qo67b/T9xCIFF47meh7CKJwcfW4Ai3PYyphEXunAKBF8S/1PQRRSPNz0fcQREH6lh+nrQmHTkzL97I8phKegrbK4DvlM0bfQxCFTA8nfQ9BFKSpafoegijsvbOgQMvzmEpYjOKYymO4vocgDtZW+h6BOJiZ6XsEorA35Nt8L8tjKuER+zFVc4eB+h6CKEjYKc2wtND3CERh7+NF+V6WnTJM+Tp5XZMeP36MQYMG4fjx44iJiYGzs7M+hwOAJ69rCk9e1xyevK4ZPHmd8sMQOwXw5HVN4cnrmsGT1zWDJ69Tfhliq3jyOhkSnryuGTx5nfLLEDsF8OR1TeHJ65rBk9c1gyevU34YbKd48rpG8OR1zeDJ65rBk9cpvwy2VTx5XTN4UqBm8OR1jeDJ65QfhtopnryuGTx5XUN48rpG8OR18dHL5U5paWnYunUrVq1ahbNnz6JVq1bYvXu3wQTszuUi+h6CKFjF8yNhNCXTXN8jIMqfw4cP4/Dhw4iOjkZmpvJFGKtWrdLTqPJm6J0CAO8FZ/Q9BFF41b6avocgClY7zut7COJQgJPXKX+E2inA8FtleydO30MQhTdeDvoegihYxvBECxImdkrLXr3W9whEwTyGVwRrBD9amwRKqK0SQqfSn0XoewiiYKrf+3eJhznfpCJhEmqnAIG0KiZW30MQhYOZW/Q9BFFoUZg3qCRhEmqrhNCpzJcv9T0EUZClpOp7CKJg6u6q7yEQ5Yu2O6X2yetOTk6QZPNiukQigaWlJYoXL47+/ftjwIABWea5cOECVq9ejY0bN6Jo0aLo378/Nm/ebFDxIiLKHt9EVNesWbMwe/ZsBAcHw9PTM9t2aAM7RUTGiZ1Sl746BbBVRGSs2Cp1sFNERLrGTqlLiK1ip4hI2NgqdQixUwBbRURCxk6pS4itYqeISLjYKXXpolNqn7w+Y8YMzJs3Dy1atEDVqlUhk8lw8eJF7Nu3DyNHjsTjx48xfPhwpKen47PPPlNatnr16vD19cXo0aNRuXJlAMCpU6eybKNt27b5fDhERGQoli9fjjVr1qBPnz463S47RUREqtBXpwC2ioiI8sZOERGRoRNiq9gpIiLjIcROAWwVEZExEWKr2CkiIuOhi06pffL6qVOnMHfuXAwbNkxp+ooVK3DgwAFs3boVQUFB+Omnn7IcbAFAWFgY5syZk+P6JRIJMjIy1B0WEZF28dNF1fbmzRvUrFlT59tlp4jIKLFTatNXpwC2ioiMFFulFnaKiEjH2Cm1CbVV7BQRCRZbpRahdgpgq4hIoNgptQm1VewUEQkSO6U2XXRKqu4C+/fvR+PGjbNMb9SoEfbv3w8AaNmyJR49epRlnszMzDy/GDAiInEYPHgw1q9fr/PtslNERKQKfXUKYKuIiChv7BQRERk6IbaKnSIiMh5C7BTAVhERGRMhtoqdIiIyHrrolNp3Xnd2dsbOnTsxduxYpek7d+6Es7MzACA1NRV2dnZZlp06dSrat2+PqlWr5nO4RER6wiuw1Pb69Wv873//w6FDhxAUFAQzMzOlny9atEgr22WniMgosVNq01enALaKiIwUW6UWdoqISMfYKbUJsVXsFBEJGlulFiF2CmCriEjA2Cm1CbFV7BQRCRY7pTZddErtk9enT5+O4cOH4+jRo6hatSokEgkuXLiAPXv2YPny5QCAgwcPol69elmWjYiIQOvWrWFiYoI2bdqgXbt2aNy4MSwsLAr8QIiIyLDcuHEDFSpUAADcvHlT6WcSiURr22WniIhIFfrqFMBWERFR3tgpIiIydEJsFTtFRGQ8hNgpgK0iIjImQmwVO0VEZDx00SmJTCZT+7qC06dP4+eff8a9e/cgk8lQunRpjBo1CjVr1sxzWZlMhlOnTmHnzp34999/8ezZMzRp0gRt27ZF69at4erqmq8Hokn+i7V39ZoxsYjX7h9TxiTTXN8jEId708fmPVMOiqxeqMGR5O7JgIk625ZYib1TANBE2kXfQxCFV+2r6XsIomC147y+hyAKBzO35HtZXXYKYKs0QeytalFqsr6HIApvvBz0PQRRkL7hx5RqwsHTXxVoeR5TCYvYOwUALbxH6XsIoiBzYas0QstvShuLfdfn5HtZHlMJT35bJZRO8bU/zTD18tT3EMTBnG9SacLeR98XaHkeUwmLMRxTsVWaUZD3BeiDFoVH63sIorD36U/5XpbHVMIj9mOqpmbd9T0EUZBl8nbVmmDqbhj/Xwjd3shf8r0sO2WY8nXyuibduXMHO3fuxD///INLly6hWrVqaNu2LXr06AFvb2+9jIknr2sGT17XHJ68rhk8eV1/wsPDIZFIULhwYX0PRW2G2CmALwpqCk9e1wyevK4ZPHldf4TcKcAwW8WT1zWDJ69rBk9e1wyevK4/7JR28OR1zeDJ6xrCk9c1giev64+QW2WoneJrf5rBk9c1hCevawRPXtcfIXcKYKvEjievawZPXtcMnryuP0JulaF2iievawZPXtcMnryuGTx5XX+01SnT/CyUkZGBHTt24M6dO5BIJAgICEDbtm1hYmKi9rrKlCmDMmXKYOLEiYiJicG///6Lf//9FwAwYcKE/AyPiEjj9HuZjzClp6dj1qxZ+Omnn5CSkgIAsLW1xahRozBz5kyYmZlpbdvsFBEZG3ZKffrsFMBWEZHxYavUw04REekWO6U+sbSKnSIioWCr1COWTgFsFREJAzulPrG0ip0iIiFgp9Sni06pffL6gwcP0LJlSzx79gylSpWCTCZDSEgIfHx8sHv3bhQrVizX5cPDw+Hj45NlempqKl69eoVBgwZh0KBB6g6LiIgMzOeff47t27dj4cKFqFGjBgDg7Nmz+PrrrxEbG4vly5drZbvsFBERqUJfnQLYKiIiyhs7RUREhk6orWKniIiMg1A7BbBVRETGQqitYqeIiIyDLjolVXeB0aNHo1ixYggPD8eVK1dw9epVhIWFoWjRohg9OveP4vn9998xZcqUbH+WkZGBtm3bYvXq1eoOiYhI+2Q6/FLTiRMn0KZNG3h5eUEikWDHjh15LnP8+HFUrlwZlpaW8Pf3zzYoW7duRUBAACwsLBAQEIDt27erNa4NGzZgzZo1GDp0KIKCghAUFIShQ4di1apV2LBhg1rrUgc7RURGSZedUrNV7FRWbBURGSUD7RRgmK1ip4iIdIzHVEZxTMVOEZGgsVNqjUuInQLYKiISMB5TGUWr2CkiEix2yiA7pfbJ68ePH8fChQvh7OysmObi4oJvvvkGx48fz3XZpUuXYsiQIQCAVq1aISEhQfEze3t7fP/991iyZIm6QyIiMmqpqakoX748fv75Z5Xmf/z4MVq2bIk6derg6tWrmDp1KkaPHo2tW7cq5jl79iy6deuGPn364Pr16+jTpw+6du2K8+fPqzwuS0tLFClSJMv0IkWKwNzcXOX1qIudIiIyLOxUVmwVEZFhMcRWsVNERPSeIXYKEGar2CkiIs1jp7LiMRURkWFhq7LiMRURkeEw5k6pffK6hYUFkpOTs0xPSUnJc1APHz6En58fAODkyZNISEhAu3btFDHz9/fH/fv31R0SEZFRa9GiBebOnYuOHTuqNP/y5cvh6+uLJUuWoEyZMhg8eDAGDhyI77//XjHPkiVL0KRJE0yZMgWlS5fGlClT0KhRI7UONEaOHIk5c+YgLS1NMS0tLQ3z5s3D559/rvJ61MVOEREZFnYqK7aKiMiwGGKr2CkiInrPEDsFCLNV7BQRkeaxU1nxmIqIyLCwVVnxmIqIyHAYc6dM1V2gdevWGDJkCFauXImqVasCAM6fP49hw4ahbdu2uS7r6+uLGzduKEImk8lw5MgRJCQkwMnJCQcPHkTRokXz8TCIiLRMJtHZptLS0pSe+AH5wYOFhYVG1n/27Fk0bdpUaVqzZs2wcuVKvH37FmZmZjh79izGjh2bZZ68IvZpSA8dOoTChQujfPnyAIDr16/jzZs3aNSoUcEfSA7YKSIySjrsFKDdVom9UwBbRURGisdUebaKnSIi0iMeUxnFMRU7RUSCJpJjKnaKx1REJFI8pjKKVrFTRCRY7JRBdkrtk9d/+ukn9OvXDzVq1ICZmRkAID09HW3btsWPP/6Y67J9+vTB+PHjFbeTl0jkvxSJiYn45ZdfMGXKFH58CBEZvQULFmDWrFlK02bOnImvv/5aI+t//vw5PDw8lKZ5eHggPT0dsbGx8PT0zHGe58+f57puBwcHpe87deqk9L2Pj08BRq4adoqISPu02Sqxdwpgq4iItE2ox1TsFBGR8eAxVcHkt1XsFBGRatipguExFRGR9rFVBcNjKiIi7WKnVKPWyesymQxJSUnYsGEDIiIicOfOHchkMgQEBKB48eJ5Lj9+/Hhcu3YN5cuXh0QiQevWrfHy5UtUqVIFdnZ2+P777zFw4MB8PxgiIm2RyHS3rSlTpmDcuHFK0zR1h8D33h9EvCeTybJMz26eT6d9avXq1WqP5fTp0wgODtbIY2SniMhY6bJTgPZbJdZOAWwVERkvHlPl3Sp2iohIf3hMZRzHVOwUEQmZmI6p2KmcsVVEJFQ8pjKOVrFTRCRU7JRhdkrtk9dLlCiBW7duoUSJEiodYH3M3NwcmzZtwldffYWqVauiSZMmePjwIVavXo3OnTvD3NxcrfUREYmRJj/OPjuFChXKciVVdHQ0TE1N4eLikus8n16VpQktWrTAtWvX4O/vX+B1sVNERLqhzVaJuVMAW0VEpAvGdEzFThERCROPqfKvIK1ip4iIVMNO5R+PqYiIdIOtyj8eUxERaR87pRqpWjNLpShRogTi4uLU3tDHypUrhyFDhmDixIkYNmwY6tevz4ARkWGT6fBLy2rUqIGDBw8qTTtw4ACCg4MVHwmV0zw1a9bU+HjeX/2lCewUERktXXZKy60Sc6cAtoqIjJhIOgUYVqvYKSIiDeExlVEdU7FTRCRI7JTRdApgq4hIgHhMZVStYqeISHDYKYPslFonrwPAwoUL8eWXX+LmzZv53igA/Pjjj/D29saPP/4ILy+vLD/XdHyJiMQqJSUF165dw7Vr1wAAjx8/xrVr1xAWFgZA/lEkffv2Vcw/bNgwhIaGYty4cbhz5w5WrVqFlStXYsKECYp5xowZgwMHDuDbb7/F3bt38e233+LQoUP44osvdPnQ8oWdIiIyLOxUVmwVEZFhYauUsVNERIaFncpKE61ip4iINIOdyorHVEREhoWtyorHVEREhsOYO6X2yeu9e/fGhQsXUL58eVhZWcHZ2VnpKydlypTB+vXr8ebNm1zXf//+fQwfPhzffvutukMjItIemUR3X2q6dOkSKlasiIoVKwIAxo0bh4oVK2LGjBkAgMjISEXQAKBo0aLYs2cPjh07hgoVKmDOnDn46aef0KlTJ8U8NWvWxMaNG7F69WoEBQVhzZo12LRpE6pVq1bAHal97BQRGSVddkrNVrFTWbFVRGSUDLRTAFv1KXaKiIwSj6kE0ykgf61ip4hI8NgpUXcKYKuISOB4TCX6VrFTRCRo7JRBdkoiU/NSp7Vr1+b68379+mU7/ciRI5g0aRIePHiApk2bIjg4GF5eXrC0tERCQgJu376NU6dO4fbt2/j8888xdepU2NvbqzM0jfFfvEgv2xUbi3j13zCm7GXy03U04t70sfletsiK7zU4ktw9GToh75lExM7ODtevX4e/v79G1mcMnQKAJtIuetu2mLxqb1h/mAmV1Y7z+h6CKBzM3JLvZXXZKcC4WqXpTgHG0aoWpSbrZbti88bLQd9DEAXpmwx9D0EUDp7+qkDL85hKO9ip/GvhPUpv2xYTmQtbpRESvo6qCfuuz8n3sjym0h5DaZXQOsXX/jTD1MtT30MQB3O+SaUJex8VrDU8ptIOQ+kUwFYZq4K8L0AftCg8Wt9DEIW9T3/K97I8ptIeQ2mV0DrV1Ky73rYtJrJM3kFfE0zdXfU9BFHYG/lLvpdlp7SnIJ0yVXeBnA6m8tKwYUNcvHgRZ86cwaZNm7B+/Xo8efIEr169gqurKypWrIi+ffuid+/ecHR0zNc2iIi0hn+PaY1Ew2/QslNEZJTYKa3RdKcAtoqIjBRbpRXsFBGRhrBTWmMorWKniEjw2CqtMJROAWwVEQkcO6U1htIqdoqIBI2d0pqCdEqlk9dfvHih8grzumqqZs2aqFmzpsrrIyIicVPzA0CyxU4REZG2aKJTAFtFRETawU4REZGhM7RWsVNERPQxQ+sUwFYREZEyQ2sVO0VERB8rSKdUOnnd0dFR5TPkMzL4cdxEJEK8Akttr169gkwmg7W1NQAgNDQU27dvR0BAAJo2baqYLzk5ucDbYqeIyOixU2rTZacAtoqIiK1SDztFRKRj7JTa2CoiIh1jq9TCThER6Rg7pTa2iohIh9gptemiUyqdvH706FHFv588eYLJkyejf//+qFGjBgDg7NmzWLt2LRYsWJDvgRARkbi0a9cOHTt2xLBhw5CYmIhq1arBzMwMsbGxWLRoEYYPH66xbbFTRESkLl12CmCriIhIPewUEREZOraKiIgMGTtFRESGjq0iIiJDpotOqXTyer169RT/nj17NhYtWoQePXooprVt2xblypXD//73P/Tr16/AgyIiMji8AkttV65cweLFiwEAf//9Nzw8PHD16lVs3boVM2bM0OjBFjtFREaPnVKbLjsFsFVERGyVetgpIiIdY6fUxlYREekYW6UWdoqISMfYKbWxVUREOsROqU0XnZKqu8DZs2cRHBycZXpwcDAuXLhQ4AGp482bN0rfP3z4EF988QVatWqFwYMH4/LlyzodDxERffDy5UvY2dkBAA4cOICOHTtCKpWievXqCA0N1dp22SkiIlKFvjoFsFVERJQ3dkqOnSIiMlxsFTtFRGTI2Ck5toqIyHCxVewUEZEh00Wn1D553cfHB8uXL88yfcWKFfDx8dHIoFRlZWWF6OhoAMC1a9cQFBSE48ePw9vbGzdu3EDNmjV1fgBIRERyxYsXx44dOxAeHo79+/ejadOmAIDo6GjY29trbbvsFBERqUJfnQLYKiIiyhs7JcdOEREZLraKnSIiMmTslBxbRURkuNgqdoqIyJDpolOm6i6wePFidOrUCfv370f16tUBAOfOncPDhw+xdetWldfz8OFDrF69Gg8fPsSPP/4Id3d37Nu3Dz4+PggMDFRpHTLZh/v5T58+HS1btsTmzZshkUgAAAMHDsTMmTOxd+9eNR4hEVE2ZBJ9j0BwZsyYgZ49e2Ls2LFo1KgRatSoAUB+NVbFihW1tl12ioiMEjulNn11CmCriMhIsVVqYafk2Cki0hl2Sm1CbxU7RUSCw1apReidAtgqIhIYdkptQm8VO0VEgsJOqU0XnVL7zustW7ZESEgI2rZti/j4eMTFxaFdu3YICQlBy5YtVVrH8ePHUa5cOZw/fx7btm1DSkoKAODGjRuYOXOmukMCIL8C64svvlAEDADGjBmDq1ev5mt9RERUMJ07d0ZYWBguXbqEffv2KaY3atQIixcv1tp22SkiIlKFvjoFsFVERJQ3diordoqIyLAIuVXsFBGR+Am5UwBbRURkDITcKnaKiEj8dNEpte+8Dsg/PmT+/Pn53ujkyZMxd+5cjBs3DnZ2dorpDRo0wI8//qjyeiQSiSJaJiYmWW5Hb29vj6SkpHyPk4joPYks73koq0KFCqFQoUJK06pWrar17bJTRGRs2Kn80VenALaKiIwPW6U+doqdIiLdYafyR6itYqeISIjYKvUJtVMAW0VEwsNO5Y9QW8VOEZHQsFP5o+1OqX3yepEiRTBw4EAMGDAAPj4++drof//9h/Xr12eZ7ubmhri4OJXXI5PJULJkSUgkEqSkpOC///5DuXLlFD+/f/9+lp1HRES60aFDB6WrYt+TSCSwtLRE8eLF0bNnT5QqVUqj22WniIhIFfrqFMBWERFR3tgpOXaKiMhwCblV7BQRkfgJuVMAW0VEZAyE3Cp2iohI/HTRKbVPXh8/fjzWrFmD2bNno0GDBhg0aBA6dOgACwsLldfh6OiIyMhIFC1aVGn61atX4e3trfJ6Vq9erfR9sWLFlL4/d+4cOnTooPL6DEnvoPL4LDgY7jY2CImLw9zjx3Dx2bMc5+9Tvjz6lK+Awg4OiHjxAr9cOI/td+7ocMSGoUfVIAysHQw3Wxs8iI7Dgr3HcTk0+/02v0NTdKgUmGX6g+g4tFn6h+J7O0sLfNG4JpoElIC9pQWeJiZh4d4TOHH/ibYeht71rByEQTWC4WZng/sxcZi//zguh+f8+9embGkMrhkMP2dHJL9+g5MPn2DhoRNIfPUaANClYlm0DwpACTcXAMCtyGgsOnoK/0VE6eTxaASvwFKbg4MDduzYAUdHR1SuXBkymQxXr15FYmIimjZtik2bNuHbb7/F4cOHUatWLY1tl53SvzbDm6LLhHZw8XTEk1tPsWzsatw8dVffwzIIHZpXQI92VeDiZIMn4bH4cdVR3LiT8/Pre+VKe2HpnO54HBaLAeM/NKpFg0BMG9Uiy/wNuy3Gm7cZGh27UBnN7yM7pTZ9dQpgq3SlVc/q6DyoLpzd7BB6Pwor5u/CrctPsp23ZpNAtOpRHcXKeMLM3BSh96Pw18+HcOXUfd0O2gC0bVcJXbtVg4uLLZ48icGvPx/Cf/89zXbesmUL47OhDeDr4wILS1NERb3Arp1XsfXvi9nO36BBGXw1oz1OnwrBjOlbtfkw9K5Nh8ro0rOGfD8+jsGynw7g5vXwbOcNDPLBZ8MbwsfPBRaWZoh6noTd/1zBtk0XFPP4FXVFv8H1UKKUJwp5OuLXHw9g++YL2a7PYLFVamGn5MTUqVb96qDzsEZwdrdHaEgkVszchlsXHmY7r5O7PT6b0QElgnzgVdQN/646jhUztynN07xnTTTqXBV+pTwBAA/+C8eab3Yi5Fqo1h+LPrXuVhWd+9eBs6stQh9GY/nCPbh1JfvHXKtRAFp1rQr/Up4wMzdB2MNo/LXsCC6feaA0T7fB9eDl4wxTMxM8C43Dtj9O4/Cuazp6RPrRumtVdO5f+6P9uBe3ruayH7tUUd6Py48q7ceP1WteDlO+7YozR+5g9tisb2QbLHZKbUJuFTtVcEbzeks+tOpb+6PmP8eKr7fi1oVH2c4rb357lCj3vvknsOJr5ebXbBGEbp83hVcRV3mrHsdg2/+O4sjW7I+7xKJV75ro/Fl9OLvbITQkCivm/oNbFx9nO6+Tmx0+m9YGJcoWhlcRV/y79hRWzPlXaZ5v1w9HUPViWZa9cPQOZg5aqZXHoHFslVqE3CmArSoodoq0jb3PBjulNiG3ip0C2gxrgi7j2sDZ0xGht59i2bg/cPN0zq0pV6cMhn3fB34BhREXkYDNP+zE7v8dUvzcL6Aw+s7sghKV/FGoiBuWjV+L7T/tVVqH1ESKvjM6o2GP2nAq5Ij4yAQc+OM41s/fDplMmP8TthnWFF0mtPnQ7HFrc212UN0yGPp9XxQJfLcfv/8Xu1Yo78d+s7qiRKWiKFTEHb+OXYvtP+1RWke5OmXQZUIblKxUFC5ezpjZ8Tuc+eeS1h6jPrTqVwedRzSGs7uD/LXoGX/j1vlcXoue2RElgnzh5e+Gf1cew4oZyu/hNe9VE426VINfKS8AwIMbYViz4F9hvRYtzP9F9EoXnVL75PVRo0Zh1KhRuH79OlatWoXRo0djxIgR6NmzJwYOHIhKlSrluY6ePXti0qRJ2LJlCyQSCTIzM3H69GlMmDABffv2VXks/fr1y/XnM2bMUHldhqRVyZL4qn59zDhyGJcjItCzXBBWte+AZn+sRURycpb5ewUFYUKt2ph66CBuREWhvEchzG/SBElpaTjyKPs/kMWoRdmSmNyiPubsOoIrYRHoFlwOK/q0R5ulfyAyKet+m7/nGBYdPKX43kQqxY6RvbHvZohimpmJFCv7dUR86kuM2bgLUUnJKORgh9Q3b3TymPShRUBJTGlWH7P2HMGVpxHoXqkcfuvZHq2W/YHIF1n3Y2UfL3zbrhkWHDiOo/cfwcPOFl+3bIS5rZvg8y07AQDV/Apj9827uPI0Em/S0zG4ZjBW9eqIVsv/QHRyqq4fIulIoUKF0LNnT/z888+QSqUAgMzMTIwZMwZ2dnbYuHEjhg0bhkmTJuHUqVN5rE117JR+1etaE8MXD8DSkb/h1ul7aDW0CebvmYZBgWMREx6r7+HpVcNapTB6QAP88Nsh/HfnGdo1K4/vv+qEPmNWIyo26/PrezbW5vhqdEtcvhEKZ0ebLD9PSU1Dz1HKb7DwxHU5/j5SbvTVKYCt0oW6LYIwdEpr/DLrH9y+8gQtu1fDnN8GYGirRYiJzPoRk+WqFMXVM/exdvF+pLx4hSYdg/H1sn4Y2/VXPLwToYdHoB/1G5TBiJGN8dOS/bh58ylat6mIBd92w8D+vyE6+kWW+V+/fosd2y/j0aNovH71FuXKFcYX45rj9eu32P3JSX/uHvYYOrwhblwP09Gj0Z96jQIwfExTLP1hL27dCEer9pUw//seGNR7OWKistmPr97gn62X8OhhFF6/eouyQT4YM7ElXr96iz3/XgUAWFiYITIiESeO3MGw0U10/ZBID9gpObF0qm7bShj6dUf8MnUzbl98hJZ9amHOX8MxtP48xEQkZJnfzNwUSXEp2PjTAXT4rH626wyqURzH/rmMO5ce4c3rdHQZ0Qjz1o/AsIbzEfdcnB+nXLdZWQyd2BK/zNuJW1fD0LJLFcz9tS+GtP8JMdk85rKVi+DKuQdY89NBpCS/RtP2lfD10t74otcKPLwbCQBITnqFjb8dQ/jjWKS/zUDVeqUwbnYHJMan5HhyttDJ92ML/DJvF25dC0PLzsGY+2sfDOmwNPv9WMkPV849xJqlh5CS/ApN21XC1z/1whe9/6fYj++5ezpg8Lhm+C+HCwZJXITcKnaqYPh6S87qtqkob/60LfLm966FOX8Ox9AG81VofoNs15mc+BKblh5A+IMoeasaB2LcDz2RGJuMK8fFeSJm3VblMfSrtvhlxjbcvvwELXtWx5xVgzG02XeIiUjMMr98P6Zi4y+H0WFg3WzXOWf4GpiZfXhb3M7JGr/uHoeTe65r62GQngm5UwBbVRDsFGkbe0+aIuRWGXun6nWpgWE/9MPSUStx68w9tPqsMebtmozBQeMRE571zvOFirhh3s5J2LPyCL7p9zMCa5bCqKWDkBTzAqe2y29SY2FtjuePo3Fy6zkM/T77fdjty7ZoNaQxvhu4DKG3n6JkZX+M/30YUl+8wo6le7NdxpDV61oDwxf3w9LPV8qbPaQx5u+egkFlx+W4H+fumoy9vx/Bt31/RmCtUhj18yAkxrzAqW3v96MFIh9F4cTf5zDsh+z3o6WNBR5dD8WBNccw8+/xWn2M+lC3bSUMnd0Zv0zZhNsXH6Jln9qYs24khtabg5hnOXQqPgUbf9qHDp81zHadQTVL4tj2S7hz6THepL1FlxFNMG/j5xhWf65oX4sm3XRKmt/BlS9fHj/++COePXuGmTNn4vfff0eVKlVQvnx5rFq1KtcreubNmwdfX194e3sjJSUFAQEBqFu3LmrWrImvvvoqv0MSjUGVKmPLzZvYfPMmHsbHY87xY4hMTkavoPLZzt++TAA2/PcfdoeEIDwpCbtC7mHLzZsYFlxFxyPXr341K2HblZv4+/JNPIqJx4K9x/H8RTK6Vw3Kdv6UtDeITXmp+Crr7QF7S0tsv3JLMU/HSmXhYG2Jz9fvxNWwCEQkJeNKWATuPRfvge2A6pWw9epN/H3tJh7FxmP+Afl+7BGc/X4s7+2JZ4kv8OfFa3ia+AKXwyOw6cp/KOvpoZhnwo59WH/5Bu5GxeBRXAK+2nUIUokENYr66uphkR6sXLkSX3zxhSJgACCVSjFq1Cj873//g0Qiweeff46bN29qZfvslH50Gtsa+1Ydwd6VRxB29xmWjV2DmPBYtBneVN9D07vubYKx6/B/2HXoP4Q+i8dPq44iOi4Z7ZtVyHW5L4c1xcGTd3ArJDLbn8sgQ3ziS6UvkuPvI+VG350C2Cpt6jCgNg5svYT9f19E+KMYrJi/CzHPk9CqR/Vs518xfxf+/v0EQv57iojQOKxdvB8RoXGo1rCMjkeuX527VMXePdexZ891hIXF4ddfDiE6+gXatK2Y7fwPHkTh6JHbCH0Si6ioJBw6dAuXLj5GuXLKHzMqlUowdVpbrF1zEpGRiTp4JPrVqVs17Nt1DXt3XkNYaByW/XgQMdEv0KZD5Wznf3g/CkcP3ULo41hEPU/C4QM3cfnCI5Qr/+F4KeRuJH775TCOHb6Nt7xIzSiwU+LS4bMGOLDxLPZvOIvwB1FYMXMbYiIS0Kpv7Wznj34ajxUzt+Lw3xeQ+uJ1tvMsHPUHdq89iUe3nuHpwyj8+OUGSKUSVKit+Y+SNhQd+9bC/u2XsW/bZYQ/jsGKhXsQ8zwJrbtWzXb+FQv34O/VpxBy6xkiwuKw5qeD8r7XK62Y58alxzhz5A7CH8cg8mk8/ll3Fo/vRyGwop+uHpbOdexTE/u3X8G+7e/243d7EfP8Rc778bu9+HvN+/0YjzVLDyEiLB7V6in/rkmlEkxa0AV/LTuC50/jdfFQSM+E3Cp2qmD4ekvOOgxpgAMbz31o/teqNH8bDm+9iNTkV9nO89/ZBziz7wbCH0QhMjQW/6w8jsd3IhBYxV+bD0WvOgyqhwNbLmD/5gsIfxiNFXP+RUxkIlr1qpHt/NHPErBizj84vP0yUpOz/9spJekVEmKTFV+VapdE2qu3OLnnhjYfCumRkDsFsFUFwU6RtrH3pClCbpWxd6rTF62wb/VR7Ft1FOF3I7B8/B+ICY9Dm6HZ33im1ZAmiA6Lw/LxfyD8bgT2rTqK/WuOovO41op5Qi49wm+T1+HY5rN4m5ae7XrKVC+Jszsv48Leq4gKjcHJbedx+eANlKwszOeKTl+0Um72uLXy/Tgs+2a3HtoEMWFxWDZuLcLuPsPelUewf/VRdBnXRjFPyKWH+G3SOhzbdAZv095mu56L+65hzYxNigsHxKbD0EY4sOEs9q8/g/D7UVgxY6u8U/3qZDt/9NN4rJj+Nw5vuZBjpxaOXPPuteinePogCj9OWCd/LbqOeF+LJt10Kt8nr799+xabN29G27ZtMX78eAQHB+P3339H165dMW3aNPTq1SvHZc3MzLBu3Trcv38fmzdvxl9//YW7d+/izz//hImJSX6HlMXUqVMxcOBAja1PF8ykUpT18MDJUOWPVTgZFopKXl7ZLmNuYoK0dOVwvU5PR1ChQjCV5vs/saCYmUgR6OWB0w+U99vpB2Go6JP9fvtUp0plcfZRGCI+ukt7w9L+uBYeiemtG+LkpCH49/M+GFK3CqQSiUbHbyjMpFIEenrg1KNP9uPDMFQsnP1+vPo0AoXsbVG3eBEAgIuNNZqVKYHjD7L/+EYAsDIzhanUBEmvsn8RkcQhPT0dd+9mvRL87t27yMiQn3BjaWkJiZb+f2KndM/UzBQlK/vj8gHlu9VcPngDgTWM+49WU1MpShbzwMXrT5SmX7z2BGVL59yplg3LwruQI1ZvOpPjPFaW5vh7xRBs+20ovp3aASWKumtq2ILG30fKi747BbBV2mJqZoISgd64cuq+0vQrp+8jQMUT0SQSCaxsLJBsRBcEmZpKUbJkIVy6pPx3/OVLjxFYtrBK6yhe3AOBZb2z3F29T9/aSEp8ib1GcFKAqakUJUt54vInHxN8+cIjlfdjsRIeCChbGDeE9HGLpHHslGqE0ClTMxOUCPLJcqe0K8fvIiC4aA5Lqc/CyhwmpiZIThTnJ9yZmpqgRBkvXPnkbuhXzj5AmQqq3RxB0feknPteoZo/ChdxFe2dwxX78Ww2+7G8Tw5LKZNIJLCyNkdykvKbWT2HNkBiQir2b7+isfGSYRNyq9ip/OPrLTkzNTNBiXI+uHLik+af0GzzK9QqicLF3HEzh498FzpTMxOUKOuNKydDlKZfORmCgEpFNLadpl2r4viua0h7Jd5PWjZ2Qu4UwFblFztF2sbekyYJuVXG3ClTMxOUqFQUVw4qv99x+dANBNQome0yAdVL4PKhT+Y/ID/p3MRU9f116/RdVGhQFt4lPAEA/kG+KFurFC7svarmo9A/UzMTebM/3Y8HryMwh/1YpnpJXD6o3PhLB66jZLB6+1HMPrwWfUdp+pXjdxAQrLmLHBSvRScYz/uoxkgXnTLNexZlV65cwerVq7FhwwaYmJigT58+WLx4MUqX/nDHmqZNm6Ju3ew/lu1j/v7+8PfX3tU/z549Q3h4uNbWrw1OVlYwlUoR+1L5jaa41Jdw87POdpmToU/QrVxZHHz4ADejo1HOwwNdAgNhbmICJysrxKSK802rjzlaW8HURIrYFOUnxbiUVLja5X2CiputDeqUKIIv/1b+GJXCTg6oVtQHu27cxdA/d6CIiyOmt24IU6kUvx47r9HHYAicrOW/f3GpyvsxNjUVbrbZ78erTyMxYcc+LOnYCuamJjAzMcHhew8xZ9/RHLczvmFtRCWn4MyjsBznMTSSnG9+QDno06cPBg0ahKlTp6JKlSqQSCS4cOEC5s+fr/ioqOPHjyMwMFCj22Wn9MfB1Q4mpiZIiEpUmp4QlQinQo56GZOhcLCTd+rTu6LHJ72Ei6NNtssU9nTEsN51MHLaRmRkZv8kFPYsHvOX7sWjsFhYW5mjS+vKWDa/B/qPW4unRnBn29wY2+8jO6U+fXUKYKu0zd7JWv7/f1yy0vTE2GQ4uWX/gtenOg6sA0srM5zYK/6Trd9zcLCGiYkUCQnKx48JCalwdsq+Ve9t3DxSsfwfa09hz0cfux5Y1hstWgZhyOBVWhm3oXFwtIaJqRQJ8Vn3o5OLba7Lrt8+Wr68iRR/rjqBvTuvaXGkusdWqYedUo0QOmXvbCPvUmw2XXK319h2Bkxti7jnSbh68p7G1mlIPvQ9RWl6QlwqnF1zf359r1O/WrC0MseJA8p3grG2tcC6QxNhZmaKzMxM/DxvJ66eE+cJAjnvxxQ4u9qptI5OfWtm2Y8BFXzRrEMljOz6q0bHq0vslPrE0Cp2Sn3G9nqLOhTNj/mk+THJcHJT7Tk2J9Z2lvjr0hyYmZsiMyMTv0zbIuLm5/C3U1zB9+N7JYN8ULSUJ5ZM2qyR9ekKW6UeMXQKYKvUxU6RtrH3OWOn1CeGVhljp+xd7eXPA9FJStMTopLg5OGY7TJOHo5IiPpk/ugkmJqZwsHVDvHPE1Xa9qbv/oWNgzVW3vwBmRmZkJpIsWb6JhzL5UZ4hsrh/X78dL9EJeXYbOdCDriUzfzq7kcxs3e2fdepF0rT5Z3S4GvR09q9ey0664nNhoqdUp8uOqX2yetVqlRBkyZNsGzZMrRv3x5mZmZZ5gkICED37t1zXEfnzp0RHByMyZMnK03/7rvvcOHCBWzZskXdYWVr7dq1ec6TlpaGtLQ0pWmy9HRITNXeNRqV5f8XSTbT3ll67jzcrG2wtXsPSCQSxL58ia23b2NolSrIzMzU8kgNm0QiQS6fuKbQvlIAkl+n4fAd5bsOSSUSxKW+xIx/DiFTJsPtiGi42dliUO1gUZ68/t6n+yy3/VjM1RlfNauPX06ew6mHoXCztcHExnUwq2UjTNt1MMv8g2sEo1XZ0uj7xxa8yeDH3YvZ4sWL4eHhgYULFyIqKgoA4OHhgbFjx2LSpEkA5Ac8zZs31+h2xdYpIPtWZcoyIJUY5tWj2T+H8C9BAFn2gySbaYD849Znjm2NlRvPIDwyIcf13QqJxK2QSMX3/919hlXf90WnlpXw48ojGhu3kPH3kXKir04B4mtVtp3KTIdUqudjqnz+/1+vVXn0/rwxZo34A0nx4r8QOItsDkbz2mtfjP4LVlbmKBPghc8+a4BnzxJw9MhtWFmZY8rUtlj0/V68eJH9Rw2KlarN/9i4EX/A0soMZQILY/DwBoh4moCjh25pcZRkyNgp1QjpmCrL84Ika6vyq/PwRqjfrjImdvkpx48VFo0sfVdtP9ZvEYTewxti1uh1Wfr+KvUNRnT5BVbW5qhQrRiGTGiB508TcOOTTyMRlXz+nVS/eTn5fhzzYT9aWZtj4vzO+HHWP3hhRJ9aQ8JuFTtVcHy9JWdZm6/a+1S5eZWShpHNvoWVtQUq1C6Jz2a0R2RYLP775JM0xCTL7xgKvh/fa9a1Kh7fi0TIDcM6EYo0S8idAtiqgmKnSNvYe9IEIbeKncr+tb5cnwiy/oGb7XpyU79rDTTqWQff9FmKJ7efolj5Ihj+Q1/ERSbg4J8nVF6PIcn++TTnfZJd47Nbj7HLup8AWZ7v9qmm84jGqN8+GBM7LRH/a9FGThedUvtsgkePHsHPL/c7WdvY2GD16tU5/vz48eOYOXNmlunNmzfH999/r+6QCmTBggWYNWuW0jTHpk3h1LyZTsfxXsKrV0jPzISbtfKd7VysrRH7MvsX/9My0jHp4AFMO3wIrtbWiE5NRY9y5ZCclob4V8ZxgkDiy1dIz8iEq63y3emdbawRl5L3myadKgXi3+t38DZD+WT/mORUpGdmIvOjZ/VHMfFws7OBmYk0y/xCl/BS/vv36X50sbZGbGr2+3Foraq4Eh6BlWcvAwDuRcfi1d63WN+/G5YcO4OYlA9vCA6sXhlDa1fBgL+24V50rPYeiDbItPdRTGJlYmKCadOmYdq0aXjxQn5Vn7298pV8vr6qfbS3OsTWKSD7VhVFGRSD5q+yLoik2GRkpGfA+ZMrYR3dHZD4yRWwxiYpWd4pl0/uXOvkYI34bD6y3trSHGWKF0KJou4Y+1kjAPILqqRSCY5tGYdxs7bgys2sb67IZMCdB8/h4+mknQciIEb3+8hOqU1fnQLE16rsOlXMuRZKuNbW6Tjee5HwUv7//yd3D3VwsUVibEoOS8nVbRGEL+Z1wvwx63DNyN4USEp6iYyMTDg5f9IqJ+ssd2P/1PPn8ufVx49j4ORkg379auPokdvw8nKEp6cj5s7vopj3/QuJBw5NQr++KxAZkajZB6JnSYkvkZGeCedP7rLu6GSDxDwuhnj+7lNTnjyKgZOzDfoMqiuuk9fZKrWwU5qVbatsq6CEfTWtb/tFfKq8S5/c2cbBxQ6Jn9wBJz86DW2IbqOaYmr3n/HkTkSB12eo3vfd6ZO7rDs622S5i/in6jYriy++bo/5EzbiajYfuS6TyRAZHg8AeHTvOXz93dBtUF1Rnryukf345SZcPf9IMd3TxxmFvJ0w66cPHyUukcqf83df/hqD2/2IyKc5X5RtMNgptQm5VULolCG+9gcY4estalA0/5NPVnFwtUXiJ3cRV5dMJkPkE/l7Ko9uP4NPiULoNrKJKE9me5Hw/m+n7I7pC7YfAcDC0gz12lTAn4v3F3hdOsdWqUXInQLYqvxip0jb2PtcsFNqE3KrhNApf0kgipmU1fi2XsS+kD8PfHKXdUd3hyx3Y38vu08AcXJzQPrbdLzI4/WYj332TW9s/O4fHNt8FgDw5GY4PHxd0X1iO8GdvJ70fj9mabZ9js2Of54E50IOWeZXdz+K2Yv4lBw6ZYfEmIIfT3Ua1gjdRjfD1G5LhfdaNDulNl10SqruAnnFSxUpKSkwNzfPMt3MzEzxQNXx9OlTpKRkfRJ6+/YtTpzI/cl5ypQpSEpKUvpybNxI7TFoytvMTNyMikJtP+X/sLV9/XAlIvf/6dMzM/E8JQWZMhlalyqNo48fa+iaGcP3NiMTtyKiULOY8u9nzWK+uBqe+36rUqQw/FycsPXyzSw/uxIWAV9nB0g+ev4q4uKE6BcpojtxHZD//t2KjEIt/0/2o78vrj7Nfj9ampkqndwPABmZ8u8/ftofVKMyRtSphsHrt+NmZJRGx02Gz97ePkvAtEVsnQKyb1VRlM5zOV1Lf5uOkMuPUKlJkNL0So2DcOuscD7WThvS0zMR8jAKVcoXUZoeXL4Ibt7N+vya+ioNfb5YgwHj/1B8/XPgOkKfxmHA+D9w+/7zHLdVoqg74hJ4cMbfR1KHLjsFiK9V2XWqmHN1tcegKelvM3D/1jNUrFVcaXqlmsVx+2pojsvVa1Ue477pgoXjN+LiceN7nkhPz0RIyHNUDi6qNL1y5aK4dfOpyuuRSCQwM5ffzSQsLA6DBvyGIYNXKr7OnrmPa9dCMWTwSsREF/ykTUOTnp6JkHuRqFRFeT9WqqLufgTMzAzz7mWke+yUdo6pitkFqz2O/Eh/m4H7N8JRsa7yMVyluqVwu4AnR3ca1gg9vmiO6b2X4b7I7xyanp6B+3ciULGGct8rVi+OO9fCclyufosgjJ/TCd9O3oILJ0NU2pYEEpiZ6/cTZLRFsR+rF1OaXrF6Mdy5nvPvUP3m5TB+dkd8O+XvLPsx/HEshnZaihHdflV8nTt2D9cvPsaIbr8i5rn4ek9ZCa1VQuiUIb72B/D1ltykv83A/f/CUbFOKaXpleqULnDzPyWRAGYWIm3V2wzcv/kMFWuXVJpeqXZJ3L7ypMDrr9OqPMzMTXFkx5UCr4uEQ2idAtiq/GKnSNvYe9IWobVKEJ2SllF7HKpIf5uB+1ceo1LjckrTKzUqh9tns3/t6fa5+6jU6JP5mwQh5PIjZKRnqLxtC2tzyDKVz8/KzMiERKr26Z96l/42Q97sxtk1O/v9eOdcSJb5KzcJQsgl9fajmOX8WnRp3L70KIelVNNpeGP0GNsC03v+gvvXc349lsRJW51S+dnLyckJzs7OeX6pomzZsti0aVOW6Rs3bkRAQIDKg4+MjETVqlXh5+cHR0dH9OvXTylm8fHxaNCgQa7rsLCwUOzc918SU/3+AbjyymV0LVsOXQIDUczZGV/VqwcvOzusu3EdAPBlrdr4vtmH2+0XdXREu9JlUMTREUEehfBjy5Yo6eKC706f0tdD0Iu1Z66gU+Wy6FgpEP5uzpjcoh48Heyw6cINAMDYJrXwTaesd9TvXLksrodH4n50XJafbbxwHY7WVpjasj6KuDiiXsmiGFKvCtZfuK71x6Mvq89dQeeKZdGpfCD8XZ0xpYl8P268LN+P4xrWwrftPuzHoyGP0KR0cfSoHITCjg6oVNgLXzWvj+vPIhH97q7rg2sE44v6NTF15wE8S3wBVxtruNpYwzqbjx4yWDIdfolEVFQU+vTpAy8vL5iamsLExETpS9PE2ikg+1YZ6kcxbl28Cy0GNUKzAQ3gW9obwxb1g7uvK3YtP6Dvoendxp2X0LpRObRqWBZ+3s4YNaA+PFztsOOAvClDe9XBV6NbAJDfQf1xWKzSV0LSS7x5m4HHYbF4nfYWADCgaw1UrVAEXh4OKF7EDVNGNkOJIm7YsV+8nVKHUf0+6rJTImmVrjsFiLdV2XZKqt9jqu2rT6FZ5ypo2ikYPv5uGDKlNdw8HbFn43kAQP9xzTD+266K+eu1Ko8J33bFb9/uxt3rYXBytYWTqy2sbS309RD04u8tF9CyZXk0bxEEX18XDB/RCO4e9ti58yoAYNDgepg0pbVi/nbtK6FGjeLw9naCt7cTmjUvhy5dq+LQQfndwt++zcCTJ7FKXykpr/Hq5Rs8eRKL9HTxXRAMAFs3nUeLNhXRrFV5+Pq5YNjoJnD3cMCu7fKTIwYOa4CJX7VVzN+2Y2VUr1UC3oWd4F3YCc1alkeXHtVxeP+HC6xNTaUoVsIDxUp4wMzMBK5udihWwgNe3gL6tBV2Si3slJxYjqm2/3YUzXrUQNNu1eFT3ANDvu4IN29n7PlT/tpd/8ltMP7HPkrL+Ad6wz/QG5Y2FnBwtoV/oDd8SxRS/Lzz8EboN7EVFo9fh6jwODi52cHJzQ6W1lnfOBSLbX+cRvOOldG0fSX4FHXDkC9bwN3TAbu3XAQADBjdBBPmdVLMX79FECbM7YTfftiLuzfC4eRiCycX5b53G1QXFasXQyFvJxQu4oqOfWqiUZsKOLL7mq4fns5s+/OM8n6c8H4/XgDwbj/O/Wg/Ni/3bj/uy3Y/vn2TjtAH0Upfqcmv8Cr1DUIfRCNdKG8e8phKbUJuFTtVMEb1eouatv/vk+bP7AA3byfl5i/prbSMf4A3/AO8YWltAQcXW/gHKDe/68gmqFinFAr5uqBwMXd0+KwBGnWqiiPbLun0senS9pXH0axrVTTtUgU+xdwx5Ku2cPNyxJ515wAA/b9sgfHfd1daxr+MF/zLeMHSxlz+t1MZL/gW98iy7mZdq+LsgZtITsz7U5sNDjulFiF3CmCrCoKdIm1j73PAYyq1CblVxt6prUt2o/nAhmjWvz58Snth2Pd95a353yEAwMC53fHl6hGK+Xf/7yA8/Fwx9Ls+8CnthWb966P5gAb4e9EuxTymZibwL+8H//J+MDM3gauXM/zL+8Gr2Ie/ac/tvoIek9ujaouK8PBzQ612VdDxi1Y4/c9FrT1Wbdq6ZDdaDGqIZgPqy5v9w7v9uOIgAGDgvB6YuGakYv5dKw7C3c8VQ7/vA9/S3mg2oD6aD2yILYt2KuYxNTNBsfJ+KFbeD2bmpnD1dkKxT/ajpY2FYh4AKFTEHcXK+8HNx0Unj1vbtq84jGY9a6Jp9xrwKeGBIbM6yV+L/uNdp6a2xfif+iot4x9YGP6BheWvRbvYwT+wMHxLfvRa9IjG6DepNRaP+wtR4fFwcrOHk5s9LK0F9D4qO6U2XXRK5TMKlixZovi3TCbD8OHDMXv2bLi7u6u90enTp6NTp054+PAhGjZsCAA4fPgwNmzYgC1btqi8nsmTJ8PExATnz59HYmIipkyZgvr16+PgwYNwcnJSjFVodoeEwMnSCqOqVYebjQ1C4uIwcMd2RCTLP77BzcYGXnYfPi5PKpVicOXK8HdyQnpmJs6Gh6Pzpo14lo+r2YRs780QOFpbYkT9anCzs8H9qDgM+3MHIpLe7TdbG3g6KH/MoK2FOZoEFMeCPceyXefzFykYvHYbJreohx0j+yAqOQV/nr2K308K6CBBTXtvh8DJyhIj6laDu60NQmLiMGTDJ/vR/sN+3H7jNmwszNGrSgVMalIXya/TcO5JOL47fFIxT4/gIJibmmJplzZK21p6/Cx+PnFONw+MdK5///4ICwvD9OnT4enpCYlEux/Bwk4ZhuObz8DexRa9p3eGs6cTntwMx7RW8xEdFqvvoendkdP34GBnhf5da8DFyQaPw2Lx5bxtiIqR99rFyQYerupdqWhrY4GJw5vC2dEaqS/fIORRFEZ+tRF3HuR8Z3Zjwt9Hyo2uOwWwVbp0Yu8N2DlZo+eIRnB2t8OTkOeYMWQNoiMSAQDObvZw93RUzN+yWzWYmpng85nt8fnM9orpB7ddxqIpqu9PoTt29A7s7a3Qp28tODvb4smTGEyZvBnRUe9a5WIL948+alAikWDQZ/VRqJADMjIyERmRiN9/O4Zd7052N1bHD9+Gvb0Veg+oA2cXWzx5FINpEzYi+t1HXbq42MLdw0Exv0QqwcBhDVDI0xGZGZmIeJaA35cdwe5/PtwJ0MXVDsvXfKb4vmvPGujaswauXwnFhFF/6u7Bkc6wU3Ji6dSJf6/AzskGPcc2h7O7PZ7ci8SMPssQ/SwBAODs4QB3L+WLUX45MFnx75LlfdGgYxVEhcehf/WvAQCt+9WBmYUZvvptsNJyf/2wB+sW7dXuA9KTE/tvwt7RGr2GNoCTmx1CH0Rh+sg/ER2ZCABwdrOD+0cfNdyycxV536e1xefTPlw0dPCfK/hh+jYAgKWVOT6f1gauHg54k/YW4Y9jsXDqFpz46AIisTmx/ybsHazRa0j9T/ajvFPOrrZw/+gjmD/sxzb4fNqH1/YO/nMFP8zYrvPxk+EQcqvYqYLh6y05O7Hzqrz5XzSDs7uDvPl9l39ovrs93L0/bf4kxb9LlvdFgw7B8ubXmAUAsLQ2x8j5XeDq6Yg3r98i/EE0vhv9B06I+LjrxO7r8v04qgmc3ezlx/QDVyI64t1+dLPP+rfT7nGKf5cs54MG7Soh6mk8+tedr5juXdQVZav4Y2rfFbp5IKRXQu4UwFYVBDtF2sbek6YIuVXG3qnjW87C3sUWvaZ1grOnI0JvheOrNt8oWuPs6QR3H1fF/M+fxGBam28x7Ie+aDO8KeIjEvDr2DU4tf2CYh4XL2csv/St4vsu49ugy/g2uH78Nr5sPBsA8MuY1eg3qytGLR0IR3cHxEUkYM9vh/DX3K06euSadXzzWdg726H3V50+NLv1h/3o4ukI949OKH/+JAZftf4Gw37oh7YjmiEuIgG/frEap7Z9sh+vLFR833VCW3Sd0BbXj93ChEby/VgyuBh+ODJTMc/wRf0AAAfWHsN3A5dp9THrguK16HEtPrwW3ftXRD+NBwA4uztk7dShKYp/lyzv9+G16KozAACt+9eVvxb9+2dKy/31/W6s+2GPlh8R6YsuOiWR5fNZ3s7ODtevX4e/v3++Nrx7927Mnz8f165dg5WVFYKCgjBz5kzUq1dP5XV4e3tj+/btqFq1KgAgLS0N3bp1Q2hoKA4fPoy3b9/Cy8sLGRnq3d3Ff/Eitean7FnEa/8PK2ORKd6bZunUvelj872s/xLdPS88+mJc3jMJgJ2dHU6ePIkKFSrobfti7RQANJF2UXsZyupV+2r6HoIoWO04r+8hiMLBzPyfIKvLTgHiaJW+O/V+DGJtVYtSk/OeifL0xssh75koT9I3Arnjq4E7ePqrAi3PYyr1sFNy2jymauE9Su1lKCuZC1ulETp4g9oY7Ls+J9/L8phKfUJvlaF3iq/9aYapl6e+hyAO5nyTShP2Pvq+QMvzmEo9Qu8UwFYZi4K8L0AftCg8Wt9DEIW9T3/K97I8plKf0Ftl6J1qatY975koT7JMw7t4QIhM3V3znonytDfyl3wvy06pTxed0ttnubdq1QqtWrUq0DqSkpIUV1oB8o8B+fvvv9GlSxc0aNAAf/31V0GHSUQkx7/H1Obj42OQV8Gqip0iIkER7tOt3gi9UwBbRUQCI+ynXJ1jp+TYKSLSGWE/5eqF0FvFThGR4Aj3KVcvhN4pgK0iIoER9lOuXgi9VewUEQmKcJ9u9UYXnZJqde1a5u/vjxs3bihNMzU1xZYtW+Dv74/WrVvraWRERLRkyRJMnjwZT5480fdQ9IadIiIyXOyUHFtFRGSY2Ck5doqIyHCxVewUEZEhY6fk2CoiIsPFVrFTRESGTBed0tmd152dnRESEgJXV1c4OTlBkstHocbHx6u0zhYtWuB///sfOnXqpDT9fcg6deqEp0+fFmjcREQAIOEVWGrr1q0bXr58iWLFisHa2hpmZmZKP1f1uV5X2CkiEjJ2Sn1C6xTAVhGRsLFV6mGn5NgpItIVdkp9QmsVO0VEQsdWqUdonQLYKiISNnZKfUJrFTtFRELGTqlPF51S+eT1cePGKX3/5s0bzJs3Dw4ODkrTFy1alO3yixcvhp2dHQD5WfmaMG/ePLx8+TLbn5mammLbtm2MGBGRnmjquV5V7BQREalD150C2CoiIlIdOyXHThERGS6htYqdIiIyLkLrFMBWEREZG6G1ip0iIjIuuuiUyievX716Ven7mjVr4tGjR0rTcruqql+/fgCA9PR0AECzZs1QqFAhlQeaHVNTU9jb2+f4cxMTE/j5+RVoG0REAABegaW298/7usJOEZFRY6fUputOAWwVERk5tkot7JQcO0VEOsNOqU1orWKniEjw2Cq1CK1TAFtFRALHTqlNaK1ip4hI0NgptemiUyqfvH706FHNbNDUFMOHD8edO3c0sr6lS5fi0qVLaNWqFbp27Yo///wTCxYsQGZmJjp27IjZs2fD1FTlh0lERAXw4sULxcHFixcvcp03t4OQ/GCniIgoL/rsFMBWERFR7tip7LFTRESGQwytYqeIiMRLDJ0C2CoiIjETQ6vYKSIi8dJ1p/Ty7F6tWjVcvXq1wFdHzZkzB9999x2aNm2KMWPG4PHjx/juu+8wduxYSKVSLF68GGZmZpg1a5aGRk5ERotXYKnEyckJkZGRcHd3h6OjY7ZX5cpkMkgkEmRkZOhhhKphp4hIcNgplYilUwBbRUQCxFbliZ3Kip0iIp1hp1QillaxU0QkSGxVnsTSKYCtIiIBYqdUIpZWsVNEJDjslEp03Sm9nLw+YsQIjB8/Hk+fPkXlypVhY2Oj9POgoCCV1rNmzRqsWbMGHTt2xPXr11G5cmWsXbsWvXr1AgCULl0aEydOZMSIiHTkyJEjcHZ2Vvw7t48/NGTsFBGROImlUwBbRUQkRuxUVuwUEZFhEUur2CkiInESS6cAtoqISKzE0ip2iohInHTdKb2cvN6tWzcAwOjRoxXTJBKJ2mflR0ZGIjg4GABQvnx5SKVSVKhQQfHzSpUqISIiQnMDJyKjJeEVWCqpV6+e4t/169fX30AKiJ0iIqFhp1Qjlk4BbBURCQ9blTd2Kit2ioh0hZ1SjVhaxU4RkRCxVXkTS6cAtoqIhIedUo1YWsVOEZHQsFOq0XWn9HLy+uPHjzWynkKFCuH27dvw9fXF/fv3kZGRgdu3byMwMBAAcOvWLbi7u2tkW0REpB5/f3/06tULvXv3RqlSpfQ9HLWwU0RE4ifkTgFsFRGR2LFTcuwUEZHhEnKr2CkiIvETcqcAtoqIyBgIuVXsFBGR+OmiUzo/eT05ORkhISF4+/YtqlatCldX13yvq2fPnujbty/atWuHw4cPY9KkSZgwYQLi4uIgkUgwb948dO7cWYOjJyKjJRPmxzXp0+eff44NGzZg3rx5qFixIvr06YNu3brB09NT30PLFTtFRILETqlNqJ0C2CoiEii2Si3slBw7RUQ6w06pTaitYqeISLDYKrUItVMAW0VEAsVOqU2orWKniEiQ2Cm16aJTKp28fuPGDZVXGBQUlOt6WrRogefPn0Mmk8He3h5///03GjdurPL6PzZr1ixYWVnh3LlzGDp0KCZNmoSgoCBMnDgRL1++RJs2bTBnzpx8rZuIiApm3LhxGDduHEJCQrBu3TosW7YMX375JRo0aIDevXujb9++GtsWO0VEROrSZacAtoqIiNTDTsmxU0REhkuIrWKniIiMhxA79X49bBURkXEQYqvYKSIi46GLTklkMpksr5mkUikkEglymvX9zyQSCTIyMnJcT8uWLZGQkIAffvgBlpaWmDVrFu7du4e7d+/m/xFogf/iRfoegihYxPOKFU3JNNf3CMTh3vSx+V62+MLFGhxJ7h5MzP84Dd25c+cwfPhw3LhxI9deqMvYOgUATaRd9D0EUXjVvpq+hyAKVjvO63sIonAwc0u+l9VlpwDxtkpbnQKMr1UtSk3W9xBE4Y2Xg76HIArSN5r9/9lYHTz9VYGW5zFVwbFTmtXCe5S+hyAKMhe2SiMkfB1VE/Zdz/8b2jym0gxDb5WQOsXX/jTD1Muw71opGOZ8k0oT9j76vkDL85iq4Ay9UwBbZYwK8r4AfdCi8Gh9D0EU9j79Kd/L8phKMwy9VULqVFOz7voegijIMvM8rZRUYOqe/08ooA/2Rv6S72XZKc3QdKdUuvP648ePC7whALh06RL27NmD4OBgAMCqVavg7u6OlJQU2NraamQbRERawb/HCuTChQtYv349Nm3ahKSkJI1/tBM7RURGj50qEG13CmCriIjYqvxjp4iIdICdKhChtIqdIiJBY6vyTSidAtgqIhIwdqpAhNIqdoqIBIudKhBtdUqlk9f9/Pw0srHY2Fj4+voqvndxcYG1tTViYmIYMSIikXn/sSHr16/HkydP0KBBA3zzzTfo2LEj7OzsNLotdoqIiNSly04BbBUREamHnSIiIkMnxFaxU0RExkOInQLYKiIiYyLEVrFTRETGQxedUunk9ezcvn0bYWFhePPmjdL0tm3b5riMRCJBcnIyLC0tAUDxcSPJycl48eKFYj57e/v8DouISCskvAJLbaVLl0ZwcDBGjhyJ7t27o1ChQjrdPjtFRMaEnVKfvjsFsFVEZFzYKvWwU0REusVOqU+IrWKniEjI2Cr1CLFTAFtFRMLFTqlPiK1ip4hIqNgp9emiU2qfvP7o0SN06NAB//33HyQSCWQy+X9ZiUQCAMjIyMhxWZlMhpIlS2aZVrFiRcW/JRJJrusgIiJhuHv3bpbnfF1gp4iISBX66hTAVhERUd7YKSIiMnRCbBU7RURkPITYKYCtIiIyJkJsFTtFRGQ8dNEptU9eHzNmDIoWLYpDhw7B398fFy5cQFxcHMaPH4/vv/8+12WPHj2a74ESEekVr8BSm74OtNgpIjJK7JTa9NUpgK0iIiPFVqmFnSIi0jF2Sm1CbBU7RUSCxlapRYidAtgqIhIwdkptQmwVO0VEgsVOqU0XnVL75PWzZ8/iyJEjcHNzg1QqhVQqRe3atbFgwQKMHj0aV69ezXHZevXqFWiwREQkHBkZGVi8eDE2b96c7UdNxcfHa2W77BQREalCX50C2CoiIsobO0VERIZOiK1ip4iIjIcQOwWwVURExkSIrWKniIiMhy46Jc3PoGxtbQEArq6uiIiIAAD4+fnh3r17BR4QEZEhksh09yUWs2bNwqJFi9C1a1ckJSVh3Lhx6NixI6RSKb7++mutbZedIiJjpMtOiaVV+uoUwFYRkXFip9TDThER6RaPqdTHVhER6RY7pR52iohIt3hMpT62iohId9gp9emiU2qfvF62bFncuHEDAFCtWjUsXLgQp0+fxuzZs+Hv76+RQRERkfCtW7cOv/32GyZMmABTU1P06NEDv//+O2bMmIFz585pbbvsFBERqUJfnQLYKiIiyhs7RUREho6tIiIiQ8ZOERGRoWOriIjIkOmiU2qfvP7VV18hMzMTADB37lyEhoaiTp062LNnD3766SeNDIqIyODIdPglEs+fP0e5cuUAALa2tkhKSgIAtG7dGrt379badtkpIjJKuuyUSFqlr04BbBURGSl2Si3sFBGRjvGYSm1sFRGRjrFTamGniIh0jMdUamOriIh0iJ1Smy46ZaruAs2aNVP829/fH7dv30Z8fDycnJwgkUg0MigiIhK+woULIzIyEr6+vihevDgOHDiASpUq4eLFi7CwsNDadtkpIiJShb46BbBVRESUN3aKiIgMHVtFRESGjJ0iIiJDx1YREZEh00Wn1L7z+sfCw8Px9OlTODs7qxWvgQMHIjk5Ocv01NRUDBw4sCBDIiLSDl59pbYOHTrg8OHDAIAxY8Zg+vTpKFGiBPr27auz53p2ioiMBq8UVpshdApgq4jIiLBTamGniIh0jMdUahNyq9gpIhIkdkotQu4UwFYRkQDxmEptQm4VO0VEgsNOqU0XnZLIZDK1dld6ejpmzZqFn376CSkpKQDkt4UfNWoUZs6cCTMzszzXYWJigsjISLi7uytNj42NRaFChZCenq7OkDTOf/EivW5fLCzieTWepmSa63sE4nBv+th8L1ty7mINjiR3IV/lf5yG7Ny5czhz5gyKFy+Otm3bam07xtApAGgi7aLvIYjCq/bV9D0EUbDacV7fQxCFg5lb8r2sLjsFiLNVuuoUYBytalFqsl63LxZvvBz0PQRRkL7J0PcQROHg6a8KtDyPqQqGndK8Ft6j9D0EUZC5sFUawbuaacS+63PyvSyPqQpOSK0SQqf42p9mmHp56nsI4mDON6k0Ye+j7wu0PI+pCkZInQLYKmNSkPcF6IMWhUfrewiisPfpT/lelsdUBSekVgmhU03Nuut7CKIgyxTJWbh6Zuruqu8hiMLeyF/yvSw7VXDa6JSpugt8/vnn2L59OxYuXIgaNWoAAM6ePYuvv/4asbGxWL58eY7LvnjxAjKZDDKZDMnJybC0tFT8LCMjA3v27MkSNiIiQyDh32MFVr16dVSvXl3r22GniMgYsVMFp6tOAWwVERkntqpg2CkiIu1ipwpOCK1ip4hIyNiqghFCpwC2ioiEi50qOCG0ip0iIqFipwpOG51S++T1DRs2YOPGjWjRooViWlBQEHx9fdG9e/dcD7YcHR0hkUggkUhQsmTJLD+XSCSYNWuWukMiIiIDtHbtWri6uqJVq1YAgIkTJ+J///sfAgICsGHDBvj5+Wllu+wUERGpQl+dAtgqIiLKGztFRESGToitYqeIiIyHEDsFsFVERMZEiK1ip4iIjIcuOqX2yeuWlpYoUqRIlulFihSBeR4fG3f06FHIZDI0bNgQW7duhbOzs+Jn5ubm8PPzg5eXl7pDIiIiAzR//nwsW7YMgPwq3Z9//hlLlizBrl27MHbsWGzbtk0r22WniIhIFfrqFMBWERFR3tgpIiIydEJsFTtFRGQ8hNgpgK0iIjImQmwVO0VEZDx00Sm1T14fOXIk5syZg9WrV8PCwgIAkJaWhnnz5uHzzz/Pddl69eoBAB4/fgxfX19IJJJ8DJmIiIQgPDwcxYsXBwDs2LEDnTt3xpAhQ1CrVi3Ur19fa9tlp4iISBX66hTAVhERUd7YKSIiMnRCbBU7RURkPITYKYCtIiIyJkJsFTtFRGQ8dNEplU5e79ixo9L3hw4dQuHChVG+fHkAwPXr1/HmzRs0atRIpY36+fnh5MmTWLFiBR49eoQtW7bA29sbf/75J4oWLYratWur+TCIiMjQ2NraIi4uDr6+vjhw4ADGjh0LQH4V76tXrzS6LXaKiIjUpctOAWwVERGph50iIiJDJ+RWsVNEROIn5E4BbBURkTEQcqvYKSIi8dNFp1Q6ed3BwUHp+06dOil97+Pjo9ZGt27dij59+qBXr164cuUK0tLSAADJycmYP38+9uzZo9b6iIi0TqbvAQhPkyZNMHjwYFSsWBEhISFo1aoVAODWrVvZfgRVQbBTRGT02Cm16bJTAFtFRMRWqYedIiLSMXZKbUJuFTtFRILEVqlFyJ0C2CoiEiB2Sm1CbhU7RUSCw06pTRedUunk9dWrV2tkY+/NnTsXy5cvR9++fbFx40bF9Jo1a2L27Nka3RYREenHL7/8gq+++grh4eHYunUrXFxcAACXL19Gjx49NLotdoqIiNSly04BbBUREamHnSIiIkMn5FaxU0RE4ifkTgFsFRGRMRByq9gpIiLx00WnVDp5PTsxMTG4d+8eJBIJSpYsCTc3N5WXvXfvHurWrZtlur29PRITE/M7JCIirZHwCiy1OTo64ueff84yfdasWUrfjxgxArNnz4arq6tGt89OEZExYafUp+9OAWwVERkXtko97BQRkW6xU+oTcqvYKSISIrZKPULuFMBWEZHwsFPqE3Kr2CkiEhp2Sn266JRU3QVSU1MxcOBAeHp6om7duqhTpw68vLwwaNAgvHz5UqV1eHp64sGDB1mmnzp1Cv7+/uoOiYiIBOyvv/7CixcvNLY+doqIiDRJ050C2CoiItIcdoqIiAydIbaKnSIiovcMsVMAW0VERB8YYqvYKSIieq8gnVL75PVx48bh+PHj2LlzJxITE5GYmIh//vkHx48fx/jx41Vax9ChQzFmzBicP38eEokEERERWLduHSZMmIARI0ao/SCIiLROpsMvIyOTafZBs1NEZJR02Skja5WmOwWwVURkpNgprWCniIg0hMdUWmOIrWKniEiQ2CmtMMROAWwVEQkQj6m0xhBbxU4RkeCwU1pTkE6ZqrvA1q1b8ffff6N+/fqKaS1btoSVlRW6du2KZcuW5bmOiRMnIikpCQ0aNMDr169Rt25dWFhYYMKECfj888/VHZLGuV3V9wjEwSQtU99DEI10K4m+h0AkGMbQKQAwLc4rljXBIuGtvocgCpn1K+l7CESCYhStepGs7xGIgnlGhr6HIAoyC3N9D4FIUIyiUwBkr17rewjiEP5K3yMQBYmnu76HQCQoBW2VEDolNeffsJqQERWt7yGIgokHO0WkDmM5piLNaGLSTd9DEAUTB3t9D4FIUIzhmIo0RMZz/zQik/uRKDtqn7z+8uVLeHh4ZJnu7u6u8sdcvXnzBvPmzcO0adNw+/ZtZGZmIiAgALa2toiNjYWrq6u6wyIi0i4juypKyNgpIjJK7JSgsFVEZJTYKsFgp4jIKLFTglLQVrFTRCRIbJVg8JiKiIwSOyUoPKYiIqPDThkkqboL1KhRAzNnzsTr1x/uTvTq1SvMmjULNWrUUGkdXbt2RWZmJqytrREcHIyqVavC1tYWUVFRSld1ERERqYudIiIiQ8dWERGRIWOniIjI0BW0VewUERFpE4+piIjI0PGYioiIDIHad17/8ccf0bx5cxQuXBjly5eHRCLBtWvXYGlpif3796u0jsjISAwaNAirV69WmtawYUMEBgaqOyQiIq2T8AoswWCniMgYsVPCwlYRkTFiq4SDnSIiY8ROCUtBW8VOEZEQsVXCwWMqIjJG7JSw8JiKiIwNO2WY1L7zetmyZXH//n0sWLAAFSpUQFBQEL755hvcv39f5QDt2bMHFy5cwNixYwEAz549Q/369VGuXDls3rxZ3SEREZGA9e7dG/b29hpbHztFRESapOlOAWwVERFpDjtFRESGzhBbxU4REdF7htgpgK0iIqIPDLFV7BQREb1XkE6pfed1ALCyssJnn32Wrw0CgIuLC/bv34/atWsDAHbv3o1KlSph3bp1kErVPp+eiIgM0OrVq2Fra4suXbooTd+yZQtevnyJfv36AQCWLVum8W2zU0RElBd9dgpgq4iIKHfsFBERGToht4qdIiISPyF3CmCriIiMgZBbxU4REYmfLjql0snr//77r8orbNu2rUrzFS5cGAcPHkTt2rXRpEkT/Pnnn5BIJCpvh4hIpwz840N+/fVXfPfdd4iMjERgYCCWLFmCOnXqZDtv//79sXbt2izTAwICcOvWLQDAmjVrMGDAgCzzvHr1CpaWliqN6ZtvvsHy5cuzTHd3d8eQIUMUEdMEdoqIjB47BcBwOwWwVUREbJWcqq1ip4iIdIydAmBcx1TsFBEJDlsFgMdUbBURGSx2CgCPqdgpIjJYBt4pwPBapYtOqXTyevv27VVamUQiQUZGRrY/c3JyyjZSL1++xM6dO+Hi4qKYFh8fr9L2iIgI2LRpE7744gv8+uuvqFWrFlasWIEWLVrg9u3b8PX1zTL/jz/+iG+++UbxfXp6OsqXL5/lSil7e3vcu3dPaZqqB1oAEBoaiqJFi2aZ7ufnh7CwMJXXowp2iojIcLFTcmwVEZHhMsRWsVNERPSeIXYKEF6r2CkiIu0xxFYJrVMAW0VEpC2G2ClAeK1ip4iItMcQW6WLTql08npmZmaBN7RkyZICr4OISF8kBnwF1qJFizBo0CAMHjwYgPz5dv/+/Vi2bBkWLFiQZX4HBwc4ODgovt+xYwcSEhKyXG0lkUhQqFChfI/L3d0dN27cQJEiRZSmX79+XenARRPYKSIyduyU+nTZKYCtIiJiq9TDThER6RY7pT6htYqdIiKhY6vUI7ROAWwVEQkbO6U+obWKnSIiITPkTgGG2SpddEqlk9c14f1t4tPT07Fu3To0a9asQBEnIiLgzZs3uHz5MiZPnqw0vWnTpjhz5oxK61i5ciUaN24MPz8/pekpKSnw8/NDRkYGKlSogDlz5qBixYoqj6179+4YPXo07OzsULduXQDA8ePHMWbMGHTv3l3l9egKO0VEpHnslGaxVUREmmeorWKniIgIMNxOAcJrFTtFRKQdhtoqoXUKYKuIiLTBUDsFCK9V7BQRkXYYaqt00SmVT15/9eoVDh8+jNatWwMApkyZgrS0NMXPTUxMMGfOnDxvK29qaorhw4fjzp07+RwyEZEe6PAKrLS0NKXnVwCwsLCAhYVFlnljY2ORkZEBDw8PpekeHh54/vx5ntuKjIzE3r17sX79eqXppUuXxpo1a1CuXDm8ePECP/74I2rVqoXr16+jRIkSKj2OuXPnIjQ0FI0aNYKpqTw3mZmZ6Nu3L+bPn6/SOtTBThGRUdPxlcKqtoqdUsZWEZFR4zGVWq1ip4iIdIzHVEZzTMVOEZFg8ZiKx1RERIaMx1Q8piIiMmQG2inAcFuli05JVZ3xjz/+wIoVKxTf//zzzzhz5gyuXr2Kq1ev4q+//sKyZctUWle1atVw9epV9UdLRGQEFixYoPh4j/df2X0EyMckEonS9zKZLMu07KxZswaOjo5o37690vTq1aujd+/eKF++POrUqYPNmzejZMmSWLp0qcqPw9zcHJs2bcLdu3exbt06bNu2DQ8fPsSqVatgbm6u8npUxU4REemOuq1ip+TYKiIi3RDDMRU7RUT0f/buO6qJrIEC+A3NTq+iqCiooKhgr7gqqNhFsRcsWNbe+9p7X+vn2te2tl17770XUBELKF2qXUG+P4KBQBAIJJmE+zuHc2TyZvLmGebmzbx5o9nYp5JPbmUVc4qI6NfYp5IP+1RERMrDPpV82KciIlIO9qmyJsszr//9998YMWKE1LIdO3bA1tYWALB9+3asWrUqXRlZBg0ahFGjRuHt27dwcXFBoUKFpF53cnLKarWIiJRDiXdgTZgwASNHjpRaJuvOKwAwNTWFtrZ2ujutIiIi0t2RlVZSUhI2btyI7t27ZxoqWlpaqFatGp4/f56FPZBWsmRJJCUloXTp0pI7sRSBOUVEeZqS7xTOalYxp6Qxq4goT2OfSq6sYk4RESkJ+1R5qk/FnCIitcQ+FftUqTCriEhw2KdinyoV5hQRCY5AcwoQflYpMqeyvDV/f3/Y29tLfs+fPz+0tFImbq9evToGDx6cpW15eXkBAIYOHSpZJhKJJHcLJCYmZrVaREQaJ6PHhMiip6cHFxcXnDp1Cm3btpUsP3XqFFq3bv3LdS9cuICAgAD06dMn0/dJSkrC/fv3UbFixSzVCwA+ffqEIUOGYMuWLQDEOWJra4uhQ4eiaNGiGD9+fJa3lRXMKSIi5clqVjGnpDGriIiUQxP6VMwpIiLNxj6VfHIrq5hTRES/xj6VfNinIiJSHvap5MM+FRGRcrBPlTVZHrweFxcnNXI+MjJS6vUfP37g69evWdrWq1evsvq2RESCIFLyHVjZMXLkSHTv3h1Vq1ZFrVq1sH79egQFBWHAgAEAxHdzBQcHY+vWrVLr/fXXX6hRowYqVKiQbpvTp09HzZo1YWdnh/j4eKxYsQL379/HqlWrslyvCRMm4MGDBzh//jyaNm0qWd64cWNMmzYt1ztbzCkiysuYU8LPKYBZRUR5G7Mqe1nFnCIiUi7mVN7qUzGniEgdMavYpyIiEjLmFPtURERCJuScAoSZVcrIqSwPXi9WrBgeP36MsmXLynz94cOHKFasWJa2VaJEiay+LRERZcLLywtRUVGYMWMGQkNDUaFCBRw9elRyrA0NDUVQUJDUOnFxcdi3bx+WL18uc5uxsbHo378/wsLCYGBggCpVquDixYuoXr16lut18OBB7N69GzVr1oRIJJIsd3BwwIsXL+TY019jThERCRNzKgWziohImISYVcwpIiL6SYg5Bah3VjGniIhylxCzSp1zCmBWERHlJiHmFKDeWcWcIiLKXULMKmXkVJYHrzdv3hxTp06Fh4cH8ufPL/Xa58+fMX36dHh4eGTrzf38/BAUFIRv375JLW/VqlW2tkNEpHACvwNr0KBBGDRokMzXNm/enG6ZgYEBPn36lOH2li5diqVLl+aoTpGRkTA3N0+3/OPHj1KhlluYU0SUpzGnsk3ZOQUwq4goj2NWZQtziohIyZhT2aYJWcWcIiK1wqzKFk3IKYBZRURqhDmVbZqQVcwpIlIbAs8pQHhZpYycyvLg9YkTJ2LPnj0oW7Ysfv/9d9jb20MkEuHp06f4888/kZCQgIkTJ2ZpWy9fvkTbtm3x6NEjiEQiJCWJPx0/dyoxMVGOXSEiIiGpVq0ajhw5giFDhgBIOcb/73//Q61atXL9/ZhTRESUHcrOKYBZRUREWcecIiIioVPnrGJOERFpPnXOKYBZRUSUF6hzVjGniIg0nzJyKsuD1y0sLHD16lUMHDgQ48ePlwqeJk2aYPXq1bCwsMjStoYNG4ZSpUrh9OnTsLW1xc2bNxEVFYVRo0Zh0aJF8u0JEZEiqcEdWEIzd+5cNG3aFH5+fkhISMDy5cvh6+uLa9eu4cKFC7n+fswpIsrTmFPZpuycAphVRJTHMauyhTlFRKRkzKlsU+esYk4RkVpiVmWLOucUwKwiIjXEnMo2dc4q5hQRqR3mVLYpI6eyPHgdAEqVKoXjx48jOjoaAQEBAIAyZcrA2Ng4W2967do1nD17FmZmZtDS0oKWlhbq1q2LuXPnYujQobh37162tkdERMJTu3ZtXLlyBYsWLULp0qVx8uRJODs749q1a6hYsaJC3pM5RUREWaWKnAKYVURElDXMKSIiEjp1zirmFBGR5lPnnAKYVUREeYE6ZxVziohI8ykjp7I1eP0nY2NjVK9eXe43TUxMROHChQEApqamCAkJQdmyZVGiRAk8e/ZM7u0SEZGwVKxYEVu2bFH6+zKniIgoK1SVUwCzioiIMsecIiIioVPXrGJOERHlDeqaUwCziogor1DXrGJOERHlDYrOKbkGr+dUhQoV8PDhQ9ja2qJGjRpYsGAB9PT0sH79etja2qqiSkREvyTi40OyJD4+Pstl9fX1FViTnGFOEZG6YU5ljabkFMCsIiL1w6zKHHOKiEh1mFNZoylZxZwiInXErMqcpuQUwKwiIvXDnMoaTckq5hQRqRvmVNYoO6dUMnh98uTJ+PjxIwBg1qxZaNGiBerVqwcTExPs3r1bFVUiIqJcYGhoCJFI9MsySUlJEIlESExMVFKtso85RUSkmTQlpwBmFRGRJmJOERGR0GlKVjGniIg0k6bkFMCsIiLSVJqSVcwpIiLNpOycUsngdXd3d8m/bW1t4efnh+joaBgZGWW680REKsE7sLLk3Llzqq5CrmBOEZHaYU5liabkFMCsIiI1xKzKFHOKiEiFmFNZoilZxZwiIrXErMqUpuQUwKwiIjXEnMoSTckq5hQRqR3mVJYoO6dUMnhdFmNjY1VXgYiIcqhBgwZSv1+6dAnr1q3DixcvsHfvXlhbW2Pbtm0oVaqUimooP+YUEZH60+ScAphVRETqjjlFRERCp8lZxZwiIlJ/mpxTALOKiEgTaHJWMaeIiNSfsnNKqYPXvb29s1Ru48aNCq4JEVH2iHgHVrbt27cP3bt3R9euXXHv3j18/foVAPD+/XvMmTMHR48eVXEN02NOEZG6Yk5lnzrmFMCsIiL1xazKHuYUEZFyMaeyTx2zijlFROqMWZU96phTALOKiNQXcyr71DGrmFNEpK6YU9mnjJzSyvEWsmHz5s04d+4cYmNjERMTk+EPERGpv1mzZmHt2rX43//+B11dXcny2rVr4+7duyqsWcaYU0REeYc65hTArCIiyiuYU0REJHTqmFXMKSKivEMdcwpgVhER5SXqmFXMKSKivEMZOaXUmdcHDBiAXbt24eXLl/D29ka3bt1y/NiQW7duYdmyZbh69SrCwsIgEolgYWGB2rVrY8SIEahatWou1Z6I8jTegZVtz549Q/369dMt19fXR2xsrPIrlAXMKSJSW8ypbFPHnAKYVUSkxphV2cKcSsGcIiKlYE5lmzpmFXOKiNQasypb1DGnAGYVEakx5lS2qWNWMaeISG0xp7JNGTml1JnXV69ejdDQUIwbNw6HDh1C8eLF0bFjR5w4cQJJSdn/hBw8eBB16tRBdHQ0hg0bho0bN2LDhg0YNmwYYmJiUKdOHfz7778K2BMiIsqMlZUVAgIC0i2/fPkybG1tVVCjzDGniIjyDnXMKYBZRUSUVzCnxJhTRETCpY5ZxZwiIso71DGnAGYVEVFeoo5ZxZwiIso7lJFTSp15HQDy5cuHzp07o3PnzggMDMTmzZsxaNAgfP/+HX5+fihcuHCWtzV58mTMmDED48ePT/fa8OHDMX/+fEycOBGtW7fOzV0goryId2Blm4+Pj6SDIRKJEBISgmvXrmH06NGYOnWqqquXIeYUEakl5lS2qWtOAcwqIlJTzKpsYU6JMaeISGmYU9mmrlnFnCIitcWsyhZ1zSmAWUVEaoo5lW3qmlXMKSJSS8ypbFNGTil98HpqIpEIIpEISUlJ+PHjR7bXDwgIQLt27TJ8vU2bNpg2bVpOqkhERHIaO3Ys4uLi0LBhQ3z58gX169dHvnz5MHr0aPz++++qrl6WMKeIiDSXJuQUwKwiItJUzCkx5hQRkXBpQlYxp4iINJcm5BTArCIi0mSakFXMKSIizaWMnNLKla1kw9evX7Fz5040adIEZcuWxaNHj/Dnn38iKCgoW3dfAUDp0qVx8ODBDF//999/BfsoFSJSLyIl/miS2bNn4927d7h58yauX7+OyMhIzJw5U9XV+iXmFBGpI2XmlCZllTrmFMCsIiL1xJzKPuYUc4qIlId9KvmoY1Yxp4hIXTGnsk8dcwpgVhGRemKfSj7qmFXMKSJSR8wp+Sg6p5Q68/qgQYOwa9cu2NjYoHfv3ti1axdMTEzk3t6MGTPQqVMnXLhwAW5ubrCwsIBIJEJYWBhOnTqFkydPYteuXbm4B0RElF0FCxZE1apVVV2NLGFOERHlPeqUUwCziogor2FOMaeIiIROnbKKOUVElPeoU04BzCoiorxInbKKOUVElPcoMqeUOnh97dq1sLGxQalSpXDhwgVcuHBBZrn9+/dnaXvt27fHxYsXsXz5cixZsgRhYWEAAEtLS9SqVQsXLlxArVq1cq3+itS+USV0a14VJgaF8Co4Ckv/Po/7/sEyyzqXK4Y1EzumW95x3CYEhsakW96kRlnMGuyBC3cCMHb5f7ledyFp51YJXVpWg4lhIbx6G4XlW87hwVPZ7ZhaxbJFsWqaF16+eYde47ZJlmtra6FHm+poXt8RpsaFERQajdV/X8KNB68VuBeq1/63SujerCpMDAvhZXAUlu749edx7fj0n8cOE1I+jx51HTCtb9N0Zer2W45v3xNzt/KKkqTqCpAyMKcy5tGlJjz7NICxeREEPg/HujmH4Hv7tcyyRmZF0G+8B+wci6FoSRP8t/Uq1s05JFVGW0cLXj4N0bitC0ws9PH2VSQ2LjyGO5f8lbA3qtOqtTM6etWAiUlhvH4didV/nsajR29llq1QoRj6+TSETXET5Muvg/DweBw+dA/79t6SlHF3r4ix41ukW7ep2wJ8V5fjqxxatUrTjqsyacf+adrxsIx2HCejHd3VqB2ZU3kGsypjHj3rwXNQYxibGyDQPxTrpu6F740XMssameuj37R2sHOyQVFbM/z313msm7pPqkzTrrXRqEMNlChbFAAQ8DAIm+f+B//7gQrfF1Xy6FoLnn1dUzJ/1n/wvf1KZlkjsyLoN6El7CpYo2hJU/y35QrWzZbuc87/ewCcapROt+7Nc08wrd9GheyDELToVAOevevC2KwIAgMisHbeEfjelf3ZqdPYAR5eNWBbzgq6etoICojA9tVncOdKgKRMU8+qaNyqCkqUsQAABPgFY9PyU/DPIP8EiVmVJzCnUrTwdoXnEHcYWxgg8GkI1k7cDd/rzzMsX7G2PfrP6ogS5YoiKiwW/6w4gaObpduvzYBGaNHbFWbFjBEf/QGX/ruDTTP24/vXBACAR+8GaOHtCnMb8UXDoKch+HvhYdw+/Vhh+6loLfr8bEfD5HbcBd9rmbTjbK9U7XgcRzeltOOCQ2PgVLdsuvVunnyIqV4rAADdxrVCt/GtpF6PDo9Dl3KjcmmvVM+jUw14eteT5NS6eUfge+e1zLK1GzvCo1N1lC5XFLp62ggMiMD2VWdw90rK/4NNGXN0/70x7BytYWFthHVzD+PgtqtK2ptcwpzKE5hTKVr0b4wOIz1gbGmIQL9grB2zDY+vPMuwfMV65eAzvxtKOFgjKjQW/yw+jCMbzkher9O6KjqNbY2ipS2go6uN4IBw7Ft+FGd2XJa5Pa8xreA90wsHVh7D2jHbc33/lKXlgCboMLIljK0MEej3FmtGbsXjK08zLF+xXnkMWNQdJRyKISokBnsWH8KR9aclr5dwKIYe0zrAztkWliXNsGbUFhxYcUxqG92neKL7VE+pZdFhsehUfEDu7pyKefSoC88BjWBsro9A/zCs+2MffG++lFnWyFwf/aa2gV3F4ihaygz/bbyIdX9k/HfcoJUzxq/uhavHH2Jm3w2K2oXcx6zKE5hVuaPlQDd0GN0aJlaGeO37FmtGbMLjyxkfnzVFywFu6DC6Zcp+j9zyy/12ql8ePot6oKRjci4t+g+H152WKlO3XXX0mu4Fq9IWCH0Rjk1TduHKwZTrK9terIRlSfN02/5v9QmsHCI+9zdm40C49XSVev3J9ecYWmdyDvZWuVTRx/ca3gx1WjijmJ0lvn35Br+bL7Bx+j68DQhX5K7KjzmVJzCnUrAvIJ/sZrRTfQf4LO6ZklUL/8XhdaekytRtVwO9ZnRKyarJO3Hl4E3J653Gt0HdtjVQvJw1vn7+Br+rz7Bh/N946x8iKTNm42C49XKV2u6T6/4YWntS7uy4knn0qg/PwU3E10yfhWLdlH/geyNAZlkjc330m+6Zcs10w3msm/KPVBmbslboPrYl7JxsYGFjgnVT/sHB9WeVsSu5hzklSEodvN6jRw+IRLk7MX6tWrUEG1RZ1biGPUZ0dcWCLWfw8HkI2jZ0wtLRbdFpwhaER73PcD3PsRvx8fM3ye+x8Z/TlbE0KYKhnevj3lM1uqAtp0a1ymJYz4ZY9NcZPHwWjDaNnbB4Qjt0Hbn5l+1YqIAepg5qhjuPg2BkUFDqNR+vOnCvVx7z1p1CYEg0alQqiXmjW8Fnyi74v45Q9C6pROPq9hjZxRULtp7Bg+TP47KRbeE1cQvCo3/xeRy3ER+/pHweY9J8Hj98+ooOEzZJLVObgeuUZzCnZKvf3Ak+E1ti1fSD8LsbiOZeNTDzf97wab4EkaGx6crr6ukgLvojdq09i7a96srcZs/h7mjYugpWTN6HNy8j4VLXHlNW9cAor9V48SRE5jrqzrVheQwa3Bgrlp3A48dv0aJlFcyd7wXvXv9DRER8uvJfvnzHwQN38PJlBL58/o6KFYth+Mim+PLlO44cvi8p9+HDF/TqsV5qXbUZcC0HV9fkdlyeqh3necG79y/a8WCadhzRFF8+f8eRI/cl5T58+IJePfNOO5L6YlbJVr+VM3xmeGLVhN3wu/UCzbvXxcy/B8OnwUxEBqe/wVecVR+wa8VxtO33m8xtOtW2x/kDt/Hk9it8+/odHQY1wexdv2OA6yxEhcUpepdUon7zSvCZ1Aqr/jgAvzuv0bxTTcz8qw98mi76ReZ/wK7VZ9HWu57Mbc4ctAW6uimnHooYFcTqQyNw6dhDRe2GytVvWhE+45tj1cxD8L0XiOYdq2HWup7o32o5IkPTf3YqVC2Ju9cCsHn5SXyI/wK3ts74Y1V3DO+0Fi+ehgIAnKqVwvmjD+F3P0j8efSujznre8Gn9QpEycg/IlVhTonVb1sVPnO8sGrM3/C9EYDmvRpg1p6h6F9rGiKDo9OVt7AxxczdQ3Fs2yUsGLABjjXKYPDCroiLeo8rh+4CABp61oD31PZYMmQzntx8AesyFhj1Z28AwPpJewAA70JisHH6PoS8igQANO5UC9O2D8bvrjMR+FT9+ln121aDz5xOWDX6ZzvWx6w9w9C/1lREvs2gHfcMw7GtF7HAJ7kdF3VF3LuUdpzRfTV09bQl6+gbF8bqS9Nw6eBtqW29fhKMCW0WS37/kfhDQXupfPWbVoTPBA+smvEf/O4FonnH6pi5rid8Wi6TmVMVq5bEvasB2LLsJD68/4ImbV3wx+ruGNFpDV48EedU/vy6CHsbjcsnHqP/+ObK3iWiLGNOiTXwrIkBi7rjz2Gb4HvVHx59f8Osf8eiX5WxiHwTla68RUkzzDo4Bsc2nsP83qvhWNsevy/vjbh38bicPHjtfcxH7Jz/L948C0HC9wTUaFYFo9b3R2xEHO6cfiS1PXsXWzTv0xAvH6r3jcENOtTCgMU9sXLIX/C9+gwe/Rpj9uHx6Os0SmY7WpY0w+xD43D0r7OY1/NPONYuiyEr+yAuMh6XD4gHVuQrqIewVxG4tO86fBb1yPC9Xz9+g3FNZ0l+16ScAoD6LavA5492WDXpH/jdeonm3epg5raB8Gk4B5EhGfTxoz5g14qTaNuv4S+3bW5thL5T2uDRddkDN4hUjVmVcw061sbApb2xcvD/4HvlGTx8mmDO0Uno4zgCkW/eqbp6CtOgYy0MXNoTK3//S7zf/RtjzpEJ6FNhZIa5NOvweBzbcBbze/wJxzplMeTPPoiNjMfl/eJcKl/TDpN3DsfmqXtw5eBN1GlTHZN3DceI+tPw9Kb4OPp7jYnQ0taSbLdkBRssODkZF/Zel3q/m8fvYZH3GsnvCd8SFNEMCqGqPn7FOvY49Nc5+N97DS1tLfSa3Baz941A/1pT8fXTt3TvS6QMzCkx9gXkk92MtixpjllHJuDYhjOY332FOKtW9UvOqhsAgPI17TF51whsnroLVw7cRJ221TF59wiMqDdFklVO9R3x3+oTeHYrANo62ug9qzPmnZiMvo4j8OXTV8n73Tx2D4u8V0t+V6esSq1+axf4zOyAVeN3we/mCzTvUQ8zdw6GT70Zsq+Z5tNBXNR77Fp2DG19GsncZv4CeggLfIfLh+6i/wxPmWWI5KHUweubN29W5tupjc5NXfDfhcf474J4FqSlf59HjYol0P63Slj9j+xZKQDx4OAPqQ6iaWmJRJgxsDnW77+GymWtUaRgvlyvu5B08nDBobOPcOis+ETo8i3nUaNSSbR1q4S1OzNux3H9m+DklSf48SMJ9aqVkXrNvZ4Dthy4gWv3xTMNHjj1ADUqlUTnFi6Y/ucxWZtTe13cXfDfxcf492Ly53HHedSskPx53JtxO0a///XnMQlJiIr7lOv1JcpNzCnZ2vauh5N7b+HEP+KLUevmHIJzPXt4dKmJzYuPpysfERyDdbPFM627tZf96JjfWjtj19qzuHVBPKPTkZ3X4VzPHu2862HhmN0K2hPV8uxQHceOPsDRow8AAKtXnUbVaqXQslUV/LUh/V3pAQHhCEg1e0J4eBzq1iuLihWLSw1eB4CYmI8KrbuQeHaojmPH0rRjVTna0am41OB1IG+1I6kvZpVsbX0a4eTOazixQzzD57qp++Ds6gCPnvWweU76p09FvI3Guil7AQBunWSfFF0weLPU78tH/426LSqjcr2yOPPPTZnrqLu23vVx8p9bOLFHvH/rZv8nzvyutbB5Ufr+T0RwDNbNErevW4dqMrf5IU76ptYGLSrh65fvuHTsQS7XXjja9ayDE/vu4Pg+8UDIdfOOwqW2HVp41cCmZSfTlV8376jU75uXn0Kt38qjRsNyksHrC8ZJz3KxfNoB1HVzROWatjjz333F7AiRHJhTYu0GNcGJ7ZdxfJv4PMq6ibvh8psjWng3wKaZB9KV9+jdABHB0Vg3UdwXeuMfBrvKJeH5u5vkwnb5arbwvRGA8/vEx+jwN1E4v/8myjqXkmznxgnpG4O2zD6IFt6uKFfVVi0Hr6e04yUAP9uxAlp4u2LTjPQzeHl4NxBnvKQdQ2FXpQQ8f3eXtOOHWOnv/A3aVceXT99w8V/pweuJCYmI0dCbg9r2qouT++7ghCSnjsC5jh08OtXA5qWycuqI1O9blp0U55Rrecngdf/HwfB/LH5qY++R7greAyL5MafE2g1thhObz+P4pvMAgLVjtsOliRNa9G+MTVPSn5dr0bcRIt5ESWZIf/MsBPbOtmg/3EMyeP3hxSdS6xxcdQKNu9WDY52yUoPX8xfKh3GbB2HZoA3oPL6NYnZQSdoP98DxTedwfOM5AMDaUVtRtUkltPRpgo2Td6Ur79G/CSKCorB21FYAwJunIbB3sYXnyBaSASv+t1/C/7Z4dnHv2V0yfO/ExETEhGvmTdUA0LZ/Q5zcdR0ndl4DAKz7Yz+cG5SDR4+62DzvULryEW+jsW6a+LuBW6eaGW5XS0uEsSt7YNvio6hQvTQK6RdQzA4Q5QCzKufaj2iB4xvP4thf4tlA14zYjKpuldByoBs2Ttyh4topTvvhHtL7PXKLeL8HuGHjpJ3pyrfwaYLIoCisGbkFABD0NBj2LrboMLKlZPB6u2HNcef0Q+yafxAAsGv+QTg1KI92w5pjTlfxk6vi3klPftdpnDOCA8Lw8IKf1PLvXxPUNrtU1cef3GG51HaX/L4Ju58vhV2lEnj8iyeSESkSc0qMfQH5ZDejWwxogsigd1gzYjOA5KyqWhodRrWSDF5vN8wDd049xK55BwEAu+YdhFN9R7Qb5oE5XcXH0YnNZ0ttd5H3auyN+At2LrZ4dCmlL/v963fEhMfm8l4rX9sBjXByx1Wc+PsKAGDdlH/g7FoeHr3qY/Psf9OVj3gTjXWTxdeg3DrXlrlN//uBkidT957URjEVpzxJK/Mi6mvixInw9vZWdTV+SUdbC+VKWuDGY+kZJm4+CkRFu6K/XHfbzG44sqI//hznCZfyxdO93qdNTcTEf8ahi+r7aOCs0tHWQllbC9xMM1PHzQeBqGifcTt6uDrC2sIQG/dek/m6nq42vn2XvpPq67cEOJW1znmlBSijz+ONx4FwKvPrz+P26d1wdFl/rBrrCZdy6T+PBfLp4d9FfXFoST8sGd4G9jZmuVp3RRMlKe+H8g61yCldbdg5Wks9DhwA7l72h0OVEnJvV1dPG9++Sh9fv335DkeXknJvU8h0dLRgb2+J27dfSS2/c/sVHCsUy9I2ypSxgGMFazx8ECS1vEABPezYOQi79gzG7DkdUKaMRa7VW2h+2Y6O2WhHx1+04+7BmD1b/dpRmTnFrMpb1CarnIrj7gXpwRJ3LzyBQ1XbXHuffAX0oK2jjfcxmnlDpo6uNuwqWOPuZX+p5Xcv+8PBWf7MT8utQ3VcOHwfXz9/z7VtComOrjbsHIri7lXpWfzuXg1A+co2WdqGSCRCgUL58D4u/dPVfsqXXxc6Otq/LCM0zClSBCHmlI6uNuwqlcDdc9IX6u+e80X56qVlrlO+mi3unvOVWnbnrC/sKpeAto54lnDfGwGwq1wC9s4lAQCWJUxRrUlF3Dwp+0kWWloiNGhXDfkK6uHJrRc53Cvl09HVhl3lErh7Vrpdft2OpdO34xlf2FVJace03LvXxYX9N9PNWmdta4G//RZh8/25GP9Xf1iWMM3B3giHJKfS9vGvBsChctbyPiWnNOs7EftUpAiCzSnnUulmQ79z+hEcatrJXKd8Tbt05W+fegh7l1IZHl8rN3REcXurdI9//315L9w8dh/30hzf1c3Pdrx7SjqH75x+CIda9jLXcahphzun05Q/+RD2LrYZtmNGrMtYYmfgamz1X4GJ24fCspR59nZAwHR0tWFXsTjuXpT+7Ny9+BQOVUtlsFbWdBnRFHHRH3By1/XMCwsQc4oUQYhZlRM6ujqwd7HFnZPSkybcOfUQjrXKqqhWiqejqy3e77S5dOoBHDPIpfI17XHnlHQ73T75APZVU3LJoaY97qTpc94+8SDDrNPR1UajrnVxYtO5dK9VauCAPaHrsenJUoxY1x+GZvpZ3j9VEkofHwAKJt909T5WmBMxsU9FiiDEnGJfQD7yZLQ4q9LnkFRW1ZKVZ/fhUDvj3C9kUBAA8D76g9TySq6O2BO2AZueLseI9T5qk1Wpia+Z2uDu+TS5lcvXTNURc0qYlDrzurIFBwfjzZs3qq7GLxkWKQAdbS1Ex0l/wYyK/4SayQfLtN7FfsScjafw9FU4dHW10axOefw5zhMD5+7B/WfiGW6c7IqiVYMK6DZ5m8L3QQgM9X+2o/RFk+i4jzA2LClznWKWhhjYuR4G/rEbiT9kHzVuPHiNTh4uuP/kLYLDY1G1QgnUq1oaWlq5+xgcofj5eYyKl/48Rsd/gskvPo+zN53C09fh0NPRRrPa5bFqrCcGztuDe/7iz2NgaAxmbDiBF28jUahAPng1qYINkzqh69RteKMBd60RyUsdckrfqCC0dbQR8076i3ts1AcYmRaRe7t3LvujXe96eHzrJUKDolG5VhnUbOQAbW3NvK/OwKAgtLW10s3sHRPzEcZGhX657q49gyXrb91yWTLjOAAEBUVhwbzDePkqEoUK6qFd+2pYvrI7+vf9C8EyHvmk7n7ZjsaZtOPuTNpx/mG8fBmJQoX00K5dNSxf0R39+2lmOxJlh1pklXFhcVZFSs+OGhv5Hka5eGKp96TWiAqLw71LTzMvrIb0jQolZ770bEk5zfzU7J2Ko1RZKyyb8E/mhdWUvmHyd6co6e9OMVEfYGxaOEvbaN+rDvIX0MPF448yLOM90h1REfG4d039BqQS5SYh5pS+iexciol4D2NzA5nrGJkbICZC+vgbExkPHV0dGJgURnR4HC7svwUDkyJYfHQcRCLxBZ9Df53DnuXST8MqWd4aS0+Mh15+XXz++BUzu69G0LPQ3N1JJciwHSPjf9GO+jLLp27H1OydS6GUQzEsHbJFavnTOy+xcOBfCH4RDiMzfXQe3QJLTkyAT62peK/mT2vKKKdio97DyFT2oNW02vWum2lOEZGYIHPKtAi0dbQRGyF9TIyNiIORRQbHVwsDmeV1dHVgYFoE0WGxAMQDqna8/BO6+XTwI/EHVg7bjLtnUiZXatChJspULoUhdabk7k6pgL6pvvh4mqZdYsLjYGRhKHMdIwvDdDMkxshox8w8vRmABb1X4+3zUBiZG6DLxHZYdnEG+lUanW7whTrSN07um0am6ZtGvoeRmfx9U4eqpeDeqRYGu83PaRWJNIoQsyonDJJzLu2sqTHhsTCyNFRJnZTB4Gcupc2Z8LgM99vY0gC3ZZRPnUtGlobpsy4i423WblMNhQ0L4eQW6afk3jx+Hxf2XkdE4DtYljJDr+leWHB6KgZXG4/v3xJkbksoVN3HT81nVkc8vvYcgU/U78lqRPISYk6xLyAfeTLa2NIQt2WUT5dV2cg/ABiwuCceXXqC174pn62bx+/hwt5riAiMhGUpc/Sa0QkLzkzD4KrjBJ9VqaVcM5XRn8ogt4hUSaMHr2/ZsiXTMl+/fsXXr1+llv1ITICWtnKbJu3QaRGApAzuwggKi0FQWMpAqscBobAwLoKuzari/rNgFMyvi+kDmmHOxlOI+/BFYXUWpDSNJhKJ0jcuAC2RCNOHemDDP1fxJjTjQWnLNp/DeB837FzaG0lJQHB4LI6c94WHq2Nu11xY0rRZBs0IIP3n8dGLUFiYiD+PPwevP34RiscvUi6UPngejG3Tu6Fj4ypY/Hf6O68FiXdFkQJkJaeADLLqRwK0tJSXVUlpj68AknLwh7Fu1iEMnd0e64+PBpKSEBoUjVP7b6NJu6o5rKnApWsyUaatOHzodhQooIfyDkXRr19DBAfH4NxZ8Z2yT56E4Emqk1SPH7/F2vXeaNOuKlatPJWrVReUdF+cRBl+b/pp+LBU7di3IYJDMmnHdd5o07YqVv2pJu3InCIFkbtPlZQILVH2ZovIqbTHAfF32Nz54/Ac1BiubapibPtl+P5VfU5SySM7fdPscu9QHa+ehcL/obBONiuEjL5pVtrRtbkTug1qhOlDtiMuWvYASU/venBt7oSxvTao1UlTZhUpQo76VIrOqnTHgfT9qszKixeLlzvVsUenkc2xaszfeHr7FYrammPAXC/EhMdhx6IjkvXeBoRhUIMZKGxQEHVbOmPUam+MbblQLQewA8jgeJqddhQlL06/TtPudfHK7y38776SWn77dMpAy9cIht+tF9h0dy6adK6N/avVpH+QiXR9/CzmVANJTm3LMKfUFnOKFEDIOSXrOPCrv4N0xwgZx9fP779gUPWJyF84P6o0dITP/K4IexWBhxefwKyYMQYu6oGJLebh+1fNeQpT+nbErztQ6TqusrfzK7dO3Jf8+zXe4Mn159j8bDncetTHvmVHs7wdoZM3q2QpUCgfxqzogeVjdyJenW9EY1aRAgg5q3Ii/XnCTPoRGkL2sTPj/ZbVTum2I/M7g+xtNvP+DTeP30dUmvEXF/Zck/z7te8b+N9+ie2vVqGGhzMuH7iZYf0ERUV9/J8GL+iCUo7FMKr5gpzthyJp/p8YqYCQc4p9AflkN6Nl9l3Tbicb/xdD/uyDUk42GFFP+qbqC3uuSv4tzqoX2P56jXplVSppr49mmlt5QR7ffaHS6MHrWTF37lxMnz5dallRJzcUq+SulPePff8ZCYk/YGIgPVuosX5BRMdn/dGrjwNC0bROeQCAtbkhipoZYNGINpLXtZIP3lc2DUfHcZsQnOYOMHUXGy9uR2ND6XY00i+YblZ7AChYQA/lS1vCrqQ5Rno3AiBuIy0tES7uGIERs/fiju8bxL7/jPGL/oWerjb0CxfAu5gPGNSlHkI0rP1+yujzaFSkYLpZ7X/l8YtQNK1VPsPXk5IAv1fhKJ7BXYdEJE1WVpU2rg07k7oKf+/4mE9ITEiEcZpZbQxMCiP2nfx378bFfMTMQVuhq6cDfaOCiAqPh/foZgh/q5mzXMfFfUJi4g8YpZkd3MioYLpZxNMKCxNnzqtXkTAyKoSePetKBl2nlZQEPHsaimLWRrlTcYHJsB0NFdCOzzS3HYlym8ycKlQVdkWqK+X946M/iLPKXHqWdQPTIohNM7OAPNoPaASvoe6Y6LUSrzV4Vpv4mI/idjSVkflROW/HfPl10aBFJWxbdjLH2xKy+Fjxd6e0s9UbGhdKN8ttWvWbVsTwGW0xZ+Qu3Lsue0b19r3qolO/BpjQdxNe+YfnWr2JNJ3MrMpfBWUKuOT6e8VHiXMp7Uw2hmZF0s3U9lNMRByMLKRzzNBUHwnfExCfPEC4x8Q2OLvnOo5vuwwAeP0kGPkL6mHo0u7Yufio5OJDwvdEhL6KBAA8vx8I+yol0canEVaM3J6r+6loGbaj6a/aMV5m+dTt+FO+Anpo0K4ats75N9O6fP30Da/9glG0tEU290J4fuZUurw3LozYrOTUzHaYM2In7vPJH0S5SlZO2WpXQBkdp1x/r/h378XH1zTn5g3M9NPNHPiTeAbBtLmWnFOpjh1JSUkIeSn+jvryYSCKlysKrzGt8PDiE5SpUgpGFgb489osSXltHW1UrFsOrQa6oYV+T/zI4Am5QhT/Ll58PE3TjobmBr9ox/QzChqZGaRrx+z68ukrXj8OQtEyVnJvQ0jioz9m0McvjNh38vVNrUqYwtLGBH9s6i9ZJkp+wvLh10vRr8FshAa+k7/SRHmArKwqhfIoDWFN+BaXnHPGaY63huYGiA3XzOv7ABD3M5fS7bd+hvsdHRYHY0uDdOVT51JMWGy67wyGZvrpZrgFAHMbU1RpVBHTPRdnWt/osFhEBEbCuoxlpmVVTdV9fAAYOK8zajarhNEeC/EuRDOvoxLllMw+lcgRpbUr5Pp7sS8gH3kyOjosFsaWRunKi9tN3DeICUvftobmBjKzavAKb9RsWRWjGkzDu+DoX9ZXklV2wm/b1CTXTM1kXTOVnVtEqqT2g9c/fvyIHTt24OrVqwgLC4NIJIKFhQXq1KmDzp07o1ChQr9cf8KECRg5cqTUskYD1yqyylISEn/g6etwVK9ggwt3AiTLq1cogYt3s34RoGwJc0TFir/oBoZGo/ME6bvPBnjWQcH8eliy/RzCc2HggdAkJP7As5fhqO5UAhdvpbRjNacSuHQ7IF35j5+/otvozVLL2rlVhoujDSYt/S/d4PRv3xPxLuYDtLW14FrDDmeu+StkP1RN8nl0tMH5u6k+j44lcPFe1j+P9jYpn8cMyxQ3Q8BbNToZqD7nzUlgcppTgOys6uA8PYPSuSvheyKe+wajSm07XD3lK1nuXMcO187IHvibHd+/JSAqPB7aOlqo414BF489zPE2hSgh4Qf8/cPgUrUUrlxOyRAXl1K4ciXrmSISiaCr9+s7xEuXscCrVxFy11XIJO3oIqMdr2ajHSGCrm4m7VhazdqROUU5oIg+VQf7sYqsspSE74l4/vANqtQvh6vHHkiWO9cvh2sncpYr7Qc2RufhTTG58594/iAop1UVtITviXj+OBhV6trh6qmUGWed69rj2mnfX6yZNfWaV4Kung7O/ns3x9sSsoTviXjuF4IqtcvgaqrvSlVql8H1s08yXM+1uRNGzGyHeWN24+bFZzLLePaui84+DTGp/2Y89w3O9borHLOK5KSoPpVnieEKqW/C90Q8fxCIKq7lcfXIPcnyKq4OuH70vsx1ntx6iRpNpQcoOjd0wPP7gUhMSAQgHmyddlDfj8QkiEQi/GLiO0Akgq6ertz7oyoJ3xPx/H4gqjR0SN+Ox+7LXOfJrReo4V5Japnzb454fi+lHX+q36YqdPV0cXbP9Uzroqung+L2lnisAecDM8op59plcC2Dm3sB8YzrI2a1x/wxu3Arg5xSe8wpkpOicqq9Wf8MSudMwvdEPL/7Cs6NKuDqf7cly50bVcS1w3dkrvPk+nPU8HCWWubSuCL877xKd3xNTSQSQTef+DLk/XO+6O88Tur1Uev7441/KPYsOqRWA9eBVO3YuCKu/HtLsty5UUVcO3Rb5jp+15+jZpp2dG7iBP87L3/ZjpnR1dNB8XLWeHT5qdzbEJKE74l4/ugNqtQri6vHU/r0zvXK4drJR3Jt882LcAxoNFdqWY8xHihYOB/WTtuPSHUZCKhefyYkIIrKqrYGvRRUY/klfE+A/52XcG7ihCsHU2ZJdW7shKv/3frFmuot4XuieL8bO+HKwVS51NhJKu9Te3LdHzVbSN/Q7dLECf63U3LJ77o/XJo4Yf/ylNl8Xdyc4Cejb+TeyxWxEXG4cSTzc39FjAvDrLgJosJis7J7KqXqPv6g+Z1R26MKxrZahPAggY+tYE6RnBSVU+2M+yikvuwLyEeejBZnVVWpZS5ulaSz6po/XBo7Yf+ylKdWuDSpBL+r0uevfl/ZB3XaVMfohtMQ9jrzMQCSrApVk75CMvE10yBUaVA+zTXT8rh24sEv1swDmFOCpKXqCuSEn58f7O3tMXbsWMTExMDGxgbFihVDTEwMxowZg7Jly8LP79cD6/Llywd9fX2pHy1t5Y7p33n8Dlo3qIiW9R1RsqgxhndpAAuTIth/VnzQGNShLqb1byop38m9Cuo7l0ZxC0OUsjbBoA518Vt1e/xz+j4A8UDrl8FRUj/vP33Fpy/f8DI4CgmJP5S6f8qy68gdtPytIjxcK6CEtTGG9nCFhWkRHDwlbscBnetiymBxOyYlAS/fREn9xMR9wtfvCXj5Jgpfvoofve5QxhINqpdBUXMDVCpnjaUT2kEkEuFvDe7c7jiR/Hms54iSVsYY0bkBLE2KYP+55M+jZ1380S/V59GtChokfx5ti5pgkGddNKpmjz1n7kvK9G1dEzUrlEBRMwPY2Zhhsrcb7G3MsP+cZg5SJfopN3IKyCCrtJSXVQc2XYJ7h2pwa18VxUubo/+EFjCzMsTRneKL/L1GNcWoBR2l1rEtbwXb8lbIXzAfDIwLwba8FWxKm0teL+tUHLXdHGFZ3BiOVUti1l99INISYe//Lihtv5Rt7z830bx5JTRt5gQbGxMMHNQI5hb6OHRIfLKrT98GGDehhaR86zbOqFWrDKytjWBtbQT3phXRoWN1nE51E0H3HnVRtVopWFkZonRpc4we2xxlypjj0H/30r2/ppC0Y9NftOP4VO3YOoN2PJ2mHaumascxye14SHPbkegnhfWplPzI4APrzsC9S224daqF4nYW6D+9PcysjXF0q3jmml4TW2HUih5S69g6FoOtYzHkL5QPBiZFYOtYDDb2KbP9eA5qjJ7jWmDpyO0IfxMNIzN9GJnpI3/BfErdN2U6sPEi3DtUh5tnNXHmT2opzvwd4kf79hrdDKMWdpJax7Z8UdiWL4r8BfWSM78obMqYp9u2e4dquHbKF+9js/5EJ3W1f8sVNG3vAre2Lihua4b+45rD3MoAR3aLT8j2Hu6G0XM8JeVdmzth9BxP/G/hMTx9+AZGpoVhZFoYBQunfNY8veuhx9AmWDJlP8JDYiRl8hfUU/r+ESmTQvtUCsyq/atPoWn3enDrWgfF7S3Rf3ZHmFsb48gmcX+n95S2GL3aW1L+yKYLsChmgv6zOqK4vSXcutaBe7e62PtnytMqbpx4AA/vBmjQrhosbExRxbU8ekxsjevHH0guePea3BaONe1gUdwEJctbo+ekNnCqWxZn92Y+QFuIpNvRCv1ne8G8mDGObDoPAOg9tR1Gr0nVjhsvwKL4z3a0StWOJ9Jt2717XVw9eg/vZTzBqe+MDqhY2x4WNqYo61IKk7YMRMEiBXB619V0ZdXRgc2X4e5ZFW7tUnLKzMoAR5NzqtcIN4yam5JTDZo7YfTcDvjfgqN4+kB2TunoasO2nBVsy1lBR1cbJhb6sC1nBSsbY6XvH5EyqW1OrTiGpr0bwq1nAxQvWxQ+C7rBvLgJjvzvDACg90wvjPlrgKT84Q1nYGFjgv7zu6J42aJw69kA7r1csS/V4ACvMa3g3KgCLEuZobi9FdoNbYbGXevi7M4rAIDPH74g0O+t1M+XT1/xPuo9Av3eKmxfFWnfsiNo6v0b3Hu5oni5ohiwqAfMbUxxeP1pAID3rE4Ys2mQpPyR9adgUcIUPgu7o3i5onDv5YqmvRti75LDkjI6utqwrVQCtpVKQFdPG6ZFjWFbqYTU0z/6ze+GivXKw7KkGcpVL4Mpu0egoH4BnNp2UXk7r2AH1p+De+dacPOqieJlLNB/WluYWRvhaPLstL3Gt8SoZd2k1rF1sIatg7X4fLRJYdg6WMPGTtzH//41AYHPQqV+PsZ/xqcPXxH4LBQJ3+UfMEQkdOqaVTmxb+lhNOvTCO69G8KmnDUGLOkpPj6v1eynAe5bdgTN+vwG996u4v1enJxL604BALxnd8bYzYMl5Q+vOwXzEqbwWdQdNuWs4d7bFU29f8M/Sw5JyhxYcQwuTZzgNaYVipctmpz3FaUGswPiG9bce7ni1NYL+JFmLEr+QvnQf0E3lK9pB4sSZnBq4ICZ/45F3Lv3uHLgJtSBqvr4gxd2wW8da2J+/w34/OELjMz1YWSuD7386neDOlFG1DWn2BeQT2YZ7T2nC8Zu/l1S/vDa5Kxa3DM5qxqKs2rxf5IyB1YcgYtbJXiNbS3OqrGt4dy4IvYvT+mvDlnVF4261sPcrsvx6f0XGFkYwsjCEHr5xddX8hfKj/4Lu6N8TfuUrPpvvFplVWoH1p6Be9c6cOtcC8XtLNF/hifMihnh6JZLAIBek1pj1MqeUutIXzMtnO6aqY6utqSMjp42TCwNYetYDFYlzZS6b6R51Hrm9cGDB6N+/frYsmUL9PSkL9h++/YNvXr1wuDBg3Hu3DkV1TBrTt/wh0HhAvBuXROmhoXw8m0URiw+gLDkGdJNDAvBwiTlUa462toY2rkBzIwK4+u3BLwKfocRiw7g6sNXqtoFQThz7RkMiuSHd/uaMDEqhJdvojB63n6EvUvdjvqZbEWanq4O+nvVRVFzA3z+8h3X7r/EjFXH8OHTV0XsgiCcvin+PPZpXROmBoXwIjgKI5akfB5N03wedbW1MdRL+vM4fIn057FIwXyY0KsJTAwK4sPnb/APjIDP3D3wexWm9P2Tl4h3YJEcNCWnLh59iCKGBdFlcCMYm+vjtX8YpvbbhIiQWACAsVkRmFsZSq2z6t/hkn/bVyyGhq2qIPxtNHr9Nh8AoJdPBz2Hu8OyuDE+f/qGWxeeYuGYXfj4/ouS9kr5zp97An39Aujeow6MjQvj9etITBi/BxHh4sczmZgUhnmqx+GKRCL06ecKS0sDJCb+QGhILDb87zwOpxpQXbhwPowc2QxGxoXw8eNXBASEY8Swv/HsaajS909Zzp+X0Y4TUrWjcZp21BKhT99U7Rgaiw0bZLTjqGYwMkrVjsPVqx2ZUyQvjcmq/+6iiFEhdBnZTJxVz0IxtdtqRLwVP/bP2NwA5tbSjxZcdXqC5N/2lUqgYbtqCH8ThV7VpwIAWvSqD918upi8oZ/UetsXHcHfi6Uv0GiKi0cfoIhRQXT5vXFK5vf9K1Xm68O8qKHUOqsOjZD8275icTRs7SzOfNeUWe2sS5qiQjVbTOy5Xhm7oXIXjz+CvmFBdB3YEEZmRRD4PBxTBmxFRGgsgJ/fnVIeNdy8QzXo6Grj9ymt8PuUVpLlpw7exeJJ+wAALTvVgJ6eDqYs6yL1XttXncH21WcVv1O5gFlF8lDXnLp44Db0jQqj65gWMLIwQOCTEEzxWpGSSxaGMC+WMqg3POgdpnitgM/sjmjRxxXRYXFYM34XrhxKmbFux6IjSEoCek5sAxMrQ8RFvceN4w+xedYBSRkjc32MXesNIwsDfIr/jFe+bzG5wzLcO5/xkx+E7OKBW9A3LoSuY1umasfliHjzsx0NYF7MRFI+POgdpnRcDp85XmjRtyGiw2KxZvxOqXYEAOvSFqhQyx4T2i6R+b6m1kYYv6E/9E0KI+7dezy9/RIj3OZI3lfdXTz+SNzHH/gbjM2K4PXzcEz12ZKS96bSffzmHauLc2pqa/w+tbVk+akDd7AkOaeMzYpg1f4hktc8vevD07s+Ht58iXG9Nihlv3KKOUXyUNecurD3OooYF0bXiW1hbGmIQN+3mNxmISKSZ/M0tjSEWfFUx9fXkZjcZiF8FnRDywFNEB0agzUjt+Jyqpld8xfKh9+X94aptTG+ff6GN89CsKD3GlxQ0xuosuLCP9egb1IYXSe1h7GVIQJ932Byy3kp7WhlBPPippLyYa8jManlfAxY3AMtB7ohOiQGq0dsxuVUgyFMihpj7e35kt87jGqJDqNa4sEFP4xpPAMAYGZtjInbh0DfVB9xkfF4cuM5htWdInlfTXDx0D1xH3+4O4zNDcR9/B5rEREsnvXQ2Fw/fR//ZMrM/vaVbNCwbVVxH7+Wcp5gqgzMKpKHumZVTlzYcxX6JoXRbYonjK2M8PrxG0zymKNRx0lZLuy5Bn3jIug2uX3KfrdIySUTK0OYp8r3sNeRmNxiHgYs7olWg9wRFRKD1cM34fL+lFzyu+aP2V2Wo9cML/Sc4YXQF+GY3Xk5nt4MkHpv58YVYVHCDMeTbzRO7UfiD5SqaIPG3eujsGEhRIfG4MF5X8zuvByfP6jHNUFV9fFb9mkIAFh4eIxUfRYP3oRTO4V3czVziuShrjnFvoB8MstoE0sjmNukbrcITPaYiwFLUmXVsI24vP+GpIzfNX/M7rwMvWZ2Qs8ZnRD6IgyzOy2VyqpWA90BAIvPS/cNFvZehZNbzouzqoINGndvkJJV53wxu9NStcmq1C7+eyf5mqkHjC308fppKKZ2WZXmmqn0hBOrzk6S/Nu+cgk0bF8d4UFR6FVtsngdSwOpMp6Dm8BzcBM8vOKPce2WKmGvco45JUyipKQMHyoreAULFsTt27fh4OAg8/XHjx+jevXq+PQpezO71egh+8IFZY/2V7X9aAlOQgGRqqugEW5uHpl5oQxUHqK8sL2/ckTmhUgtKCqnAKCZ/bjMC1GmvlkbqroKmoExlSvOnJ2QeaEMKDOnAGaVJlFUVjWzGpx5IcpcoYKqroFGSMrH2clzw3Hf2Tlan30qkoci+1RNjftlXogyp76nlgVFZJX+qSWUfcf85si9LvtUJA9F5pR7/q45rR4BSErkjNq5QduCOZUbjr1dkaP12acieSgyq5podchp9QgARFqqroFG0DbI3iSGJNvx6P/JvS77VCQPReaUm26nzAtRptinyh06ZqaZF6JMHQtfI/e6zClhUutvwkZGRnj+/HmGrwcEBMDIyCjD14mIsixJiT+kMZhTRKQ0yswpZpVGYVYRkdIwp0gOzCkiUhr2qUgOzCkiUirmFMmBWUVESsM+FcmBOUVESsOcEiQdVVcgJ/r164eePXti8uTJaNKkCSwsLCASiRAWFoZTp05hzpw5GD58uKqrSUREeRRzioiIhI5ZRUREQsacIiIiIWNOERGR0DGriIhIyJhTRER5m1oPXv/jjz9QoEABLFmyBGPHjoVIJAIAJCUlwdLSEuPHj8fYsWNVXEsi0gQi3hVFcmBOEZGyMKdIXswqIlIWZhXJgzlFRMrCnCJ5MKeISJmYVSQPZhURKQtziuTBnCIiZWFOCZNaD14HgHHjxmHcuHF49eoVwsLCAACWlpYoVaqUimtGRETEnCIiIuFjVhERkZAxp4iISMiYU0REJHTMKiIiEjLmFBFR3qX2g9d/KlWqFIOLiIgEizlFRERCx6wiIiIhY04REZGQMaeIiEjomFVERCRkzCkiorxHS9UVyKmVK1eiZ8+e2LNnDwBg27ZtcHBwQLly5TBx4kQkJCSouIZEpBGSlPhDGoU5RURKocycYlZpHGYVESkFc4rkxJwiIqVgn4rkxJwiIqVhTpGcmFVEpBTsU5GcmFNEpBTMKUFS65nXZ86ciYULF8LNzQ3Dhg3Dq1evsHDhQowYMQJaWlpYunQpdHV1MX36dFVXlYiI8iDmFBERCR2zioiIhIw5RUREQsacIiIioWNWERGRkDGniIjyNrUevL5582Zs3rwZ7dq1w4MHD+Di4oItW7aga9euAIBy5cph7NixDDEiyjER74oiOTCniEhZmFMkL2YVESkLs4rkwZwiImVhTpE8mFNEpEzMKpIHs4qIlIU5RfJgThGRsjCnhElL1RXIidDQUFStWhUAUKlSJWhpaaFy5cqS152dnRESEqKi2hERUV7HnCIiIqFjVhERkZAxp4iISMiYU0REJHTMKiIiEjLmFBFR3qbWg9ctLS3h5+cHAHj+/DkSExMlvwOAr68vzM3NVVU9ItIkSUr8IY3BnCIipVFmTjGrNAqzioiUhjlFcmBOEZHSsE9FcmBOEZFSMadIDswqIlIa9qlIDswpIlIa5pQg6ai6AjnRpUsX9OjRA61bt8aZM2cwbtw4jB49GlFRURCJRJg9ezY8PT1VXU0iIsqjmFNERCR0zCoiIhIy5hQREQkZc4qIiISOWUVERELGnCIiytvUevD69OnTUaBAAVy/fh0+Pj4YN24cnJycMHbsWHz69AktW7bEzJkzVV1NItIEvCuK5MCcIiKlYU6RnJhVRKQ0zCqSA3OKiJSGOUVyYE4RkVIxq0gOzCoiUhrmFMmBOUVESsOcEiS1Hryura2NSZMmSS3r1KkTOnXqpKIaERERpWBOERGR0DGriIhIyJhTREQkZMwpIiISOmYVEREJGXOKiChvU+vB60REyiLiHVhERCRgzCkiIhI6ZhUREQkZc4qIiISOWUVERELGnCIiIiFjTgmTlqorQERERERERERERERERERERERERERERESajzOvExFlBe/AIiIiIWNOERGR0DGriIhIyJhTREQkdMwqIiISMuYUEREJGXNKkDjzOhEREREREREREREREREREREREREREREpHGdeJyLKAlESb8EiIiLhYk4REZHQMauIiEjImFNERCR0zCoiIhIy5hQREQkZc0qYOPM6ERERERERERERERERERERERERERERESkcB68TERERERERERERERERERERERERERERkcLpqLoCRERqgU8PISIiIWNOERGR0DGriIhIyJhTREQkdMwqIiISMuYUEREJGXNKkDjzOhEREREREREREREREREREREREREREREpHGdeJyLKAhHvwCIiIgFjThERkdAxq4iISMiYU0REJHTMKiIiEjLmFBERCRlzSpg48zoRERERERERERERERERERERERERERERKRxnXiciygregUVERELGnCIiIqFjVhERkZAxp4iISOiYVUREJGTMKSIiEjLmlCBx5nUiIiIiIiIiIiIiIiIiIiIiIiIiIiIiUjjOvE5ElAUi3oFFREQCxpwiIiKhY1YREZGQMaeIiEjomFVERCRkzCkiIhIy5pQwceZ1IiIiIiIiIiIiIiIiIiIiIiIiIiIiIlI4zrxORJQVvAOLiIiEjDlFRERCx6wiIiIhY04REZHQMauIiEjImFNERCRkzClB4szrRERERERERERERERERERERERERERERKRwnHmdiCgLRLwDi4iIBIw5RUREQsesIiIiIWNOERGR0DGriIhIyJhTREQkZMwpYeLM60RERERERERERERERERERERERERERESkcBy8TkREREREREREREREREREREREREREREQKp6PqChARqQU+PoSIiISMOUVERELHrCIiIiFjThERkdAxq4iISMiYU0REJGTMKUHi4HUZDP3iVV0FjfDdKL+qq6A5fqi6AkQkNEmRUaqugkbQ+/ZN1VXQCEmFCqq6CkQkMAnhEaqugkbQLlJE1VXQCInv36u6CkQkQIlxPP9HwqFTpLCqq0BEApOUmKjqKmiEpB+8Op0rktiOREQKk8SBALkiIUHVNSAiIsoQ+/hEsnHwOhFRFoh4bpaIiASMOUVERELHrCIiIiFjThERkdAxq4iISMiYU0REJGTMKWHSUnUFiIiIiIiIiIiIiIiIiIiIiIiIiIiIiEjzcfA6EVFWJCUp70cOq1evRqlSpZA/f364uLjg0qVLGZY9f/48RCJRup+nT59Kldu3bx8cHByQL18+ODg44MCBA3LVjYiIlECZOSVHVjGniIhIyDkFMKuIiPI89qmYU0REQifgnAKYVUREeR77VMwpIiIhE3hOAXkzqzh4nYhIze3evRvDhw/HpEmTcO/ePdSrVw/NmjVDUFDQL9d79uwZQkNDJT92dnaS165duwYvLy90794dDx48QPfu3dGxY0fcuHFD0btDREQahjlFRERCx6wiIiIhY04REZHQMauIiEjImFNERCR0eTWrRElJcg7112DuVf9QdRU0wnej/Kqugub4oeoKaIazZ8bLvW6tLotzsSa/dm3HqGyVr1GjBpydnbFmzRrJsvLly6NNmzaYO3duuvLnz59Hw4YNERMTA0NDQ5nb9PLyQnx8PI4dOyZZ1rRpUxgZGWHnzp3Zqh8pRlOjvqqugkYQGRRRdRU0QlKhgqqugkY47jtb7nWVmVNA9rKKOZU3NdHqoOoqaATtIsyp3JD4/r2qq6ARTv34J0frs0/FrBKaJtpeqq4CkYSOtZWqq6ARjgUtk3td9qmYU0LjpttJ1VXQCEk/eAk0N+hYmqu6ChrhWPDKHK3PPhWzSmh4/o+ERLtwYVVXQSMcj98k97rsUzGnhIZ9qtyRlJio6ipoBG1jI1VXQSMcf7de7nWFnFNA3s0qzrxORKTGvn37hjt37sDNzU1quZubG65evfrLdatUqQIrKys0atQI586dk3rt2rVr6bbp7u6e6TaJiIhSY04REZHQMauIiEjImFNERCR0zCoiIhIy5hQREQldXs4qHVVXgIhILShxgpavX7/i69evUsvy5cuHfPnypSv77t07JCYmwsLCQmq5hYUFwsLCZG7fysoK69evh4uLC75+/Ypt27ahUaNGOH/+POrXrw8ACAsLy9Y2iYhIxZQ8kVhWs4o5RUREEuxTMauIiISMfSrmFBGR0LFPxawiIhIy9qmYU0REQibQnALydlZx8DoRkcDMnTsX06dPl1o2bdo0/PHHHxmuIxKJpH5PSkpKt+ynsmXLomzZspLfa9WqhTdv3mDRokWSAMvuNomIKG/JblYxp4iISJnYpyIiIqFjn4qIiISMfSoiIhI69qmIiEjI2KfKGg5eJyLKAtEP5b3XhAkTMHLkSKllsu68AgBTU1Noa2unuysqIiIi3d1Tv1KzZk1s375d8rulpWWOt0lERMqjzJwCsp5VzCkiIvqJfSpmFRGRkLFPxZwiIhI69qmYVUREQsY+FXOKiEjIhJpTQN7OKi1VV4CIiKTly5cP+vr6Uj8ZBZienh5cXFxw6tQpqeWnTp1C7dq1s/ye9+7dg5WVleT3WrVqpdvmyZMns7VNIiLSXFnNKuYUERGpAvtUREQkdOxTERGRkLFPRUREQsc+FRERCRn7VFnDmdeJiLIiSdUVyNjIkSPRvXt3VK1aFbVq1cL69esRFBSEAQMGABDfzRUcHIytW7cCAJYtW4aSJUvC0dER3759w/bt27Fv3z7s27dPss1hw4ahfv36mD9/Plq3bo1///0Xp0+fxuXLl1Wyj0RElAnmFHOKiEjomFXMKiIiIWNOMaeIiISOWcWsIiISMuYUc4qISMgEnFNA3s0qDl4nIlJzXl5eiIqKwowZMxAaGooKFSrg6NGjKFGiBAAgNDQUQUFBkvLfvn3D6NGjERwcjAIFCsDR0RFHjhxB8+bNJWVq166NXbt2YfLkyZgyZQpKly6N3bt3o0aNGkrfPyIiUm/MKSIiEjpmFRERCRlzioiIhI5ZRUREQsacIiIiocurWSVKSkoS+H0Fyude9Q9VV0EjfDfKr+oqaI4fqq6AZjh7Zrzc69buuDgXa/JrV/eMUtp7kfpqatRX1VXQCCKDIqqugkZIKlRQ1VXQCMd9Z8u9rjJzCmBWUeaaaHVQdRU0gnYR5lRuSHz/XtVV0AinfvyTo/XZpyKhaaLtpeoqEEnoWFtlXogydSxomdzrsk9FQuOm20nVVdAIST94CTQ36Fiaq7oKGuFY8Mocrc8+FQkNz/+RkGgXLqzqKmiE4/Gb5F6XfSoSGvapckdSYqKqq6ARtI2NVF0FjXD83Xq512VOCRNnXiciygIRz3ETEZGAMaeIiEjomFVERCRkzCkiIhI6ZhUREQkZc4qIiISMOSVMWqquABERERERERERERERERERERERERERERFpPs68TkSUFUm8BYuIiASMOUVERELHrCIiIiFjThERkdAxq4iISMiYU0REJGTMKUHizOtEREREREREREREREREREREREREREREpHCceZ2IKAtEvAGLiIgEjDlFRERCx6wiIiIhY04REZHQMauIiEjImFNERCRkzClh4szrRERERERERERERERERERERERERERERKRwnHmdiCgreAcWEREJGXOKiIiEjllFRERCxpwiIiKhY1YREZGQMaeIiEjImFOCxJnXiYiIiIiIiIiIiIiIiIiIiIiIiIiIiEjhOPM6EVEWiHgHFhERCRhzioiIhI5ZRUREQsacIiIioWNWERGRkDGniIhIyJhTwsSZ14mIiIiIiIiIiIiIiIiIiIiIiIiIiIhI4TjzOhFRViTxFiwiIhIw5hQREQkds4qIiISMOUVERELHrCIiIiFjThERkZAxpwSJM68TERERERERERERERERERERERERERERkcJx5nUioiwQ8QYsIiISMOYUEREJHbOKiIiEjDlFRERCx6wiIiIhY04REZGQMaeEiTOvExEREREREREREREREREREREREREREZHCqfXM69++fYOenp7k9xcvXmDlypV4/vw5rKysMHDgQLi4uKiwhkRElJcxp4iISOiYVUREJGTMKSIiEjpmFRERCRlzioiIhIw5RUSUt6n1zOsFChRAREQEAOD+/ftwcnLChQsXYG1tjYcPH6J27dq4efOmimtJRBohSYk/pDGYU0SkNMrMKWaVRmFWEZHSMKdIDswpIlIa9qlITswqIlIa5hTJgTlFRErDPhXJgTlFRErDnBIktZ55PSkp5X96ypQpaN68Ofbs2QORSAQA8Pb2xrRp03Ds2DFVVZGIiPIw5hQREQkds4qIiISMOUVERELHrCIiIiFjThERkZAxp4iI8ja1Hrye2v3797Fr1y5JgAHAsGHD4O7ursJaEZGmEPGuKMoh5hQRKRJzinIDs4qIFIlZRTnFnCIiRWJOUW5gVhGRIjGrKKeYU0SkSMwpyinmFBEpEnNKmLRUXYGcEIlEktDS1taGvr6+1Ov6+vqIi4tTRdWIiIiYU0REJHjMKiIiEjLmFBERCR2zioiIhIw5RUREQsacIiLK29R65vWkpCTY29tDJBLhw4cPePToESpWrCh5/fnz57C0tFRhDYlIY/zgLViUfcwpIlIa5hTJiVlFRErDrCI5MKeISGmYUyQnZhURKQ2ziuTAnCIipWFOkRyYU0SkNMwpQVLrweubNm2S+r106dJSv1+/fh1t27ZVZpXk1sKzGjp0rw1j0yIIfBmBtYuP4/H9IJll6zQsjxaeVWFrbwldXR0EvozA9vXncef6C0mZBet6oZJLyXTr3rjsj6nDdyhqN1SuVcsq8OpQAyYmhfH69TusWnMajx6/lVm2gmMx9O/niuLFTZA/nw7Cw+Nx+Mh97N1/S1JmyaIuqFzJJt26128EYOLkvQrbD1Vr1aoKvDqmasfVp/HoUQbtWCG5HW1StePh+9i775ZUuUKF8qFPn/qoV7csihTJj9DQWKxdexY3br5Uxi4RqYQ651SLPq7wHOIOYwtDBD4NwdqJu+B77XmG5SvWtkf/2V4oUa4oosJi8c+K4zi66YLk9QWHxsCpbtl06908+RBTvVYAALxGNEOdFs4oZmeFb1++we/mC2z8Yy/eBoTn/g6qiEe3OvD0aQhjc30E+odh3YyD8L0l+zhoZKaPfpNbwa5CcRQtZYr/Nl/CuhkHpco09qyGUYu6pFu3Vdkx+P41QRG7IAgtOtWAZ++6MDYrgsCACKyddwS+dwNllq3T2AEeXjVgW84KunraCAqIwPbVZ3DnSoCkTFPPqmjcqgpKlLEAAAT4BWPT8lPwzyD7iDSJOmdVTrQc6IYOo1vDxMoQr33fYs2ITXh8+amqq6V0Lfo2hOfQpsl5H4y143f+Ou/r2KP/nE4oUc5anPfLj+HoxvNSZQoZFECvKe1Rp6UzChsWQlhgJP43aTdunXoEAChQOD96TGqL2i2qwNBMHy8eBmHt+B3wv/tagXsqbPw8EmVMnXOq5QA3dBjdMuVve+SWX/5tO9UvD59FPVDSsRiiQmKwZ9F/OLzutOT1Eg7F0HN6R9g5l4JlSXOsHrEFB1YcldpGiwFN0NKnCSxKmgEAAn3fYvusfbh1/L5C9lEZVNGOqXUa1wZ95nTG/uVHsWbkllzdN1Xy6F4Hnj6/ifumz8OwbvoB+GZwjs7IXB/9JreGXcXkvummS1g3/YBUmcae1TFqiYy+qd1oje6bEgHqm1UtBzRBh5EtYWxliEC/t1gzciseX8n4+FqxXnkMWNQdJRySj6+LD+HIeunja49pHWDnbAvLkmZYM2oLDqw4JrWNAoXzo+f0jqjTuhoMzQ0QcP811ozcDP/b6nONILdzCQDqtquOXtO9YFXaAqEvwrFpyi5cOZhyfUVLWws9pnXAb13qwtjSENGhMTi55QL+nr0fSUkpF99tylmj77wucKrvAJGWCIG+bzGz01JEvonK/YZQAo+e9eA5oFHyedRQrJu2H743X8gsa2Suj35T28LOqTiKljLDfxsvYN20/VJlajerBK8hbiha0hQ6utoIfhWJ/evO4myaa1lEmkbIOVWxXnl0GN0K9i62MClqjGltF+Dqv7/+m9TV00G3qR3QqGs9GFka4t3bKOyYsx8nNp3LUV3MiptiyJ99UPm3Cvj2+RvO7ryM9aO3IeG79HdZz1Et4dGvMcxLmCE2Ig6H157EzrkHMtiq8mX3HJNTfQf4LO6ZklML/8XhdaekytRtVwO9ZnRKyanJO3Hl4E3J653Gt0HdtjVQvJw1vn7+Br+rz7Bh/N946x8iKdN9Wge4etWBWXETJHxLwPM7L7Fp8k48vRkAdSE+j9oMxpaGCHwSjLXjd2RyHrWs+DxqeWtEhcZkfB51anvUaekifR715EMAgNdID9Rp5YJidpb49uU7/G4EYOPUf/A2IEyRu0qkVELOqcyook8FACZFjdB3bhdUc68MvQJ6CH4eiiX91+H53VcK2c/cJtSsGrNxMNx6uUpt98l1fwytPSl3dlzBWvRuAM/f3WFsYYDAZyFYO2k3fK9nnLMVa9uj/8wOKFE2eXzPnydwdPNFyevaOtrwGt4Ujb1qw9TKEG8DwvDXjP24c9ZXUsajdwO06NUA5jYmAICgpyH4e9ER3D7zWHE7ShpHrQev9+zZ85evT506VUk1yZkGTRwxYFRT/DnvCHwfBMGjXVXMWtEN/TqsQmR4+sefVKxSAndvvMSmVWfw4f0XuLesgulLu2BYr//hxTPxF9WZY3ZDR1dbso6+QQGs2TEQl077KW2/lM21QTkMHtgYy1eewGPfYLT0qIx5czqid58NiIiMT1f+y5fvOPjvHbx8GYnPX76jYoViGDHMHZ+/fMORow8AANOm74eOTko7GugXwP/WeePCxWdK2y9lc3Uth8GDGmP5ihN4/DgYLVtUxry5HdHbewMiIjJox4Op2rFiMYwYntyOR8TtqKOjhYULOiE29iP+mH4A7yLfw8xcH58+fVP27smPN2CRHNQ1p+q3rQafOZ2wavTf8L0RgOa96mPWnmHoX2sqIt9GpytvYWOKmXuG4djWi1jgswGONcpg8KKuiHv3HlcO3QUAzOi+Grp6qXLJuDBWX5qGSwdvS5ZVrF0Whzacg/+919DS0UKvyW0xe/9I9K85BV/V6XiRgfotKsNnahusmrIXfrdfoXnX2pi5uT98msxDZEhsuvK6+bQRF/0Ru1adQts+DTLc7sf4z+jXaK7UMk0eHFC/aUX4jG+OVTMPwfdeIJp3rIZZ63qif6vliAxN/72pQtWSuHstAJuXn8SH+C9wa+uMP1Z1x/BOa/HiaSgAwKlaKZw/+hB+94Pw7et3dPCujznre8Gn9QpEycg+QWJOkZzUNatyokHH2hi4tDdWDv4ffK88g4dPE8w5Ogl9HEcg8s07VVdPaeq3qwafuZ2xatQ2+F4PQPPerpi1dwT615gsO+9LmGLmPyNwbMtFLOj3PzjWLIPBi7uL8/6/OwAAHV1tzD04GrGR8ZjVYzXehcTAzNoYnz58kWxn+MpeKFneGgt9NiAqLBaNOtbC3IOj0b/GZESFxipp74UjT30emVUkB3XNqQYda2Hg0p5Y+ftf4r/t/o0x58gE9KkwUuYAMsuSZph1eDyObTiL+T3+hGOdshjyZx/ERsbj8n7xhZZ8BfMh9GU4Lu69jgGLe8h833dvo/DXxB0ITr4B2K1HfUw/MAYDXcYh0E/9bsxUVTv+ZF+1NJr3a4QXD2TfKKuu6resAp9pbbFqcqq+6RYf+DSaK7tvqqeDuOgP2PVnFvqmDedILVOrvilziuSkjlnVoEMtDFjcEyuH/AXfq8/g0a8xZh8ej75OozI8vs4+NA5H/zqLeT3/hGPtshiysg/iIuNx+cDP46sewl5F4NK+6/BZJPv4OmKdD0o6FsOCXqsQFRqDRl3qYf7xyejrNApRITEK3efcoIhcKl/TDpN3DsfmqXtw5eBN1GlTHZN3DceI+tMkA/o6jW2NFj6NsaD3agT6voV9VVuM/msgPsZ9woGV4sEsVrYWWHpxOo5tPIctf/yDj3GfYFPeGt+/fFdeA+Wi+q2c4fNHO6yauAd+t16iefc6mLl9IHxcZyNSxmdFV08HcVEfsGvFSbTt5ypzm+9jP2L3ihN4ExCOhO+JqN7YESOXdEXsu/e4e0FNbh5mVpEchJxT+Qvlw8uHgTi5+Rym7RuTpXUm7x4JIwsDLO67BiEBYTA0N4C2jlaO6qGlpYXZhycgNjIeI+pNgb5JEYzd/DtEIhFWDd0oKTdoeW+4NKmE9WO24dWjIBQyKAh90yI5eu/clN1zTJYlzTHryAQc23AG87uvEOfUqn7JOXUDAFC+pj0m7xqBzVN34cqBm6jTtjom7x6BEfWmSHLKqb4j/lt9As9uBUBbRxu9Z3XGvBOT0ddxBL58+goAeOsfij+H/IXQl+HIV0AP7Ue0wLwTU9DTbgji3gn/Gkz9dtXhM68LVo3cBt/rz9Hc2xWz9o1E/+qTMj6PuncEjm25gAX91sOxph0GL5FxHvXfMeLzqN1XyTyPWrFuWRxafwb+d19BS0cbvaa2w+yDo9C/+iRhXjdlTpEchJxTv6KqPlVhw0JYemEGHlzwxaSW8xAbEQ8rWwt8iP2k0P3NLULOKgC4eeweFnmvlvye8E09zmvVb1MVPrO9sGrsDvH4np71MWvXUPSv8wcig2WN7zHBzJ1DcGzbJSwY8Jd4fM+CLoh79wFXDovH9/Sc2Bq/daiB5SO24c3zMLj85oipWwZiZPP5ePHoDQDgXUgMNs7cj5BXEQCAxl61MW3bIPzecCYCn4UqrwGyijklSDn7Jk+5ol3XWjjx710c//cu3rx+h7VLjiMyPA4tPKvKLL92yXH8s/UK/P1CEPImGptWn0FIUBRq1kuZ0fZ9/GfERH2Q/DjXKI0vX77j4mlfmdvUBB3aV8ex4w9w9NhDBAVFYdWaM4iIjEerllVklg94EY6z557gdeA7hIfH4fQZX9y+8wpOFYtLyrx//wUxMR8lPy7OJfHly3dcuKgmJ7Lk0MGzOo4de4CjR5PbcfUZRET8oh0D0rTjaV/cvi3djs2aOkFfPz+mTN0PX99ghEfE4/Hjt3j5MkJZu0VE2dBuUBOc2H4Zx7ddwhv/UKybuBuRwTFo4e0qs7yHdwNEvI3Guom78cY/FMe3XcLJvy/D83d3SZkPsR8RExEv+ani6oAvn77h4r8pg9cnd1iGUzuvIvBpCF49foslgzfBorgJ7CqXUPQuK0Xbvq44uecGTuy+gTcvIrBuxkFEhsbCo1sdmeUj3sZg3fQDOLP/Nj6+/yKzDCD+jh0T+V7qR5O161kHJ/bdwfF9t/HmZSTWzTuKyNA4tPCqIbP8unlHsXfjJfg/DkZIUBQ2Lz+FkMAo1GhYTlJmwbh/cHjXDbx8Goq3r95h+bQDEGmJULmmrbJ2i4iUqP2IFji+8SyO/XUWQU+DsWbEZkS+eYeWA91UXTWlajfYHSe2XcLxrcl5P2EnIoOj0aJPQ5nlPbxdEfE2Cusm7BTn/dZLOLn9EjyHpOS9W/d6KGxUCNO7/Am/GwGIeBMF3+vP8eqx+ESWXn5d1G3lgr+m/oPHV/0R+jIC2+f9i7DAdxm+r6bj55FIM7Uf7iH9tz1yCyLfRKHlANl/2y18miAyKAprRm5B0NNgHPvrLE5sOocOI1tKyvjffoH/jfsb53dfxfevsgeiXT98FzeP3Ufw81AEPw/Fpim78fnDF5SvaaeQ/VQ0VbUjIB5IM2Hb71jqsx4fYj7k+r6pUtu+rji5+wZO7LqONwHhWDf9ACJDYuHRva7M8hFvo7HujwM4s+/Wr/umSXmrb0qkztoP98DxTedwfOM5vHkagrWjtoqPrz5NZJb36N8EEUFRWDtqK948DcHxjedwYvM5eI5sISnjf/sl/jf+b5zfc03mjSt6+XVRr111bJiwA48uP0XIi3Bsm7kXYa8jMnxfoVFELrUb1hx3Tj/ErvkH8eZZCHbNP4h7Zx+j3bDmkjLla9nh6n+3cfPoPYQHRuLSvhu4c+oh7KumnLfqPasTbh67hw3j/8aL+68R9ioCN4/eQ6yMiZ3UQdt+DXFy1zWc2HlNnFXT9iMyJAYePX6RVdP24czem/gYLzurHl0LwNXjD/EmIByhge/w718X8OpJCByrl5ZZnogU79bx+9g8ZZdk0F5mqrpXhlMDB0zymIt7Zx4hPDASz24FwO+av1Q5916u+Mt3KY58+ht/+S3L9ByLi5sTbByKYX73FXhx/zXunXmEdaO3oHnfRihYpAAA8dMtWg5ww7Q2C3Dt0G2EvY7AiwfiskKR3XNMLQY0QWTQO6wZsTlVTp1Fh1GtJGXaDfPAnVMPsWteck7NO4h7Zx6j3TAPSZmJzWfj5JbzCPR7i5cPA7HIezUsSpjBziUlp87tvIx7Zx4h7FUEAv3eYu3ILShkUBC2TjaKa5Bc1O53N5zYehHHt14Un0cd//M86m8yy3t4NxSfRx3/8zzqRZzcdgmeQ5tKykjOo3ZeKfM8KgBMbrcEp3ZcSb5u+gZLBm6EhY0p7CqXVPQuE1EmVNGnAoCOY1oh8m0UFvddi2e3XiA8MBL3zz1G6Ev1eJK9kLMKAL5//Y6Y8FjJz3s1OSfYbmATnPj7Mo5vv4w3z8OwbvIeRIbEoEVv2ZNQePRqgIjgaKybvAdvnofh+PbLOLnjCjwHp3x+G3Wsid1Lj+HW6ccIC3yHI5su4M45P7QflFLmxomHuHX6MYJfRCD4RQS2zDmILx+/olxVjrGgrNPowesTJ06Et7e3qqvxSzo62rArVxR3rks/6u7O9RdwcCqewVrSRCIRChTKh/fxnzMs4966Ci6cfIyvajrLQmZ0dLRgb2+J23deSy2/fec1HB2ts7SNMqUt4OhgjQcPgzIs06yZE86df4Ivmt6Ot19LLc9WO5axgKOjdDvWrm0HX79gDBvqhr17h+CvDX3QpUstaGmJcrP6CiVKUt4P5R1CzCkdXW3YVS6Bu2elb3a6e84X5TM4kV++WmncPSdd/s4ZX9hVKQHtVE+vSM29e11c2H/zlzMDFNQvCAB4H/MxO7sgSDq62rCrUAx3L0k/uePupWdwcCmZo20XKKiHzZenYNu1afjjr74oncXjtTrS0dWGnUNR3L0q/Yiru1cDUL5y1k5ySr43xWX8vSlffl3o6Gj/sozQKDOnmFV5ixCzKid0dHVg72KLOycfSC2/c+ohHGuVzWAtzZNh3p/1RfnqZWSuU75a6XTlxXlfUpL3NZtVxtObLzB4cTfsfL4Ua6/NgNcoD8n3fm0dbWjraONbmsGC3758g6OaDqzMibz2eWROkSIIMad0dLXFf9unHkotv3PqARxr2ctcp3xNe9w5JX0suH3yAeyr2mbYp8qMlpYIrl61kb9QvnSDOdSBqttxyJ99cOPoPUENRskNOrrasKtYDHfTTMxx99LTnPdNC+lh89Wp2HbjD/yxqZ/a9U3ZpyJFEVpW6ehqw865FO6mPb6efgiHDI6vDjXtcOd0mvInH8LeJevHV0lfIM21la+fv8GxTrkM1hIOReWSQ0173Dkpvc3bJx5I/V88vvwMVX6rAGs7KwCArVMJVKhTFjeP3QMgPtdVo3kVvPUPxdxjE7EndD1WXJ2F2q1lT5AldDq62rBzKp5uNvS7F57CoWqpXHufynXtUay0OR5fD8i8sEAwp0gRhJZTv1KrVVX4336BjmNbY+ebddj0dDn6L+wOvfx6kjLN+jZC71mdsWnyTvRxGIFNk3ag14xOaNKjQYbbdahVFq8fByEqNEay7PaJB9DLrycZ1FazpQtCX0agZgtnbH2xCttersLI/w1AEaPCitvhbJDnHJM4p9JnkFRO1ZKVZffhUDvj81aFDJKv7UXLHvCno6uD5v0b40PsR7V4ypX4PGpJ2edRa2Rw3bS6rPOoj6XPozavknIeNWAZ1l6fKXUeVZaCBuKbKYR63ZR9KlIEIeaUqvpUAFCrhQue33mJyTuHY0/wOqy+NRfNMriRRmjUIasquTpiT9gGbHq6HCPW+8DQTD9rO6dCOrrasKtkg7vn/KSW3z3n94vxPbbpyt856wu7yik5paunI/taXg3Z1xC1tERo0LYa8hXUw5NbL+XdHYViTgmTjqoroEjBwcF48+ZN5gVVSN+wILR1tBAbLf0FMzb6I4xMs9bZad+tFvLn18WFU7JnVS/raI1SZSywdOZ/Oa6vUBkYFIS2thZi0nxRj4n5CGOjQr9cd/eOQZL1t2y7jKPHHsosV66sFWxLmWPR4mO5Vm+h+WU7GmfSjrtStePWyzh6NKUdrawMUaVKCZw+44sJE/agWDFjDB3qBm1tLWzbdkUh+0KkDoSYU/omhaGto42YNLPyxETGw9jcQOY6Rub6Msvr6OrAwKQwosPjpF6zdy6FUg7FsHTIll/WxWd2Rzy+5o/AJyFy7Imw6BsVSm5X6ZnnYiPfw8hU/k7P2xcRWDx6J14/C0XBwvnRpnd9LNo7FIObLUTI6/SP1lJ34u9N2oiJku5IxkR9gHFWvzf1qoP8BfRw8XjGg1C8R7ojKiIe9669yLAMUV4hxKzKCQPTIuLjSHis1PKY8FgYWRqqpE6qoG+S3A4R0hkdExkPY4sM8t7CIH3eR8RJ5b1VSTNY1C+Pc/9cx5QOy2Bd2gKDF3WDtrYWdiw4hM8fvsDvRgC6jGmJoGehiI2Ig6tnDZStaouQF3nvqUz8PBLlnBBzysBUP/lvO80xNjwuw79tY0sD3JZRXkdXBwamRRAdFpvl9y9ZoThWXJkFvfy6+PzhC6a3X4SgJ8HZ3Q2VU2U7unrVhl2VUhhcY6I8VRc0fePkvuk7GX3THFyQe/siHItH7cDrp6EoWCQ/2njXx6L9wzDYfYFG9k2JskNoWaX/8/iati8QHgcjC0OZ6xhZGKY/Hkdk7/j6+cMX+F7zR9dJ7RD0NBix4bFo2KkOylUvg+DnYfLujtIoKpeMLA3T/19ESG9z94J/UcigIDb6LcGPxB/Q0tbCpsm7cW7XVQCAobk+ChYpAK9xrbF5ym5sGP83qrpXxrS9ozCm0Qw8vPgk5w2gRBlm1bv3MDLP2eCRgkXyY/udWdDV08GPxB9YNXEP7qWZbIQorxFaTv2KVSkLVKhbDt++fMcf7RbCwLQIhqzqiyLGhbG4zxoAQLfJnlg3eqtkNvew1xGwcSgGj/5NcGrrBZnbNbI0RGya4/WH2I/49vU7jJOPx1a2FrAoYYr6nrWwoOdKaGlrYeCSXpjyzyiMbTxdcTudRfKcYzK2NMRtGeXT5VQ2sg8ABizuiUeXnuC1r/TnqoaHMybtHIF8BfUQHRqLcW4zER8l/Kc1pZxHTX9e1Niigsx1jCwMZOR7vOzzqHuuYYrnUvF51MXdoa2jjR3zZY/r8ZnTCY+v+iNQDfv4RPISYk6pqk8FAFa25mjh0xj7lh3FzvkHUa5aaQxa2gvfv37H6e2X5NkdpRF6Vt08fg8X9l5DRGAkLEuZo9eMTlhwZhoGVx2H799kz4QvBL8e3yO7/2RkboCYSN905XV0tSU5deecL9oNbIJH154j9FUkKtcvh5pNK0NLW/omq5LlrbH02DjxueiPXzGz5xoE+Yfm7k6SRtPowetbtvx6UBwAfP36FV+/fpVa9uNHArS0lNs0SUnSt1yIRACycBeGq3sFdO/vij9G7UJcBndYureuglcB4Xjmq/lfYmW1Y1Im7Ths5N8okF8PDuWLom9fV4SExODsufQn85o1dcLLVxF4+kzzD7JJaT58ImShHYf/jQIFktuxnytCglPaUaQlQkzMRyxZchw/fiTh+fNwmJgUhlfHGuozeD2zBiCSQ1ZyCsggq5ISoSWSbwa+LEl3PBWlO8ZmVl68OP06TbvXxSu/t/C/+yrDzQ1e2AWlHIthVLP52ai08KU7vorSL8uOp/cC8fReyswUfrdfYeWRUWjVsx7WTj8g93YFT+bnM/PVXJs7odugRpg+ZDviomV/b/L0rgfX5k4Y22uDoDui6TCnSEHk7lMpOqdyKO2fTKY5p6my2w6Z5L1IS4TYyHgsH7oZP34kIeB+IEwsDeE5tCl2LDgEAFjo8z+M+NMbO54tQWJCIgIeBOL8PzdQulKJ3NsvNZNnPo+auE+kckLuU6U/R/Xrv21ZxwJZ28nM22chGOA8FoUNC6FuuxoYs2kwRjX8Qy0HsAPKb0ezYiYYtLQnxjedg+9fNfPJi0DuZ0+6vumtV1h5dDRa9a6PtdP2y71dpWJOkYIItU8l+5pU1vsCEMnezq8s6LUKo/7ng11Ba5CYkIjn917h3K4rKFM592bTVjSF5JKsflaqZa5etdGoa13M7bYSr33foEzlkhi4pCeiQqNxautFaGmJH7J97b/b2L/8KADgxYNAONa2RwufJmo3eP0nea73Zebzh68Y7DYPBQrlQ+W6ZdFvWluEBr3Do2tqMvs6s4oUQMh9qrS0tMTXAeZ2W4FP8Z8AAOtGbcGUf0Zh5eC/UKBwfpjbmGLkhoEYsX6AZD1tHS18jBOXn31kIirWKw8ACA+MRL+KIwHIzrPUx3iRlhb08uthfs8/EfxcPFZgcd81WHNnAYrZF8Vbf2FMwpTd7/myci3ddrLxnWHIn31QyskGI+pNSffag3O+GFBlDAxMi6BZv8aYvHskhtacgNg0g+2EK5vXpdL9XyQvzuw86rBmMgevD17cDaUci2OU+5yc7IRiMadIAYScU6roU4m0tOB/5yU2TdkFAHhx/zVKOBRDC58mgh+8/pNQs+rCnquSf7/2fQP/2y+w/fUa1PBwltwUJ2gy2/VX5X99vW/txN0YtrQH/ndtBpCUhNDXkTi18wqadK4jtd7bgDAMajgThQ0Kom4LZ4z6szfGtlokzAHszClB0ujB61kxd+5cTJ8ufTesrVUDlCnqqpT3j4/9hMSEHzAykZ4t1MCoULpZRdNq0MQRI6a0xuxxe3DvpuxHLuTLpwtXtwrYuvZcrtVZiOLiPiEx8QeMjaXb0dCwEGJif/3YpLAw8R1Yr15HwsioEHp2r5tu8Hq+fDpo2LA8Nm+5nLsVFxhJO6Z5xJmhUaF0s7GnJWnHV8nt2DOlHaOjPiAh4Qd+/EgJgqCgKJiYFIaOjhYSEn7k8p4QaRZZWVU6XxWUKeCc6+8VH/UBiQmJMEozy7qhaZF0d2v+FBMRL7N8wvcExKcZIJyvgB4atKuGrXP+zbAOA+d3Rs1mlTG6+QK8C4mRc0+EJT7mIxITEmGcZiY7A9MiiH2XezNLJCUlwf9BEIqWMsu1bQqJ+HtTIoxMi0gtNzTO/HtT/aYVMXxGW8wZuQv3rsueUb19r7ro1K8BJvTdhFf+4blWbyJNJyunSqE8SsNRRTXKWNy79+LjcZoZFwzNDdLNsKTJ4qPE7WBkISPvIzLI+/C49Hlvpi+V99FhcUhMSJT+3v8sFMaWhtDR1UbC90SEvorEWI/5yFdQD4WKFEB0eBwmbBqA8MDIXN5L4ePnkUh5ZGeVA0qLZM+SlhNx7+Iz+NvWz/BvOzosDsaWBunKJ3xPQHwm33PTSvieiJAX4u+y/ndeomzV0mg7tDmWD/xftrajaqpqRzuXUjCyMMTqW3Mly7R1tFGxfnm0HuyO5gW6SuWcuomP/tk3le5TGZgWzv2+6cMgFC2pmX1Totwm8zqVyBGltXM/p+J/Hl/TzAhoaJ5+htCfZM2EZ2RmkO2cCn0ZjtGNZiB/wXwoqF8A0WGxmPj3MIS9Fv5TmBSVSzFhselmZzQ005eaObDf/K7YPf9fnN8tHkzx+vEbmNuYodO4Nji19SLi3sUj4XsCAv2kb1QLehKMCnXKybO7KpWSVWnOo5oUyfEAx6SkJIQmPxHkpW8wipexgNfvbuozeJ1IhYRw/i8qNAbvgqMlA9cB8bFOS0sLZsWM8TH+MwBgaf+1eHpD+u/6R6L4WvSSfmuRr4AeACDhu3jympiwWJSrXkaqfGHDQtDV05Ecj6NDY5DwPUEycP3newOAuY2pygevy3OOKTosFsaWRunKi3NK3DeICUv/HcDQ3CDdDLcAMHiFN2q2rIpRDabhXXB0ute/fPqKkBdhCHkRhic3nmPzsxVo2uc37Jp3MOs7qgKS86gyzotm/N0pLv1513TnUWOR+D3NeVR/6fOoPw1c2BU1m1XB6GZzNea6KVFuyyt9qujQGAQ9eSu1LOhpCOq2rZHlbaiKOmRV2veOCIyEtZ1VJnumWinje6T7T78e3yPjep9pESR8T5TkVFzUB8zosRq6+XSgb1QYUWGx8J7aDuFB0k9Y/HndDwCe3w+EfZWSaOPTCCtGbc+tXSQNp6XqCuTE4sWLERgYmHnBX5gwYQLi4uKkfmwt6+ZSDTOXkJCI509D4FyjtNRy5xql4fcw40efuLpXwKhpbTBv0j7cvPI8w3L1mzhCV1cHZ449zLU6C1FCwg/4+4fBxbmk1HIX55Lwzc6M8yJAVzf9PR2uDcpDT1cHp08/zmFNhU3Sji4lpZa7uOSsHR/7voW1tZHkjmIAKFbMGO/evefAddJouZFTQAZZlb9SLtQwvYTviXh+PxBVGjpILa/i6oAnN2UP+H1y6wWquEqXd/7NEc/vBSIxIVFqef02VaGrp4uze67L3NagBV1Qp4UzxrValO6LrzpL+J6I54/fokpde6nlznXt4Xfnda6+V2kH6wwHHqq7hO+JeO4Xgiq1pU8kV6ldBk/uB2W4nmtzJ4ya3R7zx+7BzYuyHwXs2bsuugxoiMk+W/A8DzythugnRfWpSkGYF8gTvifA/85LODdxklru3NgJvtfyzqPCM8z7ho54clP2Rfsnt16gSkPpC5LivH8tyXu/G89RtJS5ZIYGALAuY4Go0FipCy4A8PXTN0SHx6GwYUG4/FYB147ez4U9Uy/8PBJlTpF9qlKi8rlQw/QSvieK/7Yby/rb9pe5zpPr/unKuzRxgv/tl+n6VNklEgF6+dRv/hJVteO9M4/Rz2k0BjiPk/w8u/UCZ3dcxgDncWo9cB1I/g7w6C2q1Csrtdy5Xln2TYnkpLA+lZbicur53VdwblxRarlzo4rwy+D46nf9OZwbpSnfxAn+d+TLqS+fviI6LBaFDQuhqpsTrh26k+1tKJuicsnvuj9c0vQHXNycpP4v8hfMhx9pZoj7kfgDWloiSd2e3XqB4mWlB1VY21shPEj9bhJO+J6I5w/foEp96fMKzvXLwu92xk/ylIdIJIKunvp9TyLKDoX2qZR8/s/36jOYFDVC/kL5Jcus7a2QmPgDkW+jERsRh8i3UbCytZAMkv758/NGqaiQaMmyiORrUH7XnqFkBRupwXQubpXw7cs3PL8jnkDQ98pT6OjqwMrWQlKmmL34uCuECRnkOcckM6fcKknn1DV/uKTLskrwuyq9zd9X9kHdtjUwttH0rN+UJhJBN59u1sqqkPg86mtU+U36vGiVhg54ciOD66Y3X6Q775ruPOr1ABS1tUhzHtUSUaExUudRBy3qhjotXTCu5QKEB2rOdVOinxSaUxrYp/K96o9i9kWllhWzs1KLcRXqllVFjAvDrLgJokKFfdNQwvdEPH8QlG68ThXX8r8Y3/MSVVyl/z6cGzrg+f3X6T6P378mICosFto62qjbwhnXjt3/dYVEYB+LskWtB6+PGTMGpUuXRpMmTbB79258+/Yt29vIly8f9PX1pX60tJT7R7T/72to2sYZbq2qoHhJU/iMdIe5pQGO7LsNAOg9uBHGTG8rKe/qXgFjprfF+mUn8fTxWxiZFIaRSWEULJQv3babtq6Cqxee4n3cZ6Xtj6r8s+8mmjerhKbuTrCxMcGgAY1gYa6PQ4fvAQD6ejfA+LEtJOVbt3JGrZplYG1tBGtrIzR1r4iOHarj9Jn0A9SbNXXC5Sv+iH//RWn7oyr/7L2J5s0roWnT5HYcmNyOh5LbsU8DjB+Xqh1bO6NWLRntmGqg/3//3YO+fn78PrgJihUzQo0apdGlSy38++9dpe+fvERJyvshzZEbOQVkkFUKfMTV/tWn0LR7Pbh1rYPi9lboP9sL5sWMcWTTeQBA76ntMHqNt6T8kY0XYFHcBP1ndURxeyu4da0D9251sffPE+m27d69Lq4evYf3Mp7mMHhRV/zWsSbm9/sfPn/4AiNzfRiZ60Mvv/BPXmXFgQ3n4e5VE24dqqN4aXP0n9IGZkWNcPRv8axJvcZ6YNTiLlLr2DoUha1DUeQvmA8GxoVh61AUNmVSTo52GeYO5/plYVncBLYORTFiQSfYOljjyN9Xoan2b7mCpu1d4NbWBcVtzdB/XHOYWxngyG7x47p6D3fD6DmekvKuzZ0weo4n/rfwGJ4+fAMj08IwMi2MgoVTvjd5etdDj6FNsGTKfoSHxEjK5C+op/T9k5cyc4pZpVkU1qdS4iODs2vf0sNo1qcR3Hs3hE05awxY0hPmNqY4vPakqqumVPtXnUDTHvXh1q2uOO/ndBLn/cbzAIDe09pj9Nq+kvJHNp4X5/1sL3Hed6sL9+71sHdlSt4f/uscihgXxoD5nWFd2gLV3ZzQaZQHDm04Kynj0sgRLo0qwKKEKao0dMD8Q2PxNiAMJ7dr9lOuMpKXPo/MKZKHuvap9i07gmZ9foN7b1fx3/biHuK/7XWnAADesztj7ObBkvKH152CeQlT+CzqDpty1nDv7Yqm3r/hnyWHJGV0dLVRulIJlK5UArp6OjC1NkLpSiVQtHRK/8B7VidUqFsOFiXMULJCcfSe6QUnV0ec2aGex1hVtOPnD1/w2veN1M+Xj18QH/UBr30znmhEnRzYcB7unWrCrWMNFC9jgf5Tk/um268AAHqNa4FRS7tKrWPrYA1bB2vkL6QHA+NCsHWwho1dqr7pcHc41y8HSxsT2DpYY8TCzuK+afI21QH7VCQvdexT7Vt2BE29f4N7L1cUL1cUAxYlH1/XnwYgzpMxmwZJyh9ZfwoWJUzhs7A7ipcrCvdermjauyH2LjksKaOjqw3bSiVgW6kEdPW0YVrUGLZpcsqliROqulWCZUkzODeqiIWnp+CtfyhObD6vsH3NTYrIpQMrjsGliRO8xrRC8bJF4TWmFZwbVcT+5UclZa4fvoMuE9qievMqsChhhjptqqH9CA9cOXhLUuafxYfQoGNtNOv7G4qWtkDrQe6o1cIF/61Rz37Fgf+dg3vnWnDzqinOqj/awczaGEe3ib/T9BrfEqOWd5dax9bRGraO1shfKPk8qqM1bOwsJa93/L0JqtQrC0sbExQrbYG2/RuikWd1nN1/C+qCOUXyEHKfKn+h/ChdqSRKVyoJALAsZY7SlUrCrLgpAMB7TheM3fy7pPzZHZcRH/UeYzYOgk35YqhYrzz6L+iOE5vO4tsX8X5tm74Hnca3RduhzWFtZ4WSFWzg3ssV7Ue0SPf+P905+RBBfm8xbusQlK5cElV+q4D+C7vj6IYz+PRePMbi7ulH8L/zEqP/GoTSlUvCztkWw9f2x52TD6RmY1elzM4xpW3Pw2uTc2pxz+ScaijOqcX/ScocWHEELm6V4DW2tTinxraGc+OK2L/8iKTMkFV90ahrPcztuhyf3n+BkYUhjCwMoZdffH0lf8F88J7dGeVr2MHcxhRlqpTCyP8NgFkxY1z855qSWidn9v95Mvk8aj3xedS5nWBezARHNp4DAPSe5onR61KfRz0Hi+Km6D+nU/J51Hpw71Efe1ccl5QRn0cthAELusC6jAWquyefR/1fynnUwUu647eOtTC/zzp8fv9Z8NdN2acieQg5p35FVX2q/SuOoHyNMug0rg2KlrZAw0510Lzvbzi0Jv24DCESbFYVyo/+C7ujfE17WJQwg1MDB8z8bzzi3r3HlQM3ldQ68tu/5hSadqsLty51UNzOEv1ndYS5tTGObL4AAOg9uS1Gr+otKX9k8wVYFDNB/5kdUNzOEm5d6sC9a13sXXVKUqascynU8agCyxKmcKxZBrP2DIVIS4R/Ul0T7DWpDRxrloFFcROULG+NnhPbwKlOWZzde0N5O58NzClhUvtbHTZs2ICDBw+ie/fu0NfXR7du3dC3b19UqJD7j/5QlAunfFHEoCC69m0AY9PCCHwRgcnD/kZEmPgRFsamRWCW6tGCzdtVhY6ONoaM98CQ8R6S5ScP3cfi6Qclv1vbmKBClRKYMHir0vZFlc5feAp9/QLo0a0OjI0L4fXrd5gw6R+EJ8/wY2xSGOapHpOhJRKhr3cDWFoaIPHHD4SGxGLDhgs4dOSe1HaLWRvBqWJxjBm3S6n7oyrnzye3Y/dU7Tghk3bsk9yOiT8QGprcjodT2jEy8j3GjtuNQQMbYcP/+uDdu/fYv/82du2SPfMykSZRx5y6eOAW9I0LoevYljCyMEDgkxBM8VqOiDfiRycZWxjAvJiJpHx40DtM6bgcPnO80KJvQ0SHxWLN+J24ckj6BhXr0haoUMseE9oukfm+Lfs0BAAsPDJWavniQRtxaqf6D8a+ePg+ihgWQpdh7jA208dr/1BM7b0eEcExAABjc32YW0s/9mrV0TGSf9s7FUfDNi4IfxuNXnVnAgAK6xfA0DkdYWymj4/vP+OFXzDGeK2E/4OMZyFXdxePP4K+YUF0HdgQRmZFEPg8HFMGbEVEaCwAwNisCMytUn1v6lANOrra+H1KK/w+pZVk+amDd7F40j4AQMtONaCnp4Mpy6RvHti+6gy2rz4LIk2njlmVExf2XIW+SWF0m+IJYysjvH78BpM85khmW8orLu6/BX3jwug6thWMLA0Q+CQYUzosQ8SbKAA/895YUj488B2mdFgKn7md0aLfb+K8H7cDV/5LmSXxXXAMJrVdjP5zO2HN1Rl4FxqDg2tP45+lKQMvCuoXRO9p7WFa1AgfYj7i8n93sHnm/hzPLKyu+Hkkypw65tSFPdegb1wE3Sa3T/nbbjFP8rdtYmUI8+Ipfaqw15GY3GIeBizuiVaD3BEVEoPVwzfh8v6UiyMmRY2x9u4Cye8dR7dCx9Gt8OC8L0Y3mgEAMLQwwLgtg2FsZYSPcZ/w6mEQJjafg7unHylpz3OXqtpR0108dA9FDAuK+6bmyX3Tnuuk+6ZF0/RNj6fum9qgYduqCH8TjV51xG1WWL8Ahs5L1Tf1DcaYDprdNyVKTd2y6sI/16BvUhhdJ7WHsZUhAn3fYHLLlOOrsZURzJMHDgLi4+uklvMxYHEPtBzohuiQGKwesRmXD6Q5vt6eL/m9w6iW6DCqJR5c8MOYxuJjRSGDgvCe1RmmxYzxPvoDLh+4iU1TdqlNX0ARueR3zR+zuyxHrxle6DnDC6EvwjG783I8TfVErD+HbkKvGV4Y+mcfGJobICokGkfWn8b2mXslZa4cvIXlg/6HzuPaYPCy3nj7LATTOyyB7xX1fKLTxf/uoohRIXQZ0VScVc9CMbX7mpSssjBIn1Unx0v+bV/JBg3bVUP4myj0qvkHACB/QT0MntsRppaG+PblO968CMfCoVtx8T/1mWSJSF5CzSn7qrZYfG665PeBS3oBAE5uPo+F3qtgYmkEc5uUPPry8QvGu83E4BV9sOrWPMRHvcfFf65h0+SUa/jH/jqLL5++oePoVug7vxu+fPyK14+CpAawpfXjxw9MajEXQ1f1xbLLs/Dt8zec3XkZ60enjLFISkrC1FbzMHiFN5ZcmIEvH7/i1rF7WDdaOOMwMjvHlLY9w15HYLLHXAxYkiqnhm3E5f0pA878rvljdudl6DWzE3rO6ITQF2GY3WmpVE61GugOAFh8PuX/EgAW9l6Fk1vOIzHxB4qXtUaTva7QNy2C91Hv8ezWC4yoPxWBfm8V2SS55uL+m+LrpuOSz6P6BWOK59KU86iWaa6bBr7DFM9U51FDY7Fm7N9pzqNGJ59H7Yw1V2eKz6OuOSV1HrVl398AAAuPpWQcACwesAGndqjPjcJEmRFqTv2KqvpU/rdfYrrnEnjP7oRuk9sh7FUk1ozairM71eOYINSs+pH4A6Uq2KBx9wYobFgI0aExeHDOF7M7LcXnD8Kf5PbiwdvQNyqErqM9xON7noZgSueViHibenxPqut9QVGY0nklfGZ1RAtvV0SHxWHNxF24cjilb6SXXxc9JraGVQkzfP74FbdOP8LCQRvxMT5l8mQjM32MXe0NIwsDfIr/jFd+wZjccTnuXXiivJ0ntSdKSkpS27H+WlpaCAsLg7m5OSIiIrB582Zs2rQJ/v7+cHFxQb9+/dCpUycUKVIkW9t1r/qHYiqcx3w3yp95IcqaH6qugGY4e2Z85oUy0NBtfuaFcsm5k+OU9l6kWIrKKQBoatQ380KUKZFB9tue0ksqVFDVVdAIx31ny72uMnMKYFZpEkVlVROtDgqqcd6iLcd3BEov8f17VVdBI5z68U+O1mefiuShyD5VE20vBdSYSD461laqroJGOBa0TO512acieSkqq9x0OymoxnlL0g+1vQQqKDqW5qqugkY4FrwyR+uzT0XyUGifiuf/SEC0CxdWdRU0wvH4TXKvyz4VyUOROcU+Ve5ISlSPm42FTtvYKPNClKnj79bLvS5zSpi0VF2B3GJubo6xY8fiyZMnOH/+PBwcHDBixAhYWfHEPxERqR5zioiIhI5ZRUREQsacIiIioWNWERGRkDGniIhIyJhTRER5j46qK5ATIpFI5vJ69eqhXr16WLFiBXbv3q3kWhGRJhKp70MqSIWYU0SkLMwpkhezioiUhVlF8mBOEZGyMKdIXswqIlIWZhXJgzlFRMrCnCJ5MKeISFmYU8Kk1jOvJ2XyodLX10e/fv2UVBsiIiJpzCkiIhI6ZhUREQkZc4qIiISOWUVERELGnCIiIiFjThER5W1qPfP6jx8/VF0FIsoreLghOTCniEhpeLghOTGriEhpeLghOTCniEhpeLghOTGriEhpeLghOTCniEhpeLghOTCniEhpeLgRJLWeeX3IkCG4dOmSqqtBREQkE3OKiIiEjllFRERCxpwiIiKhY1YREZGQMaeIiEjImFNERHmbWg9eX7VqFVxdXWFvb4/58+cjLCxM1VUiIg0lSkpS2g9pDuYUESmLMnOKWaVZmFVEpCzMKZIHc4qIlIV9KpIXs4qIlIU5RfJgThGRsrBPRfJgThGRsjCnhEmtB68DwMmTJ9G8eXMsWrQINjY2aN26NQ4fPsxHixARkSAwp4iISOiYVUREJGTMKSIiEjpmFRERCRlzioiIhIw5RUSUd6n94PWKFSti2bJlCAkJwfbt2/H161e0adMGxYsXx6RJkxAQEKDqKhKRJkhS4g9pFOYUESmFMnOKWaVxmFVEpBTMKZITc4qIlIJ9KsoBZhURKQVziuTEnCIipWCfiuTEnCIipWBOCZLaD17/SVdXFx07dsTx48fx8uVL9OvXD3///TfKli2r6qoRERExp4iISPCYVUREJGTMKSIiEjpmFRERCRlzioiIhIw5RUSU92jM4PXUbGxs8Mcff+DVq1c4fvy4qqtDRJogKUl5P6TxmFNElOuUmVPMqjyBWUVEuY45RbmIOUVEuY59KsplzCoiynXMKcpFzCkiynXsU1EuYk4RUa5jTgmSWg9eL1GiBLS1tTN8XSQSoUmTJkqsERERUQrmFBERCR2zioiIhIw5RUREQsesIiIiIWNOERGRkDGniIjyNh1VVyAnXr16peoqEBERZYg5RUREQsesIiIiIWNOERGR0DGriIhIyJhTREQkZMwpIqK8Ta0HrxMRKYuIT/QgIiIBY04REZHQMauIiEjImFNERCR0zCoiIhIy5hQREQkZc0qYtFRdASIiIiIiIiIiIiIiIiIiIiIiIiIiIiLSfJx5nYgoK5J4CxYREQkYc4qIiISOWUVERELGnCIiIqFjVhERkZAxp4iISMiYU4LEmdeJiIiIiIiIiIiIiIiIiIiIiIiIiIiISOE48zoRURaIfqi6BkRERBljThERkdAxq4iISMiYU0REJHTMKiIiEjLmFBERCRlzSpg48zoRERERERERERERERERERERERERERERKRxnXiciyoqkJFXXgIiIKGPMKSIiEjpmFRERCRlzioiIhI5ZRUREQsacIiIiIWNOCRJnXiciIiIiIiIiIiIiIiIiIiIiIiIiIiIihePM60REWcEbsIiISMiYU0REJHTMKiIiEjLmFBERCR2zioiIhIw5RUREQsacEiTOvE5ERERERERERERERERERERERERERERECseZ14mIskCUxFuwiIhIuJhTREQkdMwqIiISMuYUEREJHbOKiIiEjDlFRERCxpwSJs68TkREREREREREREREREREREREREREREQKx8HrRERERERERERERERERERERERERERERKRwOqquABHR/9u77+goqoaP4780ElogCUkoSi+CAlKUIkVEQKQpCFhAsNBtKIpUARVQQbHQHqXZABFBpKO+UgQLXQlIrxJCb2qEZN8/AotLEgjL7M7d3e/nnJwjk5nNnXny7Dc3uTvrE3j7EACAyegUAMB0tAoAYDI6BQAwHa0CAJiMTgEATEanjMSd1wEAAAAAAAAAAAAAAAAAAAAAHsed1wEgK1LtHgAAAFdApwAApqNVAACT0SkAgOloFQDAZHQKAGAyOmUk7rwOAAAAAAAAAAAAAAAAAAAAAPA47rwOAFkQ5HDYPQQAADJFpwAApqNVAACT0SkAgOloFQDAZHQKAGAyOmUm7rwOAAAAAAAAAAAAAAAAAAAAAPA47rwOAFnBK7AAACajUwAA09EqAIDJ6BQAwHS0CgBgMjoFADAZnTISd14HAAAAAAAAAAAAAAAAAAAAAHgci9cBICscDu99uGHMmDEqVqyYIiIiVKVKFS1fvjzTfb/66is1aNBAsbGxioyMVI0aNbRo0SKXfSZPnqygoKB0H//8849b4wMAeJg3O+VGq+gUAMDkTkm0CgACHnMqOgUApjO4UxKtAoCAx5yKTgGAyQzvlBSYrQq1ewBG2rTD7hH4hfD4fHYPwX/kyG73CGCw6dOn67nnntOYMWN0xx13aPz48WrcuLESEhJUuHDhdPsvW7ZMDRo00NChQ5U3b15NmjRJzZo1088//6xKlSo594uMjNQff/zhcmxERITHzwdZk3LqtN1D8Ashqal2D8EvBAWH2D0EGIxOAe5L/esvu4fgF0IL5Ld7CDAcrQJgu3//tXsEMBidCkyOlBS7hwBccv683SOA4WhVYAoK4e8CVqD51uA64kroFADbnWNOhSsL1FaxeB0AssLg9a1vv/22nnjiCT355JOSpFGjRmnRokUaO3ashg0blm7/UaNGufx76NCh+vrrr/XNN9+4BCwoKEj587PQBwB8Ap0CAJiOVgEATEanAACmo1UAAJPRKQCAyQzulBS4rQq2ewAAAPf9+++/WrNmjRo2bOiyvWHDhlq5cmWWHiM1NVWnT59WdHS0y/YzZ86oSJEiuuGGG9S0aVOtW7fOsnEDAAIDnQIAmI5WAQBMRqcAAKajVQAAk9EpAIDpArlV3HkdALIgyOHw2tdKTk5WcnKyywSjf4UAAEqISURBVLbw8HCFh4en2/fIkSNKSUlRfHy8y/b4+HglJiZm6euNHDlSZ8+eVZs2bZzbbrrpJk2ePFnly5fXqVOn9O677+qOO+7Qhg0bVKpUKTfOCgDgSd7slJT1VtEpAMBFzKloFQCYjDkVnQIA0zGnolUAYDLmVHQKAExmaqekwG4Vd14HAMMMGzZMefLkcfnI6C1A/isoKMjl3w6HI922jEydOlWDBg3S9OnTFRcX59xevXp1tWvXThUrVlTt2rX1xRdfqHTp0nr//ffdOykAgF+51lbRKQCANzGnAgCYjjkVAMBkzKkAAKZjTgUAMBlzqqzhzusAYJg+ffro+eefd9mW0SuvJClfvnwKCQlJ90qrpKSkdK/Iutz06dP1xBNPaMaMGbr77ruvuG9wcLBuu+02bdu2LQtnAADwd1ltFZ0CANiBORUAwHTMqQAAJmNOBQAwHXMqAIDJmFNlDXdeB4CscDi89hEeHq7IyEiXj8wCli1bNlWpUkVLlixx2b5kyRLVrFkz09OZOnWqOnbsqM8//1xNmjTJwuk7tH79ehUoUODarhsAwDu82KlraRWdAgA4GdgpiVYBAC5gTkWnAMB0BnZKolUAgAuYU9EpADCZoZ2SArtV3HkdAHzc888/r/bt26tq1aqqUaOG/ve//2nv3r3q2rWrpLRXcx04cEAff/yxpLR4Pfroo3r33XdVvXp15yu3smfPrjx58kiSBg8erOrVq6tUqVI6deqU3nvvPa1fv16jR4+25yQBAD6LTgEATEerAAAmo1MAANPRKgCAyegUAMB0gdoqFq8DQFY4HHaPIFNt27bV0aNHNWTIEB08eFC33HKL5s+fryJFikiSDh48qL179zr3Hz9+vM6fP68ePXqoR48ezu0dOnTQ5MmTJUknTpxQ586dlZiYqDx58qhSpUpatmyZbr/9dq+eGwAgi+gUnQIA09EqWgUAJqNTdAoATEeraBUAmIxO0SkAMJnBnZICt1VBDofh/8vYoFH29nYPwS8Ex+ezewj+I0d2u0fgFxYkDHX72Hsq9LdwJFe2cONrXvta8F0NQtraPQS/EJIrp91D8AtBMdF2D8EvLNg5wu1jvdkpiVbh6hoEt7Z7CH4hKCTE7iH4hZC4WLuH4BcWHHj/uo5nTgXTMKeCSUJjY+wegl9YkDjG7WOZU8E0zKlgktBY/t5nhQWHxl7X8cypYJqGYQ/aPQS/4EhJsXsIfiE4O+sprLDo7MduH8ucCqahU9agU9YIyZ3b7iH4hYUnJ7p9LJ0yE3deB4Cs4HU+AACT0SkAgOloFQDAZHQKAGA6WgUAMBmdAgCYjE4ZKdjuAQAAAAAAAAAAAAAAAAAAAAAA/B93XgeArEi1ewAAAFwBnQIAmI5WAQBMRqcAAKajVQAAk9EpAIDJ6JSRuPM6AAAAAAAAAAAAAAAAAAAAAMDjuPM6AGRBkMNh9xAAAMgUnQIAmI5WAQBMRqcAAKajVQAAk9EpAIDJ6JSZuPM6AAAAAAAAAAAAAAAAAAAAAMDjuPM6AGQFr8ACAJiMTgEATEerAAAmo1MAANPRKgCAyegUAMBkdMpI3HkdAAAAAAAAAAAAAAAAAAAAAOBx3HkdALIilVdgAQAMRqcAAKajVQAAk9EpAIDpaBUAwGR0CgBgMjplJO68DgAAAAAAAAAAAAAAAAAAAADwOBavAwAAAAAAAAAAAAAAAAAAAAA8LtTuAQCAT3Dw9iEAAIPRKQCA6WgVAMBkdAoAYDpaBQAwGZ0CAJiMThmJO68DAAAAAAAAAAAAAAAAAAAAADyOO68DQFbwCiwAgMnoFADAdLQKAGAyOgUAMB2tAgCYjE4BAExGp4zEndcBAAAAAAAAAAAAAAAAAAAAAB7HndcBICt4BRYAwGR0CgBgOloFADAZnQIAmI5WAQBMRqcAACajU0bizusAAAAAAAAAAAAAAAAAAAAAAI/jzusAkBWpvAILAGAwOgUAMB2tAgCYjE4BAExHqwAAJqNTAACT0Skj+fyd13/99Vc98sgjKlasmLJnz64cOXKoWLFieuSRR7R69Wq7hwcACHB0CgBgOloFADAZnQIAmI5WAQBMRqcAACajUwAQuHz6zuuzZ89WmzZtVL9+fT377LOKj4+Xw+FQUlKSFi9erDvuuENffPGFWrRoYfdQAfg6R6rdI4APolMAvIZOwU20CoDX0Cq4gU4B8Bo6BTfRKgBeQ6vgBjoFwGvoFNxApwB4DZ0yUpDD4fDZe+LfcsstateunV5++eUMP//GG2/o448/1qZNm67pcRtlb2/F8AJecHw+u4fgP3Jkt3sEfmFBwlC3j21c7HkLR3JlC3a97bWvBc/yVKckqUFI2+sdHiSF5Mpp9xD8QlBMtN1D8AsLdo5w+1hvdkqiVf7EU61qENzaiuEFvKCQELuH4BdC4mLtHoJfWHDg/es6njkV3MGcCoEiNDbG7iH4hQWJY9w+ljkV3MWcCoEgNJa/91lhwaGx13U8cyq4w5NzqoZhD17v8CDJkZJi9xD8QnB21lNYYdHZj90+ljkV3EGnzEenrBGSO7fdQ/ALC09OdPtYOmWmYLsHcD22b9+uli1bZvr5++67Tzt27PDiiAD4LYfDex/wG3QKgNd4s1O0yq/QKgBeQ6fgBjoFwGuYU8FNtAqA19ApuIFOAfAa5lRwA50C4DV0ykg+vXi9RIkSmj17dqaf//rrr1W8eHHvDQgAgP+gUwAA09EqAIDJ6BQAwHS0CgBgMjoFADAZnQKAwBZq9wCux5AhQ/Tggw9q6dKlatiwoeLj4xUUFKTExEQtWbJEixcv1rRp0+weZjpNO9dX655NFJ0/j/YkHNC4lz7V7z9uzXT/8rVuUpc3HlaRcoV09OAJzXh7nuZ99H2G+9ZtXV19P+6hld+s0eA2o5zbb7mjjFr3bKJSlYsqpkCUBrUZpVXfrLH61GzXpN0deqBLPUXHRWrP1kSNHzJbm37dmeG+UbGR6tS/uUrdcqMKFsunOZOXa/yQ2S773P3AbXphxMPpjm1e5kWdSz7viVMwQpMHq+mBx2srOja39mxP0vjh87Rpze4M9615981q8uDtKnFTQYVlC9Ge7Un6dPR3WvvjNuc+hUvGqf1Td6vUzYUUXyhK44fN1exPVnrpbAD7+GqnJKlZ14Zq3auZYgrk1e5N+zX2+Sn6fcWWTPevUKesuox4VEVvvkFH/zyuL0bM0dzx3zo/X6TcDeowuI1KVS6m/EXjNKbnFM16b77LYzTt2kDNujRQfNFYSdKeTfv16Wsz9evC9R45R29o+mQ9PfDMPYqOz6s9Ww5o3MtTtWnVtkz3L39HaXUe+qCK3FRIRxNPaMa7CzR/4g8u++TMk10dB7TSHc0qK1fenErcc1gf9puuX5f8Jklq93ILtevTwuWYY4dO6uHSPS0/P7s0aVdTD3S6U9FxubVn6yGNf+1rbfp1V4b7RsXmVqd+zVTqlhtUsGg+zZmyQuNfneOyzxufd1OF6iXSHfvL/23WK09M8Mg5AKbw5VZdj2bdGqp1rxaXOtdz0hU7F0iadW2g1s83U3SBvNqTsF9jn/9Yv/+Y+bUpX7usuo5oryLlLvwMMPIbzfvfpZ8BGj9xl+5uV0dFb75BkrRt7S5NGjBNf/zq33dLadKhth7oWv/C3PSgxr/ylTb9kvE5R8VFqtPA+1Wqwo0qWCxWcyYu1fhXvnLZ556Ha6r+A7erSJkCkqTtv+3T5OHfaOv6PR4/F8BOvtwp5lTWsOM6lq9dVq17NVPpysUUUzBar7R8Syu/Xu2xc7RDk4519ED3uxUdl0d7/jio8QNnaNPPV+jUoFYqVaGwChaP1ZyPftD4gV+67FO4TAG1f7GpSlUsrPgbYzR+wAzN/vD/vHEqgO18uVXXI1DnVNd63hXqlFOXkR0udemtrzV3/BKXfWq1rKaOQx5UgRLxOrjjkCb1n6ofZ//i/PyDL9+nWvdX0403FVLy3/8qYeUf+ujlz7R/65/OfSJyRujJ4Y+oZovbFBmTW4d2J2nW+ws0d9xi6y+CTZp0rKMHejS41K4BM7Tp5+0Z7hsVF6lOgx9wbdeAGV4eMWAGX+6UHb+jKl/rJrV+oZlKXZgLDGo1Qivn+M5cwNRO/dez4zqraecGGtNzkma9Oz/DfUzUtFN9tX7u3rQ1PpsPaNxLn+n3lVda41NGXYY/rCJlL6zxeWee5k3IeI5U94Fq6jvlwhqfB9/NcJ+2vZrq8cFtNGv0Io176TNLzgkwAZ1y/Z3Vo6+0VqnKxZW/aKzGvjBFs95b4PIYH297X/kv/N7vv+aMXaQPnplk3cl5kKmtav9Ka93Z9g7F3hij8/+e17Y1OzWp/1Rt+SXjOYdp7FiXkj1XhB7td79qNq2kvLGR2rFxr8a9/Lm2rt3twTOFv/HpO6+3atVKy5YtU+7cufX222+rQ4cOevTRR/X2228rV65cWrp06RXfXsQOdR+opq5vtdPUN75W9+oD9PvKP/Ta7BcVe2NMhvvHF4nVa7N76feVf6h79QGa9uYcdRvZXrXuq5pu37jCMeo07CH9lsGTekTOcO38ba9G9/zY8nMyRZ2mt6rLwPs07YMleureEdr06069OrmzYgvmzXD/sPAQnTx2VtNGL9GuzRlPniTp7Km/9fBtA10+/Hnhep17yqtLnyaaNv4HPdXqA21as1uvju+g2AJ5Mty/fNWiWrdyuwZ2naynW4/Whl92atCY9ipRtoBzn4iIMCXuP6ZJby/SscOnvHUq1kp1eO8DfsMXOyVJddvUULd3OmjqsFnqVuVl/b5ii4bO65Npq/IXjdVrc9P261blZU0dPlvdRz2mWi1vd+4TniNcB3ce0oS+U3X04PEMH+fI/qOa0Pdz9bi9r3rc3lfr/+93DZ71ooqUu8Ej5+lpdVrepi7DHtK0EXPVo/Yg/b5ym177sqdib4jOcP/4Ivn06oye+n3lNvWoPUjTR85Vtzce1h3Nqzj3CQ0L0bDZvRRfOEavPTpGT1btq3efmaIjB0+4PNbuhP16qNRzzo9uNQZ68lS9qk6TiurSv7mmjf5WTzV9R5tW79SrE5/MvPfZQnXy6FlNG/2ddm0+mOE+r3abrIdvH+z86NLoLaWcT9Hy+Rs8eCYW82anaJVf8dVWXY+6bWqq2zuPaerQmepW+SX9vmKzhs7vp9gb89k9NNvVbV1DXUd20OfDZ6nbbS/rtxVb9Prcl6/4M8Dr3/TWbyu2qNttL2vqG7PV/Z2OqnX/pZ8BKtYtpx+m/6gXG7yq52oPVNK+Ixo2v69iCkZ567S8rk7zyuoyqKWmvbdITzV6Q5t+2aFXP+2m2EzOOa1VZzTtvcXalXAgw30q1CipH75eo5fbvKfnm7+twweO6fXPuysmf8bzNCPRKbjBVzvFnMoadl3HiJzh2rlhj8/80e9a1WlRRV2GPKBpoxbqqQbDtOnn7Xr18x6KLZRJp8IvdOrdhdq1KeNORWTPpsS9RzTptdk6duikJ4fvOcyp4CZfbdX1CNQ51bWed/6icXptXh/9vmKzulV+SVOHfaXu7z6uWi2rOfcpW720+k/rqW8/Xaqut/bSt58uVf/pPXXT7SWd+1Soc7PmjFmkZ2r01csNX1VIaIiGL+qviBzhzn26vdNBVRvdquHt39MT5Z7TzFHz9NR7j6tG8/R/S/RFdVpUUZdXW6e16+6hae2aerV2nda0UQsybZdPolNwg692yq7fUUXkjNDOjXv0wbO+NxcwuVMX1Wxxm8reXkpHDhyz/gJ4UN1W1dT1zUc09c056l5zoH5fuVWvzeql2BsyW+OTT6991Uu/r9yq7jUHatpb36jbiPaq1SKDNT43xqjT0IzX+FxUunIx3ftYPe38ba9l5+QRzKngBjr1399ZZVPiriRN7Pd5pr+zerpGX7W9oYvzo3ej1yRJy7782fqT9ACTW7V/60F98PQEda7wgnrWHqBDew5r+KIBypMv0nMXxCJ2rUt57v2OqlyvnN7q8pG61hyotd9v0rDZvRRTIK+Hz9hNdMpIPn3ndUmqUaOGatSoYfcwsqzlM421aPJSLZy8VJI07sXPVOXu8mraqb4mDfwi3f5NO92lpH1HNO7FtFdP7vvjT5WuXEytnrtXK2ZfepVvcHCQek/qpk9e/Uq33FFGufLmcHmc1Ys3avXijR48M/vd/+SdWvzFz1o0PS3K44fMVuU6N6lJuzs0+c156fZP2n9c4wfPkiQ1bFMt3ecvckg6fvi0R8Zsovs71tLimWu0aGba99f44fNU+Y5SavJgNU1+J/1dOsYPd722U0YtVo27yqranWW148Iiwa2/H9DW39N+QfjY8408fAaAWXytU5LU6rkmWjjxey2YkPYuH2Ofn6KqDSuqWdeGmthvarr9m3ZpoMN7j2rs81MkSXu3HFDpKsXV+vlmWvFV2itat67eoa2r0+5e8cTQhzL8uj/NXevy70kDpqtp14YqW72U9iTst+z8vKVlj0Za9MlyLfx4uSRpfJ+pqlL/ZjV9op4mDZ6Zbv8mj9+ppP1HNb5P2jXet/WgSlUqqgeebqQf56S9W0rD9rWVKyqnejYYqpTzKZKkpH1H0z1WyvlUHU/y0RcLXcX9T9TV4hm/aNEXad9b41+do8q1y6jJIzU0+a0F6fZPOnBc41/9WpLUsPXt6T4vSWdO/u3y77rNblXy3+e0fL5//+wEXOSLrboerXo2de1cz8lpnevWUBP7fm7z6OzV6rkmWjjp/7Rw4v9Jksa98LGqNqioZl0aaGL/9Hc3adK5gZL2HtW4F9JeJL1vy58qXaW4Hni+qVbMSnueHv7oBy7HjOryP9VuWU2V7rpF33663MNnZI/7O9XT4mmrtGjqKknS+Fe+UuW6ZdXk0VqaPPybdPsn7T+m8a+k/WzQsG31DB/zzaddX4j+7otTVavJrbq1Vhl99+UvGR4D+Atf7BRzKmvYdR1/Xbjep+9WfzX3d7lLi6eu1KLP094VcfzAL1X5znJq0qGOJg/9Ot3+SfuOOe9W2/ChjP+/uHX9Hue7gTzW/z7PDBwwmC+26noE6pzqWs+7adcGOrz3iMb2nCzpQpeqllDrF5prxVdpf8dq+WwTrVmyUdOGz5YkTRs+WxXq3KyWzzbR0EfS7rza997XXR53xONj9GXSBJWqUly/Ld8sKW3BxpKPf9DGpQmSpPkffqsmnRuodNUSWuVDdwzOzP1d62vx5yu16LMfJUnjB8xQ5TvLqknHOpr8eibt6n+xXTW9OlbARL7YKbt+R/XrovX6ddF6D56Z55jcKUmKKRitp95/Qn3ueU2vze1j9el7VMun79GiKUu1cMqFNT4vfaYq9curaae7NOmV9O/s0fTJu5S076jzDunONT7P3qsVX1+2xmdiN33y2oU1PnlypHusiJzh6j2xm0Y9NVEPvdTcQ2cI2ItOXfyd1U5tXb1TkvT46w9n+HVPHnFdu9b2pRY6sD1RG5clWHZunmRyq/5v6gqXfcY9P0WNn6iv4hUKa933v1t2DTzBjnUp2SLCVKt5FQ1+6H3nO5F8Ovxr1WhSSU2fqKcpr83y6DnDf/j0ndd9TWhYiEpVKqo13/3msn3Nd7+rXPVSGR5TtlpJrfnO9Ulw9be/qXTlYgoJDXFue6Tv/Tp55LQWXfiBOdCEhoWo1C03aO3yP1y2r13+h8pVKXpdj509RzZNXjFAn6x6RYMmPKkSNxe6rsczWWhYiEqVK6i1P7q+dcjaldtV7tYiWXqMoKAgZc8ZrtMn//LEEO3jcHjvA7BRaFiISlcprjVLXBftrlmyQTfXKJ3hMWWrl9aaJa53qF69eINKVy3u0qprERwcpDvb1lREznAlrMr8bfdMFRoWolK3FtHa7ze5bF/7/SaV/c+rfP+r7G0l0u2/5rtNKlWpqPM6Vm98q7b8skM9RrbT1G3vaNyqIWr7QhMFBwe5HFeoRLw+2/K2Jm98Qy9P7JLh24f5orTeF9La5a7fE2uXb1W5ykUt+zoN29yupXPXK/nvfy17TI/zZqdoFXxYaFhoWucWu3ZrzZKNurlGGZtGZYbQsBCVqlxMay//GeDbjSqXyc8A5aqX0ppvL9t/8UaVrpL5zwDhOcIVGhaq08fOWjNww4SGhahUhRu1dqnr3ZLWLt2iclWLWfZ1wrNnU0hoiE6f8KHrSKcQIJhTWcOU6+hv0jpVWGt/2Oyyfe3SzSp3W3GbRmUI5lRAlgTqnMqd807rkmvHVi9y7VK5Ghm1a73K1cz8Wua8sLDt9LEzzm2bftyiGs2qKqZg2p31Kt55s24oXUCrF/nQuwpm4lK7XBfkrF26WeWqBli76BQCBL+junamdyooKEi9P35aM0bM8bkXVl9a4+O6ZmfN97+pXLVM1vjcXlJrvnddE5S2xqeo6xqfPvfp5JFTWvTxsky//lPvdNAvi9Zr3f9tynQfYzCnQoDwVqeyMo76D9fSosk/uHW8t5neqsvHem/nu3XmxFnt2LDnyidmM7vWpYSEhigkNET/Jp9zeZx///lXN2eyBtZ2dMpIfr14vW/fvnr88cftHoZTZL7cCgkN0YnL7oR64tBJRcXnyfCYqPg8OnHZW62eSDql0LBQ5cmXS5JUrkYpNepYV6O6T/DMwH1AZFROhYSGpLtD+onDpxV1HW/hsX9Hkkb2mqrBnSZo+DOf6FzyeY348hkVLOqfb38ZmTdH2nU86hroE0dPK+rC99vVtHysliKyZ9Oyhb9dfWcgwJnWKUnKky8y7XngsvYcP3RSUfnzZnhMdP48Ge6f1qrc1/T1i95yo+acnKL5f3+mZ8c8qcGtRmjvZt97a9fImLTmH0+67LocPqXoKzT/+GHXnxGOJ124jjFpz8EFisaqVouqCgkJ1oDWozR1xFy1eqqRHuzV1HnMltU79VbXj9Sv5Ui9+8wURcfl0duL+yp3VE6Lz9L7nL2/7FXlJ46eVlTstX2vZaZ0hRtVrEwBLZzuG2+vBniaia26HnkuzMmOHzrhsv34oROZdi5QRF78GeDydh06qaj4vBkeExWfN/3PAElX/hngiaEP6ciBY1r7nX/OFyKjM2nVkdOKirPu7SUf69tcRxNPat1lL+AGAo2JnWJOZQ27r6O/iozOlcnvUE8pKtb8t0EGfJGJrboegTqncue8o/PnzXD//3YpKn8Gc6ortE6Suo7soN+Wb9buTfuc20Y/M0l7EvZr2v7xWpA8VUMX9NP7PT7Sph+3ZPo4viLzdp1WVFzGv2cFkHUmdorfUV070zvVtncLpZ5P0az35mf5nExx8e99Jy77fjxx6NQV1vjk1YlDl60Jcn4/XljjU72UGnWoq1FPTcz0a9d9oJpK3lpEEwemv7s7ECgCuVNXU7PFbcqVN6cWf+wbN7k1vVWSVK1JZc059Ynm/f2ZWj3XVL0bvqpTR09n8ihmsGtdyt9n/lHCz9v18IvNFJ0/r4KDg3RXm+oqU7W4ov34dwOwXqjdA/CkAwcOaN++fVfcJzk5WcnJyS7bUh0pCg7y3N14HJe9uiIoKOiKr7hI96mgS9uz54pIe5ug7hN06mjGrwgKJA5dfm3Tb7sWW9bt0ZZ1l15FlbB6l96f94Kad6itcYNnuf24psvoezQrLwqqe28FteteX4Of/kQn/eBV6i54VRQ8ICudksxp1eXbXPd3/XdQUFCGj3M1+//4U10rv6RceXOqVstqenFSD71Qb5BPLraQpMsTdLXrePmFvPw6BgUH6cThU3r3mclKTXVo+/o9ismfVw88c48+f/MbSWl3b7hod8IBJfyyXZPWv6EGD9+hr0YvtuCk7Jfu+01Z61RWNGpzu3b9cVBbN179/5tGoVPwEFPnVNcro25da7P8VfqfAXTl55j0T8oZPo4ktX6hme5se4devHuIzl12NwZ/k9F1tOpb7IFu9XVniyp6qfV7Opd83poH9Qb+PwYPYE6Vnr/Nqey6jv7uWq9rQAj084fHMKfyL9d63hn+PfDyx7mGOdjTHzyhYhUKq2ftAS7b73umscpWL60BzYfr0J7DqlCnnJ4e/aSOHjyudX6wKFPK5O9/AfA95yLQzhde4VtzKvE7qqswsVOlKhfX/c80UfcqL139BAyW/tpmsPG/+6f/A6HzcbLnilDvCV016qmJma7xiS0UrW5vtVPf5m/6zvconYIHBGqnsuKex+rp14XrdezgcbeOt4uJrbpow/9tUtdKLypPvtxq3Olu9Z/+vJ6p3kcnLlvobSQb1qW81eVD9fzgcX3+x9tKOZ+i7Rv26IcZP6tExSLWnZeV6JSR/Hrx+pQpU666z7BhwzR48GCXbcVDyqtkWEXLx3PqyGmlnE9J9wrMPHGROp6U8RNd2quBXPfPGxup8+fO69TRMypSrpDyF43VkJnPOz8fdOEtGuafnqwnKrykg7uSLD4T85w6flYp51MUfdkdgvLky60TR6x7FZTD4dDWDXtVsFisZY9pklMn/kq7jpe9si9PdC6duMqLI+rcU17PvdpSQ3tO1fpVOzw5TMBvZKVTUsatKqZyKhF0i+VjOnnkVNrzwGWvhswbF5nunUAuOpZ4UtGXtyruUquuxflzKfpzxyFJ0tY1O1Wmagnd/8y9erfbh9f0OHY7dTTj5ufNl/vKzY/LpPkXXhB0LPGkUs6nKDX10g/We/84qOj8eRUaFqLz51LSPW7yX/9qd8J+FSwRf72nZbtLvb+sUzG5LOl9eESY6ja7VZ+8s+i6HwvwF+7OqYqprEroZk8Ny20nL8zJ0ncu/TteBZpTF38GuOzOIHnj8qS7Y8NFGd0RIyo2T4Y/AzzQs6keevk+9b7nde36ba+VQzfKqWOZzE1jclvyC85WXe5S26cbqu+DH2j35j+v+/EAX8ecKj1/mVPZfR391aljZ9Kua5xnf4cK4BLmVP7BnfM+lnhC0fmj0u2f1qW059zjiennVHnj0r+TiCT1eO9xVW9WVS/UfUVHDhxzbs8WkU2Pv/6wBrV8S7/MXytJ2vXbXpW4tahav9Dc5xevO9uV0d//fGERCWC465lTFQ+6WSVCrJ9T8Tuqa2dyp26pfZPyxkXqsz1jndtCQkPUZUQHtXy2idoX73Etp+p1mf2978prfE6k//tgRmt8ZvR0ft65xufkJD1xa28VvfkGRcXl0Qcrhjj3CQkNUflaZdS8y91qGvW4y98KAX8ViJ3KirjC+VSpfnkNaT3ymo+1i8mtuuifv5L1545E/bkjUZt/3qbJf7yne564S9OGz876iXqZnetSDu46rJeavKHwHNmUM3d2HTt0Un0mddWhPYctPkv4s2C7B2C3Pn366OTJky4fxUOtj5eU9sejbet2q/Jdro9f+a5blPDTtgyP2fzz9nT7V6lfXlvX7lLK+RTt++OgOlfpo27V+js/fpq3ThuWbla3av11eP9Rj5yLac6fS9G23/erUq3SLtsr1yqthDW7Lf1aJcoVyvQJ3tedP5eibQl/qlLNki7bK9csqYT1ezI5Ku2O688PfUBvvjRdvy7z07etdzi89wFcJqNWFQsq65Gvdf5cirau2anKd1dw2V757gratGprhsds/mlruv2rNKigrat3KuV8+sXU1yIoSMoW7nuvtTt/LkXb1u9RpXrlXLZXqnezNv+yPcNjNv+6Q5Xquf5RsvJdN2vbut3O65jw8zYVLBbnfOWrJBUqGa+jB09kuHBdksKyherG0gV0LPHEdZyRGdJ6fyDj3q/dfd2PX7tJRYVlC9X3s9de92N5nTc7RatwmQw7pZvsHlaGzp87n9a5Bhl1zk9/js2i8+dStG3tLlW+u7zL9sr1yyshk58BEn7apsr1L9u/QQVtXeP6M0Dr55vqkX4t1bfpMG1bs9P6wRvk/LkUbdu4T5XquP5/oHKdMkpYveu6HrtV1/p66Ll7NKDdWG3ztXcIkegUbMWcyjfnVCZdR3+R1qm9qlTX9fu/ct2blPCrfzf6qphTwUbMqcznznln2KWGFV26lLBqq6qka1dFJax0fcyn3n9Cte6vppfqD1bibtcbVoWGhSgsW6gcqaku21NSUhUcHCRfl2m76pRVwuoAaxedgo0ybFWw5+ZU/I7q2pjcqW8/WaYuFXupa6UXnR9HDhzTjBFz1Oee1906X2/KdI1PvVuU8HMma3x+2a7K9S5f43OLtq7dfWmNz2191K1Gf+fHT/PWacOyzepWI22Nz/ofEtLt88eanfp++ip1q9HfzIXrzKlgI3/pVFY16nCnTiSd1M/z113zsXYxuVWZCgpSWHhY1va1iQnrUpL/+lfHDp1Urrw5VOWuW7Rq/noLzswD6JSRfO8vF1dw7tw5zZs3T9u2bVOBAgV0//33K2fOnFc8Jjw8XOHh4S7bPPm2IV+9t0AvTuiqrWt3afPP23XvE/UUd2OM5n30nSTpsSFtlK9glN56crwkae6H36t51wbq/MbDWjDxB5WtVlKNOtbV8A6jJUnnks9pT8J+l69x5sRfkuSyPSJnuMsdV/MXjVXxCoV1+vhZHd7nHwvcZ330g3q9/Yi2bdynzWt3q/HDNRVbMErzP1spSer4UhPFxOfRyBc+dx5TvFxBSVJEjnDlic6l4uUK6vy/Kdq7Pe0OVQ8/20hb1u3Wn7uOKEfucLXoWEfFyxXS6IEzvX+CXjJr8gr1eqO1tm06oM3r96px69sUWyCP5k//RZLUsWdDxcRFamSfLyWlLVzvNay1xg2bqy0b9ikqXy5JUvI/5/TXmbS35QkNC1HhEnHO/46Jj1Txmwro77+SdXBv+lezAf7KnU5J3m/VzFHz1HvKU9q6Zoc2r9qmezvVV1zhfJo7fokk6fHXH1K+QtF6s2Nai+aOX6LmPRqpy4j2WvDR9ypbo5TuefwuDX3kXedjhoaFqEi5GySlLabOVyhKJSoW0d9n/nHeFfDx1x7ULwvX6/C+o8qeO0L12tZUhTtvVt97h3rsXD3pq9GL9OL4Ttq2brc2/7JDjTvWVdwN0Zo38QdJ0mOvtFJMgSiN6PqRJGnexB/UvFN9dX69rRZMWaayt5dQo/a1NfyJ8c7HnDvh/9S8893q+sZDmjP+OxUqEa8HX2iir8d/59znydfa6OcF65W0/5jy5ovUQy82VY7c2fXt1JVePX9PmTVhqXqNfEjbftunzWv3qPFD1RVbMK/mf/aTJKnji43Tet9rmvOY4mUv9D5ntrTely2o8+cu9f6iRm1u16rFv+v0hZ+lgEDkC3Oq6zXznbnq/fHT2rp6hzav2qp7O9+d1rlxi+0emu1mjpqnlyb30NY1O5Xw01Y1efLCtfnft5LSWh1TKFpvPTZGkjTvf0vUontDdXmrveZP+E7lqpfWPY/V07B27zkfs/ULzdRhcBsNb/++Du0+7Lz7w99n/tE/Z5PTD8IPzPrw/9Tr3fbatmGvNq/Zpcbt7lBsoWjN/2SFJKnjy80UUyCvRj77ifOY4jcXkpQ2d88TnUvFby6UNjfdlihJeqBbfT36YhO98dQUHdp3VFEX3oXk77PJ+uevf718hoB9mFMF1pzKrusYkTNchUrmdx6Tv2icSlQsolPHzvjF71Fnjf9evd7voG0b9mjz6ouditL8j5dLkjr2bZHWqacv3d2s+M1p1ywiZ7jyxORS8Ztv0Plz57V3a1qnQsNCVLh0Aed/xxTIq+I336C/zybr4G7utoTAwpzKf13tvB8f+rDyFYzWmx0/kCTNHbdEzXvcoy4jO2jBh9+qbI3SaV16eJTzMWe9N09vLx2iti+10Mqvf1XNFrep8t3lXd7C/unRT+quh2rplfve1F+n/1HUhTs8nj35l/7951/9dfpvbfhhkzq92V7Jf/+rpD1HVKFuOTVoX1fjXsjanSpNN2vcd+r1QcdL7WpfS7E3RGn+lAvt6tdCMfmvrV1AoPKlOZUdv6OKyBmugv+dCxSLU/GKRXTaB+YCpnbq9LEzOn3M9a7C58+d17HE49q/1TfeVfCr9xfqxY+6aOu6C2t8Hr/zwhqf7yVJjw1unbbGp9P/JElzP/pezbs0UOfhD2vBpAtrfDrU1fCOad+vaWt8Drh8jTMnL67xSdt+/lxKun3+OZus08fOpNsO+JNA7lRoWIgKO39nFaJ8BaNVvGIR/fOf31lJUlBQkBp2qKslnyxTaorrC1hNZ2qrInKE6+F+LbVqzmodPXhckTG51bx7I8XeEK1lM1Z57fq4y651KVXq3ywpSPu3J6pg8Tg9OaSN9m9P1OJPV3jz9OHjfHrxes2aNTV//nzlzZtXhw8fVv369fXHH3+oSJEi2rdvn/r166eVK1eqUKFCdg/VaemXPyt3dC490vc+RefPqz2b9qv/fSOUtDdtshOdP69ib4xx7n9oz2H1v2+Eurz5iJp1uVvHDp7Q2Bc+0YrZq6/p65auXExvLe7n/HfXNx+RJC3+ZLlGdv6fBWdmv2Vz1yt33px6+NlGio6N1O6tBzXwsf8p6cBxSVJ0XKTiCrm+ncjo+S86/7t0hRtV774qOrT/mDrWelWSlCsyu54Z2kbRsZE6e/pv7Ug4oBfbvq+tG/zjLcQysmzhb8qdN4ce7naXomNza/e2QxrYZYqS/jwhSYrOl1txBfI697+3ze0KDQvRUwNb6KmBLZzbl8xao7f7pS3yj47NrdFfPe383AOP19EDj9fRxl92qnfHj7xyXtct1bd+6IMZfLFTkrT0i1WKjM6tdv1bKbpAlHb/vk/9mg5X0t4jkqSYAnkV959WJe4+rP5Nh6vryA5q3r2Rjv55XGOem6QVX/3i3CemYLTGrX3T+e82vZqrTa/m2vDDJvWqn/aWd3nj86j3lB6KLhClsyf/0q6Ne9X33qFa+61vvrXtsq9+VWR0Lj3yUnNF5c+jPZsPaEDrUUq68AvO6Pg8irsh2rn/oT1HNKD1O+oy7CE17XSXjiWe0Njen+vHOWuc+xw5cFz97h+pzsMe1NiVQ3Tk4HHNHvetZrwz37lPvoJRenlCV0XG5NLJI6e1ZfUO9bz7defX9XXL5m1Q7qicevjpBhd6n6iBj09Q0p8Xeh8bqbiCl/V+3vPO/y5d/kbVa1E5rfd1Li3iKVQsn265rbj6PjpePolOwU2+2qrrsfSLlYqMyaV2Ax641LkmQ52dC2RLZ6xSZEwuPdKvlaIL5NWeTfvUv9mlnwGiC0Qp7sZ8zv0Tdx9Wv2ZvqOvIR9WsW0Md+/O4xvScrBWzLv0M0KxrQ2ULD9PAL553+VqfDPlSn7z6pXdOzMuWzVmb1qqe9yg6LlK7/zioge3HXpqbxudJ36rFLzv/u3TFwqrX8jYd2ndUHasPkiQ17VBbYeFh6v/hky7HfTpyvj57e4FnT8gqtApu8NVOMaeyhl3XsXTVEhr5/SvOfbq93UGStHjKD3rr8Utvde+rln29Jq1Tz9+b1qktBzXwkTFK2p92g4no+Ax+h/pdX+d/l65YRPVa3Z7WqdvS/hAYnT+Pyz4PdG+gB7o30MaVW9W75SjPn5QV6BTc5Kutuh6BOqe62nnH5I9SXOH/zpeS1L/JMHV9+z9denaiVnz1s3OfhFVb9fpDo9Tx1QfVYciDOrgjUa8/+I62/OcOec27NZIkjfxhsMt43npstBZP+UGS9PpDo/TE0IfV59NnlTs6lw7tOaxJ/af6zQsKLrWriaLjL7Tr4dGX2hWXR3GFol2OGf39pb+Jlr71Qrv2HlXH2/p7deyWolVwg692yq7fUZWuUkIjvhvo/FzXEY9KkhZ/vFQjnjB7LmByp3zd0pkX1vi83CJtjU/CfvVvOfLS3/vy51XsDf9d43NE/VuOUJc3HlGzzvXT1vj0+kQrvr62NT4+h07BDXTqst9ZrX7D+e/WLzRT6xeaacPSBL149xDn9sr1yyu+SKwWTf7B8ydqMVNblZKSqhvLFFKDL+9UZL7cOn30tP74dYd61hmY7obCJrJrXUqOyBx67JVWylcwSmeOn9WKOWs0+dWvzH0HTDplpCCHw3fvUx8cHKzExETFxcWpc+fO+vXXX7VgwQLlz59fR48eVfPmzXXTTTdpwoQJ1/S4jbK399CIA0twfL6r74SsyZHd7hH4hQUJ7t9prHGBHhaO5MoWHBztta8Fz/JUpySpQUhbD4w48ITkuvortXF1QTHRV98JV7Vg5wi3j/VmpyRa5U881aoGwa09NOLAEhRi7t0WfUlIXKzdQ/ALCw68f13HM6eCO5hTIVCExsZcfSdc1YLEMW4fy5wK7mJOhUAQGsvf+6yw4ND1LXxlTgV3eHJO1TDsQQ+MOPA4Ugxd4OVjgrOznsIKi85+7PaxzKngDjplPjpljZDcue0egl9YeHKi28fSKTMF2z0AqyxdulSvvfaa8udPexunmJgYvf766/r+++9tHhkAv+BweO8DfolOAfAob3aKVvktWgXAo+gUrhOdAuBRzKlgAVoFwKPoFK4TnQLgUcypcJ3oFACPolNG8vnF60FBQZKkEydOqFixYi6fK1asmA4ePGjHsAAAkESnAADmo1UAAJPRKQCA6WgVAMBkdAoAYDI6BQCBK9TuAVyvjh07Kjw8XOfOndOePXtUrlw55+cOHjyovHnz2jc4AP6DV0XBTXQKgFfQKVwHWgXAK2gV3ESnAHgFncJ1oFUAvIJWwU10CoBX0Cm4iU4B8Ao6ZSSfXrz+6KOPOl+B1aJFC505c8bl8zNnztStt95qw8gAAKBTAADz0SoAgMnoFADAdLQKAGAyOgUAMBmdAoDA5tOL1ydPnnzFzw8aNEghISHeGQwAAJehUwAA09EqAIDJ6BQAwHS0CgBgMjoFADAZnQKAwBZs9wCux9NPP63ly5dn+vmcOXMqIiLCiyMC4LdSHd77gN+gUwC8xpudolV+hVYB8Bo6BTfQKQBew5wKbqJVALyGTsENdAqA1zCnghvoFACvoVNG8unF66NHj9add96p0qVL64033lBiYqLdQwIAwIlOAQBMR6sAACajUwAA09EqAIDJ6BQAwGR0CgACm08vXpekxYsX695779WIESNUuHBhtWjRQnPnzlVqaqrdQwPgRxyOVK99wL/QKQDe4M1O0Sr/Q6sAeAOdgrvoFABvYE6F60GrAHgDnYK76BQAb2BOBXfRKQDeQKfM5POL18uXL69Ro0bpzz//1Keffqrk5GTdd999uvHGG9WvXz9t377d7iECAAIYnQIAmI5WAQBMRqcAAKajVQAAk9EpAIDJ6BQABC6fX7x+UVhYmNq0aaOFCxdq586d6tSpkz777DOVKVPG7qEB8AepDu99wC/RKQAe5c1O0Sq/RasAeBSdwnWiUwA8ijkVLECrAHgUncJ1olMAPIo5Fa4TnQLgUXTKSH6zeP2/ChcurEGDBmnXrl1auHCh3cMBAMAFnQIAmI5WAQBMRqcAAKajVQAAk9EpAIDJ6BQABIZQuwdwPYoUKaKQkJBMPx8UFKQGDRp4cUQA/JaDV0Xh2tEpAF5Dp+AmWgXAa2gV3ECnAHgNnYKbaBUAr6FVcAOdAuA1dApuoFMAvIZOGcmnF6/v2rXL7iEAAJApOgUAMB2tAgCYjE4BAExHqwAAJqNTAACT0SkACGw+vXgdALwmNdXuEQAAkDk6BQAwHa0CAJiMTgEATEerAAAmo1MAAJPRKSMF2z0AAAAAAAAAAAAAAAAAAAAAAID/487rAJAVDofdIwAAIHN0CgBgOloFADAZnQIAmI5WAQBMRqcAACajU0bizusAAAAAAAAAAAAAAAAAAAAAAI9j8ToAAAAAAAAAAAAAAAAAAAAAwONC7R4AAPgCR2qq3UMAACBTdAoAYDpaBQAwGZ0CAJiOVgEATEanAAAmo1Nm4s7rAAAAAAAAAAAAAAAAAAAAAACP487rAJAVDofdIwAAIHN0CgBgOloFADAZnQIAmI5WAQBMRqcAACajU0bizusAAAAAAAAAAAAAAAAAAAAAAI/jzusAkBWpvAILAGAwOgUAMB2tAgCYjE4BAExHqwAAJqNTAACT0Skjced1AAAAAAAAAAAAAAAAAAAAAIDHced1AMgKR6rdIwAAIHN0CgBgOloFADAZnQIAmI5WAQBMRqcAACajU0bizusAAAAAAAAAAAAAAAAAAAAAAI/jzusAkAWOVIfdQwAAIFN0CgBgOloFADAZnQIAmI5WAQBMRqcAACajU2bizusAAAAAAAAAAAAAAAAAAAAAAI/jzusAkBWOVLtHAABA5ugUAMB0tAoAYDI6BQAwHa0CAJiMTgEATEanjMSd1wEAAAAAAAAAAAAAAAAAAAAAHsfidQDIAkeqw2sf7hgzZoyKFSumiIgIValSRcuXL7/i/kuXLlWVKlUUERGh4sWLa9y4cen2mTlzpsqVK6fw8HCVK1dOs2bNcmtsAADP82an3GkVnQIAmNwpiVYBQKBjTkWnAMB0JndKolUAEOiYU9EpADCZ6Z2SArNVLF4HAB83ffp0Pffcc+rXr5/WrVun2rVrq3Hjxtq7d2+G++/atUv33nuvateurXXr1qlv37565plnNHPmTOc+q1atUtu2bdW+fXtt2LBB7du3V5s2bfTzzz9767QAAH6CTgEATEerAAAmo1MAANPRKgCAyegUAMB0gdqqIIfD4d5Sfz/WKHt7u4fgF4Lj89k9BP+RI7vdI/ALCxKGun1sg5C2Fo7kypakTL+m/atVq6bKlStr7Nixzm1ly5bVfffdp2HDhqXbv3fv3pozZ442b97s3Na1a1dt2LBBq1atkiS1bdtWp06d0oIFC5z73HPPPYqKitLUqVOv9ZTgAd78nvRnIbly2j0EvxAUE233EPzCgp0j3D7W288J19IqOhWYGgS3tnsIfiEoJMTuIfiFkLhYu4fgFxYceP+6jmdORatMw5wKJgmNjbF7CH5hQeIYt49lTkWnTMOcCiYJjeXvfVZYcGjs1Xe6AuZUtMo0DcMetHsIfsGRkmL3EPxCcHbWU1hh0dmP3T6WORWdMg2dsgadskZI7tx2D8EvLDw50e1jTe6UFLit4s7rAJAVjlTvfVyDf//9V2vWrFHDhg1dtjds2FArV67M8JhVq1al279Ro0ZavXq1zp07d8V9MntMAIDNvNmpa2gVnQIAOBnYKYlWAQAuYE5FpwDAdAZ2SqJVAIALmFPRKQAwmaGdkgK7VaF2DwAA4Co5OVnJycku28LDwxUeHp5u3yNHjiglJUXx8fEu2+Pj45WYmJjh4ycmJma4//nz53XkyBEVKFAg030ye0wAQGDJaqvoFADADsypAACmY04FADAZcyoAgOmYUwEATMacKmtYvJ6BRX9/YvcQrig5OVnDhg1Tnz59MvyGRtZxLa0RCNdxSeoMr32tQYMGafDgwS7bXnnlFQ0aNCjTY4KCglz+7XA40m272v6Xb7/Wx4R3XetbzHhbIDwveAPX0RqBcB292Snp2ltFpwKPt78nr1UgPC94A9fRGoFyHZlT0SrTMKcKDFxHawTCdWRORadMw5wqMHAdrREo15E5Fa0yzeJz0+wewhUFynODp3EdrREI15E5FZ0yDZ0KDFxHawTCdTS9U1JgtirY7gHg2iUnJ2vw4MHpXp2Ba8e1tAbX0Vp9+vTRyZMnXT769OmT4b758uVTSEhIuldFJSUlpXv11EX58+fPcP/Q0FDFxMRccZ/MHhO4HM8L1uA6WoPraL2stopOwVQ8L1iD62gNrqP1mFPBH/DcYA2uozW4jtZjTgVfx/OCNbiO1uA6Wo85FfwBzw3W4Dpag+toPeZU8HU8L1iD62gNrqP1mFNlDYvXAcAw4eHhioyMdPnI7JVt2bJlU5UqVbRkyRKX7UuWLFHNmjUzPKZGjRrp9l+8eLGqVq2qsLCwK+6T2WMCAAJLVltFpwAAdmBOBQAwHXMqAIDJmFMBAEzHnAoAYDLmVFnkgM85efKkQ5Lj5MmTdg/F53EtrcF1tNe0adMcYWFhjgkTJjgSEhIczz33nCNnzpyO3bt3OxwOh+Pll192tG/f3rn/zp07HTly5HD07NnTkZCQ4JgwYYIjLCzM8eWXXzr3+fHHHx0hISGO4cOHOzZv3uwYPny4IzQ01PHTTz95/fzgm3hesAbX0RpcR3vRKZiI5wVrcB2twXW0H62CiXhusAbX0RpcR3vRKZiI5wVrcB2twXW0H62CiXhusAbX0RpcR3vRKZiI5wVrcB2twXW0X6C2isXrPognDOtwLa3BdbTf6NGjHUWKFHFky5bNUblyZcfSpUudn+vQoYOjbt26Lvv/8MMPjkqVKjmyZcvmKFq0qGPs2LHpHnPGjBmOMmXKOMLCwhw33XSTY+bMmZ4+DfgRnheswXW0BtfRfnQKpuF5wRpcR2twHc1Aq2AanhuswXW0BtfRfnQKpuF5wRpcR2twHc1Aq2AanhuswXW0BtfRfnQKpuF5wRpcR2twHc0QiK0KcjgcDk/d1R2ekZycrGHDhqlPnz6Zvp0AsoZraQ2uI4DL8bxgDa6jNbiOAC7H84I1uI7W4DoCyAjPDdbgOlqD6wjgcjwvWIPraA2uI4CM8NxgDa6jNbiOAC7H84I1uI7W4DrCLixeBwAAAAAAAAAAAAAAAAAAAAB4XLDdAwAAAAAAAAAAAAAAAAAAAAAA+D8WrwMAAAAAAAAAAAAAAAAAAAAAPI7F6wAAAAAAAAAAAAAAAAAAAAAAj2PxusESExP17LPPqmTJkoqIiFB8fLxq1aqlcePG6a+//pIkFS1aVKNGjUp37KBBg3Trrbd6d8AG6tixo4KCghQUFKSwsDDFx8erQYMGmjhxolJTU537FS1a1Lnffz+GDx9u4+jN9N9rGhQUpJiYGN1zzz3auHGjc5+goCDNnj3bvkEC8Ao6ZQ1aZT1aBeAiWnX96JT16BSAi+jU9aNT1qNTAC6iU9agVdajVQAuolXXj05Zj04BuIhOWYNWWY9WwRQsXjfUzp07ValSJS1evFhDhw7VunXr9O2336pnz5765ptv9O2339o9RJ9xzz336ODBg9q9e7cWLFigevXq6dlnn1XTpk11/vx5535DhgzRwYMHXT6efvppG0durovX9ODBg/ruu+8UGhqqpk2b2j0sAF5Ep6xFq6xHqwDQKuvQKevRKQB0yjp0ynp0CgCdshatsh6tAkCrrEOnrEenANApa9Eq69EqmCDU7gEgY927d1doaKhWr16tnDlzOreXL19erVq1ksPhsHF0viU8PFz58+eXJBUqVEiVK1dW9erVVb9+fU2ePFlPPvmkJCl37tzO/XBl/72m+fPnV+/evVWnTh0dPnxYsbGxNo8OgDfQKWvRKuvRKgC0yjp0ynp0CgCdsg6dsh6dAkCnrEWrrEerANAq69Ap69EpAHTKWrTKerQKJuDO6wY6evSoFi9erB49ergE7L+CgoK8PCr/ctddd6lixYr66quv7B6Kzztz5ow+++wzlSxZUjExMXYPB4AX0CnvoFXWoVVA4KFVnkenrEOngMBDpzyPTlmHTgGBh055B62yDq0CAg+t8jw6ZR06BQQeOuUdtMo6tAp2YfG6gbZv3y6Hw6EyZcq4bM+XL59y5cqlXLlyqXfv3s7tvXv3dm6/+DF06FBvD9vn3HTTTdq9e7fz3xldxx9++MG28Zls7ty5zmuUO3duzZkzR9OnT1dwME8pQCCgU95Dq9xHq4DARqu8g065j04BgY1OeQedch+dAgIbnfIeWuU+WgUENlrlHXTKfXQKCGx0yntolftoFUwQavcAkLnLX2X1yy+/KDU1VY888oiSk5Od21988UV17NjRZd/33ntPy5Yt88YwfZbD4XC5xhldx0KFCnl5VL6hXr16Gjt2rCTp2LFjGjNmjBo3bqxffvlFRYoUsXl0ALyFTnkerXIfrQIg0SpPo1Puo1MAJDrlaXTKfXQKgESnvIFWuY9WAZBolafRKffRKQASnfIGWuU+WgUTsHjdQCVLllRQUJC2bNnisr148eKSpOzZs7tsz5cvn0qWLOmyLTo62rOD9AObN29WsWLFnP/O6DoiYzlz5nS5VlWqVFGePHn04Ycf6rXXXrNxZAC8gU55D61yH60CAhut8g465T46BQQ2OuUddMp9dAoIbHTKe2iV+2gVENholXfQKffRKSCw0SnvoVXuo1UwAff5N1BMTIwaNGigDz74QGfPnrV7OH7p+++/12+//aZWrVrZPRS/EBQUpODgYP399992DwWAF9Ap76BV1qJVQGChVZ5Hp6xFp4DAQqc8j05Zi04BgYVOeQetshatAgILrfI8OmUtOgUEFjrlHbTKWrQKduDO64YaM2aM7rjjDlWtWlWDBg1ShQoVFBwcrF9//VVbtmxRlSpV7B6iz0hOTlZiYqJSUlJ06NAhLVy4UMOGDVPTpk316KOPOvc7ffq0EhMTXY7NkSOHIiMjvT1k4128ppJ0/PhxffDBBzpz5oyaNWtm88gAeAudshatsh6tAkCrrEOnrEenANAp69Ap69EpAHTKWrTKerQKAK2yDp2yHp0CQKesRausR6tgAhavG6pEiRJat26dhg4dqj59+mj//v0KDw9XuXLl1KtXL3Xv3t3uIfqMhQsXqkCBAgoNDVVUVJQqVqyo9957Tx06dFBw8KU3Hxg4cKAGDhzocmyXLl00btw4bw/ZeBevqSTlzp1bN910k2bMmKE777zT3oEB8Bo6ZS1aZT1aBYBWWYdOWY9OAaBT1qFT1qNTAOiUtWiV9WgVAFplHTplPToFgE5Zi1ZZj1bBBEEOh8Nh9yAAAAAAAAAAAAAAAAAAAAAAAP4t+Oq7AAAAAAAAAAAAAAAAAAAAAABwfVi8DgAAAAAAAAAAAAAAAAAAAADwOBavAwAAAAAAAAAAAAAAAAAAAAA8jsXrAAAAAAAAAAAAAAAAAAAAAACPY/E6AAAAAAAAAAAAAAAAAAAAAMDjWLwOAAAAAAAAAAAAAAAAAAAAAPA4Fq8DAAAAAAAAAAAAAAAAAAAAADyOxesAAAAAAAAAAAAAAAAAAAAAAI9j8TpgkTvvvFPPPfec3cMAACBTtAoAYDI6BQAwGZ0CAJiOVgEATEanAACmo1WAd7F4HUZJSkpSly5dVLhwYYWHhyt//vxq1KiRVq1aZffQruqrr77Sq6++avcwAAAeRqsAACajUwAAk9EpAIDpaBUAwGR0CgBgOloFIKtC7R4A8F+tWrXSuXPnNGXKFBUvXlyHDh3Sd999p2PHjtk9tEydO3dOYWFhio6OtnsoAAAvoFUAAJPRKQCAyegUAMB0tAoAYDI6BQAwHa0CkFXceR3GOHHihFasWKE33nhD9erVU5EiRXT77berT58+atKkiXOfzp07Kz4+XhEREbrllls0d+5c52OsXLlSderUUfbs2XXjjTfqmWee0dmzZ52fL1q0qIYOHarHH39cuXPnVuHChfW///3PZRy9e/dW6dKllSNHDhUvXlwDBgzQuXPnnJ8fNGiQbr31Vk2cOFHFixdXeHi4HA5HurcOOX78uB599FFFRUUpR44caty4sbZt2+ahqwcA8AZaBQAwGZ0CAJiMTgEATEerAAAmo1MAANPRKgDXgsXrMEauXLmUK1cuzZ49W8nJyek+n5qaqsaNG2vlypX69NNPlZCQoOHDhyskJESS9Ntvv6lRo0Zq2bKlNm7cqOnTp2vFihV66qmnXB5n5MiRqlq1qtatW6fu3burW7du2rJli/PzuXPn1uTJk5WQkKB3331XH374od555x2Xx9i+fbu++OILzZw5U+vXr8/wfDp27KjVq1drzpw5WrVqlRwOh+69916XGAIAfAutAgCYjE4BAExGpwAApqNVAACT0SkAgOloFYBr4gAM8uWXXzqioqIcERERjpo1azr69Onj2LBhg8PhcDgWLVrkCA4Odvzxxx8ZHtu+fXtH586dXbYtX77cERwc7Pj7778dDofDUaRIEUe7du2cn09NTXXExcU5xo4dm+mY3nzzTUeVKlWc/37llVccYWFhjqSkJJf96tat63j22WcdDofDsXXrVockx48//uj8/JEjRxzZs2d3fPHFF1m4EgAAU9EqAIDJ6BQAwGR0CgBgOloFADAZnQIAmI5WAciqUBvXzQPptGrVSk2aNNHy5cu1atUqLVy4UG+++aY++ugjJSUl6YYbblDp0qUzPHbNmjXavn27PvvsM+c2h8Oh1NRU7dq1S2XLlpUkVahQwfn5oKAg5c+fX0lJSc5tX375pUaNGqXt27frzJkzOn/+vCIjI12+VpEiRRQbG5vpeWzevFmhoaGqVq2ac1tMTIzKlCmjzZs3X9tFAQAYhVYBAExGpwAAJqNTAADT0SoAgMnoFADAdLQKQFYF2z0A4HIRERFq0KCBBg4cqJUrV6pjx4565ZVXlD179isel5qaqi5dumj9+vXOjw0bNmjbtm0qUaKEc7+wsDCX44KCgpSamipJ+umnn/Tggw+qcePGmjt3rtatW6d+/frp33//dTkmZ86cVxyLw+HIdHtQUNAVjwUAmI9WAQBMRqcAACajUwAA09EqAIDJ6BQAwHS0CkBWcOd1GK9cuXKaPXu2KlSooP3792vr1q0ZvgKrcuXK2rRpk0qWLOn21/rxxx9VpEgR9evXz7ltz549bo35/Pnz+vnnn1WzZk1J0tGjR7V161bnq8AAAP6DVgEATEanAAAmo1MAANPRKgCAyegUAMB0tApARrjzOoxx9OhR3XXXXfr000+1ceNG7dq1SzNmzNCbb76pFi1aqG7duqpTp45atWqlJUuWaNeuXVqwYIEWLlwoSerdu7dWrVqlHj16aP369dq2bZvmzJmjp59+OstjKFmypPbu3atp06Zpx44deu+99zRr1qxrPpdSpUqpRYsW6tSpk1asWKENGzaoXbt2KlSokFq0aHHNjwcAMAOtAgCYjE4BAExGpwAApqNVAACT0SkAgOloFYBrweJ1GCNXrlyqVq2a3nnnHdWpU0e33HKLBgwYoE6dOumDDz6QJM2cOVO33XabHnroIZUrV04vvfSSUlJSJEkVKlTQ0qVLtW3bNtWuXVuVKlXSgAEDVKBAgSyPoUWLFurZs6eeeuop3XrrrVq5cqUGDBjg1vlMmjRJVapUUdOmTVWjRg05HA7Nnz8/3VuXAAB8B60CAJiMTgEATEanAACmo1UAAJPRKQCA6WgVgGsR5HA4HHYPAgAAAAAAAAAAAAAAAAAAAADg37jzOgAAAAAAAAAAAAAAAAAAAADA41i8DgAAAAAAAAAAAAAAAAAAAADwOBavAwAAAAAAAAAAAAAAAAAAAAA8jsXrAAAAAAAAAAAAAAAAAAAAAACPY/E6AAAAAAAAAAAAAAAAAAAAAMDjWLwOAAAAAAAAAAAAAAAAAAAAAPA4Fq8DAAAAAAAAAAAAAAAAAAAAADyOxesAAAAAAAAAAAAAAAAAAAAAAI9j8ToAAAAAAAAAAAAAAAAAAAAAwONYvA4AAAAAAAAAAAAAAAAAAAAA8DgWrwMAAAAAAAAAAAAAAAAAAAAAPI7F6wAAAAAAAAAAAAAAAAAAAAAAj/t/yzBZRJwrLdMAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAC6AAAAfGCAYAAACz5DKgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdebxVdb3/8feBwwxCyKgoqCmIijmLEyKOOGKZSZdBJSfINLXBW6JpOaS/9FqoVxNnM+e0pFLBIeWKIeWQ5mymIKKgoihw1u+PHhw9HDhuFNybw/P5eOzH47L2Wmt/9jn34X3B/a61qoqiKAIAAAAAAAAAAAAAAJ+iSbkHAAAAAAAAAAAAAABg5WABOgAAAAAAAAAAAAAAJbEAHQAAAAAAAAAAAACAkliADgAAAAAAAAAAAABASSxABwAAAAAAAAAAAACgJBagAwAAAAAAAAAAAABQEgvQAQAAAAAAAAAAAAAoiQXoAAAAAAAAAAAAAACUxAJ0AAAAAAAAAAAAAABKYgE6QJL3338/p556aiZNmrRCzr/zzjunqqrqU1+nnnpqNt5442y44Yb1znHrrbemqqoq/fv3r/fe1Vdfnaqqqvzud79Lkpx66qmpqqrKm2++uUK+DwAAfBF0OgAAVB6dDgAAlUenA/BFqy73AACV4P33389pp52W5D/RvLyNGzcu77zzTu2ff//73+eMM87I+PHj06dPn9rtPXr0yKxZs/LLX/4y06dPT7du3WrfmzRpUtq0aZNHH3007777btq1a1fnvSZNmmSnnXZa7rMDAEC56HQAAKg8Oh0AACqPTgfgi+YO6ABfgL59+2bbbbetfa233npJko033rjO9h49emTgwIFJUu+q1EmTJmXUqFGpqqrKgw8+WO+9zTbbLB06dPgivg4AADQKOh0AACqPTgcAgMqj0wFYnAXowHLz7LPPZujQoenSpUtatGiRDTfcML/61a+SJPPmzctmm22WL3/5y5kzZ07tMYuudtx5552zcOHCJMnIkSPTtm3bPPnkkxk0aFDatGmTzp07Z8yYMXn//feXea4rrrgivXv3rp3pqquuysiRI9OrV68kyUsvvZTOnTsnSU477bTaxwKNHDkyDzzwQKqqqnL99dfXO+9VV12VqqqqTJkyZZlnasiixxZ9MsRnzZqVxx9/PHvvvXe22GKLTJw4sfa9f/3rX3nhhRdqA/6TZsyYkUMOOSTt27dP165dc9hhh9X5+QMA0Pjp9OVDpwMAsDzp9OVDpwMAsDzp9OVDpwOsGixAB5aLp556KltttVWeeOKJnHfeebnzzjuz995759hjj81pp52Wli1b5re//W3eeOONHHbYYUmSmpqafPOb30xRFLn++uvTtGnT2vPNnz8/gwcPzqBBg3LbbbdlzJgxueSSS3LwwQcv01xXXHFFDj300Gy44Ya5+eab86Mf/Sinn3567r333tp9unfvngkTJiRJDj/88Dz88MN5+OGH8+Mf/zg77rhjNttss9q/UHzSL3/5y2y11VbZaqutPsuPbKk6duyYfv361Ynt++67L02bNs12222XAQMG1In0RfstKcS/+tWvZoMNNsjNN9+cH/zgB7nuuuty/PHHL9d5AQCoXDp9+dHpAAAsLzp9+dHpAAAsLzp9+dHpAKuIAmA52GOPPYoePXoUc+bMqbN9zJgxRcuWLYu33nqrKIqiuOGGG4okxfnnn1+ccsopRZMmTYo//elPdY4ZMWJEkaS44IIL6mz/6U9/WiQpHnzwwZJmWrhwYbHGGmsUm2++eVFTU1O7/aWXXiqaNWtW9OzZs3bbzJkziyTF2LFj651n/PjxRZLiscceq932yCOPFEmKK6+8sqRZlnbOKVOmLPH94447rkhSvPbaa0VRFMW3v/3tYtttty2Koij+8Ic/FE2bNq39WR966KFF06ZNi3feeaf2+LFjxxZJinPOOafOeY855piiZcuWdX4eAAA0Xjp92eh0AAC+CDp92eh0AAC+CDp92eh0ANwBHfjc5s2bl3vuuSdDhgxJ69ats2DBgtrX4MGDM2/evEyePDlJ8vWvfz1HH310TjrppJxxxhk5+eSTs9tuuy3xvN/85jfr/Hno0KFJUucKyYY888wzee211zJ06NBUVVXVbu/Zs2e22267kr/fIYccki5dutS5GvTCCy9M586dl/nK1FItuqpz0RWfkyZNys4775wk2WGHHZIk999/f+17W265Zdq1a1fvPPvtt1+dP/fr1y/z5s3LG2+8sULmBgCgcuj05U+nAwDween05U+nAwDween05U+nAzR+FqADn9usWbOyYMGCXHjhhWnWrFmd1+DBg5Mkb775Zu3+hx12WObPn5/q6uoce+yxSzxndXV1Vl999TrbunXrVvt5pc71yeOWdK5StGjRIkceeWSuu+66zJ49OzNnzsxvf/vbjBo1Ki1atCj5PMtiwIABadKkSSZOnJhZs2bliSeeyIABA5Ik7dq1y2abbZZJkybllVdeyYsvvrjExxAlqfczXDTvBx98sELmBgCgcuj05U+nAwDween05U+nAwDween05U+nAzR+1eUeAFj5felLX0rTpk0zbNiwjB49eon7rLPOOkmSuXPnZtiwYdlggw0yY8aMjBo1Krfffnu9/RcsWJBZs2bVCcnp06cnqR+XS7Nov0XHfdKStjXk6KOPzllnnZXLL7888+bNy4IFC3LUUUct0zmWRfv27Wtje9KkSWnSpEm233772vcHDBiQiRMnZpNNNkmSpYY4AACrLp2+/Ol0AAA+L52+/Ol0AAA+L52+/Ol0gMbPHdCBz61169YZOHBgHnvssfTr1y9bbrllvdeiKD7qqKPyyiuv5JZbbsmvf/3r/O53v8svfvGLJZ732muvrfPn6667LklqH8nzaXr37p3u3bvn+uuvT1EUtdtffvnlPPTQQ3X2/bQrJLt3756DDjoo48aNy8UXX5x99903a6+9dklzfFYDBw7Ms88+m+uuuy5bbLFFnUcNDRgwINOmTcttt92WZs2a1Yl0AABIdPqKotMBAPg8dPqKodMBAPg8dPqKodMBGjd3QAeWiwsuuCA77LBDdtxxxxx99NHp1atX3n333Tz33HO54447cu+99+ayyy7LNddck/Hjx2ejjTbKRhttlDFjxuT73/9+tt9++2y99da152vevHnOO++8vPfee9lqq63y0EMP5Ywzzshee+2VHXbYoaSZmjRpktNPPz2jRo3KkCFD8q1vfSuzZ8/OqaeeWu9RRO3atUvPnj1z++23Z9CgQenYsWM6deqUXr161e7zne98J9tss02SZPz48Z//h/YpBg4cmHPPPTe33nprTjzxxDrv7bjjjkmS22+/Pdttt13atGmzwucBAGDlo9OXP50OAMDnpdOXP50OAMDnpdOXP50O0Li5AzqwXPTt2zdTp07NxhtvnB/96EfZfffdc/jhh+emm27KoEGD8vjjj+fYY4/NiBEjMnLkyNrjzj333PTr1y8HH3xwZs+eXbu9WbNmufPOO/PnP/85+++/f/7nf/4n3/rWt3LjjTcu01yHH354Lrvssjz11FM58MAD85Of/CQnn3xydtlll3r7/vrXv07r1q2z3377Zauttsqpp55a5/2tt946vXr1yoYbbphBgwYt0xyfxY477pjq6uoURZEBAwbUea9Dhw7p169fiqIo+cpYAABWPTp9+dPpAAB8Xjp9+dPpAAB8Xjp9+dPpAI1bVfHJ53MAVICRI0fmpptuynvvvbdCP2PSpEl56aWXSj7m73//ezbddNP86le/yjHHHLPCZgMAgEqk0wEAoPLodAAAqDw6HYBVQXW5BwCodM8//3xefvnlnHzyyenevXudK1kBAIDy0OkAAFB5dDoAAFQenQ7AitCk3AMAfBY1NTVZsGBBg6/l5fTTT89uu+2W9957LzfeeGNat25d5/2iKD51Fg+bAABgVaDTAQCg8uh0AACoPDodgJVdVeH/OgAroZEjR+bKK69scJ8v6j9vkyZNysCBAxvcZ/z48a4gBQCg0dPpAABQeXQ6AABUHp0OwMrOAnRgpfTSSy/lzTffbHCfLbfc8guZ5d13380zzzzT4D7rrLNOVl999S9kHgAAKBedDgAAlUenAwBA5dHpAKzsLEAHAAAAAAAAAAAAAKAkTco9AAAAAAAAAAAAAAAAKwcL0IF63n333Xzve9/L7rvvns6dO6eqqiqnnnrqMp3jjTfeyMiRI9OpU6e0bt06/fv3zz333LNM5zj11FNzxRVXlLz/VVddlW984xvp3bt3mjRpkl69ei1xv2nTpmXvvffO2muvnVatWqVjx47p379/rrnmmnr7jhw5MlVVVfVeffr0WeK5L7zwwvTp0yctWrTIOuusk9NOOy3z588v+TvMmTMnJ554YtZdd900b948a665Zo4++ui89tpr9fb9+9//nqqqqjz22GN56aWXUlVVlXPPPXep53700UdTVVWVs88+u957+++/f6qqqnLJJZfUe2/QoEFZffXV44EZAADlpdM/ptN1OgBApdDpH9PpOh0AoFLo9I/pdJ0OsKJYgA7UM2vWrPzv//5vPvzwwxxwwAHLfPyHH36YQYMG5Z577skFF1yQ22+/PV27ds2ee+6Z++67r8Fj77jjjvzhD3+os60oilxzzTV56KGHGjz26quvzpNPPpmtt94666233lL3mz17dtZaa6387Gc/yx/+8IdcddVV6dWrV4YNG5Yzzjij3v6tWrXKww8/XOd1ww031Nvvpz/9ab7zne/kwAMPzB//+Mccc8wx+dnPfpbRo0c3OPci7733XnbcccdceeWVOfroo3PXXXflggsuyMsvv5wxY8bU2//mm2/OOuusk80226yk82+++eZp3759Jk6cWGd7TU1NHnjggbRp06beex999FEefvjh7LzzzqmqqirpcwAAWDF0el06XacDAFQCnV6XTtfpAACVQKfXpdN1OsAKUQAspqampqipqSmKoihmzpxZJCnGjh1b8vG/+tWviiTFQw89VLtt/vz5Rd++fYutt966wWOffvrpYujQocUee+xRfOMb3yiOOuqoYocddijGjBlT/Pvf/27w2IULF9b+z3vvvXfRs2fPkmcuiqLYZpttirXWWqvOthEjRhRt2rT51GPffPPNomXLlsURRxxRZ/tPf/rToqqqqnjyySc/9RxHH3100apVq+Lxxx+v997kyZPrbevbt29x4oknFkVRFC+++GKRpPj5z3/e4Gfsu+++Rdu2bYv58+fXbps6dWqRpDjxxBOLrl271tn//vvvL5IUF1544afODwDAiqXTP6bTdToAQKXQ6R/T6TodAKBS6PSP6XSdDrCiuAM6UM+ix+18Vrfeemt69+6d/v37126rrq7Of/3Xf+WRRx7Jv//976Ue27t371x77bU55phjcsstt+T666/PeeedlwsvvDBrrLFGg5/bpMnn+09ap06dUl1d/ZmOnTBhQubNm5dDDz20zvZDDz00RVHktttuW+qxRVFk3rx5ueGGG7LffvulT58+WbBgQe0rSbbZZps6xzz99NN56qmn8tWvfnWp550/f35GjBiRtm3b5s4770ySDBw4MO+9914effTR2v0mTZqUNdZYI6NGjcqMGTPy1FNP1Xlv0XEAAJSXTl92Oh0AgBVNpy87nQ4AwIqm05edTgdgWVmADix3TzzxRPr161dv+6JtTz755FKPffbZZzN8+PCMGzcuQ4YMySGHHJLvfve7OfbYY/P6668v1zlramqyYMGCzJw5M+PGjcsf//jHfP/736+33wcffJBu3bqladOm6dGjR8aMGZO33nqrzj5PPPFEkmSTTTaps7179+7p1KlT7ftLcvzxx6dVq1Z56623csMNN6RZs2a1r7Zt2+btt9+ud8zNN9+cNddcs16gLzJ79uzsscce+dOf/pT77rsv++yzT5KPg/qTjxyaOHFiBgwYkN69e6dbt2618b3ovc6dO6dv375LnR8AgJWDTv+YTgcAoFLo9I/pdAAAKoVO/5hOB2BpLEAHlrtZs2alY8eO9bYv2jZr1qylHvuPf/wjBx98cCZMmJA+ffpkm222yQMPPJCtttoqL7744nKd85hjjkmzZs3SpUuXHH/88fmf//mfHHnkkXX22XTTTXPuuefm6quvzoQJEzJy5MiMHz8+22+/fd57773a/WbNmpUWLVqkTZs29T6nY8eODX7no446KhdffHGS5Mwzz8yUKVNqX1OnTs2XvvSlesfcdNNNOfDAA5d4xe5LL72U7bffPjNmzMjkyZOzxRZb1Pk+HTt2rI3tmpqaPPDAAxkwYECSZKeddqqN9I8++iiTJ0/OwIEDP9eVwQAAVAadXpdOBwCgEuj0unQ6AACVQKfXpdMBWJLP9swNgE/RULg19N5+++23xP2HDRu2XOb6pJNPPjmjRo3KG2+8kTvuuCNjxozJ3Llzc+KJJ9buc/zxx9c5Zrfddstmm22Wr33ta7n00kvrvP9Zv3Pv3r1rH8/Uq1evfOUrX6l9b0mPRnrhhRcybdq0nH/++fXemzp1as4999z07ds3t9xySzp06FBvjgEDBuRPf/pT5s+fn8cffzyzZ8/OzjvvnCQZMGBAxo4dm6IoMnny5HzwwQceQwQA0Ijo9PrfYWl0OgAAXxSdXv87LI1OBwDgi6LT63+HpdHpAKsmd0AHlrvVV199iVc+Lnp8z5KuEl2SU089NSNHjlyeo9Wx9tprZ8stt8zgwYNz0UUX5YgjjsgPf/jDzJw5s8HjhgwZkjZt2mTy5Mm121ZfffXMmzcv77//fr3933rrrQa/8/HHH59dd901SXLIIYfUPobok0H+STfddFO6dOmSHXbYod57f/7znzNjxoyMGjWqXoQvMnDgwMydOzdTpkzJxIkT07Vr1/Tu3TvJf0L8zTffzJNPPll7RagQBwBoHHR6XTodAIBKoNPr0ukAAFQCnV6XTgdgSSxAB5a7TTbZJI8//ni97Yu2bbzxxl/0SCXZeuuts2DBgrzwwgufum9RFGnS5OP/hG6yySZJUu97T58+PW+++WaD3/moo47Kww8/nNatW2fvvfeufQzR73//+yXuf/PNN+eAAw5I06ZN67130kkn5Ygjjsjw4cNz1VVXLfH4RWE9adKkTJo0qfYxREnSt2/fdOrUKRMnTsykSZPSvXv32kgHAGDlptM/ptMBAKgUOv1jOh0AgEqh0z+m0wFYGgvQgeVuyJAhefrpp/N///d/tdsWLFiQa665Jttss03WWGONMk63dBMnTkyTJk2y7rrrNrjfTTfdlPfffz/bbrtt7bY999wzLVu2zBVXXFFn3yuuuCJVVVU54IADlnq+Pn36ZNttt82QIUPy4IMPZvXVV8+WW26Znj171u7z1FNPJUn+9a9/ZcqUKfnqV7+6xHM1adIkl1xySb7zne9k5MiRueiii+rts9FGG6Vz5865995788ADD9Q+hij5z6OKdtppp0yYMCGTJ092FSgAQCOi0z+m0wEAqBQ6/WM6HQCASqHTP6bTAVia6nIPAFSmu+66K3Pnzs27776b5D8heNNNNyVJBg8enNatWydJDj/88Fx55ZV5/vnna8PxsMMOy69+9ascdNBBOeuss9KlS5eMGzcuzzzzTO6+++4VNvNTTz1VG6zTp0/P+++/Xztz375907dv3yTJEUcckdVWWy1bb711unbtmjfffDM33nhjbrjhhpx00knp3LlzkuTll1/O0KFD841vfCNf/vKXU1VVlfvuuy/nn39+Ntpoo4waNar2szt27Jgf/ehH+fGPf5yOHTtm9913z5QpU3Lqqadm1KhRtZ/dkF/84hd56KGHsuOOO+bEE0/MpptumtmzZ+e6665LTU1Nbr755tx8883p0KHDpwbyeeedl3bt2uWYY47Je++9l5NOOqn2vaqqquy888656aabUhRFnStBk/88jui4445LURRCHACgwuh0na7TAQAqj07X6TodAKDy6HSdrtMBVrACYAl69uxZJFni68UXX6zdb8SIEfW2FUVRTJ8+vRg+fHjRsWPHomXLlsW2225b/PnPf16hM48dO3apM48dO7Z2v8svv7zYcccdi06dOhXV1dVFhw4digEDBhRXX311nfO99dZbxZAhQ4pevXoVrVq1Kpo3b16sv/76xfe+971i9uzZS5zhggsuKDbYYIOiefPmxdprr12MHTu2+Oijj0r+Dm+++WZx0kknFRtuuGHRqlWronv37sVRRx1VvP7660VRFMUOO+xQjBgxot5xL774YpGk+PnPf15n+89//vMiSXHKKafU2T5u3LgiSdG5c+d655o2bVrtz+3ZZ58teXYAAFY8na7TdToAQOXR6TpdpwMAVB6drtN1OsCKVVUURfHZl68D8EWZPn161lxzzdx2223Zd999yz0OAAAQnQ4AAJVIpwMAQOXR6QCNiwXoAAAAAAAAAAAAAACUpEm5BwAAAAAAAAAAAAAAYOVgAToAAAAAAAAAAAAAACWxAB0AAAAAAAAAAAAAgJJYgA6rkCuuuCJVVVVLfU2aNKl23169emXkyJErbJZx48bliiuuWCHnPvXUU1NVVbVCzv3SSy+lqqpquc7+97//PYceemjWWWedtGzZMm3bts3mm2+ec845J2+99dYSj9l8881TVVWVc889d4nvL/67rq6uTo8ePXLooYfm3//+d+1+kyZNavB/JxZ9zzfffDNdu3bNjjvumJqamjqf9dFHH2XTTTfNOuusk3fffXf5/FAAAFYhOv3z0+k6HQBgRdDqn59W1+oAAMubTv/8dLpOB1geqss9APDFGz9+fPr06VNve9++fb+wGcaNG5dOnTqt0NBfEbp3756HH34466233nI536WXXppjjjkmvXv3zkknnZS+fftm/vz5efTRR3PxxRfn4Ycfzq233lrnmGnTpuWxxx5Lkvz617/OiSeeuNTzL/pdf/DBB7n//vtz5pln5r777svjjz+eNm3a1O73s5/9LAMHDqx3/KLv2alTp1xyySUZMmRIfvGLX+SEE06o3Wfs2LF5/PHHc88996Rdu3af6+cBALAq0+mfnU7X6QAAK5JW/+y0ulYHAFhRdPpnp9N1OsDyYAE6rII23njjbLnlluUeo2Tz58+vvZKx3Fq0aJFtt912uZzr4YcfztFHH53ddtstt912W1q0aFH73m677ZYTTjghEyZMqHfcZZddliTZe++98/vf/z4PPfRQtttuuyV+xid/1wMHDszChQtz+umn57bbbss3v/nN2v3WX3/9T/1eBxxwQP7rv/4rP/rRjzJ48OBsuOGGefjhh/Pzn/88Y8aMWWLEAwBQOp3+2el0nQ4AsCJp9c9Oq2t1AIAVRad/djpdpwMsD03KPQCw8njnnXdy4oknZp111knz5s2z5ppr5rjjjsvcuXPr7FdTU5MLL7wwX/nKV9KqVat06NAh2267bX73u98l+c8jjp588sncd999tY+76dWrV5KPH4tz9dVX54QTTsiaa66ZFi1a5LnnnkuSXH755dl0003TsmXLdOzYMUOGDMk//vGPBuc+/PDD07Fjx7z//vv13ttll12y0UYb1f75xhtvzDbbbJP27dundevWWXfddXPYYYfVvr+kxxDNnDkzRxxxRNZaa620aNEinTt3zvbbb5+77767wbl+9rOfpaqqKv/7v/9bJ8AXad68efbbb7862+bNm5frrrsuW2yxRX7xi1/U/kxKtSi0X3755ZKP+aT/+Z//SceOHTNixIi88847GTFiRNZdd92cddZZn+l8AAB8fjpdp+t0AIDKpNW1ulYHAKg8Ol2n63SA5aP8l1QBX7iFCxdmwYIFdbZVVVWladOmSz3m/fffz4ABA/Lqq6/m5JNPTr9+/fLkk0/mlFNOyeOPP5677747VVVVSZKRI0fmmmuuyeGHH56f/OQnad68eaZOnZqXXnopSXLrrbfma1/7Wtq3b59x48YlSb0I/eEPf5j+/fvn4osvTpMmTdKlS5eceeaZOfnkk3PIIYfkzDPPzKxZs3Lqqaemf//+mTJlStZff/0lzv6d73wnl19+ea677rqMGjWqdvtTTz2ViRMn5le/+lWS/1yVefDBB+fggw/OqaeempYtW+bll1/Ovffe2+DPc9iwYZk6dWp++tOfZoMNNsjs2bMzderUzJo1a6nHLFy4MPfee2+22GKLrLXWWg2e/5NuueWWvP322znssMOy/vrrZ4cddsgNN9yQ888/P23btv3U4xf9ZaZz5851ttfU1NT734kk9a68/dKXvpRLL700e++9dzbffPO8+OKLeeCBB9K6deuSvwMAAEum0/9Dp39MpwMAVAat/h9a/WNaHQCg/HT6f+j0j+l0gC9YAawyxo8fXyRZ4qtp06Z19u3Zs2cxYsSI2j+feeaZRZMmTYopU6bU2e+mm24qkhR/+MMfiqIoivvvv79IUvz3f/93g7NstNFGxYABA+ptnzhxYpGk2Gmnnepsf/vtt4tWrVoVgwcPrrP9lVdeKVq0aFEMHTq0dtvYsWOLxf/zNmDAgOIrX/lKnW1HH310sdpqqxXvvvtuURRFce655xZJitmzZy917hdffLFIUowfP752W9u2bYvjjjuuwe+7uOnTpxdJim984xvLdNwuu+xStGzZsnj77beLovj4d/rrX/+6zn6Ltk+ePLmYP39+8e677xZ33nln0blz56Jdu3bF9OnTi6L4+Oe9tNe//vWvJc6x++67F0mKMWPGLNP8AADUp9N1uk4HAKhMWl2ra3UAgMqj03W6TgeoDO6ADqugq666KhtuuGGdbYuu4FyaO++8MxtvvHG+8pWv1LlacI899khVVVUmTZqUvfbaK3fddVeSZPTo0Z9rxq9+9at1/vzwww/ngw8+yMiRI+tsX2uttbLLLrvknnvuafB83/nOd3LggQfmL3/5S7bffvu88847ufrqq3PooYfWXj251VZbJUm+/vWv5/DDD8/222+fNddc81Nn3XrrrXPFFVdk9dVXz6677potttgizZo1W4ZvW5oXX3wxEydOzCGHHJIOHTokSQ466KAce+yxufzyy+s8LmmRRY8dWmSTTTbJRRddlK5du9bZfvbZZ2eXXXapd/zi+yXJ3/72t0ycODFNmjTJfffdl48++ijNmzf/HN8MAIBEp+t0nQ4AUKm0ulbX6gAAlUen63SdDlBeTco9APDF23DDDbPlllvWeW2xxRYNHjNjxoz8/e9/T7Nmzeq82rVrl6Io8uabbyZJZs6cmaZNm6Zbt26fa8bu3bvX+fOiR/osvj1J1lhjjQYf+ZMk+++/f3r16lX7yKErrrgic+fOrfOXhZ122im33XZbFixYkOHDh6dHjx7ZeOONc/311zd47htuuCEjRozIZZddlv79+6djx44ZPnx4pk+fvtRjOnXqlNatW+fFF19s8NyfdPnll6coinzta1/L7NmzM3v27MyfPz/77bdf/vKXv+Tpp5+ud8xVV12VKVOm5LHHHstrr72Wv//979l+++3r7bfuuuvW+9+JLbfcst5fJubPn58RI0ZkjTXWyC233JInnngip59+esnfAQCApdPpOn1xOh0AoDJoda2+OK0OAFB+Ol2nL06nA3yx3AEdKEmnTp3SqlWrXH755Ut9P0k6d+6chQsXZvr06UsM5lItflXq6quvniR5/fXX6+372muv1X7+0jRp0iSjR4/OySefnPPOOy/jxo3LoEGD0rt37zr77b///tl///3z4YcfZvLkyTnzzDMzdOjQ9OrVK/3791/iuTt16pTzzz8/559/fl555ZX87ne/yw9+8IO88cYbmTBhwhKPadq0aQYNGpS77rorr776anr06NHg/DU1NbniiiuSJAceeOAS97n88stzzjnn1Nm26C9cy8tPfvKT/P3vf8/dd9+dXXbZJUcddVTOOuusDBkyJJtvvvly+xwAAEqj03V6otMBACqRVtfqiVYHAKg0Ol2nJzodYHlxB3SgJPvss0+ef/75rL766ku8WrBXr15Jkr322itJctFFFzV4vhYtWuSDDz4o+fP79++fVq1a5Zprrqmz/dVXX829996bQYMGfeo5Ro0alebNm+eb3/xmnnnmmYwZM6bB+QYMGJCzzz47SfLYY4+VNOfaa6+dMWPGZLfddsvUqVMb3PeHP/xhiqLIt771rXz00Uf13p8/f37uuOOOJMkf//jHvPrqqxk9enQmTpxY77XRRhvlqquuqvOIqOXt0UcfzVlnnZVjjjmm9pFF55xzTnr06JGRI0cu8TsAALBi6XSdrtMBACqTVtfqWh0AoPLodJ2u0wGWH3dAh1XQE088scRYW2+99dK5c+clHnPcccfl5ptvzk477ZTjjz8+/fr1S01NTV555ZX86U9/ygknnJBtttkmO+64Y4YNG5YzzjgjM2bMyD777JMWLVrkscceS+vWrfPtb387SbLJJpvkN7/5TW644Yasu+66admyZTbZZJOlztyhQ4f8+Mc/zsknn5zhw4fnkEMOyaxZs3LaaaelZcuWGTt27Kd+7w4dOmT48OG56KKL0rNnz+y777513j/llFPy6quvZtCgQenRo0dmz56dCy64IM2aNcuAAQOWeM45c+Zk4MCBGTp0aPr06ZN27dplypQpmTBhwlKv1lykf//+ueiii3LMMcdkiy22yNFHH52NNtoo8+fPz2OPPZb//d//zcYbb5x99903v/71r1NdXZ2TTz45a6yxRr1zHXnkkTn22GPz+9//Pvvvv/+n/iwW9+yzz2by5Mn1tvfo0SM9evTIhx9+mBEjRqRnz561fzFJkrZt2+byyy/PoEGDcvrpp3skEQDA56DTdfridDoAQGXQ6lp9cVodAKD8dLpOX5xOB/iCFcAqY/z48UWSpb4uvfTS2n179uxZjBgxos7x7733XvGjH/2o6N27d9G8efOiffv2xSabbFIcf/zxxfTp02v3W7hwYfGLX/yi2HjjjWv369+/f3HHHXfU7vPSSy8Vu+++e9GuXbsiSdGzZ8+iKIpi4sSJRZLixhtvXOJ3uOyyy4p+/frVnnf//fcvnnzyyTr7jB07tljaf94mTZpUJCnOOuuseu/deeedxV577VWsueaaRfPmzYsuXboUgwcPLh544IHafV588cUiSTF+/PiiKIpi3rx5xVFHHVX069evWG211YpWrVoVvXv3LsaOHVvMnTt3iTMsbtq0acWIESOKtddeu2jevHnRpk2bYrPNNitOOeWU4o033ihmzpxZNG/evDjggAOWeo633367aNWqVbHvvvsWRfHx73rKlCkNfvain/fSXv/93/9dFEVRnHTSSUWTJk3q/Cw+6Zhjjimqq6uLv/71ryV9ZwAAPqbTdfridDoAQGXQ6lp9cVodAKD8dLpOX5xOByiPqqIoimVftg6wcjrhhBNy0UUX5V//+ldWX331co8DAABEpwMAQKXS6gAAUHl0OgCVoLrcAwB8ESZPnpx//vOfGTduXI488kgBDgAAFUCnAwBAZdLqAABQeXQ6AJXEHdCBVUJVVVVat26dwYMHZ/z48Wnbtm25RwIAgFWeTgcAgMqk1QEAoPLodAAqiQXoAAAAAAAAAAAAAACUpEm5BwAAAAAAAAAAAAAAYOVgATqsgq644opUVVXl0UcfXeZj33///Zx66qmZNGnS8h9sObvuuuty/vnnN/rPnDp1anbddde0bds2HTp0yIEHHpgXXnih5OPvvvvu9O/fP61bt06nTp0ycuTIvPHGG0vc94knnshBBx2Uzp07p0WLFunVq1eOOeaY5fVVAABWaTq9cX3mF9Xpzz33XIYNG5a11147rVq1ynrrrZfvfve7mTVr1vL8OgAAfIJ2b1yf+Xna/c4778zw4cOzySabpFmzZqmqqlrB0wIAkGjyxvaZX0ST//Wvf83o0aOzySabpF27dunatWt23XXX3HvvvcvzqwCsUixAB5bJ+++/n9NOO02IV8hnPv3009l5553z0Ucf5be//W0uv/zy/POf/8yOO+6YmTNnfurx9913X/baa6907do1t99+ey644ILcfffdGTRoUD788MM6+06cODFbb7113nnnnVx88cX505/+lNNPPz0tW7ZcUV8PAIAS6fTK+swvqtNnzpyZbbfdNn/5y19y+umn5w9/+ENGjx6dSy+9NLvuumtqampW5NcEAOAz0O6V9Zmft91vvfXWTJ48OX379s2mm276BUwMAMDnpckr6zO/qCa//vrr88gjj+Swww7L7bffnssuuywtWrTIoEGDctVVVy3PrwSwyqgu9wAASTJ//vxUVVWlurqy/rP0wQcfpFWrVuUeY6lOOeWUtGjRInfeeWdWW221JMkWW2yR9ddfP+eee27OPvvsBo8/6aSTssEGG+Smm26q/dmvs8462X777XP55Zfn6KOPTvKfv4B985vfzC677JI77rijzhWjw4YNW0HfDgCActPpn80X1em33357Zs2alRtuuCGDBg1KkgwcODAffvhhTj755Pztb3/LZptttgK/KQAAlUK7fzaft90vvfTSNGnyn/t9jRkzJn/9619X+MwAAFQmTf7ZfFFN/r3vfS/nnntunW2DBw/O5ptvnp/85CcZPnz4cvg2AKsWd0AHkiQjR45M27Zt89xzz2Xw4MFp27Zt1lprrZxwwgm1d9h76aWX0rlz5yTJaaedlqqqqlRVVWXkyJG153n22WczdOjQdOnSJS1atMiGG26YX/3qV3U+a9KkSamqqsrVV1+dE044IWuuuWZatGiR5557Lklq7+y32mqrpXXr1tl+++1zzz331DnHzJkzc8QRR2SttdZKixYt0rlz52y//fa5++67kyQ777xzfv/73+fll1+unfPTHn3Zq1ev7LPPPrnllluy2WabpWXLljnttNOSJL/61a+y0047pUuXLmnTpk022WSTnHPOOZk/f37t8Z/2mR999FHOOOOM9OnTp3bmQw89tKQrNpdkwYIFufPOO/PVr361NsKTpGfPnhk4cGBuvfXWBo//97//nSlTpmTYsGF1/gK03XbbZYMNNqhz/I033pjXX389J510kkeIAgB8gXS6Tl9kSZ3erFmzJEn79u3rnKNDhw5J4mlFAABfIO2+6rV7ktqFLgAAlJ8m1+QN6dKlS71tTZs2zRZbbJF//etfpQ8NQK3KuuQKKKv58+dnv/32y+GHH54TTjgh999/f04//fS0b98+p5xySrp3754JEyZkzz33zOGHH55Ro0YlSW2cP/XUU9luu+2y9tpr57zzzku3bt3yxz/+Mccee2zefPPNjB07ts7n/fCHP0z//v1z8cUXp0mTJunSpUuuueaaDB8+PPvvv3+uvPLKNGvWLJdcckn22GOP/PGPf6y9q9+wYcMyderU/PSnP80GG2yQ2bNnZ+rUqZk1a1aSZNy4cTniiCPy/PPPlxSki0ydOjX/+Mc/8qMf/SjrrLNO2rRpkyR5/vnnM3To0Kyzzjpp3rx5/va3v+WnP/1pnn766Vx++eWf+pk1NTXZf//988ADD+R73/tetttuu7z88ssZO3Zsdt555zz66KO1V5xeccUVOfTQQzN+/Pg6f8lZ3PPPP58PPvgg/fr1q/dev3798uc//znz5s1b6qKTJ554onbfJR3/l7/8pfbP999/f5Jk4cKF2WGHHfLII4+kTZs22XPPPXPeeedljTXWWOqcAAB8Pjpdp3/y+E92+gEHHJC11147J5xwQsaNG5eePXtm6tSpOeuss7Lvvvtmww03bOCnCgDA8qbdV612BwCg8mhyTb4sFixYkAceeCAbbbTRCjk/QKNXAKuc8ePHF0mKKVOm1G4bMWJEkaT47W9/W2ffwYMHF717967988yZM4skxdixY+udd4899ih69OhRzJkzp872MWPGFC1btizeeuutoiiKYuLEiUWSYqeddqqz39y5c4uOHTsW++67b53tCxcuLDbddNNi6623rt3Wtm3b4rjjjmvwe+69995Fz549G9znk3r27Fk0bdq0eOaZZxrcb+HChcX8+fOLq666qmjatGnt92roM6+//voiSXHzzTfX2T5lypQiSTFu3LjabVdeeWXRtGnT4sorr2xwjr/85S9FkuL666+v997PfvazIknx2muvLfX4a6+9tkhSPPzww/XeO+KII4rmzZvX/nmPPfYokhQdOnQovve97xX33ntvcfHFFxerr7568eUvf7mYO3dug7MCAPDpdPqS6fSPLd7pRVEUr732WtG/f/8iSe3roIMOKubNm9fgnAAAfHbafclWtXZf3OjRowv/r1cAgC+GJl8yTb5sTf7f//3fRZLitttuK/kYAD7muXBAraqqquy77751tvXr1y8vv/zypx47b9683HPPPRkyZEhat26dBQsW1L4GDx6cefPmZfLkyXWO+epXv1rnzw899FDeeuutjBgxos7xNTU12XPPPTNlypTMnTs3SbL11lvniiuuyBlnnJHJkyfXeSTQ59GvX79ssMEG9bY/9thj2W+//bL66qunadOmadasWYYPH56FCxfmn//856ee984770yHDh2y77771vluX/nKV9KtW7dMmjSpdt/hw4dnwYIFGT58eEkzN/SIpU97/FJD+3xye01NTZLk4IMPztlnn52BAwfmyCOPzK9//es899xzue6660qaFQCAZafTdfrStr/99tvZf//988477+Taa6/N/fffn3HjxuXBBx/MfvvtlwULFpQ0KwAAy4d2XzXbHQCAyqHJNXmpLrvssvz0pz/NCSeckP3333+FfAZAY1dd7gGAytG6det6j61p0aJF5s2b96nHzpo1KwsWLMiFF16YCy+8cIn7vPnmm3X+3L179zp/njFjRpLka1/72lI/56233kqbNm1yww035Iwzzshll12WH//4x2nbtm2GDBmSc845J926dfvUeZdm8ZmS5JVXXsmOO+6Y3r1754ILLkivXr3SsmXLPPLIIxk9enQ++OCDTz3vjBkzMnv27DRv3nyJ7y/+synF6quvniS1j1/6pLfeeitVVVXp0KHDZz6+Y8eO9fbdY4896uy3xx57pKqqKlOnTl3m+QEAKI1O1+mfPP6TnX722Wdn2rRpefnll2t/RjvuuGP69OmTXXbZJddee21GjBixzN8BAIDPRruvWu0OAEDl0eSavBTjx4/PkUcemSOOOCI///nPl/v5AVYVFqADy8WXvvSlNG3aNMOGDcvo0aOXuM8666xT58+LX6XYqVOnJMmFF16Ybbfddonn6Nq1a+2+559/fs4///y88sor+d3vfpcf/OAHeeONNzJhwoTP/D2WdOXkbbfdlrlz5+aWW25Jz549a7dPmzat5PN26tQpq6+++lJna9eu3TLPut5666VVq1Z5/PHH6733+OOP58tf/nK9v1h90sYbb1y77+DBg+sdv+j95D9XyP7mN79Z6rmaNPFADQCASqTTG7ayd/q0adOy5ppr1vt/KGy11VZJkieeeGKZ5wcAoDy0e8Mqsd0BAGhcNHnDGkuTjx8/PqNGjcqIESNy8cUXe+oRwOdgATqwTFq0aJEk9a5+bN26dQYOHJjHHnss/fr1W+oVjw3Zfvvt06FDhzz11FMZM2ZMycetvfbaGTNmTO6555785S9/qTNrKVdpfppFsbnouydJURS59NJL6+27tM/cZ5998pvf/CYLFy7MNtts87lnSpLq6ursu+++ueWWW3LOOefUxvwrr7ySiRMn5vjjj2/w+DXXXDNbb711rrnmmpx44olp2rRpkmTy5Ml55plnctxxx9XuO2TIkPz3f/937rrrrgwZMqR2+1133ZWiKJb6FycAAL4YOv0/VrVOX2ONNXLPPffk3//+d9Zcc83a7Q8//HCSpEePHsvlOwEAsPxo9/9oDO0OAMDKSZP/x6rY5FdccUVGjRqV//qv/8pll11m8TnA52QBOrBM2rVrl549e+b222/PoEGD0rFjx3Tq1Cm9evXKBRdckB122CE77rhjjj766PTq1Svvvvtunnvuudxxxx259957Gzx327Ztc+GFF2bEiBF566238rWvfS1dunTJzJkz87e//S0zZ87MRRddlDlz5mTgwIEZOnRo+vTpk3bt2mXKlCmZMGFCDjzwwNrzbbLJJrnlllty0UUXZYsttkiTJk2y5ZZbLvN33m233dK8efMccsgh+d73vpd58+bloosuyttvv11v36V95je+8Y1ce+21GTx4cL7zne9k6623TrNmzfLqq69m4sSJ2X///WsXdl911VU57LDDcvnll2f48OENznbaaadlq622yj777JMf/OAHmTdvXk455ZR06tQpJ5xwQp19q6urM2DAgNxzzz21284+++zstttuOeigg3LMMcfkjTfeyA9+8INsvPHGOfTQQ2v369OnT0aPHp1x48alXbt22WuvvfLPf/4zP/rRj7LZZpvl61//+jL/XAEAWH50+qrZ6aNHj861116b3XbbLT/4wQ+y1lpr5YknnsgZZ5yRrl275pvf/OYy/1wBAFixtHvjaveXX345U6ZMSZI8//zzSZKbbropSdKrV6/P9PMCAGDF0uSrZpPfeOONOfzww/OVr3wlRx55ZB555JE6595ss83qLNAHoAQFsMoZP358kaSYMmVK7bYRI0YUbdq0qbfv2LFji8X/U3H33XcXm222WdGiRYsiSTFixIja91588cXisMMOK9Zcc82iWbNmRefOnYvtttuuOOOMM2r3mThxYpGkuPHGG5c433333VfsvffeRceOHYtmzZoVa665ZrH33nvX7j9v3rziqKOOKvr161esttpqRatWrYrevXsXY8eOLebOnVt7nrfeeqv42te+VnTo0KGoqqqq9z0W17Nnz2Lvvfde4nt33HFHsemmmxYtW7Ys1lxzzeKkk04q7rrrriJJMXHixJI+c/78+cW5555be562bdsWffr0KY488sji2Wefrd1v0e9n/PjxDc67yKOPPloMGjSoaN26dbHaaqsVBxxwQPHcc8/V2y9JMWDAgHrb//SnPxXbbrtt0bJly6Jjx47F8OHDixkzZtTbb8GCBcVZZ51VfPnLXy6aNWtWdO/evTj66KOLt99+u6Q5AQBomE5fMp3ecKdPnTq1GDJkSNGjR4+iRYsWxbrrrluMGjWqeOWVV0qaEwCAZafdl2xVbPdFn7Wk1yd/rwAALF+afMk0+dKbfMSIEUvdL0nx4osvljQrAB+rKoqiWI7r2QEAAAAAAAAAAAAAaKSalHsAAAAAAAAAAAAAAABWDhagAwAAAAAAAAAAAABQEgvQAQAAAAAAAAAAAAAoiQXoAAAAAAAAAAAAAACUxAJ0AAAAAAAAAAAAAABKYgE6AAAAAAAAAAAAAAAlsQAdAAAAAAAAAAAAAICSWIAOAAAAAAAAAAAAAEBJqss9QCW644V+5R4Blkmf5m+WewRYJutVty33CLBMmnT7Z1k/v2b6BmX9/GVR7p8VjV+fW35S7hGgZN3av1PuEWCZLCjcp4CVy4O7nlPWz9fp8LH+Q88r9wiwTD5sr3tYidSUewBYNlMvOb6sn78ydXqi1VmxdmtyULlHACpAk9atyz0CUAH++N6V5R5hpWp1nV4a/8IGAAAAAAAAAAAAAEBJLEAHAAAAAAAAAAAAAKAk1eUeAACAhtWsRM/ZdXUjAACrCp0OAACVZ2Xq9ESrAwCw6liZWl2nl8bPCQAAAAAAAAAAAACAkliADgAAAAAAAAAAAABASarLPQAAAA1bWKw8jyESlwAArCp0OgAAVJ6VqdMTrQ4AwKpjZWp1nV4ad0AHAAAAAAAAAAAAAKAkFqADAAAAAAAAAAAAAFASC9ABAAAAAAAAAAAAAChJdbkHAACgYTUpyj0CAACwGJ0OAACVR6cDAEBl0uqNjzugAwAAAAAAAAAAAABQEgvQAQAAAAAAAAAAAAAoSXW5BwAAoGE1qSn3CAAAwGJ0OgAAVB6dDgAAlUmrNz7ugA4AAAAAAAAAAAAAQEksQAcAAAAAAAAAAAAAoCQWoAMAAAAAAAAAAAAAUJLqcg8AAEDDFhZFuUcAAAAWo9MBAKDy6HQAAKhMWr3xcQd0AAAAAAAAAAAAAABKYgE6AAAAAAAAAAAAAAAlqS73AAAANKwmHkMEAACVRqcDAEDl0ekAAFCZtHrj4w7oAAAAAAAAAAAAAACUxAJ0AAAAAAAAAAAAAABKUl3uAQAAaNhCjyECAICKo9MBAKDy6HQAAKhMWr3xcQd0AAAAAAAAAAAAAABKYgE6AAAAAAAAAAAAAAAlsQAdAAAAAAAAAAAAAICSVJd7AAAAGlaTotwjAAAAi9HpAABQeXQ6AABUJq3e+LgDOgAAAAAAAAAAAAAAJbEAHQAAAAAAAAAAAACAklSXewAAABq2sPAYIgAAqDQ6HQAAKo9OBwCAyqTVGx93QAcAAAAAAAAAAAAAoCQWoAMAAAAAAAAAAAAAUJLqcg8AAEDDaso9AAAAUI9OBwCAyqPTAQCgMmn1xscd0AEAAAAAAAAAAAAAKIkF6AAAAAAAAAAAAAAAlMQCdAAAAAAAAAAAAAAASlJd7gEAAGjYwhTlHgEAAFiMTgcAgMqj0wEAoDJp9cbHHdABAAAAAAAAAAAAACiJBegAAAAAAAAAAAAAAJSkutwDAADQsIWeQgQAABVHpwMAQOXR6QAAUJm0euPjDugAAAAAAAAAAAAAAJTEAnQAAAAAAAAAAAAAAEpSXe4BAABoWE25BwAAAOrR6QAAUHl0OgAAVCat3vi4AzoAAAAAAAAAAAAAACWxAB0AAAAAAAAAAAAAgJJYgA4AAAAAAAAAAAAAQEmqyz0AAAANW5iqco8AAAAsRqcDAEDl0ekAAFCZtHrj4w7oAAAAAAAAAAAAAACUxAJ0AAAAAAAAAAAAAABKUl3uAQAAaFhNUe4JAACAxel0AACoPDodAAAqk1ZvfNwBHQAAAAAAAAAAAACAkliADgAAAAAAAAAAAABASSxABwAAAAAAAAAAAACgJNXlHgAAgIYtTFW5RwAAABaj0wEAoPLodAAAqExavfFxB3QAAAAAAAAAAAAAAEpiAToAAAAAAAAAAAAAACWpLvcAAAA0zGOIAACg8uh0AACoPDodAAAqk1ZvfNwBHQAAAAAAAAAAAACAkliADgAAAAAAAAAAAABASarLPQAAAA2rKTyGCAAAKo1OBwCAyqPTAQCgMmn1xscd0AEAAAAAAAAAAAAAKIkF6AAAAAAAAAAAAAAAlMQCdAAAAAAAAAAAAAAASlJd7gEAAGjYwlSVewQAAGAxOh0AACqPTgcAgMqk1Rsfd0AHAAAAAAAAAAAAAKAkFqADAAAAAAAAAAAAAFCS6nIPAABAwxa6ZhAAACqOTgcAgMqj0wEAoDJp9cbHbxQAAAAAAAAAAAAAgJJYgA4AAAAAAAAAAAAAQEmqyz0AAAANqymqyj0CAACwGJ0OAACVR6cDAEBl0uqNjzugAwAAAAAAAAAAAABQEgvQAQAAAAAAAAAAAAAoiQXoAAAAAAAAAAAAAACUpLrcAwAA0LCFqSr3CAAAwGJ0OgAAVB6dDgAAlUmrNz7ugA4AAAAAAAAAAAAAQEksQAcAAAAAAAAAAAAAoCTV5R4AAICGLSxcMwgAAJVGpwMAQOXR6QAAUJm0euPjNwoAAAAAAAAAAAAAQEksQAcAAAAAAAAAAAAAoCTV5R4AAICG1bhmEAAAKo5OBwCAyqPTAQCgMmn1xsdvFAAAAAAAAAAAAACAkliADgAAAAAAAAAAAABASSxABwAAAAAAAAAAAACgJNXlHgAAgIYtTFW5RwAAABaj0wEAoPLodAAAqExavfFxB3QAAAAAAAAAAAAAAEpiAToAAAAAAAAAAAAAACWpLvcAAAA0bGHhmkEAAKg0Oh0AACqPTgcAgMqk1Rsfv1EAAMrioosuSr9+/bLaaqtltdVWS//+/XPXXXfVvl8URU499dSsscYaadWqVXbeeec8+eSTdc7x4Ycf5tvf/nY6deqUNm3aZL/99surr75aZ5+33347w4YNS/v27dO+ffsMGzYss2fP/iK+IgAArHR0OgAAVB6dDgAAlWlVbnUL0AEAKIsePXrkrLPOyqOPPppHH300u+yyS/bff//a0D7nnHPy//7f/8svf/nLTJkyJd26dctuu+2Wd999t/Ycxx13XG699db85je/yYMPPpj33nsv++yzTxYuXFi7z9ChQzNt2rRMmDAhEyZMyLRp0zJs2LAv/PsCAMDKQKcDAEDl0ekAAFCZVuVWryqKoijrBBXojhf6lXsEWCZ9mr9Z7hFgmaxX3bbcI8AyadLtn2X9/D++2Lesn78s9ljnqc91fMeOHfPzn/88hx12WNZYY40cd9xx+f73v5/kP1d8du3aNWeffXaOPPLIzJkzJ507d87VV1+dgw8+OEny2muvZa211sof/vCH7LHHHvnHP/6Rvn37ZvLkydlmm22SJJMnT07//v3z9NNPp3fv3p/vC/OF63PLT8o9ApSsW/t3yj0CLJMFHn3ISubBXc8p6+frdJ3Ox/oPPa/cI8Ay+bC97mElUlPuAWDZTL3k+LJ+/srU6cnna3WdzqfZrclB5R4BqABNWrcu9whABfjje1eWe4SVqtX9m3pp/AsbAADLzYcffph33nmnzuvDDz/81OMWLlyY3/zmN5k7d2769++fF198MdOnT8/uu+9eu0+LFi0yYMCAPPTQQ0mSv/71r5k/f36dfdZYY41svPHGtfs8/PDDad++fW2AJ8m2226b9u3b1+4DAACNnU4HAIDK9FlaXacDAMCK5d/US2MBOgAAy82ZZ56Z9u3b13mdeeaZS93/8ccfT9u2bdOiRYscddRRufXWW9O3b99Mnz49SdK1a9c6+3ft2rX2venTp6d58+b50pe+1OA+Xbp0qfe5Xbp0qd0HAAAaO50OAACVaVlaXacDAMAXw7+pl6a6bJ8MAECj88Mf/jDf/e5362xr0aLFUvfv3bt3pk2bltmzZ+fmm2/OiBEjct9999W+X1VVVWf/oijqbVvc4vssaf9SzgMAAI2FTgcAgMq0LK2u0wEA4Ivh39RLYwE6AECFW7gSPbSmRYsWDUb34po3b54vf/nLSZItt9wyU6ZMyQUXXJDvf//7Sf5zFWf37t1r93/jjTdqrwzt1q1bPvroo7z99tt1rgR94403st1229XuM2PGjHqfO3PmzHpXmAIAwLLQ6TodAIDKszJ1erJsra7TAQBYma1Mre7f1Euz8vxGAQBo9IqiyIcffph11lkn3bp1y5///Ofa9z766KPcd999tYG9xRZbpFmzZnX2ef311/PEE0/U7tO/f//MmTMnjzzySO0+//d//5c5c+bU7gMAADRMpwMAQOXR6QAAUJlWlVZ3B3QAAMri5JNPzl577ZW11lor7777bn7zm99k0qRJmTBhQqqqqnLcccflZz/7WdZff/2sv/76+dnPfpbWrVtn6NChSZL27dvn8MMPzwknnJDVV189HTt2zIknnphNNtkku+66a5Jkww03zJ577plvfetbueSSS5IkRxxxRPbZZ5/07t27bN8dAAAqlU4HAIDKo9MBAKAyrcqtbgE6AECFW1g0zofWzJgxI8OGDcvrr7+e9u3bp1+/fpkwYUJ22223JMn3vve9fPDBBznmmGPy9ttvZ5tttsmf/vSntGvXrvYcv/jFL1JdXZ2vf/3r+eCDDzJo0KBcccUVadq0ae0+1157bY499tjsvvvuSZL99tsvv/zlL7/YLwsAQKOj03U6AACVR6frdAAAKpNWb3ytXlUURVHWCSrQHS/0K/cIsEz6NH+z3CPAMlmvum25R4Bl0qTbP8v6+StTm+y77t/LPQKNXJ9bflLuEaBk3dq/U+4RYJksaKT/8Efj9eCu55T183U6fKz/0PPKPQIskw/b6x5WIjXlHgCWzdRLji/r569MnZ5odVas3ZocVO4RgArQpHXrco8AVIA/vndluUdYqVpdp5fGv7ABAAAAAAAAAAAAAFASC9ABAAAAAAAAAAAAAChJdbkHAACgYTWuGQQAgIqj0wEAoPLodAAAqExavfHxGwUAAAAAAAAAAAAAoCQWoAMAAAAAAAAAAAAAUJLqcg8AAEDDFhZV5R4BAABYjE4HAIDKo9MBAKAyafXGxx3QAQAAAAAAAAAAAAAoiQXoAAAAAAAAAAAAAACUpLrcAwAA0LCFrhkEAICKo9MBAKDy6HQAAKhMWr3x8RsFAAAAAAAAAAAAAKAkFqADAAAAAAAAAAAAAFASC9ABAAAAAAAAAAAAAChJdbkHAACgYTWFawYBAKDS6HQAAKg8Oh0AACqTVm98/EYBAAAAAAAAAAAAACiJBegAAAAAAAAAAAAAAJSkutwDAADQsIWuGQQAgIqj0wEAoPLodAAAqExavfHxGwUAAAAAAAAAAAAAoCQWoAMAAAAAAAAAAAAAUJLqcg8AAEDDFhZV5R4BAABYjE4HAIDKo9MBAKAyafXGxx3QAQAAAAAAAAAAAAAoiQXoAAAAAAAAAAAAAACUxAJ0AAAAAAAAAAAAAABKUl3uAQAAaFiNawYBAKDi6HQAAKg8Oh0AACqTVm98/EYBAAAAAAAAAAAAACiJBegAAAAAAAAAAAAAAJSkutwDAADQsIWFawYBAKDS6HQAAKg8Oh0AACqTVm98/EYBAAAAAAAAAAAAACiJBegAAAAAAAAAAAAAAJSkutwDAADQsJpUlXsEAABgMTodAAAqj04HAIDKpNUbH3dABwAAAAAAAAAAAACgJBagAwAAAAAAAAAAAABQEgvQAQAAAAAAAAAAAAAoSXW5BwAAoGELC9cMAgBApdHpAABQeXQ6AABUJq3e+PiNAgAAAAAAAAAAAABQEgvQAQAAAAAAAAAAAAAoSXW5BwAAoGELXTMIAAAVR6cDAEDl0ekAAFCZtHrj4zcKAAAAAAAAAAAAAEBJLEAHAAAAAAAAAAAAAKAkFqADAAAAAAAAAAAAAFCS6nIPAABAw2qKqnKPAAAALEanAwBA5dHpAABQmbR64+MO6AAAAAAAAAAAAAAAlMQCdAAAAAAAAAAAAAAASlJd7gEAAGjYQtcMAgBAxdHpAABQeXQ6AABUJq3e+PiNAgAAAAAAAAAAAABQEgvQAQAAAAAAAAAAAAAoSXW5BwAAoGE1hWsGAQCg0uh0AACoPDodAAAqk1ZvfPxGAQAAAAAAAAAAAAAoiQXoAAAAAAAAAAAAAACUxAJ0AAAAAAAAAAAAAABKUl3uAQAAaNjCVJV7BAAAYDE6HQAAKo9OBwCAyqTVGx93QAcAAAAAAAAAAAAAoCQWoAMAAAAAAAAAAAAAUJLqcg8AAEDDagrXDAIAQKXR6QAAUHl0OgAAVCat3vj4jQIAAAAAAAAAAAAAUBIL0AEAAAAAAAAAAAAAKEl1uQcAAKBhC1NV7hEAAIDF6HQAAKg8Oh0AACqTVm983AEdAAAAAAAAAAAAAICSWIAOAAAAAAAAAAAAAEBJLEAHAAAAAAAAAAAAAKAk1eUeAACAhtUUrhkEAIBKo9MBAKDy6HQAAKhMWr3x8RsFAAAAAAAAAAAAAKAkFqADAAAAAAAAAAAAAFCS6nIPAABAwxZ6DBEAAFQcnQ4AAJVHpwMAQGXS6o2P3ygAAAAAAAAAAAAAACWxAB0AAAAAAAAAAAAAgJJUl3sAAAAaVpOqco8AAAAsRqcDAEDl0ekAAFCZtHrj4w7oAAAAAAAAAAAAAACUxAJ0AAAAAAAAAAAAAABKYgE6AAAAAAAAAAAAAAAlqS73AAAANGxh4ZpBAACoNDodAAAqj04HAIDKpNUbH79RAAAAAAAAAAAAAABKYgE6AAAAAAAAAAAAAAAlqS73AAAANKymqCr3CAAAwGJ0OgAAVB6dDgAAlUmrNz7ugA4AAAAAAAAAAAAAQEksQAcAAAAAAAAAAAAAoCQWoAMAAAAAAAAAAAAAUJLqcg8AAEDDFrpmEAAAKo5OBwCAyqPTAQCgMmn1xsdvFAAAAAAAAAAAAACAkliADgAAAAAAAAAAAABASarLPQAAAA2rKarKPQIAALAYnQ4AAJVHpwMAQGXS6o2PO6ADAAAAAAAAAAAAAFASC9ABAAAAAAAAAAAAAChJdbkHAACgYTWuGQQAgIqj0wEAoPLodAAAqExavfHxGwUAAAAAAAAAAAAAoCQWoAMAAAAAAAAAAAAAUBIL0AEAAAAAAAAAAAAAKEl1uQcAAKBhC4uqco8AAAAsRqcDAEDl0ekAAFCZtHrj4w7oAAAAAAAAAAAAAACUxAJ0AAAAAAAAAAAAAABKUl3uAQAAaFiNxxABAEDF0ekAAFB5dDoAAFQmrd74uAM6AAAAAAAAAAAAAAAlsQAdAAAAAAAAAAAAAICSVJd7AAAAGlZTuGYQAAAqjU4HAIDKo9MBAKAyafXGx28UAAAAAAAAAAAAAICSWIAOAAAAAAAAAAAAAEBJLEAHAAAAAAAAAAAAAKAk1eUeAACAhi1MVblHAAAAFqPTAQCg8uh0AACoTFq98XEHdAAAAAAAAAAAAAAASmIBOgAAAAAAAAAAAAAAJaku9wAAADSspvAYIgAAqDQ6HQAAKo9OBwCAyqTVGx93QAcAAAAAAAAAAAAAoCQWoAMAAAAAAAAAAAAAUBIL0AEAKlxN0WSleS2LM888M1tttVXatWuXLl265IADDsgzzzxTZ58ZM2Zk5MiRWWONNdK6devsueeeefbZZ+vss/POO6eqqqrO6xvf+Eadfd5+++0MGzYs7du3T/v27TNs2LDMnj37M/0+AAAg0ek6HQCASlTu9l5Rra7TAQBY2ZW7vXX68mcBOgAAZXHfffdl9OjRmTx5cv785z9nwYIF2X333TN37twkSVEUOeCAA/LCCy/k9ttvz2OPPZaePXtm1113rd1nkW9961t5/fXXa1+XXHJJnfeHDh2aadOmZcKECZkwYUKmTZuWYcOGfWHfFQAAVhY6HQAAKo9OBwCAyrOqd3p1WT8dAIBV1oQJE+r8efz48enSpUv++te/Zqeddsqzzz6byZMn54knnshGG22UJBk3bly6dOmS66+/PqNGjao9tnXr1unWrdsSP+cf//hHJkyYkMmTJ2ebbbZJklx66aXp379/nnnmmfTu3XsFfUMAAFj56HQAAKg8Oh0AACrPqt7p7oAOAMBy8+GHH+add96p8/rwww9LOnbOnDlJko4dO9aeK0latmxZu0/Tpk3TvHnzPPjgg3WOvfbaa9OpU6dstNFGOfHEE/Puu+/Wvvfwww+nffv2tRGeJNtuu23at2+fhx566LN9UQAAWInodAAAqEyftdV1OgAArDg6vTQWoAMAVLiaVK00rzPPPDPt27ev8zrzzDM/9TsWRZHvfve72WGHHbLxxhsnSfr06ZOePXvmhz/8Yd5+++189NFHOeusszJ9+vS8/vrrtcd+85vfzPXXX59Jkyblxz/+cW6++eYceOCBte9Pnz49Xbp0qfeZXbp0yfTp05fDbwgAgFVRudtbpwMAQH3lbu8votV1OgAAK6Nyt7dOX/6qy/bJAAA0Oj/84Q/z3e9+t862Fi1afOpxY8aMyd///vc6V3g2a9YsN998cw4//PB07NgxTZs2za677pq99tqrzrHf+ta3av/njTfeOOuvv3623HLLTJ06NZtvvnmSpKqqqt5nFkWxxO0AANDY6HQAAKhMn6XVdToAAKxYOr00FqADALDctGjRoqSFLJ/07W9/O7/73e9y//33p0ePHnXe22KLLTJt2rTMmTMnH330UTp37pxtttkmW2655VLPt/nmm6dZs2Z59tlns/nmm6dbt26ZMWNGvf1mzpyZrl27LtOsAACwMtLpAABQmZa11XU6AACseDq9NE3K9skAAJRkYVG10ryWRVEUGTNmTG655Zbce++9WWeddZa6b/v27dO5c+c8++yzefTRR7P//vsvdd8nn3wy8+fPT/fu3ZMk/fv3z5w5c/LII4/U7vN///d/mTNnTrbbbrtlmhkAABYpd3vrdAAAqK/c7b2iWl2nAwCwsit3e+v05c8d0AEAKIvRo0fnuuuuy+2335527dpl+vTpSf4T3a1atUqS3HjjjencuXPWXnvtPP744/nOd76TAw44ILvvvnuS5Pnnn8+1116bwYMHp1OnTnnqqadywgknZLPNNsv222+fJNlwww2z55575lvf+lYuueSSJMkRRxyRffbZJ7179y7DNwcAgMql0wEAoPLodAAAqDyreqe7AzoAAGVx0UUXZc6cOdl5553TvXv32tcNN9xQu8/rr7+eYcOGpU+fPjn22GMzbNiwXH/99bXvN2/ePPfcc0/22GOP9O7dO8cee2x233333H333WnatGntftdee2022WST7L777tl9993Tr1+/XH311V/o9wUAgJWBTgcAgMqj0wEAoPKs6p1eVRRFUdYJKtAdL/Qr9wiwTPo0f7PcI8AyWa+6bblHgGXSpNs/y/r5Ix45vKyfvyyu3PrX5R6BRq7PLT8p9whQsm7t3yn3CLBMFhTuU8DK5cFdzynr5+t0+Fj/oeeVewRYJh+21z2sRGrKPQAsm6mXHF/Wz1+ZOj3R6qxYuzU5qNwjABWgSevW5R4BqAB/fO/Kco+wUrW6Ti+Nf2EDAAAAAAAAAAAAAKAkFqADAAAAAAAAAAAAAFASC9ABAAAAAAAAAAAAAChJdbkHAACgYTVFVblHAAAAFqPTAQCg8uh0AACoTFq98XEHdAAAAAAAAAAAAAAASmIBOgAAAAAAAAAAAAAAJaku9wAAADSsJh5DBAAAlUanAwBA5dHpAABQmbR64+MO6AAAAAAAAAAAAAAAlMQCdAAAAAAAAAAAAAAASmIBOgAAAAAAAAAAAAAAJaku9wAAADSspqgq9wgAAMBidDoAAFQenQ4AAJVJqzc+7oAOAAAAAAAAAAAAAEBJLEAHAAAAAAAAAAAAAKAk1eUeAACAhtUUrhkEAIBKo9MBAKDy6HQAAKhMWr3x8RsFAAAAAAAAAAAAAKAkFqADAAAAAAAAAAAAAFCS6nIPAABAw2qKqnKPAAAALEanAwBA5dHpAABQmbR64+MO6AAAAAAAAAAAAAAAlMQCdAAAAAAAAAAAAAAASmIBOgAAAAAAAAAAAAAAJaku9wAAADSsJlXlHgEAAFiMTgcAgMqj0wEAoDJp9cbHHdABAAAAAAAAAAAAACiJBegAAAAAAAAAAAAAAJSkutwDAADQsJrCY4gAAKDS6HQAAKg8Oh0AACqTVm983AEdAAAAAAAAAAAAAICSWIAOAAAAAAAAAAAAAEBJqss9AAAADfMYIgAAqDw6HQAAKo9OBwCAyqTVGx93QAcAAAAAAAAAAAAAoCQWoAMAAAAAAAAAAAAAUBIL0AEAAAAAAAAAAAAAKEl1uQcAAKBhNUVVuUcAAAAWo9MBAKDy6HQAAKhMWr3xcQd0AAAAAAAAAAAAAABKYgE6AAAAAAAAAAAAAAAlqS73AAAANMxjiAAAoPLodAAAqDw6HQAAKpNWb3zcAR0AAAAAAAAAAAAAgJJYgA4AAAAAAAAAAAAAQEmqyz0AAAANq4nHEAEAQKXR6QAAUHl0OgAAVCat3vi4AzoAAAAAAAAAAAAAACWxAB0AAAAAAAAAAAAAgJJYgA4AAAAAAAAAAAAAQEmqyz0AAAANqymqyj0CAACwGJ0OAACVR6cDAEBl0uqNjzugAwAAAAAAAAAAAABQEgvQAQAAAAAAAAAAAAAoSXW5BwAAoGEeQwQAAJVHpwMAQOXR6QAAUJm0euPjDugAAAAAAAAAAAAAAJTEAnQAAAAAAAAAAAAAAEpiAToAAAAAAAAAAAAAACWpLvcAAAA0rKaoKvcIAADAYnQ6AABUHp0OAACVSas3Pu6ADgAAAAAAAAAAAABASSxABwAAAAAAAAAAAACgJNXlHgAAgIZ5DBEAAFQenQ4AAJVHpwMAQGXS6o2PO6ADAAAAAAAAAAAAAFASC9ABAAAAAAAAAAAAAChJdbkHAACgYYXHEAEAQMXR6QAAUHl0OgAAVCat3vi4AzoAAAAAAAAAAAAAACWxAB0AAAAAAAAAAAAAgJJYgA4AAAAAAAAAAAAAQEmqyz0AAAANq0lVuUcAAAAWo9MBAKDy6HQAAKhMWr3xcQd0AAAAAAAAAAAAAABKYgE6AAAAAAAAAAAAAAAlqS73AAAANKym8BgiAACoNDodAAAqj04HAIDKpNUbH3dABwAAAAAAAAAAAACgJBagAwAAAAAAAAAAAABQkupyDwAAQMMKjyECAICKo9MBAKDy6HQAAKhMWr3xcQd0AAAAAAAAAAAAAABKYgE6AAAAAAAAAAAAAAAlsQAdAAAAAAAAAAAAAICSVJd7AAAAGlZTVJV7BAAAYDE6HQAAKo9OBwCAyqTVGx93QAcAAAAAAAAAAAAAoCQWoAMAAAAAAAAAAAAAUJLqcg8AAEDDCo8hAgCAiqPTAQCg8uh0AACoTFq98XEHdAAAAAAAAAAAAAAASmIBOgAAAAAAAAAAAAAAJaku9wAAADSsxmOIAACg4uh0AACoPDodAAAqk1ZvfNwBHQAAAAAAAAAAAACAkliADgAAAAAAAAAAAABASSxABwAAAAAAAAAAAACgJNXlHgAAgIYVRbknAAAAFqfTAQCg8uh0AACoTFq98XEHdAAAAAAAAAAAAAAASmIBOgAAAAAAAAAAAAAAJaku9wAAADSsJlXlHgEAAFiMTgcAgMqj0wEAoDJp9cbHHdABAAAAAAAAAAAAACiJBegAAAAAAAAAAAAAAJTEAnQAAAAAAAAAAAAAAEpSXe4BAABoWFFUlXsEAABgMTodAAAqj04HAIDKpNUbH3dABwAAAAAAAAAAAACgJBagAwAAAAAAAAAAAABQkupyDwAAQMNqPIYIAAAqjk4HAIDKo9MBAKAyafXGxx3QAQAAAAAAAAAAAAAoiQXoAAAAAAAAAAAAAACUpLrcAwAA0LCiKPcEAADA4nQ6AABUHp0OAACVSas3Pu6ADgAAAAAAAAAAAABASSxABwAAAAAAAAAAAACgJBagAwAAAAAAAAAAAABQkupyDwAAQMOKoqrcIwAAAIvR6QAAUHl0OgAAVCat3vi4AzoAAAAAAAAAAAAAACWxAB0AAAAAAAAAAAAAgJJUl3sAAAAa5jFEAABQeXQ6AABUHp0OAACVSas3Pu6ADgAAAAAAAAAAAABASSxABwAAAAAAAAAAAACgJNXlHgAAgIbVeAwRAABUHJ0OAACVR6cDAEBl0uqNjzugAwAAAAAAAAAAAABQEgvQAQAoizPPPDNbbbVV2rVrly5duuSAAw7IM888U2efGTNmZOTIkVljjTXSunXr7Lnnnnn22Wfr7PPhhx/m29/+djp16pQ2bdpkv/32y6uvvlpnn7fffjvDhg1L+/bt0759+wwbNiyzZ89e0V8RAABWOjodAAAqj04HAIDKs6p3ugXoAACUxX333ZfRo0dn8uTJ+fOf/5wFCxZk9913z9y5c5MkRVHkgAMOyAsvvJDbb789jz32WHr27Jldd921dp8kOe6443LrrbfmN7/5TR588MG899572WeffbJw4cLafYYOHZpp06ZlwoQJmTBhQqZNm5Zhw4Z94d8ZAAAqnU4HAIDKo9MBAKDyrOqdXlUURVHWCSrQHS/0K/cIsEz6NH+z3CPAMlmvum25R4Bl0qTbP8v6+X1vO7Wsn78snjrg1M987MyZM9OlS5fcd9992WmnnfLPf/4zvXv3zhNPPJGNNtooSbJw4cJ06dIlZ599dkaNGpU5c+akc+fOufrqq3PwwQcnSV577bWstdZa+cMf/pA99tgj//jHP9K3b99Mnjw522yzTZJk8uTJ6d+/f55++un07t37c39vvjh9bvlJuUeAknVr/065R4BlsqBwnwJWLg/uek5ZP1+n63Q+1n/oeeUeAZbJh+11DyuRmnIPAMtm6iXHl/XzV6ZOTz57q+t0SrFbk4PKPQJQAZq0bl3uEYAK8Mf3riz3CCtVq+v00vgXNgAAKsKcOXOSJB07dkzyn0cMJUnLli1r92natGmaN2+eBx98MEny1//P3n3HRV0/cBx/3zEEHAgi4sS9Z+69NUdqWVruNM2cOTItzbTUfjZsWjZcZWm5LdMsFTU1M/dIzZETtyKgIHC/P7BDFPDuBL538Ho+Hjx+8b3v+GCfn746P/f9/vWXbt++rRYtWlj3yZcvn8qXL6/NmzdLkrZs2SJfX19rhEtSrVq15Ovra90HAAAAQNLodAAAAMD50OkAAACA88lsnc4CdAAAAKSaqKgohYWFJfr6L6hTYrFYNHz4cNWrV0/ly5eXJJUuXVrBwcEaM2aMrl69qujoaL311lsKDQ3VuXPnJEmhoaHy9PSUn59fovPlyZNHoaGh1n0CAwPvu2ZgYKB1HwAAACAjo9MBAAAA5+RIq9PpAAAAQNqi023DAnQAAAAnZ7GYXOZrypQp8vX1TfQ1ZcqUB/6MgwYN0p49e/Tdd99Zt3l4eGjRokU6fPiw/P395ePjo/Xr16tVq1Zyc3N7wK+ZRSaTyfr93f+c3D4AAACAPYxubzodAAAAuJ/R7Z0erU6nAwAAwBUZ3d50eupzN+zKAAAAyHDGjBmj4cOHJ9qWJUuWFI8ZPHiwli9frg0bNqhAgQKJXqtatap27dql69evKzo6Wrlz51bNmjVVrVo1SVJQUJCio6N19erVRJ8GvXDhgurUqWPd5/z58/dd9+LFi8qTJ49DPycAAADgSuh0AAAAwDnZ2+p0OgAAAJD26HTbcAd0AAAApJosWbIoR44cib6Si3CLxaJBgwZp8eLFWrt2rYoUKZLseX19fZU7d24dOXJE27dvV/v27SXFh7qHh4fWrFlj3ffcuXPat2+fNcRr166t69eva9u2bdZ9/vjjD12/ft26DwAAAJCR0ekAAACAc7K11el0AAAAIP3Q6bbhDugAAABOzmLJmI+1HDhwoL799lstW7ZM2bNnV2hoqKT46Pb29pYk/fDDD8qdO7cKFSqkvXv3aujQoerQoYNatGhh3bdPnz4aMWKEcuXKJX9/f40cOVIVKlRQs2bNJEllypTRo48+qr59+2rGjBmSpH79+qlt27YqVaqUAT85AAAAMgI6nU4HAACA86HT6XQAAAA4p4zY6pm901mADgAAAEN8+umnkqRGjRol2j5r1iz16tVLUvynOocPH67z588rb9686tGjh8aNG5do/2nTpsnd3V2dOnXSzZs31bRpU82ePVtubm7WfebNm6chQ4ZYA75du3b6+OOP0+6HAwAAAFwUnQ4AAAA4HzodAAAAcD6ZvdNNFovFYugInNCKYxWNHgJgl9Kel4weAmCXYu7ZjB4CYBdz0GFDr1968URDr2+Pv594zeghIINzpf8/AEG+YUYPAbBLjMVs9BAAu2xqNtXQ67tSl9DpSGu1u7xr9BAAu0T50j1wIXFGDwCwz44Zwwy9vit1ukSrI201Nz9l9BAAOAGzj4/RQwDgBFaHzzF6CC7V6nS6bXiHDQAAAAAAAAAAAAAAAAAAAABgE3ejBwAAAICU8bgaAAAAwPnQ6QAAAIDzodMBAAAA50SrZzzcAR0AAAAAAAAAAAAAAAAAAAAAYBMWoAMAAAAAAAAAAAAAAAAAAAAAbOJu9AAAAACQMovFZPQQAAAAANyDTgcAAACcD50OAAAAOCdaPePhDugAAAAAAAAAAAAAAAAAAAAAAJuwAB0AAAAAAAAAAAAAAAAAAAAAYBMWoAMAAAAAAAAAAAAAAAAAAAAAbOJu9AAAAADwABajBwAAAADgPnQ6AAAA4HzodAAAAMA50eoZDndABwAAAAAAAAAAAAAAAAAAAADYhAXoAAAAAAAAAAAAAAAAAAAAAACbuBs9AAAAAKTMYjEZPQQAAAAA96DTAQAAAOdDpwMAAADOiVbPeLgDOgAAAAAAAAAAAAAAAAAAAADAJixABwAAAAAAAAAAAAAAAAAAAADYxN3oAQAAACBlFovRIwAAAABwLzodAAAAcD50OgAAAOCcaPWMhzugAwAAAAAAAAAAAAAAAAAAAABswgJ0AAAAAAAAAAAAAAAAAAAAAIBNWIAOAAAAAAAAAAAAAAAAAAAAALCJu9EDAAAAQMosFpPRQwAAAABwDzodAAAAcD50OgAAAOCcaPWMhzugAwAAAAAAAAAAAAAAAAAAAABswgJ0AAAAAAAAAAAAAAAAAAAAAIBN3I0eAAAAAB6AxxABAAAAzodOBwAAAJwPnQ4AAAA4J1o9w+EO6AAAAAAAAAAAAAAAAAAAAAAAm7AAHQAAAAAAAAAAAAAAAAAAAABgE3ejBwAAAICUWSxGjwAAAADAveh0AAAAwPnQ6QAAAIBzotUzHu6ADgAAAAAAAAAAAAAAAAAAAACwCQvQAQAAAAAAAAAAAAAAAAAAAAA2YQE6AAAAAAAAAAAAAAAAAAAAAMAm7kYPAAAAAA9gMXoAAAAAAO5DpwMAAADOh04HAAAAnBOtnuFwB3QAAAAAAAAAAAAAAAAAAAAAgE1YgA4AAAAAAAAAAAAAAAAAAAAAsIm70QMAAABAyiwWk9FDAAAAAHAPOh0AAABwPnQ6AAAA4Jxo9YzHsAXop06d0okTJxQZGancuXOrXLlyypIli1HDAQAAACA6HQAAAHBGdDoAAADgfOh0AAAAZGbpugD933//1WeffabvvvtOp06dksVisb7m6emp+vXrq1+/furYsaPMZnN6Dg0AAADItOh0AAAAwPnQ6QAAAIDzodMBAACAeOlWu0OHDlWFChV05MgRTZw4Ufv379f169cVHR2t0NBQrVy5UvXq1dO4ceNUsWJF/fnnn+k1NAAAAOdmcaEvuBw6HQAAwEFGtzednqHR6QAAAA4yur1p9QyNTgcAAHgIRrc3nZ7q0u0O6J6enjp69Khy585932uBgYFq0qSJmjRpovHjx2vlypX6999/Vb169fQaHgAAAJAp0ekAAACA86HTAQAAAOdDpwMAAAAJ0m0B+ttvv23zvq1bt07DkQAAAAD4D50OAAAAOB86HQAAAHA+dDoAAACQwGz0AAAAAAAAAAAAAAAAAAAAAAAArsGQBejnz59X9+7dlS9fPrm7u8vNzS3RFwAAABJYLCaX+YJro9MBAABsZ3R70+mZB50OAABgO6Pbm1bPPOh0AAAA+xjd3nR66nM34qK9evXSyZMnNW7cOOXNm1cmE//CAAAAAKPR6QAAAIDzodMBAAAA50OnAwAAILMzZAH6pk2btHHjRlWuXNmIywMAAABIAp0OAAAAOB86HQAAAHA+dDoAAAAyO0MWoBcsWFAWi8WISwMAALgesgnphE4HAACwA9mEdEKnAwAA2IFsQjqh0wEAAOxEOmU4ZiMu+v7772v06NE6ceKEEZcHAAAAkAQ6HQAAAHA+dDoAAADgfOh0AAAAZHbpdgd0Pz8/mUwm6/cREREqVqyYfHx85OHhkWjfK1eupNewAAAAgEyNTgcAAACcD50OAAAAOB86HQAAAEiQbgvQ33///fS6FAAAQAZjevAugIPodAAAAEfR6Ug7dDoAAICj6HSkHTodAADgYdDqGU26LUDv2bNnel0KAAAAgI3odAAAAMD50OkAAACA86HTAQAAgATptgBdkurVq6cmTZqocePGql27try8vNLz8gAAAACSQKcDAAAAzodOBwAAAJwPnQ4AAADEM6fnxUqVKqVvv/1WTZs2lZ+fnxo1aqSJEydq48aNun37dnoOBQAAAMAddDoAAADgfOh0AAAAwPnQ6QAAAEA8h+6Afu3aNW3btk0XLlxQXFxcotd69OiR7HFfffWVJOn06dNau3atQkJCNGfOHL3++uvy9vZWnTp11KRJE40ZM8aRYQEAAGRMFqMHAFdBpwMAAKQjOh02otMBAADSEZ0OOzjS6nQ6AACAg2j1DMdksVjs+te6YsUKde3aVREREcqePbtMJlPCyUwmXblyxe5BnDp1SjNmzNBHH32k8PBwxcbG2n2O1LTiWEVDrw/Yq7TnJaOHANilmHs2o4cA2MUcdNjQ6xee8z9Dr2+PEz1fNnoImVZm6HRJKr14otFDAGwW5Btm9BAAu8RY0vVBecBD29RsqqHXp9Nhi8zS6bW7vGv0EAC7RPnSPXAhcQ/eBXAmO2YMM/T6rtTpEq1upNRudWfs9Obmp4weAgAnYPbxMXoIAJzA6vA5Rg/BpVqdTreN3XdAHzFihHr37q3JkyfL5yH+gDp69KjWr19v/bp27Zpq166thg0bOnxOAAAAILOi0wEAAADnQ6cDAAAAzik1Wp1OBwAAQGZm9wL0M2fOaMiQIQ4F+KxZs7Ru3TqtX79e169fV926ddWwYUMNHDhQ1apVk7u73cMBAADI+HgMEWxApwMAAKQzOh02oNMBAADSGZ0OGzna6nQ6AACAg2j1DMfu8m3ZsqW2b9+uokWL2n2xPn36qFChQnr11VfVu3dveXh42H0OAAAAAPej0wEAAADnQ6cDAAAAzsnRVqfTAQAAgHh2L0Bv06aNXnrpJR04cEAVKlS4L6bbtWuX7LGffPKJQkJC9Prrr2v06NGqV6+eGjVqpIYNG6pq1aoymUz2/wQAAAAA6HQAAADACdHpAAAAgHNytNXpdAAAACCeyWKx2HVje7PZnPzJTCbFxsbadJ4DBw4oJCRE69evV0hIiG7duqW6deuqcePGGjlypD1DSnUrjlU09PqAvUp7XjJ6CIBdirlnM3oIgF3MQYcNvX7h2f8z9Pr2ONHrZaOHkGllhk6XpNKLJxo9BMBmQb5hRg8BsEuMJfk/SwBntKnZVEOvT6fDFpml02t3edfoIQB2ifKle+BC4oweAGCfHTOGGXp9V+p0iVY3Umq0urN3enPzU0YPAYATMPv4GD0EAE5gdfgco4fgUq1Op9vG7gXoaeHs2bOaPn26PvroI4WHh9v8pntaYQE6XA0L0OFqWIAOV2P4AvRZxi6ssceJZ0cZPQSkImfrdIkF6HAtLECHq2EBOlyN4QvQ6XQYxBk7nQXocDUsQIdLYQE6XIzhC9BdqNMlWj0jccZOZwE6AIkF6ADiOcUCdBdqdTrdNu4Pc/CtW7fk5eVl93Hnz5/X+vXrrV+HDx+Wp6enatasqcaNGz/MkAAAAIBMj04HAAAAnA+dDgAAADgnR1qdTgcAAEBmZ/cC9NjYWE2ePFmfffaZzp8/r8OHD6to0aIaN26cChcurD59+iR77MCBA7Vu3TodOnRI7u7uql69up588kk1btxYderUcejNdwAAAAB0OgAAAOCM6HQAAADAOTna6nQ6AAAAEM/uBeiTJk3SnDlzNHXqVPXt29e6vUKFCpo2bVqKb5jv2LFDHTp0UOPGjVW3bl358IgPAACAB7JYjB4BXAGdDgAAkL7odNiCTgcAAEhfdDps5Wir0+kAAACOodUzHrsXoM+dO1eff/65mjZtqv79+1u3V6xYUX///XeKx27ZssX+EQIAAAB4IDodAAAAcD50OgAAAOCcHG11Oh0AAACIZ/cC9DNnzqh48eL3bY+Li9Pt27dTPHbDhg02XaNBgwb2DgsAAADI1Oh0AAAAwPnQ6QAAAIBzcrTV6XQAAAAgnt0L0MuVK6eNGzcqODg40fYffvhBVapUSfHYRo0ayWQySZIsydxP32QyKTY21t5hAQAAZFw8hgg2oNMBAADSGZ0OG9DpAAAA6YxOh40cbXU6HQAAwEG0eoZj9wL08ePHq3v37jpz5ozi4uK0ePFiHTp0SHPnztWPP/6Y4rF+fn7Knj27evXqpe7duysgIMDhgQMAAADp5fz58xo5cqR+++03Xbhw4b43lZ3hjWQ6HQAAAJkNnQ4AAAA4H1fodMnxVqfTAQAA4IrSotPtXoD+2GOPacGCBZo8ebJMJpNee+01PfLII1qxYoWaN2+e4rHnzp3TkiVLNHPmTE2dOlWtW7dWnz599Oijj1o/IQoAAAA4m169eunkyZMaN26c8ubN65TtSqcDAAAgs6HTAQAAAOfjCp0uOd7qdDoAAABcUVp0usmS3DOB0tipU6c0a9YszZkzR1FRUerZs6cmTJggd3e718SnuhXHKho9BMAupT0vGT0EwC7F3LMZPQTALuagw4ZeP/irqYZe3x7/9hll9BDSRPbs2bVx40ZVrlzZ6KGkOWfudEkqvXii0UMAbBbkG2b0EAC7xFjMRg8BsMumZsZ2Mp1uPDrdeTq9dpd3jR4CYJcoX7oHLiTO6AEA9tkxY5ih13elTpcyZqvT6c7T6c3NTxk9BABOwOzjY/QQADiB1eFzjB6CS7U6nW4bw95hK1iwoF577TX9+uuvKlmypN566y2FhfGX8wAAAPexmFznK4MqWLDgfY8fyqjodAAAABsZ3d50Op1OpwMAANzP6Pam1el0Oh0AACBpRrc3nZ7qnW73AnQ/Pz/5+/vf95UrVy7lz59fDRs21KxZs1I8R1RUlL799ls1a9ZM5cuXV0BAgH766Sf5+/s7/IMAAAAAaeX999/X6NGjdeLECaOHkiw6HQAAAJkNnU6nAwAAwPm4QqdLD9/qdDoAAABcSVp0ut3P/Xnttdc0adIktWrVSjVq1JDFYtGff/6pVatWaeDAgTp+/LheeOEFxcTEqG/fvomO3bZtm2bNmqX58+erSJEi6tWrl77//nsCHAAAAE7Hz89PJlPCJ1sjIiJUrFgx+fj4yMPDI9G+V65cSe/h3YdOBwAAQGZAp9PpAAAAcD6u1umS461OpwMAAMBVpHWn270AfdOmTXrzzTfVv3//RNtnzJihX375RYsWLVLFihX14Ycf3veGea1atVSoUCENGTJEVatWtZ7vXu3atbN3WAAAABmWKXM8qdLpvP/++0YPwS50OgAAQPqi041Bp9PpAAAAKaHTjeFqnS453up0OgAAgGNo9fSX1p1uslgsdv1rzZYtm3bt2qXixYsn2v7PP/+ocuXKCg8P19GjR1WxYkVFREQk2sdsNj94QCaTYmNj7RlSqltxrKKh1wfsVdrzktFDAOxSzD2b0UMA7GIOOmzo9Qt/8bah17fHib4vGT2ETCszdLoklV480eghADYL8g0zegiAXWIsD/7zAHAmm5pNNfT6dDpskVk6vXaXd40eAmCXKF+6By4kzugBAPbZMWOYodd3pU6XaHUjOdrqrtTpzc1PGT0EAE7A7ONj9BAAOIHV4XOMHoJLtTqdbhu732Hz9/fXihUr7tu+YsUK6yOFIiIilD179vv2iYuLe+CXM0Q4AAAAIEn16tXTa6+9pnXr1unWrVtGDydFdDoAAAAyCzqdTgcAAIDzcaVOlxxvdTodAAAAriQtO93d3gPGjRunF154QevWrVONGjVkMpm0bds2rVy5Up999pkkac2aNWrYsOF9x77yyivq0KGDatSo8fAjBwAAyCx4DJFhSpUqpW+//VZvvvmmsmTJopo1a6pJkyZq3LixatWqJQ8PD6OHaEWnAwAApDM63TB0OgAAAJJFpxvGlTpdcrzV6XQAAAAH0eqGSMtON1ksFrv/tf7+++/6+OOPdejQIVksFpUuXVqDBw9WnTp1UjyuV69eWrlypdzc3PTYY4+pffv2atasmbJkyeLwD5AWVhyraPQQALuU9rxk9BAAuxRzz2b0EAC7mIMOG3r9wp+70GOI+mXMxxCdPn1aa9euVUhIiNavX6/jx4/L29tbderUUZMmTTRmzBijhygp43e6JJVePNHoIQA2C/INM3oIgF1iLHY/KA8w1KZmUw29Pp1uPDrdedTu8q7RQwDsEuVL98CFxBk9AMA+O2YMM/T6rtTpUsZsdVfpdMmxVnelTm9ufsroIQBwAmYfH6OHAMAJrA6fY/QQXKrV6XTbOLQA/WFYLBZt2rRJK1as0PLly3XmzBk1b95c7dq1U9u2bRUQEJCew0kSC9DhaliADlfDAnS4Ghag2y4jRnhSTp06pRkzZuijjz5SeHh4hnicpit0usQCdLgWFqDD1bAAHa6GBei2o9Ndl6t0OgvQ4WpYgA6XwgJ0uBgWoNsnM7Q6nW4cFqADkFiADiAeC9DtQ6fbxt2RC8fGxmrp0qU6ePCgTCaTypYtq3bt2snNze2Bx5pMJtWvX1/169fX1KlTdfDgQa1YsUJffPGFnn/+edWsWVPt2rXTM888o/z58zsyPAAAACDVHT16VOvXr7d+Xbt2TbVr177v8ZtGotMBAACQ2dDpdDoAAACcjyt0uuR4q9PpAAAAcEWp3el2L0D/559/1Lp1a505c0alSpWSxWLR4cOHVbBgQf30008qVqyYXecrU6aMypQpo1GjRunixYtavny5li9fLkkaOXKkvcMDAADIeCwmo0eQac2aNUvr1q3T+vXrdf36ddWtW1cNGzbUwIEDVa1aNbm7O/R5zjRBpwMAAKQzOt0wdDqdDgAAkCw63TCu1OlS6rY6nQ4AAGADWt0QadnpJovFYrHngNatW8tisWjevHny9/eXJF2+fFndunWT2WzWTz/9lOLxp06dUsGCBe/bHhERocuXL6tQoUL2DCdNrDhW0eghAHYp7XnJ6CEAdinmns3oIQB2MQcdNvT6hWe8Y+j17XHi+Yz1RqrZbFahQoU0ZswY9e7dWx4eHkYPKVmZodMlqfTiiUYPAbBZkG+Y0UMA7BJjMRs9BMAum5pNNfT6dLpx6HTn6/TaXd41egiAXaJ86R64kDijBwDYZ8eMYYZe35U6XcpYre5KnS49XKu7Sqc3Nz9l9BAAOAGzj4/RQwDgBFaHzzF6CC7V6nS6jee294CQkBBNnTrVGuCSlCtXLr311lsKCQlJ8dgvv/xSY8aMSfK12NhYtWvXTrNmzbJ3SAAAAECa+OSTT1SrVi29/vrrCgwM1GOPPaZ3331X27dvl52f40xzdDoAAAAyCzqdTgcAAIDzcaVOlxxvdTodAAAAriQtO93uBehZsmTRjRs37tseHh4uT0/PFI/96KOP1K9fP0lSmzZtdPXqVetrOXLk0DvvvKP333/f3iEBAABkbBYX+spgXnjhBc2fP1/nzp3T77//rtatW2vbtm1q27at/Pz81KZNG73zjnN8SpdOBwAASGdGtzedTqfT6QAAAPczur0zcau7UqdLjrc6nQ4AAOAgo9ubTk/1Trd7AXrbtm3Vr18//fHHH7JYLLJYLNq6dav69++vdu3apXjs0aNHFRwcLEnauHGjrl69qvbt21uDvGjRojpy5IgDPwYAAACQtsqWLasXXnhBCxYs0I4dOzRo0CBt2rRJL7/8stFDk0SnAwAAIHOi0+l0AAAAOB9n73TJ8Van0wEAAOCqUrvT3e094MMPP1TPnj1Vu3ZteXh4SJJiYmLUrl07ffDBBykeW6hQIe3Zs8ca4xaLRWvXrtXVq1fl5+enNWvWqEiRIg78GAAAAEDaOX/+vNavX2/9Onz4sDw9PVWzZk01btzY6OFJotMBAACQ+dDpdDoAAACcjyt0uuR4q9PpAAAAcEVp0el2LUC3WCy6fv26vvvuO509e1YHDx6UxWJR2bJlVbx48Qce3717d40YMUKFCxeWJJlMJknStWvX9Mknn2jMmDE8iggAAOBeGezxPq5k4MCBWrdunQ4dOiR3d3dVr15dTz75pBo3bqw6derIy8vL6CFKotMBAAAMQacbhk6n0wEAAJJFpxvGVTpderhWp9MBAAAcRKsbIi073e4F6CVKlND+/ftVokQJm94kv9uIESO0a9cuVapUSSaTSW3btlVkZKSqV6+u7Nmz65133lHv3r3tOicAAACQVnbs2KEOHTqocePGqlu3rnx8fIweUpLodAAAAGQmdDqdDgAAAOfjKp0uPVyr0+kAAABwJWnZ6Wa7djabVaJECV2+fNmhi3l6emrBggXavXu3PD091bx5c7m7u+vrr7/WhQsX1K9fP4fOCwAAAKSFMmXKaMyYMWrevLlTv1lOpwMAACAzodPpdAAAADgfV+l06eFanU4HAACAK0nLTrdrAbokTZ06VS+99JL27dvn8EUrVKigfv36adSoUerfv78aNWokT09Ph88HAAAApIU5c+bo5s2bRg/DJnQ6AAAAMgs6nU4HAACA83GlTpcevtXpdAAAALiCtOx0d3sP6NatmyIjI1WpUiV5enrK29s70etXrlyx6TwffPBBov+9l8Vikclksnd4AAAAGY/F6AFkXhaL6/zi0+kAAADpzHVSMcOh0+9HpwMAANzhOqmY4bhSp0up0+p0OgAAgB1cKxczjLTsdLsXoL///vsOXahMmTIaN26cnnzyyRQ/9XnkyBG99957Cg4O1ujRox26FgAAAJBaXOXNYTodAAAAmQmdHo9OBwAAgDNxlU6XHGt1Oh0AAACuKK063e4F6D179nToQp988olefvllDRw4UC1atFC1atWUL18+eXl56erVqzpw4IA2bdqkAwcOaNCgQRowYIBD1wEAAABSU8mSJR8Y47betTAt0ekAAADITOh0Oh0AAADOx1U6XXKs1el0AAAAuKK06nSbFqCHhYXZfMIcOXIkub1Jkyb6888/tXnzZi1YsEDffvutTpw4oZs3byogIEBVqlRRjx491K1bN+XMmdPm6wEAAGR4Fte5Y0hGNGHCBPn6+ho9jCTR6QAAAAai0w1Fp9PpAAAASaLTDeXMnS49fKvT6QAAAA+BVjdMWnW6TQvQc+bMafMt2GNjY1N8vU6dOqpTp45N5wIAAACM9vTTTyswMNDoYSSJTgcAAEBmRacDAAAAzseZO11KvVan0wEAAOBK0qrTbVqAvm7dOus/nzhxQqNHj1avXr1Uu3ZtSdKWLVs0Z84cTZkyJdUHCAAAABjF1jeijUKnAwAAIDOi0wEAAADn4+ydLtHqAAAAyHzSstNtWoDesGFD6z9PnDhR7733np555hnrtnbt2qlChQr6/PPP1bNnz9QfJQAAAGAAi8Vi1/6nT59Wvnz5ZDab02hEidHpAAAAyIzodAAAAMD5OHunS7Q6AAAAMp+07HS7S37Lli2qVq3afdurVaumbdu22Xu6h/bnn3+qa9euKlKkiLy9veXj46MiRYqoa9eu2r59e7qPBwAAILWZLK7zldHExcXZ9RiismXL6sSJE2k3oBTQ6QAAAOnL6Pam0+l0R9DpAAAgozO6vTNzq7tSp0u0OgAAQHozur3pdNvY0+l2L0AvWLCgPvvss/u2z5gxQwULFrT3dA9l6dKlqlu3rq5cuaKhQ4dq5syZ+vLLLzV06FBdvXpVdevW1bJly9J1TAAAAMi87P3kaGqi0wEAAICk0enx6HQAAAA4EyM7XaLVAQAAgKTY0+nu9p582rRp6tixo1avXq1atWpJkrZu3aqjR49q0aJF9p7uoYwdO1YTJ07U6NGj73vtxRdf1P/+9z+98sorat++fbqOCwAAAEhvdDoAAADgfOh0AAAAwDnR6gAAAMDDsfsO6K1bt9bhw4fVrl07XblyRZcvX1b79u11+PBhtW7d2ubzHD16VGPHjtUzzzyjCxcuSJJWrVql/fv323yOf/75R0888USyr3fo0EFHjx61+XwAAABOyeJCXzAMnQ4AAJDOjG5vOt0l0OkAAADpzOj2ptVdRmq0emp0ukSrAwCATMLo9qbTU53dC9Cl+EcRTZ48WYsXL9aSJUs0adIkux5BFBISogoVKuiPP/7Q4sWLFR4eLknas2ePxo8fb/N5ihUrpqVLlyb7+rJly1S0aFGbzwcAAAC4MjodAAAAcD50OgAAAOCcHqbVU6vTJVodAAAArsnd3gMKFy6s3r1769lnn7XrTfK7jR49Wm+++aaGDx+u7NmzW7c3btxYH3zwgc3nmThxop5++mmFhISoRYsWypMnj0wmk0JDQ7VmzRr98ssvmj9/vkNjBAAAAOxlMpkMuzadDgAAACSNTo9HpwMAAMCZGNnp0sO3emp1ukSrAwAAwHnY0+l23wF9xIgRWrZsmYoUKaLmzZtr/vz5ioqKsusce/fu1eOPP37f9ty5c+vy5cs2n6djx47asGGDsmfPrvfee089e/ZUjx499N577ylbtmwKCQlJ8TFFAAAAQGqyWIx7FhOdDgAAACSNTo9HpwMAAMCZGNnp0sO3emp1ukSrAwAAwHnY0+l23wF98ODBGjx4sHbv3q2ZM2dqyJAhGjBggLp06aLevXvrkUceeeA5cubMqXPnzqlIkSKJtu/cuVP58+e3azy1a9dW7dq17ToGKdv8Y6y2/BSrK+fjJ1JQsEnNuripTHW3NLvmnk2xWjU3VpfPWZQrr0mterqpQt2E6xkxJriOlcs9tHK5h86fj/9MTaHgOD3TPUrVasam2TV/3+Cub2Z56tw5s/LmjVP3PtGqUy/G0DHBdXy3VJq/TDoTGv998cLSgJ5Sg1ppd81fQqQPv5JOnpUK5ZOGPic1b2DsmABXMnv2bHXq1Ek+Pj4p7nfgwAHly5cvnUaVGJ2ecfQrWVfN85dW0WwBuhUbo51XTundfb/peHjKf2nRpWg1dS1aXfmz5tS5yOv67NAmLTu5J03HWjJHoMZVaqUK/vl0PfqmFhzfoel/b7C+/kiughpZvpmKZsslL3cPnY28rgXH/9Kcf/5I03EhfXUJbqIGgRVUyCe3ouJitP/6Cc345yediryY4nEdCtTR4wXqKsjLX+dvXdU3J37TL6F/pelYi2QN0tBSj6tMjkIKux2pFWe3au7xNdbXK/gWVr/ibVQoa6C8zJ46f+uqlp/ZooWnNqbpuJB+uhVurIa5yys4a6Ci4m5r77UT+vSfnx84X58oUFtPFKyjvF7+On/rmuae+E2rzu1I07EWzRqkYaU7qGyOggq7HallZ/7Q7OO/Wl+v6FtY/Uu0VrBPbnm5eSr01lUtO/OHvj/JfEXmQafT6empR7saali9hILz+SsqOkZ7j5zV9O826OS5qyke16JuaXVrW10Fg/wUHhmlrXtO6KN5IQoLv5VmYy1WMEAjejVR2WJBCgu/paW/7dHMJVutr1cslV8Dn66v4Hz+8srirtBLN7T0t92a/3Pa/tmG9PVsy+pqUrm4Cgf5K+p2jHYfPasPl27Sv+dTnrOtqpdWzxbVVDAwp8JvRmvL/hOatniDrkek3Zwtni+XXu7cROUKByks8pYWbdyjL1Ym/Hdj5WL5NOTx+iqcx09enh46dyVMizfu0by1O9NsTEh/zz5aXU2q3Jmz0THafeysPlxsw5ytcWfO5rlrzi5Mhzn7zJ05G3Fnzv50z5x9or4KB901Zzfs0bzfmLPIHFyh06WHb/XU7HSJVs8snh7dQfUer6mCpfMr6ma0Dmw+pC9Hz9Ppw2eTPealmQPVolej+7af2H9KfSsMT7OxFi5fSIM/6qNSNYrrxpVw/fT5Gn3zxkLr6+Xqllbft7qqYOn8yuKTRef/vaifPl+jxe//lGZjAjKKziPaqm67qipYMq+ib93Wga1H9NVr3+v0kdBkjxnx2XNq0a3+fdv/PXhG/aq/kmZjLVyugAa+212lqhbVjasRWjlznea9tcz6ernaJdRnYmcVLJlXWXw8deHUJf301Xot+WR1mo0JgGPSotPtvgP6fypVqqQPPvhAZ86c0fjx4/Xll1+qevXqqlSpkmbOnJniKvguXbro5ZdfVmhoqEwmk+Li4vT7779r5MiR6tGjh6NDQirxDZBaP+umFz/00Isfeqh4JbNmT4xR6L9xDp3vzzWxmj4qOtnXTxyM0zdTYlS1qVkjpnuoalOzvp4So3//Trheao8JGUuugDj17Bul96dH6P3pEapUJUZvvuatf0849lvcr6vcNXq4d7KvH9xv1v/e8FLj5jH66PNINW4eo/9N9NKhgwnXS+0xIWMJyi0Nf1764fP4r1qPSINelY4cd+x8S36WegxN/vWd+6ThE6R2LaSlX8X/7/DXpd0H0m5MQEYzZswYBQUFqU+fPtq8eXOy+xUsWFBubsZ+QI5Od33Vcwfr26Pb1Xn9TPX+/Ru5m8z6sl5Xebt5JHvM00Wqani5pvr4YIjarvlUHx0M0WuVWqlxUEmHx5Hfx1d/P/Fasq9ndffUV/W66cKtG3pq3Zd6c/cq9S5RW88WT/j00s2Y25p3dJu6bZijNmum69O/N2po2cbqVPjBC63gOir7FdXS079rwPaPNHLnDLmZzHq7cj95mT2TPaZd/trqW6y1Zh/7Rb22vq3Zx3/Ri6UeV+2Asg6PI8jLT+ubvpPs6z5uWfRulX66HBWm/n9+oA8PL1HnQg3VqVBD6z43Y6O15PTvGvrXdPXcOlVfn/hVfYq1Utt8NR0eF5xLlZxFtfj0Zj3/58catuMLuZncNK3Kc/IyJ/97bIf8tfR88VaaeexXdd/6rr469ouGl3pcdQPKODyOIC8/bWo2NdnXfdyyaNojfXU5KkzPbftQ0w4t0zPBDfR0oYRPkd6Mi9biU5s16K/P1HXLO5pz/Df1LdZS7fIzX5F50Ol0enqqUqaAFq3Zpb6vfauhUxbK3WzS+6OflFeW5O/zU7FUfr32QiutWL9PXUbN1qsf/qgyRYP0St8WDo8jKCCHtnw7ItnXfbw99cGYJ3XxaoR6j52nd+esVZc21fRM66rWfW7duq2Fv+zSCxMX6OmRszVryVb1e6qe2jep4PC44Hyqliig70N2q+fU+Xrhg0VydzNr+uAn5OWZ/JytXCyfJvZqqaWb9+mpiXP18hc/qmzhPBrXrbnD48jrn0M7Ph2W7OtZvTw1fUhHXbweru7/+1ZTF6xT92ZV1a1pwn833oy6rQXrd+m5935Qxwlz9NXPf2hAu7p6oh5zNiOpWrKAvl+/Wz3fujNnzWZNH2rDnH22pZb+vk9PvT5XL8/4UWWD82hc94eYs7lyaMeMB8zZFzvq4rVwdZ9yZ842r6puze6as9F35uw7P6jj63P01co/NKB9XT1RnzmLzMGVOl1yvNXpdDiiYoNyWj59tYbUfkWjW7whN3c3vbV6rLx8siR7zCcvzlKnvH2tX88UfF5hl29ow8ItDo8jT3BurYn7IdnXfbJ763+/jNPls1c0qMZofTLkKz054jE9ObytdZ9bEbe07JNVGt7wNfUp+6K+nbRIvd54Wq37NnN4XEBmUbFeKa34/De92OQNjXlsqtzc3TR52UvK4pP836t8Omqeni46xPrVteSLCrscrg1Ltjk8jjyFArQ6fE6yr/tk99KU5S/p8rlrGtzwdU0f+bU6DmmljoMfte5zKyJKyz//VSMfnay+Vcfo2/+tUK/XOqrVs40cHheAtJEWnW73HdD/c/v2bS1ZskSzZs3SmjVrVKtWLfXp00dnz57Vq6++ql9//VXffvttksdOmjRJvXr1Uv78+WWxWFS2bFnFxsaqS5cuGjt2rKNDus8rr7yi0NBQzZw5M9XOmRmUq5V48rTqZdbmn2L1798WBQVLMbctWjU3VjvWxepmuBRU2KQ2vd1VvKJjC2s3Lo1ViUdMato5fjo27WzWsb1x2rg0VsGjzTaNCZlbzTqJ7yreo0+0Vq7w1KEDbgouHKfbt6WvZ2bR+t/cFRFhUnDhOPXqG6WKlR27G/nyxZ6qUjVWnbrEf7CiYJdo7dvjpmWLPDVq7C2bxoTMrXHdxN+/2Df+7uO7D0glikjRt6UPvpR+/FW6ER6/bcTzUo0qjl1v7kKpTlWpX7f47/sFS3/ulub+IL073rYxAZnd6dOn9dNPP2n27Nlq3LixihQpomeffVY9e/ZUUFCQ0cNLhE53fX1/T/zvZ8xfy7Wl7UiVy5lX2y+fTPKY9oUqasHxv/TzmfhPF52OvKZK/vn1XMk6Whd62LrfE8GV1KdEHRXI6qczkdf09dFt+u7YdofG+VjBCspidtfov5bpdlysjoRdVOFsudSrRC3N+if+7ooHr4fq4PWEuzWcidyr5vlKq2pAIX1/grsrZhSjdn2Z6Pu3DizQsgYTVDJHAe25dizJY1oEVdWKM1u17sJuSdK5W1dUNkchdQlurC2XEj4l92je6nomuJHyevkr9NZVLTq1ScvOJP+GSEqaBT0iT7OH3jowX7ctsToeEaqCJ37TUwUb6PuTIZKkf8LP6p/whLsNhYZeVf3cFVQxZ1H9eJY792cEI3Z9lej7KQe+148Nx6tUjgLafS3pT1+2zPuIlp3+Q2vPx8/XszevqJxvIXUt3Ei/Xzpo3a913mrqUrihdb4uPPW7lpx27C8CWwRVkafZXZP2L7gzX8+r0PEAdS5UX/NPxj9p4siNszpyI/F8bRhYXhVzFtbyM8xXZA50Op2enob9b3Gi79+csVo/zxig0kXyaNffZ5I8pnzxvDp3MUw/rI6/4+25i2Fa+tsedXuseqL92jQsp25tqytvbl+FXgrT96t2aPGvux0aZ8u6ZeTp4aY3P1ul2zGxOnb6sgoFbdMzravqu5XxT5s5/O8FHf73gvWY0EthalS9hCqVKqBla/c6dF04n0EfL0n0/fi5v2jt2/1VtlAe7fgn6TlboUhenb0cpvnrdkmSzl4O06KNe9WzebVE+7WrXVY9m1dTvgDfO/vv1A8bHHsCV6sapZXFw03j5/6i2zGxOnr2sgoF+qlbs6r65rf4/248dPqiDp1OeGLNuW1halK5uKoUz6/Fm5izGcWgD++Zs3N+0dp3+6tscB7tOJLMnC2azJxtcc+crVNWPVvcNWfX7tQPIQ85Z+ckMWd/vTNnT13UoVN3zdnLYWpS5c6c3cicRcbnSp0uOd7q6dXpEq2ekbzSelKi79/pPV0LL3ylElWLau/Gg0keExkWqciwSOv3ddpXVza/rFo9a12i/Vr2aqROL7VXUJFAhZ64qKUfrdSKT39xaJxNutaXp5eH3n72E92OjtGJ/aeUv2Q+dRz2mBa+96Mk6eiuEzq664T1mPP/XlS9x2uqQr0yWvnFr8mcGYAkvfr4u4m+f/eFL/X9iY9VokoR7fv9UJLHRIbdVGTYTev3tds+omx+Pvrl68RPxGzRrb6eGtZaQcEBOn/ykpZ+ukY/frHWoXE26VxHnlk89O7zX+h2dIz+PXBG+YsH6YnBj2rRR6skSUf3nNTRPQl/f3n+5CXVbV9V5euU1M+z1jt0XQBpIy063e4Vwzt27NDgwYOVN29eDR48WOXKldO+ffu0adMmPfvss3r11Ve1fPlyLVmyJNlzeHh4aN68eTpy5Ii+//57ffPNN/r777/19ddfp+onXM+cOaMTJ06k2vkyo7hYi3auj1X0LSm4tEmStOC9GJ04EKduoz00YrqnKtUz68uxt3XxjGOLav89GKdSjySeiqWqmnXiYNLnS2pMwH9iY6WQte66dUsqXTZ+Efj7b3vp4H43jRp7Sx9/EaF6DW9r/GhvnTnt2Pz5+4CbqlSLSbTtkWoxOrg/6d+/khoT8J/YWOmn36TIW1LlcvHbXn0r/q7l774mLZ0ptWwk9R0lnTjt2DV275fqJP57TdWtLu3cb/uYYCyTxXW+7DFlyhRVr15d2bNnV2BgoDp06KBDhxL/B3V4eLgGDRqkAgUKyNvbW2XKlNGnn36aaJ9GjRrJZDIl+nr66acT7XP16lV1795dvr6+8vX1Vffu3XXt2jWbx+rm5qZ27dpp8eLFOnXqlPr166d58+apUKFCateunZYtW6a4OGM/YESnZ1zZPeLvfHL99s1k9/E0uykqLnGfRMXGqIJ/frmb4lv7qcJV9GLZJnr/wDq1XjNd0/av1dAyjdShUEWHxlXZv4D+vPSvbscl9M2m80eVxzuH8vvkTPKYMr5BqpKroP689K9D14RryObuJUm6cTsy2X08zO6KjrudaFtU3G2VzlFQbnfmbJt8NfVcsUf15dGf1WPr2/ri6Er1LtZSLYOqJXXKByrnG6xd147qtiVhzm67fEi5vXwV5OWf5DHFs+VTed9g7b521KFrwvllvTNfw1KYr55JzdfY2ypz13x9LF8N9Sv+qD7/Z7W6bXlHM/5ZpeeKttCjeasmdcoHKp8zWLuuHUs0X/+4cli5vXyV18svyWNKZM+n8r6FtesqjzFKL0a3N51Op9Ppxsp25w6FYeG3kt1n7+GzCvTPptqV4z/d75fDR01qltDmnQkf0mvXuIKe71RPn32/Sc+8NEufLtiofk/VVev6jj0ZpkKJvNp58LRux9z1Z8ieE8rtn115c+dI8piSwYGqUDKfdh508M0nuITs3vF30rsemfyc3X3srPLkzKa65QpLkvyz+6hZlRLatC+hLx6vW14D29XVJ8s3q+OEOfpk2e964bE6alvLsTlbsUhe/XXkTKI5u+XACQXmzKZ8uZKes6UK5FbFovn01xHmbEZmnbMRKczZo3fmbPnCku7M2UdKaNPeu+ZsvfIa2L6uPlm2WR3Hz9EnS3/XC+0eYs4Wzau/DicxZ/1SmLMF78zZw8zZ9GB0e6dVq9Ppqe9hWz29Ol2i1TOyrL4+kqQbV8JtPubR3k2089e9unDyknVbq+ea6tk3n9Gssd+pT9lhmvXqt+o18Wk179HQoXGVrVVSe0IO6HZ0wt87bF+9SwH5/RVUODDJY4pVLqyydUppz4Zk/hIaQLKy5vCWJN24asfvBT0aaOe6A7pw6rJ1W6teDdVrfEfNnrBQz1Udo1mvL1TPsR3VrEvdFM6UvDI1imvvpkOJfi/469e9CsjnpzzBAUkeU6xiIZWtGX8ccC+j25tOT/1Ot/sO6NWrV1fz5s316aefqkOHDvLwuP8RxWXLlr3vh09K0aJFVbRoUXuHYLM5c5J/RARSdu54nD4aflsx0ZKnt9RrnLuCgs26dNaiXSFxGvu1p3xzxS/ebfSkuw79Fac/18SpdS/774J+46qULWfihcDZcpp044ptYwIk6cQxs0YO9lF0tOTtLb064aYKFY7TubMmbVjrrtnzI5QrIP5Phyc63dZff7rr11Ue6vlctN3XunrFpJx+if+kyeln0dWriedxcmMCJOnwUemZgVJUtOTjLX30plS8sHTyTPzi7/ULpcA7vd77aWnjNmnJSmlYP/uvdemKFHDPGpUAv/jttowJSCshISEaOHCgqlevrpiYGL366qtq0aKFDhw4oKxZs0qShg0bpnXr1umbb75R4cKF9csvv2jAgAHKly+f2rdvbz1X3759NXHiROv33t7eia7VpUsXnT59WqtWxX8Su1+/furevbtWrFhh97gDAwNVt25dHTp0SIcPH9bevXvVq1cv5cyZU7NmzVKjRo0c+NV4eHR6xjW6Ygttv3RSR8IuJrvPpgvH9GThKvrt7CHtv3ZO5XPm1RPBleVpdpNfFh9dvBWuF0o30P/2/qI1Z/+WJJ2JvKZi2XOrc5GqWnrS/rt+5fbKpjOR1xJtuxwVnuRr61u9KH9PH7mZzfr4YIgWnthp9/XgOgaUaKc9147peERosvv8eeWQ2uSrqU0X9+nwjTMqlb2AWuWrIQ+zu3w9supK9A31KNJM04+s0MaL+yRJobeuqHDWPHosfy2tDrX/zv3+ntkVeutqom1Xo8Pvei0hjn6oO1a+ntnkZjJr9rFf9NNZxx9hCec2uORj2n31uI5HnE92nz8uH1bb/DW08eJ+HbozX9vkqy4Ps7tyemTV5egb6lW0qT4+/KM23Jmv525dVZFsgWqfv6ZWnfvL7nH5e2ZX6M3E8/XKnd9j/bNk17m75vLieq8o5535OvPYGv3IfMVDotNTF52ecQ3p1ki7/j6tY6cvJ7vP3iNn9fonK/XG4LbK4uEmd3c3bdj+j96dk3DnsWcfr6WPvglRyJ//SIq/S3qR/LnUoWklrdx4ILlTJ8vfN6vOXQpLtO3K9QhJUq6cWXXuYsJryz7qp5w5vOXmZtZXi7ZoxXruypuRDX+yoXb+c0ZHzyY/Z/ccO6dXZ63SW8+1kaeHmzzc3LR+91FNXbDOus9zrWvqvUUbtHZX/Jw9ezlMRfL6q2O9Cvpxq/1zNleOrDp3OfGcvXwj/sOBATmy6uxdr/08+Tn5ZYufszN+3Kqlv++z+3pwHcOfaqidR2yYszNX6a2+d83ZXUc1df5dc7ZNTb23cIPW7rxnzjZwcM76JjFn79yVNsD3njn71l1zdgVzFg+HTk99qdXqad3pEq2ekfV/t6f2bjyoE/tP2bS/f1BO1WhVRZO7fpBoe7exT2rGyLnatCT+faHQExdUqGwBtenXXGvmhtg9Lv+gnAr9N/HfSVw7f12S5BeUU6EnEp6o9O3Jz+SbO4fc3N309YTv9fNXjt1pGcjM+k3pon2bD+nfA0k/+ede/nl8Vb1FRb3V+7NE27u83F6fvzJfvy+Pf0/6/L+XVKh0frXp3Vi/fvu73ePyy+Or83d92EWSrl4Is47h/L8Jr31zaJp8A7LLzd1N30xeolVz7P+9B3BFmb3T7V6AfuzYMQUHB6e4T9asWTVr1qxkX3/yySdVrVo1jR49OtH2t99+W9u2bdMPP/xg77AcFhUVpaioqETbbkfFySNL5l7YnLuAScM/8dTNcIv2/h6n+e/G6IWpJp0/aZHFIv3vnkW7MbclnxzxC3KvXrDo7ecTXo+Ljb+b7iuPJ/w6P9LErCcHJ/wHnOneG1Fb7t+W3JhYhA5Jyl8wTh9+HqGIcJN+3+iuaf/z0lvv3dTJf82yWEx6vmfWRPvfvi3luDNnL5w3aUDvhNdj78zZJ9tks25r1Oy2Bg1LmMP3zk+LRbp3Gic3JhahQ5IKF5IWfyndCJd+2SCNmSzN/VD657hksZjUqlviDzlER0s579w85ex56bGeCa/FxEoxMVLVRxO2PdZcen1Ewvf3zdkktiU3JhahI638F8X/mTVrlgIDA/XXX3+pQYMGkqQtW7aoZ8+e1rjt16+fZsyYoe3btycKcR8fn2QfCXTw4EGtWrVKW7duVc2aNSVJX3zxhWrXrq1Dhw6pVKlSNo33/Pnz+vrrrzVr1iwdO3ZMHTp00I8//qhmzZrp5s2bGjt2rHr27Kl//zXmzs4ZrdOlpFs97naMzB52/2eMyxpXqZVK5cijLhuS//cmSdMPblBAlqya36i3TDLpclS4lvy7W31L1VWsJU5+nj7K5+OrNx9pp4mPPGY9zt1k1o3bCXcSW9Gsv/LduXv5f39M/NUuYT6cjbymx35NeDPr/g9/xx9lsSR+pWvIbGV191Ql//waUa6pToZf0U+nuQtKRjS01OMqli2vBv/1SYr7zT2+Rv6e2TW92hCZJF2JDteqs9vVpXBjxVks8vXIqjxefhpVppNeKv2U9Tg3k1nhsQlzdlbNkQr6727Qd+Lm54YJj7ENvXVVz/7xjvV7yz2zNqGHEm8f/Nd0ebt5qqxvsPoVb60zNy9p7fldtv0iwGUML9VBxbIFacD2T1Pcb/bxX5UrS3bNqD5IUvwHF34+t11dCzdWrCVOOe/M19Fln9SoMh2tx7mZzIqISZivX9carjx35qvpzuT7pdEb1tfP37qq7lvfs36f7Hy95zffgds/lbdbFpXzLaT+xVvpTORl/cp8xUOg01NXpun02BiZ3TJPp4/s1VTFCwXo+QnzU9yvcH5/DevZRLOWbNHW3ScU4JdVg7o01Mu9m2nyF78oZ3ZvBQXk0Cv9Wmh03+bW49zMZkXcTPg1nje1p4IC4t8YMt1p7t9mDra+HnopTF1H3bUoyXLvnyGmpDar/8T58vHyVLnieTXg6fo6HXpNa7b8bfsvBFzG6Kcbq0T+APV+5/sU9ysS5K9RnRrpi5VbteXAvwrIkVUvPlFfr3RpqonfrFHObN7K659Dr3VvrnFdm1mPc3MzK/yuOfvDuB7K659dUsL82zRtoPX1c1du6Kk35lq/v697ktne593v5ZPFQxWK5NXgDvV06uI1rd7OXfUyotHP3Jmzbz9gzub116jOjfTFT1u1Zf+/CvDNqhc71tcrXZtq4td3zdkezTWuWwpzdnwSc/aDe+bshLvm7H2/zya9vc/bd+Zs0bwa/PidOfsncxaOodNT38O2ukt0uiVWZlPq3o0dqWfwx31UpGIhDas/zuZjWvRqpPBrEdq89E/rNt+AHAosFKDhX76gYZ/3t253czcr4nrCU/++2Pue8gTnjv/mzp9dy8O+tr5+/t+L6lthuPX7e/9cu+sPvESbhzd4TV7ZvFSmVgk9N6Wrzv4TqnXz7V/oCmRWA9/rriLlC2hE80kP3vmO5t3qK/x6pDavSLj5iW9AdgUWzKVhn/TWix89a93u5m5WRFjCU5Y//3OyAgvmkpTQvktDZ1hfv3DqsvpVf8X6/f3tm/R7DCNaTJJ3Ni+VqV5MvSd00tljF7T+h602/0yAq8rsnW73O8IPCnBbhISEaPz48fdtf/TRR/XOO+8kcUTyIiIi9O2332rz5s0KDQ2VyWRSnjx5VLduXT3zzDPWTxEkZ8qUKZowYUKibU8PCVSXoXnsGkdG4+5hUkA+STKpYEmzTh2O06ZlsSpeySyzWXrxIw+ZzYlXLnrGP7VaOXJJwz/xtG7f+3us9vwep66jEhacZ/FJOC67n3TjauI/lcKvW5Ttnrv1JjemJ4ewAB2Sh4eUL79FkkUlSkXryCE3LV/soYpVYmU2W/T+ZxEy3zNV/vuQUK4Aiz78PMK6ffNGD23e6K6RryQEmM9dc9bP36KrVxLP/+vX7r8renJjGjQ88X/4I3Py9JCCC8T/c/nS0t6/pa8XSjUfkdzcLFr4ue6bsz535mxgrviF4v9ZsyH+a+rYhG3Z7vrjL8BfunjP3c4vX5Vy3fP7bHJjmjDS8Z8TqcRy70dcMqbr1+PvnODv72/dVq9ePS1fvly9e/dWvnz5tH79eh0+fFgffJD4zg7z5s3TN998ozx58qhVq1YaP368smeP/0ujLVu2yNfX1xrhklSrVi35+vpq8+bNNoX4Y489ptWrV6tkyZLq27evevTokWic3t7eGjFihKZNm/ZQvwYPI6N1upR0q+fq1EgBnRvbNRZXNbbSo2qSt6S6bZij8zdvpLhvVFyMXt2xQuN3/qRcXll18Wa4OhV5ROG3o3Q1KlL+WeJ/vcftXKE9VxLfPSH2rneInv/9O7nf+QMoj3cOfd2gpx7/LeFNp5i7Hrl18Va4ArIkfGBPknLduc6lqIhE2/+7G/rhsAvKlSWbBpVpyAL0DGhIyQ6qG1BOQ/6arotR11PcNzouRlMPfq93/14of8/suhwVprb5ayki5pau345QTs/4ufTOwR90MOxkomPvnrOjd38ld1P8nA3I4qsPqg7Qc9sSFvDGWBLm7JXoG/L3zJ7oXDk9st15LfFjLf+7G/rxiFD5e2ZTryItWICewbxYqr3q5i6rQds/tWm+Tjnwg6YeXGSdr+3y17wzXyOt8/V/BxfpwPXE8zXurjk4ctdMud/5S9/cWXz1cbX+evaP962vx1hirf98JfqG/LMknq9+ntmsr93tv7uhH4sIlX+WbOpdtDkL0NMLnU6n2yCzdHr+8s1VsEJLu8biqob3bKJ6VYvphYnzdfFKyo/G7tGupvYePqN5P8Y/veXoqUu6GfWbZox/WjN++F1xcfFdM+XLX3Tgn8RPj4m9q71HTF0sd7c7f4b4ZdP01zqr55iEhSIxsXf9GXI9Qv6+if89+uXwsb52t//uhn701CX5+/qoT8faLEDPgEZ1aqQGFYrpufe+14VrKc/Z3o/W0K6jZzV3TfwihiNnLunm/NuaObKzpi/frLg7Lf7mN79q34lziY6NjUvo9CGfLJG7W3yn586ZTV8O76RnJn9jfT0mNmF+Xw6LUK4cieesf3afO69FJtr+352l/zl7Wf45fPR821osQM+ARj3dSA0qFtNz79gxZ3+5a85G3dbMUZ01fdldc/brX7XveApz9qN75uzITnrmzWTm7PWHnLMsQE97dDqdbqOHbfXU7HQpbda+FFEZFVM5u8eCtDfww96q9Vg1jWg4XpfOXHnwAXc8+mwT/frNBsXcjrFuM91ZuzOt32f6+49/Eu0fd9efYa+2mSz3Ozf4Ccjvr3fXT1D/Ki9ZX7/7nFdCr8k/T85E58oZGP+h2KvnE7+X9t/d0E/sOym/PL7qPr4TC9ABGw14p5tqt66iES0n69LZqw8+4I6W3evrt+82K+Z2wvsB//1e8P6gWTq0/Wii/WPv+r1g7BPvyt0j/j2GXPn89M6qVzSgTsIHYe4+59Xz1+Uf6JvoXDlzxzfD1QuJfy/4727oJ/afVs5AX3Ub04EF6LhfJmj1zNbpNi9A9/Pzs36CJSVXrjw4jMLDw+Xp6Xnfdg8PD4WFhSVxRNIOHDig5s2bKzIyUg0bNlShQoVksVh04cIFvfTSS3r99df1yy+/qGzZssmeY8yYMRo+fHiibb+eqWPzGDILiyX+Luf5i5kUFyeFX5OKlk96Pri5/bdQPF62nCZ5eEoB+ZLeP7iMWYd3WNTg8YRth3bEqXCZlBeW/zcmICkWi3T7tknFiscqLs6ka1fNKl8xNsl93dz+WygeL2fOOHlmsSTadrfSZWO18y93dXgyYQLu3O6uMuWSPv+9YwKSZJGib0tlSkixsSZdvmpRtUpJ7+runrBQXIpfSJ4lS+Jtd6tUTtq8XerVKWHb5j+lKg96v+nOmAB7JHWHjSxZsihLliwpHmexWDR8+HDVq1dP5cuXt27/8MMP1bdvXxUoUEDu7u4ym8368ssvVa9ePes+Xbt2VZEiRRQUFKR9+/ZpzJgx2r17t9asWSNJCg0NVWBg4H3XDAwMVGho6H3bkxIYGKiQkBDVrl072X3y5s2r48eP23S+1JRRO11KutWr/Wz/G/euaFylR9UsX2n12DDXunjbFjGWOOti9TYFymt96GFZJF2OilDozTAVzOqnH08l/7jnszcT3iyKvbNo8mRE0m947bpyWsPKNZGHyazbd/atm6eozt8MS3HMJpPkac48d8fMLIaWfFz1cpfXizs+tS7etkWsJc66+LdJnsracumALLLoanS4Lt66przeufTr+Z3JHn/+VsL8/G/OnrmZ9OPZ91//V32LtZK7yc260Ld6rlK6eOv6A8ZsYs5mMMNKtVeD3OU1+K8Z1sXbtrh7vjYNqqzNlw5a5+uFW9eUz9tfa0JTmq/XEp1LSn6+7rv2r54v/mii+VrDv6Qu3rr+gDGb5GHmzma4H51Op0tp2+nN+6b8NImMYkSvJmpYrbgGvPm9dfF2SryyuCs2NvF7jHF3FpabJF0Ni9SFyzeUPzCnfvk9+YXfoZcSPnz03yLI0+evJbnv3iPn1L9zPbm7ma371qgYrItXbqQ4ZpPJJE8P/gzJaF7u3FiNKxdX3/d+sC6ETYmXp3uihQmSrB+UkEm6Ehap81dvKH+Ar37+M/k5e+7K3XM2/vhTF5P+0N+e4+c0qH3dRHO2VtlgXbgWnuKYTTLJ0505m9G8/LQDczbunjlrSWbObrNxzsY9YM4eO6dBHZKYs1eZs3CMI61Opz+c1Gr11Op0Ke3Wvjzu28uucSB9DPqoj+p2qKGRjcdbF2/bomLDsspfIq9WfbU20fZrF67r4unLyls0j9Z+uynZ4y+cvGT959iY+Pebzh5N+v/XB7YeVu9Jz8jdw926ML1ai0q6dOZKimM2mUzyyMJ7qYAtBr7bXXUeq6qXWk2xLt62RcX6pZW/eJBWzf0w0fZrF8J08cwV5S2SW+u+35Ls8RdOJbwnHRsT37NnjyX9/+uD2/5Rr/FPyt3DzbowvWrT8rp09mqKYzaZxO8FcHl0um1s/n/6+++/b/1ni8WiF154QRMnTkzyh3qQ8uXLa8GCBXrttdcSbZ8/f/4D39y+28CBA9WgQQPNmTPnvrCPjo5Wr169NHDgQK1bty7ZcyQ1KTwuZe47aq+cHaPS1czKmdukqEiLdoXE6ehei/q+4a7cBcx6pLFZ371zW+36uitfMbMirlv0z+445S1sUpka9r9xUr+9m6a/dFtrv49R+dpm7dsSpyM7LRr4TsL0TGlMwJwvPVW1RqxyB8bpZqRJG9a5a99uN02YclP5C1rUqOltTfufl/r0j1LR4rEKu27Snp3uCi4aq+o1U140npR2T0Tr5Rd9tPA7T9WsG6M/fnfXrh1umvpBwp0tUhoTMO1zqX5NKW+gFBEprVwrbdslfT5VKlJQeqy5RaMnS6MGSmVLSFevSVt3SiWLSg1r2X+9Hk9K3YdIX3wrNa0r/fa7tOUv6ZuPbRsTYI+k7rAxfvx4vf766ykeN2jQIO3Zs0ebNiV+Y+zDDz/U1q1btXz5cgUHB2vDhg0aMGCA8ubNq2bN4h+b27dvX+v+5cuXV4kSJVStWjXt2LFDjzzyiCQl+WayxWKx6U1mSWrYsKH1XHeLjo7W/Pnz1aNHD5lMplS5u6G9MmqnS0m3utkj4/ffa5VbqW2BChq4dYEiYqIUcOeu4jduRykqLv6N3uHlmijQK7tG/7VMklQ4m78q+OXXnitnlMPTS72K11KJHLk1+q+l1vN+fDBEr1Z8VOG3o7Tx/D/yNLurvF9e5fDw1ux/7L8DwY+n9mlgmYaaUq29ZhzapOBs/nq+VD1NP7jBuk+XotV0LjJMx27EvwlVNaCgepeorW+O/pncaeGCXiz1hJrlqaJX98zSzdgo613Gw2NuKvrOnO1brJUCsvhqyoH5kqQC3gEq41tIB66fVHYPb3Uq1EBFsgXprTuvS9Ls479ocMkOioy9pT8u/S0Ps7tK5Sio7O7e+uHUhvsH8gC/he5UryLNNbpsZ807sVb5fQLUtXATzT3+q3WfDgXq6PytazoZEf9ma4WcRdQ5uKGWnOKOPRnFiFId1CyoisbsnqPI2Fvyv3NX8fCYW9b5+nyxR5Xby1dv7l8gSSroE6AyOQrqwPVTyu7hrc6F6qto1jyadOd1SZp57Fe9WKqdImNuaevlQ/Iwuat0jgLK7uGtBSc32j3ONaG79GzR5nq1XCfNPb5WBX0C1L1IY80+9pt1nycK1Nb5W9f0b8RFSVLFnIX1THADLTq12eFfH2RcdDqdLqVxp7tl/E4f+WxTtahTWi+/u0yRN6Pl7xt/t9uIyGhF3VmQ8ULnesrtn00TP41/9O6mHcc05rnmerxZJf2x54QCcmbV0O6Ntf+fc7p0Lf5u5F8u2qLhPRsr4maUtuw6IU8PN5UumkfZs3pp/sq/kh5MCn75/aD6PFFb4/o/qjnL/lDBID/1bF9TMxcn/OVzx+aVdf5ymE6cjV9UValUfnVpU00/rE7+g1RwPaOfbqJW1Utp2GfLFRkVrVx37oQffjNKUXcWDgxqX1eBObPptTmrJUkb9hzT2G7N9GSDitpy4F8F5MiqkU811N7j53Tpzh30Z/y0VS91aqSIW9H6ff9xebq7qWxwHmX38dK833bYPc5V2/5Wv9a1NKFnS81ctU2FcudU70dr6IufEv47tVPDSgq9ckPHQ+PnbJXi+dS9eVUtWL/rYX6J4GRGP9NErWqU0rDpyxV5K5k52+HOnJ1915ztftec9c2qkZ3umbMrtuqlp+/M2X135mzhO3P2VwfnbNtamtCrpWb+vE2FAnOqd6sa+uLHu+ZsoyTmbIuqWrBu18P8EiGDcqTV6fSHk1qtnlqdLqXd2heziQ++OJvBnzynJs/U0/gOUxV545b87txlPOJ6pKJvRUuSek/uooB8/pra6+NEx7bq3VQHtx7Wif2n7jvv1xO+14APeisy7Ka2/bxTHlk8VKpaUWXzy6ZF0360e5xrv92k7q89pZdmDdR3UxYrf4m8embME/rmjR+s+7Qb0FIXTl7Sqb/jn7pavl5pPTWinZZ+/LPd1wMym0HTeqjxU7X0+tMf6OaNW/K7c5fxiLBIRd+Kv0vgs68/pYB8fnq73+eJjm3Zo4EObvtH/x44c995v5m8VC+83VWRN27qz1/2yCOLh0pWKaJsOX20+OPVdo9z7fdb1HVMe42c0VffvbNC+YsF6emRj2neW8us+zzWr6kunLqsU4fjnzhUvnZJPTmklZbN+DW50wIugU63jc3vCvfs2TPR94MHD1bHjh1VtGhRmy/2n3Hjxqljx446evSomjRpIkn67bff9N133+mHH354wNEJ/vjjD23fvj3JT5V6enrqlVdeUY0aNeweX2YXftWi796+rbArkldWKV8Rk/q+4aGSj8QvzO883F2/fher5V/EKOyy5JM9/i7mZao7tnC/cFmzuo5216q5sVr9daxy5TWp+xh3BZdOON+DxoTM7dpVk957y0tXrpiUNatFhYvGacKUm6pSLf4NyRdH3dKCbzz11WdZdPmSSdlzWFS6bKyq1Yx5wJmTVqZcnEaNvaVvZnnqm9meCsoXp5fH3VKpMgl32XjQmJC5XboqvTxZunhZyp5VKlksfqF33erxr08aLX02V5r6iXThkuSbQ6pcTmpYM+XzJqdKeend16QPvpI++koqmE9693Wp0l3vfT1oTDBY0g9kcEpJ3WHjQXdVHDx4sJYvX64NGzaoQIGEW/nfvHlTr7zyipYsWaI2bdpIkipWrKhdu3bpnXfesYb4vR555BF5eHjoyJEjeuSRRxQUFKTz58/ft9/FixeVJ08em36uZ599Vo8++uh9b0DfuHFDzz77rHr06GHTedICnZ7xdCka/5vv1w0S/7sds32ZlpzcLUnK7ZVN+XwSHnlnNpn1bIlaKpItQDGWWP1x8YSeCZmlM5EJd+taeGKnbsXcVu+StfVS+WaKjL2tI9cvaM5Rxx5/Fx4TpT6bvtG4yq20sHFfXb99U7OPbNWsuxazm2XSsHJNVCBrTsVa4nQy4qre3febFhy3fyENnFeHAvFPEfug6oBE2986MF+rzm2XJOXyzKE8Xn7W18wmszoVaqiCPrkVY4nVrqtHNWj7xwq9687OP53dpluxt/V0cCM9X7ytbsVG61j4OS08Zf9iXkmKiL2lETs/14ulntCM6kN1I+amfji5Qd+fDLHuY5JJ/Yq1VpC3v2ItsTobeVmf/7NSK87wmMiM4vGC8fP142r9E22ftH+Bfj4X/3tTriw5lMcrp/U1s8x6OriBCt2ZrzuuHFX/7dMTzdcfz25TVGy0nincUC+UaKNbsdE6Gh6qHxxYfC7Fz9dhO77Q8NId9GWNIboRc1ML/t2o+ScTPnxhMpn0fPFWyntnvp6JvKLPjvysZWf+cOiacACdTqengE7PeDo2ryxJmv5a50Tb3/hslVZu2C9JypUzq/LkymF9beWG/fLx8tSTLSprSNeGuhEZpb/2n9T07xL+fFixfq+iom+ra9vqGvhMA92Kuq2jpy5pwc/2L4qUpIib0Ro6ZaFG9GqqmW92042IW/pu5V/67q7F7CaTSf0711e+3L6KjYvTmfPXNH3+Ri39bbdD14Rz6tQw/vGKXw7vlGj7+DmrtWLrAUlSgG9WBflnt762YusB+Xh5qnPDyhrWsYHCI6P056FT+mBJwpxd+vs+3Yq+rR7Nq2no4/V0MzpG/5y5pG/XOjZnw29Fa8CHizT66Sb6ZnQXhUVGad5vO/TNXYvZTSaTBnWoq/y5fBUTF6fTF6/po6WbtGjjHoeuCefUqdGdOTvynjk7e7VWbElmzm65M2cbV9awp+6as4uTmLMtqmnoE3fNWQc+MCHdmbPvL9LoLk30zSt35uyvO/TNr0nM2YC75uxi5my6caFOl+xvdTr94aVWq6dWp0u0embS7oWWkqR31yde0Pb2s5/olznrJUm5gvwUWCgg0es+OXxUr2NNTX9xVpLn/fmrtboVGa1OI9vpuf91062IKJ3Ye1KLP/jJoXFGhkXq5RZvaPDHffTJn2/pxtUILZy2QgvfS1jMbjKb1HtyFwUVCVRcTJzOHg3Vl2Pm6acZaxy6JpCZPNa3qSTpnVWvJNr+zvNfaM28+IWr/kG+yl3QP9HrPjm8Va99NX02al6S5101J0RRkVF68sXW6vNGZ0VFROn4gdNa8skvDo0zMuymxrR7W4Pe66GPN7yuG9citejj1Vr00SrrPiazSb0nPKWg4NyKjYnV2eMXNHP8D/rpq5RvcIBMyoVanU63jclisTj0rzV79uzavXu3Q2+YS9JPP/2kyZMna9euXfL29lbFihU1fvx4NWzY0OZz5M+fX9OnT1f79u2TfH3p0qUaOHCgzpy5/xM/KVlxrKJd+wNGK+1p+6NYAGdQzD2b0UMA7GIOOmzo9Yu+/56h17fHsReHP3inOywWiwYPHqwlS5Zo/fr1KlGiRKLXw8LC5Ovrq5UrV6pVq1bW7c8//7yOHz+uX35J+j+U9+3bpwoVKigkJEQNGjTQwYMHVbZsWf3xxx/WN2j/+OMP1apVS3///bdKlSr1wLGazWadP39euXPnTrR99+7daty48QMfxZmeMnKnS1LpxRPtPgYwSpCvfY/aBYwWY+FD3nAtm5oZ+8gmOp1Ot0dG7/TaXd61+xjASFG+dA9cSNyDdwGcyY4Zwwy9vit1umR7q9PpaedhWj01Ol1Ku1Zvbn7Krv0BZExmHx+jhwDACawOn2P0EFyq1el02xj2XMw2bdpYV/Q7qm/fvurZs6fGjh2r5s2bK0+ePDKZTAoNDdWaNWs0efJkvfjii6kzYAAAAKSqgQMH6ttvv9WyZcuUPXt2hYaGSpJ8fX3l7e2tHDlyqGHDhnrppZfk7e2t4OBghYSEaO7cuXrvvfj/MDl69KjmzZun1q1bKyAgQAcOHNCIESNUpUoV1a1bV5JUpkwZPfroo+rbt69mzJghSerXr5/atm37wAivUqWKTCaTTCaTmjZtKnf3hHyOjY3V8ePH9eijj6bFL49h6HQAAIDMjU53TnQ6AABA5kanO6fU6HSJVgcAAHBVmb3TDVuAnhpef/11eXt767333tOoUaNkMpkkxX+qICgoSKNHj9aoUaMMHiUAAACS8umnn0qSGjVqlGj7rFmz1KtXL0nS/PnzNWbMGHXt2lVXrlxRcHCwJk2apP79+0uKf/Tkb7/9pg8++EDh4eEqWLCg2rRpo/Hjx8vNzc16znnz5mnIkCFq0aKFJKldu3b6+OOPHzjGDh06SJJ27dqlli1bKlu2hCc4eHp6qnDhwurYsaOjvwQZFp0OAADguuj0jItOBwAAcF10esZGqwMAALimzN7pJovFYrFlx+HDE99S/pNPPlG3bt3k6+ubaPt/q/Lv5e/vr8OHDysgIEB+fn7WYE6KI7dyP378uPXTA0FBQSpSpIjd5/jPimMVHT4WMEJpz0tGDwGwSzH3bA/eCXAi5qDDhl6/6DQXegzRMNseQ+Rq5syZo86dO8vLy8voodwnM3W6JJVePPGhjgfSU5BvmNFDAOwSYzEbPQTALpuaTTX0+nS68ej0eM7Q6bW7vPtQxwPpLcqX7oELiTN6AIB9dswYZuj1XanTpYzZ6s7c6dLDtXpad7qUuq3e3PyUw8cCyDjMPj5GDwGAE1gdPsfoIbhUq9PptrH5Dug7d+5M9H2dOnV07NixRNtSiutp06Ype/bskqT333/fjiHapkiRIg/9JjkAAACQlJ49exo9hGTR6QAAAMis6HTH0ekAAABIK87c6dLDtXpad7pEqwMAACBtpEWn27wAfd26dQ91of8GHxMTI0lq2bKlgoKCHuqckvTRRx9p+/btatOmjTp16qSvv/5aU6ZMUVxcnJ544glNnDhR7u42/5gAAADAfR50J5O7OXpXE0fR6QAAAMis6HT70ekAAABIa87c6dLDtXpadbpEqwMAACBtpUWnp3uduru764UXXtDBgwcf+lxvvPGG3n77bbVo0UJDhw7V8ePH9fbbb2vYsGEym82aNm2aPDw8NGHChFQYOQAAgDFMFqNHgLFjx2rSpElq2bKlateuLUnasmWLVq9erXHjxsnf39/gET48Oh0AAMA+dLrx6HT70OkAACAzoNONR6fbj1YHAACZAa1urLTodEM+HlmzZk3t3LlTwcHBD3We2bNna/bs2XriiSe0e/duVa1aVXPmzFHXrl0lSaVLl9aoUaOIcAAAADyUzZs3a+LEiRo0aJB125AhQ/Txxx/r119/1dKlS40bXCqi0wEAAOBK6HT70OkAAABID3S6/Wh1AAAApLW06HRDFqAPGDBAI0aM0OnTp1W1alVlzZo10esVK1a06Tznzp1TtWrVJEmVKlWS2WxW5cqVra8/8sgjOnv2bKqNGwAAAJnT6tWr9b///e++7S1bttTo0aMNGFHaoNMBAADgSuj0eHQ6AAAAnAmdHs/WTpdodQAAAKS9tOh0Qxagd+7cWVL86vn/mEwmWSwWmUwmxcbG2nSeoKAgHThwQIUKFdKRI0cUGxurAwcOqFy5cpKk/fv3KzAwMPV/AAAAgPTEY4gMlytXLi1ZskQvvfRSou1Lly5Vrly5DBpV6qPTAQAA7ECnG45Op9MBAADuQ6cbjk63r9MlWh0AAGQStLqh0qLTDVmAfvz48VQ5T5cuXdSjRw+1b99ev/32m15++WWNHDlSly9flslk0qRJk/Tkk0+myrUAAACQeU2YMEF9+vTR+vXrVbt2bUnS1q1btWrVKn355ZcGjy710OkAAABwJXS6feh0AAAApAc63X60OgAAANJaWnS6TQvQ9+zZY/MJH/QYoRs3bujw4cO6ffu2atSooYCAAJvPfa8JEybI29tbW7du1fPPP6+XX35ZFStW1KhRoxQZGanHHntMb7zxhsPnBwAAACSpV69eKlOmjD788EMtXrxYFotFZcuW1e+//66aNWsaNi46HQAAAJkZnW4fOh0AAADpwVk7XUq9Vk/NTpdodQAAAKS9tOh0k8VieeCN7c1ms/VRQUmexMbHCO3Zs0etWrVSaGioLBaLcuTIoYULF6pZs2YODT6trDiW8pv+gLMp7XnJ6CEAdinmns3oIQB2MQcdNvT6xd59z9Dr2+PoiOFGD8FQb731lvr376+cOXOmy/UyW6dLUunFE40eAmCzIN8wo4cA2CXGYjZ6CIBdNjWbauj16XTXQaenvdpd3jV6CIBdonzpHriQOKMHANhnx4xhhl7flTpdytytnt6dLqVOq7tSpzc3P2X0EAA4AbOPj9FDAOAEVofPMXoILtXqdLptnW7THdBT69FBo0ePVqFChfTDDz/Iy8tLEyZM0KBBg/T333+nyvkBAAAypAd+XBDOYvLkyerUqVO6vWFOpwMAABiITncZdDoAAEAmQqe7jPTudCl1Wp1OBwAAcBCt7hLs6XSbFqAHBwc/7JgkSdu3b9fKlStVrVo1SdLMmTMVGBio8PBwZcvG3XABAADg2mx4uFCqotMBAACAB6PTAQAAAOeT3p0upU6r0+kAAADIyOzpdJsWoCflwIEDOnnypKKjoxNtb9euXbLHXLp0SYUKFbJ+nytXLvn4+OjixYuEOAAAAJAK6HQAAADA+dDpAAAAgHOyt9XpdAAAACCe3QvQjx07pscff1x79+6VyWSyrnY3mUySpNjY2GSPNZlMunHjhry8vCTFr5T/b1tYWJh1vxw5ctg7LAAAgAzLxGOIYAM6HQAAIH3R6bAFnQ4AAJC+6HTYytFWp9MBAAAcQ6tnPGZ7Dxg6dKiKFCmi8+fPy8fHR/v379eGDRtUrVo1rV+/PsVjLRaLSpYsKT8/P/n5+cnf31/h4eGqUqWK/Pz8lDNnTvn5+Tn6swAAAACZFp0OAAAAOB86HQAAAHBOjrY6nQ4AAADEs/sO6Fu2bNHatWuVO3dumc1mmc1m1atXT1OmTNGQIUO0c+fOZI9dt27dQw0WAAAAQNLodAAAAMD50OkAAACAc3K01el0AAAAIJ7dC9BjY2OVLVs2SVJAQIDOnj2rUqVKKTg4WIcOHUrx2IYNGzo2SgAAAMAF1K9fX97e3oZcm04HAAAAkkanAwAAAM7HyE6XHG91Oh0AAAAZmT2dbvcC9PLly2vPnj0qWrSoatasqalTp8rT01Off/65ihYtavdgAQAA8AAWk9EjgOLfjF6yZIkOHjwok8mk0qVLq0OHDnJ3T0jqlStXGjY+Oh0AACCd0elOgU4HAABAInS6U3D2TpdodQAAgHRHqxsutTvd7gXoY8eOVUREhCTpzTffVNu2bVW/fn3lypVLCxYssPd0AAAAgNPbt2+f2rdvr9DQUJUqVUqSdPjwYeXOnVvLly9XhQoVDB4hnQ4AAIDMh04HAAAAnI8rdLpEqwMAACBzSYtOt3sBesuWLa3/XLRoUR04cEBXrlyRn5+fTCY+oQAAAICM57nnnlO5cuW0fft2+fn5SZKuXr2qXr16qV+/ftqyZYvBI6TTAQAAkPnQ6QAAAIDzcYVOl2h1AAAAZC5p0el2L0C/26lTp2QymVSgQIGHOQ0AAABSYjF6ANi9e3eiCJckPz8/TZo0SdWrVzdwZEmj0wEAANIBnW44Oh0AAAD3odMN52qdLtHqAAAA6YJWN1RadLrZ3gNiYmI0btw4+fr6qnDhwgoODpavr6/Gjh2r27dv23SO3r1768aNG/dtj4iIUO/eve0dEgAAAJCmSpUqpfPnz9+3/cKFCypevLgBI7ofnQ4AAIDMhk6n0wEAAOB8XKHTpYdvdTodAAAAriQtOt3uBeiDBg3S559/rqlTp2rnzp3auXOnpk6dqq+++kqDBw+26Rxz5szRzZs379t+8+ZNzZ07194hAQAAAGlq8uTJGjJkiBYuXKjTp0/r9OnTWrhwoV588UX973//U1hYmPXLKHQ6AAAAMhs6nU4HAACA83GFTpcevtXpdAAAALiStOh0d3sH8d1332n+/Plq1aqVdVvFihVVqFAhPf300/rss8+SPTYsLEwWi0UWi0U3btyQl5eX9bXY2FitXLlSgYGB9g4JAAAgQzPxGCLDtW3bVpLUqVMnmUwmSZLFEv8v5rHHHrN+bzKZFBsba8gY6XQAAID0Racbj06n0wEAAO5FpxvPFTpdcrzV6XQAAADH0OrGSotOt3sBupeXlwoXLnzf9sKFC8vT0zPFY3PmzCmTySSTyaSSJUve97rJZNKECRPsHRIAAACQptatW2f0EB6ITgcAAEBmQ6fT6QAAAHA+rtDpkuOtTqcDAADAFaVFp9u9AH3gwIF64403NGvWLGXJkkWSFBUVpUmTJmnQoEEpHrtu3TpZLBY1adJEixYtkr+/v/U1T09PBQcHK1++fPYOCQAAAEhTDRs2NHoID0SnAwAAILOh0+l0AAAAOB9X6HTJ8Van0wEAAOCK0qLTbVqA/sQTTyT6/tdff1WBAgVUqVIlSdLu3bsVHR2tpk2bpnie/36A48ePq1ChQtbbuAMAAADObNy4cXr99dfl5uaWaPv169fVv39/fffdd4aMi04HAABAZkanAwAAAM7HWTtdSp1Wp9MBAADgitKi021agO7r65vo+44dOyb6vmDBgnZdNDg4WBs3btSMGTN07Ngx/fDDD8qfP7++/vprFSlSRPXq1bPrfAAAABmaxegBYO7cuVqzZo3mzZunYsWKSZLWr1+vHj16KH/+/IaNi04HAAAwEJ1uODqdTgcAALgPnW44Z+10KXVbnU4HAACwE61uqLTodJsWoM+aNcuhkydn0aJF6t69u7p27aodO3YoKipKknTjxg1NnjxZK1euTNXrAQAAAA9jz549ev7551W5cmW99957Onz4sD744AONHj1a48ePN2xcdDoAAAAyMzqdTgcAAIDzcdZOl1K31el0AAAAuJK06HSbFqAn5eLFizp06JBMJpNKliyp3Llz23zsm2++qc8++0w9evTQ/Pnzrdvr1KmjiRMnOjokAAAAIE34+vpq/vz5evXVV/X888/L3d1dP//8c4qP4TQKnQ4AAIDMgk6n0wEAAOB8XKnTJcdbnU4HAACAK0mLTjfbe0BERIR69+6tvHnzqkGDBqpfv77y5cunPn36KDIy0qZzHDp0SA0aNLhve44cOXTt2jV7hwQAAJChmSyu85WRffTRR5o2bZqeeeYZFS1aVEOGDNHu3buNHpYVnQ4AAJC+jG5vOj0enX4tlUcMAADg2oxub1o9nrN3uvTwrU6nAwAA2Mfo9qbTU7/T7V6APnz4cIWEhGjFihW6du2arl27pmXLlikkJEQjRoyw6Rx58+bVP//8c9/2TZs2qWjRovYOCQAAAEhTrVq10uuvv665c+dq3rx52rlzpxo0aKBatWpp6tSpRg9PEp0OAACAzIdOp9MBAADgfFyh06WHb3U6HQAAAK4kLTrd7gXoixYt0ldffaVWrVopR44cypEjh1q3bq0vvvhCCxcutOkczz//vIYOHao//vhDJpNJZ8+e1bx58zRy5EgNGDDA7h8CAAAASEsxMTHau3evnnzySUmSt7e3Pv30Uy1cuFDTpk0zeHTx6HQAAABkNnQ6nQ4AAADn4wqdLj18q9PpAAAAcCVp0enu9h4QGRmpPHny3Lc9MDDQ5keGjho1StevX1fjxo1169YtNWjQQFmyZNHIkSM1aNAge4cEAACQsWXgx/u4ijVr1mjjxo0aNWqUjh49qoULFyp//vy6cuWKvv/+e6OHJ4lOBwAASHd0uuHodDodAADgPnS64Vyh06WHb3U6HQAAwE60uqHSotPtvgN67dq1NX78eN26dcu67ebNm5owYYJq165t0zmio6M1adIkXbp0Sdu2bdPWrVt18eJFvfHGG7p06ZK9QwIAAADS1KJFi9SyZUt5e3tr586dioqKkiTduHFDU6ZMMXh08eh0AAAAZDZ0Op0OAAAA5+MKnS49fKvT6QAAAHAladHpdi9A/+CDD7R582YVKFBATZs2VbNmzVSwYEFt3rxZH3zwgU3n6NSpk+Li4uTj46Nq1aqpRo0aypYtm86fP69GjRrZOyQAAAAgTb355pv67LPP9MUXX8jDw8O6vU6dOtqxY4eBI0tApwMAACCzodPpdAAAADgfV+h06eFbnU4HAACAK0mLTrd7AXr58uV15MgRTZkyRZUrV1bFihX11ltv6ciRIypXrpxN5zh37pz69Olz37ZGjRqpdOnS9g4JAAAASFOHDh1SgwYN7tueI0cOXbt2Lf0HlAQ6HQAAAJkNnU6nAwAAwPm4QqdLD9/qdDoAAABcSVp0ursjB3l7e6tv374OXVCSVq5cqQYNGmjYsGGaNm2azpw5oyZNmqhSpUqaP3++w+cFAADIkCxGDwB58+bVP//8o8KFCyfavmnTJhUtWtSYQSWBTgcAAEhHdLrh6HQ6HQAA4D50uuFcpdOlh2t1Oh0AAMBOtLqh0qLTbVqAvnz5cptP2K5duwfukytXLq1evVr16tWTJP3000965JFHNG/ePJnNdt+UHQAAAEhTzz//vIYOHaqZM2fKZDLp7Nmz2rJli0aOHKnXXnvNsHHR6QAAAMjM6HQ6HQAAAM7HWTtdSt1Wp9MBAADgStKi021agN6hQwebTmYymRQbG2vTvgUKFNCaNWtUr149NW/eXF9//bVMJpNNxwIAAADpadSoUbp+/boaN26sW7duqUGDBsqSJYtGjhypQYMGGTYuOh0AAACZGZ1OpwMAAMD5OGunS6nf6nQ6AAAAXEVadLpNC9Dj4uIcOvnd/Pz8kgztyMhIrVixQrly5bJuu3LlykNfDwAAIKMw8RgipzBp0iS9+uqrOnDggOLi4lS2bFlly5bN0DHR6QAAAMah050DnU6nAwAA3I1Odw7O2OnSw7c6nQ4AAOA4Wt14qd3pNi1ATw3vv/9+el0KAAAASBM+Pj6qVq2a0cNIVXQ6AAAAXB2dDgAAADgfOh0AAABwPqnZ6TYvQL9586Z+++03tW3bVpI0ZswYRUVFWV93c3PTG2+8IS8vrySP79mzpyQpJiZG8+bNU8uWLRUUFPQwYwcAAAAyPTodAAAAcD50OgAAAOCcHqbV6XQAAAAggc0L0OfOnasff/zRGuEff/yxypUrJ29vb0nS33//rXz58mnYsGEpX9DdXS+88IIOHjz4EMMGAAAAINHpAAAAgDOi0wEAAADnlBqtTqcDAAAAktnWHefNm6fevXsn2vbtt99q3bp1Wrdund5++219//33Np2rZs2a2rlzp30jBQAAAHAfOh0AAABwPnQ6AAAA4JxSq9XpdAAAAGR2Nt8B/fDhwypZsqT1ey8vL5nNCevXa9SooYEDB9p0rgEDBmjEiBE6ffq0qlatqqxZsyZ6vWLFirYOCwAAAMjU6HQAAADA+dDpAAAAgHNKrVan0wEAAJDZ2bwA/fr163J3T9j94sWLiV6Pi4tTVFSUTefq3LmzJGnIkCHWbSaTSRaLRSaTSbGxsbYOCwAAAMjU6HQAAADA+dDpAAAAgHNKrVan0wEAAJDZ2bwAvUCBAtq3b59KlSqV5Ot79uxRgQIFbDrX8ePHbb0sAAAALEYPAM6MTgcAADAInY4U0OkAAAAGodPxAKnV6nQ6AACAnWj1DMfmBeitW7fWa6+9pjZt2sjLyyvRazdv3tSECRPUpk0bm84VHBxs3ygBAAAAJIlOBwAAAJwPnQ4AAAA4p9RqdTodAAAAmZ3NC9BfeeUVff/99ypVqpQGDRqkkiVLymQy6e+//9bHH3+smJgYvfLKK3Zd/MCBAzp58qSio6MTbW/Xrp1d5wEAAAAyKzodAAAAcD50OgAAAOCcUrvV6XQAAABkVjYvQM+TJ482b96sF154QaNHj5bFEn8/fJPJpObNm2v69OnKkyePTec6duyYHn/8ce3du1cmkynRuSQpNjbW3p8DAAAgwzLxGCKkgE4HAAAwBp2OlNDpAAAAxqDT8SCp1ep0OgAAgH1o9YzHbM/ORYoU0apVq3Tx4kVt3bpVW7du1cWLF7Vq1SoVLVrU5vMMHTpURYoU0fnz5+Xj46P9+/drw4YNqlatmtavX2/vzwAAAABkanQ6AAAA4HzodAAAAMA5pUar0+kAAADI7Gy+A/rd/P39VaNGDYcvumXLFq1du1a5c+eW2WyW2WxWvXr1NGXKFA0ZMkQ7d+50+NwAAABAZkWnAwAAAM6HTgcAAACc08O0Op0OAACAzM6uO6CnltjYWGXLlk2SFBAQoLNnz0qSgoODdejQISOGBAAA4LwsLvQFl0anAwAA2MHo9qbTMw06HQAAwA5GtzetnmnQ6QAAAHYyur3p9FTn0B3QH1b58uW1Z88eFS1aVDVr1tTUqVPl6empzz//3K5HjwIAAABIPXQ6AAAA4HzodAAAAMD50OkAAADI7AxZgD527FhFRERIkt588021bdtW9evXV65cubRgwQIjhgQAAABkenQ6AAAA4HzodAAAAMD50OkAAADI7AxZgN6yZUvrPxctWlQHDhzQlStX5OfnJ5PJZMSQAAAAgEyPTgcAAACcD50OAAAAOB86HQAAAJmdIQvQk+Lv72/0EAAAAJyTxegBIDOj0wEAAJJBp8NAdDoAAEAy6HQYiE4HAABIAa2e4aTrAvTevXvbtN/MmTPTeCQAAAAA/kOnAwAAAM6HTgcAAACcD50OAAAAxEvXBeizZ89WcHCwqlSpIouFjzMAAAAAzoBOBwAAAJwPnQ4AAAA4HzodAAAAiJeuC9D79++v+fPn69ixY+rdu7e6devGI4gAAAAewMT7l0hjdDoAAID96HSkNTodAADAfnQ60hqdDgAA4BhaPeMxp+fFpk+frnPnzunll1/WihUrVLBgQXXq1EmrV6/mk6EAAACAQeh0AAAAwPnQ6QAAAIDzodMBAACAeOm6AF2SsmTJomeeeUZr1qzRgQMHVK5cOQ0YMEDBwcEKDw9P7+EAAAAAEJ0OAAAAOCM6HQAAAHA+dDoAAABgwAL0u5lMJplMJlksFsXFxRk5FAAAAAB30OkAAACA86HTAQAAAOdDpwMAACCzSvcF6FFRUfruu+/UvHlzlSpVSnv37tXHH3+skydPKlu2bOk9HAAAAOdncaEvuCw6HQAAwE5GtzedninQ6QAAAHYyur1p9UyBTgcAAHCA0e1Np6c69/S82IABAzR//nwVKlRIzz77rObPn69cuXKl5xAAAAAA3INOBwAAAJwPnQ4AAAA4HzodAAAAiJeuC9A/++wzFSpUSEWKFFFISIhCQkKS3G/x4sXpOSwAAAAgU6PTAQAAAOdDpwMAAADOh04HAAAA4qXrAvQePXrIZDKl5yUBAABcnonH+yCN0ekAAAD2o9OR1uh0AAAA+9HpSGt0OgAAgGNo9YwnXRegz549Oz0vBwAAAMAGdDoAAADgfOh0AAAAwPnQ6QAAAEA8s9EDAAAAAAAAAAAAAAAAAAAAAAC4hnS9AzoAAAAcwGOIAAAAAOdDpwMAAADOh04HAAAAnBOtnuFwB3QAAAAAAAAAAAAAAAAAAAAAgE1YgA4AAAAAAAAAAAAAAAAAAAAAsAkL0AEAAAAAAAAAAAAAAAAAAAAANnE3egAAAAB4AIvRAwAAAABwHzodAAAAcD50OgAAAOCcaPUMhzugAwAAAAAAAAAAAAAAAAAAAABswgJ0AAAAAAAAAAAAAAAAAAAAAIBN3I0eAAAAAFJm4jFEAAAAgNOh0wEAAADnQ6cDAAAAzolWz3i4AzoAAAAAAAAAAAAAAAAAAAAAwCYsQAcAAAAAAAAAAAAAAAAAAAAA2MTd6AEAAADgAXgMEQAAAOB86HQAAADA+dDpAAAAgHOi1TMc7oAOAAAAAAAAAAAAAAAAAAAAALAJC9ABAAAAAAAAAAAAAAAAAAAAADZhAToAAAAAAAAAAAAAAAAAAAAAwCbuRg8AAAAAD2AxegAAAAAA7kOnAwAAAM6HTgcAAACcE62e4XAHdAAAAAAAAAAAAAAAAAAAAACATViADgAAAAAAAAAAAAAAAAAAAACwibvRAwAAAEDKTDyGCAAAAHA6dDoAAADgfOh0AAAAwDnR6hkPd0AHAAAAAAAAAAAAAAAAAAAAANiEBegAAAAAAAAAAAAAAAAAAAAAAJu4Gz0AAAAAPACPIQIAAACcD50OAAAAOB86HQAAAHBOtHqGwx3QAQAAAAAAAAAAAAAAAAAAAAA2YQE6AAAAAAAAAAAAAAAAAAAAAMAmLEAHAAAAAAAAAAAAAAAAAAAAANjE3egBAAAAIGUmi9EjAAAAAHAvOh0AAABwPnQ6AAAA4Jxo9YyHO6ADAAAAAAAAAAAAAAAAAAAAAGzCAnQAAAAAAAAAAAAAAAAAAAAAgE3cjR4AAAAAHoDHEAEAAADOh04HAAAAnA+dDgAAADgnWj3D4Q7oAAAAAAAAAAAAAAAAAAAAAACbsAAdAAAAAAAAAAAAAAAAAAAAAGATFqADAAAAAAAAAAAAAAAAAAAAAGzibvQAAAAA8AAWowcAAAAA4D50OgAAAOB86HQAAADAOdHqGQ53QAcAAAAAAAAAAAAAAAAAAAAA2IQF6AAAAAAAAAAAAAAAAAAAAAAAm7AAHQAAwMmZXOjLHlOmTFH16tWVPXt2BQYGqkOHDjp06FCifcLDwzVo0CAVKFBA3t7eKlOmjD799NNE+0RFRWnw4MEKCAhQ1qxZ1a5dO50+fTrRPlevXlX37t3l6+srX19fde/eXdeuXbNzxAAAAEACo9ubTgcAAADuZ3R7p1Wr0+kAAABwdUa3N52e+liADgAAAEOEhIRo4MCB2rp1q9asWaOYmBi1aNFCERER1n2GDRumVatW6ZtvvtHBgwc1bNgwDR48WMuWLbPu8+KLL2rJkiWaP3++Nm3apPDwcLVt21axsbHWfbp06aJdu3Zp1apVWrVqlXbt2qXu3bun688LAAAAuAI6HQAAAHA+dDoAAADgfDJ7p5ssFovF0BE4oRXHKho9BMAupT0vGT0EwC7F3LMZPQTALuagw4Zev+LwaYZe3x573hvm8LEXL15UYGCgQkJC1KBBA0lS+fLl1blzZ40bN866X9WqVdW6dWu98cYbun79unLnzq2vv/5anTt3liSdPXtWBQsW1MqVK9WyZUsdPHhQZcuW1datW1WzZk1J0tatW1W7dm39/fffKlWq1EP8xEhvpRdPNHoIgM2CfMOMHgJglxgL9ymAa9nUbKqh16fT6XQkqN3lXaOHANglypfugQuJM3oAgH12zHC8PVODK3W65Hir0+mwRXPzU0YPAYATMPv4GD0EAE5gdfgco4fgUq1Op9uGd9gAAACcncV1vqKiohQWFpboKyoqyqYf8/r165Ikf39/67Z69epp+fLlOnPmjCwWi9atW6fDhw+rZcuWkqS//vpLt2/fVosWLazH5MuXT+XLl9fmzZslSVu2bJGvr681wiWpVq1a8vX1te4DAAAA2M0J+ptOBwAAAO7hBP2dHq1OpwMAAMDlOEF/0+mpiwXoAAAASDVTpkyRr69voq8pU6Y88DiLxaLhw4erXr16Kl++vHX7hx9+qLJly6pAgQLy9PTUo48+qunTp6tevXqSpNDQUHl6esrPzy/R+fLkyaPQ0FDrPoGBgfddMzAw0LoPAAAAkJHR6QAAAIBzcqTV6XQAAAAgbdHptnE37MoAAADIcMaMGaPhw4cn2pYlS5YHHjdo0CDt2bNHmzZtSrT9ww8/1NatW7V8+XIFBwdrw4YNGjBggPLmzatmzZolez6LxSKTyWT9/u5/Tm4fAAAAIKOi0wEAAADn5Eir0+kAAABA2qLTbcMCdAAAAKSaLFmy2LSQ5W6DBw/W8uXLtWHDBhUoUMC6/ebN/7N331FS1efjx59ZBhYQXKVbQSwgAhohKjZAFBv2FBslUVEBu8afJgoxiVijRiNWxK5fFbuSWMAGKIrE3hLQWEBEwI7A3t8fOYwuu7AXBObu8nqdM+fInXvvPLPMgTeez9z7bZx55plx7733xt577x0REZ07d44pU6bERRddFLvuumu0atUqvv/++5g9e3aFb4N++umnsf3220dERKtWrWLGjBmVXnfmzJnRsmXL5XmbAABQo+h0AADIpmVtdZ0OAAArn05Pp6RorwwAQCq5pOY8lkWSJDFkyJAYPXp0PPnkk7HRRhtVeH7+/Pkxf/78KCmpmKx16tSJ8vLyiIjo0qVL1K1bNx577LHC85988km89tprhRDv1q1bzJ07N1544YXCPs8//3zMnTu3sA8AACyrYre3TgcAgMqK3d4rq9V1OgAANV2x21unr3iugA4AQFEMHjw4brvttrj//vujcePGMX369IiIKCsriwYNGsSaa64Z3bt3j9NOOy0aNGgQrVu3jqeeeipuuumm+Otf/1rY94gjjohTTjklmjZtGk2aNIlTTz01OnXqVLhV0eabbx577LFHHHXUUXH11VdHRMTAgQOjT58+0a5du+K8eQAAyCidDgAA2aPTAQAge1b3TrcAHQCAohgxYkRERPTo0aPC9htuuCEGDBgQERF33HFHnHHGGXHYYYfF559/Hq1bt46//OUvccwxxxT2v+SSSyKfz8evfvWr+Pbbb6NXr14xatSoqFOnTmGfW2+9NY4//vjo3bt3RETsu+++ccUVV6zcNwgAADWQTgcAgOzR6QAAkD2re6fnkiRZxpuw1n4P/qdzsUeAZdK+3mfFHgGWycb5RsUeAZZJSat3ivr6W55wSVFff1n867KTij0CtVz70ecUewRIrVXZF8UeAZbJgqSk+p0gQ57d9YKivr5Ohx90O/TiYo8Ay2Reme6hBikv9gCwbCZfXdz2rEmdHqHVWbl2K/llsUcAMqCkYcNijwBkwD++urHYI9SoVtfp6fg/bAAAAAAAAAAAAAAApGIBOgAAAAAAAAAAAAAAqeSLPQAAANVIij0AAABQiU4HAIDs0ekAAJBNWr3WcQV0AAAAAAAAAAAAAABSsQAdAAAAAAAAAAAAAIBULEAHAAAAAAAAAAAAACCVfLEHAABg6XJJsScAAAAWp9MBACB7dDoAAGSTVq99XAEdAAAAAAAAAAAAAIBULEAHAAAAAAAAAAAAACCVfLEHAACgGm5DBAAA2aPTAQAge3Q6AABkk1avdVwBHQAAAAAAAAAAAACAVCxABwAAAAAAAAAAAAAglXyxBwAAYOlybkMEAACZo9MBACB7dDoAAGSTVq99XAEdAAAAAAAAAAAAAIBULEAHAAAAAAAAAAAAACAVC9ABAAAAAAAAAAAAAEglX+wBAACoRlLsAQAAgEp0OgAAZI9OBwCAbNLqtY4roAMAAAAAAAAAAAAAkIoF6AAAAAAAAAAAAAAApJIv9gAAACxdzm2IAAAgc3Q6AABkj04HAIBs0uq1jyugAwAAAAAAAAAAAACQigXoAAAAAAAAAAAAAACkYgE6AAAAAAAAAAAAAACp5Is9AAAA1UiKPQAAAFCJTgcAgOzR6QAAkE1avdZxBXQAAAAAAAAAAAAAAFKxAB0AAAAAAAAAAAAAgFTyxR4AAIBquA0RAABkj04HAIDs0ekAAJBNWr3WcQV0AAAAAAAAAAAAAABSsQAdAAAAAAAAAAAAAIBU8sUeAACApcu5DREAAGSOTgcAgOzR6QAAkE1avfZxBXQAAAAAAAAAAAAAAFKxAB0AAAAAAAAAAAAAgFQsQAcAAAAAAAAAAAAAIJV8sQcAAKAaSbEHAAAAKtHpAACQPTodAACySavXOq6ADgAAAAAAAAAAAABAKhagAwAAAAAAAAAAAACQSr7YAwAAsHS5xH2IAAAga3Q6AABkj04HAIBs0uq1jyugAwAAAAAAAAAAAACQigXoAAAAAAAAAAAAAACkki/2AAAAVMNdiAAAIHt0OgAAZI9OBwCAbNLqtY4roAMAAAAAAAAAAAAAkIoF6AAAAAAAAAAAAAAApGIBOgAAAAAAAAAAAAAAqeSLPQAAAEuXS4o9AQAAsDidDgAA2aPTAQAgm7R67eMK6AAAAAAAAAAAAAAApGIBOgAAAAAAAAAAAAAAqeSLPQAAANVwGyIAAMgenQ4AANmj0wEAIJu0eq3jCugAAAAAAAAAAAAAAKRiAToAAAAAAAAAAAAAAKnkiz0AAABLl3MbIgAAyBydDgAA2aPTAQAgm7R67eMK6AAAAAAAAAAAAAAApGIBOgAAAAAAAAAAAAAAqViADgAAAAAAAAAAAABAKvliDwAAQDWSYg8AAABUotMBACB7dDoAAGSTVq91XAEdAAAAAAAAAAAAAIBULEAHAAAAAAAAAAAAACCVfLEHAABg6XJuQwQAAJmj0wEAIHt0OgAAZJNWr31cAR0AAAAAAAAAAAAAgFQsQAcAAAAAAAAAAAAAIJV8sQcAAKAabkMEAADZo9MBACB7dDoAAGSTVq91XAEdAAAAAAAAAAAAAIBULEAHAAAAAAAAAAAAACAVC9ABAAAAAAAAAAAAAEglX+wBAABYulxS7AkAAIDF6XQAAMgenQ4AANmk1WsfV0AHAAAAAAAAAAAAACAVC9ABAAAAAAAAAAAAAEglX+wBAACoRuI+RAAAkDk6HQAAskenAwBANmn1WscV0AEAAAAAAAAAAAAASMUCdAAAAAAAAAAAAAAAUrEAHQAAAAAAAAAAAACAVPLFHgAAgKXLJcWeAAAAWJxOBwCA7NHpAACQTVq99nEFdAAAAAAAAAAAAAAAUrEAHQAAAAAAAAAAAACAVPLFHgAAgGq4DREAAGSPTgcAgOzR6QAAkE1avdZxBXQAAAAAAAAAAAAAAFKxAB0AAAAAAAAAAAAAgFTyxR4AAICly5UXewIAAGBxOh0AALJHpwMAQDZp9drHFdABAAAAAAAAAAAAAEjFAnQAAAAAAAAAAAAAAFKxAB0AAAAAAAAAAAAAgFTyxR4AAIBqJMUeAAAAqESnAwBA9uh0AADIJq1e67gCOgAAAAAAAAAAAAAAqViADgAAAAAAAAAAAABAKvliDwAAwNLl3IYIAAAyR6cDAED26HQAAMgmrV77uAI6AAAAAAAAAAAAAACpWIAOAAAAAAAAAAAAAEAq+WIPAABANRL3IQIAgMzR6QAAkD06HQAAskmr1zqugA4AAAAAAAAAAAAAQCoWoAMAAAAAAAAAAAAAkIoF6AAAAAAAAAAAAAAApJIv9gAAACxdLin2BAAAwOJ0OgAAZI9OBwCAbNLqtY8roAMAAAAAAAAAAAAAkIoF6AAAAAAAAAAAAAAApJIv9gAAAFTDbYgAACB7dDoAAGSPTgcAgGzS6rWOK6ADAAAAAAAAAAAAAJCKBegAAAAAAAAAAAAAAKSSL/YAAAAsXc5tiAAAIHN0OgAAZI9OBwCAbNLqtY8roAMAAAAAAAAAAAAAkIoF6AAAAAAAAAAAAAAApGIBOgAAAAAAAAAAAAAAqeSLPQAAANVIkmJPAAAALE6nAwBA9uh0AADIJq1e67gCOgAAAAAAAAAAAAAAqViADgBAUQwfPjx+/vOfR+PGjaNFixax//77x9tvv11hn1wuV+XjwgsvLOzTo0ePSs8ffPDBFc4ze/bs6Nu3b5SVlUVZWVn07ds35syZsyreJgAA1Cg6HQAAskenAwBA9qzunW4BOgBAxuWSmvNYFk899VQMHjw4Jk6cGI899lgsWLAgevfuHV9//XVhn08++aTCY+TIkZHL5eKggw6qcK6jjjqqwn5XX311hecPPfTQmDJlSowZMybGjBkTU6ZMib59+y737wkAABS7vXU6AABUVuz2XlmtrtMBAKjpit3eOn3Fyxf11QEAWG2NGTOmwq9vuOGGaNGiRbz00kux8847R0REq1atKuxz//33R8+ePaNt27YVtjds2LDSvou8+eabMWbMmJg4cWJsu+22ERFx7bXXRrdu3eLtt9+Odu3arai3BAAANZ5OBwCA7NHpAACQPat7p7sCOgAAK8y8efPiiy++qPCYN29eqmPnzp0bERFNmjSp8vkZM2bEww8/HEcccUSl52699dZo1qxZbLHFFnHqqafGl19+WXhuwoQJUVZWVojwiIjtttsuysrKYvz48cvy9gAAoEbS6QAAkE3L2+o6HQAAVh6dno4F6AAArDDDhw+PsrKyCo/hw4dXe1ySJHHyySfHjjvuGB07dqxynxtvvDEaN24cBx54YIXthx12WNx+++0xbty4OOuss+Kee+6psM/06dOjRYsWlc7XokWLmD59+jK+QwAAqHl0OgAAZNPytLpOBwCAlUunp5Mv2isDAJBOUuwB0jvjjDPi5JNPrrCttLS02uOGDBkSr7zySjz77LNL3GfkyJFx2GGHRf369StsP+qoowr/3bFjx9h0002ja9euMXny5Nh6660jIiKXy1U6X5IkVW4HAIBUdHpE6HQAADKmBnV6xPK1uk4HAKBGqkGtrtPTsQAdAIAVprS0NNVClh877rjj4oEHHoinn3461l9//Sr3eeaZZ+Ltt9+OO++8s9rzbb311lG3bt149913Y+utt45WrVrFjBkzKu03c+bMaNmy5TLNCgAANZFOBwCAbFrWVtfpAACw8un0dEqK9soAAKzWkiSJIUOGxOjRo+PJJ5+MjTbaaIn7Xn/99dGlS5fYcsstqz3v66+/HvPnz4911lknIiK6desWc+fOjRdeeKGwz/PPPx9z586N7bff/qe/EQAAqEV0OgAAZI9OBwCA7FndO90V0AEAMi5Xg25DtCwGDx4ct912W9x///3RuHHjmD59ekRElJWVRYMGDQr7ffHFF3HXXXfFxRdfXOkc//73v+PWW2+NvfbaK5o1axZvvPFGnHLKKfGzn/0sdthhh4iI2HzzzWOPPfaIo446Kq6++uqIiBg4cGD06dMn2rVrtwreKQAAtZFO1+kAAGSPTtfpAABkU21s9dW9010BHQCAohgxYkTMnTs3evToEeuss07hsfjthu64445IkiQOOeSQSueoV69ePPHEE7H77rtHu3bt4vjjj4/evXvH448/HnXq1Cnsd+utt0anTp2id+/e0bt37+jcuXPcfPPNK/09AgBATaPTAQAge3Q6AABkz+re6bkkSWrh9wp+mgf/07nYI8AyaV/vs2KPAMtk43yjYo8Ay6Sk1TtFff3u+1xY1NdfFk89eFqxR6CWaz/6nGKPAKm1Kvui2CPAMlmQuE4BNcuzu15Q1NfX6fCDbodWvnIPZNm8Mt1DDVJe7AFg2Uy++qSivn5N6vQIrc7KtVvJL4s9ApABJQ0bFnsEIAP+8dWNxR6hRrW6Tk8nX+wBAACoRrnvCwIAQObodAAAyB6dDgAA2aTVax2XeAAAAAAAAAAAAAAAIBUL0AEAAAAAAAAAAAAASMUCdAAAAAAAAAAAAAAAUskXewAAAKqRFHsAAACgEp0OAADZo9MBACCbtHqt4wroAAAAAAAAAAAAAACkYgE6AAAAAAAAAAAAAACp5Is9AAAAS5dzGyIAAMgcnQ4AANmj0wEAIJu0eu3jCugAAAAAAAAAAAAAAKRiAToAAAAAAAAAAAAAAKnkiz0AAADVSNyHCAAAMkenAwBA9uh0AADIJq1e67gCOgAAAAAAAAAAAAAAqViADgAAAAAAAAAAAABAKhagAwAAAAAAAAAAAACQSr7YAwAAsHS5pNgTAAAAi9PpAACQPTodAACySavXPq6ADgAAAAAAAAAAAABAKhagAwAAAAAAAAAAAACQSr7YAwAAUA23IQIAgOzR6QAAkD06HQAAskmr1zqugA4AAAAAAAAAAAAAQCoWoAMAAAAAAAAAAAAAkEq+2AMAALB0ucR9iAAAIGt0OgAAZI9OBwCAbNLqtY8roAMAAAAAAAAAAAAAkIoF6AAAAAAAAAAAAAAApGIBOgAAAAAAAAAAAAAAqeSLPQAAANUoL/YAAABAJTodAACyR6cDAEA2afVaxxXQAQAAAAAAAAAAAABIxQJ0AAAAAAAAAAAAAABSyRd7AAAAli6XJMUeAQAAWIxOBwCA7NHpAACQTVq99nEFdAAAAAAAAAAAAAAAUrEAHQAAAAAAAAAAAACAVCxABwAAAAAAAAAAAAAglXyxBwAAoBpJsQcAAAAq0ekAAJA9Oh0AALJJq9c6roAOAAAAAAAAAAAAAEAqFqADAAAAAAAAAAAAAJBKvtgDAABQjcR9iAAAIHN0OgAAZI9OBwCAbNLqtY4roAMAAAAAAAAAAAAAkIoF6AAAAAAAAAAAAAAApJIv9gAAACxdzl2IAAAgc3Q6AABkj04HAIBs0uq1jyugAwAAAAAAAAAAAACQigXoAAAAAAAAAAAAAACkYgE6AAAAAAAAAAAAAACp5Is9AAAA1UiSYk8AAAAsTqcDAED26HQAAMgmrV7ruAI6AAAAAAAAAAAAAACpWIAOAAAAAAAAAAAAAEAq+WIPAADA0uXKiz0BAACwOJ0OAADZo9MBACCbtHrt4wroAAAAAAAAAAAAAACkYgE6AAAAAAAAAAAAAACp5Is9AAAA1UiSYk8AAAAsTqcDAED26HQAAMgmrV7ruAI6AAAAAAAAAAAAAACpWIAOAAAAAAAAAAAAAEAqFqADAAAAAAAAAAAAAJBKvtgDAABQjaTYAwAAAJXodAAAyB6dDgAA2aTVax1XQAcAAAAAAAAAAAAAIBUL0AEAAAAAAAAAAAAASCVf7AEAAFi6XOI+RAAAkDU6HQAAskenAwBANmn12scV0AEAAAAAAAAAAAAASMUCdAAAAAAAAAAAAAAAUskXewAAAKrhNkQAAJA9Oh0AALJHpwMAQDZp9VrHFdABAAAAAAAAAAAAAEjFAnQAAAAAAAAAAAAAAFKxAB0AAAAAAAAAAAAAgFTyxR4AAIBqlBd7AAAAoBKdDgAA2aPTAQAgm7R6reMK6AAAAAAAAAAAAAAApGIBOgAAAAAAAAAAAAAAqeSLPQAAAEuXS5JijwAAACxGpwMAQPbodAAAyCatXvu4AjoAAAAAAAAAAAAAAKlYgA4AAAAAAAAAAAAAQCr5Yg8AAEA13IYIAACyR6cDAED26HQAAMgmrV7ruAI6AAAAAAAAAAAAAACpWIAOAAAAAAAAAAAAAEAqFqADAAAAAAAAAAAAAJBKvtgDAABQjSQp9gQAAMDidDoAAGSPTgcAgGzS6rWOK6ADAAAAAAAAAAAAAJCKBegAAAAAAAAAAAAAAKSSL/YAAABUo7zYAwAAAJXodAAAyB6dDgAA2aTVax1XQAcAAAAAAAAAAAAAIBUL0AEAAAAAAAAAAAAASMUCdAAAAAAAAAAAAAAAUskXewAAAJYulyTFHgEAAFiMTgcAgOzR6QAAkE1avfZxBXQAAAAAAAAAAAAAAFKxAB0AAAAAAAAAAAAAgFTyxR4AAIBquA0RAABkj04HAIDs0ekAAJBNWr3WcQV0AAAAAAAAAAAAAABSsQAdAAAAAAAAAAAAAIBU8sUeAACAargNEQAAZI9OBwCA7NHpAACQTVq91nEFdAAAAAAAAAAAAAAAUrEAHQAAAAAAAAAAAACAVCxABwAAAAAAAAAAAAAglXyxBwAAoBpJUuwJAACAxel0AADIHp0OAADZpNVrHVdABwAAAAAAAAAAAAAgFQvQAQAAAAAAAAAAAABIJV/sAQAAqEZ5sQcAAAAq0ekAAJA9Oh0AALJJq9c6roAOAAAAAAAAAAAAAEAqFqADAAAAAAAAAAAAAJBKvtgDAACwdLkkKfYIAADAYnQ6AABkj04HAIBs0uq1jyugAwAAAAAAAAAAAACQigXoAAAAAAAAAAAAAACkYgE6AAAAAAAAAAAAAACp5Is9AAAA1UiSYk8AAAAsTqcDAED26HQAAMgmrV7ruAI6AAAAAAAAAAAAAACpWIAOAAAAAAAAAAAAAEAq+WIPAABANcrdhggAADJHpwMAQPbodAAAyCatXuu4AjoAAEUxfPjw+PnPfx6NGzeOFi1axP777x9vv/12hX1yuVyVjwsvvLCwz7x58+K4446LZs2axRprrBH77rtvfPjhhxXOM3v27Ojbt2+UlZVFWVlZ9O3bN+bMmbMq3iYAANQoOh0AALJHpwMAQPas7p1uAToAAEXx1FNPxeDBg2PixInx2GOPxYIFC6J3797x9ddfF/b55JNPKjxGjhwZuVwuDjrooMI+J554Ytx7771xxx13xLPPPhtfffVV9OnTJxYuXFjY59BDD40pU6bEmDFjYsyYMTFlypTo27fvKn2/AABQE+h0AADIHp0OAADZs7p3ei5JEte1X8yD/+lc7BFgmbSv91mxR4BlsnG+UbFHgGVS0uqdor7+npudXtTXXxaPvnP+ch87c+bMaNGiRTz11FOx8847V7nP/vvvH19++WU88cQTERExd+7caN68edx8883x61//OiIiPv7449hggw3ikUceid133z3efPPN6NChQ0ycODG23XbbiIiYOHFidOvWLd56661o167dcs/Mqtd+9DnFHgFSa1X2RbFHgGWyIHGdAmqWZ3e9oKivr9N/oNPpdujFxR4Blsm8Mt1DDVJe7AFg2Uy++qSivn5N6vSI5W91nU4au5X8stgjABlQ0rBhsUcAMuAfX91Y7BFqVKvr9HT8HzYAADJh7ty5ERHRpEmTKp+fMWNGPPzww3HEEUcUtr300ksxf/786N27d2HbuuuuGx07dozx48dHRMSECROirKysEOEREdttt12UlZUV9gEAAKqm0wEAIHt0OgAAZM/q1un5or0yAAC1zrx582LevHkVtpWWlkZpaelSj0uSJE4++eTYcccdo2PHjlXuc+ONN0bjxo3jwAMPLGybPn161KtXL9Zee+0K+7Zs2TKmT59e2KdFixaVzteiRYvCPgAAUJvpdAAAyKblaXWdDgAAK5dOT8cV0AEAWGGGDx8eZWVlFR7Dhw+v9rghQ4bEK6+8ErfffvsS9xk5cmQcdthhUb9+/WrPlyRJ5HK5wq9//N9L2gcAAGornQ4AANm0PK2u0wEAYOXS6em4AjoAQNYlSbEnSO2MM86Ik08+ucK26q6qeNxxx8UDDzwQTz/9dKy//vpV7vPMM8/E22+/HXfeeWeF7a1atYrvv/8+Zs+eXeHboJ9++mlsv/32hX1mzJhR6ZwzZ86Mli1bpnpfAABQiU7X6QAAZE8N6vSIZW91nQ4AQI1Vg1pdp6fjCugAAKwwpaWlseaaa1Z4LCnCkySJIUOGxOjRo+PJJ5+MjTbaaInnvf7666NLly6x5ZZbVtjepUuXqFu3bjz22GOFbZ988km89tprhRDv1q1bzJ07N1544YXCPs8//3zMnTu3sA8AANRmOh0AALIpbavrdAAAWHV0ejqugA4AQFEMHjw4brvttrj//vujcePGMX369IiIKCsriwYNGhT2++KLL+Kuu+6Kiy++uNI5ysrK4ogjjohTTjklmjZtGk2aNIlTTz01OnXqFLvuumtERGy++eaxxx57xFFHHRVXX311REQMHDgw+vTpE+3atVsF7xQAAGoOnQ4AANmj0wEAIHtW9063AB0AIOtq0G2IlsWIESMiIqJHjx4Vtt9www0xYMCAwq/vuOOOSJIkDjnkkCrPc8kll0Q+n49f/epX8e2330avXr1i1KhRUadOncI+t956axx//PHRu3fviIjYd99944orrlixbwgAgNWLTtfpAABkj07X6QAAZFMtbPXVvdNzSVILf1d/ogf/07nYI8AyaV/vs2KPAMtk43yjYo8Ay6Sk1TtFff09NzmtqK+/LB5978Jij0At1370OcUeAVJrVfZFsUeAZbIgKSn2CLBMnt31gqK+vk6HH3Q7tPKVeyDL5pXpHmqQ8mIPAMtm8tUnFfX1a1KnR2h1Vq7dSn5Z7BGADChp2LDYIwAZ8I+vbiz2CDWq1XV6Ov4PGwAAAAAAAAAAAAAAqViADgAAAAAAAAAAAABAKvliDwAAQDXKk2JPAAAALE6nAwBA9uh0AADIJq1e67gCOgAAAAAAAAAAAAAAqViADgAAAAAAAAAAAABAKvliDwAAQDWS8mJPAAAALE6nAwBA9uh0AADIJq1e67gCOgAAAAAAAAAAAAAAqViADgAAAAAAAAAAAABAKvliDwAAQDWSpNgTAAAAi9PpAACQPTodAACySavXOq6ADgAAAAAAAAAAAABAKhagAwAAAAAAAAAAAACQigXoAAAAAAAAAAAAAACkki/2AAAAVKM8KfYEAADA4nQ6AABkj04HAIBs0uq1jiugAwAAAAAAAAAAAACQigXoAAAAAAAAAAAAAACkki/2AAAAVCNxGyIAAMgcnQ4AANmj0wEAIJu0eq3jCugAAAAAAAAAAAAAAKRiAToAAAAAAAAAAAAAAKnkiz0AAADVcBsiAADIHp0OAADZo9MBACCbtHqt4wroAAAAAAAAAAAAAACkYgE6AAAAAAAAAAAAAACpWIAOAAAAAAAAAAAAAEAq+WIPAABANZKk2BMAAACL0+kAAJA9Oh0AALJJq9c6roAOAAAAAAAAAAAAAEAqFqADAAAAAAAAAAAAAJBKvtgDAABQjfLyYk8AAAAsTqcDAED26HQAAMgmrV7ruAI6AAAAAAAAAAAAAACpWIAOAAAAAAAAAAAAAEAq+WIPAABANZKk2BMAAACL0+kAAJA9Oh0AALJJq9c6roAOAAAAAAAAAAAAAEAqFqADAAAAAAAAAAAAAJCKBegAAAAAAAAAAAAAAKSSL/YAAABUI0mKPQEAALA4nQ4AANmj0wEAIJu0eq3jCugAAAAAAAAAAAAAAKRiAToAAAAAAAAAAAAAAKnkiz0AAADVKHcbIgAAyBydDgAA2aPTAQAgm7R6reMK6AAAAAAAAAAAAAAApGIBOgAAAAAAAAAAAAAAqViADgAAAAAAAAAAAABAKvliDwAAwNIlSXmxRwAAABaj0wEAIHt0OgAAZJNWr31cAR0AAAAAAAAAAAAAgFQsQAcAAAAAAAAAAAAAIJV8sQcAAKAa5UmxJwAAABan0wEAIHt0OgAAZJNWr3VcAR0AAAAAAAAAAAAAgFQsQAcAAAAAAAAAAAAAIJV8sQcAAKAaidsQAQBA5uh0AADIHp0OAADZpNVrHVdABwAAAAAAAAAAAAAgFQvQAQAAAAAAAAAAAABIxQJ0AAAAAAAAAAAAAABSyRd7AAAAqlFeXuwJAACAxel0AADIHp0OAADZpNVrHVdABwAAAAAAAAAAAAAgFQvQAQAAAAAAAAAAAABIJV/sAQAAqEaSFHsCAABgcTodAACyR6cDAEA2afVaxxXQAQAAAAAAAAAAAABIxQJ0AAAAAAAAAAAAAABSyRd7AAAAli4pLy/2CAAAwGJ0OgAAZI9OBwCAbNLqtY8roAMAAAAAAAAAAAAAkIoF6AAAAAAAAAAAAAAApGIBOgAAAAAAAAAAAAAAqeSLPQAAANVIkmJPAAAALE6nAwBA9uh0AADIJq1e67gCOgAAAAAAAAAAAAAAqViADgAAAAAAAAAAAABAKvliDwAAQDXK3YYIAAAyR6cDAED26HQAAMgmrV7ruAI6AAAAAAAAAAAAAACpWIAOAAAAAAAAAAAAAEAq+WIPAABANZLyYk8AAAAsTqcDAED26HQAAMgmrV7ruAI6AAAAAAAAAAAAAACpWIAOAAAAAAAAAAAAAEAqFqADAAAAAAAAAAAAAJBKvtgDAACwdEl5UuwRAACAxeh0AADIHp0OAADZpNVrH1dABwAAAAAAAAAAAAAgFQvQAQAAAAAAAAAAAABIJV/sAQAAqEZSXuwJAACAxel0AADIHp0OAADZpNVrHVdABwAAAAAAAAAAAAAgFQvQAQAAAAAAAAAAAABIJV/sAQAAWLqkPCn2CAAAwGJ0OgAAZI9OBwCAbNLqtY8roAMAAAAAAAAAAAAAkIoF6AAAAAAAAAAAAAAApGIBOgAAAAAAAAAAAAAAqeSLPQAAANVIyos9AQAAsDidDgAA2aPTAQAgm7R6reMK6AAAAAAAAAAAAAAApGIBOgAAAAAAAAAAAAAAqeSSJEmKPQSrh3nz5sXw4cPjjDPOiNLS0mKPA9XymaUm8XkFYHn5O4SaxmeWmsZnFoDl4e8PahqfWWoan1kAVgf+vgMi/FkArDwWoLPKfPHFF1FWVhZz586NNddcs9jjQLV8ZqlJfF4BWF7+DqGm8ZmlpvGZBWB5+PuDmsZnlprGZxaA1YG/74AIfxYAK09JsQcAAAAAAAAAAAAAAKBmsAAdAAAAAAAAAAAAAIBULEAHAAAAAAAAAAAAACAVC9BZZUpLS2Po0KFRWlpa7FEgFZ9ZahKfVwCWl79DqGl8ZqlpfGYBWB7+/qCm8ZmlpvGZBWB14O87IMKfBcDKk0uSJCn2EAAAAAAAAAAAAAAAZJ8roAMAAAAAAAAAAAAAkIoF6AAAAAAAAAAAAAAApGIBOgAAAAAAAAAAAAAAqViADgAAAAAAAAAAAABAKhags0JNnz49TjjhhNhkk02ifv360bJly9hxxx3jqquuim+++SYiItq0aROXXnpppWOHDRsWW2211aodmNXagAEDIpfLRS6Xi7p160bLli1jt912i5EjR0Z5eXlhvzZt2hT2+/HjvPPOK+L0rO5+/PnN5XLRtGnT2GOPPeKVV14p7JPL5eK+++4r3pAAZIZOpybR6dRkOh2AZaXVqUm0OjWVTgegttJnwOK0L7AqWYDOCvOf//wnfvazn8U///nPOPfcc+Pll1+Oxx9/PE466aR48MEH4/HHHy/2iFDJHnvsEZ988klMmzYtHn300ejZs2eccMIJ0adPn1iwYEFhv3POOSc++eSTCo/jjjuuiJPDD5/fTz75JJ544onI5/PRp0+fYo8FQMbodGoinU5NptMBSEurUxNpdWoqnQ5AbaXPgMVpX2BVyRd7AGqPQYMGRT6fjxdffDHWWGONwvZOnTrFQQcdFEmSFHE6qFppaWm0atUqIiLWW2+92HrrrWO77baLXr16xahRo+LII4+MiIjGjRsX9oOs+PHnt1WrVnH66afHzjvvHDNnzozmzZsXeToAskKnPNGs3QAA8ldJREFUUxPpdGoynQ5AWlqdmkirU1PpdABqK30GLE77AquKK6CzQsyaNSv++c9/xuDBgyv8j/Ify+Vyq3gqWD677LJLbLnlljF69OhijwKpffXVV3HrrbfGJptsEk2bNi32OABkhE6nNtHp1EQ6HYAl0erUJlqdmkanA1Db6TNgEe0LrEwWoLNCvPfee5EkSbRr167C9mbNmkWjRo2iUaNGcfrppxe2n3766YXtix7nnnvuqh4blqh9+/Yxbdq0wq+r+syOGzeuaPNBRMRDDz1U+Dw2btw4HnjggbjzzjujpMRf7wD8j06nttHp1AQ6HYA0tDq1jVYn63Q6AKsbfQarL+0LrCr5Yg9A7bL4FVleeOGFKC8vj8MOOyzmzZtX2H7aaafFgAEDKuz7t7/9LZ5++ulVMSZUK0mSCp/nqj6z66233iqeCirq2bNnjBgxIiIiPv/887jyyitjzz33jBdeeCFat25d5OkAyBKdTm2h06kJdDoAy0KrU1todbJOpwOwutFnsPrSvsCqYgE6K8Qmm2wSuVwu3nrrrQrb27ZtGxERDRo0qLC9WbNmsckmm1TY1qRJk5U7JCyDN998MzbaaKPCr6v6zEKxrbHGGhU+l126dImysrK49tpr489//nMRJwMgK3Q6tY1OpybQ6QCkodWpbbQ6WafTAVjd6DNYfWlfYFVxXwVWiKZNm8Zuu+0WV1xxRXz99dfFHgd+kieffDJeffXVOOigg4o9CiyTXC4XJSUl8e233xZ7FAAyQqdTm+h0aiqdDkBVtDq1iVanJtLpANRm+gz4Me0LrCyugM4Kc+WVV8YOO+wQXbt2jWHDhkXnzp2jpKQkJk2aFG+99VZ06dKl2CNCJfPmzYvp06fHwoULY8aMGTFmzJgYPnx49OnTJ/r161fY78svv4zp06dXOLZhw4ax5pprruqRoWDR5zciYvbs2XHFFVfEV199Ffvss0+RJwMgS3Q6NZFOpybT6QCkpdWpibQ6NZVOB6C20mfA4rQvsKpYgM4Ks/HGG8fLL78c5557bpxxxhnx4YcfRmlpaXTo0CFOPfXUGDRoULFHhErGjBkT66yzTuTz+Vh77bVjyy23jL/97W/Rv3//KCn54SYRZ599dpx99tkVjj366KPjqquuWtUjQ8Giz29EROPGjaN9+/Zx1113RY8ePYo7GACZotOpiXQ6NZlOByAtrU5NpNWpqXQ6ALWVPgMWp32BVSWXJElS7CEAAAAAAAAAAAAAAMi+kup3AQAAAAAAAAAAAAAAC9ABAAAAAAAAAAAAAEjJAnQAAAAAAAAAAAAAAFKxAB0AAAAAAAAAAAAAgFQsQAcAAAAAAAAAAAAAIBUL0AEAAAAAAAAAAAAASMUCdAAAAAAAAAAAAAAAUrEAHQAAAAAAAAAAAACAVCxAB1gFevToESeeeGKxxwAAAH5EpwMAQDZpdQAAyB6dDsCPWYAO1BiffvppHH300bHhhhtGaWlptGrVKnbfffeYMGFCsUer1ujRo+NPf/pTsccAAIAVTqcDAEA2aXUAAMgenQ5AbZEv9gAAaR100EExf/78uPHGG6Nt27YxY8aMeOKJJ+Lzzz8v9mhLNH/+/Khbt240adKk2KMAAMBKodMBACCbtDoAAGSPTgegtnAFdKBGmDNnTjz77LNx/vnnR8+ePaN169axzTbbxBlnnBF77713YZ+BAwdGy5Yto379+tGxY8d46KGHCucYP3587LzzztGgQYPYYIMN4vjjj4+vv/668HybNm3i3HPPjd/+9rfRuHHj2HDDDeOaa66pMMfpp58em222WTRs2DDatm0bZ511VsyfP7/w/LBhw2KrrbaKkSNHRtu2baO0tDSSJKl0G6LZs2dHv379Yu21146GDRvGnnvuGe++++5K+ukBAMDKodMBACCbtDoAAGSPTgegNrEAHagRGjVqFI0aNYr77rsv5s2bV+n58vLy2HPPPWP8+PFxyy23xBtvvBHnnXde1KlTJyIiXn311dh9993jwAMPjFdeeSXuvPPOePbZZ2PIkCEVznPxxRdH165d4+WXX45BgwbFscceG2+99Vbh+caNG8eoUaPijTfeiMsuuyyuvfbauOSSSyqc47333ov/+7//i3vuuSemTJlS5fsZMGBAvPjii/HAAw/EhAkTIkmS2GuvvSoEPQAAZJ1OBwCAbNLqAACQPTodgFolAagh7r777mTttddO6tevn2y//fbJGWeckfzrX/9KkiRJ/vGPfyQlJSXJ22+/XeWxffv2TQYOHFhh2zPPPJOUlJQk3377bZIkSdK6devk8MMPLzxfXl6etGjRIhkxYsQSZ7rggguSLl26FH49dOjQpG7dusmnn35aYb/u3bsnJ5xwQpIkSfLOO+8kEZE899xzhec/++yzpEGDBsn//d//pfhJAABAduh0AADIJq0OAADZo9MBqC3yxV3+DpDeQQcdFHvvvXc888wzMWHChBgzZkxccMEFcd1118Wnn34a66+/fmy22WZVHvvSSy/Fe++9F7feemthW5IkUV5eHlOnTo3NN988IiI6d+5ceD6Xy0WrVq3i008/LWy7++6749JLL4333nsvvvrqq1iwYEGsueaaFV6rdevW0bx58yW+jzfffDPy+Xxsu+22hW1NmzaNdu3axZtvvrlsPxQAACgynQ4AANmk1QEAIHt0OgC1RUmxBwBYFvXr14/ddtstzj777Bg/fnwMGDAghg4dGg0aNFjqceXl5XH00UfHlClTCo9//etf8e6778bGG29c2K9u3boVjsvlclFeXh4RERMnToyDDz449txzz3jooYfi5Zdfjt///vfx/fffVzhmjTXWWOosSZIscXsul1vqsQAAkEU6HQAAskmrAwBA9uh0AGoDV0AHarQOHTrEfffdF507d44PP/ww3nnnnSq/Cbr11lvH66+/Hptssslyv9Zzzz0XrVu3jt///veFbe+///5yzbxgwYJ4/vnnY/vtt4+IiFmzZsU777xT+DYqAADUZDodAACySasDAED26HQAaiJXQAdqhFmzZsUuu+wSt9xyS7zyyisxderUuOuuu+KCCy6I/fbbL7p37x4777xzHHTQQfHYY4/F1KlT49FHH40xY8ZERMTpp58eEyZMiMGDB8eUKVPi3XffjQceeCCOO+641DNssskm8cEHH8Qdd9wR//73v+Nvf/tb3Hvvvcv8XjbddNPYb7/94qijjopnn302/vWvf8Xhhx8e6623Xuy3337LfD4AACgWnQ4AANmk1QEAIHt0OgC1iQXoQI3QqFGj2HbbbeOSSy6JnXfeOTp27BhnnXVWHHXUUXHFFVdERMQ999wTP//5z+OQQw6JDh06xO9+97tYuHBhRER07tw5nnrqqXj33Xdjp512ip/97Gdx1llnxTrrrJN6hv322y9OOumkGDJkSGy11VYxfvz4OOuss5br/dxwww3RpUuX6NOnT3Tr1i2SJIlHHnmk0m2QAAAgy3Q6AABkk1YHAIDs0ekA1Ca5JEmSYg8BAAAAAAAAAAAAAED2uQI6AAAAAAAAAAAAAACpWIAOAAAAAAAAAAAAAEAqFqADAAAAAAAAAAAAAJCKBegAAAAAAAAAAAAAAKRiAToAAAAAAAAAAAAAAKlYgA4AAAAAAAAAAAAAQCoWoAMAAAAAAAAAAAAAkIoF6AAAAAAAAAAAAAAApGIBOgAAAAAAAAAAAAAAqViADgAAAAAAAAAAAABAKhagAwAAAAAAAAAAAACQigXoAAAAAAAAAAAAAACkYgE6AAAAAAAAAAAAAACpWIAOAAAAAAAAAAAAAEAqFqADAAAAAAAAAAAAAJCKBegAAAAAAAAAAAAAAKRiAToAAAAAAAAAAAAAAKlYgA6rufHjx8ewYcNizpw5y3X8bbfdFpdeeulPmqFHjx7Ro0ePn3SOle2nvM8ePXpEx44dV+g8w4YNi1wut8THtGnTIiJi2rRpkcvl4qKLLqryPBdddFGF/RfN++Nz1a9fPzp06BB//vOf4/vvv1+h7wMAgCXT6uloda0OALAq6fR0dLpOBwBYlXR6OjpdpwOsSPliDwAU1/jx4+OPf/xjDBgwINZaa61lPv62226L1157LU488cQVPluWZPV9jhkzJsrKyiptX2eddX7Sedu2bRu33nprRETMnDkzrrvuujjrrLPigw8+iGuuueYnnRsAgHS0ejpZfZ9aHQCgdtLp6WT1fep0AIDaSaenk9X3qdMBaiYL0AFqsC5dukSzZs1W+HkbNGgQ2223XeHXe+65Z3To0CFuvPHG+Nvf/hb169df4a8JAAC1iVYHAIDs0ekAAJA9Oh2gZiop9gBA8QwbNixOO+20iIjYaKONCredGTduXJSXl8cFF1wQ7du3j9LS0mjRokX069cvPvzww8LxPXr0iIcffjjef//9CretWeSPf/xjbLvtttGkSZNYc801Y+utt47rr78+kiRZIfOPGTMmevXqFWVlZdGwYcPYfPPNY/jw4RX2eeCBB6Jbt27RsGHDaNy4cey2224xYcKECvvMnDkzBg4cGBtssEGUlpZG8+bNY4cddojHH3881ftM65lnnontttsuGjRoEOutt16cddZZsXDhwsLzP75l0F//+tfYaKONolGjRtGtW7eYOHHicvyEVpx8Ph9bbbVVfP/998t9yyoAANLT6v+j1aun1QEAVh2d/j86vXo6HQBg1dHp/6PTq6fTAVYsV0CH1diRRx4Zn3/+eVx++eUxevTowq1rOnToEMcee2xcc801MWTIkOjTp09MmzYtzjrrrBg3blxMnjw5mjVrFldeeWUMHDgw/v3vf8e9995b6fzTpk2Lo48+OjbccMOIiJg4cWIcd9xx8dFHH8XZZ5/9k2a//vrr46ijjoru3bvHVVddFS1atIh33nknXnvttcI+t912Wxx22GHRu3fvuP3222PevHlxwQUXRI8ePeKJJ56IHXfcMSIi+vbtG5MnT46//OUvsdlmm8WcOXNi8uTJMWvWrIiIat9nGtOnT4+DDz44/t//+39xzjnnxMMPPxx//vOfY/bs2XHFFVdU2Pfvf/97tG/fPi699NKIiDjrrLNir732iqlTp1a65dDChQtjwYIFFbblcrmoU6fOcs25NFOnTo211lormjdvvsLPDQBARVpdqy8LrQ4AsGrodJ2+LHQ6AMCqodN1+rLQ6QArUAKs1i688MIkIpKpU6cWtr355ptJRCSDBg2qsO/zzz+fRERy5plnFrbtvffeSevWrat9nYULFybz589PzjnnnKRp06ZJeXl54bnu3bsn3bt3Tz3zl19+may55prJjjvuWOE8i7/euuuum3Tq1ClZuHBhhWNbtGiRbL/99oVtjRo1Sk488cSlvmba91mV7t27JxGR3H///RW2H3XUUUlJSUny/vvvJ0mSJFOnTk0iIunUqVOyYMGCwn4vvPBCEhHJ7bffXtg2dOjQJCKqfGy88caF/Rad88ILL6xytqp+/7t3755sscUWyfz585P58+cnn3zySXL22WcnEZFcddVVy/UzAABg2Wl1ra7VAQCyR6frdJ0OAJA9Ol2n63SAVc8V0IFKxo4dGxERAwYMqLB9m222ic033zyeeOKJ+Mtf/lLteZ588sk499xzY9KkSfHFF19UeO7TTz+Nli1bLtd848ePjy+++CIGDRq0xNsBvf322/Hxxx/HiSeeGCUlJYXtjRo1ioMOOiiuvvrq+Oabb6Jhw4axzTbbxKhRo6Jp06ax6667RpcuXaJu3brLNduSNG7cOPbdd98K2w499NC49tpr4+mnn47DDz+8sH3vvfeu8C3Ozp07R0TE+++/X+m8jz/+eKVvhtavX/8nz/v6669X+hmcccYZcfTRR//kcwMAsPy0ulbX6gAA2aPTdbpOBwDIHp2u03U6wMpVUv0uwOpm0e13Ft2W6MfWXXfdwvNL88ILL0Tv3r0jIuLaa6+N5557LiZNmhS///3vIyLi22+/Xe75Zs6cGRER66+//hL3qe49lJeXx+zZsyMi4s4774z+/fvHddddF926dYsmTZpEv379Yvr06cs94+Kq+gdHq1atKsy6SNOmTSv8urS0NCKq/pltueWW0bVr1wqPjh07Fp7P5//3PaOFCxdWOdeiWxgtHtwbb7xxTJo0KV544YW46667Ysstt4zhw4fHHXfcsdT3CQDAyqXVtbpWBwDIHp2u03U6AED26HSdrtMBVi4L0IFKFkXgJ598Uum5jz/+OJo1a1btOe64446oW7duPPTQQ/GrX/0qtt9+++jatesKma958+YREfHhhx8ucZ/q3kNJSUmsvfbaERHRrFmzuPTSS2PatGnx/vvvx/Dhw2P06NGVvgX7U8yYMaPStkWRv3h0r0jNmjWLOnXqxEcffVTl8x999FHUqVOn0gz169ePrl27xs9//vP4xS9+EU888US0bNkyTjzxxPjqq69W2rwAACydVtfqWh0AIHt0uk7X6QAA2aPTdbpOB1i5LECH1VxV3zDcZZddIiLilltuqbDvpEmT4s0334xevXpVOL6qbyfmcrnI5/MVbqfz7bffxs033/yTZ95+++2jrKwsrrrqqkiSpMp92rVrF+utt17cdtttFfb5+uuv45577olu3bpFw4YNKx234YYbxpAhQ2K33XaLyZMnF7Yv6X2m9eWXX8YDDzxQYdttt90WJSUlsfPOOy/3eatTv3792GGHHeKBBx6I7777rsJz3333XTzwwAOx4447VnvroqZNm8Z5550XM2bMiMsvv3ylzQsAwA+0ekVavWpaHQBg1dLpFen0qul0AIBVS6dXpNOrptMBVqx8sQcAiqtTp04REXHZZZdF//79o27dutGuXbsYOHBgXH755VFSUhJ77rlnTJs2Lc4666zYYIMN4qSTTqpw/OjRo2PEiBHRpUuXKCkpia5du8bee+8df/3rX+PQQw+NgQMHxqxZs+Kiiy4qRP9P0ahRo7j44ovjyCOPjF133TWOOuqoaNmyZbz33nvxr3/9K6644oooKSmJCy64IA477LDo06dPHH300TFv3ry48MILY86cOXHeeedFRMTcuXOjZ8+eceihh0b79u2jcePGMWnSpBgzZkwceOCB1b7PtJo2bRrHHntsfPDBB7HZZpvFI488Etdee20ce+yxseGGGy73z+Kll16KsrKySts7dOgQa665ZkREnHfeedGzZ8/o1q1bnHjiibHhhhvGBx98EJdeemnMmDEj9a2F+vXrF3/961/joosuisGDBxfODwDAyqHVtbpWBwDIHp2u03U6AED26HSdrtMBiiABVntnnHFGsu666yYlJSVJRCRjx45NFi5cmJx//vnJZpttltStWzdp1qxZcvjhhyf//e9/Kxz7+eefJ7/4xS+StdZaK8nlcsmP/1gZOXJk0q5du6S0tDRp27ZtMnz48OT6669PIiKZOnVqYb/u3bsn3bt3X+a5H3nkkaR79+7JGmuskTRs2DDp0KFDcv7551fY57777ku23XbbpH79+skaa6yR9OrVK3nuuecKz3/33XfJMccck3Tu3DlZc801kwYNGiTt2rVLhg4dmnz99dep3md1unfvnmyxxRbJuHHjkq5duyalpaXJOuusk5x55pnJ/PnzC/tNnTo1iYjkwgsvrHSOiEiGDh1a+PXQoUOTiFji47HHHqtw/IsvvpgccMABSbNmzZI6deokzZo1Sw444IDkpZdeWuK8VXn44YeTiEj++Mc/pn7/AAAsP62u1auatypaHQBg1dHpOr2qeaui0wEAVh2drtOrmrcqOh1gxcglyRLu4QEAAAAAAAAAAAAAAD9SUuwBAAAAAAAAAAAAAACoGfLFHgDgxxYuXBhLuzFDLpeLOnXqrMKJlqwmzQoAAD9VTerfmjQrAAD8FDWpfWvSrAAA8FPUpPatSbMCkC2ugA5kSq9evaJu3bpLfGy88cbFHrGgJs0KAAA/VU3q35o0KwAA/BQ1qX1r0qwAAPBT1KT2rUmzApAtuWRpX2ECWMXefvvt+PLLL5f4fGlpaXTq1GkVTrRkNWlWAAD4qWpS/9akWQEA4KeoSe1bk2YFAICfoia1b02aFYBssQAdAAAAAAAAAAAAAIBUSoo9AJA9X375Zfzud7+L3r17R/PmzSOXy8WwYcOW6RyffvppDBgwIJo1axYNGzaMbt26xRNPPLFM5xg2bFiMGjUq9f433XRTHHzwwdGuXbsoKSmJNm3aVLnflClTYu+9944NN9wwGjRoEE2aNIlu3brFLbfcUmnfAQMGRC6Xq/Ro3759lee+/PLLo3379lFaWhobbbRR/PGPf4z58+enfg9z586NU089Ndq2bRv16tWL9dZbL4499tj4+OOPK+37yiuvRC6Xi5dffjmmTZsWuVwuLrrooiWe+8UXX4xcLhfnn39+pef222+/yOVycfXVV1d6rlevXtG0adPwfSUAgOLS6T/Q6TodACArdPoPdLpOBwDICp3+A52u0wFWFgvQgUpmzZoV11xzTcybNy/233//ZT5+3rx50atXr3jiiSfisssui/vvvz9atmwZe+yxRzz11FNLPfbBBx+MRx55pMK2JEnilltuifHjxy/12Jtvvjlef/312GabbWLjjTde4n5z5syJDTbYIM4999x45JFH4qabboo2bdpE3759489//nOl/Rs0aBATJkyo8Ljzzjsr7feXv/wlTjjhhDjwwAPjH//4RwwaNCjOPffcGDx48FLnXuSrr76KnXbaKW688cY49thj49FHH43LLrss3n///RgyZEil/e+5557YaKON4mc/+1mq82+99dZRVlYWY8eOrbC9vLw8nnnmmVhjjTUqPff999/HhAkTokePHpHL5VK9DgAAK4dOr0in63QAgCzQ6RXpdJ0OAJAFOr0ina7TAVaKBGAx5eXlSXl5eZIkSTJz5swkIpKhQ4emPv7vf/97EhHJ+PHjC9vmz5+fdOjQIdlmm22Weuxbb72VHHroocnuu++eHHzwwckxxxyT7LjjjsmQIUOSjz76aKnHLly4sPDfe++9d9K6devUMydJkmy77bbJBhtsUGFb//79kzXWWKPaYz/77LOkfv36ycCBAyts/8tf/pLkcrnk9ddfr/Ycxx57bNKgQYPk1VdfrfTcxIkTK23r0KFDcuqppyZJkiRTp05NIiK58MILl/oa++yzT9KoUaNk/vz5hW2TJ09OIiI59dRTk5YtW1bY/+mnn04iIrn88surnR8AgJVLp/9Ap+t0AICs0Ok/0Ok6HQAgK3T6D3S6TgdYWVwBHahk0e12lte9994b7dq1i27duhW25fP5OPzww+OFF16Ijz76aInHtmvXLm699dYYNGhQjB49Om6//fa4+OKL4/LLL4911113qa9bUvLT/khr1qxZ5PP55Tp2zJgx8d1338VvfvObCtt/85vfRJIkcd999y3x2CRJ4rvvvos777wz9t1332jfvn0sWLCg8IiI2HbbbSsc89Zbb8Ubb7wRBx100BLPO3/+/Ojfv380atQoHnrooYiI6NmzZ3z11Vfx4osvFvYbN25crLvuunHkkUfGjBkz4o033qjw3KLjAAAoLp2+7HQ6AAArm05fdjodAICVTacvO50OwLKyAB1Y4V577bXo3Llzpe2Ltr3++utLPPbdd9+Nfv36xZVXXhkHHHBAHHLIIXHyySfH8ccfH5988skKnbO8vDwWLFgQM2fOjCuvvDL+8Y9/xOmnn15pv2+//TZatWoVderUifXXXz+GDBkSn3/+eYV9XnvttYiI6NSpU4Xt66yzTjRr1qzwfFVOOumkaNCgQXz++edx5513Rt26dQuPRo0axezZsysdc88998R6661XKdAXmTNnTuy+++7xz3/+M5566qno06dPRPwQ1D++5dDYsWOje/fu0a5du2jVqlUhvhc917x58+jQocMS5wcAoGbQ6T/Q6QAAZIVO/4FOBwAgK3T6D3Q6AEtiATqwws2aNSuaNGlSafuibbNmzVrisW+++Wb8+te/jjFjxkT79u1j2223jWeeeSZ+/vOfx9SpU1fonIMGDYq6detGixYt4qSTToq//e1vcfTRR1fYZ8stt4yLLroobr755hgzZkwMGDAgbrjhhthhhx3iq6++Kuw3a9asKC0tjTXWWKPS6zRp0mSp7/mYY46Jq666KiIihg8fHpMmTSo8Jk+eHGuvvXalY+6+++448MADq/zG7rRp02KHHXaIGTNmxMSJE6NLly4V3k+TJk0KsV1eXh7PPPNMdO/ePSIidt5550Kkf//99zFx4sTo2bPnT/pmMAAA2aDTK9LpAABkgU6vSKcDAJAFOr0inQ5AVZbvnhsA1VhauC3tuX333bfK/fv27btC5vqxM888M4488sj49NNP48EHH4whQ4bE119/Haeeemphn5NOOqnCMbvttlv87Gc/i1/84hdx7bXXVnh+ed9zu3btCrdnatOmTWy11VaF56q6NdJ//vOfmDJlSlx66aWVnps8eXJcdNFF0aFDhxg9enSstdZalebo3r17/POf/4z58+fHq6++GnPmzIkePXpERET37t1j6NChkSRJTJw4Mb799lu3IQIAqEV0euX3sCQ6HQCAVUWnV34PS6LTAQBYVXR65fewJDodYPXkCujACte0adMqv/m46PY9VX1LtCrDhg2LAQMGrMjRKthwww2ja9eusddee8WIESNi4MCBccYZZ8TMmTOXetwBBxwQa6yxRkycOLGwrWnTpvHdd9/FN998U2n/zz//fKnv+aSTTopdd901IiIOOeSQwm2IfhzkP3b33XdHixYtYscdd6z03GOPPRYzZsyII488slKEL9KzZ8/4+uuvY9KkSTF27Nho2bJltGvXLiL+F+KfffZZvP7664VvhApxAIDaQadXpNMBAMgCnV6RTgcAIAt0ekU6HYCqWIAOrHCdOnWKV199tdL2Rds6duy4qkdKZZtttokFCxbEf/7zn2r3TZIkSkp++CO0U6dOERGV3vf06dPjs88+W+p7PuaYY2LChAnRsGHD2HvvvQu3IXr44Yer3P+ee+6J/fffP+rUqVPpudNOOy0GDhwY/fr1i5tuuqnK4xeF9bhx42LcuHGF2xBFRHTo0CGaNWsWY8eOjXHjxsU666xTiHQAAGo2nf4DnQ4AQFbo9B/odAAAskKn/0CnA7AkFqADK9wBBxwQb731Vjz//POFbQsWLIhbbrkltt1221h33XWLON2SjR07NkpKSqJt27ZL3e/uu++Ob775JrbbbrvCtj322CPq168fo0aNqrDvqFGjIpfLxf7777/E87Vv3z622267OOCAA+LZZ5+Npk2bRteuXaN169aFfd54442IiPjvf/8bkyZNioMOOqjKc5WUlMTVV18dJ5xwQgwYMCBGjBhRaZ8tttgimjdvHk8++WQ888wzhdsQRfzvVkU777xzjBkzJiZOnOhboAAAtYhO/4FOBwAgK3T6D3Q6AABZodN/oNMBWJJ8sQcAsunRRx+Nr7/+Or788suI+F8I3n333RERsddee0XDhg0jIuKII46IG2+8Mf79738XwvG3v/1t/P3vf49f/vKXcd5550WLFi3iyiuvjLfffjsef/zxlTbzG2+8UQjW6dOnxzfffFOYuUOHDtGhQ4eIiBg4cGCsueaasc0220TLli3js88+i7vuuivuvPPOOO2006J58+YREfH+++/HoYceGgcffHBssskmkcvl4qmnnopLL700tthiizjyyCMLr92kSZP4wx/+EGeddVY0adIkevfuHZMmTYphw4bFkUceWXjtpbnkkkti/PjxsdNOO8Wpp54aW265ZcyZMyduu+22KC8vj3vuuSfuueeeWGuttaoN5IsvvjgaN24cgwYNiq+++ipOO+20wnO5XC569OgRd999dyRJUuGboBH/ux3RiSeeGEmSCHEAgIzR6TpdpwMAZI9O1+k6HQAge3S6TtfpACtZAlCF1q1bJxFR5WPq1KmF/fr3719pW5IkyfTp05N+/folTZo0SerXr59st912yWOPPbZSZx46dOgSZx46dGhhv5EjRyY77bRT0qxZsySfzydrrbVW0r179+Tmm2+ucL7PP/88OeCAA5I2bdokDRo0SOrVq5dsuummye9+97tkzpw5Vc5w2WWXJZtttllSr169ZMMNN0yGDh2afP/996nfw2effZacdtppyeabb540aNAgWWeddZJjjjkm+eSTT5IkSZIdd9wx6d+/f6Xjpk6dmkREcuGFF1bYfuGFFyYRkZx99tkVtl955ZVJRCTNmzevdK4pU6YUfm7vvvtu6tkBAFj5dLpO1+kAANmj03W6TgcAyB6drtN1OsDKlUuSJFn+5esArCrTp0+P9dZbL+67777YZ599ij0OAAAQOh0AALJIpwMAQPbodIDaxQJ0AAAAAAAAAAAAAABSKSn2AAAAAAAAAAAAAAAA1AwWoAMAAAAAAAAAAAAAkIoF6AAAAAAAAAAAAAAApGIBOgAAAAAAAAAAAAAAqViADquRUaNGRS6XW+Jj3LhxhX3btGkTAwYMWGmzXHnllTFq1KiVcu5hw4ZFLpdbKeeeNm1a5HK5FTr7K6+8Er/5zW9io402ivr160ejRo1i6623jgsuuCA+//zzKo/ZeuutI5fLxUUXXVTl84v/Xufz+Vh//fXjN7/5TXz00UeF/caNG7fUz8Si9/nZZ59Fy5YtY6eddory8vIKr/X999/HlltuGRtttFF8+eWXK+aHAgCwGtHpP51O1+kAACuDVv/ptLpWBwBY0XT6T6fTdTrAipAv9gDAqnfDDTdE+/btK23v0KHDKpvhyiuvjGbNmq3U0F8Z1llnnZgwYUJsvPHGK+R81157bQwaNCjatWsXp512WnTo0CHmz58fL774Ylx11VUxYcKEuPfeeyscM2XKlHj55ZcjIuL666+PU089dYnnX/R7/e2338bTTz8dw4cPj6eeeipeffXVWGONNQr7nXvuudGzZ89Kxy96n82aNYurr746DjjggLjkkkvilFNOKewzdOjQePXVV+OJJ56Ixo0b/6SfBwDA6kynLz+drtMBAFYmrb78tLpWBwBYWXT68tPpOh1gRbAAHVZDHTt2jK5duxZ7jNTmz59f+CZjsZWWlsZ22223Qs41YcKEOPbYY2O33XaL++67L0pLSwvP7bbbbnHKKafEmDFjKh133XXXRUTE3nvvHQ8//HCMHz8+tt9++ypf48e/1z179oyFCxfGn/70p7jvvvvisMMOK+y36aabVvu+9t9//zj88MPjD3/4Q+y1116x+eabx4QJE+LCCy+MIUOGVBnxAACkp9OXn07X6QAAK5NWX35aXasDAKwsOn356XSdDrAilBR7AKDm+OKLL+LUU0+NjTbaKOrVqxfrrbdenHjiifH1119X2K+8vDwuv/zy2GqrraJBgwax1lprxXbbbRcPPPBARPzvFkevv/56PPXUU4Xb3bRp0yYifrgtzs033xynnHJKrLfeelFaWhrvvfdeRESMHDkyttxyy6hfv340adIkDjjggHjzzTeXOvcRRxwRTZo0iW+++abSc7vssktsscUWhV/fddddse2220ZZWVk0bNgw2rZtG7/97W8Lz1d1G6KZM2fGwIEDY4MNNojS0tJo3rx57LDDDvH4448vda5zzz03crlcXHPNNRUCfJF69erFvvvuW2Hbd999F7fddlt06dIlLrnkksLPJK1Fof3++++nPubH/va3v0WTJk2if//+8cUXX0T//v2jbdu2cd555y3X+QAA+Ol0uk7X6QAA2aTVtbpWBwDIHp2u03U6wIpR/K9UAavcwoULY8GCBRW25XK5qFOnzhKP+eabb6J79+7x4YcfxplnnhmdO3eO119/Pc4+++x49dVX4/HHH49cLhcREQMGDIhbbrkljjjiiDjnnHOiXr16MXny5Jg2bVpERNx7773xi1/8IsrKyuLKK6+MiKgUoWeccUZ069YtrrrqqigpKYkWLVrE8OHD48wzz4xDDjkkhg8fHrNmzYphw4ZFt27dYtKkSbHppptWOfsJJ5wQI0eOjNtuuy2OPPLIwvY33ngjxo4dG3//+98j4n/fyvz1r38dv/71r2PYsGFRv379eP/99+PJJ59c6s+zb9++MXny5PjLX/4Sm222WcyZMycmT54cs2bNWuIxCxcujCeffDK6dOkSG2ywwVLP/2OjR4+O2bNnx29/+9vYdNNNY8cdd4w777wzLr300mjUqFG1xy/6x0zz5s0rbC8vL6/0mYiISt+8XXvttePaa6+NvffeO7beeuuYOnVqPPPMM9GwYcPU7wEAgKrp9P/R6T/Q6QAA2aDV/0er/0CrAwAUn07/H53+A50OsIolwGrjhhtuSCKiykedOnUq7Nu6deukf//+hV8PHz48KSkpSSZNmlRhv7vvvjuJiOSRRx5JkiRJnn766SQikt///vdLnWWLLbZIunfvXmn72LFjk4hIdt555wrbZ8+enTRo0CDZa6+9Kmz/4IMPktLS0uTQQw8tbBs6dGiy+B9v3bt3T7baaqsK24499thkzTXXTL788sskSZLkoosuSiIimTNnzhLnnjp1ahIRyQ033FDY1qhRo+TEE09c6vtd3PTp05OISA4++OBlOm6XXXZJ6tevn8yePTtJkh9+T6+//voK+y3aPnHixGT+/PnJl19+mTz00ENJ8+bNk8aNGyfTp09PkuSHn/eSHv/973+rnKN3795JRCRDhgxZpvkBAKhMp+t0nQ4AkE1aXatrdQCA7NHpOl2nA2SDK6DDauimm26KzTffvMK2Rd/gXJKHHnooOnbsGFtttVWFbwvuvvvukcvlYty4cbHnnnvGo48+GhERgwcP/kkzHnTQQRV+PWHChPj2229jwIABFbZvsMEGscsuu8QTTzyx1POdcMIJceCBB8Zzzz0XO+ywQ3zxxRdx8803x29+85vCtyd//vOfR0TEr371qzjiiCNihx12iPXWW6/aWbfZZpsYNWpUNG3aNHbdddfo0qVL1K1bdxnebTpTp06NsWPHxiGHHBJrrbVWRET88pe/jOOPPz5GjhxZ4XZJiyy67dAinTp1ihEjRkTLli0rbD///PNjl112qXT84vtFRPzrX/+KsWPHRklJSTz11FPx/fffR7169X7COwMAIEKn63SdDgCQVVpdq2t1AIDs0ek6XacDFFdJsQcAVr3NN988unbtWuHRpUuXpR4zY8aMeOWVV6Ju3boVHo0bN44kSeKzzz6LiIiZM2dGnTp1olWrVj9pxnXWWafCrxfd0mfx7RER66677lJv+RMRsd9++0WbNm0KtxwaNWpUfP311xX+sbDzzjvHfffdFwsWLIh+/frF+uuvHx07dozbb799qee+8847o3///nHddddFt27dokmTJtGvX7+YPn36Eo9p1qxZNGzYMKZOnbrUc//YyJEjI0mS+MUvfhFz5syJOXPmxPz582PfffeN5557Lt56661Kx9x0000xadKkePnll+Pjjz+OV155JXbYYYdK+7Vt27bSZ6Jr166V/jExf/786N+/f6y77roxevToeO211+JPf/pT6vcAAMCS6XSdvjidDgCQDVpdqy9OqwMAFJ9O1+mL0+kAq5YroAOpNGvWLBo0aBAjR45c4vMREc2bN4+FCxfG9OnTqwzmtBb/VmrTpk0jIuKTTz6ptO/HH39ceP0lKSkpicGDB8eZZ54ZF198cVx55ZXRq1evaNeuXYX99ttvv9hvv/1i3rx5MXHixBg+fHgceuih0aZNm+jWrVuV527WrFlceumlcemll8YHH3wQDzzwQPy///f/4tNPP40xY8ZUeUydOnWiV69e8eijj8aHH34Y66+//lLnLy8vj1GjRkVExIEHHljlPiNHjowLLrigwrZF/+BaUc4555x45ZVX4vHHH49ddtkljjnmmDjvvPPigAMOiK233nqFvQ4AAOnodJ0eodMBALJIq2v1CK0OAJA1Ol2nR+h0gBXFFdCBVPr06RP//ve/o2nTplV+W7BNmzYREbHnnntGRMSIESOWer7S0tL49ttvU79+t27dokGDBnHLLbdU2P7hhx/Gk08+Gb169ar2HEceeWTUq1cvDjvssHj77bdjyJAhS52ve/fucf7550dExMsvv5xqzg033DCGDBkSu+22W0yePHmp+55xxhmRJEkcddRR8f3331d6fv78+fHggw9GRMQ//vGP+PDDD2Pw4MExduzYSo8tttgibrrppgq3iFrRXnzxxTjvvPNi0KBBhVsWXXDBBbH++uvHgAEDqnwPAACsXDpdp+t0AIBs0upaXasDAGSPTtfpOh1gxXEFdFgNvfbaa1XG2sYbbxzNmzev8pgTTzwx7rnnnth5553jpJNOis6dO0d5eXl88MEH8c9//jNOOeWU2HbbbWOnnXaKvn37xp///OeYMWNG9OnTJ0pLS+Pll1+Ohg0bxnHHHRcREZ06dYo77rgj7rzzzmjbtm3Ur18/OnXqtMSZ11prrTjrrLPizDPPjH79+sUhhxwSs2bNij/+8Y9Rv379GDp0aLXve6211op+/frFiBEjonXr1rHPPvtUeP7ss8+ODz/8MHr16hXrr79+zJkzJy677LKoW7dudO/evcpzzp07N3r27BmHHnpotG/fPho3bhyTJk2KMWPGLPHbmot069YtRowYEYMGDYouXbrEscceG1tssUXMnz8/Xn755bjmmmuiY8eOsc8++8T1118f+Xw+zjzzzFh33XUrnevoo4+O448/Ph5++OHYb7/9qv1ZLO7dd9+NiRMnVtq+/vrrx/rrrx/z5s2L/v37R+vWrQv/MImIaNSoUYwcOTJ69eoVf/rTn9ySCADgJ9DpOn1xOh0AIBu0ulZfnFYHACg+na7TF6fTAVaxBFht3HDDDUlELPFx7bXXFvZt3bp10r9//wrHf/XVV8kf/vCHpF27dkm9evWSsrKypFOnTslJJ52UTJ8+vbDfwoULk0suuSTp2LFjYb9u3bolDz74YGGfadOmJb17904aN26cRETSunXrJEmSZOzYsUlEJHfddVeV7+G6665LOnfuXDjvfvvtl7z++usV9hk6dGiypD/exo0bl0REct5551V67qGHHkr23HPPZL311kvq1auXtGjRItlrr72SZ555prDP1KlTk4hIbrjhhiRJkuS7775LjjnmmKRz587JmmuumTRo0CBp165dMnTo0OTrr7+ucobFTZkyJenfv3+y4YYbJvXq1UvWWGON5Gc/+1ly9tlnJ59++mkyc+bMpF69esn++++/xHPMnj07adCgQbLPPvskSfLD7/WkSZOW+tqLft5Levz+979PkiRJTjvttKSkpKTCz+LHBg0alOTz+eSll15K9Z4BAPiBTtfpi9PpAADZoNW1+uK0OgBA8el0nb44nQ5QHLkkSZJlX7YOUDOdcsopMWLEiPjvf/8bTZs2LfY4AABA6HQAAMgqrQ4AANmj0wHIgnyxBwBYFSZOnBjvvPNOXHnllXH00UcLcAAAyACdDgAA2aTVAQAge3Q6AFniCujAaiGXy0XDhg1jr732ihtuuCEaNWpU7JEAAGC1p9MBACCbtDoAAGSPTgcgSyxABwAAAAAAAAAAAAAglZJiDwAAAAAAAAAAAAAAQM1gATqshkaNGhW5XC5efPHFZT72m2++iWHDhsW4ceNW/GAr2G233RaXXnpprX/NyZMnx6677hqNGjWKtdZaKw488MD4z3/+k/r4xx9/PLp16xYNGzaMZs2axYABA+LTTz+tct/XXnstfvnLX0bz5s2jtLQ02rRpE4MGDVpRbwUAYLWm02vXa66qTn/vvfeib9++seGGG0aDBg1i4403jpNPPjlmzZq1It8OAAA/ot1r12v+lHZ/6KGHol+/ftGpU6eoW7du5HK5lTwtAAARmry2veaqaPKXXnopBg8eHJ06dYrGjRtHy5YtY9dd/z97dx5nVV0/fvx9YWAQZBUURBb3FRB3IEM0JVFQ076Vhqi4Y5q7lEouuOI3ja+maaL+MjXTXDMpF1yCcM8lRXDBVJAAUTG2mfP7w0djA3g5d4Q5Z+48n4/HPL7Ouefe8x6uj74vxs/9nG/Fo48+ujp/FIBGxQJ0oCSff/55nHfeeUI8J9d8/fXXY7fddoslS5bE7373u7jxxhtj2rRpseuuu8acOXNW+fxJkybF3nvvHeutt17ce++9cdVVV8Vf/vKX2GOPPWLx4sW1zn3sscdip512ik8++SSuvfbamDhxYlxwwQXRokWLNfXjAQCQkk7P1zXrq9PnzJkTu+yySzz99NNxwQUXxB//+McYNWpUXH/99fGtb30rqqur1+SPCQBAHWj3fF3z67b7H/7wh5gyZUpstdVW0adPn3qYGACAr0uT5+ua9dXkt912W0ydOjWOOOKIuPfee+OGG26IysrK2GOPPeKWW25ZnT8SQKNRkfUAABERS5cujUKhEBUV+fqfpX//+9+x1lprZT3GVzr33HOjsrIyHnjggWjTpk1ERGy//fax6aabxrhx4+LSSy8t+vzTTz89Nttss/j9739f82e/4YYbxoABA+LGG2+M4447LiK++AvYIYccErvvvnvcf//9tT4xOnz48DX00wEAkDWdXjf11en33ntvzJ07N+64447YY489IiJi0KBBsXjx4vjJT34SL730UvTt23cN/qQAAOSFdq+br9vu119/fTRp8sV+XyeccEI899xza3xmAADySZPXTX01+RlnnBHjxo2rdWzIkCGx3Xbbxfnnnx+HHnroavhpABoXO6ADERFx2GGHxdprrx3Tp0+PIUOGxNprrx3dunWLU089tWaHvXfeeSc6deoUERHnnXdeFAqFKBQKcdhhh9W8zptvvhkHH3xwrLvuulFZWRlbbrllXH311bWu9fjjj0ehUIj/9//+X5x66qnRtWvXqKysjOnTp0dE1Ozs16ZNm2jZsmUMGDAgHnnkkVqvMWfOnDj66KOjW7duUVlZGZ06dYoBAwbEX/7yl4iI2G233eLBBx+Md999t2bOVd36smfPnrHvvvvG3XffHX379o0WLVrEeeedFxERV199dXzzm9+MddddN1q1ahW9evWKyy67LJYuXVrz/FVdc8mSJXHhhRfGFltsUTPz4YcfnuoTmyuzbNmyeOCBB+LAAw+sifCIiB49esSgQYPiD3/4Q9Hnv//++/HMM8/E8OHDa/0FqH///rHZZpvVev6dd94ZH374YZx++uluIQoAUI90uk7/j5V1erNmzSIiom3btrVeo127dhER7lYEAFCPtHvja/eIqFnoAgBA9jS5Ji9m3XXXXeFY06ZNY/vtt4/33nsv/dAA1MjXR66ATC1dujSGDRsWI0eOjFNPPTWeeOKJuOCCC6Jt27Zx7rnnRpcuXeJPf/pTfPvb346RI0fGkUceGRFRE+evvfZa9O/fP7p37x5XXHFFdO7cOR5++OE48cQT41//+leMGTOm1vVGjx4d/fr1i2uvvTaaNGkS6667bvzmN7+JQw89NPbbb7+4+eabo1mzZnHdddfF4MGD4+GHH67Z1W/48OHx/PPPx9ixY2OzzTaLjz/+OJ5//vmYO3duRERcc801cfTRR8eMGTNSBel/PP/88/GPf/wjzj777Nhwww2jVatWERExY8aMOPjgg2PDDTeM5s2bx0svvRRjx46N119/PW688cZVXrO6ujr222+/ePLJJ+OMM86I/v37x7vvvhtjxoyJ3XbbLZ599tmaT5zedNNNcfjhh8eECRNq/SVneTNmzIh///vf0bt37xUe6927d/z5z3+ORYsWfeWik1deeaXm3JU9/+mnn675/oknnoiIiKqqqvjGN74RU6dOjVatWsW3v/3tuOKKK2L99df/yjkBAPh6dLpO/+/n/3en77///tG9e/c49dRT45prrokePXrE888/H5dcckkMHTo0ttxyyyJ/qgAArG7avXG1OwAA+aPJNXkpli1bFk8++WRsvfXWa+T1AcpeAjQ6EyZMSCIieeaZZ2qOjRgxIomI5He/+12tc4cMGZJsvvnmNd/PmTMniYhkzJgxK7zu4MGDkw022CBZsGBBreMnnHBC0qJFi2TevHlJkiTJY489lkRE8s1vfrPWeQsXLkw6dOiQDB06tNbxqqqqpE+fPslOO+1Uc2zttddOfvzjHxf9OffZZ5+kR48eRc/5bz169EiaNm2avPHGG0XPq6qqSpYuXZrccsstSdOmTWt+rmLXvO2225KISO66665ax5955pkkIpJrrrmm5tjNN9+cNG3aNLn55puLzvH0008nEZHcdtttKzx20UUXJRGRfPDBB1/5/FtvvTWJiGTy5MkrPHb00UcnzZs3r/l+8ODBSUQk7dq1S84444zk0UcfTa699tpknXXWSTbZZJNk4cKFRWcFAGDVdPrK6fQvLd/pSZIkH3zwQdKvX78kImq+vvvd7yaLFi0qOicAAHWn3VeusbX78kaNGpX4T68AAPVDk6+cJi+tyX/6058mEZHcc889qZ8DwJfcFw6oUSgUYujQobWO9e7dO959991VPnfRokXxyCOPxAEHHBAtW7aMZcuW1XwNGTIkFi1aFFOmTKn1nAMPPLDW93/9619j3rx5MWLEiFrPr66ujm9/+9vxzDPPxMKFCyMiYqeddoqbbropLrzwwpgyZUqtWwJ9Hb17947NNttsheMvvPBCDBs2LNZZZ51o2rRpNGvWLA499NCoqqqKadOmrfJ1H3jggWjXrl0MHTq01s+27bbbRufOnePxxx+vOffQQw+NZcuWxaGHHppq5mK3WFrV7ZeKnfPfx6urqyMi4nvf+15ceumlMWjQoDjmmGPi17/+dUyfPj1++9vfppoVAIDS6XSd/lXH58+fH/vtt1988sknceutt8YTTzwR11xzTTz11FMxbNiwWLZsWapZAQBYPbR742x3AADyQ5Nr8rRuuOGGGDt2bJx66qmx3377rZFrAJS7iqwHAPKjZcuWK9y2prKyMhYtWrTK586dOzeWLVsW48ePj/Hjx6/0nH/961+1vu/SpUut72fPnh0REQcddNBXXmfevHnRqlWruOOOO+LCCy+MG264Ic4555xYe+2144ADDojLLrssOnfuvMp5v8ryM0VEzJw5M3bdddfYfPPN46qrroqePXtGixYtYurUqTFq1Kj497//vcrXnT17dnz88cfRvHnzlT6+/J9NGuuss05ERM3tl/7bvHnzolAoRLt27er8/A4dOqxw7uDBg2udN3jw4CgUCvH888+XPD8AAOnodJ3+38//706/9NJL48UXX4x333235s9o1113jS222CJ23333uPXWW2PEiBEl/wwAANSNdm9c7Q4AQP5ock2exoQJE+KYY46Jo48+Oi6//PLV/voAjYUF6MBq0b59+2jatGkMHz48Ro0atdJzNtxww1rfL/8pxY4dO0ZExPjx42OXXXZZ6Wust956NedeeeWVceWVV8bMmTPjvvvui7POOis++uij+NOf/lTnn2Nln5y85557YuHChXH33XdHjx49ao6/+OKLqV+3Y8eOsc4663zlbK1bty551o033jjWWmutePnll1d47OWXX45NNtlkhb9Y/bdtttmm5twhQ4as8Pz/PB7xxSdkb7/99q98rSZN3FADACCPdHpxDb3TX3zxxejatesK/0Fhxx13jIiIV155peT5AQDIhnYvLo/tDgBAedHkxZVLk0+YMCGOPPLIGDFiRFx77bXuegTwNViADpSksrIyImKFTz+2bNkyBg0aFC+88EL07t37Kz/xWMyAAQOiXbt28dprr8UJJ5yQ+nndu3ePE044IR555JF4+umna82a5lOaq/Kf2PzPzx4RkSRJXH/99Suc+1XX3HfffeP222+Pqqqq2Hnnnb/2TBERFRUVMXTo0Lj77rvjsssuq4n5mTNnxmOPPRYnn3xy0ed37do1dtppp/jNb34Tp512WjRt2jQiIqZMmRJvvPFG/PjHP64594ADDoif/vSn8dBDD8UBBxxQc/yhhx6KJEm+8i9OAADUD53+hcbW6euvv3488sgj8f7770fXrl1rjk+ePDkiIjbYYIPV8jMBALD6aPcvlEO7AwDQMGnyLzTGJr/pppviyCOPjB/+8Idxww03WHwO8DVZgA6UpHXr1tGjR4+49957Y4899ogOHTpEx44do2fPnnHVVVfFN77xjdh1113juOOOi549e8ann34a06dPj/vvvz8effTRoq+99tprx/jx42PEiBExb968OOigg2LdddeNOXPmxEsvvRRz5syJX/7yl7FgwYIYNGhQHHzwwbHFFltE69at45lnnok//elP8Z3vfKfm9Xr16hV33313/PKXv4ztt98+mjRpEjvssEPJP/Oee+4ZzZs3jx/84AdxxhlnxKJFi+KXv/xlzJ8/f4Vzv+qa3//+9+PWW2+NIUOGxEknnRQ77bRTNGvWLP75z3/GY489Fvvtt1/Nwu5bbrkljjjiiLjxxhvj0EMPLTrbeeedFzvuuGPsu+++cdZZZ8WiRYvi3HPPjY4dO8app55a69yKiooYOHBgPPLIIzXHLr300thzzz3ju9/9bhx//PHx0UcfxVlnnRXbbLNNHH744TXnbbHFFjFq1Ki45ppronXr1rH33nvHtGnT4uyzz46+ffvG//zP/5T85woAwOqj0xtnp48aNSpuvfXW2HPPPeOss86Kbt26xSuvvBIXXnhhrLfeenHIIYeU/OcKAMCapd3Lq93ffffdeOaZZyIiYsaMGRER8fvf/z4iInr27FmnPy8AANYsTd44m/zOO++MkSNHxrbbbhvHHHNMTJ06tdZr9+3bt9YCfQBSSIBGZ8KECUlEJM8880zNsREjRiStWrVa4dwxY8Yky/9PxV/+8pekb9++SWVlZRIRyYgRI2oee/vtt5Mjjjgi6dq1a9KsWbOkU6dOSf/+/ZMLL7yw5pzHHnssiYjkzjvvXOl8kyZNSvbZZ5+kQ4cOSbNmzZKuXbsm++yzT835ixYtSo499tikd+/eSZs2bZK11lor2XzzzZMxY8YkCxcurHmdefPmJQcddFDSrl27pFAorPBzLK9Hjx7JPvvss9LH7r///qRPnz5JixYtkq5duyann3568tBDDyURkTz22GOprrl06dJk3LhxNa+z9tprJ1tssUVyzDHHJG+++WbNef95fyZMmFB03v949tlnkz322CNp2bJl0qZNm2T//fdPpk+fvsJ5EZEMHDhwheMTJ05Mdtlll6RFixZJhw4dkkMPPTSZPXv2CuctW7YsueSSS5JNNtkkadasWdKlS5fkuOOOS+bPn59qTgAAitPpK6fTi3f6888/nxxwwAHJBhtskFRWViYbbbRRcuSRRyYzZ85MNScAAKXT7ivXGNv9P9da2dd/v68AAKxemnzlNPlXN/mIESO+8ryISN5+++1UswLwpUKSJMlqXM8OAAAAAAAAAAAAAECZapL1AAAAAAAAAAAAAAAANAwWoAMAAAAAAAAAAAAAkIoF6AAAAAAAAAAAAAAApGIBOgAAAAAAAAAAAAAAqViADgAAAAAAAAAAAABAKhagAwAAAAAAAAAAAACQigXoAAAAAAAAAAAAAACkUpH1AHm0d5dRWY8AJVk2+6OsR4CSVO+2XdYjQEkeeXR0ptevnrVZptcvRZPO07IegTLX56SfZz0CpNZifpL1CFCSOX2zngBK89bJp2R6fZ0OX+p135isR4CSfDqvZdYjQGqDtn496xGgJBN2nJDp9RtSp0doddasc14+IOsRgBw4r9OrWY8A5EAeurMhtXoe/rwaAjugAwAAAAAAAAAAAACQigXoAAAAAAAAAAAAAACkYgE6AAAAAAAAAAAAAACpVGQ9AAAAxVVHddYjpObTjQAANBY6HQAA8qchdXqEVgcAoPFoSK2u09Px5wQAAAAAAAAAAAAAQCoWoAMAAAAAAAAAAAAAkEpF1gMAAFBcVdJwbkMkLgEAaCx0OgAA5E9D6vQIrQ4AQOPRkFpdp6djB3QAAAAAAAAAAAAAAFKxAB0AAAAAAAAAAAAAgFTsFA8AkHPVkWQ9AgAAsBydDgAA+aPTAQAgn7R6+bEDOgAAAAAAAAAAAAAAqViADgAAAAAAAAAAAABAKhagAwAAAAAAAAAAAACQSkXWAwAAUFx1VGc9AgAAsBydDgAA+aPTAQAgn7R6+bEDOgAAAAAAAAAAAAAAqViADgAAAAAAAAAAAABAKhVZDwAAQHFVSZL1CAAAwHJ0OgAA5I9OBwCAfNLq5ccO6AAAAAAAAAAAAAAApGIBOgAAAAAAAAAAAAAAqVRkPQAAAMVVh9sQAQBA3uh0AADIH50OAAD5pNXLjx3QAQAAAAAAAAAAAABIxQJ0AAAAAAAAAAAAAABSsQAdAAAAAAAAAAAAAIBUKrIeAACA4qoiyXoEAABgOTodAADyR6cDAEA+afXyYwd0AAAAAAAAAAAAAABSsQAdAAAAAAAAAAAAAIBUKrIeAACA4qrdhggAAHJHpwMAQP7odAAAyCetXn7sgA4AAAAAAAAAAAAAQCoWoAMAAAAAAAAAAAAAkEpF1gMAAFBcVeI2RAAAkDc6HQAA8kenAwBAPmn18mMHdAAAcm/YsGHRvXv3aNGiRXTp0iWGDx8eH3zwQa1zZs6cGUOHDo1WrVpFx44d48QTT4wlS5ZkNDEAAJQ/nQ4AAPmk1QEAIH/KrdMtQAcAIPcGDRoUv/vd7+KNN96Iu+66K2bMmBEHHXRQzeNVVVWxzz77xMKFC+Opp56K22+/Pe6666449dRTM5waAADKm04HAIB80uoAAJA/5dbphSSxr/3y9u4yKusRoCTLZn+U9QhQkurdtst6BCjJI4+OzvT6s95fP9Prl6Jz1w9WfdJqcN9998X+++8fixcvjmbNmsVDDz0U++67b7z33nux/vpf/Hndfvvtcdhhh8VHH30Ubdq0qZe5WPP6nPTzrEeA1FrM99dtGpY5fbOeAErz1smnZHp9nb4ind549bpvTNYjQEk+ndcy6xEgtUFbv571CFCSCTtOyPT6DanTI7Q6a9Y5Lx+Q9QhADpzX6dWsRwByoEnnaVmP0KBaXaenU5H1AAAAFFed9QAlWLx4cSxevLjWscrKyqisrFxt15g3b17ceuut0b9//2jWrFlEREyePDm22WabmgCPiBg8eHAsXrw4nnvuuRg0aNBquz4AAETo9OXpdAAA8qAhdXqEVgcAoPFoSK2u09NpkvUAAACUj4svvjjatm1b6+viiy9eLa995plnRqtWrWKdddaJmTNnxr333lvz2KxZs2K99dardX779u2jefPmMWvWrNVyfQAAaKh0OgAA5JNWBwCA/NHp6ViADgDAajN69OhYsGBBra/Ro0ev9Nyf/exnUSgUin49++yzNeeffvrp8cILL8TEiROjadOmceihh0aSJDWPFwqFFa6RJMlKjwMAQGOi0wEAIJ+0OgAA5I9OT6ci6wEAACiuKpJVn5QTpdxy6IQTTojvf//7Rc/p2bNnzT937NgxOnbsGJtttllsueWW0a1bt5gyZUr069cvOnfuHH/7299qPXf+/PmxdOnSFT4dCgAAq4NO/4JOBwAgTxpSp0dodQAAGo+G1Oo6PR0L0AEAyMR/orou/vPpz8WLF0dERL9+/WLs2LHx4YcfRpcuXSIiYuLEiVFZWRnbb7/96hkYAAAaAZ0OAAD5pNUBACB/GnOnW4AOAECuTZ06NaZOnRrf+MY3on379vHWW2/FueeeGxtvvHH069cvIiL22muv2GqrrWL48OFx+eWXx7x58+K0006Lo446Ktq0aZPxTwAAAOVHpwMAQD5pdQAAyJ9y7PQmWQ8AAADFrLXWWnH33XfHHnvsEZtvvnkcccQRsc0228SkSZNqbnnUtGnTePDBB6NFixYxYMCA+J//+Z/Yf//9Y9y4cRlPDwAA5UmnAwBAPml1AADIn3LsdDugAwDkXFWS9QTZ6tWrVzz66KOrPK979+7xwAMP1MNEAACg03U6AAB51Ng7PUKrAwCQT4291cux0+2ADgAAAAAAAAAAAABAKhagAwAAAAAAAAAAAACQSkXWAwAAUFx11gMAAAAr0OkAAJA/Oh0AAPJJq5cfO6ADAAAAAAAAAAAAAJCKBegAAAAAAAAAAAAAAKRSkfUAAAAUVxWFrEcAAACWo9MBACB/dDoAAOSTVi8/dkAHAAAAAAAAAAAAACAVC9ABAAAAAAAAAAAAAEjFAnQAAAAAAAAAAAAAAFKpyHoAAACKq06yngAAAFieTgcAgPzR6QAAkE9avfzYAR0AAAAAAAAAAAAAgFQsQAcAAAAAAAAAAAAAIJWKrAcAAKC4qihkPQIAALAcnQ4AAPmj0wEAIJ+0evmxAzoAAAAAAAAAAAAAAKlYgA4AAAAAAAAAAAAAQCoVWQ8AAEBxbkMEAAD5o9MBACB/dDoAAOSTVi8/dkAHAAAAAAAAAAAAACAVC9ABAAAAAAAAAAAAAEjFAnQAAAAAAAAAAAAAAFKpyHoAAACKq04KWY8AAAAsR6cDAED+6HQAAMgnrV5+7IAOAAAAAAAAAAAAAEAqFqADAAAAAAAAAAAAAJBKRdYDAABQXFW4DREAAOSNTgcAgPzR6QAAkE9avfzYAR0AAAAAAAAAAAAAgFQsQAcAAAAAAAAAAAAAIJWKrAcAAKC4Kp8ZBACA3NHpAACQPzodAADySauXH+8oAAAAAAAAAAAAAACpWIAOAAAAAAAAAAAAAEAqFqADAAAAAAAAAAAAAJBKRdYDAABQXHVSyHoEAABgOTodAADyR6cDAEA+afXyYwd0AAAAAAAAAAAAAABSsQAdAAAAAAAAAAAAAIBUKrIeAACA4qrCbYgAACBvdDoAAOSPTgcAgHzS6uXHDugAAAAAAAAAAAAAAKRiAToAAAAAAAAAAAAAAKlYgA4AAAAAAAAAAAAAQCoVWQ8AAEBxVYnPDAIAQN7odAAAyB+dDgAA+aTVy493FAAAAAAAAAAAAACAVCxABwAAAAAAAAAAAAAglYqsBwAAoLhqnxkEAIDc0ekAAJA/Oh0AAPJJq5cf7ygAAAAAAAAAAAAAAKlYgA4AAAAAAAAAAAAAQCoVWQ8AAEBxVVHIegQAAGA5Oh0AAPJHpwMAQD5p9fJjB3QAAAAAAAAAAAAAAFKxAB0AAAAAAAAAAAAAgFQsQAcAAAAAAAAAAAAAIJWKrAcAAKC4qsRnBgEAIG90OgAA5I9OBwCAfNLq5cc7CgAAAAAAAAAAAABAKhagAwAAAAAAAAAAAACQSkXWAwAAUFx1FLIeAQAAWI5OBwCA/NHpAACQT1q9/NgBHQAAAAAAAAAAAACAVCxABwAAAAAAAAAAAAAglYqsBwAAoLgqnxkEAIDc0ekAAJA/Oh0AAPJJq5cf7ygAAAAAAAAAAAAAAKlYgA4AAAAAAAAAAAAAQCoWoAMAAAAAAAAAAAAAkEpF1gMAAFBcVeIzgwAAkDc6HQAA8kenAwBAPmn18uMdBQAAAAAAAAAAAAAgFQvQAQAAAAAAAAAAAABIpSLrAQAAKK7aZwYBACB3dDoAAOSPTgcAgHzS6uXHOwoAAAAAAAAAAAAAQCoWoAMAAAAAAAAAAAAAkEpF1gMAAFBcVVLIegQAAGA5Oh0AAPJHpwMAQD5p9fJjB3QAAAAAAAAAAAAAAFKxAB0AAAAAAAAAAAAAgFQsQAcAAAAAAAAAAAAAIJWKrAcAAKC4Kp8ZBACA3NHpAACQPzodAADySauXH+8oAAAAAAAAAAAAAACpWIAOAAAAAAAAAAAAAEAqFVkPAABAcdWJzwwCAEDe6HQAAMgfnQ4AAPmk1cuPdxQAAAAAAAAAAAAAgFQsQAcAAAAAAAAAAAAAIBUL0AEAAAAAAAAAAAAASKUi6wEAACiuymcGAQAgd3Q6AADkj04HAIB80urlxzsKAAAAAAAAAAAAAEAqFqADAAAAAAAAAAAAAJBKRdYDAABQXFVSyHoEAABgOTodAADyR6cDAEA+afXyYwd0AAAAAAAAAAAAAABSsQAdAAAAAAAAAAAAAIBUKrIeAACA4qp9ZhAAAHJHpwMAQP7odAAAyCetXn68owAAAAAAAAAAAAAApGIBOgAAAAAAAAAAAAAAqViADgAAAAAAAAAAAABAKhVZDwAAQHFVic8MAgBA3uh0AADIH50OAAD5pNXLj3cUAAAAAAAAAAAAAIBULEAHAAAAAAAAAAAAACCViqwHAACguOooZD0CAACwHJ0OAAD5o9MBACCftHr5sQM6AAAAAAAAAAAAAACpWIAOAAAAAAAAAAAAAEAqFVkPAABAcVWJzwwCAEDe6HQAAMgfnQ4AAPmk1cuPdxQAAAAAAAAAAAAAgFQsQAcAAAAAAAAAAAAAIBUL0AEAAAAAAAAAAAAASKUi6wEAACiuymcGAQAgd3Q6AADkj04HAIB80urlxzsKAAAAAAAAAAAAAEAqFqADAAAAAAAAAAAAAJBKRdYDAABQXHVSyHoEAABgOTodAADyR6cDAEA+afXyYwd0AAAAAAAAAAAAAABSsQAdAAAAAAAAAAAAAIBUKrIeAACA4qp8ZhAAAHJHpwMAQP7odAAAyCetXn68owAAAAAAAAAAAAAApGIBOgAAAAAAAAAAAAAAqViADgAAAAAAAAAAAABAKhVZDwAAQHHVic8MAgBA3uh0AADIH50OAAD5pNXLj3cUAAAAAAAAAAAAAIBULEAHAAAAAAAAAAAAACCViqwHAACguKooZD0CAACwHJ0OAAD5o9MBACCftHr5sQM6AAAAAAAAAAAAAACpWIAOAAAAAAAAAAAAAEAqFVkPAABAcdWJzwwCAEDe6HQAAMgfnQ4AAPmk1cuPdxQAAAAAAAAAAAAAgFQsQAcAAAAAAAAAAAAAIBUL0AEAAAAAAAAAAAAASKUi6wEAACiuKgpZjwAAACxHpwMAQP7odAAAyCetXn7sgA4AAAAAAAAAAAAAQCoWoAMAAAAAAAAAAAAAkEpF1gMAAFBcdeIzgwAAkDc6HQAA8kenAwBAPmn18uMdBQAAAAAAAAAAAAAgFQvQAQAAAAAAAAAAAABIxQJ0AAAAAAAAAAAAAABSqch6AAAAiqtKfGYQAADyRqcDAED+6HQAAMgnrV5+vKMAAAAAAAAAAAAAAKRiAToAAAAAAAAAAAAAAKlUZD0AAADFVUch6xEAAIDl6HQAAMgfnQ4AAPmk1cuPHdABAAAAAAAAAAAAAEjFAnQAAAAAAAAAAAAAAFKpyHoAAACKq0p8ZhAAAPJGpwMAQP7odAAAyCetXn68owAAAAAAAAAAAAAApGIBOgAAAAAAAAAAAAAAqViADgAAAAAAAAAAAABAKhVZDwAAQHHVSSHrEQAAgOXodAAAyB+dDgAA+aTVy48d0AEAAAAAAAAAAAAASMUCdAAAAAAAAAAAAAAAUqnIegAAAIqr8plBAADIHZ0OAAD5o9MBACCftHr58Y4CAAAAAAAAAAAAAJCKBegAAAAAAAAAAAAAAKRSkfUAAAAUV50Ush4BAABYjk4HAID80ekAAJBPWr382AEdAIAGY/HixbHttttGoVCIF198sdZjM2fOjKFDh0arVq2iY8eOceKJJ8aSJUuyGRQAABoRnQ4AAPmk1QEAIH/KpdPtgA4AQINxxhlnxPrrrx8vvfRSreNVVVWxzz77RKdOneKpp56KuXPnxogRIyJJkhg/fnxG0wIAQOOg0wEAIJ+0OgAA5E+5dLod0AEAaBAeeuihmDhxYowbN26FxyZOnBivvfZa/OY3v4m+ffvGt771rbjiiivi+uuvj08++SSDaQEAoHHQ6QAAkE9aHQAA8qecOt0O6AAAOVftM4Mxe/bsOOqoo+Kee+6Jli1brvD45MmTY5ttton111+/5tjgwYNj8eLF8dxzz8WgQYPqc1wAABoBna7TAQDIH53+Ba0OAEDeaPXy63QL0AEAWG0WL14cixcvrnWssrIyKisr6/yaSZLEYYcdFscee2zssMMO8c4776xwzqxZs2K99dardax9+/bRvHnzmDVrVp2vDQAA5UCnAwBAPml1AADIH52ejo8UAACw2lx88cXRtm3bWl8XX3zxSs/92c9+FoVCoejXs88+G+PHj49PPvkkRo8eXfTahUJhhWNJkqz0OAAANCY6HQAA8kmrAwBA/uj0dOyADgCQc1VJ/iLyq4wePTpOOeWUWse+6hOgJ5xwQnz/+98v+no9e/aMCy+8MKZMmbLC6+ywww5xyCGHxM033xydO3eOv/3tb7Uenz9/fixdunSFT4cCAMDqoNN1OgAA+dOQOj1CqwMA0Hg0pFbX6elYgA4AwGpTyi2HOnbsGB07dlzleb/4xS/iwgsvrPn+gw8+iMGDB8cdd9wRO++8c0RE9OvXL8aOHRsffvhhdOnSJSIiJk6cGJWVlbH99tvX4ScBAIDyodMBACCftDoAAOSPTk/HAnQAAHKte/futb5fe+21IyJi4403jg022CAiIvbaa6/YaqutYvjw4XH55ZfHvHnz4rTTToujjjoq2rRpU+8zAwBAudPpAACQT1odAADypxw73QJ0AICcq25AtyHKStOmTePBBx+M448/PgYMGBBrrbVWHHzwwTFu3LisRwMAoEzp9FXT6QAA1Dedno5WBwCgvmn1VWtonW4BOgAADUrPnj0jSZIVjnfv3j0eeOCBDCYCAAB0OgAA5JNWBwCA/CmHTm+S9QAAAAAAAAAAAAAAADQMFqADAAAAAAAAAAAAAJBKRdYDAABQXHXiM4MAAJA3Oh0AAPJHpwMAQD5p9fLjHQUAAAAAAAAAAAAAIBUL0AEAAAAAAAAAAAAASKUi6wEAACiuKgpZjwAAACxHpwMAQP7odAAAyCetXn7sgA4AAAAAAAAAAAAAQCoWoAMAAAAAAAAAAAAAkIoF6AAAAAAAAAAAAAAApFKR9QAAABRXnRSyHgEAAFiOTgcAgPzR6QAAkE9avfzYAR0AAAAAAAAAAAAAgFQsQAcAAAAAAAAAAAAAIJWKrAcAAKC46sRnBgEAIG90OgAA5I9OBwCAfNLq5cc7CgAAAAAAAAAAAABAKhagAwAAAAAAAAAAAACQSkXWAwAAUFx1FLIeAQAAWI5OBwCA/NHpAACQT1q9/NgBHQAAAAAAAAAAAACAVCxABwAAAAAAAAAAAAAgFQvQAQAAAAAAAAAAAABIpSLrAQAAKK4qKWQ9AgAAsBydDgAA+aPTAQAgn7R6+bEDOgAAAAAAAAAAAAAAqViADgAAAAAAAAAAAABAKhVZDwAAQHHVic8MAgBA3uh0AADIH50OAAD5pNXLj3cUAAAAAAAAAAAAAIBULEAHAAAAAAAAAAAAACCViqwHAACguOqkkPUIAADAcnQ6AADkj04HAIB80urlxw7oAAAAAAAAAAAAAACkYgE6AAAAAAAAAAAAAACpWIAOAAAAAAAAAAAAAEAqFVkPAABAcdVRyHoEAABgOTodAADyR6cDAEA+afXyYwd0AAAAAAAAAAAAAABSsQAdAAAAAAAAAAAAAIBUKrIeAACA4qoTtyECAIC80ekAAJA/Oh0AAPJJq5cfO6ADAAAAAAAAAAAAAJCKBegAAAAAAAAAAAAAAKRSkfUAAAAUV534zCAAAOSNTgcAgPzR6QAAkE9avfx4RwEAAAAAAAAAAAAASMUCdAAAAAAAAAAAAAAAUrEAHQAAAAAAAAAAAACAVCqyHgAAgOKqk0LWIwAAAMvR6QAAkD86HQAA8kmrlx87oAMAAAAAAAAAAAAAkIoF6AAAAAAAAAAAAAAApFKR9QAAABRXHW5DBAAAeaPTAQAgf3Q6AADkk1YvP3ZABwAAAAAAAAAAAAAgFQvQAQAAAAAAAAAAAABIxQJ0AAAAAAAAAAAAAABSqch6AAAAiqtOClmPAAAALEenAwBA/uh0AADIJ61efuyADgAAAAAAAAAAAABAKhagAwAAAAAAAAAAAACQSkXWAwAAUJzbEAEAQP7odAAAyB+dDgAA+aTVy48d0AEAAAAAAAAAAAAASMUCdAAAAAAAAAAAAAAAUqnIegAAAIpzGyIAAMgfnQ4AAPmj0wEAIJ+0evmxAzoAAAAAAAAAAAAAAKlYgA4AAAAAAAAAAAAAQCoWoAMAAAAAAAAAAAAAkEpF1gMAAFBcdVLIegQAAGA5Oh0AAPJHpwMAQD5p9fJjB3QAAAAAAAAAAAAAAFKxAB0AAAAAAAAAAAAAgFQqsh4AAIDiqsNtiAAAIG90OgAA5I9OBwCAfNLq5ccO6AAAAAAAAAAAAAAApGIBOgAAAAAAAAAAAAAAqVRkPQAAAMVVJ25DBAAAeaPTAQAgf3Q6AADkk1YvP3ZABwAAAAAAAAAAAAAgFQvQAQAAAAAAAAAAAABIxQJ0AAAAAAAAAAAAAABSqch6AAAAiqtOClmPAAAALEenAwBA/uh0AADIJ61efuyADgAAAAAAAAAAAABAKhagAwAAAAAAAAAAAACQSkXWAwAAUJzbEAEAQP7odAAAyB+dDgAA+aTVy48d0AEAAAAAAAAAAAAASMUCdAAAAAAAAAAAAAAAUqnIegAAAIpzGyIAAMgfnQ4AAPmj0wEAIJ+0evmxAzoAAAAAAAAAAAAAAKlYgA4AAAAAAAAAAAAAQCoWoAMAAAAAAAAAAAAAkEpF1gMAAFBckhSyHgEAAFiOTgcAgPzR6QAAkE9avfzYAR0AAAAAAAAAAAAAgFQsQAcAAAAAAAAAAAAAIJWKrAcAAKC46nAbIgAAyBudDgAA+aPTAQAgn7R6+bEDOgAAAAAAAAAAAAAAqViADgAAAAAAAAAAAABAKhVZDwAAQHHVidsQAQBA3uh0AADIH50OAAD5pNXLjx3QAQAAAAAAAAAAAABIxQJ0AAAAAAAAAAAAAABSsQAdAAAAAAAAAAAAAIBUKrIeAACA4pKkkPUIAADAcnQ6AADkj04HAIB80urlxw7oAAAAAAAAAAAAAACkYgE6AAAAAAAAAAAAAACpVGQ9AAAAxVW7DREAAOSOTgcAgPzR6QAAkE9avfzYAR0AAAAAAAAAAAAAgFQsQAcAAAAAAAAAAAAAIBUL0AEAAAAAAAAAAAAASKUi6wEAACguSQpZjwAAACxHpwMAQP7odAAAyCetXn7sgA4AAAAAAAAAAAAAQCoWoAMAAAAAAAAAAAAAkEpF1gMAAFBctdsQAQBA7uh0AADIH50OAAD5pNXLjx3QAQAAAAAAAAAAAABIxQJ0AAAAAAAAAAAAAABSqch6AAAAikuSrCcAAACWp9MBACB/dDoAAOSTVi8/dkAHAAAAAAAAAAAAACAVC9ABAAAAAAAAAAAAAEjFAnQAAAAAAAAAAAAAAFKpyHoAAACKq45C1iMAAADL0ekAAJA/Oh0AAPJJq5cfO6ADAAAAAAAAAAAAAJCKBegAAAAAAAAAAAAAAKRSkfUAAAAUlyRuQwQAAHmj0wEAIH90OgAA5JNWLz92QAcAAAAAAAAAAAAAIBUL0AEAAAAAAAAAAAAASKUi6wEAACiu2m2IAAAgd3Q6AADkj04HAIB80urlxw7oAAAAAAAAAAAAAACkYgE6AAAAAAAAAAAAAACpWIAOAAAAAAAAAAAAAEAqFVkPAABAcUmS9QQAAMDydDoAAOSPTgcAgHzS6uXHDugAAAAAAAAAAAAAAKRiAToAAAAAAAAAAAAAAKlUZD0AAADFJUkh6xEAAIDl6HQAAMgfnQ4AAPmk1cuPHdABAAAAAAAAAAAAAEjFAnQAAAAAAAAAAAAAAFKpyHoAAACKcxsiAADIH50OAAD5o9MBACCftHr5sQM6AAAAAAAAAAAAAACpWIAOAAAAAAAAAAAAAEAqFqADAAAAAAAAAAAAAJBKRdYDAABQXHVSyHoEAABgOTodAADyR6cDAEA+afXyYwd0AAAAAAAAAAAAAABSsQAdAAAAAAAAAAAAAIBUKrIeAACA4pIk6wkAAIDl6XQAAMgfnQ4AAPmk1cuPHdABAAAAAAAAAAAAAEjFAnQAAAAAAAAAAAAAAFKxAB0AAAAAAAAAAAAAgFQqsh4AAIDikqSQ9QgAAMBydDoAAOSPTgcAgHzS6uXHDugAAAAAAAAAAAAAAKRiAToAAAAAAAAAAAAAAKlUZD0AAADFuQ0RAADkj04HAID80ekAAJBPWr382AEdAAAAAAAAAAAAAIBULEAHAAAAAAAAAAAAACCViqwHAACguCTrAQAAgBXodAAAyB+dDgAA+aTVy48d0AEAAAAAAAAAAAAASMUCdAAAcq9nz55RKBRqfZ111lm1zpk5c2YMHTo0WrVqFR07dowTTzwxlixZktHEAABQ/nQ6AADkk1YHAID8KbdOr8h6AAAASOP888+Po446qub7tddeu+afq6qqYp999olOnTrFU089FXPnzo0RI0ZEkiQxfvz4LMYFAIBGQacDAEA+aXUAAMifcup0C9ABAHIuSQpZj5ALrVu3js6dO6/0sYkTJ8Zrr70W7733Xqy//voREXHFFVfEYYcdFmPHjo02bdrU56gAADQCOv0LOh0AgDzR6V/S6gAA5IlW/0I5dXqTrAcAAIA0Lr300lhnnXVi2223jbFjx9a6xdDkyZNjm222qQnwiIjBgwfH4sWL47nnnstiXAAAaBR0OgAA5JNWBwCA/CmnTrcDOgAAq83ixYtj8eLFtY5VVlZGZWXl13rdk046Kbbbbrto3759TJ06NUaPHh1vv/123HDDDRERMWvWrFhvvfVqPad9+/bRvHnzmDVr1te6NgAANHQ6HQAA8kmrAwBA/uj0dOyADgCQd0nD+br44oujbdu2tb4uvvjilf5YP/vZz6JQKBT9evbZZyMi4uSTT46BAwdG796948gjj4xrr702fv3rX8fcuXNrXq9QWPF2TUmSrPQ4AAB8bTnob50OAADLyUF/a3UAAFiJHPS3Tl+97IAOAMBqM3r06DjllFNqHfuqT4CecMIJ8f3vf7/o6/Xs2XOlx3fZZZeIiJg+fXqss8460blz5/jb3/5W65z58+fH0qVLV/h0KAAANDY6HQAA8kmrAwBA/uj0dCxABwBgtSnllkMdO3aMjh071uk6L7zwQkREdOnSJSIi+vXrF2PHjo0PP/yw5tjEiROjsrIytt9++zpdAwAAyoVOBwCAfNLqAACQPzo9HQvQAQByLknydxud+jR58uSYMmVKDBo0KNq2bRvPPPNMnHzyyTFs2LDo3r17RETstddesdVWW8Xw4cPj8ssvj3nz5sVpp50WRx11VLRp0ybjnwAAgHKk03U6AAD509g7PUKrAwCQT4291cux0y1ABwAg1yorK+OOO+6I8847LxYvXhw9evSIo446Ks4444yac5o2bRoPPvhgHH/88TFgwIBYa6214uCDD45x48ZlODkAAJQvnQ4AAPmk1QEAIH/KsdMtQAcAINe22267mDJlyirP6969ezzwwAP1MBEAAKDTAQAgn7Q6AADkTzl2epOsBwAAAAAAAAAAAAAAoGGwAzoAQM4lSdYTAAAAy9PpAACQPzodAADySauXHzugAwAAAAAAAAAAAACQigXoAAAAAAAAAAAAAACkUpH1AAAAFJckhaxHAAAAlqPTAQAgf3Q6AADkk1YvP3ZABwAAAAAAAAAAAAAgFQvQAQAAAAAAAAAAAABIpSLrAQAAWAW3IQIAgPzR6QAAkD86HQAA8kmrlx07oAMAAAAAAAAAAAAAkIoF6AAAAAAAAAAAAAAApGIBOgAAAAAAAAAAAAAAqVRkPQAAAMUlSdYTAAAAy9PpAACQPzodAADySauXHzugAwAAAAAAAAAAAACQigXoAAAAAAAAAAAAAACkUpH1AAAArILbEAEAQP7odAAAyB+dDgAA+aTVy44d0AEAAAAAAAAAAAAASMUCdAAAAAAAAAAAAAAAUrEAHQAAAAAAAAAAAACAVCqyuvB7770X77zzTnz++efRqVOn2HrrraOysjKrcQAAcitJClmPQCOi0wEA0tHp1CedDgCQjk6nPul0AID0tHr5qdcF6O+++25ce+21cdttt8V7770XSZLUPNa8efPYdddd4+ijj44DDzwwmjSxOTsAANQHnQ4AAPmj0wEAIH90OgAAfKHeavekk06KXr16xZtvvhnnn39+vPrqq7FgwYJYsmRJzJo1K/74xz/GN77xjTjnnHOid+/e8cwzz9TXaAAA0GjpdAAAyB+dDgAA+aPTAQDgS/W2A3rz5s1jxowZ0alTpxUeW3fddWP33XeP3XffPcaMGRN//OMf4913340dd9yxvsYDAMivZNWnQF3pdACAOtLprEE6HQCgjnQ6a5BOBwD4GrR62am3BeiXX3556nOHDBmyBicBAAD+Q6cDAED+6HQAAMgfnQ4AAF9qkvUAAAAAAAAAAAAAAAA0DJksQJ89e3YMHz481l9//aioqIimTZvW+gIA4EtJUmgwXzRsOh0AIL2s21unNx46HQAgvazbW6s3HjodAKA0Wbe3Tl/9KrK46GGHHRYzZ86Mc845J7p06RKFgjcMAACyptMBACB/dDoAAOSPTgcAoLHLZAH6U089FU8++WRsu+22WVweAABYCZ0OAAD5o9MBACB/dDoAAI1dkywu2q1bt0iSJItLAwAAX0GnAwBA/uh0AADIH50OAEBjl8kC9CuvvDLOOuuseOedd7K4PABAw5I0oC8aNJ0OAFCCrNtbpzcaOh0AoARZt7dWbzR0OgBAibJub52+2lXU14Xat28fhUKh5vuFCxfGxhtvHC1btoxmzZrVOnfevHn1NRYAADRqOh0AAPJHpwMAQP7odAAA+FK9LUC/8sor6+tSAABASjodAADyR6cDAED+6HQAAPhSvS1AHzFiRH1dCgCgzBRWfQrUkU4HAKgrnc6ao9MBAOpKp7Pm6HQAgK9Dq5ebeluAHhHxjW98I3bfffcYNGhQ9OvXL1q0aFGflwcAAFZCpwMAQP7odAAAyB+dDgAAX2hSnxfbfPPN47e//W3sscce0b59+9htt93i/PPPjyeffDKWLl1an6MAAEAqixYtinHjxmU9xhql0wEAaGh0uk4HACCfyr3VdToAAA3Rmuj0el2A/utf/zqmT58eM2fOjOuuuy423njjuPnmm2PgwIHRrl272HPPPePiiy+uz5EAAPIvaUBfDdS//vWvePDBB2PixIlRVVUVERFLly6Nq666Knr27BmXXHJJxhOuWTodAKAOsm5vna7TdToAwIqybm+tXvatrtMBAOoo6/bW6au90wtJkpT8x/Xxxx/H1KlT46OPPorq6upajx166KElD/Hee+/FddddF+PHj4/PPvus5gfPyt5dRmV6fSjVstkfZT0ClKR6t+2yHgFK8sijozO9fs+bL830+qV4Z8SZWY9Qsr/+9a+xzz77xIIFC6JQKMQOO+wQEyZMiP333z+qq6vjxz/+cRxxxBHRsmXLrEddpXLv9IiIPif9POsRILUW8xvwbydolOb0zXoCKM1bJ5+S6fV1+pql079aHju9131jsh4BSvLpvPz/bwf8x6CtX896BCjJhB0nZHr9htTpEVo9a6uz1fPY6ee8fEDWIwA5cF6nV7MeAciBJp2nZT1Cg2p1nZ5ORalPuP/+++OQQw6JhQsXRuvWraNQKNQ8VigUUkf4jBkz4vHHH6/5+vjjj6Nfv34xcODAUkcCAIA6O+ecc2Lw4MFx9tlnx4033hhXXnll7LvvvvGzn/0shg8fXqt380ynAwBQTnR6bTodAIC80Opf0ukAAORFFp1e8g7om222WQwZMiQuuuiiklfCT5gwIR577LF4/PHHY8GCBTFgwIAYOHBgDBw4MHbYYYeoqCh5PfwaYQd0Gho7oNPQ2AGdhsYO6Ok1xE+BduzYMSZNmhRbb711fP7559G6deu4/fbb47vf/W7Wo5WkMXR6hB3QaVjsgE5DYwd0Gho7oKen07PTWDrdDug0NHZApyGxAzoNjR3QS6PVs1PXVm9InW4HdCDCDujAF+yAXhqdnk7J5fv+++/HiSeeWKdt2EeOHBndu3ePn/70p3HEEUdEs2bNSn4NAIBGx/rFNWrevHnRqVOniIho2bJltGzZMvr2bXgr8HQ6AEA90+lrlE7X6QAAdaLT17jG3uo6HQCgjrT6GpVFpzcp9QmDBw+OZ599tk4Xu/rqq2OXXXaJn/3sZ7HuuuvG0KFD44orrohnn302StyIHQAAVotCoRCffvppfPLJJ7FgwYIoFArx+eefxyeffFLrK+90OgAA5USn63QAAPKpsbe6TgcAII+y6PSSd0DfZ5994vTTT4/XXnstevXqtcKnOYcNG/aVzz3uuOPiuOOOi4iI1157LSZNmhSPP/54XH755bFo0aIYMGBADBo0KE477bRSxwIAgDpJkiQ222yzWt//96dAkySJQqEQVVVVWYyXmk4HAKCc6HSdDgBAPjX2VtfpAADkURadXkhK/AhmkyZfvWl6XYf74IMP4pprronx48fHZ599lvlfRPbuMirT60Opls3+KOsRoCTVu22X9QhQkkceHZ3p9XtOuCzT65fincPPyHqEkk2aNCnVeQMHDlzDk3w9jaHTIyL6nPTzrEeA1FrMt+MRDcuchne3bBq5t04+JdPr6/Q1S6d/tTx2eq/7xmQ9ApTk03ktsx4BUhu09etZjwAlmbDjhEyv35A6PUKrZ2l1t3oeO/2clw/IegQgB87r9GrWIwA50KTztKxHaFCtrtPTKXkH9Orq6q990dmzZ8fjjz9e8zVt2rRo3rx57LzzzjFo0KCv/foAAJBW3n8JnpZOBwCgnOj0L+l0AADyRKt/QacDAJAnWXR6yQvQ/9uiRYuiRYsWqc8fNWpUPPbYY/HGG29ERUVF7LjjjnHQQQfFoEGDon///iW9FgAArA4zZ85c6fG2bdtG27Zt63ma1UOnAwDQ0Ol0nQ4AQD419lbX6QAA5FEWnV7yAvSqqqq46KKL4tprr43Zs2fHtGnTYqONNopzzjknevbsGSNHjvzK5z7//POx//77x6BBg2LAgAHRsqVbHAIArEqSZD1BeevZs2cUCoWVPtapU6c444wz4pRTTqnnqUqn0wEA6pdOX7N0uk4HAKgLnb7mNfZW1+kAAHWj1desLDq95AXoY8eOjZtvvjkuu+yyOOqoo2qO9+rVK37+858X/YX55MmT6zYlAACsIS+88MJKj3/88ccxderUGDt2bLRs2TKOPfbYep6sNDodAIByotN1OgAA+dTYW12nAwCQR1l0eskL0G+55Zb41a9+FXvssUetQXr37h2vv/560ec+8cQTqa7xzW9+s9SxAACgTvr06fOVjw0cODC6dOkS48aNy/0vy3U6AADlRKfrdAAA8qmxt7pOBwAgj7Lo9JIXoL///vuxySabrHC8uro6li5dWvS5u+22W80W78lX7KdfKBSiqqqq1LEAAGCN6N+/f7z11ltZj7FKOh0AgMZEp39BpwMAkDfl3uo6HQCAhmhNdHrJC9C33nrrePLJJ6NHjx61jt95553Rt2/fos9t3759tG7dOg477LAYPnx4dOzYsdTLAwA0Piv//SX1ZP78+dGuXbusx1glnQ4AUM90eqZ0OgAAK6XTM1fura7TAQDqSKtnak10eskL0MeMGRPDhw+P999/P6qrq+Puu++ON954I2655ZZ44IEHij73ww8/jD/84Q9x4403xmWXXRZDhgyJkSNHxre//e2aT4gCAEBeLFmyJC677LLYZZddsh5llXQ6AACNhU7X6QAA5FNjaHWdDgBAQ7OmOr3kBehDhw6NO+64Iy666KIoFApx7rnnxnbbbRf3339/7LnnnkWf27x58/je974X3/ve9+K9996LCRMmxAknnBCLFy+OESNGxHnnnRcVFSWPBAAAdfad73xnpccXLFgQr7zySlRUVMSTTz5Zz1OVTqcDAFBOdLpOBwAgnxp7q+t0AADyKItOLyRJkunG9m+//XaMHDkyJk2aFHPmzIkOHTpkOU5EROzdZVTWI0BJls3+KOsRoCTVu22X9QhQkkceHZ3p9XvccHmm1y/Fu0eenvUIJTv88MNXerxNmzaxxRZbxCGHHBJt2rSp56myl8dOj4joc9LPsx4BUmsx333kaFjmfPXdpSGX3jr5lEyvr9PXLJ2+cnnt9F73jcl6BCjJp/NaZj0CpDZo69ezHgFKMmHHCZlevyF1eoRWLxd57fRzXj4g6xGAHDiv06tZjwDkQJPO07IeoUG1uk5PJ5OPXS5evDjuuuuuuPHGG2Py5Mmxzz77xIMPPpibCAcAoPGYMCHb/yCSJzodAIC80Olf0ukAAOSJVv+CTgcAIE+y6PSSF6C3b98+CoXCCscLhUK0aNEiNtlkkzjssMNWupp+6tSpMWHChLj99ttjww03jMMOOyx+97vfCXAAADLz0UcfxbrrrvuVjy9btiyef/752GmnnepxqtLpdAAAyolO1+kAAORTY291nQ4AQB5l0eklL0A/99xzY+zYsbH33nvHTjvtFEmSxDPPPBN/+tOfYtSoUfH222/HcccdF8uWLYujjjqq1nN32WWX6N69e5x44omx/fbbR0TEU089tcI1hg0bVscfBwAAStOlS5f48MMPa0J8yy23jIcffji6d+8eERFz586Nfv36RVVVVZZjrpJOBwCgnOh0nQ4AQD419lbX6QAA5FEWnV7yAvSnnnoqLrzwwjj22GNrHb/uuuti4sSJcdddd0Xv3r3jF7/4xQq/MI+ImDlzZlxwwQVf+fqFQiH3fxEBAKhPhSTrCcpbktT+A/7nP/8Zy5YtK3pOHul0AID6pdPXLJ3+BZ0OAFAanb7maXWdDgBQF1p9zcqi05uU+oSHH344vvWtb61wfI899oiHH344IiKGDBkSb7311grnVFdXr/JLhAMAkDcruw1n3uh0AAAaG52u0wEAyKdybnWdDgBAQ7W6O73kBegdOnSI+++/f4Xj999/f3To0CEiIhYuXBitW7de4Zyf/OQnMXXq1DqMCQAAFKPTAQAgf3Q6AADkU11bXacDAMAXKkp9wjnnnBPHHXdcPPbYY7HTTjtFoVCIqVOnxh//+Me49tprIyLiz3/+cwwcOHCF537wwQex7777RtOmTWPo0KGx3377xbe+9a2orKz8+j8JAEC5chuiNapQKMSnn34aLVq0iCRJolAoxGeffRaffPJJRETN/807nQ4AUM90+hql03U6AECd6PQ1rrG3uk4HAKgjrb5GZdHphSRJSn5bn3766fi///u/eOONNyJJkthiiy3iRz/6UfTv33+Vz02SJJ566qm4//7747777ov3338/9txzzxg2bFjsu+++0bFjxzr9IKvT3l1GZT0ClGTZ7I+yHgFKUr3bdlmPACV55NHRmV6/568uz/T6pXjn6NOzHqFkTZo0qXWbof+E+PLfN4RbZpZ7p0dE9Dnp51mPAKm1mO+3KDQsc/pmPQGU5q2TT8n0+jp9zdLpX2gond7rvjFZjwAl+XRey6xHgNQGbf161iNASSbsOCHT6zekTo/Q6lmra6s3lE4/5+UDsh4ByIHzOr2a9QhADjTpPC3rERpUq+v0dEreAT0iYsCAATFgwIA6XbBQKMSuu+4au+66a1x22WXxj3/8I+6///64/vrr45hjjomdd945hg0bFj/4wQ+ia9eudboGAACk9dhjj2U9wmqj0wEAKBc6/Qs6HQCAvNHqOh0AgPzJotPrtAC9qqoq7rnnnvjHP/4RhUIhttpqqxg2bFg0bdq05NfacsstY8stt4wzzjgj5syZE/fdd1/cd999ERFx2mmn1WU8AIDykhRWfQ51trJb3TdUOh0AoB7p9DVKp6+cTgcAWAWdvsZp9RXpdACAFLT6GpVFp5e8AH369OkxZMiQeP/992PzzTePJEli2rRp0a1bt3jwwQdj4403Lvr89957L7p167bC8YULF8a///3vGDlyZIwcObLUsQAA4Gurrq6O6dOnx0cffRTV1dW1HvvmN7+Z0VTp6HQAAMqVTtfpAADkU2NtdZ0OAECe1Venl7wA/cQTT4yNN944pkyZEh06dIiIiLlz58YPf/jDOPHEE+PBBx/8yufecMMN8fjjj8dvfvObFR6rqqqKYcOGxUknnRSHH354qWMBAMDXMmXKlDj44IPj3XffjSRJaj1WKBSiqqoqo8nS0ekAAJQjna7TAQDIp8ba6jodAIA8q89Ob1LqEyZNmhSXXXZZTYBHRKyzzjpxySWXxKRJk4o+d/z48XH00UdHRMQ+++wT8+fPr3msTZs2MW7cuLjyyitLHQkAAL62Y489NnbYYYd45ZVXYt68eTF//vyar3nz5mU93irpdAAAypFO1+kAAORTY211nQ4AQJ7VZ6eXvAN6ZWVlfPrppysc/+yzz6J58+ZFnztjxozo0aNHREQ8+eSTMX/+/DjssMPipptuivbt28dGG20Ub775ZqkjAQCUt2TVp/D1vfnmm/H73/8+Ntlkk6xHqROdDgBQz3R6vdDpOh0AoCQ6vd401lbX6QAAdaTV60V9dnrJO6Dvu+++cfTRR8ff/va3SJIkkiSJKVOmxLHHHhvDhg0r+tzu3bvH3//+95rvkySJRx99tOYToX/+859jww03LHUkAAD42nbeeeeYPn161mPUmU4HAKAc6XSdDgBAPjXWVtfpAADkWX12esk7oP/iF7+IESNGRL9+/aJZs2YREbFs2bIYNmxYXHXVVUWfO3z48Dj11FOjZ8+eERFRKBQiIuLjjz+Oq6++OkaPHu1WRAAAZOJHP/pRnHrqqTFr1qzo1atXTev+R+/evTOaLB2dDgBAOdLpOh0AgHxqrK2u0wEAyLP67PSSFqAnSRILFiyI2267LT744IP4xz/+EUmSxFZbbZVqu/ZTTz01XnzxxejTp08UCoXYd9994/PPP48dd9wxWrduHePGjYsjjjiizj8MAEBZchuienHggQdGRNTq0UKhEEmSRKFQiKqqqqxGWyWdDgCQAZ1eL3S6TgcAKIlOrzeNtdV1OgBAHWn1elGfnV7yAvRNN900Xn311dh0001T/ZL8vzVv3jzuuOOOOPvss2OnnXaKPffcM2bMmBETJkyIgw46KJo3b17S6wEAwOry9ttvZz1Cnel0AADKlU7X6QAA5FNjbXWdDgBAntVnp5e0AL1Jkyax6aabxty5c2PTTTet80V79eoVRx99dJxxxhkREbHbbruJcAAAMtWjR4+sR6gznQ4AQLnS6TodAIB8auytrtMBAMij+uz0khagR0Rcdtllcfrpp8cvf/nL2Gabbep84auuuqrW/13ef7Z7BwBo9NyGqN688cYbMX78+PjHP/4RhUIhtthii/jRj34Um2++edajrZJOBwCoZzq93uh0nQ4AkJpOr1eNvdV1OgBACbR6vamvTm9S6hN++MMfxtSpU6NPnz6x1lprRYcOHWp9fZUtt9wyfvvb38aSJUuKvv6bb74Zxx13XFx66aWljgYAAHX2+9//PrbZZpt47rnnok+fPtG7d+94/vnnY5tttok777wz6/FWSacDAFCOdLpOBwAgnxpjq+t0AADyrj47veQd0K+88so6Xejqq6+OM888M0aNGhV77bVX7LDDDrH++utHixYtYv78+fHaa6/FU089Fa+99lqccMIJcfzxx9fpOgAAUBdnnHFGjB49Os4///xax8eMGRNnnnlmfPe7381osnR0OgAA5Uin63QAAPKpMba6TgcAIO/qs9MLSZLU68b2f/3rX+OOO+6IJ554It55553497//HR07doy+ffvG4MGD44c//GG0a9euPkdawd5dRmV6fSjVstkfZT0ClKR6t+2yHgFK8sijozO9fs9rxmV6/VK8c/xpWY9QZy1btoy///3vsckmm9Q6/uabb0afPn3i888/z2iy+tEQOj0ios9JP896BEitxXz3kaNhmdM36wmgNG+dfEqm19fp9UOnN4xO73XfmKxHgJJ8Oq9l1iNAaoO2fj3rEaAkE3ackOn1G1KnR2j1hqqhdPo5Lx+Q9QhADpzX6dWsRwByoEnnaVmP0KBaXaenk2oH9E8++ST1C7Zp06bo4/3794/+/funfj0AgEYvKWQ9QaOw2267xZNPPrlChD/11FOx6667ZjRVcTodACBDOr1e6HSdDgBQEp1ebxpzq+t0AIA60Or1oj47PdUC9Hbt2kWhkO7Nr6qq+loDAQBAfbnvvvtq/nnYsGFx5plnxnPPPRe77LJLRERMmTIl7rzzzjjvvPOyGrEonQ4AQDnS6QAAkE9aHQAA8ierTi8kSbLKe4JPmjSp5p/feeedOOuss+Kwww6Lfv36RUTE5MmT4+abb46LL744RowYsVoHzMLeXUZlPQKUZNnsj7IeAUpSvdt2WY8AJXnk0dGZXr/n1Vdkev1SvDPq1KxHKEmTJk1SnVcoFHL5y+bG1ukREX1O+nnWI0BqLeav8q/bkCtz+mY9AZTmrZNPyfT6On3N0ekNT6/7xmQ9ApTk03ktsx4BUhu09etZjwAlmbDjhEyv35A6PUKr17fG1urnvHxA1iMAOXBep1ezHgHIgSadp2U9QoNqdZ2eTqod0AcOHFjzz+eff3787//+b/zgBz+oOTZs2LDo1atX/OpXvyqLCAcAyJOC9YtrTHV1ddYjfC06HQAgOzp9zdHpAADUlU5fs7Q6AAB1pdXXnKw6Pd2y9/8yefLk2GGHHVY4vsMOO8TUqVNXy1CleOaZZ+KQQw6JDTfcMNZaa61o2bJlbLjhhnHIIYfEs88+W+/zAABQ3nr16hXvvfde1mOsQKcDANCY6fR0dDoAAPVNq6ej1QEAqE+ro9NLXoDerVu3uPbaa1c4ft1110W3bt2+1jCluueee2LAgAExb968OOmkk+LGG2+MG264IU466aSYP39+DBgwIO699956nQkAgPL2zjvvxNKlS7MeYwU6HQCAxkynr5pOBwAgC1p91bQ6AAD1bXV0ekWpT/j5z38eBx54YDz88MOxyy67RETElClTYsaMGXHXXXelfp0ZM2bEhAkTYsaMGXHVVVfFuuuuG3/605+iW7dusfXWW6d6jbPPPjvOP//8OOuss1Z47Mc//nFceuml8ZOf/CT222+/1HMBAOSO2xCRgk4HAKhnOp0UdDoAQD3T6aS0Olp9dXR6hFYHABoJrV52St4BfciQITFt2rQYNmxYzJs3L+bOnRv77bdfTJs2LYYMGZLqNSZNmhS9evWKv/3tb3H33XfHZ599FhERf//732PMmDGpZ5k+fXp85zvf+crH999//5gxY0bq1wMAgIZKpwMAQP7odAAAyKev2+qrq9MjtDoAAA1TyTugR3xxK6KLLrqozhc966yz4sILL4xTTjklWrduXXN80KBBcdVVV6V+nY033jjuueeeOOOMM1b6+L333hsbbbRRnecEAICGRKcDAED+6HQAAMinr9Pqq6vTI7Q6AAANU8kL0Hv27BlHHHFEHH744dGtW7c6XfTll1+O3/72tysc79SpU8ydOzf165x//vnx/e9/PyZNmhR77bVXrLfeelEoFGLWrFnx5z//OSZOnBi33357nWYEAICGRKcDAED+6HQAAMinr9vqq6vTI7Q6AAANU8kL0E899dS46aab4vzzz49BgwbFyJEj44ADDojKysrUr9GuXbv48MMPY8MNN6x1/IUXXoiuXbumfp0DDzwwnnjiibjqqqvif//3f2PWrFkREdG5c+fo169fTJo0Kfr165f69Vh9WrSsjMN/ul/0/3bvaN2+Vcz+57y474bH48FbnoyIiLXbtYzhp+0T2w3cMjp2bR+fzPssJj/097jlsvvj808XZTw9jVGLVi3iyEsOif777Rht1mkds9/5KP4w/qF44NqJtc7bcpfN4vALfxBb7LxJVC2tihkvvhM/GXJRLFm0JKPJaaweeXT0So9fd92j8bs7/rbC8Ysv/p/YaeeN49xzfh9PP/3mmh4PyIBOJ60N1+sQPx76jdh+kw2iSaEQM2bNjdNvejBmzf80IiJuOOGg2HHT2v/B5U/PvxFn3vzHLMaF6Ll+hxj1P7vGdltsEIVCId5+f2785OoHYvbcL/6d7bpu2zjx+wOjz2brR/NmTWPy39+JK/7fYzHvk88znpzG6LK9BsdBW29d69gLH34YB95+W0REdG3TJp4ceeRKnzvqgfvjoTe1OpQbnU5dnNt7aHy35w5x6SsPxW/emlJzfIOW7eO0rQdH3w7do3mTpvH0R9Pj4lf+GHMXL8xwWhqjcd8YEgdt0qvWsRfmfBAHPPj/ar6/qN/gGNClR6zXcu1YuGxpPP/R+3HJc4/HjAXz6ntcqGXGr2fE7MdmR88f9oz1v71+REQs/WxpvHfXe/Hxyx/HknlLoqJ1RXTYvkN0P6h7VLSs0w3FgQbg67b66ur0CK3O6vHKHR/Fe09/Ep/PXRpNKgrRfqO1otcPOsU6m7WsOeezWUvipVtmx79e/zyqlibRedu1Y7uRnaNFO///DsrB0mURV90Q8cSUiH9+GLF2q4h+20ecekzEuh2/PG/O3IjLfxkx+bmIhZ9H9OwWccwPIwbvltnoQANVckH86Ec/ih/96Efx0ksvxY033hgnnnhiHH/88XHwwQfHEUccEdttt90qX+Pggw+OM888M+68884oFApRXV0dTz/9dJx22mlx6KGHljRPv379hHYOHX3+gdGn/2Zx2Qk3x+z35sb2u20Zoy7+XsydvSCmPPz3WGe9ttGhc9u44fy7Y+a0WbHuBh3ihEu/H+t0bhtjj7oh6/FphI77+Yjos9s2ccnwX8Tsd+bE9nv1iROvPjLmfjAvJt/3bER8sfj84od+Grdd8oe4+sRfx7Ily2KjPj0jqa7OeHoao4MO/EWt73faeaM47bR94skn3ljh3AMP2jGS+hoMGrBbbrklvve9763wy+UlS5bE7bffXtOp1113Xay33npZjFiUTieNDdZpGzed9D/xhymvxi8fmhyfLloSG63XIZYsXVbrvN//9eW45o9/rfl+8XKPQ33pum7b+NXZ34v7Jr0S1//hr/HZ50tiw/U7xJIlX/w72aJ5Rfzi9APjzffmxKhLfh8REccc2D/Gnbx/jDz/t5GIIDLw+NtvxxkTH675fmnVl39n/PDTT2On666tdf4PevWOo3fYISa98059jQgNik7X6Y3N7p23iF7tu8bsf39S6/haTZvFr/odGm98MiuO/OtNERFxwha7x/idDo5DnrwhEr/9oZ49/s+34vSnv/yg8pKqqlqPvzx3Vtzz1qvxwcJPom3zteLH2w6IW/b8Xux617VRLdTJyNxn58anMz6N5u2b1zq+ZP6SWPLxkuh5cM9o2bVlLP7X4pgxYUYsmb8ktjhpi4ymhfxr7K2+Ojs9Qqvz9bVevzK2O7JztFqveVQtqY5pD8yLJy6cGXuP3yRatK2IZYuqY9IF70a7Hi1i4JgeERHxyu1z4qlLZsYeF20YhSaFjH8C4OtatCjitWkRxx0ascUmEQs+jbj4/yKO/0nE73/15Xlnjo34bGHE1RdFtG8b8cBfIk45L+LO9SO22iy7+YHVoz47vUldn9inT5+46qqr4v33348xY8bEDTfcEDvuuGP06dMnbrzxxkiK/PJo7Nix0b179+jatWt89tlnsdVWW8U3v/nN6N+/f5x99tl1HYkc2XL7DeMvd06Jlye/GR/9c1489Jun463X3o9N+3SPiIh33/gwxh55Q/ztz6/Eh+/+K156elrcfMn9sfOe20STpnX+1xLqbMtdNos/3/J4/H3SazH73Tnxx+v/EjNeejc222HjmnOO+98R8Yfxf4w7Lr0n3n3tn/H+9Fnx5F1TYukSC7Kof/PnL6z1NaD/ZvHii+/Ghx9+XOu8jTZaNw46aKe4/LIHsxkUGpDDDz88FixYsMLxTz/9NA4//PCa7w8++OBo1apVfY5WEp1OMT/ad0A89do7ceV9T8br78+J9+cuiCdfezvmffbvWuctWrI05n76ec3XZ+72QkaOO2hA/PWlt+P/7ngypr07Jz6YsyCefuntmP/pF//O9tmsa3Tp1CYu+NXDMeOf/4oZ//xXXHD9w7H1xp1jh626Zzw9jdWSqqr41+ef13wtWPzlnd6qk6TWY//6/PPYa5NN4sFp0+LzpUsznBryS6fr9MZk3Rat4ye9hsRZz98Vy5Lai3m37dA91m/ZLs5+4Z5489OP4s1PP4pzXrwnerXfIHbuuOFXvCKsOUuql8Wcfy+s+VqwpPbdbW+b9lJMnf3P+Odnn8Sr82bHFS88GV3XbhMbrN02o4lp7BbPWxxv3/x2bHb8ZlFoWnuBXaturWKLk7aIDtt1iBbrtYi2W7eN7t/tHvNfmB9JlQ9MwFdp7K2u08mbHru2jfV6rx1rr9c82nZrEduOWC+Wfl4dC979otP+9frn8fmcpbHTCetHux4tol2PFrHTqPVj3vRF8dEr7qoE5aD12hE3/m/E3rtHbNg9YtutI84+MeLVNwrxwewvz3vptYhDvhPRe8uIbut/sWC99doRr7lBJ5SF+uz0Ot9DZenSpfGHP/whJkyYEH/+859jl112iZEjR8YHH3wQP/3pT+Mvf/lL/Pa3v13pc5s1axa33nprXHDBBfH8889HdXV19O3bNzbddNM6/yAr85Of/CRmzZoVN95442p9XVbt1akzYpe9esfE2ybH3FkLonf/TaPrRuvGdef8/iuf06rNWvH5Z4uiuspu0tS/V59+PfoN3SH+dOP/Z+/O47Su6/3/Py8c2YUQBFQEpFJzwy3NNDXNLczKOmZ1zLI8mZoelzTPydxSKq2srLTzPZHm1no6buWeJ9M0k9TEHQxRMAQXBGSZuX5/8AsaQOYzMMznM9fc77fb3I5zzWeu6zWdSR4Nr3l/7sis52dn7F5bZcRmG+b7//5gkuRNGwzI296xWW676ve56K6vZKM3D8uzjz2fH33p6jzyh8dKnp7ubtCgvtnlHW/O1756favHe/Vqype+9P589zs356WX/NCgK6v5O45OUa/XU6uteLrDtGnTMnBg1/nLUZ3OG6nVkndtuWl+fNv9+cHRH8wWI4bmuVmv5L9v/VPuePjpVte+d6ctMm6nt2X2nHm569EpueS3f8y8BRYj6Vy1WvLOsWNyxY1/yre/cEg2GzU0z898JZddd1/+74El37PrNq2Tej1ZuHjZgtbCRc1pbmnJ2M02zp8emVrW+HRj7xgxIvd99ujMWbAg906blm/84a7Mmj9/pdduPXRotho6NGfeflsnT0lH0OmdQ6fr9O6illrO3/6QTHjq7jw9Z+YKH+/ZY53U6/UsbFl2GMaC5sVprrdk+8Ej88cXJ3fmuJB3DB+Z+z9yXF5duCD3vvBsLnzg/zLr9XkrvbZP07r5l7dsk6lzXs70ua+u9BpYm+ot9Tx5yZPZaNxG6Tuib6HPaZ7XnHX6rLPCsjrVp9M7T3dv9c7q9ESr037Ni+p5+paXsm7fHnnT6N5JkpbFS/4F2WPdZf+97bFuLbUeycxH52XYtv1LmRVYu+bMTWq1egb803/Fd9gm+c0dyZ67JgP6L/nnRYuSnbcrbUy6Ca3eOTqz09u9gP7AAw9kwoQJufrqq7POOuvk8MMPz7e+9a1sscWy24/tt99+2WOPPdp8rjFjxmTMmDHtHaGw5557Ls8+++xae37e2CVf+nlOuPBjuWLi+Vm8qDn1lpZcdMpVeeS+p1d6/XqD+uWjJx6YG39yVydPCkt87/gJOfGHn8010y7N4kWL09JSz7eOumTpcvmGY5bcbuITZx6aH37h8jz1l2ey7yf2zNdv/XL+bZuT8txTM8ocn25uv/22ybx5C/P73z/e6vFjjnlPHnlkWu6+26+pwqpsv/32qdVqqdVq2WeffdLUtCyRm5ubM2XKlBxwwAElTliMTqct6/fvm369e+bI97w9F9/4h1x03V3Z7W2j880j35fPXPzz/Pnp55IkN/75sTw369XMmjM3bxk+OMe/b/dstvEGOfr7vyr5K6C7GTSgb/r16ZlPHLRzLvnFH3LxT3+fXbcdna8df3COGf/zTHx8Wv769PS8vmBRjvvIu/L9n9+VWpLjPrJH1unRI0MGVvdkLRrXnc9MyW+efCLPvfpqRgwcmJN2fWeu+PC/5P1XXZmFzc0rXH/o1lvnyVmz8sD06SVMC9Wm01ek0xvbkW/ZPc31llw55Y8r/fhDL03L/OZFOfFt++Y7j92WWpITt9w369R6ZINe63XusHR7v5s2OTc881iee+3VbNJ/YE7e4V25av/D8r7rLsvClmXN86+bb5/Td9or/dbtmadenpV/vfmnWdTiECI633PXP5daj1o23H/DQtcvmrMoz/762Qzfe/hangy6Jq3e2tru9ESrU9zz98/JHy+alsUL6ukzqCl7fnlUeg1Y8t/R9d/aJ029e+ShK/6ebT42NKknD13xQuotyesvu+s7NKIFC5Jv/jA56D1J/3/6K5NvnpmcdHay6/tqaVqnnt69k++cm4zcuLxZgTVXRqe3ewH97W9/e/bdd9/84Ac/yAc+8IGsu+66K1yz5ZZb5rDDDnvD5/jwhz+cnXbaKV/84hdbPX7BBRfkvvvuy89//vP2jrVSl112WZvXLFiwIAsWLGj1WEu9OT1q63TIDN3Buw95ez7/9Y8uff+Mj38vW2w/OlvssGnO+sQP8sK02dnmHW/NseM/ktkvvJK/LLcg2bd/75zzk89l6hPTc+U3buzs8emG9v7Y7vn3Sz679P3/eO952WKXt+Zt79gsZxz81bzwt5nZdo8t8/nvfSazpr+Uibc9nFqPJb8VdMMPb8lNP/5dkuTpvzyT7ffeJvsfuXd+9B8rP6EKOsI++2yVE09aFgCnf/GnefjhaUvfP+DAsbnttkeyaNGyv9zZ9Z1vyXbbj8pn/81JCNCWD3zgA0mSv/zlL9l///3Tv/+yX//u2bNnRo8enQ996EMlTVdco3V68gatvnhxejSt9o2cupX37rhFzvjIPkvfP+7SXydJ7vjr07nidxOTJI8/NzNjR2+Yf9lt26UL6L+6569LP+ep6bPyt5kv55ovfDxbjBiax6b9vfO+ALqd/XfdIl/81HuWvn/SN36dJPm/B57ONTc9kCR5curMbPOWjXLI3ttm4uPT8vKc+fmPi6/PqUfsk0P33T4t9Xpu+eNjeWzKC2muW2xh7Xr/FlvkK/ss+5498tf/kxueeGLp+0/MmpWHX3ghv//0Z/LuTTfNTU891erze63TlIM33yLfvffeTpsZuhKdvkyX6PRFi9NjXZ1e1LiNt8mXx75v6fvH3ntl/nXMLjn0zkvf8HNeWjgvJ9//s5yx7UH5+Jhd0lKv5zfP/TWTXn5e97BWvX/Mljl/1/2Xvv/JW36e659ZdlfQJ15+MQ/NmpE/fPhzefeIN+emqct66H8nP5K7nn8mQ/v2y1Fb7Zzv7fn+fPg3V2TBSn4xDzrKzD/MzNM/WnYg1ttOeVum3zQ9Y78ydqUnwC1v8bzFefTCR9N3474Z8cERa3NU6LK0+hKd1enJ6u++LF7YnKaedl8a0d/+75X8+YfPL33/Xf8xMhts2S9Dt+6XfS94cxbOWZzJt76ce745LfuM3zS9Bzal98Cm7HrSiPz5v6bnyRtnp1ZLRu4+MIPG9F66DwF0Ldfdkpz1jWXvX/q1ZKexS/550eLk5HOSlpbkyye2/rxv/7/k1TnJj75Zz6CByW13JSeelVzxnWSzN3fa+EAHK6PT2/0T4cmTJ2fUqFGrvKZfv36ZMGHCG378zjvvzJlnnrnC4wcccEAuvPDC9o60RsaPH5+zzz671WNv7rdT3rrezp06R1f2x5seymMPPLP0/VkzXs74nx2fc4/8Yf502yNJkmcefT5jtto4H/rce1otoPfp1yvnXnVs5s9dkHOP/GGaF/tBOWvfPdfen8fuXfYX/y8+Nztfv/XMnHXIBbnvxiWLLVMenpo3bzc6/3LywZl428OZPf3lJMnfJk1r9VxTH30uQzcZ0mmz0z3dffeTefTRZT9AePHFOUv/eZttRmTkyME595xft/qc7bcfnY02GpRrrzup1eNnnnVIHn742Zx8kl+a6FLqfuizNv2jS0ePHp3DDjssvXr1Knmi1dNonZ6svNWH7rxfhr+j+qfnVMHv/vp0Hv7bshN1X3ptfhY1N2fyjFmtrpvywuxsN+aNjzR4dNrfs2hxc0Zt8CYL6KxVv5/4dB55etmdhV6aMy+LFzdnynOtv2efeX52xm620dL37/3r3/KhL/woA/v3TnNLPa/NW5Abv/PZTJ/5aqfNTvd069NP5y/Tl33PznjttRWumTl3bp5/9dWMftOgFT524GZvTe91183/PDpprc7JWqTT1yqdvkxX6PQNDtsjwz66V6fP0lXdMePxPPTyc0vf32/DrbJ+r365ed9lfyPc1GOdnLLV/vnXMe/IAbdelCS5Z+bTee9t386bevZNc0tL5ix+PXfsd0qem/dyJ38FdCe3Tn0qf5m57GeTM+atpHnmz81zc1/JpgNaN8+cRQszZ9HCPDPnpUyc+Xwe/OgJ2X/kZrl2yqNrfW66r/V3WD/937zsL9ln3Tcri15dlPtPuH/ZRS3JM1c+k+m/nZ4dL9px6cPN85vz6AWPZp3e62SLf98iPZp6dObodBSdvtZp9SW6Qqe/6+jNs+cxb+v0WVj7Nnp7/6z/1mVbon3WX7L+1dS7R9bbsGeyYc8M3qxvbjzuqUy57eW87ZAlOw3Dt+ufcd97axa8uji1dWrp2W+dXPuZx9Nv6IBSvg5gzey9W7LtP/1rftgGS/7vosXJiWcm06YnE77V+vTzqc8lV/5PLdf+uJ63brrksS3ektz/UHLVr5OzTu608emOtPpaVUant3sBva0AL+K1115Lz549V3h83XXXzauvtu8viOfOnZurrroqd999d2bMmJFarZZhw4Zlt912y0c/+tH067fqW26ffvrpOemk1st5/7LZqe2aobubP3dB5s+dufT9vv17Z92eTanX662ua2mpp8c//dZk3/6985Wrj82ihYtz9icvyaIFbulD55j/2uuZ/9qyJYG+6/VZ8j273K0/m5tbln7Pznjm73nxudkZsflGra4ZsdmG+dNvJ679oenW5s9fmPnzF670YwceODaPPz49kye3Xgi8+qp7cuMNf2n12H//6Kj84Pu35Z57nlxbo0KXtvfee2fmzJkZMWLJyUb33Xdfrrrqqmy55Zb5t3/7t5Kna1ujdXqy8lbf7fQ3PhGQ1uYtWJR5C15p9dgjU1/I6KHrt3ps1NBBmf7SG///9y0bDs66Tetk5qtz18qc8A/zXl+Uea+/3OqxSVNeyKgNWy+xjBw+KDNmzcnyXnnt9STJjm/bJIMG9M3/PfD0CtdAR5q7aFHmvvLyKq95U+/e2XC99fL3uSsuah261da5bfLTmT1//lqaEBqDTu8anb7rLV9r1xzd3bzmhZk3d/bS93/xt/tz5wut7xx6yTsOz/XTHsyvp674s8eXF85Lkuw8ZNOs36tffjfjsRWugY4yd/HCzJ2z8p9N/sObevXORv0G5O/zV2yef1ar1dJzHaewsnat02ed9OnTZ+n7w949LIO2b/2/Kx/9+qPZYLcNMnSPoUsfWzxvcSZ9fVJ6NPXIFidtkR49LZ9DW7p7q3dkpydrZ/dl/JP/2u456BrW7bNO1u1TpKvqaV604kGQvQYsWRd74eG5ef2V5my003odPCHQGfr1XfL2z/6xfP6355LLLkoGDWz98deX/FVKlr/xwTo9lpyWDnR9ndnphf+X86BBg7L++uu3+VbE1ltvnZ/+9KcrPH7NNddkyy23LDz8pEmTstlmm+XUU0/NSy+9lJEjR2bEiBF56aWX8oUvfCGbb755Jk1a9SlSvXr1yoABA1q99aj54deamPfa63no7ify6TM+mG12fWuGbTI47zn0Hdnnwzvn7hsfTLLk5PPzrjkuvfv2ykUnXZm+/ftk0AYDMmiDAa2W1KEzzJszPw/+7pEc9fXDs+2eW2b46KHZ74i9su/he+auX9+39LqfXfi/+eDn35t3fegd2ejNw3PEOR/JJltsnN/89+0lTk931rdvz+yx5xa58f//d+s/e+mluXnmmRdbvSXJ3//+SmbMeGWF64HkYx/7WO64444kyYwZM/Ke97wn9913X/7jP/4j55xzTsnTvbFG7fTkDVq9qd2/Q8s/uez2+7P/9pvlkF23ziZDBuawd43NHluNyc/uWvJnyYjBA/PZ/XfJlpsMy0brD8juW47OBZ8cl0effSF/mfx8G88OHe+KG+/Pe3bZPO/fa5uMGPqmfPg922X37cfkl7f9Zek1B71rq2z95g2z8dCBOeCdb8v4zx+Uq2/6c6bOeKm8wemW+q67bk5/1x7ZfsMNs/GAAdllxIj81/s/kNnz5+fmp55qde2ogW/KziNG5KcP/7WkaaHr0OldpNPX1elr4pVF8/PUnL+3eltcb86LC17LM3OX3Q3mA5tsl20HjciIvoNy0Iht842dDs1PJv+x1TWwtvVtWjf/sdO7s8MGG2VE/wF5x/BN8t/7fDizX5+fm/625OCLTfoPzDHbvCNbDx6Wjfqtlx022Cjf2+v9eX3x4twxbXLJXwHdzbrrrZt+m/Rr9VZbp5Z137Ru+my0ZFG9eX5zJn1tUloWtOQtR70lzfObs/DlhVn48sLUW+ptvAJ0X9291Tuq05O1t/vS1NPuS3ex+PWWPHTlC5n1xLzMnbkwL02enz/94PnMm7U4m7xz2enmU25/ObOemJfXZizM3/7v5dzzjWnZ7KD1M2DjrnknA6C1xYuTf/9y8sjjyQVfSpqbk5mzlrwtXLTkmk1HJSM3rufMbyQPPbrkRPQJP03uvj/Z513lzg90jM7s9MI/Fb7ooouW/nO9Xs/nPve5nHPOORk6dOgbf9IbOOOMM/KhD30oTz/9dPbee+8kyW233Zarr746P//5zws/z7HHHps99tgjl1122Qq/Wbpw4cJ88pOfzLHHHrv0P0w6z1ePnpBP/sfBOfV7n8x6b+qbvz83O5d97brccPnvkyRv2XZktthxyX08fvTH1reBOuLtZ+Tv02av8JywNp330Yvy6fM/ltOvOCHrrd8/L/xtZiZ86epcf8nNS6/5n2/fmJ69e+bobx6R9dbvn8kP/i2n7Xdupk9+ocTJ6c7e/e4tU6vVcsftbf/lMNC2v/71r9l5552TJD/72c+yzTbb5A9/+ENuvvnmHH300fnyl79c8oQrp9Npj9sfejpf+dltOXLft+e0Q96dZ/4+Oyf/6LpM/P+Xyxc1N2fnzUbmY3tun7691s2Ml17L7ydNySW/vSctdX/hSue7889P5Ws/vjVHHLRzTvrXd2fq9Nk5/bvX5cEnlv1CxMgNB+WYf9k9A/r3zvQXX82Ea+/N1b99oMSp6a6aW+rZfMiQfHDLLTOgV6/MnDs39zz7bI6/4frMXbSo1bX/svVWmfHaa/n9354pZ1joQnS6TmeZ0f2H5IS3vScDe/bJc/Nezn898X+5fPI9ZY9FN9Ncr2eLQRvkkDdvlQE9e+fv81/LH2dMzXG/+9/MXbzkpPQFzc15+7AR+dSWO2Vgz9558fW5uW/Gs/nQjVdk1uvzSv4KYEWvTXktrz295AT/B05u/b8nd/jWDum9Qe8yxoLK6+6t3lGdnmh11lytRzLnuYW5+85pWfBqc3qut07Wf3Pv7H3u6AzcZNmfY3OeX5CHr3ohC19rTt8NeuZtHxqSzQ4q9svRQPW9MDO5/Q9LDn794Kdbf+yyi+rZeftk3abk0q8n37w0Oeb0ZN78ZOTGyfjTkz3fUcLQQIfrzE6v1eurt0Ww3nrr5cEHH8yYMWNW64VvuOGGnH/++fnLX/6SPn36ZNttt82ZZ56ZPffcs/Bz9O3bN/fff/8b/vboP/6DnDevfT/MOnDDY9t1PZRt8Qt/L3sEaJeWvXYoewRol9tuP73U1x9z0TdLff32mPzvJ7V9UUX1798/f/3rXzN69OgcfPDB2W233XLaaadl6tSp2XzzzTN//vyyRyykkTs9Scae8K12fw6UpfdLlvbpWmZuX/YE0D6TTyy3PXV659DpS1S907e59sx2fw6Uac7svm1fBBXx7q0eK3sEaJcJb59Q6ut3pU5PtHoVrEmrd0SnJ2uv1c94+IPtuh5oTGdv8EjZIwAV0GP4E2WP0KVaXacXU9p9MceNG5dx48at0XMMGjQoTz755BtG+FNPPZVBgwat0WsAANA9bLXVVrnkkksybty43HLLLTn33HOTJM8//3wGDx5c8nSdR6cDAFAlOn0JnQ4AQNVo9Y7p9ESrAwDQcTqz03t06LN1sqOOOipHHHFELrzwwjz44IOZMWNGXnjhhTz44IO58MILc+SRR+azn/1s2WMCANAFfO1rX8ull16avfbaKx/96EczduzYJMm111679PZEFKPTAQDoKDq94+h0AAA6klbvOFodAICO0pmd3mknoK+//vp54oknMmTIkAwaNCi1Wu0Nr509e3ah5zzrrLPSp0+ffPOb38ypp5669Dnr9XqGDx+eL37xizn11FM7ZH4AgNLUyx6ge9hrr73y4osv5tVXX211ksi//du/pW/fxr01t04HAFhNOr1T6HSdDgDQLjq903THVl8bnZ5odQCgm9DqnaIzO73wAvpJJ53U6v2FCxfmvPPOy8CBA1s9/s1vfnOln/+tb30r6623XpLkoosuaueYb+y0007LaaedlilTpmTGjBlJkuHDh2fTTTftsNcAAKB7WGeddbJ48eLcddddqdVq2WyzzTJ69Oiyx1olnQ4AQKPT6Rd12Fw6HQCAjtTdWn1tdXqi1QEA6Did1emFF9AnTpzY6v13vvOdmTx5cqvHVvXbnUcccUSSZPHixUmS/fffP8OHDy88aFs23XRT4Q0AwGqbO3duPv/5z+fyyy9PS0tLkiVR/olPfCLf/e53K3tii04HAKCR6XSdDgBANXXHVl/bnZ5odQAA1kxndnrhBfQ77rijY16wqSmf+9zn8uijj3bI8333u9/N/fffn3HjxuXQQw/NT37yk4wfPz4tLS055JBDcs4556SpqfCXCQBAN3XSSSflzjvvzHXXXZfddtstSXLXXXfl+OOPz8knn5wf/OAHJU+4cjodAIBGptN1OgAA1dSdW72jOz3R6gAAdIzO7PRS6nSXXXbJxIkTM2rUqDV6nnPPPTcXXHBB9ttvv5xwwgmZMmVKLrjggpx44onp0aNHvvWtb2XdddfN2Wef3UGTAwB0vlq97Am6h1/+8pf5xS9+kb322mvpY+9973vTp0+fHHrooZX9YXlH0ukAAMXp9M6h03U6AEB76PTO091bvaM6PdHqAED3oNU7R2d2eikL6Mccc0xOPvnkTJs2LTvuuGP69evX6uPbbrttoef58Y9/nB//+Mc55JBD8uCDD2bHHXfMZZddlo9//ONJki222CKnnnqqCAcAoE3z5s3LsGHDVnh86NChmTdvXgkTdT6dDgBA1eh0nQ4AQDV191bvqE5PtDoAAB2nMzu9lAX0j3zkI0mS448/fuljtVot9Xo9tVotzc3NhZ5n+vTp2WmnnZIkY8eOTY8ePbLddtst/fgOO+yQ559/vuMGBwCgYe26664588wzc/nll6d3795Jkvnz5+fss8/OrrvuWvJ0nUOnAwBQNTpdpwMAUE3dvdU7qtMTrQ4AQMfpzE4vZQF9ypQpHfI8w4cPz6RJkzJy5Mg8+eSTaW5uzqRJk7LVVlslSR555JEMHTq0Q14LAKA0bkPUKb797W/ngAMOyIgRIzJ27NjUarX85S9/Se/evXPTTTeVPV6n0OkAAO2g0zuFTtfpAADtotM7TXdv9Y7q9ESrAwDdhFbvFJ3Z6Z2+gD5nzpw88cQTWbRoUXbeeecMGTJktZ/rYx/7WD7xiU/k/e9/f2677bacdtppOeWUUzJr1qzUarWcd955+fCHP9yB0wMA0Ki23nrrPPnkk7niiivy2GOPpV6v57DDDsvHP/7x9OnTp+zx1jqdDgBAFel0nQ4AQDV151bvyE5PtDoAAB2nMzu90AL6Qw89VPgJt91221U+z4EHHpgZM2akXq9nwIAB+cUvfpH3vOc9hZ//n5199tnp06dP/vjHP+azn/1sTjvttGy77bY59dRTM2/evLzvfe/Lueeeu1rPDQBA99OnT58cddRRZY9RmE4HAKA70Ok6HQCAauqOrd7RnZ5odQAAOlZndXqtXq+3ebB9jx49UqvV8kaX/uNjtVotzc3Nb/g8733ve/PSSy/lG9/4Rnr37p2zzz47jz/+eB577LHV/wrWggM3PLbsEaBdFr/w97JHgHZp2WuHskeAdrnt9tNLff03X/jNUl+/PZ4+5aSyR1ht48ePz7Bhw3LkkUe2evxHP/pRZs6cmdNOO62kyd5Yd+v0JBl7wrfKHgEK6/2S+8jRtczcvuwJoH0mn1hue+r0zqHTu0anb3PtmWWPAO0yZ3bfskeAwt69VfX+vQ+rMuHtE0p9/a7U6YlW72wd0epdqdPPePiDZY8AVMDZGzxS9ghABfQY/kTZI3SpVtfpxRQ6AX3KlCkd8mL3339/brzxxuy0005JlnxBQ4cOzWuvvZb+/ft3yGsAAMDquPTSS3PVVVet8PhWW22Vww47rJI/LNfpAAA0Op2u0wEAqKbu2uo6HQCAKuvMTi+0gD5q1KgOebEXX3wxI0eOXPr+4MGD07dv38ycOVOIAwBQqhkzZmTDDTdc4fENNtgg06dPL2Gitul0AAAanU7X6QAAVFN3bXWdDgBAlXVmpxdaQF+ZSZMmZerUqVm4cGGrxw8++OA3/JxarZY5c+akd+/eSbL01kVz5szJq6++uvS6AQMGrO5YAACwWjbZZJP84Q9/yKabbtrq8T/84Q/ZaKONSpqq/XQ6AACNRKfrdAAAqqm7trpOBwCgyjqz09u9gD558uR88IMfzMMPP5xarZZ6vZ5kSWQnSXNz8xt+br1ez2abbbbCY9tvv/3Sf67Vaqt8DgCA7qZWL3uC7uEzn/lM/v3f/z2LFi3K3nvvnSS57bbbcuqpp+bkk08uebq26XQAgM6l0zuHTtfpAADtodM7T3dtdZ0OALB6tHrn6MxOb/cC+gknnJBNN900t956a8aMGZP77rsvs2bNysknn5wLL7xwlZ97xx13rPagAACwNp166qmZPXt2jjnmmKUnnfTu3TunnXZaTj/99JKna5tOBwCgEel0AACopu7a6jodAIAq68xOb/cC+j333JPbb789G2ywQXr06JEePXpk9913z/jx43P88cdn4sSJb/i5e+655xoNCwAAa0utVsvXvva1nHHGGXn00UfTp0+fvPWtb02vXr1aXTdt2rRstNFG6dGjR0mTrpxOBwCgEel0AACopu7a6jodAIAq68xOb/dnNjc3p3///kmSIUOG5Pnnn0+SjBo1Ko8//vhqDwIAwBuo17rOWwPo379/3v72t2frrbdeIcCTZMstt8wzzzzT+YO1QacDAHSysttbp7ei0wEASFJ+e2v1FT6u1QEASFJ+e+v0Vjqi09t9AvrWW2+dhx56KGPGjMkuu+ySr3/96+nZs2d++MMfZsyYMWs0DAAAVF29Xi97hJXS6QAAdGc6HQAAqkmrAwBA9XREp7d7Af1LX/pS5s6dmyT5yle+koMOOijvete7Mnjw4Pz0pz9d44EAAID20+kAAFA9Oh0AAKpJqwMAwJpp9wL6/vvvv/Sfx4wZk0mTJmX27NkZNGhQarXGOHoeAKBSqnk4CBWj0wEAOplOpwCdDgDQyXQ6BWl1AIBOptUbTo81+eRnn30206ZNy/rrr9+uAD/yyCMzZ86cFR6fO3dujjzyyDUZCQAAuj2dDgAA1aPTAQCgmlan1XU6AADdXbsX0BcvXpwzzjgjAwcOzOjRozNq1KgMHDgwX/rSl7Jo0aJCz3HZZZdl/vz5Kzw+f/78XH755e0dCQAAOk1VTz7R6QAAdGc6HQAAqqlRW12nAwDQlXVEpze19xOOO+64/M///E++/vWvZ9ddd02S3HPPPTnrrLPy4osv5pJLLnnDz3311VdTr9dTr9czZ86c9O7de+nHmpubc+ONN2bo0KGr8WUAAEDnqNereV8onQ4AQHem0wEAoJoardV1OgAAjaAjOr3dC+hXX311rrnmmhx44IFLH9t2220zcuTIHHbYYav8gfmb3vSm1Gq11Gq1bLbZZit8vFar5eyzz27vSAAADa1WzZ/NdluTJk3KRhttVPYYK9DpAACdS6dXi04HACDR6VXUaK2u0wEAVo9Wr5aO6PR2L6D37t07o0ePXuHx0aNHp2fPnqv83DvuuCP1ej177713fvnLX2b99ddf+rGePXtm1KhRlfwfHgAANKZDDjmk8LW/+tWvkiSbbLLJ2hpnjeh0AAAahU5fQqcDAFA1Wl2nAwBQPWV1ersX0I899tice+65mTBhQnr16pUkWbBgQc4777wcd9xxq/zcPffcM0kyZcqUjBw5MrVabTVGBgCAjjFw4MCyR+gwOh0AgEah05fQ6QAAVI1W1+kAAFRPWZ1eaAF9+e34W2+9NSNGjMjYsWOTJA8++GAWLlyYffbZp9CLjho1Kr///e9z6aWXZvLkyfn5z3+ejTfeOD/5yU+y6aabZvfdd2/nlwEA0MDchmitmTBhQtkjrBGdDgBQIp2+1uj01nQ6AEA76PS1Sqsvo9MBANpJq681ZXV6oQX05bfjP/ShD7V6v71Hsf/yl7/M4Ycfno9//ON54IEHsmDBgiTJnDlzcv755+fGG29s1/MBAEB3pNMBAKB6dDoAAFRTR7a6TgcAoLsrtIDe0dvxX/nKV3LJJZfkE5/4RK655pqlj7/zne/MOeec06GvBQAARf3iF7/Iz372s0ydOjULFy5s9bEHHnigpKnemE4HAKA70Ok6HQCAaurOra7TAQCoqs7q9B6r+4kzZ87MXXfdlT/84Q+ZOXNmuz738ccfzx577LHC4wMGDMjLL7+8uiMBADSkWr3rvHVl3/nOd/KpT30qQ4cOzcSJE7Pzzjtn8ODBmTx5cg488MCyxytMpwMAdI6y21un63SdDgCworLbW6t3n1bX6QAA7VN2e+v0ju/0di+gz507N0ceeWQ23HDD7LHHHnnXu96VjTbaKJ/+9Kczb968Qs+x4YYb5qmnnlrh8bvuuitjxoxp70gAALDGvv/97+eHP/xhLr744vTs2TOnnnpqbrnllhx//PF55ZVXyh6vTTodAIBGpNN1OgAA1dTdW12nAwBQRZ3Z6e1eQD/ppJNy55135rrrrsvLL7+cl19+Of/7v/+bO++8MyeffHKh5/jsZz+bE044Iffee29qtVqef/75XHnllTnllFNyzDHHtPuLAACANTV16tS8853vTJL06dMnc+bMSZIcfvjhufrqq8scrRCdDgBAI9LpOh0AgGrq7q2u0wEAqKLO7PSm9n7CL3/5y/ziF7/IXnvttfSx9773venTp08OPfTQ/OAHP2jzOU499dS88sorefe7353XX389e+yxR3r16pVTTjklxx13XHtHAgCANTZ8+PDMmjUro0aNyqhRo/LHP/4xY8eOzZQpU1KvV/8eSzodAIBGpNN1OgAA1dTdW12nAwBQRZ3Z6e1eQJ83b16GDRu2wuNDhw4tfMvQhQsX5rzzzst//ud/ZtKkSWlpacmWW26Z/v3758UXX8yQIUPaOxYAQOOq/s9pG8Lee++d6667LjvssEM+/elP58QTT8wvfvGL3H///TnkkEPKHq9NOh0AoJPp9E6h03U6AEC76PRO091bXacDALSTVu8Undnp7V5A33XXXXPmmWfm8ssvT+/evZMk8+fPz9lnn51dd9210HMceuih+dWvfpW+fftmp512Wvr4Cy+8kH322Sd//etf2zsWAACskR/+8IdpaWlJkhx99NFZf/31c9ddd+V973tfjj766JKna5tOBwCgEel0nQ4AQDV191bX6QAAVFFndnq7F9C//e1v54ADDsiIESMyduzY1Gq1/OUvf0nv3r1z0003FXqO6dOn59Of/nQmTJjQ6rG99947W221VXtHAgCANTZt2rRssskmS98/9NBDc+ihh6Zer+fZZ5/NyJEjS5yubTodAIBGpNN1OgAA1dTdW12nAwBQRZ3Z6T3a+wlbb711nnzyyYwfPz7bbbddtt1223z1q1/Nk08+WTiib7zxxtx333058cQTkyTPPfdc9tprr2yzzTb52c9+1t6RAAAaW70LvXVhm266aWbOnLnC47Nnz86mm25awkTto9MBADpZ2e2t03W6TgcAWFHZ7a3Vu02r63QAgHYqu711eod3ertPQE+SPn365KijjlrtFx08eHBuuumm7L777kmSG264ITvssEOuvPLK9OjR7p14AABYY/V6PbVabYXHX3vttaW336w6nQ4AQKPR6TodAIBq6u6trtMBAKiizuz0Qgvo1157beEnPPjggwtdN2LEiNxyyy3Zfffds+++++YnP/nJSr9oAABYm0466aQkSa1WyxlnnJG+ffsu/Vhzc3PuvffebLfddiVNt2o6HQCARqXTW9PpAABUhVZfRqcDAFAVZXR6oQX0D3zgA4WerFarpbm5eaUfGzRo0EpDe968ebnuuusyePDgpY/Nnj270OsBANB93HDDDTnnnHPy0EMPpV+/ftljjz3yq1/9aunHp06dmmOPPTa33357+vTpk4997GO58MIL07Nnz1U+78SJE5Ms+S3Qhx9+uNX1PXv2zNixY3PKKaesnS9qDel0AADKptNXpNMBAKgCrb6iNW11nQ4AwJpqpE4vtIDe0tKyxi900UUXrfFzAAB0R7V62ROU75e//GWOOuqonH/++dl7772XBvM/NDc3Z9y4cdlggw1y1113ZdasWTniiCNSr9fz3e9+d5XPfccddyRJPvWpT+Xb3/52BgwYsFa/lo6k0wEAyqPTdfob0ekAAOXR6Uto9ZVb01bX6QAAq0+rN16n1+r1eqf+v3Xx4sW58sors//++2f48OGd+dKFHbjhsWWPAO2y+IW/lz0CtEvLXjuUPQK0y223n17q629+7rdKff32ePyMEzv8ORcvXpzRo0fn7LPPzqc//emVXvOb3/wmBx10UJ599tlstNFGSZJrrrkmn/zkJ/P3v/+93WE9bdq01Gq1bLzxxms8f1fRFTo9Scae0HX++wC9X/JTFLqWmduXPQG0z+QTTyr19XW6Tu8MXaXTt7n2zLJHgHaZM7tv2xdBRbx7q8fKHgHaZcLbJ5T6+l2p0xOt3lV1lU4/4+EPlj0CUAFnb/BI2SMAFdBj+BNlj9ClWl2nF9Oj6IXz58/P9ddfv/T9008/PSeddNLSty984Qt5/fXX23yepqamfO5zn8uCBQtWb2IAACprwYIFefXVV1u9rWn3PfDAA3nuuefSo0ePbL/99tlwww1z4IEH5pFHlv2w5J577snWW2+9NMCTZP/998+CBQvy5z//udDrtLS05JxzzsnAgQMzatSojBw5Mm9605ty7rnndsgJhmuLTgcAoC06vfPpdAAAitDqna8jWl2nAwA0Np1eTOEF9MsvvzyXXnrp0vcvvvji3H333Zk4cWImTpyYK664Ij/4wQ8KPdcuu+ySiRMntn9aAAAqbfz48Rk4cGCrt/Hjx6/Rc06ePDlJctZZZ+VLX/pSrr/++gwaNCh77rlnZs+enSSZMWNGhg0b1urzBg0alJ49e2bGjBmFXuc///M/c/HFF+erX/1qJk6cmAceeCDnn39+vvvd7+aMM85Yo69hbdLpAAC0Rad3Pp0OAEARWr3zdVSr63QAgMal04tpKnrhlVdemRNPbH2s/FVXXZUxY8YkSa644op873vfW+GalTnmmGNy8sknZ9q0adlxxx3Tr1+/Vh/fdttti44FAECF/OOkkH/Wq1evlV571lln5eyzz17l8/3pT39a+huY//mf/5kPfehDSZIJEyZkxIgR+fnPf57PfvazSZJarbbC59fr9ZU+vjKXXXZZ/t//+385+OCDlz42duzYbLzxxjnmmGNy3nnnFXqezqbTAQBoi07vfDodAIAitHrn66hW1+kAAI1LpxdTeAH9iSeeyGabbbb0/d69e6dHj2UHqO+888459thjCz3XRz7ykSTJ8ccfv/SxWq229D+k5ubmomMBAFAhvXr1esPoXt5xxx2Xww47bJXXjB49OnPmzEmSbLnllq1eZ8yYMZk6dWqSZPjw4bn33ntbfe5LL72URYsWrfDboW9k9uzZ2WKLLVZ4fIsttlj626ZVpNMBAGiLTu98Oh0AgCK0eufrqFbX6QAAjUunF1N4Af2VV15JU9Oyy2fOnNnq4y0tLVmwYEGh55oyZUrRlwUAoF72AGvHkCFDMmTIkDav23HHHdOrV688/vjj2X333ZMkixYtyjPPPJNRo0YlSXbdddecd955mT59ejbccMMkyc0335xevXplxx13LDTP2LFjc/HFF+c73/lOq8cvvvjijB07tj1fWqfS6QAAJdHpOn0VdDoAQEkatNMTrd5ROqrVdToAQDs1aKt3504vvIA+YsSI/PWvf83mm2++0o8/9NBDGTFiRKHn+sd/WAAA0JYBAwbk6KOPzplnnplNNtkko0aNygUXXJAk+Zd/+ZckyX777Zctt9wyhx9+eC644ILMnj07p5xySo466qgMGDCg0Ot8/etfz7hx43Lrrbdm1113Ta1Wy913351nn302N95441r7+taUTgcAoAw6fdV0OgAAZdHqq9ZRra7TAQBoj0bs9MIL6O9973vz5S9/OePGjUvv3r1bfWz+/Pk5++yzM27cuHa9+KRJkzJ16tQsXLiw1eMHH3xwu54HAIDGdsEFF6SpqSmHH3545s+fn1122SW33357Bg0alCRZZ511csMNN+SYY47Jbrvtlj59+uRjH/tYLrzwwsKvsemmm+aJJ57I9773vTz22GOp1+s55JBDcswxx2Tx4sVr60tbYzodAICy6PQ3ptMBACiTVn9jHd3qOh0AgKIardNr9Xq90MH2L7zwQrbbbrv07Nkzxx13XDbbbLPUarU89thjufjii7N48eJMnDgxw4YNa/O5Jk+enA9+8IN5+OGHU6vV8o8RarVakqS5uXkNvqQ1d+CGx5b6+tBei1/4e9kjQLu07LVD2SNAu9x2++mlvv7m53yr1Ndvj8e/fGLZI6y2ddZZJ9OnT8/QoUNbPT5r1qwMHTq09EZ9I92p05Nk7Ald578P0PulBr2PHA1r5vZlTwDtM/nEk0p9fZ3eOXR61+j0ba49s+wRoF3mzO5b9ghQ2Lu3eqzsEaBdJrx9Qqmv35U6PdHqZeioVu8KnX7Gwx8sewSgAs7e4JGyRwAqoMfwJ8oeoUu1uk4vpvAJ6MOGDcvdd9+dz33uc/niF7/YKp733XfffP/73y/0w/IkOeGEE7Lpppvm1ltvzZgxY3Lfffdl1qxZOfnkk9u1qQ8A0B3U7C92ijf6vczXXntthVNQqkSnAwCUQ6d3Dp2u0wEA2kOnd57u3uo6HQCgfbR65+jMTi+8gJ4sOZr9t7/9bWbPnp2nnnoqSfKWt7wl66+/frte9J577sntt9+eDTbYID169EiPHj2y++67Z/z48Tn++OMzceLEdj0fAACsrpNOWnJyZq1Wy5e//OX07bvsFLTm5ubce++92W677UqarhidDgBAo9Hpy+h0AACqRKsvodMBAKiSMjq9XQvo/7D++utn5513Xu0XbW5uTv/+/ZMkQ4YMyfPPP5/NN988o0aNyuOPP77azwsAAO31jx8C1+v1PPzww+nZs+fSj/Xs2TNjx47NKaecUtZ47aLTAQBoFDp9GZ0OAECVaPUldDoAAFVSRqev1gL6mtp6663z0EMPZcyYMdlll13y9a9/PT179swPf/jDjBkzpoyRAACqy22I1qo77rgjSfKpT30q3/72tzNgwICSJyqPTgcAaAedvlbp9GV0OgBAO+j0tU6rL6HTAQDaSauvVWV0eikL6F/60pcyd+7cJMlXvvKVHHTQQXnXu96VwYMH56c//WkZIwEA0M1NmDCh7BFKp9MBAKgana7TAQCopu7e6jodAIAq6sxOL2UBff/991/6z2PGjMmkSZMye/bsDBo0KLVarYyRAACg29PpAABQPTodAACqR6cDANDdlbKAvjLrr79+2SMAAFST2xBRIp0OAPAGdDol0ukAAG9Ap1MinQ4AsApaveF06gL6kUceWei6H/3oR2t5EgAA4B90OgAAVI9OBwCA6tHpAACwRKcuoP/4xz/OqFGjsv3226de9+sMAABQBTodAACqR6cDAED16HQAAFiiUxfQjz766FxzzTWZPHlyjjzyyPzrv/6rWxABAEDJdDoAAFSPTgcAgOrR6QAAsESPznyx73//+5k+fXpOO+20XHfdddlkk01y6KGH5qabbvKboQAAb6BW7zpvdE06HQCg/cpub53e+HQ6AED7ld3eWr3x6XQAgNVTdnvr9I7XqQvoSdKrV6989KMfzS233JJJkyZlq622yjHHHJNRo0bltdde6+xxAACA6HQAAKginQ4AANWj0wEAoIQF9H9Wq9VSq9VSr9fT0tJS5igAAMD/T6cDAED16HQAAKgenQ4AQHfV6QvoCxYsyNVXX5199903m2++eR5++OFcfPHFmTp1avr379/Z4wAAVF+9C73RZel0AIB2Kru9dXq3oNMBANqp7PbW6t2CTgcAWA1lt7dO73BNnflixxxzTK655pqMHDkyn/rUp3LNNddk8ODBnTkCAACwHJ0OAADVo9MBAKB6dDoAACzRqQvol1xySUaOHJlNN900d955Z+68886VXverX/2qM8cCAIBuTacDAED16HQAAKgenQ4AAEt06gL6Jz7xidRqtc58SQCALq/m9j6sZTodAKD9dDprm04HAGg/nc7aptMBAFaPVm88nbqA/uMf/7gzXw4AAChApwMAQPXodAAAqB6dDgAAS/QoewAAAAAAAAAAAAAAALoGC+gAAAAAAAAAAAAAABTSVPYAAAC0oV72AAAAwAp0OgAAVI9OBwCAatLqDccJ6AAAAAAAAAAAAAAAFGIBHQAAAAAAAAAAAACAQprKHgAAgDa4DREAAFSPTgcAgOrR6QAAUE1aveE4AR0AAAAAAAAAAAAAgEIsoAMAAAAAAAAAAAAAUIgFdAAAAAAAAAAAAAAACmkqewAAAFatVi97AgAAYHk6HQAAqkenAwBANWn1xuMEdAAAAAAAAAAAAAAACrGADgAAAAAAAAAAAABAIU1lDwAAQBvchggAAKpHpwMAQPXodAAAqCat3nCcgA4AAAAAAAAAAAAAQCEW0AEAAAAAAAAAAAAAKKSp7AEAAGiD2xABAED16HQAAKgenQ4AANWk1RuOE9ABAAAAAAAAAAAAACjEAjoAAAAAAAAAAAAAAIVYQAcAAAAAAAAAAAAAoJCmsgcAAGDVavWyJwAAAJan0wEAoHp0OgAAVJNWbzxOQAcAAAAAAAAAAAAAoBAL6AAAAAAAAAAAAAAAFNJU9gAAALTBbYgAAKB6dDoAAFSPTgcAgGrS6g3HCegAAAAAAAAAAAAAABRiAR0AAAAAAAAAAAAAgEKayh4AAIBVq7kNEQAAVI5OBwCA6tHpAABQTVq98TgBHQAAAAAAAAAAAACAQiygAwAAAAAAAAAAAABQiAV0AAAAAAAAAAAAAAAKaSp7AAAA2lAvewAAAGAFOh0AAKpHpwMAQDVp9YbjBHQAAAAAAAAAAAAAAAqxgA4AAAAAAAAAAAAAQCFNZQ8AAEAb3IYIAACqR6cDAED16HQAAKgmrd5wnIAOAAAAAAAAAAAAAEAhFtABAAAAAAAAAAAAACikqewBAABYtVrZAwAAACvQ6QAAUD06HQAAqkmrNx4noAMAAAAAAAAAAAAAUIgFdAAAAAAAAAAAAAAACrGADgAAAAAAAAAAAABAIU1lDwAAQBvqZQ8AAACsQKcDAED16HQAAKgmrd5wnIAOAAAAAAAAAAAAAEAhFtABAAAAAAAAAAAAACikqewBAABYtZrbEAEAQOXodAAAqB6dDgAA1aTVG48T0AEAAAAAAAAAAAAAKMQCOgAAAAAAAAAAAAAAhTSVPQAAAG1wGyIAAKgenQ4AANWj0wEAoJq0esNxAjoAAAAAAAAAAAAAAIVYQAcAAAAAAAAAAAAAoBAL6AAAAAAAAAAAAAAAFNJU9gAAALShXvYAAADACnQ6AABUj04HAIBq0uoNxwnoAAAAAAAAAAAAAAAUYgEdAAAAAAAAAAAAAIBCmsoeAACAVau5DREAAFSOTgcAgOrR6QAAUE1avfE4AR0AAAAAAAAAAAAAgEIsoAMAAAAAAAAAAAAAUIgFdAAAAAAAAAAAAAAACmkqewAAANpQL3sAAABgBTodAACqR6cDAEA1afWG4wR0AAAAAAAAAAAAAAAKsYAOAAAAAAAAAAAAAEAhTWUPAADAqtXchggAACpHpwMAQPXodAAAqCat3nicgA4AAAAAAAAAAAAAQCEW0AEAAAAAAAAAAAAAKKSp7AEAAGiD2xABAED16HQAAKgenQ4AANWk1RuOE9ABAAAAAAAAAAAAACjEAjoAAAAAAAAAAAAAAIVYQAcAAAAAAAAAAAAAoJCmsgcAAGDVavWyJwAAAJan0wEAoHp0OgAAVJNWbzxOQAcAAAAAAAAAAAAAoBAL6AAAAAAAAAAAAAAAFNJU9gAAALTBbYgAAKB6dDoAAFSPTgcAgGrS6g3HCegAAAAAAAAAAAAAABRiAR0AAAAAAAAAAAAAgEKayh4AAIA2uA0RAABUj04HAIDq0ekAAFBNWr3hOAEdAAAAAAAAAAAAAIBCLKADAAAAAAAAAAAAAFCIBXQAAAAAAAAAAAAAAAppKnsAAABWrVYvewIAAGB5Oh0AAKpHpwMAQDVp9cbjBHQAAAAAAAAAAAAAAAqxgA4AAAAAAAAAAAAAQCFNZQ8AAEAb3IYIAACqR6cDAED16HQAAKgmrd5wnIAOAAAAAAAAAAAAAEAhFtABAAAAAAAAAAAAACikqewBAABYtVrdfYgAAKBqdDoAAFSPTgcAgGrS6o3HCegAAAAAAAAAAAAAABRiAR0AAAAAAAAAAAAAgEIsoAMAAAAAAAAAAAAAUEhT2QMAANCGetkDAAAAK9DpAABQPTodAACqSas3HCegAwAAAAAAAAAAAABQiAV0AAAAAAAAAAAAAAAKaSp7AAAAVq3mNkQAAFA5Oh0AAKpHpwMAQDVp9cbjBHQAAAAAAAAAAAAAAAqxgA4AAAAAAAAAAAAAQCEW0AEAAAAAAAAAAAAAKKSp7AEAAGhDvewBAACAFeh0AACoHp0OAADVpNUbjhPQAQAAAAAAAAAAAAAoxAI6AAAAAAAAAAAAAACFNJU9AAAAq1ZzGyIAAKgcnQ4AANWj0wEAoJq0euNxAjoAAAAAAAAAAAAAAIVYQAcAAAAAAAAAAAAAoJCmsgcAAKANbkMEAADVo9MBAKB6dDoAAFSTVm84TkAHAAAAAAAAAAAAAKAQC+gAAAAAAAAAAAAAABRiAR0AAAAAAAAAAAAAgEKayh4AAIBVq9XLngAAAFieTgcAgOrR6QAAUE1avfE4AR0AAAAAAAAAAAAAgEIsoAMAAAAAAAAAAAAAUEhT2QMAANAGtyECAIDq0ekAAFA9Oh0AAKpJqzccJ6ADAAAAAAAAAAAAAFCIBXQAAAAAAAAAAAAAAAppKnsAAABWreY2RAAAUDk6HQAAqkenAwBANWn1xuMEdAAAAAAAAAAAAAAACrGADgAAAAAAAAAAAABAIRbQAQAAAAAAAAAAAAAopKnsAQAAaEO9XvYEAADA8nQ6AABUj04HAIBq0uoNxwnoAAAAAAAAAAAAAAAUYgEdAAAAAAAAAAAAAIBCmsoeAACAVau5CxEAAFSOTgcAgOrR6QAAUE1avfE4AR0AAAAAAAAAAAAAgEIsoAMAAAAAAAAAAAAAUIgFdACAqqt3obe14He/+11qtdpK3/70pz8tvW7q1Kl53/vel379+mXIkCE5/vjjs3DhwrUzFAAAlN3eOh0AAFZUdntrdQAAWLmy21und7imsgcAAIBVeec735np06e3euyMM87Irbfemp122ilJ0tzcnHHjxmWDDTbIXXfdlVmzZuWII45IvV7Pd7/73TLGBgCAhqbTAQCgmrQ6AABUTyN2ugV0AAAqrWfPnhk+fPjS9xctWpRrr702xx13XGq1WpLk5ptvzqRJk/Lss89mo402SpJ84xvfyCc/+cmcd955GTBgQCmzAwBAo9LpAABQTVodAACqpxE7vUfZAwAAQHtce+21efHFF/PJT35y6WP33HNPtt5666UBniT7779/FixYkD//+c8lTAkAAN2LTgcAgGrS6gAAUD2N0OlOQAcAqLhaS9kTFLdgwYIsWLCg1WO9evVKr169Ouw1/vu//zv7779/Ntlkk6WPzZgxI8OGDWt13aBBg9KzZ8/MmDGjw14bAAD+Qae3ptMBAKiCrtTpiVYHAKD76EqtrtOLcQI6AAAdZvz48Rk4cGCrt/Hjx6/02rPOOiu1Wm2Vb/fff3+rz5k2bVpuuummfPrTn17h+f5xS6J/Vq/XV/o4AAB0JzodAACqSasDAED16PRinIAOAECHOf3003PSSSe1euyNfgP0uOOOy2GHHbbK5xs9enSr9ydMmJDBgwfn4IMPbvX48OHDc++997Z67KWXXsqiRYtW+O1QAADobnQ6AABUk1YHAIDq0enFWEAHAKi6etkDFNeeWw4NGTIkQ4YMKfzc9Xo9EyZMyCc+8Ymsu+66rT6266675rzzzsv06dOz4YYbJkluvvnm9OrVKzvuuGPxLwAAAIrS6Ul0OgAAFdOFOj3R6gAAdCNdqNV1ejE9yh4AAACKuP322zNlypSV3oJov/32y5ZbbpnDDz88EydOzG233ZZTTjklRx11VAYMGFDCtAAA0D3odAAAqCatDgAA1dNInW4BHQCALuG///u/8853vjNve9vbVvjYOuuskxtuuCG9e/fObrvtlkMPPTQf+MAHcuGFF5YwKQAAdB86HQAAqkmrAwBA9TRSpzeVPQAAABRx1VVXrfLjI0eOzPXXX99J0wAAAIlOBwCAqtLqAABQPY3U6RbQAQAqrlYvewIAAGB5Oh0AAKpHpwMAQDVp9cbTo+wBAAAAAAAAAAAAAADoGiygAwAAAAAAAAAAAABQSFPZAwAA0Ia6+xABAEDl6HQAAKgenQ4AANWk1RuOE9ABAAAAAAAAAAAAACjEAjoAAAAAAAAAAAAAAIU0lT0AAACrVnMXIgAAqBydDgAA1aPTAQCgmrR643ECOgAAAAAAAAAAAAAAhVhABwAAAAAAAAAAAACgEAvoAAAAAAAAAAAAAAAU0lT2AAAAtKFe9gAAAMAKdDoAAFSPTgcAgGrS6g3HCegAAAAAAAAAAAAAABRiAR0AAAAAAAAAAAAAgEKayh4AAIBVq7kNEQAAVI5OBwCA6tHpAABQTVq98TgBHQAAAAAAAAAAAACAQiygAwAAAAAAAAAAAABQSFPZAwAA0Ia6+xABAEDl6HQAAKgenQ4AANWk1RuOE9ABAAAAAAAAAAAAACjEAjoAAAAAAAAAAAAAAIVYQAcAAAAAAAAAAAAAoJCmsgcAAGDVavWyJwAAAJan0wEAoHp0OgAAVJNWbzxOQAcAAAAAAAAAAAAAoBAL6AAAAAAAAAAAAAAAFNJU9gAAALTBbYgAAKB6dDoAAFSPTgcAgGrS6g3HCegAAAAAAAAAAAAAABRiAR0AAAAAAAAAAAAAgEKayh4AAIBVq7kNEQAAVI5OBwCA6tHpAABQTVq98TgBHQAAAAAAAAAAAACAQiygAwAAAAAAAAAAAABQiAV0AAAAAAAAAAAAAAAKaSp7AAAA2tBSL3sCAABgeTodAACqR6cDAEA1afWG4wR0AAAAAAAAAAAAAAAKsYAOAAAAAAAAAAAAAEAhTWUPAABAG9yFCAAAqkenAwBA9eh0AACoJq3ecJyADgAAAAAAAAAAAABAIRbQAQAAAAAAAAAAAAAopKnsAQAAWLWa2xABAEDl6HQAAKgenQ4AANWk1RuPE9ABAAAAAAAAAAAAACjEAjoAAAAAAAAAAAAAAIVYQAcAAAAAAAAAAAAAoJCmsgcAAKAN9XrZEwAAAMvT6QAAUD06HQAAqkmrNxwnoAMAAAAAAAAAAAAAUIgFdAAAAAAAAAAAAAAACmkqewAAAFat5i5EAABQOTodAACqR6cDAEA1afXG4wR0AAAAAAAAAAAAAAAKsYAOAAAAAAAAAAAAAEAhFtABAAAAAAAAAAAAACikqewBAABoQ73sAQAAgBXodAAAqB6dDgAA1aTVG44T0AEAAAAAAAAAAAAAKMQCOgAAAAAAAAAAAAAAhTSVPQAAAKtWq7sPEQAAVI1OBwCA6tHpAABQTVq98TgBHQAAAAAAAAAAAACAQiygAwAAAAAAAAAAAABQSFPZAwAA0IaWsgcAAABWoNMBAKB6dDoAAFSTVm84TkAHAAAAAAAAAAAAAKAQC+gAAAAAAAAAAAAAABRiAR0AAAAAAAAAAAAAgEKayh4AAIBVq9XrZY8AAAAsR6cDAED16HQAAKgmrd54nIAOAAAAAAAAAAAAAEAhFtABAAAAAAAAAAAAACikqewBAABog7sQAQBA9eh0AACoHp0OAADVpNUbjhPQAQAAAAAAAAAAAAAoxAI6AAAAAAAAAAAAAACFNJU9AAAAbai7DxEAAFSOTgcAgOrR6QAAUE1aveE4AR0AAAAAAAAAAAAAgEIsoAMAAAAAAAAAAAAAUIgFdAAAAAAAAAAAAAAACmkqewAAAFatVi97AgAAYHk6HQAAqkenAwBANWn1xuMEdAAAAAAAAAAAAAAACrGADgAAAAAAAAAAAABAIU1lDwAAQBvq7kMEAACVo9MBAKB6dDoAAFSTVm84TkAHAAAAAAAAAAAAAKAQC+gAAAAAAAAAAAAAABTSVPYAAACsWq2l7AkAAIDl6XQAAKgenQ4AANWk1RuPE9ABAAAAAAAAAAAAACjEAjoAAAAAAAAAAAAAAIVYQAcAAAAAAAAAAAAAoJCmsgcAAKAN9XrZEwAAAMvT6QAAUD06HQAAqkmrNxwnoAMAAAAAAAAAAAAAUIgFdAAAAAAAAAAAAAAACmkqewAAANrgLkQAAFA9Oh0AAKpHpwMAQDVp9YbjBHQAAAAAAAAAAAAAAAqxgA4AAAAAAAAAAAAAQCEW0AEAAAAAAAAAAAAAKKSp7AEAAFi1Wr1e9ggAAMBydDoAAFSPTgcAgGrS6o3HCegAAAAAAAAAAAAAABRiAR0AAAAAAAAAAAAAgEKayh4AAIA2uA0RAABUj04HAIDq0ekAAFBNWr3hOAEdAAAAAAAAAAAAAIBCLKADAAAAAAAAAAAAAFBIU9kDAADQhpayBwAAAFag0wEAoHp0OgAAVJNWbzhOQAcAAAAAAAAAAAAAoBAL6AAAAAAAAAAAAAAAFGIBHQAAAAAAAAAAAACAQprKHgAAgFWr1etljwAAACxHpwMAQPXodAAAqCat3nicgA4AAAAAAAAAAAAAQCEW0AEAAAAAAAAAAAAAKKSp7AEAAGiD2xABAED16HQAAKgenQ4AANWk1RuOE9ABAAAAAAAAAAAAACjEAjoAAAAAAAAAAAAAAIU0lT0AAABtcBsiAACoHp0OAADVo9MBAKCatHrDcQI6AAAAAAAAAAAAAACFWEAHAAAAAAAAAAAAAKAQC+gAAAAAAAAAAAAAABTSVPYAAAC0oaXsAQAAgBXodAAAqB6dDgAA1aTVG44T0AEAAAAAAAAAAAAAKMQCOgAAAAAAAAAAAAAAhTSVPQAAAKtWq9fLHgEAAFiOTgcAgOrR6QAAUE1avfE4AR0AAAAAAAAAAAAAgEIsoAMAAAAAAAAAAAAAUEhT2QMAANAGtyECAIDq0ekAAFA9Oh0AAKpJqzccJ6ADAAAAAAAAAAAAAFCIBXQAAAAAAAAAAAAAAAqxgA4AAAAAAAAAAAAAQCFNZQ8AAEAb6vWyJwAAAJan0wEAoHp0OgAAVJNWbzhOQAcAAAAAAAAAAAAAoBAL6AAAAAAAAAAAAAAAFNJU9gAAALTBbYgAAKB6dDoAAFSPTgcAgGrS6g3HCegAAAAAAAAAAAAAABRiAR0AAAAAAAAAAAAAgEIsoAMAAAAAAAAAAAAAUEhT2QMAANCGlrIHAAAAVqDTAQCgenQ6AABUk1ZvOE5ABwAAAAAAAAAAAACgEAvoAAAAAAAAAAAAAAAU0lT2AAAArFqtXi97BAAAYDk6HQAAqkenAwBANWn1xuMEdAAAAAAAAAAAAAAACrGADgAAAAAAAAAAAABAIU1lDwAAQBvchggAAKpHpwMAQPXodAAAqCat3nCcgA4AAAAAAAAAAAAAQCEW0AEAAAAAAAAAAAAAKMQCOgAAAAAAAAAAAAAAhTSVPQAAAG1oqZc9AQAAsDydDgAA1aPTAQCgmrR6w3ECOgAAAAAAAAAAAAAAhVhABwAAAAAAAAAAAACgkKayBwAAoA11tyECAIDK0ekAAFA9Oh0AAKpJqzccJ6ADAAAAAAAAAAAAAFCIBXQAAAAAAAAAAAAAAAppKnsAAADa4DZEAABQPTodAACqR6cDAEA1afWG4wR0AAAq74knnsj73//+DBkyJAMGDMhuu+2WO+64o9U1U6dOzfve977069cvQ4YMyfHHH5+FCxeWNDEAADQ+nQ4AANWk1QEAoHoardMtoAMAUHnjxo3L4sWLc/vtt+fPf/5ztttuuxx00EGZMWNGkqS5uTnjxo3L3Llzc9ddd+Waa67JL3/5y5x88sklTw4AAI1LpwMAQDVpdQAAqJ5G63QL6AAAVNqLL76Yp556Kl/84hez7bbb5q1vfWu++tWvZt68eXnkkUeSJDfffHMmTZqUK664Ittvv33e85735Bvf+Eb+67/+K6+++mrJXwEAADQenQ4AANWk1QEAoHoasdMtoAMAVF293mXeFixYkFdffbXV24IFC9boyx88eHDe9ra35fLLL8/cuXOzePHiXHrppRk2bFh23HHHJMk999yTrbfeOhtttNHSz9t///2zYMGC/PnPf16j1wcAgJWqQH/rdAAAWE4F+lurAwDASlSgv3V6x7KADgBAhxk/fnwGDhzY6m38+PFr9Jy1Wi233HJLJk6cmPXWWy+9e/fOt771rfz2t7/Nm970piTJjBkzMmzYsFafN2jQoPTs2XPprYoAAKC70ukAAFBNWh0AAKpHpxdjAR0AgA5z+umn55VXXmn1dvrpp6/02rPOOiu1Wm2Vb/fff3/q9XqOOeaYDB06NL///e9z33335f3vf38OOuigTJ8+fenz1Wq1FV6jXq+v9HEAAOhOdDoAAFSTVgcAgOrR6cU0lT0AAABtaKmXPUFhvXr1Sq9evQpde9xxx+Wwww5b5TWjR4/O7bffnuuvvz4vvfRSBgwYkCT5/ve/n1tuuSWXXXZZvvjFL2b48OG59957W33uSy+9lEWLFq3w26EAANAhdLpOBwCgerpQpydaHQCAbqQLtbpOL8YCOgAApRgyZEiGDBnS5nXz5s1LkvTo0frmPT169EhLS0uSZNddd815552X6dOnZ8MNN0yS3HzzzenVq1d23HHHDp4cAAAal04HAIBq0uoAAFA93bnTe7R9CQAAlGfXXXfNoEGDcsQRR+TBBx/ME088kS984QuZMmVKxo0blyTZb7/9suWWW+bwww/PxIkTc9ttt+WUU07JUUcdtfQ3RwEAgI6j0wEAoJq0OgAAVE8jdroFdACAqqu3dJ23tWDIkCH57W9/m9deey177713dtppp9x111353//934wdOzZJss466+SGG25I7969s9tuu+XQQw/NBz7wgVx44YVrZSYAACi9vXU6AACsqOz21uoAALByZbe3Tu9wTWUPAAAAbdlpp51y0003rfKakSNH5vrrr++kiQAAAJ0OAADVpNUBAKB6Gq3TnYAOAAAAAAAAAAAAAEAhFtABAAAAAAAAAAAAACikqewBAABoQ71e9gQAAMDydDoAAFSPTgcAgGrS6g3HCegAAAAAAAAAAAAAABRiAR0AAAAAAAAAAAAAgEKayh4AAIA2tLgNEQAAVI5OBwCA6tHpAABQTVq94TgBHQAAAAAAAAAAAACAQiygAwAAAAAAAAAAAABQSFPZAwAA0Ia62xABAEDl6HQAAKgenQ4AANWk1RuOE9ABAAAAAAAAAAAAACjEAjoAAAAAAAAAAAAAAIVYQAcAAAAAAAAAAAAAoJCmsgcAAKAN9XrZEwAAAMvT6QAAUD06HQAAqkmrNxwnoAMAAAAAAAAAAAAAUIgFdAAAAAAAAAAAAAAACmkqewAAANrgNkQAAFA9Oh0AAKpHpwMAQDVp9YbjBHQAAAAAAAAAAAAAAAqxgA4AAAAAAAAAAAAAQCEW0AEAAAAAAAAAAAAAKKSp7AEAAGhDS0vZEwAAAMvT6QAAUD06HQAAqkmrNxwnoAMAAAAAAAAAAAAAUIgFdAAAAAAAAAAAAAAACmkqewAAANpQr5c9AQAAsDydDgAA1aPTAQCgmrR6w3ECOgAAAAAAAAAAAAAAhVhABwAAAAAAAAAAAACgkKayBwAAoA1uQwQAANWj0wEAoHp0OgAAVJNWbzhOQAcAAAAAAAAAAAAAoBAL6AAAAAAAAAAAAAAAFGIBHQAAAAAAAAAAAACAQprKHgAAgDa01MueAAAAWJ5OBwCA6tHpAABQTVq94TgBHQAAAAAAAAAAAACAQiygAwAAAAAAAAAAAABQSFPZAwAAsGr1ekvZIwAAAMvR6QAAUD06HQAAqkmrNx4noAMAAAAAAAAAAAAAUIgFdAAAAAAAAAAAAAAACmkqewAAANrQUi97AgAAYHk6HQAAqkenAwBANWn1huMEdAAAAAAAAAAAAAAACrGADgAAAAAAAAAAAABAIRbQAQAAAAAAAAAAAAAopKnsAQAAaEO9XvYEAADA8nQ6AABUj04HAIBq0uoNxwnoAAAAAAAAAAAAAAAUYgEdAAAAAAAAAAAAAIBCmsoeAACANrS0lD0BAACwPJ0OAADVo9MBAKCatHrDcQI6AAAAAAAAAAAAAACFWEAHAAAAAAAAAAAAAKCQprIHAACgDfV62RMAAADL0+kAAFA9Oh0AAKpJqzccJ6ADAAAAAAAAAAAAAFCIBXQAAAAAAAAAAAAAAAqxgA4AAAAAAAAAAAAAQCFNZQ8AAMCq1Vtayh4BAABYjk4HAIDq0ekAAFBNWr3xOAEdAAAAAAAAAAAAAIBCLKADAAAAAAAAAAAAAFBIU9kDAADQhnq97AkAAIDl6XQAAKgenQ4AANWk1RuOE9ABAAAAAAAAAAAAACjEAjoAAAAAAAAAAAAAAIVYQAcAAAAAAAAAAAAAoJCmsgcAAKANLfWyJwAAAJan0wEAoHp0OgAAVJNWbzhOQAcAAAAAAAAAAAAAoBAL6AAAAAAAAAAAAAAAFNJU9gAAALSh3lL2BAAAwPJ0OgAAVI9OBwCAatLqDccJ6AAAAAAAAAAAAAAAFGIBHQAAAAAAAAAAAACAQprKHgAAgFWrt9TLHgEAAFiOTgcAgOrR6QAAUE1avfE4AR0AAAAAAAAAAAAAgEIsoAMAAAAAAAAAAAAAUIgFdAAAAAAAAAAAAAAACmkqewAAANpQbyl7AgAAYHk6HQAAqkenAwBANWn1huMEdAAAAAAAAAAAAAAACrGADgAAAAAAAAAAAABAIU1lDwAAwKrVW+pljwAAACxHpwMAQPXodAAAqCat3nicgA4AAAAAAAAAAAAAQCEW0AEAAAAAAAAAAAAAKKSp7AEAAGhDvaXsCQAAgOXpdAAAqB6dDgAA1aTVG44T0AEAAAAAAAAAAAAAKMQCOgAAAAAAAAAAAAAAhVhABwAAAAAAAAAAAACgkFq9Xq+XPQTdw4IFCzJ+/Picfvrp6dWrV9njQJt8z9KV+H4FYHX5M4SuxvcsXY3vWQBWhz8/6Gp8z9LV+J4FoDvw5x2Q+HcBsPZYQKfTvPrqqxk4cGBeeeWVDBgwoOxxoE2+Z+lKfL8CsLr8GUJX43uWrsb3LACrw58fdDW+Z+lqfM8C0B348w5I/LsAWHt6lD0AAAAAAAAAAAAAAABdgwV0AAAAAAAAAAAAAAAKsYAOAAAAAAAAAAAAAEAhFtDpNL169cqZZ56ZXr16lT0KFOJ7lq7E9ysAq8ufIXQ1vmfpanzPArA6/PlBV+N7lq7G9ywA3YE/74DEvwuAtadWr9frZQ8BAAAAAAAAAAAAAED1OQEdAAAAAAAAAAAAAIBCLKADAAAAAAAAAAAAAFCIBXQAAAAAAAAAAAAAAAqxgE6HmjFjRk444YS85S1vSe/evTNs2LDsvvvuueSSSzJv3rwkyejRo3PRRRet8LlnnXVWtttuu84dmG7tk5/8ZGq1Wmq1WtZdd90MGzYs++67b370ox+lpaVl6XWjR49eet0/v331q18tcXq6u3/+/q3Vahk8eHAOOOCAPPTQQ0uvqdVq+fWvf13ekABUhk6nK9HpdGU6HYD20up0JVqdrkqnA9Co9BmwPO0LdCYL6HSYyZMnZ/vtt8/NN9+c888/PxMnTsytt96aE088Mdddd11uvfXWskeEFRxwwAGZPn16nnnmmfzmN7/Ju9/97pxwwgk56KCDsnjx4qXXnXPOOZk+fXqrt89//vMlTg7Lvn+nT5+e2267LU1NTTnooIPKHguAitHpdEU6na5MpwNQlFanK9LqdFU6HYBGpc+A5WlfoLM0lT0AjeOYY45JU1NT7r///vTr12/p49tss00+9KEPpV6vlzgdrFyvXr0yfPjwJMnGG2+cHXbYIe94xzuyzz775Mc//nE+85nPJEnWW2+9pddBVfzz9+/w4cNz2mmnZY899sjMmTOzwQYblDwdAFWh0+mKdDpdmU4HoCitTlek1emqdDoAjUqfAcvTvkBncQI6HWLWrFm5+eabc+yxx7b6Qfk/q9VqnTwVrJ699947Y8eOza9+9auyR4HCXnvttVx55ZV5y1veksGDB5c9DgAVodNpJDqdrkinA/BGtDqNRKvT1eh0ABqdPgP+QfsCa5MFdDrEU089lXq9ns0337zV40OGDEn//v3Tv3//nHbaaUsfP+2005Y+/o+3888/v7PHhje0xRZb5Jlnnln6/sq+Z3/3u9+VNh8kyfXXX7/0+3G99dbLtddem5/+9Kfp0cMf7wAsodNpNDqdrkCnA1CEVqfRaHWq7v9r715Dqyz8AI7/tiY6b6F2USxXc1mJLGuWZOQlEFkag/amyEwCHZndoJIhU6GwGoQlopHRBQzKS4lILaKg1K2s8Ea6toUUvtCRGqSITc/zf/U//5ZWx/66c/Hzgb3Y85zn7HcO58X3xW/P0ekAXGz0GVy8tC/QU0qyPQCF5c93ZNm+fXukUql44IEH4uTJk+njzzzzTMyePbvbY5cvXx5ffvllT4wJ/yhJkm6f57N9ZocPH97DU0F3U6ZMiVWrVkVExJEjR2LlypVRXV0d27dvj7KysixPB0Au0ekUCp1OPtDpAJwLrU6h0OrkOp0OwMVGn8HFS/sCPcUCOudFRUVFFBUVRWtra7fj5eXlERFRWlra7fhll10WFRUV3Y4NHjz4wg4J52Dfvn1x7bXXpn8/22cWsq1fv37dPpdVVVVx6aWXxurVq+P555/P4mQA5AqdTqHR6eQDnQ5AJrQ6hUark+t0OgAXG30GFy/tC/QU36vAeTFkyJCYOnVqrFixIo4fP57tceD/8vnnn8eePXuitrY226PAOSkqKori4uI4ceJEtkcBIEfodAqJTidf6XQAzkarU0i0OvlIpwNQyPQZ8EfaF7hQ3AGd82blypVxxx13xLhx42LJkiVRWVkZxcXF8c0330Rra2tUVVVle0Q4w8mTJ+PgwYNx+vTpOHToUDQ1NcULL7wQM2bMiFmzZqUf99tvv8XBgwe7Xdu3b98YOHBgT48Maf/9/EZEHD16NFasWBHHjh2Le+65J8uTAZBLdDr5SKeTz3Q6AJnS6uQjrU6+0ukAFCp9BvyZ9gV6igV0zpuRI0fGjh07YunSpVFfXx8HDhyI3r17x+jRo+Ppp5+OefPmZXtEOENTU1MMGzYsSkpKYtCgQXHTTTfF8uXL46GHHori4v99ScSiRYti0aJF3a6tq6uL1157radHhrT/fn4jIgYMGBA33HBDrFu3LiZPnpzdwQDIKTqdfKTTyWc6HYBMaXXykVYnX+l0AAqVPgP+TPsCPaUoSZIk20MAAAAAAAAAAAAAAJD7iv/5IQAAAAAAAAAAAAAAYAEdAAAAAAAAAAAAAIAMWUAHAAAAAAAAAAAAACAjFtABAAAAAAAAAAAAAMiIBXQAAAAAAAAAAAAAADJiAR0AAAAAAAAAAAAAgIxYQAcAAAAAAAAAAAAAICMW0AEAAAAAAAAAAAAAyIgFdIAeMHny5HjyySezPQYAAPAHOh0AAHKTVgcAgNyj0wH4IwvoQN7o7OyMurq6GDFiRPTu3TuGDh0a06ZNi5aWlmyP9o8++OCDeO6557I9BgAAnHc6HQAAcpNWBwCA3KPTASgUJdkeACBTtbW10dXVFe+8806Ul5fHoUOH4rPPPosjR45ke7S/1NXVFb169YrBgwdnexQAALggdDoAAOQmrQ4AALlHpwNQKNwBHcgLv/76a2zdujVeeumlmDJlSpSVlcVtt90W9fX1MX369PRj5s6dG1deeWX06dMnxowZE5s3b04/R3Nzc0ycODFKS0vj6quvjscffzyOHz+ePn/NNdfE0qVL4+GHH44BAwbEiBEj4vXXX+82x4IFC2LUqFHRt2/fKC8vj4aGhujq6kqfX7JkSYwdOzbefPPNKC8vj969e0eSJGd8DdHRo0dj1qxZMWjQoOjbt29UV1dHe3v7BXr3AADgwtDpAACQm7Q6AADkHp0OQCGxgA7khf79+0f//v1j48aNcfLkyTPOp1KpqK6ujubm5lizZk3s3bs3XnzxxbjkkksiImLPnj0xbdq0uPfee2P37t3x/vvvx9atW2P+/Pndnufll1+OcePGxY4dO2LevHnxyCOPRGtra/r8gAED4u233469e/fGq6++GqtXr45ly5Z1e46Ojo5Yu3ZtbNiwIXbu3HnW1zN79uz49ttvY9OmTdHS0hJJksTdd9/dLegBACDX6XQAAMhNWh0AAHKPTgegoCQAeWL9+vXJoEGDkj59+iQTJkxI6uvrk127diVJkiSffPJJUlxcnPzwww9nvfbBBx9M5s6d2+3Yli1bkuLi4uTEiRNJkiRJWVlZMnPmzPT5VCqVXHHFFcmqVav+cqbGxsakqqoq/fvixYuTXr16JZ2dnd0eN2nSpOSJJ55IkiRJ2trakohItm3blj7/yy+/JKWlpcnatWszeCcAACB36HQAAMhNWh0AAHKPTgegUJRkd/0dIHO1tbUxffr02LJlS7S0tERTU1M0NjbGG2+8EZ2dnXHVVVfFqFGjznrtd999Fx0dHfHuu++mjyVJEqlUKvbv3x833nhjRERUVlamzxcVFcXQoUOjs7MzfWz9+vXxyiuvREdHRxw7dixOnToVAwcO7Pa3ysrK4vLLL//L17Fv374oKSmJ8ePHp48NGTIkrr/++ti3b9+5vSkAAJBlOh0AAHKTVgcAgNyj0wEoFMXZHgDgXPTp0yemTp0aixYtiubm5pg9e3YsXrw4SktL//a6VCoVdXV1sXPnzvTPrl27or29PUaOHJl+XK9evbpdV1RUFKlUKiIivvrqq7jvvvuiuro6Nm/eHDt27IiFCxfG77//3u2afv36/e0sSZL85fGioqK/vRYAAHKRTgcAgNyk1QEAIPfodAAKgTugA3lt9OjRsXHjxqisrIwDBw5EW1vbWf8T9JZbbonvv/8+Kioq/vXf2rZtW5SVlcXChQvTx3766ad/NfOpU6fi66+/jgkTJkRExOHDh6OtrS3936gAAJDPdDoAAOQmrQ4AALlHpwOQj9wBHcgLhw8fjrvuuivWrFkTu3fvjv3798e6deuisbExampqYtKkSTFx4sSora2NTz/9NPbv3x8ff/xxNDU1RUTEggULoqWlJR599NHYuXNntLe3x6ZNm+Kxxx7LeIaKior4+eef47333osff/wxli9fHh9++OE5v5brrrsuampqYs6cObF169bYtWtXzJw5M4YPHx41NTXn/HwAAJAtOh0AAHKTVgcAgNyj0wEoJBbQgbzQv3//GD9+fCxbtiwmTpwYY8aMiYaGhpgzZ06sWLEiIiI2bNgQt956a9x///0xevToePbZZ+P06dMREVFZWRlffPFFtLe3x5133hk333xzNDQ0xLBhwzKeoaamJp566qmYP39+jB07Npqbm6OhoeFfvZ633norqqqqYsaMGXH77bdHkiTx0UcfnfE1SAAAkMt0OgAA5CatDgAAuUenA1BIipIkSbI9BAAAAAAAAAAAAAAAuc8d0AEAAAAAAAAAAAAAyIgFdAAAAAAAAAAAAAAAMmIBHQAAAAAAAAAAAACAjFhABwAAAAAAAAAAAAAgIxbQAQAAAAAAAAAAAADIiAV0AAAAAAAAAAAAAAAyYgEdAAAAAAAAAAAAAICMWEAHAAAAAAAAAAAAACAjFtABAAAAAAAAAAAAAMiIBXQAAAAAAAAAAAAAADJiAR0AAAAAAAAAAAAAgIxYQAcAAAAAAAAAAAAAICP/Ad67YpG7H7e0AAAAAElFTkSuQmCC",
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -2687,25 +991,25 @@
}
],
"source": [
- "variables = [\"exp_qty_TWh\", \"total_cost_bnEUR\", \"system_savings_bnEUR\", \"system_savings_EUR_per_TWh\", \"elec_price_EUR_per_MWh\", \"elec_savings_bnEUR\"]\n",
+ "variables = [\"exp_qty_TWh\", \"total_cost_bnEUR\"]#, \"system_savings_bnEUR\", \"system_savings_EUR_per_TWh\", \"elec_price_EUR_per_MWh\", \"elec_savings_bnEUR\"]\n",
"\n",
- "df = df.loc[df['mp_EUR_per_MWh'] != 'endogenous']\n",
- "df[\"mp_EUR_per_MWh\"] = df[\"mp_EUR_per_MWh\"].astype(float)\n",
- "df = df.loc[(df['mp_EUR_per_MWh'] <= 90) & (df['mp_EUR_per_MWh'] >= 75)]\n",
+ "df_copy = df.query(\"mp_EUR_per_MWh != 'endogenous' and ecc == 1\")\n",
+ "df_copy[\"mp_EUR_per_MWh\"] = df_copy[\"mp_EUR_per_MWh\"].astype(float)\n",
+ "#df_copy = df_copy.loc[(df_copy['mp_EUR_per_MWh'] <= 90) & (df_copy['mp_EUR_per_MWh'] >= 75)]\n",
"\n",
- "scenarios = df[\"scenario\"].unique()\n",
+ "scenarios = df_copy[\"scenario\"].unique()\n",
"\n",
- "fig, axs = plt.subplots(len(variables), len(df['ecc'].unique()), figsize=(30, 40))\n",
+ "fig, axs = plt.subplots(len(variables), len(df_copy['ir'].unique()), figsize=(30, 20))\n",
"\n",
"for i, variable in enumerate(variables):\n",
- " vmin = df[variable].min()\n",
- " vmax = df[variable].max()\n",
+ " vmin = df_copy[variable].min()\n",
+ " vmax = df_copy[variable].max()\n",
" \n",
- " for j, ecc in enumerate(df['ecc'].unique()):\n",
- " pivot_table = df[df[\"ecc\"] == ecc].pivot(index=\"mp_EUR_per_MWh\", columns=\"scenario\", values=variable)\n",
+ " for j, ir in enumerate(df_copy['ir'].unique()):\n",
+ " pivot_table = df_copy[df_copy[\"ir\"] == ir].pivot(index=\"mp_EUR_per_MWh\", columns=\"scenario\", values=variable)\n",
" pivot_table = pivot_table.sort_index(ascending=False).sort_index(axis=1, ascending=False)\n",
" sns.heatmap(pivot_table, annot=True, cmap=\"viridis\", cbar_kws={'label': variable}, ax=axs[i, j], vmin=vmin, vmax=vmax)\n",
- " axs[i, j].set_title(f\"{ecc} * 800 €/kW\\nElectrolysis CAPEX\\n - {variable}\")\n",
+ " axs[i, j].set_title(f\"{variable}\\n{df_copy.ecc.values[0]} * 1350 €/kW\\nElectrolysis CAPEX\\nInterest rate: {ir}\")\n",
" axs[i, j].set_xlabel(\"Scenario\")\n",
" axs[i, j].set_ylabel(\"Global Hydrogen\\nMarket Price (€/MWh)\")\n",
"\n",
@@ -2715,14 +1019,133 @@
},
{
"cell_type": "code",
- "execution_count": 42,
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
+ " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
+ "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
+ " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
+ "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
+ " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
+ "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
+ " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
+ "INFO:pypsa.io:Imported network elec_s_11_ec_lv1.0_Co2L_3H_2035_0.1_BI_0export_endogenousmp_1ecc.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n"
+ ]
+ }
+ ],
+ "source": [
+ "n = pypsa.Network(\"/home/cpschau/Code/dev/BRIGHT/submodules/pypsa-earth-sec/results/241107_ir_sensitivity/postnetworks/elec_s_11_ec_lv1.0_Co2L_3H_2035_0.1_BI_0export_endogenousmp_1ecc.nc\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "37449.20500000001"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "n.generators.filter(regex=\"solar$\", axis=0).p_nom.sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
+ " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
+ "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
+ " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
+ "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
+ " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
+ "/home/cpschau/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pypsa/components.py:318: FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value '[]' has dtype incompatible with float64, please explicitly cast to a compatible dtype first.\n",
+ " attrs.loc[bool_b, \"default\"] = attrs.loc[bool_b].isin({True, \"True\"})\n",
+ "INFO:pypsa.io:Imported network elec_s_11_ec_lv2.0_Co2L.nc has buses, carriers, generators, global_constraints, lines, links, loads, storage_units, stores\n"
+ ]
+ }
+ ],
+ "source": [
+ "n1 = pypsa.Network(\"/home/cpschau/Code/dev/BRIGHT/submodules/pypsa-earth-sec/pypsa-earth/networks/elec_s_11_ec_lv2.0_Co2L.nc\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "37449.20500000001"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "n1.generators.filter(regex=\"solar$\", axis=0).p_nom.sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
"metadata": {},
"outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/tmp/ipykernel_133889/273405371.py:3: SettingWithCopyWarning: \n",
+ "A value is trying to be set on a copy of a slice from a DataFrame.\n",
+ "Try using .loc[row_indexer,col_indexer] = value instead\n",
+ "\n",
+ "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+ " df[\"mp_EUR_per_MWh\"] = df[\"mp_EUR_per_MWh\"].astype(float)\n"
+ ]
+ },
+ {
+ "ename": "ValueError",
+ "evalue": "Index contains duplicate entries, cannot reshape",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
+ "Cell \u001b[0;32mIn[15], line 15\u001b[0m\n\u001b[1;32m 12\u001b[0m vmax \u001b[38;5;241m=\u001b[39m df[variable]\u001b[38;5;241m.\u001b[39mmax()\n\u001b[1;32m 14\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m j, scenario \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(scenarios):\n\u001b[0;32m---> 15\u001b[0m pivot_table \u001b[38;5;241m=\u001b[39m \u001b[43mdf\u001b[49m\u001b[43m[\u001b[49m\u001b[43mdf\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mscenario\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m==\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mscenario\u001b[49m\u001b[43m]\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpivot\u001b[49m\u001b[43m(\u001b[49m\u001b[43mindex\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mecc\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcolumns\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmp_EUR_per_MWh\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mvalues\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mvariable\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 16\u001b[0m pivot_table \u001b[38;5;241m=\u001b[39m pivot_table\u001b[38;5;241m.\u001b[39msort_index(ascending\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\u001b[38;5;241m.\u001b[39msort_index(axis\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m, ascending\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[1;32m 17\u001b[0m sns\u001b[38;5;241m.\u001b[39mheatmap(pivot_table, annot\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, cmap\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mviridis\u001b[39m\u001b[38;5;124m\"\u001b[39m, cbar_kws\u001b[38;5;241m=\u001b[39m{\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mlabel\u001b[39m\u001b[38;5;124m'\u001b[39m: variable}, ax\u001b[38;5;241m=\u001b[39maxs[i, j], vmin\u001b[38;5;241m=\u001b[39mvmin, vmax\u001b[38;5;241m=\u001b[39mvmax)\n",
+ "File \u001b[0;32m~/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pandas/core/frame.py:9339\u001b[0m, in \u001b[0;36mDataFrame.pivot\u001b[0;34m(self, columns, index, values)\u001b[0m\n\u001b[1;32m 9332\u001b[0m \u001b[38;5;129m@Substitution\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 9333\u001b[0m \u001b[38;5;129m@Appender\u001b[39m(_shared_docs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpivot\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n\u001b[1;32m 9334\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mpivot\u001b[39m(\n\u001b[1;32m 9335\u001b[0m \u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39m, columns, index\u001b[38;5;241m=\u001b[39mlib\u001b[38;5;241m.\u001b[39mno_default, values\u001b[38;5;241m=\u001b[39mlib\u001b[38;5;241m.\u001b[39mno_default\n\u001b[1;32m 9336\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m DataFrame:\n\u001b[1;32m 9337\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mpandas\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mcore\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mreshape\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpivot\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m pivot\n\u001b[0;32m-> 9339\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mpivot\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mindex\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mindex\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcolumns\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcolumns\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mvalues\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mvalues\u001b[49m\u001b[43m)\u001b[49m\n",
+ "File \u001b[0;32m~/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pandas/core/reshape/pivot.py:570\u001b[0m, in \u001b[0;36mpivot\u001b[0;34m(data, columns, index, values)\u001b[0m\n\u001b[1;32m 566\u001b[0m indexed \u001b[38;5;241m=\u001b[39m data\u001b[38;5;241m.\u001b[39m_constructor_sliced(data[values]\u001b[38;5;241m.\u001b[39m_values, index\u001b[38;5;241m=\u001b[39mmultiindex)\n\u001b[1;32m 567\u001b[0m \u001b[38;5;66;03m# error: Argument 1 to \"unstack\" of \"DataFrame\" has incompatible type \"Union\u001b[39;00m\n\u001b[1;32m 568\u001b[0m \u001b[38;5;66;03m# [List[Any], ExtensionArray, ndarray[Any, Any], Index, Series]\"; expected\u001b[39;00m\n\u001b[1;32m 569\u001b[0m \u001b[38;5;66;03m# \"Hashable\"\u001b[39;00m\n\u001b[0;32m--> 570\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mindexed\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43munstack\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcolumns_listlike\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;66;03m# type: ignore[arg-type]\u001b[39;00m\n\u001b[1;32m 571\u001b[0m result\u001b[38;5;241m.\u001b[39mindex\u001b[38;5;241m.\u001b[39mnames \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 572\u001b[0m name \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m lib\u001b[38;5;241m.\u001b[39mno_default \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01mfor\u001b[39;00m name \u001b[38;5;129;01min\u001b[39;00m result\u001b[38;5;241m.\u001b[39mindex\u001b[38;5;241m.\u001b[39mnames\n\u001b[1;32m 573\u001b[0m ]\n\u001b[1;32m 575\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m result\n",
+ "File \u001b[0;32m~/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pandas/core/series.py:4615\u001b[0m, in \u001b[0;36mSeries.unstack\u001b[0;34m(self, level, fill_value, sort)\u001b[0m\n\u001b[1;32m 4570\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 4571\u001b[0m \u001b[38;5;124;03mUnstack, also known as pivot, Series with MultiIndex to produce DataFrame.\u001b[39;00m\n\u001b[1;32m 4572\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 4611\u001b[0m \u001b[38;5;124;03mb 2 4\u001b[39;00m\n\u001b[1;32m 4612\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 4613\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mpandas\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mcore\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mreshape\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mreshape\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m unstack\n\u001b[0;32m-> 4615\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43munstack\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlevel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfill_value\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msort\u001b[49m\u001b[43m)\u001b[49m\n",
+ "File \u001b[0;32m~/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pandas/core/reshape/reshape.py:517\u001b[0m, in \u001b[0;36munstack\u001b[0;34m(obj, level, fill_value, sort)\u001b[0m\n\u001b[1;32m 515\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_1d_only_ea_dtype(obj\u001b[38;5;241m.\u001b[39mdtype):\n\u001b[1;32m 516\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m _unstack_extension_series(obj, level, fill_value, sort\u001b[38;5;241m=\u001b[39msort)\n\u001b[0;32m--> 517\u001b[0m unstacker \u001b[38;5;241m=\u001b[39m \u001b[43m_Unstacker\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 518\u001b[0m \u001b[43m \u001b[49m\u001b[43mobj\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mindex\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlevel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlevel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconstructor\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mobj\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_constructor_expanddim\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msort\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msort\u001b[49m\n\u001b[1;32m 519\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 520\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m unstacker\u001b[38;5;241m.\u001b[39mget_result(\n\u001b[1;32m 521\u001b[0m obj\u001b[38;5;241m.\u001b[39m_values, value_columns\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, fill_value\u001b[38;5;241m=\u001b[39mfill_value\n\u001b[1;32m 522\u001b[0m )\n",
+ "File \u001b[0;32m~/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pandas/core/reshape/reshape.py:154\u001b[0m, in \u001b[0;36m_Unstacker.__init__\u001b[0;34m(self, index, level, constructor, sort)\u001b[0m\n\u001b[1;32m 146\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m num_cells \u001b[38;5;241m>\u001b[39m np\u001b[38;5;241m.\u001b[39miinfo(np\u001b[38;5;241m.\u001b[39mint32)\u001b[38;5;241m.\u001b[39mmax:\n\u001b[1;32m 147\u001b[0m warnings\u001b[38;5;241m.\u001b[39mwarn(\n\u001b[1;32m 148\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThe following operation may generate \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mnum_cells\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m cells \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 149\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124min the resulting pandas object.\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 150\u001b[0m PerformanceWarning,\n\u001b[1;32m 151\u001b[0m stacklevel\u001b[38;5;241m=\u001b[39mfind_stack_level(),\n\u001b[1;32m 152\u001b[0m )\n\u001b[0;32m--> 154\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_make_selectors\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
+ "File \u001b[0;32m~/miniforge3/envs/pypsa-earth/lib/python3.10/site-packages/pandas/core/reshape/reshape.py:210\u001b[0m, in \u001b[0;36m_Unstacker._make_selectors\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 207\u001b[0m mask\u001b[38;5;241m.\u001b[39mput(selector, \u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[1;32m 209\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m mask\u001b[38;5;241m.\u001b[39msum() \u001b[38;5;241m<\u001b[39m \u001b[38;5;28mlen\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mindex):\n\u001b[0;32m--> 210\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mIndex contains duplicate entries, cannot reshape\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 212\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mgroup_index \u001b[38;5;241m=\u001b[39m comp_index\n\u001b[1;32m 213\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmask \u001b[38;5;241m=\u001b[39m mask\n",
+ "\u001b[0;31mValueError\u001b[0m: Index contains duplicate entries, cannot reshape"
+ ]
+ },
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABcoAAAfFCAYAAAChw/+xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVhUaRvH8e/QYACKhBgoomIrdoG9dndjYqPYuuqaa3e95tq1xrprK7ZrrN3dKKKgoiAx7x/I6JAzyAywe3+ua65L5zznzH0OM+d38jkKpVKpRAghhBBCCCGEEEIIIYT4jzJI6QKEEEIIIYQQQgghhBBCiJQkB8qFEEIIIYQQQgghhBBC/KfJgXIhhBBCCCGEEEIIIYQQ/2lyoFwIIYQQQgghhBBCCCHEf5ocKBdCCCGEEEIIIYQQQgjxnyYHyoUQQgghhBBCCCGEEEL8p8mBciGEEEIIIYQQQgghhBD/aXKgXAghhBBCCCGEEEIIIcR/mhwoF0IIIYQQQgghhBBCCPGfJgfKhd6tWrUKhUKh9sqSJQseHh7s3r07VnuFQkGfPn1SoNLU7cWLF4wdO5ZLly7pZPpOTk6x/k5xvZYvX46VlRW1a9eONY1Zs2ahUCho3bp1rGHjx49HoVBw5coVADp16kT69Ol1Mi9CCCG0EzOrzczMsLe3p0qVKkyePJnXr1/HGmfs2LEJ5sWjR4/0PyOp2KdPnxg7diy+vr46mb6Hh4dGOT527FgKFSqEq6trrGls374dhUJBuXLlYg1bs2YNCoWCXbt2Ad/+/m/evNHJ/AghhEjclStX6NKlC87Ozpibm2Nubo6Liws9evTg/Pnzam0TW28XKlQIDw8PPVSdtkh+C/HvZpTSBYj/rpUrV5I/f36USiV+fn7Mnz+f+vXrs2vXLurXr5/S5aV6L168YNy4cTg5OVGsWLFkn/727dsJDQ1V/X/ZsmUsX76cvXv3YmlpqXrf2dmZHTt24OvrS3h4OEZG31Yrvr6+pEuXjiNHjsSavq+vL5kzZ6Zw4cLJXrsQQojkEZ3VYWFhvH79mhMnTvDrr78yffp0Nm3aRPXq1WONEzMnojk4OOij5DTj06dPjBs3DkAnByIWLlzI+/fvVf//888/mTBhgupvGi1btmwEBAQwf/58/Pz8sLe3Vw2LzvHz58/z4cMHMmTIoDbMwMCAypUrJ3vtQgghtLdkyRL69OlDvnz56N+/PwULFkShUHDz5k02bNhAqVKluHfvHs7Ozildapom+S3Ev5scKBcpplChQpQsWVL1/59++glra2s2bNggB8pTgeLFi6v9f+/evQC4ublhY2OjNqxKlSrs3r2b8+fPU7ZsWQAiIyM5fvw4Xl5eTJ8+nZs3b6rOdn/58oXTp09Tp04dFAqFHuZGCCFEUsTM6qZNm+Lt7U3FihVp0qQJd+/exc7OTm2cuHJC6F+BAgXU/n/r1i0g9t8UonJ8/vz5+Pr60qpVK9X7vr6+dO3alYULF3LixAm1u8d8fX0pXrw4VlZWupsJIYQQGjl58iS9evWibt26bN26FRMTE9WwqlWr0rt3b7Zs2YK5uXkKVik0IfktRMqSrldEqmFmZoaJiQnGxsZ6+bzz58/ToEEDMmXKhJmZGcWLF2fz5s2q4W/evCF79uyUL1+esLAw1fs3btwgXbp0tG/fXvWeh4cHhQoV4vjx45QtWxZzc3McHR0ZPXo0ERERWtWlVCqZOnUqOXPmxMzMjBIlSrBnzx48PDxUZ6x9fX0pVaoUAJ07d1a7/Sr6VqrTp0/HmvYvv/yCsbExL1680KqmxFSpUkVVV7TLly/z7t07unfvjoODg9pV5X///TefP39Wjfe9e/fuUadOHdKnT0/27NkZNGiQ2pXtQgghUlaOHDmYMWMGHz58YMmSJSlWx927d2nTpg22traYmpri6urKggULVMNDQkIoXrw4efLkISgoSPV+9FVXHh4eqoyO7v7r+vXrVKtWjXTp0pElSxb69OnDp0+ftK5t1apV5MuXT1XXb7/9RqdOnXBycgLg0aNHZMmSBYBx48apcrxTp04cP34chULBhg0bYk33t99+Q6FQcO7cOa1rSkj0bd7f53hAQABXr16lbt26uLm5qeX406dPefDgQZw5/urVK1q3bo2lpSV2dnZ4enqqLX8hhBDJb9KkSRgaGrJkyRK1g+Tfa968OVmzZtVzZbFJficfyW8hkp8cKBcpJiIigvDwcMLCwnj27BkDBgwgODiYNm3a6Pyzjxw5QoUKFQgMDGTx4sXs3LmTYsWK0bJlS1atWgWAjY0NGzdu5Ny5cwwdOhSIus2qefPm5MiRg8WLF6tN08/Pj1atWtG2bVt27txJs2bNmDBhAv3799eqtnHjxjF06FBq1KjBjh078PLyolu3bty+fVvVpkSJEqxcuRKAUaNGcfr0aU6fPk3Xrl1p2bIl9vb2ahsbAOHh4SxZsoTGjRsn+wZS0aJFsba2VgvhI0eO4ODggIuLC5UrV1YL7+h2MQM6LCyMBg0aUK1aNXbu3ImnpyezZs3i119/TdZ6hRBC/Jg6depgaGjIsWPHYg2LzvfvX9qeNE7MjRs3KFWqFNeuXWPGjBns3r2bunXr0q9fP9Xt0GZmZmzevJnXr1/j6ekJRN3t1LZtW5RKJRs2bMDQ0FA1zbCwMOrUqUO1atXYsWMHffr0YcmSJbRs2VKr2latWkXnzp1xdXVl27ZtjBo1ivHjx3P48GFVGwcHB9WdWl26dFHl+OjRo6lUqRLFixePleMA8+fPp1SpUqqT5cklU6ZMFClSRC3Hjx49iqGhIeXLl8fd3V2jHIeouw7y5s3Ltm3bGDZsGOvXr8fb2ztZ6xVCCPFNREQER44coWTJkknq5iyu3A4PD9dBpZLfkt9CpAFKIfRs5cqVSiDWy9TUVLlw4cJY7QFl7969k7WG/PnzK4sXL64MCwtTe79evXpKBwcHZUREhOq9X3/9VQkot2/fruzYsaPS3NxceeXKFbXx3N3dlYBy586dau9369ZNaWBgoHz8+LFGdb17905pZmambNy4sdr7J0+eVAJKd3d31Xvnzp1TAsqVK1fGms6YMWOUJiYmylevXqne27RpkxJQHj16VKNa4pomoPT3949zeKNGjZTp0qVTLdP69esrW7VqpVQqlcqFCxcqs2TJooyMjFQqlUpllSpVlLa2tmrjd+zYUQkoN2/erPZ+nTp1lPny5UtSzUIIIZImOqvPnTsXbxs7Ozulq6ur6v/RORHXy9nZOVnrq1WrljJbtmzKoKAgtff79OmjNDMzU759+1b1XnT+zZ49W/nzzz8rDQwMlPv371cbLzqD5syZo/b+xIkTlYDyxIkTGtUVERGhzJo1q7JEiRKqzFMqlcpHjx4pjY2NlTlz5lS95+/vrwSUY8aMiTWd6OV/8eJF1Xtnz55VAsrVq1drVEt804zvbzpgwAAloHzx4oVSqVQq+/btqyxbtqxSqVQq//rrL6WhoaFqeXfu3FlpaGiofP/+vWr86L//1KlT1abbq1cvpZmZmdryEEIIkXz8/PyUgGrf63vh4eHKsLAw1ev7dXFCuR39+n7/MzlIfmtP8lsI/ZIrykWK+e233zh37hznzp1jz549dOzYkd69ezN//nytpxUZGanxlWv37t3j1q1btG3bFkBtvDp16vDy5Uu1q7cHDx5M3bp1ad26NatXr2bevHlxPoAyQ4YMNGjQQO29Nm3aEBkZGecVd3E5ffo0ISEhqtqilS9fnpw5c2o0DQAvLy8A/ve//6nemz9/PoULF9bZQzuqVKlCcHAw586dU/VPHt1VjLu7O/7+/ly/fp3Q0FDOnDkT51lshUIRq3/6IkWK8PjxY53ULIQQIumUSmWc7x88eFCV79GvHTt2JDgtbXI8JCSEQ4cO0bhxYywsLGLleEhICGfOnFG1b9GiBV5eXgwePJgJEyYwYsQIatSoEee0Y+Zv9F1ucT2UOi63b9/mxYsXtGnTRu0ZHDlz5qR8+fIaTQOgdevW2Nraql2VNm/ePLJkyaL1FXKaitmNmq+vryrHK1asCKDanvH19aVkyZJqDweLFnNbqEiRIoSEhPD69Wud1C2EECJ+bm5uGBsbq14zZsyI1Sau3D537pxGD/2U/FYn+S1E2icHykWKcXV1pWTJkpQsWZKffvqJJUuWULNmTYYMGUJgYKBW0/L09FTbAKhWrVq8bV+9egWAj4+P2jjGxsb06tULiOqfPFp0n2MhISHY29ur9U3+vZgPMwNUT54OCAjQaD6i233/xOqY09KEnZ0dLVu2ZMmSJURERHDlyhWOHz9Onz59NJ6GtqID+siRI1y8eJHAwEDc3d2BqAeSZMmSBV9fX86cORNv/+QWFhaYmZmpvWdqakpISIjO6hZCCKG94OBgAgIC4uzKq2jRoqp8j34VKlQowelFP0Mj+pXQznlAQADh4eHMmzcvVo7XqVMHUM9xiNpOCAsLw8jIiH79+sU5XSMjIzJnzqz2XkrluKmpKT169GD9+vUEBgbi7+/P5s2b6dq1K6amphpPRxvu7u4YGBhw5MgRAgICuHbtmirHM2TIQPHixfH19eXJkyc8fPgwzhwHYi3D6Ho/f/6sk7qFEOK/zsbGBnNz8zgvLlq/fj3nzp1j165d8Y4fV26XLFky1n5ZXCS/1Ul+C5H2GaV0AUJ8r0iRIuzbt487d+5QunRpjccbO3as2kHguM6QRrOxsQFg+PDhNGnSJM42+fLlU/375cuX9O7dm2LFinH9+nV8fHyYO3durHGiD8B/z8/PD4gdOvGJbhc9XsxpRT9ERBP9+/dnzZo17Ny5k71792JlZRXrTHtyKlSokOpguKmpKXZ2duTPn181vHLlyqrwhrj7RRNCCJE2/Pnnn0RERKiuWPpR3bt3p169eqr/J7QzaW1tjaGhIe3bt6d3795xtsmVK5fq38HBwbRv3568efPy6tUrunbtys6dO2ONEx4eTkBAgFpmJ3eOa8PLy4spU6awYsUKQkJCCA8Pp2fPnlpNQxuWlpaqnWlfX18MDAyoUKGCari7uztHjhxR3VUnOS6EEKmDoaEhVatWZf/+/bx8+VKtn/ICBQoAUQ+h1AXJ79gkv4VI2+RAuUhVLl26BKB6krSmnJycND6InC9fPlxcXLh8+TKTJk1KsG1ERAStW7dGoVCwZ88e1q1bh4+PDx4eHrEOsn/48IFdu3ap3bK0fv16DAwMNO7upGzZspiZmbFu3TqaNm2qev/UqVM8fvxYbR4TO8Pr5uZG+fLl+fXXX7l27Rrdu3cnXbp0GtWRFAqFAnd3d/bs2YOBgYHqLHY0d3d3xo0bp7oCMW/evDqrRQghhO48efIEHx8fLC0t6dGjR7JMM2vWrBo/aNrCwoIqVapw8eJFihQpgomJSYLte/bsyZMnTzh79iy3bt2iWbNmzJo1K84HVK1bt07tirX169cDaHxCIF++fDg4OLBhwwYGDhyoun378ePHnDp1Sm0eE8txBwcHmjdvzsKFC/ny5Qv169cnR44cGtWRVFWqVGH69OmsX78eNzc3tQsP3N3dmTVrFjt27MDY2FhtJ1wIIUTKGj58OHv27KFnz55s3boVY2NjvXyu5Hdskt9CpG1yoFykmGvXrqmeph0QEMDvv//OgQMHaNy4sdqZZF1YsmQJtWvXplatWnTq1AlHR0fevn3LzZs3+eeff9iyZQsAY8aM4fjx4+zfvx97e3sGDRrE0aNH6dKlC8WLF1erM3PmzHh5efHkyRPy5s3LX3/9xf/+9z+8vLw0DkZra2t8fHyYMGECXbt2pXnz5jx9+pSxY8fGuuXL2dkZc3Nz1q1bh6urK+nTp4+1odK/f39atmyJQqFQdSujS1WqVGHr1q3s378/Vl/z7u7uBAQEcOzYMVWfcUIIIVK36KwODw/n9evXHD9+nJUrV2JoaMj27dvjPLF94cIFLC0tY71foEABMmbMmCx1zZkzh4oVK1KpUiW8vLxwcnLiw4cP3Lt3jz/++IPDhw8DsGzZMtauXcvKlSspWLAgBQsWpE+fPgwdOpQKFSqo3b1mYmLCjBkz+PjxI6VKleLUqVNMmDCB2rVrq/r4TIyBgQHjx4+na9euNG7cmG7duhEYGBhnjmfIkIGcOXOyc+dOqlWrRqZMmbCxsVE7Kd6/f3/KlCkDwMqVK39wqSUuekd7+/bt+Pj4qA2rVKkSADt37qR8+fI6PfkuhBBCOxUqVGDBggX07duXEiVK0L17dwoWLIiBgQEvX75k27ZtAMmWw0kl+a0bkt9CJKOUfpqo+O+Jfmrz9y9LS0tlsWLFlDNnzlSGhISotQeUvXv3TvY6Ll++rGzRooXS1tZWaWxsrLS3t1dWrVpVuXjxYqVSqVTu379faWBgEOtp1gEBAcocOXIoS5UqpQwNDVUqlUqlu7u7smDBgkpfX19lyZIllaampkoHBwfliBEjlGFhYVrVFRkZqZw8ebIye/bsShMTE2WRIkWUf/zxh9Ld3T3WU8c3bNigzJ8/v9LY2DjOJ2+HhoYqTU1NlT/99JNWNcQl+mnY/v7+8ba5ceOG6m967dq1WPOVKVMmJaD83//+F2vcjh07KtOlSxfv5wohhNCfmFltYmKitLW1Vbq7uysnTZqkfP36daxxotfX8b0OHDiQrDU+fPhQ6enpqXR0dFQaGxsrs2TJoixfvrxywoQJSqVSqbxy5YrS3Nxc2bFjR7XxQkJClG5ubkonJyflu3fvlErltwy6cuWK0sPDQ2lubq7MlCmT0svLS/nx40eta1u2bJnSxcVFaWJiosybN69yxYoVyo4dOypz5syp1u7gwYPK4sWLK01NTZVArFqVSqXSyclJ6erqqnUNMUX/Tc+dOxdvm/fv3yuNjIyUgHL37t2xhhcrVkwJKEeOHBlrWHzbCdGf+/Dhwx+eByGEEAm7dOmSsnPnzspcuXIpTU1NlWZmZso8efIoO3TooDx06JBa28T27woWLBhr/zM5SH5rR/JbCP1SKJVKpa4Pxgvxb+fh4cGbN2+4du2aTj8Dvj3NWhN//PEHDRo04M8//1Q9IEUIIYQQ6jp16sTWrVv5+PGjTj/D19dXq35ir1y5QtGiRVmwYIFe7gwTQggh0hLJbyFEcpOuV4T4F7px4waPHz9m0KBBFCtWjNq1a6d0SUIIIYTQ0P3793n8+DEjRozAwcGBTp06pXRJQgghhEiE5LcQaZ8cKBdCTyIiIkjoBg6FQoGhoWGyfFavXr04efIkJUqUYPXq1aqHkURTKpVEREQkOA1DQ8NY4wkhhBD/VZGRkURGRibYxsgoeTatx48fz5o1a3B1dWXLli1YWFioDZccF0IIITQj+S2E0IZ0vSKEnnh4eHD06NF4h+fMmVOr27l+xKpVq+jcuXOCbY4cOaLxU8KFEEKIf7tOnTqxevXqBNvoa7Pa19eXKlWqJNhm5cqVciWbEEKI/zzJbyGENuRAuRB6cvv2bT58+BDvcFNTUwoXLqyXWgICAnj48GGCbfLly0eGDBn0Uo8QQgiR2j169Ig3b94k2KZkyZJ6qeXDhw/cvn07wTa5cuUic+bMeqlHCCGESK0kv4UQ2pAD5UIIIYQQQgghhBBCCCH+0wxSugAhhBBCCCGEEEIIIYQQIiXJwzzjUMOwZUqXkDTKhB9QIYQQcTkQuSVZpxfpl1er9gb2d5L188V/Uw2D5ildghBC6I1kt/g3kOwWQvyXSHanDXKgXAghRLKKRLuTdnJrkxBCCJGyJLuFEEKItEWyWzfkQLkQQohkFaHl3S0SREIIIUTKkuwWQggh0hbJbt2Q5SSEECJZRSLPiBZCCCHSEsluIYQQIm2R7NYNOVAuhBAiWWl7C5gQQgghUpZktxBCCJG2SHbrhnRRI4QQIllFKJVavbRx7Ngx6tevT9asWVEoFOzYsUNtuFKpZOzYsWTNmhVzc3M8PDy4fv26WpvQ0FD69u2LjY0N6dKlo0GDBjx79kytzbt372jfvj2WlpZYWlrSvn17AgMDk7I4hBBCiFRPslsIIYRIWyS7dUMOlAshhEhWkSi1emkjODiYokWLMn/+/DiHT506lZkzZzJ//nzOnTuHvb09NWrU4MOHD6o2AwYMYPv27WzcuJETJ07w8eNH6tWrR0REhKpNmzZtuHTpEnv37mXv3r1cunSJ9u3bJ22BCCGEEKmcZLcQQgiRtkh264ZCqdTytMJ/QA3DlildQtJo2ZG/EEIAHIjckqzTC3iRTav2mbM+S7xRHBQKBdu3b6dRo0ZA1FntrFmzMmDAAIYOHQpEncW2s7Pj119/pUePHgQFBZElSxbWrFlDy5ZR6/oXL16QPXt2/vrrL2rVqsXNmzcpUKAAZ86coUyZMgCcOXOGcuXKcevWLfLly5ekeoVu1TBontIlCCGE3kh2S3b/G0h2CyH+SyS700Z2yxXlQgghkpW2Z7ZDQ0N5//692is0NFTrz3348CF+fn7UrFlT9Z6pqSnu7u6cOnUKgAsXLhAWFqbWJmvWrBQqVEjV5vTp01haWqrCGqBs2bJYWlqq2gghhBD/JpLdQgghRNoi2a0bcqBcCCFEstK2r7TJkyer+iSLfk2ePFnrz/Xz8wPAzs5O7X07OzvVMD8/P0xMTLC2tk6wja2tbazp29raqtoIIYQQ/yaS3UIIIUTaItmtG0Yp9slCCCH+lcK07P9s+PDhDBw4UO09U1PTJH++QqFQ+79SqYz1Xkwx28TVXpPpCCGEEGmRZLcQQgiRtkh260aav6J82bJldOzYkZUrVwKwadMmXF1dyZ07N2PGjEnh6oQQ4r8nQqndy9TUlIwZM6q9khLY9vb2ALHOPr9+/Vp1ttve3p4vX77w7t27BNu8evUq1vT9/f1jnTUXSSPZLYQQqYtkt0iMZLcQQqQukt26kaavKJ89ezajRo2iVq1ajBw5khcvXjBr1iy8vb2JjIxkxowZODo60r17d53X0v7nZnQYo/4wkrd+gbR07BHvOFXbVKSFTwMcXewJDvrE+X2XWTJ4DR/eftR1uQDU61mT+j1rYueUBYDH15+xdvwWzu29FGf7wSt6U7OTR6z3H11/SrfCA2OPoCOFK7nS3KcBed1ykzlrJsY0nsqpnefibZ9Sddf3qklzn4ZkdrDi0fVnLPJeybUTt5JcY8XGpWk9vAlZ89hjaGzIi7t+bJ35BwfXHkuRmis2Lk29nrVwLuaEsakRj68/Y824zZzff1mtXTpLCzwntqZC4zJksE6H38PXLPH5jbN7LqZI3ZnsregxvSMubrlxdLFnx7w9LPJepdamdtdq1GjvjlOh7ADcvfCAFSM3cPvcPb3UCFCkcgF6zOiIU8FsBLx4x+ZpO9m95IBqeM2OHgxe2TvWeHXM2xAWGgZo/1tJLin1WOFcuXJhb2/PgQMHKF68OABfvnzh6NGj/PrrrwC4ublhbGzMgQMHaNGiBQAvX77k2rVrTJ06FYBy5coRFBTE2bNnKV26NAB///03QUFBlC9fPgXm7N8lNWW3tjkIYGxiRLufm1OtbSWs7a148yyA9ZN+Z9/KIzqvN1paycGYtF0PRitYPh8zfMfx6NpTepYYrLfPT2w9DFCxSRk6/dIKB2c7Xt5/xcpRGzi546xqePsxzekwpoXaOG/9AmmZtVucnznz2C8UruhKeFg4D6480UuN2i6b/ou7U697DRZ6r2T7nL9U708/PJaiHgXV2kZERHL/0qNUMx/txzTHo2UFsmTPjEIBCoUBBgYKHl57mipqNDQypPOEVpSuXQL73LZ8CvrEPwevsnz4OgJeftvRdMid/DuPkt0iIakpu1sNa0TFxmXInt+R0M9fuHHqNsuGrePZnRfxjqPpfouuJff+YUrXqI/9qpTIbm23D1NjdmuaJ9/739WZOBXMTtiXcB5eTR3zAVG/37rda+DilhtLm4wMqzme6h3cKV27OCbmJjy/85IZXRdx958HcdfpXoAZR8bFet/TtT9Pb8e/3tBEluw29J3fhWJVC/Hl8xcObzjBUp81hIeFA2CXMwtrHy78oc9IiGS3bqTpA+VLlixh6dKltGnThosXL1K6dGkWL15Mly5dAMiWLRsLFizQS2ADPLz2lKE1x6v+HxkR/9e2YIV8DFnVm8UDV3Nm9wUyO2ai/8JuDPxfD8Y1naGPcnnzLIDlw9fx/F7UWaCaHT0Yt2MoXiUG8/hG7KfhLhiwkmXD16n+b2hkwJJL0zm29bRe6o1mls6UB1ces3/VEcZsS3yHOSXqdm9RHq9ZnZnX+39cP3mbuj1qMOmvkXQp6I3/0zdJqvH924+sn/Q7T289J+xLOGXrueGzoheBr4OSZSNP25oLVy7APwcvs2LkeoIDg6nVuQq/7BpG37LDuX/pEQBGxkb8un80ga/fM775DPyfBZAluw2fP3z+4XqTWrexqTFBb96zftI2mg6oF+c0i7oX5MjGE9w4dYcvIV9oMaQhU/aNomuhgQS8eKvzGu2dbJnw53D2LDvEr+3nUrBCPvou6Eag/3tO/P63ql1w0Cc65++vNm70QXLQ/reSXCLQ3W1SHz9+5N69bxvWDx8+5NKlS2TKlIkcOXIwYMAAJk2ahIuLCy4uLkyaNAkLCwvatGkDgKWlJV26dGHQoEFkzpyZTJky4ePjQ+HChalevToArq6u/PTTT3Tr1o0lS5YA0L17d+rVq5diT97+N0lN2a1tDgKM2jQQaztLZnRdxIt7fljZWmJopN8b9NJCDsak7XowmkVGC4as7sPFQ1extrPS2+drsh52LZuXURu9WfXzRk5uP0uFxqUZtckb70qjuXX2u/XUtScMrZH49mG3qe0pVD4/H94Fs3vxPkwtTPVSozbLpnzDUriWduHN87iz8M//HeTO+fv0ndeFZcPXcfX4Taq1rZRq5uPZnZfM77ucHK6O9JzRkZtn7uJczIk75++nihpNLUzJUzw3ayds5cHlx2SwTofXrE78snMovUsPA8DMwpQp+0bFufx/hGS3SEhqyu4ilQuya+E+bp+79/VgYOuo7fSC3oR8ivuhdJrst+iaLvYPU7pGXe9XpVR2a7N9mFqzW5M8+d7gVb3J4eoIwOJBq3DM45Aq5gPALJ0Z10/d5tjW0wz8nxeDV/Xm/L7LjKgzicDXQWR1tuNjYHCC3yWATvn68en9t+MQQf7vEx0nIQYGBkzcPZxA//d4VxpNxswZGLKqDwqFggX9Vqi1HVJ9HI+uP2Pzy//90GfGJNmtG2m665XHjx9TsWJFAIoXL46hoSFly5ZVDa9UqRL379/XWz2R4RG8exWkegW9+RBvW9cyLrx69Jod8/fi98if6ydv8+fSg+R1y623es/svsDZPRd5fvclz+++ZOWoDXz+GIJr2bxxtv/0/hPvXgWqXnlLOpPeOp1er6IDOLf3EqtGb+TE9rOJNyZl6m7qXY+9Kw6zZ/lhntx6ziLvVfg/fUN9r5pxttekxitHb3Byx1me3HrOywev2D73Lx5ceUzBivlTpOZF3qvYPG0Xd87f5/k9P1aM3MDzuy8pV7+kqs1PnlXIkCk9YxpP5fqp27x+8obrJ2/x4MrjZKk5KXW/euzPwgErObjmGMFBn+JsM6X9XP5YtJ/7lx/x9PYLZnVbgsJAQfFqhfRSY72eNfB/8oZF3qt4cus5e5YfZt/KwzQf1ECtnVKpVPvevHsVqDZc299KcolUavfSxvnz5ylevLjqzPXAgQMpXrw4P//8MwBDhgxhwIAB9OrVi5IlS/L8+XP2799PhgwZVNOYNWsWjRo1okWLFlSoUAELCwv++OMPDA0NVW3WrVtH4cKFqVmzJjVr1qRIkSKsWbPmxxeOSFXZrW0OlqxVjCLuBRhZdzIXD13l1WN/bp+7x43Td/RSb7S0kIMxabsejDZgcXcObzjBjTM/tox1sR5u0r8uFw5cYeOUHTy9/YKNU3Zw8dA1mvSvqzatyPBIteUf9Cb2jlnmrJlo3K82R7ecIjgomHevg/RWo6bLJnPWTPSZ14XJ7eaorpSKKfRTKD95VmXPisNsm7WbO+fvp6r5OLLhBBcPXaVa28rsWX6YUfUmY5HBnGNbTqWKGj+9/8SwWuM5tuU0z+684Obfd5nfbwV5SzqTJbsNEHWxjZ1T7Adf/SjJbpGQ1JTdI+pMZP9qXx7feMaDK4+Z7rkQu5xZcElgP1qT/RZd08X+YUrXqOv9qpTKbk23D1NzdmuSJ9FyF8lJlZYVOLgm6k71N8/eppr5ADi49hhrx2/ln4NXgag786Z3Wcjtc/d49difi4ev8fJB7O47Ygp8HaT2m4qMVL9woVYnD5Zfn8Wfn9ax/MbsRLdR3WoWIUeBbPzafi73Lz3i4qGrLPFZTZ2u1bDIYK7W9n3Ax1j76slBsls30vSBcgsLC4KDv505ypIlC+nTp1drEx4e94a8LmR1sWfj00X8dm8eI9b3xz5X/BuxN07fwSZbZkrXLgaAla0llZuW4exfydcdhTYMDAzwaFkes3SmGu/w/+RZlYsHr/L6SfxXgqVGuq7byNiIvG65uRDjKu8LB65QsJxmZ8U0qbF41UJky5eVq8du/lC9kDw1KxQKLDKYq3UdVK5+SW6cvkPfBV3Z/PJ/LL0yg9bDG2NgkDyrnuSoWxOmFiYYGRslqVukpNToWjYvFw5cUXvv/L7L5C2ZG0Ojb6Fint6MtQ8Xsv7JYsbvGoZzMSet69OFCBRavbTh4eGBUqmM9Vq1ahUQ9T0cO3YsL1++JCQkhKNHj1KokPqGuJmZGfPmzSMgIIBPnz7xxx9/kD17drU2mTJlYu3atbx//57379+zdu1arKysfmSxiK9SW3ZH0yQHyzUoyZ3z92kxpCEbni5h5a05dJ/WHhMzEz1X+2P0nd9JXVfX6uRBVmc71ozbovfP12Q9XKBcXi4cUJ/m+f2XKFBefZpZXezZ+GwJv91fwIj1A2JtHyoUCoat6YehoSG+m07ptUZNl41CoWDob33ZMn1XvHdbAFRtU4n8pfNQpk4Juk9rj3l6s1Q1H9+3vXToKnW6V+djYDD3Lz9OVTV+L52lBZGRkQR/vVrO2NQYlFru7WpAslskJLVmN0T9RgCtttPj2m/RJX3tH/6I1LZfldLZHS2+7cO0kN0xxcwTAFNzE0asH4CBkWGsbvxS63w8ufGM0ZsGstlvGYsuTKV212rxtv3eon+msfH5UqYe+DlWV3G1u1aj84TWrBy1gS4FvFk5cj2dfmlFjQ7u8U6vQLl8PLr2RK0rm/P7LmNiZhLrxN0vO4ey2W+ZRnVqQ7JbN9J01yv58+fnypUruLq6AvD06VO14bdu3cLJySnBaYSGhhIaqn6LVqQyAgOFYTxjxO3W2XtM7bSAZ3deYm1nRdsRjZlzYjxdCw+KMwRunL7DlPbzGLlhACZmxhgZG3Fq1znm91up1ef+KKdCOZh7aiImZsZ8/hjCuCbTeHIz/h2gaJnsrShduziT2s7RQ5XJRx91W9pkwNDIMNYZw3evArG2t0p0/IRqtMhowcZnSzA2NSIyIpK5vZfxz8ErcUxFvzUDNBtUH7N0phzd/G1DwT63HcWqFuLQ+hOMrDsZRxd7+s7viqGRIWvHb00VdWui65S2vHn+VnUWWxtJqTGTvRXn42hvZGyEpU0G3voF8vTWc6Z1XsDDq0+wyGhO4351mX1iAj2L+ahuE0wpurwFTKR9qSm7QbscdMhlR6GK+fkSEsbYJtOwtMlA3wVdyZApPTO6LNL6s1NCSuR3UtaDjnns6TK5Ld6Vf06wKztdfb4m62FreyvevQqK0SZIbZq3/r7L1I7zv24fWtJ2ZFPmnJxI10Lequ3DlkMbYmAABoYGeq9R02XTcmhDIsMj2D73L+JzaP1xPr3/xKiNA/lr2UFqda5K7iJODKs1PtXMB4BHq/IYGhkycpM3b18GMrTmeN4HfEhVNUYzNjWm6+S2HF5/gk9fu627eeYuIcGhqoODyUWyWyQktWX393rO6MjV4zd5dP1p4o2/imu/RZd0uX+YXFLbflVKZjckvn2YFrL7e3HlCUDPWZ24f/khOQtkSxPzAVC5eTm2zvyD9ZN/J3/pPPSe40lYaJjqiviY3r4MZGb3xdy98ABjU2Oqt6/M1IM/41NlLFePR1102G5UM5b4/Ka6W9Pv0WtyFMhG3e41OPDb0Tina21vRWCM+fsYGMyX0DAyfa3/88cQFg1cxfWTt1FGRrLg3K/xzldSSHbrRpo+UP7rr7+SLl26eIc/efKEHj3if5gmwOTJkxk3Tr1j/1wUwFmhXRcL3z/Y4dG1p9w8fYfVd+dSs4M722b/Gat9DldHes/uxNrx2zi//zKZHazp9mtb+i/qysxuS7T67B/x7PYLehYfTHorCyo2LcvgVX0Y5DEm0YPlNTt58DEwmFM7dP9gwOSkz7pjXuyjUChQanAFUEI1fv7wmZ7FB2Oe3ozi1QrRc0ZHXj54xZWjN1K05iqtKtB+THPGNJpK4Hd9fRkYKAh8/Z7Z3ZcQGRnJ3X8ekDlrJpr7NEiWA+U/WrcmWgxugEerivhUGaPW/7e2tK0x5jCFQqE2nZt/3+Xm33dVw6+fvM2iC1Np2Lc2C/vr94RbTJFKCWwRP91ltyvOFIxnjPhpk4MGBgqUSpjcbi6f3kfdYrxk0GpGbxnEvN7L+RLyRevP17eUzG9N14MGBgYMX9ef38Zu5vndl3r//G/tE14PxzVRhUL9PfXtQ6K2D+/Np2ZHD7bN2o1Lidw07leXkXUmsuifaSlSYxxN1D43usZebkPirQNgz7JDZHawBuCfg1c5+9dFFp7/lTzFc6WK+Yh24+RtAGb3WIJruXyM2jSQfmWHp6oaIepBbCM3DEBhoGBe729XoQW9ec/4FjOYsm90vLUmhWS3SEhqy+5ofed3IVeRHHhX0vz3EN9+iz7oYv8wuaW2/aqUysWEtg/TQnZ/L748KVe/JMWrFGJEnUlUbV0p1c9HtCe3nrNi5AYA7l96RM6C2anfs1a8B8qf3Xmh9rDfm2fukCVbZpoPasDV4zextMmIbQ4bBi7zwntpT1U7QyMDVZdCE/8cQeFKUScKXz32Vz1QN646v6//fcAHfo/jeGBykezWjTR9oLxChQoJDu/Vq1ei0xg+fDgDB6o/NbqxlecP1QUQ8imUh9ee4OhiH+fw1sMacf3UHbbM+AOAh1ef8Dk4hNnHfmHV6E289Qv84Ro0ER4Wzov7UVef3rnwgHwlnWncvw5zei5NcLyfOlfl4Npj8fZRmVrpo+6gNx+ICI9QnUWMZmVrGeuMY1wSqlGpVKr+XvcvPyKHazZaD2v8wwfKf6Rm9xblGbjMi/EtZnLxkPqVAW9fBhIeFq7W/9eTm8/I7GCNkbHRD/8dfnRZJ6bZoPq0Ht6EoTV+4eHVJ3qr8a1fIJnsrWO1Dw8L531A3M8+UCqV3D5/D8c8DkmqMznJmW2REJ1lt2WnJNWjTQ4GvHzHm+dvVQfJAZ7cfI6BgQFZsmVK8bs5NJES+a3tetA8gxn5SuUhT/Fc9JkX9aA4hYECAwMD9n7ZyLBaE7h05JrOPh80Ww+/84t9xZOVrWWsq6e+F/IplIdXn+DoErWuLlQpP1a2GZl/dgpKpZJZx3/B0NCQHtM70qR/XU7vOq/TGjVZNtE1rnv87a4JQ6NvNbbP3Vv1/vfTO7njLGFfwnF0cdD5stbmb/z6aQAR4RG8D/jIzK6LWHV7Lj91qZqqajQ0MmTUpoHY57JlcLVxalf/AbFud08Okt0iIaktuwF6z/WkbP2SDHIfE+8DhmNKaL9Fl3S5f5hcUtt+VUpnd0Lbh2khu6MllCfFqhbCwdmOFTdnq+YD4OetPlw7fpMHVx6nmvn4Xsz+yJ/cfE6lJmXjaR23W3/fpVrbSkDUNibArO6LufX3PbV20Xc1zuy2GFPzqK4Wo3+H7/wCyV86j1r79FbpMDYxSnBbMDlJdutGmu6jPDmYmpqSMWNGtdeP3v4FYGxiRI78jrx9GRj351qYxnp4QPSPMPpMXEpQKBSYmBgn2KaIewEcXRzYu/ywnqpKHvqqOzwsnDsXHlCiRhG190tUL8L107cTHFfrGhWKqL4qf1BSa67SqgKDV/Zmcts5nP3rn1jDr5+6RdY89mrf6Wx5sxLw4m2ybOj9yLJOTHOfBrQb1YwRtSdy58IDvdZ488wdSlRXb+9Wsyh3zj8gIjwi3s9yLurEW7938Q7XlwgMtHoJoS1dZTcknIPXT90mc1ZrzNKZqd5zzOtAREQk/s8020lPSSmV39quBz+9/0y3wgPpWXyw6rV7yQGe3HpOz+KDufXd3TS6+HzQbD184/Qd3GK2qVGUG6fizx9jEyNyuDry9mt/lgfXHKNHUR96Fh/Mw6tPOLblDG+ev2XL9F0M/2mizmvUZNl8X2P06/sav/f99JwKZsfYxIi3L9+livmIq0ZAtS2VWmqMPqjh6GLP0Brj9daHsmS30LXkzO4+87pQsXEZhlQbh9+j1xqNk9h+iy7pdf8wiVLbflVqym5Q3z5MC9kNiefJxik7Ys0HwOKBq5juuTDVzEdMdjmzqP0/W14HXj32j7d9XJyL5SLg67G6wNdB+D8LwCG3HS/u+6m9otcvAS/eqt6Lfk7AjdO3cSqUQ+1Av1vNonwJ+cLdHzh+oA3Jbt34Vy+pjh07UrVqVb18Vvep7ShS2RV7pyzkL52H0VsGYpHRnP1f+zPynNiaIau+XXFzZvcFKjYuTb2eNbDPZUvB8vnoPbszN/++q/YwAF3ynNiaQhXzY5czC06FctB5QmuKeBTk0PrjUcMntWHIqj6xxqvtWY2bZ+5o1Q9ccjJLZ4ZzUSecizoBYJ/LFueiTqqnN6eGurfN2k3tLtWo1bkKOfI70nNmR2xz2LB78f4k19hqWCNKVC+CfS5bsufLSlPvetRoX5lD6+K+xUjXNVdpVYEhq/uwxGc1N8/cxdrOCms7Kywyfusz849F+8mYOQO95nTG0cWB0nVK0Hp4Y3Yt3JcsNSelbkD1/TFPb4alTUacizqRwzWbaniLwQ3oNL4V07ssxO+Rv2revj84pssady8+gG1OG3rM6EiO/I7U6lyFnzyrsmXGLlWbdj83o2TNoqrv/6DlXjgXc2L34gOqNon9VnQlUqnQ6iXE9/SZ3drm4OH1J3gf8IHBK3qRwzUbhSu50n1qe/atPKzXblfSQg7GpM16UKlU8uj6U7VX4OsgwkLCeHT9KSGfQhP6qB/+fNBsPbx97p+41SxKyyENyZ4vKy2HNKRE9cL8PufbLbbdp7WnSOUC2DvZft0+HBS1fbjaF4h6+Fz0PK6f9DsVm5TB2NQIZWQk9XrW0EuNiS2b72uMfoWHhfPW753qVmaH3Ha0G92MvG65ObjmGHW6VmfKvlE8uvGUik3KpIr5MLMwxXNia1zLuHBwzVHqdK3GTN9xZMmeCYdcdqmiRgNDA37eMoi8JXMzpd1cDAwNVNsgRsbfbgSu1cmD5CbZLX6EPrO774KuVGtbiclt5/DpQ4jqN/L9g7WTst+ia7rYP0wNNepyvyqlsjux7cO0kN2a5Mm7V4Gx5gMgMjKSRv1qp4r5AMhgnR7nok7kLBD1vcpdJCe953iSv4wLVVpXpE636uxauPfb3y9GrY3716F8w1I45rEnZ4FseE5qQ+VmZdm1YI+qzZpxm2k1rDGN+9XB0cUBp0I5qNXJg6be9YjPhf1XeHLjGUN/64tzMSeKVy1E92nt+WvZIdWV+zU6uFOldUVy5HckW96s8U4rqSS7dSNNd72SmKxZs2JgoJ9zATbZMjNiXT8y2mQkyP89N/++S7/yo1RnmzI7WGGbPbOq/f7VRzFPb07DXrXoMa09wYHBXDxynWXD1umlXgArOyuG/taXTA7WBAd94uGVx4yoPVH1cMjM9tbY5lA/oGaR0YKKTcuwcEDK9YGct2RuZhz51r+d18xOAOxf5cs0zwWpou6jm0+RMXN62o1uRiYHax5de8rIupO+fR+SUKNZOjP6LeiKTbbMhH7+wtNbz5nSfl6yPYRG25rrdq+BkbER/RZ0o9+Cbqr3o/8OAP7PAhhWawJeMzuy9PJ03jx/y/a5f7Hp153JUnNS6gZYfHGa6t95SzpTrW0l/B69Vt0+Xt+rFiamxozZ6qM23m/jNrNm3Bad1+j36DWj6k6m58yONOhVi4AX71jYfwUnfv9b1Sa9VToGLOmBtb0VwUGfuH/xIQPdx3D73LfbxRL7reiK3AImfoQ+s1vbHAwJDmFYzfH0ntuFBeem8D7gA8e2nGblqI16qTdaWsjBmJKyrk7Jz9dkPXzj9B0mtp5Np/Gt6PhLK17e92Niq1ncOvttPWzjmJkR6/t/2z48c4d+5UaqPjeuGnvP8aTF4Ibcv/xYLzUmtmw0Ef4lnOJVC9O4Xx3M0pvx8d1HzNKbkTFzBr58DksV8xEREUn2fI7U2OpBRpsMhASH4lLSGYXCgJwFs6eKGrNky0z5hqUAWHJputoyHlRljKqrvWz5HDX+22hKslv8CH1mdwOvWgDM8FXv73xa5wWqk5BJ2W/RNV3sH6aGGnW5X5VS2Z3Y9mFcNaa27NY0T2JOr9+CbnjN7MSDK09SxXwAlGtQksErv110amhkSKO+tanvVZPnd1+yyHsVh9efUA2PWauxiRHdp3XAxjEToZ+/8Ph61Gec3XNR1WbP8sOEfPpCC58GdP21HSHBoTy6+kTtoH5MkZGRjKw3mX4LujL7xAS+fP7C4Q0nWOrzm1q7tiObYpvT5ocfTh8XyW7dUCiT68kM/yI1DFumdAlJo0z+H54Q4t/vQKT2B/8TcvRRXq3auzvdSdbPF/9NNQyap3QJQgihN5Ld4t9AslsI8V8i2Z02/Ku7Xnn69Cmenj/+YE4hhBCai0Ch1UuI70l2CyGE/kl2ix8h2S2EEPon2a0b/+oD5W/fvmX16tUpXYYQQvynRCgNtHoJ8T3JbiGE0D/JbvEjJLuFEEL/JLt1I033Ub5r164Ehz94oJ8nzQohhPgmUs5WiwRIdgshROoj2S0SItkthBCpj2S3bqTpA+WNGjVCoVCQUDfrCoV8cYQQQp8i/t03K4kfJNkthBCpj2S3SIhktxBCpD6S3bqRppeqg4MD27ZtIzIyMs7XP//8k9IlCiHEf47cAiYSItkthBCpj2S3SIhktxBCpD6S3bqRppeUm5tbgqGc2FlvIYQQyS8SA61e4r9FslsIIVIfyW6REMluIYRIfSS7dSNNd70yePBggoOD4x2eJ08ejhw5oseKhBBCRCjl1lsRP8luIYRIfSS7RUIku4UQIvWR7NaNNH2gvFKlSgkOT5cuHe7u7nqqRgghBEhfaSJhkt1CCJH6SHaLhEh2CyFE6iPZrRtp+kC5EEKI1CdS+j8TQggh0hTJbiGEECJtkezWDTlQLoQQIlnJmW0hhBAibZHsFkIIIdIWyW7dkAPlQgghkpX0lSaEEEKkLZLdQgghRNoi2a0bcqA8DhEexVO6hCQx9L2Y0iVoTxmZ0hUIIZJZmFKiRejfl59KpXQJSWKy91xKl/CfcCByS0qXoLUaBs1TugTxHyLZLVKEIo1eDSn7sPqRFr8f8t0QeiTZrRuyVIUQQiSrSOTMthBCCJGWSHYLIYQQaYtkt27IgXIhhBDJKkIeKiKEEEKkKZLdQgghRNoi2a0bcqBcCCFEspKHigghhBBpi2S3EEIIkbZIduuGHCgXQgiRrCLloSJCCCFEmiLZLYQQQqQtkt26IQfKhRBCJCs5sy2EEEKkLZLdQgghRNoi2a0bcqBcCCFEsoqUvtKEEEKINEWyWwghhEhbJLt1Qw6UCyGESFYR8vRtIYQQIk2R7BZCCCHSFslu3ZAD5UIIIZKVnNkWQggh0hbJbiGEECJtkezWDTlQLoQQIlnJmW0hhBAibZHsFkIIIdIWyW7dkAPlQgghkpWc2RZCCCHSFsluIYQQIm2R7NaNNL9UL1++zIQJE1i4cCFv3rxRG/b+/Xs8PT1TqDIhhPhvilAaaPUS/z2S3UIIkbpIdovESHYLIUTqItmtG2n6ivL9+/dTv359XFxc+PDhA2PGjGHz5s1UqVIFgM+fP7N69WpWrFiRbJ+ZKVM6vHpWJW9eexwdM7F9+3kWLDyUbNOPT65cWejXtwb58zvw4UMIf+y+xJo1J1XDK1XMS4PhdXAu6oSxqRGPrz9jzS9bOb//crzTbP9zMzqMaa723lu/QFo69oh3HGMTI9qNbkq1tpWwtrfizbMA1k/ezr6Vvj88j5qq17Mm9XvWxM4pCwCPrz9j7fgtnNt7Kd5xjE2MaPdzc/W6J/3OvpVH9FJz4UquNPdpQF633GTOmokxjadyaue5BMep2qYiLQY3xNHFgeCgT5zfe4klg3/jw9uPOquzvldNmvs0JLODFY+uP2OR90qunbgVb/vElquhkSGthzemRgd3bBwz8fT2C5YNW8f5fZdSrO6KjUtTr2ctnIt991sZtznWb6Vx/zrU71kL2xw2BL15z/FtZ1g+fD1hoWF6rzmTvRU9pnfExS03ji727Ji3h0Xeq9Ta1OzoweCVvWONW8e8TbLVrKkwpaFeP0+kLSmR3YULONLD050c2TJjZmqE3+v3/LHnMlt2nE+2z4hLbicb+nvVwDWvPe8/hPDHnsus3nBKNbxSeRcae/+U6Proe62GNaJi4zJkz+9I6Ocv3Dh1m2XD1vHszot4xxm8ojc1O3nEev/R9ad0Kzzwh+ZRU9rmYMEK+ek2pS3Z8ztiamHKq8f+/Ln0AL/P/lMv9aYm2mZzkcoF6DGjI04FsxHw4h2bp+1k95IDam0qNilDp19a4eBsx8v7r1g5agMnd5xVDdfke9Z+THM8WlbAPpctRkZR6/1nd18yq/tindenyXKJri9L9syEfwnn7oUHrBy1gVtn76nG7zG9I6bmJmrTPbLxJJPazE6Rug2NDOk8oRWla5fAPrctn4I+8c/Bqywfvo6Al+9U03DIbRfv8k0qyW6RkJTIbk21GtqILpNa8/ucv1g0cHWcbaK2/2tota+c3P6N+4PaZrVHy/KM3ODNyR1nGdtkmk7qX3N/HvZOtrHe37VwH/P6xv5+FqyQj26T25I9f9bv5uEgv8/5S+PPrN+zJs196us1p+HH86TrlHa0HNIwzhrHt5jBsa1nEpzvguXzMcN3HI+uPaVnicGJLqfEZMluQ9/5XShWtRBfPn/h8IYTLPVZQ3hYOAB2ObOw9uHCOMf9fc6fsfaPv6er39KP1JwcJLt1I02fUhg7diw+Pj5cu3aNR48eMWTIEBo0aMDevXt/aLpmZsbxDjM2NiIw6DNr153m/v3XP/Q50ezsLDl8aFi8wy0sTJg2tSUBAR/x6rWaefMO0KJ5aZo3L61qU6RIdv45cJWR9abQu9RwLvte55edQ3Au5pTgZz+89pQWWburXt2L+iTYftSmARSvWpgZ3Zbg6erNpLZzeXor/p1zXXjzLIDlw9fRu9QwepcaxqUj1xi3Yyg5C2SLd5xRmwZSvGohZnRdhGf+/kxqM4ent57rrWazdKY8uPKY+X2Xa9S+YIX8DFndl70rDtOt0EDGt5hJ3lLODPyfl85qdG9RHq9ZndkwaRteJYZw7cRNJv01kizZbeIdJ7Hl2nlCK+p2r8GCfivoUtCb3UsOMPb3wYl+L3VZd+HKBfjn4GVG1p1E75JDuex7jV92DVOrqWqbinSd3JY1v2yhS4EBzOy6CI8W5ekyuU2K1GxsakzQm/esn7SNB5cfxzvd4KBPtHDopvbS90FygEilQquX+G/RWXabxp/dISFhbP/jIv2GrKdDj+Ws2XiaLh0qUv+nokn+PHvbjBz9a0i8wy3MTZg+oQUBAR/pMWANcxYfpGXTUrRoXErVpmih7Imuj2IqUrkguxbuo1+5EQyrOR5DI0Om7BuFmYVpvOMsGLBSbb3QOnsP3gd84NjW00ma96TQNgdDgkPYuWAvA91/pkuBAayfuI1O41tRp1t1HVeaumibF/ZOtkz4czjXTtzEq8QQNkz+nV5zPKnYpIyqjWvZvIza6M3BtUfpWcyHg2uPMmqTN/lL51G10eR79uzOS45vPY2BQsGaXzZzYvvfOOSyZdIe3denyXJ5ducl8/sup3uRQXhXGs2rx/5M2TcaS5uMqvFfP/Hn6JZT/Pm/g4QEh+BVciizey5NsbpNLUzJUzw3aydspZfbUMY1nU62vA78snOoahpmFqZM2TcqzuX7IyS7RUJ0ld0/Km9JZ+p0q8b9BLaPIeogdVL2lZPTv3F/UJusts1hQ/dpHbhy7IbO6gfoU2aE2vGNITUnAHA0noO+IcGh7Fy4l4EeY+lScCDrJ/1Op/EtqdOtmkaf596iHF6zOrJh8na83IbpLaeTI0+ci+ZkQf+VDHQfw+Bq47hw4AofA4P5/DGEs3suJTjfFhktGLK6DxcPXdVoOSXGwMCAibuHY5bODO9Ko5nYejaVmpSlx4wOsdoOqT6OFg7dGP7TRF4/ecODKwn//nX1W0pKzclNsls30vQV5devX2fNmjUAKBQKBg8eTLZs2WjWrBkbNmygdOnSiUwhbnld7Lly9Wmcw169CmLBgoMA1P6pSLzT+KlWYVq2LIODgxV+fkH8vv08u3ZdTFI91asVxMTEiF+n/klYWASPHr0hW7ZMNG9Wii1bos4qLlh4CEPfb9NfMWoj5RqUpFw9N+5fehTvtCPDI3j3KkijOkrWKkqRygXokKcvH94FA/DqsX+S5ulHnNl9Qe3/K0dtoF7PmriWzcvjG89itS9ZqxhF3AvQwbkPH95FnTHUd93n9l5K8Ir3mFzLuvDq0Wt2zNsDgN+j1/y59AAtBsd9xjc5NPWux94Vh9mz/DAAi7xXUbJmUep71WTFiPWx2muyXKu3q8z6Sb9zdk/Ud3P34v2UrFmUZgPr82uHeSlSd8wzzStGbqBcg1KUq19S9VspUC4f10/e5siGE6r5OrLxJPlK5SE5aFvzq8f+LBywEoCfOleNd7pKpZJ3rwKTpcYfEZG2z8EKHdNddttx5VrsDAC4++A1dx98O7nt9/oGlcvnpUihbPyx99vVZLVrFKJ10zLY21vi9yqI33ddYMefl5JUT40qBTAxMWLyzL8IC4/g4eM3ZHc8Q4vGJdm8PeoKsvlLD2Oy99vVZHGtj2IaUWei2v+ney5k6+vluLjl5urxm3GO8+n9Jz69/6T6f/mGpUhvnU5vd1WB9jl4/9IjtWXw6rE/FRuXoXBFV/7638HkLzCV0jYv6vWsgf+TN6qse3LrOXlLOtN8UANO/P43AE361+XCgStsnLIDgI1TdlCkckGa9K/LpLZzAM2+Z0c2nGDu6UnsWXGYteO3YZHBnJ1Bv/HWL1Dn9WmyXKIzPNrigaup3aUauYvkUI2fI78jAS/esch7FYUr5qdys7IpWven958YVmu82mfP77eCBWenkCW7Df5P31CwQj7s4rha8kdJdouE6Cq7f4RZOlOGr+nDrB5LaTuicYJtY15prum+cnL6N+4PaprVBgYGDF/bn9/GbqZwRVfSWVnobB6C3nxQ+3+roSV4fs+PK0fjPkAf/zzk56//Jd5zQNMBdVMkp5MjT4bXVs/6h1efsPX1cs78+Q8hwSEJzveAxd05vOEEkRGRVGgY+/dfq5MHLQY3xD6XLX6P/Nkx7y/+WLQ/3um51SxCjgLZGJ6jp+qK9yU+qxm8sjcrR27g04fPqrbvAz7y+WMIved2ZnqXhbQd2TTBWjX9Lem6Zl3sp0t260aaXqqmpqYEBgaqvde6dWuWL19Oq1at2L59e5Km+/67L3RS1K1TFE/PyqxYcYxOnf/H8uVH6dy5MjVrFkrS9AoUcOTy5aeEhUWo3jt3/iE2Nhmwt7eMcxyFQoFFBvNEbyXJ6mLPxqeL+O3ePEas7499rvg3vMvVL8md8w9oMbgBG54sYuXNWXSf2g6TBK7A1zUDAwM8WpbHLJ0pN07fibNNuQYluXP+Pi2GNGTD0yWsvDWH7tPaY2JmEmf71ODGqdvYZMtM6drFAbCytaRy03Kc/esfnXyekbERed1ycyHG7YcXDlyhYLl8cY6jyXI1NjXmS4j6Fc1fPn+hUMX8KVZ3THH9Vq6duImLW27VgXH7XLaUrl2cv5Nh+SdHzfExT2/G2ocLWf9kMeMTuSpVl+TMtkiIrrL7w4eEN+i/55LbloKuWbn03UnxerWK0LVDZf732zE69FjO/1Yfw7N9JWpVK5ikegq6ZuXy1aeEhX+X3RceksUmA/Z2P5bd30tnGbWzqc04P3lW5eLBq7x+8ibxxqmEczEnCpTPx5Vj11O6FL1JSl64ls3LhQNX1N47v+8yeUvmxvBr9ygFyuXlwgH1aZ7ff4kC5ePPoLi+Z9/XZ2RsRJ3u1fkYGMz5fZd0Wl9Slsv39T2+8Uxt/KptKrH19XKsbC2p3rYS5unNUk3dELXsIyMjCQ6MukjF2NQYlMp42yeVZLdIiK6y+0f0nd+Fv/+6mKQrWpOSt/qWFvYHY4ovq9v93IxA//fsXXE42erVhJGxIdXaVtTqwgDnYk4UKJeXK8fivvgg5vTzuuWOlQ+6zunkypOYCn6dvu+G4/FOA6IOKGd1tmPNuC1xDq/dtRqdJ7Rm5agNdCngzcqR6+n0SytqdHCPd5oFyuXj0bUnat2Mnd93GRMzE1zccqu1/WXnULa+Xo55ejPSW6VLsFbQ7Lekj5o3+y1LtFZtSXbrRpq+orxYsWIcOXIENzc3tfdbtmxJZGQkHTt2THQaoaGhhIaGAmBubo5CoeDBAz8MDJK+aNq1K8/ixYc5fiLqwK2fXxA5c9pQv14x9u+/pvX0MmVKh5+f+lXf775e0R3XMIBmA+thls6Uo1viv6361tl7TO20gGd3XmJtZ0XbEY2Zc2I8XQsPinOjwSG3LYUq5uNL6BfGNp2OpU0G+s7vQoZM6ZnRdbHW8/UjnArlYO6piZiYGfP5Ywjjmkzjyc24ryR0yGVHoYr5+RISxtgm06LqXtA1qu4ui/Rat6ZunL7DlHZzGbnRGxMzY4yMjTi18xzz4+hXLTlY2mTA0Mgw1lnOd68Csba3inMcTZbr+X2Xaepdj6vHbvDi/iuKVytMuYalMDBMnnN0Sak7pmaD6kf9VjZ/6zfYd9MpLLNkZNbx8SgUURsjuxbtY9OvO1JFzXF5eus50zov4OHVJ1hkNKdxv7rMPjGBnsV8eH7P78eK1lJk2j4HK3RMV9l9/4EfBoYJZ/eW37ywsjTH0MCAVetP8ue+bzsqHVqXZ+GyIxw/dRcAv1dBOOWwoUHtYuw7pP3B2UzW6fB79V7tvbeBUVd1Z7ZOh18cd3PFtT5KTM8ZHbl6/CaPrsd9J1ysuuytKF27uOqKpNRu/ZPFWGbJiKGRIWvGbVZdOfVfkJS8yGRvxfk42hsZG2Fpk4G3flHjxryb8N2roAQzKK7vWXR9w9f2w9jMmLcvAxlaczxuNYpQxD3uE0zJUZ82y6VM3RKM3OCNqYWJqj6FQqEa/9D64/g9fM07v0DajGxCpSZlGbNtcKyr8PRddzRjU2O6Tm7L4fUnVFem3Txzl5DgUNXJi+Qi2S0SktzZHS1SGYGBQvs+dj1alseleC56lxmh9big2b5ySksL+4PREsrqguXz8ZNnVXoW//E+rLVVvlEp0lulY//qo4m2Xf944XfzsEWj7Q1Lm4xfl1nMdb9uczq58iQmr9mdCPkUyqH1J+IcDuCYx54uk9viXflnIiMi42zTblQzlvj8xontUb0f+D16TY4C2ajbvQYHfov7b2Ftb0VgjHn+GBjMl9AwMn2dp88fQ1g0cBVmFqbU7OTB0c2nGbnRm+cJPKcHNPst6brm6ydvo4yMZMG5XxOsVVuS3bqRpg+Ue3l5cezYsTiHtW7dGoClS2P3M/i9yZMnM27cOObPn0/dunWpWLEixsb5yZU7aX1gWlqaY2dniY9PHQYNqq1639DQgI/B3zYMVizvgl2MK8r+3P3tgVqvXgXh2eVb/2VK1K8cUXw9GRTXBSVVWpWn/ZhmjGk8nUD/97EbfPX9rV+Prj3l5uk7rL47l5od3NkWxwM4DAwUKJUwud08Pr2PWrku8VnD6M3ezOuzPNaVw7r07PYLehYfTHorCyo2LcvgVX0Y5DEmzoPl3+qeq7r1fMmg1YzeMoh5vZfzJeSL3urWVA7XbPSe05m147dyft8lMjtY021qe/ov7s7Mrro7uB/z+6RQKFDGc9WSJst14YCVeC/twfKbc0Cp5MX9V+xfdYSanaqkWN3fq9KqAu3HNGdMo6lqv5Ui7gVoM6Ip83r/j5t/38Mxjz29Znfm7ct3rJuwLUVrjs/Nv+9y8++7qv9fP3mbRRem0rBvbRb2X5nk6SZFhA7PVoeHhzN27FjWrVuHn58fDg4OdOrUiVGjRmFgELWhoFQqGTduHEuXLuXdu3eUKVOGBQsWULDgtwM3oaGh+Pj4sGHDBj5//ky1atVYuHAh2bLF/6wDkTx0ld2G5q44udRIcLy+g9djYW5MgXxZ6d7ZnecvAjl09CaWGc2xs83IkP4/4dOvlqq9oaEBwd9l96pFntjZZgS+5fCebQNUw1+9fk8nr28b3TF/09+yO/ZvPb71UYLzM78LuYrkwLvSaI3aA9Ts5MHHwGBO7Uj4AWKpxcDKP2OW3gzXsi50ndyWF/f8OLLxZOIj/otomxexv3eK2NOJ67sZzzQT+5792nE+b54FULtbdUZtGojvxhN6qU+T5XL5yHV6Fh+MpU0GVX1jGv6qGn/Psm+31T+69hTXsnlxq1GEPMVzce/iwxSrG6IexDZywwAUBgrm9f52FVrQm/eMbzGDKfs0/91rQrJbJCQ5s/t7uSiAs0K7u66zZMtMr1kdGfbTpCQ9i0fTfeWUlhb2B6PFl9Xm6c0YuqYfs7ov5n3AhwSnoQu1Patydu8ltSt+4zPQfcy3eZjUhhf3/TiyUbMLF+LKh9SSgxB/nnyv/6Lu2OawYf3E+Pd1DQwMGL4uqgud53dfxtnG0iYjtjlsGLjMC++lPb+rwYDgoKhjBhP/HEHhSq5AVFc30Q+Wj6v27+fpfcAHjm89w4JzUxhWawIPrjzGIqM5tRI5tpDYb0nXNevyQfSS3bqRpg+UN27cmMaN4++PrHXr1qrgjs/w4cMZMWIERkZGBAcHc+PGDRo0nJvkmgwMor6oM2bu4eZN9TNbkZHffkTDh2/B0Cjqy2Vjk4HZs9rSrfu3neuI8G9n596+DSaTdXq1aVl9vcUk+sryaO4tyjHwfz0Z33KW1rehhXwK5eG1Jzi62Mc5POBlIG+ev1UdJAd4cvM5BgYGZMmWWa9XrYaHhfPiftTn3bnwgHwlnWncvw5z4ngAU8DLd1/r/tY/67e6M+n9altNtB7WmOsnb7Nl+i4gqr+wz8GhzD4+nlWjNvDWLzBZPy/ozQciwiNUZz6jWdlaxjpLGk2T5Rr05j1jm0zD2NSYjJkzEPDiLV2ntMXvYfI8CDcpdUdzb1Gegcu8GN9iZqzfSqdfWnFw7THVlQSPrj3BLJ0pA5b0YP3E33/ogPaP1KwNpVLJ7fP3cMzjkGzT1JQub+v69ddfWbx4MatXr6ZgwYKcP3+ezp07Y2lpSf/+/QGYOnUqM2fOZNWqVeTNm5cJEyZQo0YNbt++TYYMGQAYMGAAf/zxBxs3biRz5swMGjSIevXqceHCBQwN5enhuqSr7K7bfH6inx19FfeDR2+wtk5Hp7YVOHT0piq7p83dx83b6tkd8V12Dx2zFaOvd8TYZM7A3Kmt6dpnlWp4+HdX1rx9F0wma/XbQa2/XgEafWV5tITWR/HpPdeTsvVLMsh9DG+ev9VoHIh6zsHBtccIDwvXeJyU5PcoKi8eXXuCtZ0l7ce0+M8cKE9KXrz1CySTvXWs9uFh4aqDFO/8Yl9xZmVrGeczaxL6nkXXFxkRqTpZu+r2XIq4F9Bpfdosl5BPoby478eL+36q+so1LBnv+K8fvyFz1kw4ujioHSjXd92GRoaM2jQQ+1y2DK42LtbVfzFv208Okt0iIcmV3QMHDlR7r7GVp9a1uLjlwtrOioXnJqveMzQypHBlVxr2rkUd87Zq+93f+5F9ZX1LC/uD0eLL6qzO9jjksmX8rmGqtoqv21x7v2ykc/7+vHzwKlnnI5ptDhuKVyvMuGYzNGrv9yjqWVuPrj3F2taK9j83T/RAedCb9ymS08mZJxCV9ZWblSUiPJId8+J/QK95BjPylcpDnuK56DOvCxD19zQwMGDvl40MqzVBdefZrO6LufX3PbXxo69An9ltMabmUd21Rm+PvvMLVHtYKUB6q3QYmxipbZ+4uOWO+v2fjzrprVAoMDA0oFHf2jTs/RN1zNoQGal+pXtiv6Xo9YWuatYlyW7dSNMHypODqamp6t/Rf8gf6Xbl3btP+Pu/x8HBikOH4n+i86vX385eR0RE/TBfvAiMs+2NG8/p0sUdIyMDwr8eQC9Z0ok3bz6odbtSpVV5Bi3zYlLbOZz9S/sHhxqbGJEjvyPXjt+Kc/j1U7ep3KwsZulMCfl6hZ1jXgciIiLxfxag9eclJ4VCgYlJ3H2lXz91m8rNy2GWzkz1UIpvdWt+cEGfTC1M1E6WwLeVdPQZ5+QUHhbOnQsPKFGjCCd3nFW9X6J6EU7tivuqQ22Wa1hoGAEv3mJoZEjFJmU5tkXzbgWSu26IunJz0PJeTGozO85+/kwtTFFGxl7+CoXih6/8TmrNSeFc1ImH154k6zQ1EanU7hawuG7FNTU1VVs/Rzt9+jQNGzakbt26ADg5ObFhwwbOnz8PRJ0gmD17NiNHjqRJkyYArF69Gjs7O9avX0+PHj0ICgpi+fLlrFmzhurVo+4eWrt2LdmzZ+fgwYPUqlUr1ueK1CXO7E6k25WYFAowNo7aOHsX+InXbz6Q1cGSg76aZnfUOuL5y8A4216/+YJuHSurZ3cJJ/zffFDrdiWx9VFc+szrQoVGpfGpMka1c6qJIu4FcHRxYG8a7b5EoVBgbPrf2XRNSl7cPHOHsvVKqr3nVrMod84/IOJrf/k3Tt/BrXoRtSuc3GoU5cap22rjJfY9i7M+hQJHF4d4b1lPjvp+KEe/drsS3/jXT92miHsB3sa4+lCfdUcf1HB0sWdw1XF660NZslvoWlzfj6R0u3Lx0DW6FfFRe89nuRdPbz9n09Rd8R4k/9F9ZX1LC/uDcfk+q5/ceq668jZap/GtsMhgzsIBK/F/qrtjCLU6eRD4Ooi//9S+T3eFAo22N8LDIqKWWfUinPzuTj1d53Ry5kl01j+/54f/0wCC3sR/l8Wn959j/T3r96pFsSqFGN98Bn4PXxPyKRT/ZwE45LbjcDxduAS8iH0M5sbp27Qe0YRM9laqk0BuNYvyJeQLdy88ULW7eOiqWg3NBtWnSquKHNtymk1Td8Q6SA6J/5YCXwfqtGZdkuzWDb13aKNUKvH19WX8+PF06dKF1q1b069fP1auXMnTp5r1r6mpjh07UrVqVa3HMzH5tlLs2sWdYUPrqQ13drbF2dkWc3NjLC0tcHa2JWfOzKrhq387QZvW5WjSpCTZslmTK1cWfqpVmGbNSiVpPg4dvkFYWDhDh9TFycmGihXy0qZ1ObZs/bYSrFrFlSGrerPEZw03z9zF2s4SaztLLDKaxzvd7lPbUaSyK/ZOWchfOg+jtwzEIqM5+7/2weQ5sTVDVvVWtT+8/gTvAz4weEUvcrg6UriSK91/bcu+lUf02u2K58TWFKqYH7ucWXAqlIPOE1pTxKMgh9ZHPXTCc1IbhqzqE0/d2aLqntqefSsP663bFbN0ZjgXdcK5qBMQ9XBI56JOZMluE2fNZ3ZfoGKT0tTrWRP7XLYULJ+P3nM6c/PvuxrdOpYU22btpnaXatTqXIUc+R3pObMjtjls2L14f5w1arJc85fOQ8XGpbHPZUuhivmZvGckBgYKNk3dmWJ1V2lVgSGr+7DEZ/XX34oV1nZWWGT81tfnmd3nqdezJh4ty2PvZEuJ6kXo+EsrTu86H2f46rpmQPX9MU9vhqVNRpyLOpHD9dvtSu1+bkbJmkVV361By71wLubE7sUHfrhebUWg0Oo1efJkLC0t1V6TJ0+Oc9oVK1bk0KFD3LkT9QyIy5cvc+LECerUqQPAw4cP8fPzo2bNmqpxTE1NcXd359SpqBM0Fy5cICwsTK1N1qxZKVSokKqNUJfWsrtbp8qMGFRH9f9G9YpTvrQzjlmtccxqTe0ahWjZpDQHjnzre3zVupO0bV6Wpg3dyOZoTW4nG2rXKESLxuo7M5o66HuDL2HhDB9Yh1w5bahUzoV2Lcuxeft5VZtq7q6Jro9i6rugK9XaVmJy2zl8+hCiGuf7BynHtQ4BqO1ZjZtn7mjcn3ly0jYHG/SqRdl6bjjmsccxjz21OnnQfFADDq1L+AFT/zba5sXuxQewzWlDjxkdyZHfkVqdq/CTZ1W2zNilarN97p+41SxKyyENyZ4vKy2HNKRE9cL8PufbDnli3zMzC1M8J7bmzB/nqdOlGu3HNGf05oHYO2XBLJ2ZzutLbLlE1+daxgXbHDbkKZ6Lgf/rSZZsmTi25TTbZu2mTpdqjP19MJWalmXg/3pin8uWou4FuPvPA0rXKZEidRsYGvDzlkHkLZmbKe3mYmBooFr2Rsbf1nG1Onlo8zXSiGT3v09ayO6k+PwxhEfXn6q9QoJDeB/wUZVvMfdjq7Qqr/W+cnL7N+4PJpbVYaFhsf5WwYGf+PThM4+uP9XZ3W0KhYJanTw48NvRWP1ox/xuNPCqSdl6JWLMQ30OrYu/n+7vbZv9J7W7VKVWZw+95nRy5El01i8dsoZ8pZw5/vuZBLcplUplrL9n4OsgwkKi/s4hn6IOwK4Zt5lWwxrTuF8dHF0ccCqUg1qdPGjqrX5c7XsX9l/hyY1nDP2tL87FnChetRDdp7Xnr2WHVFfB1+jgTtn6JYmMiCQ8LIKSPxWjaptK+D8L4P3bD99+/0n4Lemy5iqtK5IjvyPZ8maNd1pJJdmtGxpflrNixQo8PeO/NerDhw94e3uzbFncfR59/vyZWbNmsXDhQgICAihatCiOjo6Ym5tz7949duzYQbdu3ahZsyY///wzZcuW1X5uYsiaNauq7xxtVKniyr59UbdiZcqcHtuv/ZFG+9/Sb8shXz4HqlcviJ9fEG3aRvUV9tdfVwgJCadlizJ07+ZBSEgYDx/6s23beZIiODiUwUM20b9fTRYv6sSHDyFs3XqOLVu+nT2sV684RsZG9FvQhX4Luqje37/al2mecfdhZpMtMyPW9SOjTUaC/N9z8++79Cs/itdP3gCQ2cEK2+zfTgCEBIcyrNZEes/tzIKzk3kf8IFjW86wcvTGJM1XUlnZWTH0t75kcrAmOOgTD688ZkTtifxzMOo21Mz21tjmsPmu7hCG1RxP77ldWHBuyte6T7NylP7qzlsyNzOOfOuTz2tmJwD2r/JlmueCWDXvX+2LeQYzGvb+iR7TOxAcGMzFw9dYNmydzmo8uvkUGTOnp93oZmRysObRtaeMrDvp2/chCcvVxMyETuNb45Dbls8fQzj710V+7TBP1ddXStRdt3uNr7+VbvRb0E31fvTfAmDdhG0olUo6jW+NjWMmgvzfc2b3eVaM3JAiNQMsvjhN9e+8JZ2p1rYSfo9e0z531IZeeqt0DFjSA2t7K4KDPnH/4kMGuo/h9jn128f0QdtbwOK6FTeus9oAQ4cOJSgoiPz582NoaEhERAQTJ05U3e7r5xfVlZKdnZ3aeHZ2djx+/FjVxsTEBGtr61htosf/t/gvZXfVyvnZezDqgdmZrdNhm+VbdhsoFHTrVBkHe0siIpS8eBnI0pVH2bXnkqrNn/uuEBoaRqumpenp6U5ISBgPHr1h644kZvenL/iM2syAXjVYMqcDHz+GsHn7OTZv/3aSu37toomuj2Jq4BV15cUMX/V+Xqd1XsD+1b5R8x/HOsQiowUVm5Zh4QD9PrMgmrY5qDBQ4DmpDfa5bIkMj+TFfT+WDV/Hn0v0f/IvJWmbF36PXjOq7mR6zuxIg161CHjxjoX9V3Di979VbW6cvsPE1rPpNL4VHX9pxcv7fkxsNYtbZ7/lRWLfs4iISLLncyR/GRdQKGg7sikKhYJnd14wu+dSndeX2HKJrq/GVg8y2mTgQ8AHbp+7j3fln3l84xmPbzwjq7M97UY3pXzDUiiVUVeLnd1zkTXjttBzRscUqTtLtsyUbxh1Yc2SS9PVlv2gKmO4cjTqjpds+Rzj+8okmWR36vFfym5dibkfW7dbda33lZPbv3F/MLVmdYnqhbHLmYW9K31jDYv53VAYGOA5sQ32ubJ8nYdXLBuxnj+XHNTos45uPk3GTBloN6qpXnM6OfIkOutHrIvqRmPk+gFA4tuUidmz/DAhn77QwqcBXX9tR0hwKI+uPlE70B9TZGQkI+tNpt+Crsw+MYEvn79weMMJlvr8ptau7cim2Oa0ITIikud3XjKjy0Jqd6mm1iYpvyV91ZzcJLt1Q6HUsA8BS0tLKlWqxLJly7C3V+/Det++fXTr1g1ra2suX74c5/jZs2enTJkydOrUiVq1amFsHLubjMePH7N+/XoWL17MqFGj6NatWxxT0r2q1aakyOf+KEPf1H8LWSzK5F9ZCCG0cyByS7JOr/v5jlq1X1pytcZtN27cyODBg5k2bRoFCxbk0qVLDBgwgJkzZ9KxY0dOnTpFhQoVePHiBQ4O3/pn79atG0+fPmXv3r2sX7+ezp07x7rtrEaNGjg7O7N48WKt6k/N/kvZ7V5naop87o8y2Zs2HqqZ1iX3ek4fahg0T+kSRCom2R1Fsju2tJTdNQxbpsjn/jDZh9UPReo5+aIx+W6IBEh2R0nt2a3xmufy5csEBwdTsGBBNmyIuqryw4cPdOnShQYNGtChQwdVXzVx2bNnD1u3bqVevXpxhjVAzpw5GT58OHfv3sXDw0O7OYnD06dPEzwbL4QQIvmFKQ20emlj8ODBDBs2jFatWlG4cGHat2+Pt7e36pax6B3KmGeoX79+rTrbbW9vz5cvX3j37l28bf4tJLuFEEJoQrI79ZDsFkIIoQnJbt3QeEk5OTlx5MgRRo8eTbdu3ahXrx6FChXi7NmznDp1igkTJsQbxACFChUCIDw8nHHjxiXYL5qJiQkuLi5azEbc3r59y+rVmp8xEUII8eMilQZavbTx6dOnWLf2GhoaqvqOz5UrF/b29hw48O2Wzy9fvnD06FHKly8PgJubG8bGxmptXr58ybVr11Rt/i0ku4UQQmhCsjv1kOwWQgihCclu3dC4j/JoPXr04NixY+zYsYN06dKxa9cuihYtqvkHGhkxbdo0OnbU7haBuOzatSvB4Q8e6OdJs0IIIb7Rtq80bdSvX5+JEyeSI0cOChYsyMWLF5k5c6bqKiaFQsGAAQOYNGkSLi4uuLi4MGnSJCwsLGjTpg0QdUtzly5dGDRoEJkzZyZTpkz4+PhQuHBh1dO4/20ku4UQQiREsjv1kewWQgiREMlu3dDqQPnJkyfp3LkzxsbG7N27l2XLllGuXDkmTpyIt7e3xtOpXr06vr6+dOrUSdt61TRq1AiFQkFC3awrFLr74gghhIgtEt2td+fNm8fo0aPp1asXr1+/JmvWrPTo0YOff/5Z1WbIkCF8/vyZXr168e7dO8qUKcP+/fvJkCGDqs2sWbMwMjKiRYsWfP78mWrVqrFq1SoMDQ11VntKkewWQgiRGMnu1EWyWwghRGIku3VD44d5Dho0iPnz59OnTx8mTZqkejLqpk2b6NOnD66urqxatYrcuXMnOq0lS5YwduxY2rZti5ubG+nSpVMb3qBBA42Kd3R0ZMGCBTRq1CjO4ZcuXcLNzY2IiAiNphdNHuapR/KwCyFSXHI/VKT1me5atd9Qdmmyfr745r+U3fIwT5EQeZin+LeR7P73+i9ltzzMUyRIHuYp/mUku9MGja8o37lzJwcPHqRSpUpq77ds2RIPDw969OhB0aJF+fDhQ6LT8vLyAmDmzJmxhikUCo0D1s3NjX/++SfewE7srLcQQojkp23/Z0J3JLuFEEJoQrI79ZDsFkIIoQnJbt3Q+ED55cuXY52BjmZnZ8eOHTtYs2aNRtOK7vz9Rw0ePJjg4OB4h+fJk4cjR44ky2cJIYTQjC77ShPakewWQgihCcnu1EOyWwghhCYku3VD4wPl8YX199q3b/9DxWgr5ln2mNKlS4e7u7ueqhFCCAG67StNaEeyWwghhCYku1MPyW4hhBCakOzWDY2v0y9QoABv375V/b979+74+/ur/v/69WssLCw0/uCjR49Sv3598uTJg4uLCw0aNOD48eMajy+EECJ1ilQqtHoJ3ZHsFkIIoQnJ7tRDslsIIYQmJLt1Q+MD5bdu3SI8PFz1/40bN6r1i6ZUKgkJCdFoWmvXrqV69epYWFjQr18/+vTpg7m5OdWqVWP9+vValC+EECK1kcBOPSS7hRBCaEKyO/WQ7BZCCKEJyW7d0LjrlZjieliHQqHZgp84cSJTp07F29tb9V7//v2ZOXMm48ePp02bNkktSwghRAqTEE69JLuFEELERbI79ZLsFkIIERfJbt1I8oHyH/HgwQPq168f6/0GDRowYsSIFKhIndGxSyldQpKkyeeMK9LgU3qVyfNQHCH+rSSw/51Se3abHvgnpUtIEqXkoF7UMGie0iUIkapJdv87pfbsVhikze+dMlKyWx8MjFPkcNUPifzyJaVLEP8hkt26ofEaXqFQxDpzremZ7JiyZ8/OoUOHYr1/6NAhsmfPnqRpCiGESB3ClQZavYTuSHYLIYTQhGR36iHZLYQQQhOS3bqh8Sk6pVJJtWrVMDKKGuXz58/Ur18fExMTALV+1BIzaNAg+vXrx6VLlyhfvjwKhYITJ06watUq5syZo+UsCCGESE3kzHbqIdkthBBCE5LdqYdktxBCCE1IduuGxgfKx4wZo/b/hg0bxmrTtGlTjabl5eWFvb09M2bMYPPmzQC4urqyadOmOKcrhBAi7ZDATj0ku4UQQmhCsjv1kOwWQgihCclu3VAo43o6yH9cTeNWKV1Ckigj5U+pF2mwfzchEnIgckuyTq/K4UFatT9SdUayfr74b5Ls1iPJQSFSnGS3+DeQ7NajNJjdBl/vokhLpI9ykRDJ7rRBq05q/v77b0aOHMmQIUPYv39/kj80d+7cBAQExHo/MDCQ3LlzJ3m6QgghUp5SqdDqJXRLslsIIURiJLtTF8luIYQQiZHs1g2Nu17Zvn07zZs3x8zMDCMjI2bMmMGMGTMYMGCA1h/66NEjIiIiYr0fGhrK8+fPtZ6eEEKI1CMSCeHUQrJbCCGEJiS7Uw/JbiGEEJqQ7NYNjQ+UT5o0iU6dOrF48WKMjIyYMGECEyZM0Cqwd+3apfr3vn37sLS0VP0/IiKCQ4cO4eTkpPH0hBBCpD7SV1rqIdkthBBCE5LdqYdktxBCCE1IduuGxn2UZ8yYkfPnz5M3b14g6ix0unTp8PPzw8bGRqMPMzCI6ulFoVAQ82ONjY1xcnJixowZ1KtXT5t5SHbSV5pIUBrs302IhCR3X2kVDgzVqv3JGr8m6+enBq9evcLHx4dDhw7x+vXrWJkX19VduiDZnfqlyeyWHBQixUl2Jz/Jbv2T7NajNJjd0ke5+LeR7E5+ushuja8o//jxI1ZWVqr/m5qaYm5uzvv37zUO7MjIqJVzrly5OHfunMbjCSGESDvkzDZ06tSJJ0+eMHr0aBwcHFAoUmaZSHYLIYTQhGS3ZLcQQoi0RbJbN9mt8YFyiH3bVmRkJIcOHeLatWuq9xo0aJDodB4+fKjNxwohhEhD5EEhcOLECY4fP06xYsVSuhTJbiGEEImS7JbsFkIIkbZIdusmu7U6UN6xY8dY7/Xo0UP1b4VCodFl7f369SNPnjz069dP7f358+dz7949Zs+erU1Z8bp58yZ169blwYMHyTI9IYQQiZMz25A9e/ZYt32lFMluIYQQiZHsluz+EZLdQgihf5LduslujQ+UR9++lRy2bdum9oCRaOXLl2fKlCnJFthfvnzh8ePHyTKtxBgYGtDh52ZUbV0Ra3sr3r58x/7fjrJ+0vYE/2hVW1eguU8DHPPYExz0ifP7L7N0yFo+vP2ol7ozZ7Wm65S2lP6pGCbmJjy/85IZ3RZz95+4rz4YvMKLmh09Yr3/6PpTuhXx0XG1Udr/3IwOY5qrvffWL5CWjj3ibF+xcWnq9ayBc1EnjE2NeHz9GWt+2cr5/Zf1US4A9XrWpH7Pmtg5ZQHg8fVnrB2/hXN7L8XZvoh7AWYcGRfrfU/X/jy9/UKXpaopXMmV5j4NyOuWm8xZMzGm8VRO7TyX4DgNetWiYe+fsHOy5fWTN6yftI2Da47pqeL4JWVedKm+V02a+zQks4MVj64/Y5H3Sq6duBVn24IV8tNtSluy53fE1MKUV4/9+XPpAX6f/aeqTc2OHgxe2TvWuHXM2xAWGqaz+YhLKtnHTFGzZ89m2LBhLFmyJEUfliXZrbnCFfPTfFB9XErkInPWTIxtOp1Tu86rtWk/uhl1ulYlvXV6bp29x/x+K3h845nea/1eq6GN6DKpNb/P+YtFA1fH266BV82v6+YsUevmydv1um5uNawRFRuXIXt+R0I/f+HGqdssG7aOZ3fiz7So/K6Fc7Hv8nvcZp3mtzbrZm2z2qNleUZu8ObkjrOMbTJNLzUCFKlcgB4zOuJUMBsBL96xedpOdi85oBqes0A2Oo5riYtbbuydbFnovZLtc/5Sm4a2f7/krhGgYpMydPqlFQ7Odry8/4qVozZwcsdZ1XBNct7K1pJuU9rhVrMIGW0yEBkeiYGhAQ+vPdVLjZosm/ZjmuPRsgJZsmcm/Es4dy88YOWoDdw6e0/VxiG3Xbx1JpVkt2T3j0gL+93GJka0HdWUam2ixnvz7C0bpmxn3ypfvdT9PU2yO5O9FT2mt8elRG4cXezZMW9vgjmvC0nZfzI2MaLdz82p1rbS1+UcwPpJv7Nv5RE9Vf1NoYr5ae5dF5fiucic1ZqxzWdy+o8LquH7QtbFOd7/hq9n66w/4xyWVCmR3QCZs2aKOt5Tu/i34z1dF5G/TB6953Riy8HQyJDOE1pRunYJ7HPb8inoE/8cvMry4esIePkOiNoeqdu9BlmyZcbAwACFgYJepYZy90L8J+l0uT2ZJbsNfed3oVjVQnz5/IXDG06w1GcN4WHhANjlzMLahwt/+HPiI9mtm+zW6oryhERERPDHH3/QqFGjRNsGBASo3UoWLWPGjLx580bjzxw4cGCCw/39/TWe1o9qObgBdbtXZ5rnIh7feEZet9wMWtaT4Pef2TFvT5zjFKyQj8Ere7PE5zfO7L5AZsdM9J/flYFLujOu+Uyd15zeKh2zj//CZd8bjKg7mcDX78nqbMfHwE/xjrNgwCqWDV+v+r+hkSFLLk7l2NYzOq/3ew+vPWVozfGq/0dGxL9BWbiSK/8cuMqKkRsJDgymVicPftk5hL7lRnL/0iM9VAtvngWwfPg6nt/zA6IOao7bMRSvEoMTPMjSKV8/Pr3/rPp/kP97ndf6PbN0pjy48pj9q44wZtvgRNvX61kTz0ltmNV9CbfP3SN/6Tx4L+3Jx3fBnNl9IdHxdUnbedEl9xbl8ZrVmXm9/8f1k7ep26MGk/4aSZeC3vg/jb0ODAkOYeeCvTy48piQ4FAKVcxP/8XdCQkO5a//HVS1Cw76ROf8/dXG1fdBcoAIpYHePzM1sLa2VusTLTg4GGdnZywsLDA2NlZr+/btW32XF6f/enZ/zyydGQ+uPGbfal/GbBkUa3gLnwY0GVCH6V0W8fzuS9oMb8KUPSPwLDiQzx9DUqBiyFvSmTrdqnH/csIHJ+r1rIHnpNbM6rGU2+fuR62bl3Tn47uPnNn9j15qLVK5ILsW7uP2uXtfd4RaM2XfKLoW9CbkU2ic4xSuXIB/Dl5mxcj1UfnduQq/7BpG37LDdZLf2q6bo2mS1bY5bOg+rQNXjt3Qa432TrZM+HM4e5Yd4tf2cylYIR99F3Qj0P89J37/GwBTC1NePnzNsa2n6TmzU5yfq83fTxc1upbNy6iN3qz6eSMnt5+lQuPSjNrkjXel0aoDyJrk/LjtQwgPC2fH/L10HNuCW+fu45jHnptn7uilRk2WzbM7L5nfdzkvH7zC1NyEpt71mLJvNB1d+hL05j1mFqZM2Tcqzvn7EZLdUSS745aasjsp+90AIzcMwNrOkpndl/Di/iusbDNiaGSot7qjaZrdxqbGBPm/Z/3k7TTtX0dP1alLyv7TqE0DsbazZEbXRby454eVrSWGRimzfjGzMOXB1Sfs/+0oP2/yjjW8Vc5eav8vVaso3ou7cSLGwd0flVLZnd4qHbNPjOfykeuMqDOJwNdBZHW2o2D5fHSf3kHvOZ3YcjC1MCVP8dysnbCVB5cfk8E6HV6zOvHLzqH0Lj0MiNoeuX7qNu9eBWFgoKBJ/7qM/X0wXVwH6H170sDAgIm7hxPo/x7vSqPJmDkDQ1b1QaFQsKDfCrW2Q6qP49H1Z2x++b8kf15cJLujJHd2//CB8lu3brFixQpWr17Nu3fv+KLBU37z5MnD3r176dOnj9r7e/bsIXfu3Bp/9pw5cyhWrBgZM2aMc/jHj/q5KhuiVgyn/7jA2T0XAXj12B+PluXJ6xb//LiWduHVI392zN8LgN8jf/5cdpAWgxLvby45tBzSAP+nAUzvskj13qvHCW/kfHr/WW1nsHzDkqS3Tqf3M/GR4RG8exWkUduYZ95XjNpIuQYlKVfPTW8HymMeJF45agP1etbEtWzeBA+UB74OIjgo/hMXunZu76V4r3qPS/V2lflz6UGObj4FgN/D17iWzUvLIY1S/EC5tvOiS02967F3xWH2LD8MwCLvVZSsWZT6XjVZMWJ9rPb3Lz1S+66+euxPxcZlKFzRVe1AuVKp5N2rQF2Xn6j/6i1gyXVVlj5Idsd2bt8lzu27FO/wxv1qs2HyDk7uiLqSaprnQjY9X0LV1hX483+H9FTlN2bpTBm+pg+zeiyl7YjGCbat3rbS13XzaeDrurmMCy0HN9TbgfIRdSaq/X+650K2vl6Oi1turh6/Gec4i7xXqf1/xcgNlGtQinL1S+okv7VdN0dLLKsNDAwYvrY/v43dTOGKrqSzstBbjfV61sD/yRvVsnxy6zl5SzrTfFAD1c7tnfP3uXP+PgBdJreN83O1+fvposYm/ety4cAVNk7ZAcDGKTsoUrkgTfrXZVLbOUDiOe/o4kCBcnnpWsibQct7sWfFYeb3Wc6WV8u4f+kh/lUL6bxGTZbNkQ0n1D578cDV1O5SjdxFcnDx8DUKVsiHnZNtvPOZVJLdqZ9kd5Sk7HeXrFmUIpVd6Zi3Hx/eBavG0zdtsvvVY38Wekftx/7UyUMP1cWm7f5TyVrFKOJegA7OffjwLuo7kRLLOdr5/ZcTvGo45vGEcvXcuHz0Bn4Pk7fmlMrulkMbfT3e8+2K5leP/ek8sU2K5HRiy+HT+08MqzVe7bPn91vBgrNTyJLdBv+nb9S2R4q4F6BJ/7rYZrdJlu3JWp08aDG4Ifa5bPF75M+OeX/xx6L9cU4TwK1mEXIUyMbwHD1VV7wv8VnN4JW9WTlyA58+fDtu9j7go0720yW7dSNJB8qDg4PZtGkTy5cv58yZM1SpUoWJEydqdFYbos5I9+nTB39/f6pWrQrAoUOHmDFjhlYz7OLigre3N+3atYtz+KVLl3Bzc9N4ej/i+slb1O1eA0cXB57ffUnuIjkoVCEfiwb9Fu84N87codP4lpT6qRjn9l7CytaSSk3K8Pce/ey0lqtfkvP7LzN6kzeFK7sS8PwtuxbvZ8+ywxpP4yfPqlw8dJXXTzS/IiE5ZHWxZ+PTRXwJDefW2XusGLkBv4evNRpXoVBgkcFcb93bxGRgYEDl5mUxS2fKjdN3Emy76J9pmJgZ8+TGM9ZN3MZl3+t6qjJpjE2N+RKivtEe+vkL+UrnwdDIkIjwxPtS/LczMjYir1tuNv26Q+39CweuULBcPo2m4VzMiQLl87Fq9Aa1983Tm7H24UIMDA24f+kRq37eqLeTQd/7r94CFld/oqmJZHfS2eeyJbODNRcOXlG9F/YlnCvHblKgXN4UOVDed34X/v7rIhcPXU10Zztq3ax+d0lKr5vTWUYdLNYmi3WZ3z+ybk4sq9v93IxA//fsXXGYwhVd9Vqja9m8XDhwRe298/su85Nn1R/628f399NVjQXK5WXb7N3qbfZfokn/uhrXbGwadYVRRESkqsbIyEjCvoRTqIKrzmtMyrIxMjaiTvfqfAwMVl19amxqrJOglexOnSS7Y0vKfne5+m7cufCA5j4NqN62EiHBoZzefYHVYzbFykdd0ia706JyDUpy5/x9WgxpSPV2lQkJDuH0H+dZNXpTrH3E1MbKNiOlaxdjetclyTrdlMzuqOM9lxi9aSCF3QsQ8Pwtu5ceSJGcTup2VjpLCyIjIwkODE5wXn90e7J212p0HNuC+X2Xc+/iI/IUd8J7aU9CgkM58NvROKdToFw+Hl17ojpIDlHLxcTMBBe33Grbg7/sHIqxmXFck/khkt26odWB8tOnT7Ns2TI2b96Mi4sLbdu25e+//2bu3LkUKFBA4+l4enoSGhrKxIkTGT8+6oyRk5MTixYtokOHDhpPx83NjQsXLsQb2AqFItFO3UNDQwkNVb9FI1IZgYFCu9uwNk3bRTpLC5Zfm0FkRFR/h6tGb8J306l4x7lx+g6/dpjPyPX9MTEzxsjYiFO7zrOg/yqtPjupHHLbUr9nDbbN+pP1k7eTv3Qees/uTFhouEb9lmayt6L0T8WY1G6uHqr95tbZe0zttIBnd15ibWdF2xGNmXNiPF0LD9JoBdlsYD3M0plydMtpPVT7jVOhHMw9NRETM2M+fwxhXJNpPLkZ99Xkb18GMrP7Yu5eeICxqTHV21dm6sGf8akyNt4zpanBhf2XqN2lGqd2nOPuPw/I65abnzpXwdjECEubDLz1C0zpElOcpU0GDI0MY51RfvcqEGt7qwTHXf9kMZZZom4TXTNus+psPMDTW8+Z1nkBD68+wSKjOY371WX2iQn0LOaj6vJHX/7LT9+uWLEiVatWpUqVKpQrVw4zM7OULkmyOxlk+vrbjHnlUeDrIGxz2OjkMxPi0bI8LsVz0bvMCI3aX9h/mdpdqnJq5znu/vPw67rZI0XXzT1ndOTq8Zs8uv5U43GaDaofld+b49+2SqqkrJs1yeqC5fPxk2dVehb/8S6/klJjJnsrzsfR3sj4x/728f39dFWjtb1VrN/fu1dBiebm957eeo7fo9d0/7UdhkaGvA/4QMuhjcjsYE0mByue3X2h0xq1WTZl6pZg5AZvTC1MePsykKE1x/M+4AMAN8/cJSQ4VHWyIrlIdkt2JyQ1ZXdS9rvtc9lSqEI+voSEMa75DDJmzkDfeV3IkCkdM7sl74HR+Gib3WmRQy47ClXMz5eQMMY2mYalTQb6LuhKhkzpmfHdXeypUY12lfn8IYQTO5L3GVYpmd1Rx3tqsm3WbtZP/p38pfPgNatziuR0UpaDsakxXSe35fD6E2pXZ8d04/TtH96ebDeqGUt8fuPE9qhud/wevSZHgWzU7V4j3gPl1vZWBMaY54+BwXwJDVPtO3z+GMKigau4fvI2yshIFpz7VeM6NSHZrZvs1vhAeYECBfj06RNt2rTh77//VgX0sGHDkvTBXl5eeHl54e/vj7m5OenTp9d6GjNmzIgVtt8rWrRoog9DmTx5MuPGqT+IKbeiIM6GhbSqxaNFOaq1qcSU9vN4dOMZzkWd8JrRgYCX7zgQz0HnHK6O9JrVkXUTtnH+wBUy2VvR7de29F/YlZnddR/YCgMD7py/z4pRG4Go7h1yFshG/R41NDpQXrOjBx8DgzmVzGGSmO9v/3p07Sk3T99h9d251OzgzrbZCT90o0qr8rQf04wxjacTqOf+vp/dfkHP4oNJb2VBxaZlGbyqD4M8xsR5sPzZnRdqD8i6eeYOWbJlpvmgBqn6QPna8duwtrdi7umJKBQK3r0KYv9qX1oOaZRgP/L/RTH3JTTZwRhY+WfM0pvhWtaFrpPb8uKeH0c2ngTg5t93ufn3XVXb6ydvs+jCVBr2rc3C/iuTvf6E/JcDO1++fKxfv54JEyZgampKmTJlVAFetmzZWH2m6ZpkdzKL9cMl2Z+ynpgs2TLTa1ZHhv00SeNnEKyd8HXdfGrCd+vmo7Qc0jBF1s1953chV5EceFcarfE4VVpVoP2Y5oxpNFWn+a3NujmxrDZPb8bQNf2Y1X2x6iCnvmuMaq8+LLpPx6R+dTX5++mkxlht4vigBESER/BLsxkMWRXVBcW0Q2P45+BVzv71j15r1GTZXD5ynZ7FB2Npk4Ha3aozatNA+pWN6gc16M17xreYwZR9mv9+NCHZLdmdkNSU3UnZ7zYwMECphCkd5qm6EV0y+DdGb/Jmft8VOr+qPCnZnRYZGChQKmFyu7l8eh/VJdmSQasZvWUQ83ovT9VXldfq6M7hjSd19vdJiexWHe8ZGXUX8v1Lj8hXOg+1PaulWE5r+rmGRoaM3DAAhYGCeb2XxVlT9NXqM7pqfhImru1JS5uM2OawYeAyL7yX9vyuBgNV13oT/xxB4UpRdwW+euxPt8IDv85P7Nq/n6f3AR/4PZFjVD9Csls32a3xgfJ79+7RqlUrqlSpgqtr0m8bjSlLlixJHtfe3v6HP3/48OGxHk7SJFMXrafTbUo7Nk7bie/X/j8fXXuKXQ4bWg1pGG9gtxraiOun7rBlZtQtKg+vPiHkUyizfMex6udNOr/C6+3Ldzy5+VztvSe3nlOpSRmNxv+pswcH1x4nPCxlu9MI+RTKw2tPcHRJ+Pvg3qIcA//Xk/EtZ3Hx0FU9VfdNeFg4L+5HXdl758ID8pV0pnH/OszpuVSj8W/9fZdqbSvpssQf9iXkCzO6LGJ2j6VY21ny9mUgdbpXJ/j9J4LeJN9BgrQs6M0HIsIjVGeZo1nZWsY6Ix2T36Oo7oUeXXuCtZ0l7ce0UB0oj0mpVHL7/D0c8zgkS93a+K/2lQawfPlyAJ49e8bhw4c5evQoq1evZuzYsZibm1O+fHmqVq3K8OHD9VKPZHfyiM5ja3srtWy2ymJJ4GvNnpeRXFzccmFtZ8XCc5NV7xkaGVK4sisNe9eijnlbIiPVN9q/hIQxo+tiZvf839d187sUWzf3nutJ2folGeQ+hjfPNXu4jnuL8gxc5sX4FjN1lt8/sm7+3vdZndXZHodctozf9e3glsIgav2498tGOufvz8sHr3Ra41u/QDLZW8dqHx4WnqSD94n9/XRV4zu/2FecWdlaavy8mmh3/3mAl9sQdgevZUbXRRz47ShzT0/i7oX7Oq9Rm2UT8imUF/f9eHHfj5t/32XV7bn81KWqqu/XmLfAJwfJbsnuhKSm7E7Kfvdbv3e8ef5W7VlbT249x8DAAJtsmXmh47svk5LdaVHAy+jl/O25HU9uRi3nLNky6f0uV00VqpCP7PmyMqndvGSfdkpmd9TxHvWL8u5dfIRSqdR7TmuzHAyNDBm1aSD2uWwZXG1cnFeT957rScHyUV22BLx4F2t4XOLbnozeNpvVfTG3/r6nNk70BSUzuy3G1NwEiDquEz3P+UvnUWuf3iodxiZGWm+fJJVkt26yW+NHpD58+JB8+fLh5eVFtmzZ8PHx4eLFi2pPGtXG1q1badGiBWXLlqVEiRJqL30yNTUlY8aMaq+k3LptamGCMka4RUZEojCIfxGbmpvECkTVlV1JXK7auH7qNtnyqh9Ey+bioNEDN4q4F8DRxYG9K47oqjyNGZsYkSO/I29fBsbbpkqr8gxe0YvJ7eZy9q+L+isuAQqFAhMTzc9yORfLRUAC85iaRIRH8Ob5WyIjI6nSsgJ/7/5H71ddplbhYeHcufCAEjWKqL1fonoRrp++rfF0FAoFxqYJn+t0LurEWz/NNhySk1Kp3evfKFu2bHTo0IHly5dz//59Hj9+jLe3N2fPnmXUqFF6q0OyO3n4PXxNwMt3lKhWWPWekbEhRSq7JvqsieR28dA1uhXxoWeJoarX7XP3Obz+BD1LDE1wR/vbullJlRbl+ftP/a6b+8zrQsXGZRhSbZzqxF9iqrSqwOCVvZncdo7qyl9dSK518/dZ/eTWc7oVHkjP4oNVr9O7zquuFvZ/GqDzGm+euUOJ6urt3WoW5c75B1r3T67J309XNd44fQe3mG1qFOXGKc3/NjFrzF/GBcc89uQt6cypned0XuMPfccUClUf67oi2S3ZrWspud99/dQdMme1xiydqeq9bC4ORERE8uaZduvipPiR7E5Lrp+6/XU5f+sCwTFv1HL2f6bZyfGUUKuTB3cuPODB1SfJPu2UzO7rJ2+TLW9WtfeyOtvx+WOI3nNa0+UQfZDc0cWeoTXGx9m1bvT2yKKBqxKYe3UJbU8Gvg7C/1kADrntVCepo1/R2zsBL96q3ot+Pt+N07dxKpRD7eC/W82ifAn5wt0LDzSu7UdIdusmuzU+UO7o6MjIkSO5d+8ea9aswc/PjwoVKhAeHs6qVau4c0fzHcW5c+fSuXNnbG1tuXjxIqVLlyZz5sw8ePCA2rVrJ2lG4tKxY0fVQ0t07cyf/9B6WCNK1y6OXc4sVGhYiiYD6nJy57duSTwntGLwyl5q41RsXIp6PWpgn8uWAuXz0mtWJ26dvcfb7x4IoCvbZv+Fa1kXWg9rRFZnO6q0rkCdbtXY9d2TfT0ntmbIqt6xxq3tWYWbZ+5q1RdUcuk+tR1FKrti75SF/KXzMHrLQCwymrP/a99RMWuu0qo8Q1b1ZonPGm6euYu1nSXWdpZYZDTXW82eE1tTqGJ+7HJmwalQDjpPaE0Rj4IcWn88avikNqpbgQEa969D+YalcMxjT84C2fCc1IbKzcqya8EevdUMYJbODOeiTjgXdQKi+vdzLupEluw2cdbt6OJAtbaVcMxjT75SeRixfgBOhbKzYmTsp2frW2Lzok/bZu2mdpdq1OpchRz5Hek5syO2OWzYvTjqtxdzuTboVYuy9dxwzGOPYx57anXyoPmgBhxad1zVpt3PzShZs6hqvgYt98K5mBO7Fx/Q+/wplQqtXv9W9+/fZ/ny5bRv357y5cszZ84cypQpwy+//KK3GiS7NWeWzpTcRXOSu2hOIGodkbtoTrJkzwzA9rl7aD2sERUalsKpYDZ8lvci9FMohzfEfVeHrnz+GMKj60/VXiHBIbwP+KjK5Jg5GLVurvh13ezMiPX9v66bN+qt7r4LulKtbSUmt53Dpw8hWNtZYW1nhYmZiapNzHVflVYVGLK6D0t8Vn/N76hxLDImb9/M0bRdNyeW1WGhYbH+VsGBn/j04TOPrj9VXZGkyxp3Lz6AbU4beszoSI78jtTqXIWfPKuyZcYuVRsjYyNVPhqbGGHjmBnnok5kdf52Bakmfz9d1rh97p+41SxKyyENyZ4vKy2HNKRE9cL8Pufb7cya5HzlZmUp4l6AQ+uOUadrdeacmsjFQ1coVbu4XmpMbNmYWZjiObE1rmVcsM1hQ57iuRj4v55kyZaJY989W6dWJ484vx8/QrI7imR30qT2/e7DG07wIeAjPsu8yOHqSOGK+ek2pR37Vh3Ry8M8k5LdAM5Fc+JcNCfm6c2wzJIR56I5yeHqqPN6o2m7L3h4/QneB3xg8Ipe5HDNRuFKrnSf2p59Kw+nSLcrZulMyV0kJ7mLfN22c8pC7iLftu0ALDKYU7lJafau9NVZHSmV3dtm74463jO8MVmd7anSuiJ1ulVn/6ojKZLTiS0HA0MDft4yiLwlczOl3VwMDA1U2xtGxlEXiPVd0JXq7SqzeswmrO0sgaiLOPOXzkMG6/Rx1q/J9uSacZtpNawxjfvVwdHFAadCOajVyYOm3vXi/bte2H+FJzeeMfS3vjgXc6J41UJ0n9aev5YdUl0FX6ODO1VaVyRHfsdYJy2Sg2R3lOTObq0e5hmtatWqVK1alaCgINatW8eKFSuYPn06hQoV4sqVxG8FXLhwIUuXLqV169asXr2aIUOGkDt3bn7++Wfevk2+M41Zs2bFIIEzy8lpQf+VdBzXgr7zPLGytSTgxTv++t9B1k7YpmqTycEa2+821g/8dhSLDGY08KpJ96ntCA4M5pLvdZYN189BxTvn7zO26Qy6TGxNu9FN8Xvoz6KBqzm8/oSqTWYHK2y/CxIAi4zmVGxShoXeq/RSZ0w22TIzYl0/MtpkJMj/PTf/vku/8qNUZ/Zi1ly3W3WMjI3ot6AL/RZ8u71v/2pfpnnq56EiVnZWDP2tL5kcrAkO+sTDK48ZUXsi/xyM+r1ktrdWeyCcsYkR3ad1wMYxE6Gfv/D4+lNG1p3E2T36vRo+b8nczDjyrS9Br5mdANi/ypdpngti1W1oaECzgfXJli8rEWERXDpyjf4VRml0l4KuJTYv+nR08ykyZk5Pu9HNyORgzaNrUX9f1Xc4xnJVGCjwnNQG+1y2RIZH8uK+H8uGr+PPJd8Ogqe3SseAJT2wtrciOOgT9y8+ZKD7GG6fuxfr83Xt3xzCiVm5ciVHjhzB19eXoKAgKlSogLu7O71796ZkyZIYGSUpdpOFZHfC8ro5M/3Qz6r/95we9ZCz/b8dZXqXRWyevgtTcxP6zPMkg3U6bp29x/A6k/j8MUTvtSYmZg4aGhrQzLvet3Wz73X6Vxyt13VzA69aAMzwVe+fdlrnBexf7RtVd4x1X93uNb7mdzf6Leimel9X621t180pkdXa1uj36DWj6k6m58yONOhVi4AX71jYfwUnfv9b1SZzVmsWX5ym+n8Lnwa08GnAZd/r+FQdC2j299NljTdO32Fi69l0Gt+Kjr+04uV9Pya2msWts98yTpOcz+RgTY8ZHbG2s+LT+08YGhlS1L0gGTNn1EuNiS2biIhIsudzpMZWDzLaZOBDwAdun7uPd+WfeXzj2+3z2fIl/4EyyW7J7h+R2ve7Q4JDGVZ7Ir1nd2L+mUl8CPjI0a2nWfXzJr3UrIm49rsX/zNV9e+8JZ2p1qYifo9e0965r15q0nZfMCQ4hGE1x9N7bhcWnJvC+4APHNtympWj9Hdi/nt53XIzbf+3K0p7TmsPwP41x5jx9SGu7i3KgkLBER08KDxaSmX3nfP3GdtkGl0mtaXd6Gb4PXzNIu9V7Fl2iCe3nus9pxNbDlmyZaZ8w1IALLk0XW0ZDqoyhitHb6i2RwYt81IN+2XHUODbNklStif3LD9MyKcvtPBpQNdf2xESHMqjq0/UDvTHFBkZych6k+m3oCuzT0zgy+cvHN5wgqU+v6m1azuyKbY5bXTyXCDJbt1kt0KZTPfcXrp0iRUrVjB37txE21pYWHDz5k1y5syJra0tBw4coGjRoty9e5eyZcsSEKD7258SUtO4VYp+flLFvAVN6IhSHkop/l0ORG5J1unl+127M7e3m/yceKM0wsDAgBw5cjB8+HA8PT31/gAwbUl2p7w0md2Sg0KkOMnu5CPZnXIku/UoDWa3gUnsu5ZSu8gvqfeBpSLlSXYnH11mt8anfT9//syuXbv48CH2wwPev3/PkydPmDZtWhxjxmZvb68K5Zw5c3LmzBkgqj+25Owr8+nTp3h6eibb9IQQQiTuv3wL2IIFCyhbtixjx47F1taW+vXrM2PGDM6fP58i/fRLdgshhNCEZLdk94+Q7BZCCP2T7NZNdmt8oHzp0qXMmTOHDBkyxBqWMWNG5s6dy7JlyzSaVtWqVfnjjz8A6NKlC97e3tSoUYOWLVvSuHFjTUtK1Nu3b1m9enWyTU8IIYQGlFq+/kW8vLzYuHEjL1++5OTJk9SpU4ezZ89Sr149rK2tqVu3LtOnT098QslEslsIIYRGJLslu3+AZLcQQqQAyW6dZLfGXa+ULl2a0aNHU79+/TiH7969m19++YWzZ88mOq3IyEgiIyNVfcZs3ryZEydOkCdPHnr27ImJhrfY7Nq1K8HhDx48YNCgQUREaP5kYJBbwEQi0uBta0IkJLlvAcuzeYJW7e+1SNrTqNOSFy9esHDhQubNm8fHjx+1zqWkkuxO/dJkdksOCpHiJLt1T7L7G8ludZLd+iFdr4h/G8lu3UuO7Na4d/O7d+9StGjReIcXKVKEu3fvxju8SZMmrFq1iowZM7J27VpatmypCuwWLVrQokULLcqO0qhRIxQKRYKX1SsU/67bC4QQIrX7t93WlRSvXr3C19dX9bpz5w4mJiaUKVOGKlWq6K0OyW4hhBCakOyW7E6IZLcQQqQ+kt26yW6Nu14JDw/H398/3uH+/v6Eh4fHO3z37t0EBwcD0LlzZ4KCgrQoM24ODg5s27ZNdaY85uuff/754c8QQgihJaVCu9e/SO/evSlQoABZs2alQ4cOXL16lWbNmnHgwAHevXuHr68vY8aM0Vs9kt1CCCE0Itkt2Z0AyW4hhEiFJLt1kt0aX1FesGBBDh48iJubW5zDDxw4QMGCBeMdP3/+/AwfPpwqVaqgVCrZvHkzGTNmjLNthw4dNKrJzc2Nf/75h0aNGsU5PLGz3kIIIZKfrle7z58/Z+jQoezZs4fPnz+TN29eli9frsonpVLJuHHjWLp0Ke/evaNMmTIsWLBALaNCQ0Px8fFhw4YNfP78mWrVqrFw4UKyZcv2Q7VFZ9L/2bvrqKi2Pozj36FDJSUNDFCxFb2KgVjY3d1ii90tdly7u7sL89pdWNgKCkgr0vD+MTo4Es4gA+i7P2ux7uXkb8ZhnnP2OWdvZ2dnKlWqhJ6e3m9t73eJ7BYEQRAUIbJbZHdqRHYLgiBkPSK7VZPdCjeUd+vWjSFDhlC0aFEaNGggN+/w4cNMmzaN+fPnp7j+ihUrGDJkCEePHkUikTBu3LhkH8+SSCQKB/bw4cNlV8uTU7BgQc6dO6fQtgRBEIR0osLADg4OplKlSjg7O3P8+HHMzMx4+fIlhoaGsmVmz57N/Pnz2bBhA3Z2dkybNo1atWrx7Nkz2cBYgwcP5vDhw+zYsQMTExOGDh1KgwYNuH37Nurq6mmur0iRIowePTrZAbgyg8huQRAEQSEiu0V2p0JktyAIQhYkslsl2a3wYJ4AHTp0YNu2bRQuXJhChQohkUh48uQJXl5etGrViu3btyu0HTU1NXx9fTEzM0tz4aokBhURUvUHDoQiCKlJ70FF8m2dodTyr9uPVnjZUaNGcfnyZS5evJjs/ISEBKysrBg8eDAjR44EpFexzc3NmTVrFr179yY0NJScOXOyefNmWrduDUgH/cidOzfHjh3DxcVFqfp/pK6uzsePH7NUvonsztr+yOwWOSgImU5kt8huRYjsVg2R3RlDDOYp/G1Edv8Z2a1wH+UAW7ZsYceOHdjZ2eHl5cXTp08pVKgQ27dvVzisAV6/fk3OnDmVLlYQBEH4AyQo9xMVFUVYWJjcT1RUVLKbPnToEA4ODrRs2RIzMzNKly7N6tWrZfNfv36Nr68vtWvXlk3T1tbGycmJK1euAHD79m1iYmLklrGysqJYsWKyZdL80rPgY8ciuwVBEIRfEtmdpYjsFgRBEH5JZLdKKNVQDtKRsg8cOMCjR494/PgxBw4cUHrk7Lx584pRsQVBEP5SCQkSpX5mzJiBgYGB3M+MGclfHX/16hXLly/H1taWkydP4urqysCBA9m0aRMAvr6+AJibm8utZ25uLpvn6+uLlpYWRkZGKS7zO7JivonsFgRBEFIjsjvr5ZvIbkEQBCE1IrtVk28K91H+/0RNVzezS0iT+IiIzC5BaX/kY2sSpa8vZb4/8FE74Q+m5J/16NGjGTJkiNw0bW3tZJeNj4/HwcEBd3d3AEqXLs2jR49Yvny5XD+bP4dmQkLCL4NUkWUUYWdn98vtBAUF/fZ+BHlq2bJldglpEh/+NbNLUFpCXGZXkAYiBwUhdSK7RXZnAkkKn5ksL4U7MLOyhPg/7xxWdGMiCL8gslsl2S0aygVBEIR0plzoaWtrpxjQP7O0tMTe3l5uWpEiRdi7dy8AFhYWgPTqtaWlpWwZf39/2dVuCwsLoqOjCQ4Olru67e/vj6Ojo1K1J2fy5MkYGBj89nYEQRAEIeOI7BbZLQiCIPxZRHarIrtFQ7kgCIKQvlT4oEilSpV49uyZ3DQvLy/y5s0LQL58+bCwsMDDw4PSpUsDEB0dzYULF5g1axYAZcuWRVNTEw8PD9kjzB8/fsTT05PZs2f/do1t2rTJsoNmCYIgCEKyRHaL7BYEQRD+LCK7M38wz/Rw9OhRvLy8AHj+/DlHjx7N6BIEQRAEVVJyUBFluLm5ce3aNdzd3Xnx4gXbtm1j1apV9OvXD5A++jV48GDc3d3Zv38/np6edOnSBT09Pdq1aweAgYEB3bt3Z+jQoZw5c4a7d+/SoUMHihcvTs2aNX/rpf+t/YCK7BYEQfjLiez+64jsFgRB+MuJ7FYJpRrKY2Nj0dDQwNPTM807tLKyws3NDYBBgwZhbW2d5m0JgiAIWU9CvESpH2WUK1eO/fv3s337dooVK8bUqVNZuHAh7du3ly0zYsQIBg8eTN++fXFwcMDHx4dTp06RPXt22TILFiygSZMmtGrVikqVKqGnp8fhw4dRV1f/vdeu5Ojb3t7exMertu9kkd2CIAjCr4jsVpzIbkEQBCErENmtOGWyW5Kg5NYLFCjAvn37KFmypFJF/WjSpEm8fPmSAgUKMGnSpDRvR1Xq5Oia2SWkiRjMU0iRGMRMSIVH/O503V7etco9RvW2+4h03f+fJEeOHNy7d4/8+fOrdD//F9lt1COzS0iTP3Mwzz9wNE+Rg8JfRmR35hHZnX5csnXO7BLSJOGPHMzzDzzvFtkt/GVEdmceZbJb6T7Kx40bx+jRo9myZQvGxsZKrevs7IxEIiE4OJj79+9TqlQpLly4gEQi4ezZs8qWIgiCIGRFCX/nI8yqoOyV8LQS2S0IgiCkSmS3wkR2C4IgCFmCyG6FKZPdSjeUL1q0iBcvXmBlZUXevHnR19eXm3/nzp0U1z137hwArVu3pm/fvpw5c4YdO3YoW4IgCIKQhUn+wBtW/nYiuwVBEITUiOzOekR2C4IgCKkR2a0aSjeUN2nS5Ld2uHPnToyNjenZsyf37t1j586dtG7d+re2KQiCIGQhIrCzHJHdgiAIQqpEdmc5IrsFQRCEVInsVgmlG8onTpz4WzssU6YMtWvXBmD69On4+/v/1vYEQRCELEY8ApbliOwWBEEQUiWyO8sR2S0IgiCkSmS3SijdUA4QEhLCnj17ePnyJcOHD8fY2Jg7d+5gbm7+y9G0bW1tZf9vaGiIoaFhWkpIIi4ujoCAACQSCSYmJr89gqogCIKQRuLKtsIkkow7uBHZLQiCIKRIZLfCRHaL7BYEQcgSRHYrTJnsVlN24w8ePMDOzo5Zs2Yxd+5cQkJCANi/fz+jR49WdnO/bf/+/VSqVAk9PT2srKywtLRET0+PSpUqceDAgQyvRxAE4f9egpI//8cyakAwkd2CIAhCqkR2K0xkt8huQRCELEFkt8KUyW6lG8qHDBlCly5deP78OTo6OrLpdevW5b///lN2c79l5cqVtGnThhIlSrBz504uXbrExYsX2blzJyVKlKBNmzasXr06Q2uq392Z5VemsNd7GXu9l7Hg9FgcahVPdtmBCztzImw9TfrWytAak1O8cmGm7B/O9rfLOBWzA8dGDrJ56hrqdHdvx8q7szkUsoHtb5cxfH1fjC2NMq1eEysjRm7qz17/NRz+vIkVt2dhWyZfisuXcLLHI25nkp/chawysGqpNiOb4BG3kz7zO6e4TOWm5Zl5ciy7fVdzIHg9/16aikPtkhlYZeoauNZm5b25HAjZyIGQjfx7eTrl6pTK7LIAKF6lCFMOjmSH90o84nfj2LjcL9ep3q4yK+7O4fCXLezwWcWwtX3JbpxNpXU27FObTS+XcvTrVpbenEWxyoVTXV5TS4Ou09qy5fUyjkZsY+Pzxbh0dZbNV9dQp8P4Fmx8vpijX7ey4u4cHFxKqfQ1pEgENhs2bODr16+/XO7x48fkzZtX5fWI7FZOa7e6nAheQ2/3xL5cKzUow/Q9g9n5YgEngteQv1juTKxQSprdw9j+Zimnorclk91tWHlnJoeC17H9zVKGr+uDsaVh5hX8jSI5CN++m+/M5vDnTezwXsGwtX1U/t38o781T0pUtWfpzVkc/bqVTS+W0KC3/HHo3LOT8IjfneRn2mHFG+bSuyaAys3+YY3nAo5GbGON5wIqNSkvN3/zq6XJ1j1gSXdA+jfRY2Z7Vt2fx6HPm9nhvZIRG/pjksrxbGa8jjajmrDk+gwOhm5il+8aJu0bTi67DDheFdktsjsVWTG7Ww9twKILE9n/cQU7Xy9m4vaB5LK1kFtGR1+bfvM6suXZAg59Ws3q2zNo0KN6htb5sz/tvPs7RbP7u6KOhTgRtY0Vt2epuDJ5ymZ3CSf7ZLND1e0EyuSLtG1gPLv91srOvZNrG9A30GPAku7s8FnF0a9bWftoAeXrlv7t/UP65Jsi+zU0M2D4un7s8F7J4S9bcD82FuuCiX/X5nlzJvvv5RG/m6otKiRfuwr/jXPmNmXKwZEc+ryZPf5r6ftvVzQ0Ezvu+LnedCeyWyXZrXRD+c2bN+ndu3eS6dbW1vj6+iq7ud8yZ84cli1bxvLly2nSpAkVK1bE0dGRJk2asHz5cpYtW8bMmTMztKYAnyDWTdrDwGqTGVhtMvcuPGHi9oHkLSz/R1ixfmkKOeQn4ENwhtaXEh19HV49eMuSQeuTzNPW08K2tA1bp++jb/nRTG41n1y2lkzZPywTKoVshvosvDiFuJg4xtSfQY9iQ1k5fDNfQn79x9Gl8GBaWfWS/fg8/5gBFSeycyhAvZ41eHn/barLFa9ShDseDxnbYCb9yo3m/vlHTDk4ggKlbDKm0F8I8A5k7eit9Cs3in7lRnHvnCeTD4wkr32uzC4NHX1t6Wd5wFqFli9aqTAjNg7gxLqz9Cw2hKmt5mNXrgBDVvdRWY1OrRzps6Ar29330qfMCDwvPcH92Fhy5jZNcZ1xO4dQunox5vVYTrfCg3Bv9y/vn/rI5ned1ob6vWqxdOA6uhd148hKDybtG545n5kEiXI/f6HRo0djYWFB9+7duXLlSorL5c6dO0MeWRbZrTi70jbU7VyVV57v5abr6Gvx6PoL1k/el0mVJSX7vhu8Ick8bT0tbEvlY6v7fvr+M5bJrRaQy9aCKfsyJ7u/UzQHi1YqxIgN/aTfzcWHMrX1AuwcCjBkddLPsar8jXliYWPGtKOj8bz0hD5lRrB9xj76/tuNys3+kS0zuflcWln2lP30KOZGXGwc/+25mmk1Falgx7gdbpzecgHXUsM4veUC43a6Ubh8Qdky/cuPlqt7RK0pAFzYLa1bW0+bgqXzs2XaHvqWHcnk5nPJZWfJlIMjs9TrKFG1KIeWnWRgxTGMqj0VdQ11Zp4ch46etkLvf5qJ7BbZnYqsmN0lKhfi8KozDK4+ldENZ6OuoY77weFo62nJlnGd2Q6HmsWZ3WMlPcuOZt+Sk/Sd24GK9ZNvPMwIf9J593eKZvd3ejl0GbGhL3fPeqq4sqSUze7vuhQaKJchPs9V9zembL4Ur2rPndP3GVvfnX4OI7l/3pMph0bJnedpaGow69R4zPOaMbXlPLoWHsT8XisJ8An67f2nV74pst/J+0dgkd+MCU1m06fMCPzefWKWxwRZBn56H8iVgzd5/+wDE5vOZkDFMdw750lCQgIv7qX++Uzvf2M1NTWmHxmNjr4OblXGM73tQqo0q0DveZ2SLDui5mRaWfb8rf0lS2S3SrJb6YZyHR0dwsLCkkx/9uwZOXPmTHXdFy9eKLu7VPn4+FC5cuUU5zs6OvLhw4d03eevXD9xn5unHuDzwg+fF35snLqPyPBICpcrIFvGxNKQvnM7MLvHSuJi4jK0vpTcPHmPDRN3cfnAzSTzvoZFMKquO//tuYa310eeXn/B0sHrsStbgJy5TTK81tYjGvHpfSBzuy/n2c2X+L39xN2znnx85ffLdUP8Qwn2S/yJj8+4y2o6+tqM3tyfBb1X8SX4S6rLLh+ykV1zD+F16yU+L3xZN24HPs8/UrFB2QyqNnXXjtzmxvG7+Dz/iM/zj6wft52IL5EUqWCX2aVx88Q9NozfwaX9NxRavkgFW/ze+HNg8XF83/jz6PJTjq7ywM4hv8pqbO7WgBPrznJ87VnePfVhudsGPr0PoGGf2sku7+BSihJO9oytP4O7Zx7i9/YTz26+4PFVL9kyNTtUZfuMfdw4fhff1/4cWXGKWyfv0WJIQ5W9jpRIEpT7+Rt5e3uzZcsWgoODcXZ2pnDhwsyaNSvDT2y/E9mtGB19bUas6sG/gzYlufh6Zuc1ts05wt3zjzOltuTcPHmfDRN3p5zd9Wbw357r0uy+8YKlgzdiVzZ/pmQ3KJeDRf759t285AS+bz7x6PIzjq46jV1Z1X03/+xvzJMGrrX49C6A5W4bePfUh+Nrz3Jy/VlaDm0kW+Zz8BeC/UJkP2VqlSDyaxT/7VasoVwVNTUbVJ/bHg/YMfMA7599YMfMA9w940mzQfVly4QGhMnVXaFBWXxe+PLggvRv9mvYV0a5TOW/3Vfx9vrAk+vPWTJwHXYOBZJtHMis1zGm3nRObTzP28fevHrwlrndlmGeNye2Kv7si+wW2Z2arJjdY5vOw2PrJd4+8eGV53vm9VmDeR5TbEsnPmVc5J+CeGy7xIOLT/F7F8Dx9ed59fB9qk8iq9qfdN4NymX3d4NX9OLs9sty5yoZRdns/k7aTpCYIfHx8SqqUPl8We62gV1zfmgbGLtd2jbQMPFphDrdnMlunI2JTWfz6Moz/N8F8OjyU149SNp4nFn59qv9WttaYl/RjkV9V+N16yXeXh9Y3HcNutl0cG5bCQANLQ3+qV+GFUM3cuXgTZ5ef042Q30+B32hdmenVN/3X/0bu3SpxtpHC6R34z9emOL78V3Z2iXIY5+LWR0X8fLeG+6eecjKYRup16MGetl15ZYNC5QeW6U3kd2qyW6lG8obN27MlClTiImJAaQdor97945Ro0bRvHnzVNe1s7Mjd+7cdOrUifXr1/PmzZs0Ff1d0aJFWbVqVYrzV69eTdGiRX9rH79DTU2CU/PyaOtp8+TGS0D6fg1f1Ys9i07w9mnmNASkB/0cesTHxxOuwF3c6a1iQwe8br9i/E43dn1cxfJbM6mr4CN0y2/PYof3CmafGkfJahn72RiwpDvXj93l7pmHSq8rkUjQy67L5yDFDk4ykpqaGtVaO6Kjr50pB0O/6/GVZ5jmMpE9lmZoZkDV5hW5ceyOSvanoamBXdn83D51X276bY8HFK1YKNl1KjZywOvWS1qNaMz29ytZ//Rfes3piJZO4h0zmtqaREfGyK0XHRH9y8foVEI8Aoa6ujqNGjVi3759vH//nl69erF161by5MlDo0aNOHjwoEoPwH8mslsx/ea058aph9y98CRT9q9q+gaZl92gXA4+vur17bu5FPD9u/kfbhy7q+Iq0+5PyJMiFey47fFAbtqtk/exc8iPukbyd9nU7VaD8zuvEPk1KtNqsq9ox20P+W3eOnUPe8fkt6mhqUGN9lU4uf5sqvUm/k2EZ8nX8b1GQPXHgCK7RXanIitn93f6OaQNU59/aMx9dNWLCvVKy7pYKlm1MNYFzbl9WvnzscySmefdoPw5rEuXaljlN2fzlD0qrix9Lb8zhx0+q5jtMUGl7QRpyZefJdc2ULGhA4+vejFgaQ92fVzNqgfzaDu6KWpq8k1+mZVviuxXU1sTQO6cNj4+npjoWIpVKgKAuoYa6hrqxERGA2BbJj8FS+cj8GMwxSqlft6b2r9x3R416DqtLevHbae7vRvrx26jy5Q21OqUcuO7fcVCvPF8R+DHxF4ibp28j5aOVpKL21MOjmSX75pU60sTkd0qyW6NXy8ib+7cudSrVw8zMzMiIiJwcnLC19eXihUrMn369FTXvXDhAhcuXOD8+fP079+fyMhI8uTJQ/Xq1XF2dsbZ2fmXo3f/aN68edSvX58TJ05Qu3ZtzM3NkUgk+Pr64uHhwdu3bzl27Fiq24iKiiIqSv7APz4hDjVJ2h+ns7HPxYLTY9HS0STiSxRT2y/h3TNpo3grt3rExcVxcLlHmref2TS1Nenu3pZzOy7z9XNEhu/fMr8ZDV1rsXfBUbbN2E/h8gXpt7ArMVGxnN6cfH99QR+Dmd97Jc9vv0ZTW4OaHaoy22Mcw6pP4eFF1TeIVGvtiG3pfPT7Z0ya1m8xpAE6+tqyx4ezAptieVh0Zfq3z3kkk5vN4d0T78wuS2mPr3oxs8Mixu5wQ0tHEw1NDa4cvMmSAetUsj8D0+yoa6gnuaIc7BeCkYVhsutY5jOnWOXCREfGMKnZHAxMszNgaQ+yG2djXvflgDSUm7s14OF/j/nw0o/SNYpTsXE51NSVvh762/7Wq9VpZWZmRqVKlXj27BleXl48fPiQLl26YGhoyPr166lWrZrKaxDZ/WtOzcpRsGQeBlafluZtZGWa2pp0n96GczuuZEp2K5uDj696MbPjYsZuH5z43XzoJksGJn1UPav4E/LE2MKQW8ksr6GpgYFpdoJ85ecVKleQfMXzMK/H8kytycjCkGC/0J+WCU1xm45NypHNUJ9TG86nWKumtiY9ZrTn7LZLSf4mssrrAHCd15mHF5/w5tH7FJdJDyK75YnslpdVs/tHvWa0w/PKM94+TuyacNmwLQxe0o1tzxcSGxNLfHwCC/ut49HV5+myT1XL7PNuZbPbuqAF3d3b4uY0ifi4jLuo9DuCPoYwv9cKnt9+haa2JjU7VmX26QkMc56kknaCtOTLz1oMbShtG9iV2M2ERX5zSlUvxpltlxhbfwbWthYMWNIDdQ11tkxNvGiRWfmmyH7fP/XB940/3d3bsdB1FZHhUTQf0gATSyPZGDsRXyJ5dOUZ7ce14N0TH+r0qE6ATxB57XOl2JWKIv/GHca1YOWwTbInEXzf+JPHPhf1e9XCY9OFZLdrZGFIyE+v+UtIONFRMRhbJNa7fMgGHl1+RkJ8PEtvpm+f/SK75aVXdivdUJ4jRw4uXbrE2bNnuXPnDvHx8ZQpU4aaNWv+ct0qVapQpUoVxo0bR0xMDFevXuX8+fOcP3+e7du3ExUVRcGCBXn27JlCtTg5OeHp6cny5cu5du2a7NZ6CwsLGjRogKurKzY2NqluY8aMGUyePFluWgGtkhTUTnu/Zd7PP9K38kSyGehRuZEDQ1f0YETdmWjpatK4Ty36V5mU5m1nNnUNdcZuHYhETY3F/VVz4vcrEjU1vG69ZN24HQC8vPeGvPa5aNi7VooN5d5eH/H2SuyP/Mm15+TMbULLoQ1U3lCeM5cJfRd0ZlQdd2KiYn69wk+c2zjScWILJjadS8inpI9fZhbvZx9wLT2cbIZ6VG5egeEb+jO02sQ/rrE8T5Fc9Pu3K1um7uHWyXuYWBrRc3ZHBq3oxXwFGwbS4udBlyUSSYojMaupSUhIgBkdFvE1THo3ycqhGxm/eyiL+60lOjKaZYPX47aqN2uf/AsJCXx46cepDeeo3cU52W2q1F/a/5my/Pz82Lx5M+vXr+fVq1c0adKEI0eOULNmTSIiIhg3bhydO3fm7VvF+nv8Hf8X2a1dmoK6ZRSq4Wem1ka4zmjLmObziYmKTdM2sjJpdg9AoiZh8YCMb2hOSw7mKWJNv4Vd2DJ1L7dO3Zd+N89qz6DlPZjfc6WKK06bPyFPpMvLz5NIJMluB6BO9+q8fviOZzeV68ZBJTUlWSaZHX1Tt1t1bhy/K3eX14/UNdQZu32w9G+iX8p3eGX26xiwpDv5SuTBrcr4FPeZbkR2AyK7U6Kq7M6vWYKCWqUUqiE1/eZ3JF+xXAytJX8BoUmf2hQuV4AJLRfg/y6Q4pUL0X9BJ4J8Q7JUV2rJyezzbmWzW01NwugtA9k0eXeGjwP2O7y9PuDtlfik/5NrXuTMZULLoY1U2k6gbL5859ymEh0ntmRik9lybQNqahJC/MNY2Gsl8fHxPL/zChMrY1oOayTXUJ7W/adXvqW237jYOKa0mMfQNX3YH7SBuNg47px+mOTJvFmdFjNsbV92+KwiISGBT+8DObvtErZlku+i7Ff/xgamOTDLY8qQNX1wW+UqW05dQ43wUOm59/SjYyheRXpXu9/bT/QsPiTZ9+Xn1xQW+Jl9C48mW1e6ENkNpH92K91Q/u7dO8zNzalevTrVqyd2d5GQkMD79+/JkyePQtvR1NSkatWqlCtXjooVK3Ly5ElWr16tdH9qNjY2zJqV9qsyo0ePZsiQIXLTWlj3T/P2AGJj4vj4yh+A53ffYFfGhiZ9avHO6wOGObOz+fFc2bLqGur0nN6Gpn1q07n48N/ar6qpa6gzbvsgzPOZMaLW1Ey5qg3Su8PfPfGRm/buqQ9VfhhMQhFPrz2nRvsq6VlasmzL5sPI3JBlN2fIpqlrqFO8ahEa93Ohnm77FPtKd2pVkSGrXZnaekGaumxRpdiYWD68lB4ke91+RSGHAjQdVI9/XVN+LDMrajuqKY8uP2P33EMAvH74jojwKBZenMqGcduT3F33u0IDPhMXGye7yvydoZlBkivS3wV+DCbAJ0jWSA7w7okPampq5MxljM8LX0IDwpjUbA6a2prkMMlO4Icgesxsj+9r/3StXyHiyjYNGzbk5MmT2NnZ0bNnTzp16oSxsbFsvq6uLkOHDmXBggUZUs//RXbnGZTm7dmWzIuRWQ6WnEtsjFLXUKeYoy2Nelanoblrho5pkZ6k2T0Qc5ucjKg9PVOyOy052HZUEx5d8WL3vMPA9+/mSBb+N4UN43em+3dzevgT8iTINwRjC6Mky8fGxBIW+FluurauFs6tK7Fx4s5MrynYN+mdboZmBknuXgMwy2NK6ZolmNx8TrL7U9dQZ9zOIVjkM2N4jcnJ/k1khdfRb1E3KjR0YKjTxGQHY0t3f+ZXXLoS2Z06VWR3c8u+ad7ed33ndqBivdIMdXEn4EPixTEtHU26TGrBlLaLuHFS2t3D60fvyV88Dy0G1c3SDeVZ4bxb2ezWza5LoXIFKFjahv6LugEgUZOgpqbGiahtjKoznXvnHmX460iLp9dV106Qlnz5zqmVI0PW9GFqq/lJ2gaCPoZ8e2oi8U7+d0+8MbE0QkNTg9iY2DTvPz3yTdH9Pr/zCtcyw9HLoYemlgahAWEsuurO89svZct8fOXHUOeJ1O1WnQHLetLXYST9F3dX6rz3x39jiZq0sXlBrxU8vS7/vfj9yYj5PVegrSvt9vT7exnsGyI3WClANkN9NLU0ks11lRDZrZLsVrqh3MbGhiJFinDo0CEKFEgcoNLf3598+fIRF5f64JSRkZFcuXKFc+fOcf78eW7evEm+fPlwcnJi+fLlODml3gF/etPW1kZbW34U+fR6/EtGIkFTW4MzO65w95x8IE/fP5QzO67gseVS+u4znX0Pa+uClgyvNSVT+8p+dOUZuews5ablsrXE7+0npbZToLRNincapae7ZzzpWUJ+pPJha/vw/pkPO2cfSrHxxbmNI0PX9MG9/b9Zuk/W7yQSCVpampldhtK09bSIi5V/NPB7IH6/Up6eYmNi8br9ijK1SnD5QOIgM2VqluDKoaSD+oD0M1+1ZUV09HWIDI8EwNrOkri4eD55y588x0TFEPghCHUNdSo3q8B/u1Me+VllRGBjZmbGhQsXqFixYorLWFpa8vr16wypR2R36u7994TejhPkpg1d0pX3z33Z9e/xP76R3LqgBcNrTcu07E5LDmrraRMXK/+5VOV3c3r4E/LkyTUvKjRwkJtWtnZJvG69SvJ+O7VyRFNbg9Nbkn9aLyNrenzVi7I1S8jdlVW2VkkeX0l6N6xLV2dC/EO5fjRp3/DfG8mtbS0YXn1yin8Tmf06+i/uTqUm5RnmPBHfNxl0wfvP/JpLVyK7VUsV59395nXEsWFZhtedgd/bALl5GprqaGppJMmY+Ph4JGoZ3zWhorLKebey2f01LCLJ8g371KaUc1GmtlqQOTfvpFGBUvkI/Biikm2nJV9Aeif50LV9cW+3MNmxTx5deYpz28pydzPnsrMi8EOQrGE3rftPj3xTdr/fbxCzLmiBnUMBNk7YkWSZGh2qcvXQLeJi43BwKcnqkVuSrT85P/4bh/iH8sk7EMv85pzdlny7XOCHpBesH199RtsxzTC2MJTdDFG2dkmiI6N5fvuVwrX8FpHdKslupRvKAYoUKUL58uXZtWsXNWrUkE3/1aMiTk5O3Lx5kwIFClC1alUGDBiAk5MT5ubmaSnjlzp37sz79+85ezb1gXzSU5cJzbnp8YAAnyB0s+ni1Lw8JaoUZlyzeXwOCudzkPxgQXExcQT7h+L9InNGU/9OR18bq4IWst8t8pmRv2RePgd9IfBDMON3umFbOh/jm8xCTV0NI3MDQDqwUGxM6gdp6W3vwmP8e2kKbUc14cLuqxQqX5B6PWuw0HW1bJlu09tiam3M7C5LAWg6sB5+b/15+8gbDS3pAE9Vm1dgcot5Kq834ktkkn4lI8MjCQv8Ipv+c73ObRwZsaEfywZv5Mm157L3Oyoimq9hmXMn/4+6TW/LjeN3+fQ+EN3suji3qUSJakUZUzf1/hIzgo6+DtY/fZYLlLQhLOgLn94H0M29HaZWxszusgSAa0du47aqNw1ca8sele+zoAtPrj9X2YWUvQuOMHLTALxuveTJVS/q9aqJWR5Tjqw4BZCkxrPbLtF+XHOGr+vLxkm7MDDNTq/ZHTm5/izR3wYyKVy+IKbWxry49wZTa2M6TWyFmpqEnbMPquQ1pEb0lSbNuzJlknYDEh0dzY4dO+jUqRMSiYS8efNmWE0iu1MW8SWKt0/kB9iO/BpNWNAX2fRshvqY5TLG5Fsfiblspd8zwf6hBPtnTrdYSbLbJudP2T0I21L5GN90TqZmd1py8NqR27it7EUD11rcOinteqXP/M4q/W7+2d+YJ0dWeNCoXx16z+vM8dWnKVLRjjrdquPebmGSbdfpVp3LB24q3Uijipr2LzrK/AtTaD2iMVcO3sSxcTnK1CyepEsSiUSCSxdnPDZdSNI/rpq6GhN2D6VgmXyMbzjz29+EIfD9b0K+26XMeh0DlvagetvKTGwym6+fI2U1hod+lWW+KojsFtn9OzIju/sv6IRzywpMavMvEZ8jMTKTZlx42FeiI2P4+jmS+xef0HN6a6Ijo/F7F0CJyoWp2bYSq0Zvz7A6f/annHcrm90JCQlJlg/xDyUmMkblYyz8SNnsbjqoHn5vPvH20XtpO0GHqlRtUSHFp5LSg7L54tymEiM29mfZ4PXf2gYMge9tA9IG5cPLT9G4f136/tuVA4uPY21rSdvRTTmw+Phv7z+98u1X+wWo2qICIZ/C8H8XQL7ieei7sCtXDtyQG0zUoXZJTKyMKV61COvH7WDu2Um8f/aBk+vPJVu/Iv/Gmyfvou+/3fgaFsGN43fR1NakkEN+shllY++CI8n+O94+9YB3j70ZuWkAq0ZsJodxNnrN6cixNWdkT4HU6uREbEwcL+++VsmNNyK7VZPdSjeUSyQSli1bxtatW6lfvz6zZ89m4MCBsnmpuXLlCpaWljg7O1OtWjWqVq2KqampsiUozMrKKskov6pmZJaDEat6YWRhwNewCF57vmdcs3lJ7iTPauzKFmDumcS76VzndgLg1KYLbJ6yB8dG0iuIK27PlltvWI0pPPgvY1+b162XTGo+j+7T29JhfHN8X39i+ZCNclf/TCwNMcttIvtdU0uDXrM7YmptTFRENG8fvWdsgxncOH4vQ2tPyc/11u9ZEw1NDQYu7c7Apd1l009tPM+cbqrr51RRhuaGjNw0AGNLI8JDv/L6wVvG1J3OndMPfr2yitk55GfeucT+D/vM7wLAqQ3nmdNtKSYWRpjlSfzeObXxPLrZdWjcrw6953YiPCScu2c9WTNqq8pqvLDrCjlMstFhfAuMLY144/mesfXd8X8nvRPm5xojwyMZVXsq/RZ1Z+nNmYQFfua/3VdZPy7xyrqWjhZdprbFMr8ZEV8iuXHsLrM6LZb1q5ahRGDTtWtX6tSpg5mZmdz0z58/07VrVzp16pSh9Yjs/n0V65Zk6LJust/HrOsNwJaZh9gy61Cm1GRXNj9zTyeegLjO7Qh8y+6pe3Fs+C27b82UW29Yzak8+E/1A1kr4+ccPLXxArrZdGnc14XeczpKv5vPPVLpd/PP/sY88X3jz7j6M3Cd35lGfV0I/BDMskHruLTvutx2rW0tKV6lCCNrT80SNT2+6sX0tgvpMrUNnae04eNLX6a3WcDTG/KPSJepWRzzvDk5sS5pY13OXCY4Ni4HwMp7c+XmDXWeyIML8sezmfU6GvVxAWDeefm+nOd0XcqpjedTeNfTgchukd2/ITOyu2FP6YWDuSfkB5qc23s1Hlul54UzOi+n2+SWjFzrSnYjffzfB7Bh8h6OrMm4Bv2f/Unn3b/yc3ZnBcpmt6aWBr3mdJJvJ6jvzo3jqnuiW9l8qd+r1re2gZ4MXNpTNv37awL45B3IKJdp9JnfmVX35xLgE8T+RcfYOSvpTVOZlW+/2i+AsaURved1xsjckKCPwXhsvsDWqXvl6tcz0KP3PGnjZ5MBdbm07zrrxm6X3d2eln/j42vPEvk1mlbDGtFjVgciw6N48/Ad+/5NuX/x+Ph4xjaYwcClPVh4aRrREdGc3X6JVcM2yS3XfmxzzPKaqmaAW5HdKsluSYIiIwb8QE1NDV9fX8zMzDh+/Dht27alRYsWTJgw4ZePgIWHh3Px4kXOnz/PuXPnuHfvHnZ2djg5OVGtWjWcnJzImTOn0i8ivdXJ0TWzS0iT+IjMv9NYWQl/6OPsf5yEP2PUcSFzeMTvTtftFZg7X6nlXw4b8uuF/jBqamr4+fklybT79+/j7OxMUFAG9Df7Uz1/fXYb9cjsEtIkPjwTLmb9poRfPO6fJYkcFP4yIrvTn8jujOeSrXNml5AmCVFRmV2C0v7I826R3cJfRmR3+lNFdqep65Xv6taty5UrV2jUqBE3btz45fL6+vrUqVOHOnXqANIW/kuXLnHu3Dlmz55N+/btsbW1xdPT83fKknn//j0TJ05k3bqMHyVaEATh/9X/8yNgpUuXRiKRIJFIqFGjBhoaiTEbFxfH69evZRmYWUR2C4IgCD8T2S2y+3eI7BYEQch4IrtVk91KN5Q7OTmhpaUl+93e3p4bN27QtGnTX/aV9jN9fX2MjY0xNjbGyMgIDQ0NnjxJv0eBg4KC2LhxowhsQRCEjJSQNQfaywhNmjQB4N69e7i4uJAtWzbZPC0tLWxsbGjevHmG1yWyWxAEQUiVyG6R3b9BZLcgCEImENmtkuxWuqH83LlzSaYZGxtz4cKFX64bHx/PrVu3ZI+AXb58mfDwcKytrXF2dmbp0qU4OzsrXMuhQ6n3CfrqVQaNNCsIgiAk+j++sj1x4kQAbGxsaN26NTo6OplckZTIbkEQBCFVIrtFdqdCZLcgCEIWJLJbJdmtdEN5tWrV6NatGy1btkRXV1epdQ0NDQkPD8fS0pJq1aoxf/58nJ2dKVCggLJlANIrCBKJJNUr6r8a6EQQBEFIX//Pj4B917lz1upzU2S3IAiCkBqR3SK7UyOyWxAEIesR2a2a7Fa6obxs2bKMGDGCAQMG0KpVK7p3706FChUUWnfOnDk4OztjZ2endKHJsbS0ZOnSpbJb7n927949ypYtmy77EgRBEBQjEePuYGRkpPAJY0YMDiayWxAEQUiNyG6R3akR2S0IgpD1iOxWTXarKVvEvHnz8PHxYdOmTXz69ImqVatib2/P3Llz8fPzS3Xd3r17Y2dnx5kzZ1JcZsmSJQrXUrZsWe7cuZPi/F9d9RYEQRBUIEHJn7/QuHHjAHBxcWHSpElMmjQJFxcXAMaPH8+CBQtkPxlBZLcgCIKQKpHdIrtTIbJbEAQhCxLZrZLsliT8ZqJ9+vSJlStXMn36dOLi4qhXrx4DBw6kevXqKa5jaGiIh4cH5cqVk5u+cOFCJkyYQFhYmEL7vnjxIuHh4SmOZBoeHs6tW7dwcnJS/AUBdXJ0VWr5rCI+IiKzS1BaQvxf+tea1SSIS41Cyjzid6fr9uymKXcC6TXOLV33nxU0b94cZ2dn+vfvLzd9yZIlnD59mgMHDmROYd/8ldlt1EOp5bOK+PCvmV2C0hLi4jK7BOWJHBT+MiK705/I7pSpKrtdsmWt7m4UlRAVldklKO2PPO8W2S38ZUR2pz9VZLfSd5T/6MaNG0yYMIG5c+diZmbG6NGjMTMzo2HDhgwbNizF9RYsWEC9evV4/PixbNrcuXOZOHEiR48eVXj/VapUSTGsQTq6t7JhLQiCIPweSYJyP3+jkydPJptPLi4unD59OhMqSiSyWxAEQfiZyG6R3akR2S0IgpD1iOxWTXYr3Ue5v78/mzdvZv369Tx//pyGDRuyY8cOXFxcZP3CtGrViiZNmjB37txkt9G1a1cCAwOpXbs2ly5dYufOnbi7u3P8+HEcHR3T9EIEQRAEIaswMTFh//79DB8+XG76gQMHMDExyfB6RHYLgiAIQupEdguCIAjCn0UV2a10Q3muXLkoUKAA3bp1o0uXLuTMmTPJMuXLl0/yeNfPhg0bRmBgIA4ODsTFxXHq1Cn++ecfZcsRBEEQspq/9Gq1MiZPnkz37t05f/48FStWBODatWucOHGCNWvWZHg9IrsFQRCEVInsFtktCIIg/FlEdqsku5VuKD9z5gxVqlRJdZkcOXJw7tw5uWmLFi1KspylpSV6enpUrVqV69evc/36dQAGDhyobFmCIAhCFvG3PtaljC5dulCkSBEWLVrEvn37SEhIwN7ensuXL2fKyanIbkEQBCE1IrtFdguCIAh/FpHdqsnu3x7MU1H58uVTaDmJRMKrV69UXE3qalecmqn7Tyv1d/6ZXYLS4gODMrsEpcXHxGZ2Ccr7QwdC0Sig2PdGVhL78nVml6C09B5UpPAk5QYVeTrp7xtURFEzZ87E1dUVQ0PDzC4lWX9Sdjs1nJOp+08rvTvvMrsEpYnsziB/aHYLGUNkd+YR2Z1+6tqNzNT9p1WC7x943h0RkdklKE0MQJqBJL81fGHm+APfa5HdmUeZ7FbojvLSpUvL+kH7lTt37iQ7/fXrP6/xSBAEQUiDP/CYNrO4u7vTqlUrlZxsi+wWBEEQFCayW2EiuwVBEIQsQWS3wpTJboUayps0afKbJUk5OjrSpEkTGjVqROHChdNlm4IgCELWIh4BU5wqH+oS2S0IgiAoSmS34kR2C4IgCFmByG7FKZPdCjWUT5w4Mc3F/KhXr14cPnyYqVOnYmlpSePGjWnUqBGVK1dW+Mq5IAiCkMWJwM4SRHYLgiAIChPZnSWI7BYEQRAUJrJbJZQezPO727dv8+TJEyQSCfb29pQuXfqX63Tp0oUuXboQFRXFmTNnOHjwIK1btyYmJob69evTuHFjXFxc0NPTS2tZgiAIQiYTV7azLpHdgiAIQnJEdmddIrsFQRCE5IjsVg2le+z39/enevXqlCtXjoEDB9K/f3/Kli1LjRo1+PTpk0Lb0NbWpl69eqxcuZIPHz5w5MgRrK2tmTBhAqampjRo0IDLly8r/WIEQRCELCBeyR9B5UR2C4IgCKkS2Z3liOwWBEEQUiWyWyWUbigfMGAAYWFhPHr0iKCgIIKDg/H09CQsLIyBAwemqYh//vmH6dOn8/DhQx4+fEiNGjX4+PFjmrYlCIIgZC5JgnI/guqJ7BYEQRBSI7I76xHZLQiCIKRGZLdqKN1QfuLECZYvX06RIkVk0+zt7Vm6dCnHjx9Pdd3w8HB27tyZ7LwPHz6wadMmLC0tcXNzo0WLFsqWJgiCIGQFCUr+pNGMGTOQSCQMHjw4cdcJCUyaNAkrKyt0dXWpVq0ajx49klsvKiqKAQMGYGpqir6+Po0aNcLb2zvthfyGKlWqoKurq/L9iOwWBEEQUiWyW2EiuwVBEIQsQWS3wpTJbqUbyuPj49HU1EwyXVNTk/j41O/lnzp1Kk+fPgUgMjJSbp6VlRVHjhxh+vTpypYkCIIgZCUZENg3b95k1apVlChRQm767NmzmT9/PkuWLOHmzZtYWFhQq1YtPn/+LFtm8ODB7N+/nx07dnDp0iW+fPlCgwYNiIuLS1sxKYiLi2PPnj1MnTqVadOmsWfPHmJjY+WWOXbsGJaWlum63+SI7BYEQRBSJbIbENktCIIg/EFEdgPpn91KN5RXr16dQYMG8eHDB9k0Hx8f3NzcqFGjRqrr7tq1iwYNGgCQL18+Pnz4QHR0tGz+6NGj2b59u7IlAdI3xs/Pj4CAgDStLwiCIKQPZR8Bi4qKIiwsTO4nKioqxe1/+fKF9u3bs3r1aoyMjGTTExISWLhwIWPHjqVZs2YUK1aMjRs38vXrV7Zt2wZAaGgoa9euZd68edSsWZPSpUuzZcsWHj58yOnTp9PtPfD09MTOzo7OnTuzf/9+9u3bR5cuXbC1teXhw4fpth9FiewWBEEQUiOyW2S3okR2C4IgZA0iu1WT3Uo3lC9ZsoTPnz9jY2NDgQIFKFiwIPny5ePz588sXrw41XUDAwMxNDQEpG94RESELLgBdHR08PPzU6qeo0ePUrVqVfT19bGyssLc3BxDQ0M6duzIu3fvlH15giAIwu9S8sr2jBkzMDAwkPuZMWNGipvv168f9evXp2bNmnLTX79+ja+vL7Vr15ZN09bWxsnJiStXrgBw+/ZtYmJi5JaxsrKiWLFismXSQ48ePShatCje3t7cuXOHO3fu8P79e0qUKEGvXr3SbT+KEtktCIIgpEpkt8juXxDZLQiCkMWI7FZJdmsou0Lu3Lm5c+cOHh4ePH36lISEBOzt7ZO8ccmxt7fn9OnTFChQAIlEAkBYWJjscbA1a9ZQrlw5hWvZvHkz/fr1o3v37lSqVIn169fTtWtX8ubNy44dOyhbtixXrlzB1tZW2ZcpCIIgpJGyA4WMHj2aIUOGyE3T1tZOdtkdO3Zw584dbt68mWSer68vAObm5nLTzc3Nefv2rWwZLS0tuSvi35f5vn56uH//Prdu3ZLbj5GREdOnT1cq59KLyG5BEAQhNSK7RXanRmS3IAhC1iOyWzXZrVRDeWxsLDo6Oty7d49atWpRq1YtpXY2ZMgQunbtSkxMDPHx8YSFhZGQkMDJkyc5e/YsR48excPDQ+Htubu7s3r1alq3bg1A8+bNadq0Ke/evcPV1ZU2bdowcuRI9u3bp1SdqRk2rhG165dMMv3Nq0/0ar8i3fbzM5sCZvQfWodC9lZ8Dovg6IE7bF13UTa/klNhGtZrSYGi1mhqafDWy5ct845x58JThbZvYmFAtzGNcahuj5aOJj6v/Fk4dBsvHr4HwNA0O93GNqZM1cLoG+jiee0Fy8fv4cPrTyp5vYooVrkwLd3qY1s6HyZWRkxqOZ+rh2/L5hua5aD79LaUrVEcfUM9PC89ZanbRj68VO7uCVXb/HIxFjZmSaYfWnaSxQPWZUJFUg1ca9PQtTbmNjkBePvImy1Td3PzxL0U12nU14XG/epgbmOG/7sAtrnv5fTm/9JcQ7Fy+WjRw4mCRXNhYp6DKX02cvX0o1+v+BsquRSj02AXLPOY8PFdIBvnn+CKR+I+W/V2plLtYuTKb0Z0VAyP77xh3Zzj+PzG30LxKkVoOawRdmXzY2JlzMSms7lyMGkg/Si93+t0pWRga2trpxjQP3r//j2DBg3i1KlT6OjopLjc9xNCWTkJCUmm/UyRZZRRqFAh/Pz8KFq0qNx0f39/ChYsmG77UYTIbnnFiljz74w2vH4bQI9BG1Wyj+/y5zVlkGtNithaEPYlksMn7rNxx1XZ/CoVbWk2vGGas3vDtUmY5zZJMv3whv9YNnY3jnVLUq9DJQqWyI2BcTb61Z7Jq0c+6fb60uJX2X0ycmuy660evY09C45mVJkAdJzQgk4TW8pNC/INobV172SXL+Fkz7yzE5NM72bvxvtnH5JZQzXSkimaWhp0mNCSGu2rYGRhSIB3INvc93Fy/bl0qalhn9q0HNYYE0tD3jzyZrnbejwvpfw5L1HVnt7zOmNTNBeBH4LZNecgR1Ymfs/U7lyN4ev7JVmvnm47YqJiAGgzqgmVm/5D7sLWREVE8/jKM9aM2oq3V/L/FuldI0DlZv/QZUobLAuY8/GlH+vHbefygRuy+R0ntqTTxFZy6wT5htDaqqfsdx19HXrMbI9j43LkMMmO3xt/9i9OfSDHNBHZLbI7FZmR3UY5s9NzVH1si+bCysaEQ5uusNL9cLptPyU2dhb0ndAYuxK5+Rz6leM7rrNt6RnZfMfaRanfrBP5S+RBU0uDd0992DLjILfPeCq0/frdnWnQ3RmzPKYAvHvqw9ZZh7jlIe0iYOjy7tRqX1lunSc3X+JWY1o6vULlFa9cmJZDG2JbJh8mVsZMaj6XK4duAaCuoU6XKa0pX7cUlvnMCA/9yp2znqwds52gj8GZVjNAm5FN6O7eln3/HmP5kOSP+So3LU8D11oUKGmDprYGbx95s3nKHm6dup+htSqb3cYWhvSe2xnbsvmxtrXgwOLjLHfbkHEF/0SR9zo9jpMauNaiYe9amdpG8V3O3KYMWNKdUtWLER0Rzdntl1g1bDOxMdK+sc3z5mTL62W/vZ9UiexWSXYr1VCuoaFB3rx509zxesuWLQkICGDy5MlERETg4OAAgJubG05OTly/fp3ixYsrvL23b9/yzz//yH53cHDA19eXjx8/YmVlxZAhQ3BxcUlTrSlZtuAka5clBqW6uhorNvfi4tnHad6muYUBm/cPpHbFqcnO19PTYua/7bl/+w0Duq3FOrcJw8Y3IjIihr3brwFQvHQe7v73lI0zD/MlLIJarSswaUNv3BrM4+Wj1EeVzWagy7wDbty/8pzxHZYTEvAZKxtTwsMiZMtMWNeT2Jg4pnRbRfiXSJr1csZ9R396V5tOVER0KltXHR09bV49fMepTReYsNMtyfyJu4YQFxvHpJbz+RoWQbNBdZl5fAw9S40g6mvK/TBltP7/jEFNPbEXJJtieZh9ahwX9lzLxKogwDuQtaO34vNCerWvdudqTD4wkj5lhvP2cdLPVAPX2nRzb8eCXit5dvMFhcsXxG2VK1+Cw7l25HaS5RWho6vFq6cfObX3FuOXdvqt1wNQs1lZajVzYGSHlcnOL1wqD6MXtmfTwlNc8fDEsVYxRv/bgWFtl/HsvvSiUfHy+Tm89QpeD7xR11Cj85A6TF/fg9515xIVEZOmunT0tXn14C2nNpxj4t7hv1xeFe91uvqNEbVTc/v2bfz9/SlbtqxsWlxcHP/99x9Llizh2bNngPTq9Y8Ddfj7+8uudltYWBAdHU1wcLDcVWd/f38cHR3TrVZ3d3cGDhzIpEmTqFChAgDXrl1jypQpzJo1i7CwMNmyOXLkSLf9Juf/Jbt1tDWJjEr9b1BfT4sxbvW4c/8tRob6Su/jRxZmOdi5tjdODeckO19PV4u5U1tx78E7ei/fQi5rI0YPrktEZAy7DkhPLksWzZXm7AYYVG8uauqJB5p5C1sxY0d/Lh65C4COnhaPb77i4pG7DJ7b7rdeb3r5VXa3ydtX7vdyLiVxW9GTSz80Lmak157vGVk78fgsPi71AfQAuhQezNewr7LfQz+FpbJ0+lM2UwDG7RyCkbkB83os58MLXwzNDFDXULqHxmQ5tXKkz4KuLO63mkeXn1G/dy3cj42le1E3Pr1P2sexhY0Z046O5viaM8zquIiilQoxYGlPQj6FcWnfddly4aFf6Vp4kNy6MT98B5SoWpRDy07y7OYL1DXU6TqtLTNPjqNHUTcifzoOVEWNRSrYMW6HGxsm7ODy/htUalqecTvdcKsynqc3Xsi29drzHSNrpfwZ67OgMyWrFWNmx0X4vflE2dolGbi0hyJvvXJEdovsTkVmnHdramkQGhTOjhVnadql8q9XUICZtREbz42irt3IZOfr6WszfX0PHlx/yaDmi7HOZ8rQma2IjIhm37eb1Io75OfOuUdsmLKXL6Ffqd2+MpN2DmJw9am8fPDrLmgCfIJYN2kPH15Jb96q2bYSE7cPpH/libx9Km0svOnxgPl91srWiYlJ34HvlKWjr8OrB285ufE8E3cPlZunraeFbWkbtk7fx6sHb8lmpE+feZ2Zsn8Y/SuMzaSKwc6hAPV61uDl/bepLle8ShHueDxk3dgdhIeE49KlGlMOjmBAxbG8vPcmY4pF+ezW1NYkNCCMbe57aT64QQZUmDJF3+vvfuc4KcA7kLVjtuHzwg8S4jOljQJATU2N6UdGE/IpDLcq48lhkp0RG/ojkUhYOlD+ZscRNSfz5ttx/a6Pq9O8z2SJ7FZJdivd9cq4ceMYPXo0W7ZswdjYWNnV6dOnDz179sTQ0JBVq1bRo0cPbt++TZEiRZTelo2NDbdu3cLGxgaAO3fuoKamJvuHMTY2JiYmbQ1XKfkaHsXX8MSDa8eqhciWXZeTR+WvONauX5JWHRyxsDTEzzeEA7tucHhf2v4Qq7sUR0tLg7nTDhETE8ebV5/IlceY5m3/kTWUr1h4CvV3/rJ1Ns48TMXaxfmnVrFfnmy37FuLTx9CWDAk8S4uf+8g2f9b589JkbL56O08nXde0kbTpaN3sf3BDKo1KcvJ7VeTbDMj3Dp1P8UrvdYFLbCvYEuv0iN4+0R699ySgevZ+X45zq0rcmL9+QysNHWhAZ/lfm8zsgw+L3x5cCHtF1/Sw8/BsX7cdhq41qZIBbtkQ6hmh6ocXXWaC7uk/U35vvanSAU7Wo9okuYQuvXfM2799yzF+Rqa6nRyc8G5YWmy5dDlzXNf1s0+xsMbr9K0vyZdqnDn8nN2rZTeQbdr5TmKl89Pky5VmOUmHZRifPe1cussGLWLHdcnYlssF543X6dpvzdP3Ev1KvjPVPFep6f0uz4sr0aNGkkG5OjatSuFCxdm5MiR5M+fHwsLCzw8PChdujQA0dHRXLhwgVmzZgFQtmxZNDU18fDwoFUr6V18Hz9+xNPTk9mzZ6dbrd8H0GrVqpXsinlCgvRIpmHDhrLfJRJJuo/6nZz/h+y2K2jOg1/k3dB+tTl94THx8QlUrpD08fC6NYrRtnl5LMwN8PUPZd/hOxw4dk/pWgBqVbNHS1OdGQuPExMbx+t3AeS2NqJVEwdZQ/mSNefQu5N4Uq1MdgOEBn2R+71V/6J8eP2Jh1eljXBn90rvRDLLpfy/uaqklt0AwX6hcr9XbFCW+xce45tJT7DFx8YlqelXQvxDCQ/9+usFVUTZTHFwKUUJJ3s6FejP52DpZ8rvbfq9383dGnBi3VmOrz0LwHK3DTjULknDPrVZN2ZbkuUbuNbi07sA2Z1x7576YOdQgJZDG8k1lCckJBDsF5LifsfUmy73+9xuy9jjvxbbsvl5ePGJymtsNqg+tz0esGPmAQB2zDxAiapFaTaoPu7t/5VtKz42PtXXUaSCHR6bzsuOC4+tPk39XrWwK5s/xXXSQmS3yO7UZMZ5t79PMCunS+8gr93cIcXlajVzoEVPJyxyGeHnE8zBTZc5ui1tNxw5NyqNlrYG80fuIiYmjrfP/bC2OUfTrlVkDeUr3Q+T4Jt43r1hyl4q1i/NP3VLKdRQfv2EfAZunLqPBj2cKVyugKyhPCYqlmD/jL3ImpqbJ+9x8+S9ZOd9DYtgVF13uWlLB69nyVV3cuY24dP7wAyoUJ6OvjajN/dnQe9VtB/TNNVlf777ed24HVRs5EDFBmUztKFc2ez2e/uJZYPXA1Cna3UVVfVryrzX3/3OcdK1I3cSf0mIT7c2Cpcu1Wg1vDEW+czwffOJA4uPcXj5qRTrKFu7BHnsczE6jyuB356cWDlsI8PX92P92O18/Zx402lY4JdUc/53iOxWTXYr3VC+aNEiXrx4gZWVFXnz5kVfX/6OrDt37qSw5g871dBgw4YNVK9enU2bNmFhYaFsGYC0Y/kePXpw8+ZNdHR0WLNmDR07dkRdXR2A69evY2dnl6ZtK6pOw1LcvfkKf9/Ek6i6jUrTqYcTS+ad4KWXLwXsLHAbXZ/IyBg8jj1Qeh9Fiufiwd23cleSb11/Rfe+NbCwNMT3Y0iSdSQSCbrZtPkc8usvoAq1i3H7wlPGrOxG8QoFCfQN4cjGS5zYJv0y0dSSfkxiomJl68THJxAbHUvR8gUyraE8NZramgBE/3BnUXx8AjHRsRR1LJSlGsp/pKGpTo32ldmbwY+X/4qamhpVW1ZAR1+bx1e9kl1GU1uT6Ej5pwuiIqIpVL4g6hrqxMWm/wnFkJmtMLM2YqbbVoL8w3CsVYxp67rTp/4CPrxNegfYrxQpnYf96y/JTbt90YsmqdzFopdN+iiSIn9r6SUz3mulqOjKdvbs2SlWrJjcNH19fUxMTGTTBw8ejLu7O7a2ttja2uLu7o6enh7t2knvpjUwMKB79+4MHToUExMTjI2NGTZsGMWLF1eoz09FnTuXPt0VpJf/h+z+/Dky1fl1axTD2tKQ6fOO0rF1xSTzG9QuQdd2lVi48jTPX/ljm9+M4f1diIiM4eRZ5bt8KlrYivue74n54e/x5p039O7sJG2IT6bxVZns/pmGpjrOzcqxf1XW+uz9DkOzHJSvW4q5PZJ/CigjWNlasOP9cqKjYnl64wXrxm7H97V/qussvz0LLR1N3j32Zqv7fu6fV22XYb+rYiMHvG69pNWIxtTsUJXI8EiuHr7FhvE7k2SNsjQ0NbArm5+dsw7ITb/t8YCiFQslu06RCnbc9pA/Xr518j51ulWXyzjdbDpseb0MNXU1Xt57w4YJO1Jt1NA30APg808XmFRVo31FO/YuPCK/zKl7NBtUX26ala0FO7xXSj9j15+zbuw2uc/Yo8tPqdjQgRPrzhH4IYiS1YqSy86SdCeyW2R3KrLCeXdy6rQqT4cBtVg29QAvH3+ggL0Vg6Y2JyoimtP7f/3+/Kxw6Tw8vPFK7rz7zkUvug2ri3kuI/y8k3YlIs1uHT4Hhyu9PzU1CVWalkNbT5snN17KppeoXJgdL//lS+hXHl56xoYpe5PcXJWV6efQIz4+nvAMPD/60YAl3bl+7C53zzxUuPH2O4lEgl523SRZISQvLe91eh0npVcbRd0eNeg8qRVLBqzlxd03FCxtg9sqVyLDo/DYdCHZ7dpXLMQbz3eyRnKQHgdo6WhhWza/3GuacnAkmjqafHj+MU2vM1Uiu1WS3Uo3lDdu3Dhd+pNp0aKF3H/Tol+/fqipqbFlyxaioqLo0qUL48ePl80vX74827YlvQvkR1FRUURFSe8Qz5EjB1+/fiU+PhY1tV+/NcYm2ShXoSAzJu2Xm96+axVWLvbg8rc+Rn0/hpA3nyn1mpRJU0O5sbE+fh/lT6iDv31xG5noJ9tQ3qx3dXT0tPnv8K8PECzymFK/Y2X2rT7HzkWnsCudF9cpzYmJjuXMnhu8f+GH3/tAuoxuyOKRO4j8Gk3TXtUxNjfA2Ey1jx2m1ftnH/B9+4luU1rzb/+1RIZH0WxQPUwsjTC2MMzs8lLk2KQc2Qz1ObUx+S/kjGZTLA+LrkxHS0eTiC+RTG42h3dPkr/L8fape9TtXoMrB27y/M4r7Mrmp05XZzS1NDAwzU6Qb0i61maZxxinBiXpWMWdoG93XOxd+x9lqxSiVnMHNs4/ofQ2jUyzExIofxAaEvgZ45zZU1yn15iGeN58zdvnGdf3fUa/18pSdlCR9DRixAgiIiLo27cvwcHB/PPPP5w6dYrs2RP/DRcsWICGhgatWrUiIiKCGjVqsGHDBtnJXnpwcnJKt22lh785u3V1dZFIJLx87YuaevLZbW1pSK/OVRkwajtx8cl/QDu1qciydee4ePU5AL5+odjkNqFRnZJpaig3NtJP0hgeFCI9iTYxTDoPlMvun1WsU4JsOXTx2JW53Xalp1odqhLxOZJLB1LvX1tVnt54wewuS/H2+oiRuSHtxzTl30tT6VF8aLIn0EEfg5nfeyXPb79GU1uDmh2qMttjHMOqT0lyB3NWYpnPnGKVCxMdGcOkZnMwMM3OgKU9yG6cjXndl//Wtg1Ms6OuoZ7kTqpgvxCMUjgeM7Yw5FYyy2toJmbc+6c+zOm6lNcP36GXQ5emA+uz8NI0XEsNk3UZ9zPXeZ15ePEJbx69z5AajSwMkzyNEOwXKrfNp9efM7vzkm+fMQPaj23Ov5en06OYm+wztnTgetxW9WaH90piY2KJj09gQc8VjNw0INna0kpkt8ju1GT2eXdK2vatweqZR7hySprTft7B5ClgTt3WFdLUUG5smh0/H/nG8OBv5wZGptmTbShvPsAFHX1t/tuneBdhNva5WHB67LdzrCimtl/Cu2ffu115yMUDN/F7F4hFXlM6jWvGrCMjGFB1MjHRsb/YcubT1Naku3tbzu24LHdXbUap1toR29L56PfPmDSt32JIA3T0tbmwO+vdDJjVKPtep9dxkk2x3Cy6PC3d2ig6jGvBymGbuLRf+jfs+8afPPa5qN+rVooN5UYWhoT8lPFfQsKJjoqRtTdFfIlk+ZANPLr8jIT4eCo2KkfRSoUVfp2KENmtmuxWOpUmTZqU7kX8jj59+tCnT59k5yky6vaMGTOYPHkyIL0dv127drz2CaVA7l8/vlK7fkm+fInkyg+DbhkY6mFmYcCQMQ1xG5XYV5S6uhrh4Yl3u63a6oq5hQEA349/Dp5J7CvNzzdUbnDQhJ8uFSU+UpC0LqfGZekwtC6Tu60mNPDXV0IlahKeP3jHxpnSR9tePvImr50F9TtV5syeG8TFxjOt51oGz2vH7seziYuN4+7FZ9w8k3XvkIqLjWNqm4UMWdGLvb6rpTWf9eSGEo8zZYa63apz48Q9uSuTmcn72QdcSw8nm6EelZtXYPiG/gytNjHZINoydS9GFoYsujodiURCsF8opzaep/WIJgr16aqsAvbWqKmpseaUfB9umloahH27eyGnpSErjyf2o6euoYa6hjr77iX2BXr20F2WTEgceOjnvymJRCJ7dOdnfSc2IV8hC4a1/b2GBGVl9HuttAws4fz583K/SyQSJk2alGpW6ejosHjxYhYvXqyyusaPH8+kSZOSHASEhobi6urK9u3bVbbv5Pyt2b1kyRLq169P5cqVUdcrgk2h2kmWVVOTMGF4A9Zvu4z3h+S/Ww1y6GKeMwcjBtZhWP/EPlal2Z3Y3dqGpV0xzym9QPw9u4/vSuwj2e9TGF36rZf9/vM3h+TbA5I/Zzoon90/c2lTkVvnHhPkl3Ue1f5dLp2dOLvjsly/0xnpx0eg33i+58lVLzY+X0TtTk7sXZj0yS9vr494eyXeLfTk2nNy5jah5dAGWbqhXE1NQkICzOiwSNZn6MqhGxm/eyiL+6397bvKQblslS6f+nHvk+vPeXL9uWz+o8vPWH57No0H1GXZoPX8bMCS7uQrkQe3KuOTzFNVjcltVCKRnyb/GUP6GXuxhNqdq7F3gfRu9CYD61Kkgh3jG83E7+0nSlS1Z4Aq+igX2S2y+xdUcd79MvgTtiZp63/cwEgfMytDBru3YNC05rLp6hpqhP/wlNmKo0MwszIEEv9O992dIpvv/yEE1/rzZb8n910gnZG0hmot/qHD6CZMbrtIqTu+vZ9/pG/liWQz0KNyIweGrujBiLozeffsg1yD+9snPjy/+4aNj+ZS3qUklw9nfheLqVHXUGfs1oFI1NRY3H/dr1dIZzlzmdB3QWdG1XFP07GDcxtHOk5swcSmcwnJ4PFF/jRpea/T6zjJ+9kHXMuMIJuB7m+3URiY5sAsjylD1vTBbZWrbD11DTVZ9zDTj46heBVpl1V+bz/Rs/gQIOlxAMgfO4QFfmbfD8eLXrdf0WF82i9YJktkt0qyW+mG8vz583Pz5k1MTEzkpoeEhFCmTBlevUpb38CZZfTo0QwZMkT2+7Zt22jkPEuhdV0alOTMiQfExiZ+Or8H6cIZR3j62Edu+fi4xD+kcUO3o/FtkCSTnNmZt6wzfTqvks3/cZtBQeEYGWeT25ahkfTRu5Ag+Ue8qjYqw+B57XDvvY57F1Pu2/lHQf5hsr7Hv3v/wo9K9UrJfn/x8D39a89CL7sOmpoahAZ9YcHhoTxXoB+2zPLi7hv6/jMGvRy60sFgAj7z73+T8bqTtn6kVc0sjymlaxRncot5mV2KTGxMLB9eSj8bXrdfUcihAE0H1eNf11VJlo2OjGZe9+Us7L0KI3MDgj6GUK9XTcLDvqrkUUE1NTXiYuMY0HRRksbh74N0BfqH0a/RQtn0Si7FqORSnNlDEr8sv35JPJAODviMkan83eMGxtkIDkjaaNVnfGMq1LBneLvlBPgmvTNUlTL6vVZWZl7Zzio2bdqEh4cHW7dupUCBAoD04KJTp05YW1tneD1/Y3aPGTMGDQ0NwsPDefz4MfXbLE12WT1dLQrbWlIwvzmDXKWP+alJJKipSThzYCjDJuzmzTtpV01zFp/kiZf8Y5E/3oE+ctJeWXabmmRj0Yy29BiU2LelXHYHh2NsqCe3LaNvvwf99ChyWrL7R2bWRpSqUohpPdYovW5WVaxSIXIXssK9g+oOrJUV+TWK157vsLZVvOuCp9eeU6N9FRVW9fsCPwYT4BMkN7DWuyc+qKmpkTOXcYp3aCsiNOAzcbFxSZ7mMzQzSHIn1ndBviEYWxglWT42JpawwOQzLiEhgWe3XmBdMGmXJP0WdaNCQweGOk0kwCcoyXxV1Rjsm/SOdEMzg1T7vI/8GsXrh++wtpW+Di0dLbpNb8ekZnO4cUx6d+zrh+8oUMqGut1rpLidtBDZLbJb1ZI7725aIuWLV78iUZOedy8at5en9+WfFImPT8zjCT3Xoa4hbUAxNc/B7K2u9GucOE7Aj10WBgV8xsj0p/Pub+fhwT99/1RtVp7BS7ri3nkZd88rN7ZUbEwcH19Ju1h6fvcNdmVsaNKnFosGb0yybJBfKP7vA7EqYK7UPjKauoY647YPwjyfGSNqTc2Uu8lty+bDyNyQZTdnyNVVvGoRGvdzoZ5ue+JTeLLQqVVFhqx2ZWrrBdw98zDZZYREv/Ne/ygtx0mxMXF8eCkdzPN32ygMvt0As6DXCp5efyG37vc2hvk9V6Ctq/Vt39KnOoJ9QyhcvqDc8tkM9dHU0lB6bJvfIbJbNdmtdEP5mzdvku0APSoqCm/vXw88lZE6d+7M+/fvOXv2bIrLaGtro62tLftdT09Poce/SpTOi3VuE04c3i03PSQ4nE/+YVhaG3H2lGeK6//Yp3nctxPrD8k8ygXw5KE3XV2d0dBQk52Ely2fn4BPYXLdrjg1LovbvHbM6rdRqbu9H998Ra6fgtc6vxn+yZxMfP12dd4qX05sS+Zh85ys1Zd2cr6GSUPaqoA5tmXzs3HKnkyuKHkuXaoR4h/K9aPKPyaYUSQSCVpamqkuExcbJzsRdW5dietH7qR6R1ZavXzsg7qGOoYm+jy69SbZZeLj4vn4LnEAmZDAL0RHxshN+9GTu+8oU8mWAxsuyqaVqWzLk7vyI3j3mdAYx1rFGNlhZbKPYGaUjHqvlZYFSshsDx48oHfv3pQqVYr58+fj5eXFv//+y6hRo5g4cWKG1/M3Zvd33x/vS6nblfCvUXJ3eQM0qV+K0iXyMHHGIT76hRIZFYN/wGesLAw5fSHlO1r8fri7KO7bwbNPMt2fATx6+oGenarIZbdDaRs+BX6W63Ylrdn9o1qtKxAa8JkbWfhJL2W5dKmG1+1XvHqYdS7Ia2ppkKewNZ4Xn/564W8KlLbJMk+JpeTRlWdUbVkRHX0dIr89/WhtZ0lcXDyfvJMeCyojNiYWr9uvKFOrBJcPJN4lWaZmCa4cSr5LnSfXvKjQQH7gvrK1S+J161WqY3AUKGnDa0/5z0v/xd2p1KQ8w5wn4vsm+b7lVVXj46telK1ZQu5usrK1SvL4SsoXwzS1NMhTxBrPS9LvIQ1NdTS1NEiIl78hIE4VT4+J7BbZ/RtUed6dkpDALwT4hmKR24Rzh++luJz/hxDZ/3//20npXODp3Xd0HuKChqY6sd/6KS9T2ZYAv1C5Y/5qLf7BbWk3ZnZbwY2TynetmoREgqZ28u9FdmN9clobE6SiwQDTw/dGcuuClgyvNSXT+ve+e8aTniWGyU0btrYP75/5sHP2oRQbbp3bODJ0TR/c2//LjWN3M6LUP15a3+ufpcdx0u+0UYT4h/LJOxDL/Oac3XYp2XUDPyQ9Fnp89RltxzTD2MJQ1u1p2doliY6M5vntDLyIKbJbJdmtcDIdOnRI9v8nT57EwMBA9ntcXBxnzpwhX758Cu84Li6OgIAAJBIJJiYm6dpHzXdWVlaoqakpvV5+W3M+h0XwyS+Mbn2qY5IzO3OmHJRbpk7DUjzx9ObNq09J1t+85gJ9h9QhPDyKm1dfoKmlgV1hS7Jn12HvjutK13P2lCcduldl2PjG7Nh4CevcxrTtXIkt6xIb86rVKsqw8Y1ZMXEvT++8xuhbn8pRkTGyxu2UHFh9jnkHh9B6QG3+O3yHQqXyUre9I4tG7JAtU7lBKUIDv/DJJxibwla4TmnO1RMPuPOf4ieL6U1HXxurAol3dVnY5CR/ibx8Dv7Cp/eBVGlWntCAz/i/DyBf0Ty4zuvI1UO3uHM6610hlkgkuHSphsemC1mj6wyg2/S23Dh+l0/vA9HNrotzm0qUqFaUMXWnS+e7t8PUypjZXZYAYG1rSeHyBXl6/TnZjLLR3K0BNsVyy+anhY6eFlZ5E++iMc9lTP4ilnwOicDnTQBnD95h2Ow2rJ55hJePfTAw0qdkxYK8eebLzQvKfzYPbrzEnG2utOxVjaunH1GxZlFKO9oyrO0y2TL9JjWhWsPSTOmzkYjwSNldJ+GfI4mOSlu/gTr6OlgX/OGznM+MAiVtCAv6wqf3ARnyXqcncWVbOnjJjh07GDt2LL1790ZDQ4Pjx49To0b63gH4K/9P2a2lpUH0t747e3aqQk6T7LgvOEZCArx+Jz+4b3DIV6Kj4+Smb9h+mYG9ahD+NYrrt1+jpalOoYIWZM+mw66Dt5Su5/SFx3Ru68jowXXZsus6uayM6NCyAht3XJEtU6NqYYYNrpem7P5OIpFQq3UFTu++kSQ/shnqYWZthIm59N/9+0XxYP8wgj9lztMnv8puAL3sulRtVp5VI1Pv71bVes3uwLUjt/F/F4ChmQHtxjZDL4cup771V9lteltMrY2Z3UX6NEPTgfXwe+vP20feaGhpUKN9Fao2r5DhT4opmylnt12i/bjmDF/Xl42TdmFgmp1esztycv3ZdOl2Ze+CI4zcNACvWy95ctWLer1qYpbHlCMrTgFJjyeOrPCgUb869J7XmeOrT1Okoh11ulXHvd1C2TY7TGjB02vP8X7+Ef0cejQZWJcCpWxY3H+tbJkBS3tQvW1lJjaZzdfPkRiZGwIQHvo1yetSRY37Fx1l/oUptB7RmCsHb+LYuBxlahaX6/6l15yOXDv8/TOWg3Zjm0s/YxvPA/D1cwT3zz+i5+yOREVE4/82gBJO9tTqmP79cYrsFtn9O9J83v3tuP7TxxC6DK2DiXkO5o3YJTcfQEdPGwNjffIXsSQ2Oo53L6UXvrYs9sB1XCO+fonk1n/P0NTSwLZYLrIZ6LJ//cVk95mac4fv0a5/TYbMbMnOFeewtjGltWt1ti09LVvGqX5Jhs1uxYqR23h68yVG38bsioqMkd2glZouE5pz0+MBAT5B6GbTxal5eUpUKcy4ZvPQ0demw+gmXD50iyDfEMzzmNJlYgtCAz9zJQ3jl6QXHX1trH7Klfwl8/I56AuBH4IZv9MN29L5GN9kFmrqahh9O+74HPRFdsEhI0R8iUwyDkVkeCRhgV9k03/Obuc2jozY0I9lgzfy5NpzWe1REdEK/XumF2WzG6QXiEE6uLWBaQ4KlLQhJjo2xf6601Na3uv0OE7qNq0NN07ck7ZRZNNOlzaKzZN30fffbnwNi+DG8btoamtSyCE/2YyyybpB+9ntUw9499ibkZsGsGrEZnIYZ6PXnI4cW3NG9jRFrU5OxMbE8fLua+LjE6jQsKzCr1NRIrtVk90KN5Q3adIEkJ6Qde7cWW6epqYmNjY2zJv36w/4/v37mTt3Lrdu3SI2VnpCq6GhgYODA8OHD5ftJz3MmDHj1wslY8WmXpw6ep+50w5hbJINM3P5ASv19LWp7FyE5QtOJrv+icP3iIqKpWX7ivToV4PIyBjevPRn/07lG8kBvoZHMWrQVgYMrcOSdT34/DmCvduvs3d74oBd9ZuUQUNTnf7urejv3ko23WPXdea7bUl1+1733zG1x2q6jGpEu8F18H0fyMqJ+zi3P7FhwNjMgF4Tm2Fomp0g/zDO7LnB9oXKD5aYnuzK5mfOqXGy313ndATg1Ob/mNdzJcYWRvSe3QFDMwOCfEM4vfUi29z3p7S5TFWmZnHM8+bkxPrzmV2KjKG5ISM3DcDY0ojw0K+8fvCWMXWnc+e09K4JEwsjzPKYypZXV1ejxZCG5CpkRVxMHPfOeTKo0jj83ia9mKQo22K5mL01sa+w3mMbAuCx7xbzR+5i/qhdtO1bg56jGmBinoPPIV95cu8tN8+n7QLOk7tvmem2jU6DXeg4qDYf3wcyY/BWnv3wOGeD9o4AcnUBzBu5k9P70tZvoJ1Dfuadmyz7vc/8LgCc2nCeOd2WZsh7na5EYAOwePFiFixYQNu2bbl9+zYDBw5k27ZtlCxZMsNq+H/K7upVCnHi2x3VJsbZMEtlEN7kHD31kKioWNo0LYdrVyciI2N49TaAPQfT9ncd/jWaYeN3Mdi1JisXdOTLl0h2HbjFrgOJ2dqwTsk0Z/d3pasUwjyXMad2Jh10qkLt4gxd0EH2++jlXQHYMu8YW+cfT9Pr+l2/ym4Ap1YVQCLh3K4ryW4jo5jmMmHM1oHkMM1B6Kcwnlx/zkDHcfh/u8BiYmmIWe7Ei7maWhr0mt0RU2tjoiKiefvoPWMbzODG8XsZWreymRIZHsmo2lPpt6g7S2/OJCzwM//tvsr6cTt+3nSaXNh1hRwm2egwvgXGlka88XzP2Pruie/jT/X4vvFnXP0ZuM7vTKO+LgR+CGbZoHVc2pd4HJ3NUJ/BK3tjZGFIeOhXXt59zRCniTy7mfjYdKM+0vEG5p1PfC8A5nRdKmuIVmWNj696Mb3tQrpMbUPnKW34+NKX6W0W8PRGYo2m1iaM2TYo8TN2zYuBFcfK9gswve1Curu3Y/SWQWQ3zobf20+sH7cd13ny3+m/TWQ3ILI7rdKa3UsPDpYe14/ajXHO7JhZGiaZ/51d8Vw4NyqNn3cQXapLu0o9ufsmURExtOhRle4j6hH5NZo3Xr4c2Jj8naG/8vVLJGO7rqHvxMYs2jeAL6ER7Ft/kX0/3KBWr80/aGhq0H9+J/rP7ySb7rH1EvP6rE1us3KMzHIwYlUvjCwM+BoWwWvP94xrNo+75x6jpaNJvqK5qNnWEX0DPYJ8Q3hw8SnuXZYT8UWxC+iqYFe2AHPPTJD97jpX+rpPbbrA5il7cGwkfcJmxe3ZcusNqzGFB/8p1y2Nqv2c3fV71kRDU4OBS7szcGl32fRTG88zp1vGjUOlbHYDrLg754f1C1CjfRV83/jTMX+/DKn5V1RxnGRobsDIjf3StY3i+NqzRH6NptWwRvSY1YHI8CjePHzHvn9T7j0hPj6esQ1mMHBpDxZemkZ0RDRnt19i1bBNcsu1H9scs7ymxMfF4/NT947pQmQ3kP7ZLUlQ8jn9fPnycfPmTUxNTX+98E9WrlzJwIED6datGy4uLpibm5OQkIC/vz8nT55k/fr1LF68mJ49eyq8TW9vb5YvX86VK1fw9fVFIpFgbm6Oo6Mjffr0IVeuXErXWbvi1F8vlAWpv0v+kdKsLD7w9x7pzQzxMVl/tPEkErLGXerK0iig+N0yWUXsy6zZB35qPOJ3/3ohJZTps0Cp5e8sd0vX/WcFdevW5caNG6xcuZIWLVoQERHBkCFD2LBhA5MnT2bEiBEZWs//Q3Y7NZzz64WyIL07WadrEUWJ7M4gf2h2CxlDZHf6E9mdOlVkd127kUqvkxUk+P6B590RGd9n+O9KULD7jizlT81uifJPhGS6P/C9Ftmd/lSR3Uo3lP+OggULMnr0aLp3757s/HXr1jF9+nRevnyp0PYuXbpE3bp1yZ07N7Vr15Y7APDw8OD9+/ccP36cSpUqKVWnaCjPOOJkO4P8gSECoqE8o6R7YLsqGdgr/r7ArlWrFhs3bsTKykpu+tGjR+nRowcfP6rgjgIV+VOyWzSUZxyR3RnkD81uIWOI7E5/IrtTpqrsFg3lGUc0lGeQPzW7RUN5hhDZnf5Ukd1Kj54xcOBAChYsyMCBA+WmL1myhBcvXrBw4cIU1/Xx8aFy5copznd0dOTDhw8K1+Lm5kaPHj1YsCD5D4ebmxuDBw/m5s3kB+IRBEEQVOAPPKZNbx4eHly8eJERI0bw8uVL9uzZg7W1NUFBQezatevXG0hnIrsFQRCEVInsFtmdCpHdgiAIWZDIbpVkt9KXjfbu3ZvslWJHR0f27NmT6rpFixZl1apVKc5fvXo1RYsWVbgWT09PXF1dU5zfu3dvPD09Fd6eIAiC8PskCcr9/I327t2Li4sLurq63L17l6ioKAA+f/6c5n48f7cekd2CIAhCSkR2i+xOjchuQRCErEdkt2qyW+k7ygMDA+VG3v4uR44cBAQEJLNGonnz5lG/fn1OnDghe2RLIpHg6+uLh4cHb9++5dixYwrXYmlpyZUrVyhUqFCy869evYqlpaXC2xMEQRDSwV8awsqYNm0aK1asoFOnTuzYkTggnqOjI1OmTMnwekR2C4IgCKkS2S2yOxUiuwVBELIgkd0qyW6lG8oLFizIiRMn6N+/v9z048ePkz9//lTXdXJywtPTk+XLl3Pt2jV8fX0BsLCwoEGDBri6umJjY6NwLcOGDcPV1ZXbt29Tq1atJAcAa9asSfWRNEEQBCH9STJu6Iss69mzZ1StWjXJ9Bw5chASEpLh9YjsFgRBEFIjsltkd2pEdguCIGQ9IrtVk91KN5QPGTKE/v378+nTJ6pXrw7AmTNnmDdvnkLhaGNjw6xZs5QuNDl9+/bFxMSEBQsWsHLlSuLi4gBQV1enbNmybNq0iVatWqXLvgRBEAQFibzG0tKSFy9eJDkJvXTp0i9PblVBZLcgCIKQKpHdIrtTIbJbEAQhCxLZrZLsVrqhvFu3bkRFRTF9+nSmTp0KSEN4+fLldOrUSeHtvH37Fl9fXyQSCebm5uTNm1fZUgBo3bo1rVu3JiYmRvYImqmpKZqammnaniAIgvB7JH/eAOTprnfv3gwaNIh169YhkUj48OEDV69eZdiwYUyYMCHD6xHZLQiCIKRGZLfI7l8R2S0IgpC1iOxWTXYr3VAO0KdPH/r06cOnT5/Q1dUlW7ZsCq+7YMEC5s+fz4cPH0j49piARCLBysqKoUOHMnjw4LSUhKampugXTRAEIQv4WwcKUcaIESMIDQ3F2dmZyMhIqlatira2NsOGDUvyCHVGEdktCIIgpERkt8huRYnsFgRByBpEdqsmu9PUUB4bG8v58+d5+fIl7dq1A+DDhw/kyJEj1fCeOnUqc+fOZcyYMbi4uGBubk5CQgL+/v6cPHmSSZMm8eXLF8aNG5emFyMIgiBkASKwAZg+fTpjx47l8ePHxMfHY29vr9QJbnoT2S0IgiCkSGQ3ILJbEARB+IOI7AbSP7uVbih/+/YtderU4d27d0RFRVGrVi2yZ8/O7NmziYyMZMWKFSmuu2rVKjZu3EiTJk3kpltZWVGqVCns7Ozo37+/CGxBEIQ/mLiynUhPTw8HB4fMLkNktyAIgpAqkd2JRHYLgiAIfwKR3YnSM7vVlF1h0KBBODg4EBwcjK6urmx606ZNOXPmTKrrBgYGUqhQoRTn29nZERwcrGxJgiAIQlaSoOSPoHIiuwVBEIRUiezOckR2C4IgCKkS2a0SSt9RfunSJS5fvoyWlpbc9Lx58+Lj45PquuXLl2f69Ols2LABDQ35XcfGxuLu7k758uWVLSndfayYeY/X/Y6cen/eQCra3vqZXYLSwsrmzOwSlJZt543MLiFNYl++zuwShDQQV7aznv+H7L5weHhml5AmFdvNy+wSlGbwMEdml6A0tRfvMrsEpcVHR2d2CWmTIEaW+hOJ7M56/h+y28/ZIrNLSJOd4zdndglKG1i6UWaXoLSoUjaZXYLS1M/ezewS0kZk9x9JZLdqKN1QHh8fT1xcXJLp3t7eZM+ePdV1Fy9eTO3atTEzM8PJyQlzc3MkEgm+vr78999/aGtr4+HhoWxJgiAIQlaSIBI7qxHZLQiCIKRKZHeWI7JbEARBSJXIbpVQuuuVWrVqsXDhQtnvEomEL1++MHHiROrVq5fqusWLF8fLy4vp06eTI0cOXr9+zatXr8iRIwfTp0/n6dOnFC1aVOkXIQiCIGQdkgTlfgTVE9ktCIIgpEZkd9YjslsQBEFIjchu1VD6jvIFCxbg7OyMvb09kZGRtGvXjufPn2Nqasr27dt/uX727Nnp06cPffr0SVPBgiAIQhYnQjjLEdktCIIgpEpkd5YjslsQBEFIlchulVC6odzKyop79+6xfft27ty5Q3x8PN27d6d9+/Zyg4ykJC4ujnfv3pE3b17U1NSIiori4MGDxMfH4+zsjLm5eZpeiCAIgpA1SEQXd1mOyG5BEAQhNSK7sx6R3YIgCEJqRHarhtIN5QC6urp069aNbt26KbXe/fv3qVOnDv7+/hQrVoyjR49St25dXr9+jUQiQVNTk5MnT1KuXLm0lCUIgiBkBeLKdpYkslsQBEFIkcjuLElktyAIgpAikd0qoVBD+aFDhxTeYKNGKY+mPGLECCpXrszEiRNZs2YNLi4uFC1alDt37iCRSOjatStjxowRA4sIgiD8wUT/Z1mDyG5BEARBUSK7swaR3YIgCIKiRHarhkIN5U2aNFFoYxKJJNmRub+7efMmly9fpkiRIsyYMYMlS5awfv16NDU1ARg1ahROTk4K7UsQBEHImiTxIrGzApHdgiAIgqJEdmcNIrsFQRAERYnsVg2FGsrj49On45uEhAQ0NKS7/Pm/AOrq6um2L0EQBCGTiLzOEkR2C4IgCAoT2Z0liOwWBEEQFCayWyXUMnJnZcuWZdasWfj4+DBjxgzy5cvHkiVLZPMXL15MsWLFfns/fn5++Pr6/vZ2BEEQBOVJEpT7EbI2kd2CIAh/P5HdfxeR3YIgCH8/kd2qoXBDeb169QgNDZX9Pn36dEJCQmS/BwYGYm9vn+o2ZsyYwf79+8mTJw9Lly7l4MGDPH78GEtLS6ytrVm/fj0TJ05UuPigoCCaN29O3rx56devH3FxcfTo0UO2PUdHRz5+/Kjw9gRBEIR0kJCg3I+gMiK7BUEQBIWI7M4yRHYLgiAIChHZrRIKN5SfPHmSqKgo2e+zZs0iKChI9ntsbCzPnj1LdRvlypXj7du33Lhxg5cvX2Jvb8/58+eZNm0ao0eP5u7du9SoUUPh4ocNG4aXlxfDhw/n0aNHtGjRgps3b3Lx4kUuXbpEbGwso0aNUnh7giAIwu8TV7azDpHdgiAIgiJEdmcdIrsFQRAERYjsVg2F+igHaT9nqf2uqGzZslG2bFnZ7zo6OnTv3j1N2zpx4gR79uzB0dGRli1bYmlpycmTJ6lUqRIACxYsoHXr1mnadkraVCpJ28olsTI24GNwGKtP3+DwrSfpuo+f2VqaMKZZdYrlsSD0ayR7rj5gxanrsvk1ihektWMJSuWxREtL+k8aERHNvfvvWL3qPO+9g1LadLqoUqUQXbtWwcrSkA8fQ1i39j8uXfaSzW/btgK1axUnVy5DJBIJampq/PvvSQ4eupviNo1yZqfnyPrYFrPGKq8JhzZfYaX7EZW+DgAbO3P6jm+MXYncxMbEEfE1Cr1sOkRHxvD47lvuXXmBQ9NS2ObNiZaGOq98Alm79wrXH7yVbaN2pcJ0aFCO3BZGfPkaxbUHb1i89QJhXyJVVneB3KYM7VId+wIWhH2J5MCZB6zbf002v3LT8jRwrUWBkjZoamvw9pE3m6fs4dap+2nan5q6Gp0mtqR6u8oYWxgS9DGYUxsvsHX6vjR/N6SHBq61aehaG3ObnAC8feTNlqm7uXniXrLLl3CyZ965yUmmdysyiPfPPqiyVDltRjWhctN/yF3YmqiIaB5fecaaUVvx9kq5hqxSe7JECGcZIrv/bM1rlaJF7VJY5syBb8BnNh68zvGLj1W6zx/zJCIyhtAvkejpapHTKBsj5x9EIoFWA4qSv5AlmlrqvHvpz5ZlZ7h95QVFS+elm5sLufPlRFtHE/+PIRzbfYP9m6+otGYbW3P6jmlIoWK5+BwawbE9N9i24pxsfqUa9tRf2Jb8JfKgqa3J2yfebJm2n9unHyq0/dbDGlKpiQO57SyJjojh8fXnrB27A+/nyXc3MHBxV+r3qM6K4VvYv+RkurxGZZhYGdFjZnvK1ymFlq4WPl4fmddzBc/vvE52eWMLQ3rP7YhtmfxY21pwYPEJlg/ZmKE1F69ShJbDGmFXNj8mVsZMbDqbKwdvpri89LjGhQKlfjiumbwrzcc1KWnYpzYthzXGxNKQN4+8We62Hs9LT1NcvkRVe3rP64xN0VwEfghm15yDHFnpIVd329HNsCpogbqmOh+e+7Jn/mFOb/lPtoyyxzLpRmR3liGyW17JAlasHtqSlx8CaDttq0r28V1BKxNGtq1OURsLwsIj2e5xnVUrlhMX8JqEmAiMzHMx0G0Y+SwfIpFoER3zjKCweXyNuiDbxrnTGuzdqcVHHzX09BMoWy6Obr0jyWGgurrfvFJjxWJtvJ6qky17AnUbxNCmYzQSiXT+lYsafMx+jyj1LyRI4tGK08cowga9GBOFtt9+eAM6jGggNy3IP5T2RUfKfs9ta0G3CU0p7miHRE3Cu6cfcO+xmk8+wb/cfqtBLlSqX5pcthZER0Tz+OYr1k3Zz6tU1jE21qdP7+rY2VpgbW3M/gO3WLr8jEKv53fks8nJwAG1KFzIks+fIzl89B6bt1yWzU+P8+42I5vQ3b0t+/49plAeF3UsxLxzE3nj+R7XsiN/ufzvUDYXNbU06DChJTXaV8HIwpAA70C2ue/j5PrE47Smg+rR0NUFszymhAaEcXHvNdaO3kZMVEyG1Pir7Aao3Owfukxpg2UBcz6+9GP9uO1cPnBDNl/Z45h0I7JbJTKsj/J3794ptbyPj88vlwkNDcXa2hoAc3NzNDQ0sLS0lM23srKSe0xNUQXMkw+MVo4lGFS/EstOXqPprE0sO3GVsc2q42SfX+l9yGo0ysHD+W4pztfX1mJV7+b4h36h7YJtzNh3js7VytLJQpxPawABAABJREFUqYxsmbIFrLnq9Y5Xrz6xdu0Fjp+4j7a2Jjmy6zJ7dmt0dDTTXJ+LS3Hmz2uX4nx7eysmjG+Mh4cnPXutw8PDkwkTGlO4cOK/Q8kSebhx4yXHjj1gxbcT186dK6dal6aWBqHB4exYfo7XT9On3zszayOOP5uZ4nw9fW2mr+tBoH8Yg1os4eP7QLIb6HFs+zXGdF2LuroaXYa4cOfxe4bO3keXcVu48/g9c4Y1xS6vGQAlClkzoU9dDp/3pN2IDYxddIQi+S0Y07N2muu2MM3B1W1DU65bV4t/R7fgU3A43cZtZd7Gs7Sr70DbeokHxsWrFOGOx0PGNphJv3KjuX/+EVMOjqBAKZs01dRmRGMa9K7JkoHr6F50CKtHbaXlsIY06V8nTdtLLwHegawdvZV+5UbRr9wo7p3zZPKBkeS1z5Xqel0KDaSVZU/Zj08KjR+qUqJqUQ4tO8nAimMYVXsq6hrqzDw5Dh097V+um9m1J0dc2f57/EnZ/bdpWrMkfVpXZs3eq7QbsZE1e68wtEsNKpdJ+zGHsnmy78x9LHPm4MaDN7JlShfOxZ2rL5jQdyMDWi/j/o1XTFrSkQKFLYmMiObw9msM77KaXo0Xsn3VOTr3r0XdFuXSXLO5lSEnHk5PuWZ9bdxXdSXIP4yBbZexfMZhmneuTLNOlWTLFCtrw52znoxvOpf+juN5cOEJk/cOoUDJvArVUKJKYQ6vOM1gp8mMbjALdXU13I+MRDuZ7+iKDctSuFwBAj6o9iaFlGQz1GfhxSnExcQxpv4MehQbysrhm/kS8jXFdTS1NQn9FMa2Gft5df9tisupko6+Nq8evGXJgLUKLV+8qj13Tt9nbH13+jmM5P55T6YcGpXm45rkOLVypM+Crmx330ufMiPwvPQE92NjyZnbNNnlLWzMmHZ0NJ6XntCnzAi2z9hH33+7UbnZP7JlwoK+sM19H4Mcx9K75DBObjjHsHV9cahdUrZMWo9lfpfI7r/Hn5Td+S1Tb6jNpqPFlK4u3Hyq3GtKjqVJDu6sTOW8W0eLZYOb8ynkCx1nbGP2znM8v3iQ7DEBaBepjq5DK0qUdmDG+BE8eNKG9/51iIi6gpXpRrQ1pf29P3qozoJZOtSuG8PSteGMmhCJ1zM1Fs3TSXPdfr4SGtTInuL8r+EwboQuxiYJzF/2FdcBUezbrcX+3Ynn2p4P1NGNMcLicwlyhTqgG2OIb7aHRKl/VriON098aFd0hOynb9WpsnmWNqbMPTKM98/9GNlkPv2qTWPb/GNER8UqtO3ijnYcXncBtzqzGNPyX9Q11Ji+e2Dq7QWaGoSERrBl21VevvJX+HWkxtzcgLMeKT8ZoaenxZxZrQkM/EKf/htZvNSDVi3K07JF+cTX8pvn3XYOBajXswYvFcxjvRy6jNjQl7tnPRVa/ncom4sA43YOoXT1YszrsZxuhQfh3u5f3j9N/M6p3q4yPWa0Z/OU3XS3H8z8Hsup1sqR7jNSboNKzxoVye4iFewYt8ON01su4FpqGKe3XGDcTjcKly8oW0bZ45j0IrJbNRS+o1wikSD5fknyh2mKKleuHI0aNaJnz56UL18+2WVCQ0PZtWsX//77L71792bAgAGpbtPW1pYjR47Qr18/jh8/jo6ODqdOnZINTHLy5Eny5cuncI3flbCx4KVfYJLpDcsWYffVh5y8J71b2jsolBI2lnSr7sCFx4nXO5uUs6drdQesjQ34EBTG1ot32XnlgdJ1ANQvWxgtTXXGbT9FTFwcL3wDsclpRKdqZdl04Q4Asw9Ir2AfWZh4JbNY0Vx4PvKhRInc2Nla8ODhewA0NNTo1q0qNWsURV9fmzdvAli1+jz376ft4KN5s3Lcuv2a7duldy9v336NkiXy0KJ5OaZNPwTAqNG75Nbp27cGhob62Nla8OzFp2S36+8TzMrphwGo3dwhxf3XalaWFj2csMhlhJ9PMAc3X+HotmspLp8a50al0NLWYP6o3cTExDGg6WJa9nSiUUdH1s45zoLRe9hxbTz3n3nz5JUfACt2XqJK2QJULpMfr7f+FCtoycdPYew+Kb1b/uOnMA6ceUCHhvKNBPWditKhQTkscxrgGxDGrhN32Hc6bXdBuVQqgpamOtNWnCAmNo5X3oHksbhB23pl2X7sNkCSK9Hrxu2gYiMHKjYoy8t7b5TeZ5GKtlw5dIsbx6Sv0+/tJ5zbVMLOIe0NOOnh2pHbcr+vH7edBq61KVLBjrePvVNcL8Q/lPDQlBsRVG1MPflGoLndlrHHfy22ZfPz8GLqT6xkdu3JihcpnFX8P2X336ZuZXsOnH3AmWvSx+s/+IdSrKAlHRqW59KdxGMOlebJ7itERsbS0qWUbJmFm89j8DCxEXjDIg8qOhfhn2qF2bbiHC+fJvZR6/chhEo1ilKsTF6O70m8q6ZWkzK07FoFC2sj/D6EcHDrVY7sTHxSThnO9UuipaXBvHF7iYmJ4+0Lf6xtTGnWqTL7NkmPi1bOPkbCi8TjnPUTd1OxQRkq1Cut0Ino2MZz5H6f13s1u94vw7a0DZ6XE7s/MLEyot+CToxtOJsp+1O+IKFKrUc04tP7QOZ2Xy6b5vc2+WOtH+cvc5MeJ9TpUk2V5aXo5ol7St0xvdxtg9zv68Zup2KjclRs6JCm45rkNHdrwIl1Zzm+9qxsnw61S9KwT23WjdmWZPkGrrX49C5AVtu7pz7YORSg5dBGXNon/Xw/uCD/RMj+Rceo1cmJopULy+42TOuxzG8T2Z1l/D9ld/H8Frz6mPS8+7uxHWpy4sZT4uMTqFaqQJL5jRzt6VzbAStTAz4EhrHj7F12X0jbeXfd8oXR1lRn4sZTxMTG8eK9HxGXPZg5Zz5TDkvvRr31FWI19Diw7zkdu0UTGDYTfV0X9HVqERXjybMnapiZJ9ComfROWAvLOOo2iGHvTi25fXmckN517vdRDXOLeBo2jaF+47TdPXv+jCYx0RLcRkSiqQU2+eLx8Y7mwB4tmraMQSKBXv2i8FyTeHHYOKIA4ZoBfNUMQDsu5Ub4H8XFxRPsH5bsvM5jGnPztCfrpuyTTfN9G6DwaxjferHc7wsGbmLH07ly7Rg/8/MLZemy0wDUrVMixW3XcSlO61b/YGlhiK9vKPsO3OLQ4ZSfbE9NzepF0dLSYNaco8TExPHmTQC5rI1p2bwcu/dI7y7+nfNuHX1tRm/uz4Leq2g/pqlCNQ1e0Yuz2y8THxdPpcZpvzFBEcrmooNLKUo42dOpQH8+B38Bkh6T2FcsxKPLzzi3/ZJs/rkdlylUrmCS7amiRkWyu9mg+tz2eMCOmQcA2DHzACWqFqXZoPq4t/8XUP44Jt2I7FYJpbpe6dKlC9ra0rtnIiMjcXV1RV9fH0CuH7XkPHnyBHd3d+rUqYOmpiYODg5YWVmho6NDcHAwjx8/5tGjRzg4ODBnzhzq1q37y5qGDx9O586dWbhwId7e3mzZsoWBAwdy/fp11NTU2LdvH/Pnz1f0Jcrcf5P8QCRaGupEx8hfFY2KiaV4Hgs01NSIjY+neYVi9HWpiPu+czz18aewtRmTWtUkIjqWQ7eUf1y6ZF5Lbr/0ISYuTjbt8rM3DG5QGWvjHPgEJQ0riQR0dbWIiZaGbdjnCNm8EcPrY2FhwNRpBwkM+ELlynbMmtmK7j3W4qPAY1E/s7e3Yu/eW3LTbt16TfNUGre/+7GutKjTshwdBtZi2ZSDvHzygQJFrBg0tRlRX6M5feCO0tsrXCovD2++JiYm8b2+c+k53YbVxTyXEWpq0gcwfuxCRSIBPR0twsKl0x56faB3q0pULJWPq/deY5RDj+r/2HLlbmKjRiPn4vRo4ci8DWfweuOPnY0Zo3vUJjIqhmNpeKS+uK0ld594ExObWPf1B2/o27YKljlz8PFTcp8RCXrZdfkc9EXp/QF4XnpGg941sba1xOf5R/KXyEuxSoUy/FHt1KipqVG1ZQV09LV5fNUr1WWX35mDlo4m7x57s3X6Xu6ff5RBVSZP30APQKF/n6xWOyAeActC/p+y+2+jqZnMMUd0LPYFLFBXVyMuLj5D8yQlEokEXX1tPocmzfQChS0pUioPmxaflk2r09yBjn1rsMz9MC+efqRgYUsGTWpKZEQ0p1Ppki0lRUrm4eHtN3LZffvyc7oNdsHcWnoRPdmas+vITtqUpZ9DF4DPweFy2xyx1pU9C47y9smv785UlYoNHbh16j7jd7pRvGoRAn2COLTiFMfXnM20mjLC7x7X/ExDUwO7svnZOeuA3PTbHg8oWrFQsusUqWDHbQ/5BrpbJ+9Tp1t11DXUifvh7+q70tWLkauQFWtGJd+dhDLHMr9NZHeW8f+U3Q9epTwAaCNHe3LlNGDcuuP0qPdPkvlNKxfDtWFFZu04x9N3/hTOY8a4DjWJiIrlyDXlM7BEfktue/kkZmBCPAnx8ZibGGJlkoMPgd/OqdQ1eOSp/m0tCWqSbMTFhwBQpGgcm9ZJuHldHYfycYQES7j8nwYO/yTm+YmjmmzbqIXrgCjyF4zj1Qt1Fs/TQUcngRouit2B/aMnj9UpVjIWzR/a4ss4xLJxjTZ+vhIsLJP+cSeQQLwkDrUExZ88t85nxpaHM4mJiuXZnddsmH4Q37cBSCQSytUqzp7Fp5i2awAFiuXG910gu/49wdXjabtwr/ctZ3+3vaB+3ZJ07lyZxUs8eP7CD9uC5gxxq0tkZAynPJS/A9ve3pr7D97LHXPcvPWanj2qYWFhgK9vaJJ1lMmnAUu6c/3YXe6eeahQQ7lLl2pY5TdnZsfFtB/bTLkXo6S05GLFRg543XpJqxGNqdmhKpHhkVw9fIsN43cSHRkNgOelJ9RoX4VC5Qry7OYLLPKZUb5uaU5tupDsNtO7RkWy276iHXsXyncDfOvUPZoNqq90jelOZLdKKNxQ3rlzZ7nfO3TokGSZTp06pbi+sbExc+fOZdq0aRw7doyLFy/y5s0bIiIiMDU1pX379ri4uMiuSiuiffv25M2bl+vXr+Po6EjFihUpUqQIM2fO5OvXr6xatSpJ3T+Ljo5GUzMxICIiInjh44+aRtK35vKztzSrUJyzni957O2PfS5zmpYviqaGOob6ugR8Dqd3rX+Ye+g/zjx8AYBPUBgFzI1pWbF4mhrKTXPo8+GnxvDAz9K7R02z6yfbUN6qZXl0dLWwt7fmwcP3vHkjvZprZWlI9er2tG6zlMBA6Rf1rt03KFcuP3XqFGft2v+SbOtXjI2zEfTDiSJAUHA4Rkb6qa735m0Ab94E8OuOJVLWtm8NVs88yhUPacOgn3cweQqaU7f1P2lqKDc2zZbkhDo4UPo4mpFpdlr3robnrde88k6866FdfQd0tTVld/w9fP6BSUuPMXVAA7Q11dHQUOe/Wy+YtzHxBLVr0wos3nKBCzeln5GPn8LIZ21Ckxol09SwYWygz8cA+c9BUKj038TEUD/ZhvIWQxqgo6/Nhd1Xld4fwM7ZB9E30GPd4/nEx8Wjpq7G+nE7ObdDtf3QKsKmWB4WXZmOlo4mEV8imdxsDu+eJH8HVtDHEOb3WsHz26/Q1NakZseqzD49gWHOk355J7cquc7rzMOLT3jzKPk7KCDr1g7isa6s5G/N7qioqCQNBdra2rJGhb/B9QdvaFitOBduveDZa38K5zOnQbVi0mOO7LoEhoRnaJ6kpHnnSujoavHfycT+vjefHoGBkT7q6mpsXX6WE/sSL6i36+3M6rnHuXxGWp+fTzB5CphRr2W5NDWUG5lmw+9DiNy04G/HOMnlOkDzwXXR0dPmwt4bSeYpotes9nhefiZ3d2+roQ2Ii43jwNJTadpmerHMb0ZD11rsXXCUbTP2U7h8Qfot7EpMVCynNyt/nPenaDG0ofS4Zlf6HIcYmGZHXUOdYL8QuenBfiEYWRgmu46xhSG3klleQ1MDA9PsBPlK5+nl0GOH90o0tTWIj4tnUb813Dktf5KuzLFMehHZnXX8rdmd3Hn3S29/1NSTnnfnNjNkQNPKdJ+zi7gU7pjsUf8f5u/5j7N3pRn4ITCMfJbGNK9aPE0N5SYG+nwMTMxAiYYW2kaWLFu2jBz5q+CTEE+c3wviw/wIDpTeQGWYzRU1iS5fIqRPUhcpGs+w0ZHMnqpLdDTExUn4xzEG1wGJxyw7t2jR3TUKxyrSRnELy1jevY3m+BGtNDWUhwRJMLOIl5tmaCR9z4KDkm8oD9V5T4IkjmzRZgrt49md18ztvwGfl34Y5sxB2yH1mHdsOK6Vp6ChqY5eNh1aDXRh44xDrJuyn7LVizJuQ29GNV3AwyvPlX5Nvaa0wPPac1k7Rlp16ODIipVnuXhJeqHR1zeUvHlMaVi/VJoayo2N9ZM0hgeHSI+TjI2SzgPFz7urtXbEtnQ++v0zRqFarAta0N29LW5Ok4iPi//1Cr8pLblomc+cYpULEx0Zw6RmczAwzc6ApT3IbpyNed+efDu/8woGOXOw4OJUJBJpY/eh5SeTNHarqkZFstvIwpBgv5/+3f1CU9xmRhLZrRoKN5SvX78+XXaoo6NDs2bNaNYsfa54Va5cmcqVK8t+t7e3Z9OmTQqvP2vWLDZu3IihoSHNmzenR48eGH3yItTSPsmyKz2uYZpdjy2D2iBBQuCXrxy8+Zhu1csRnxCPkb4ulkY5mNy6FpNa1ZStp66mxpfIxHDcP6ITVkbfH3GSPkZ3fUY/2fwPwZ9pOjvxNST8dJno+5N3P08HqO5chE6dKnPn7hsK5Ddn4KAtsnm2tuaoqUnYtLGX3DqamuqEhUmv1pqZ5WD9uh6Jtauroa6uxtEjQ2TTPE4/YuHCHwanSki+vuQMHFgLgN270nZy+p2BkT5mVoYMnt6cQVMTP0vqGmqEf06843vFETfMrAy/1SUtbN+dxAEQ/T+E4Npggez3n8fKkXz792nerQr57CwZ1m455JI2xNSqWJjuzRwZOf8Awd/ePxtrY9w6V2f9/qtcu/8GUyN9+rdzYmS3mrivPoVhdl0sTHMwpldtRvWslVi3mhrhEYmfka2zO2NhmkOuhjPrEh+J9A0Io/2IH+7eTvJvIEn29QA4t3Gk48QWTGw6l5BkGtEVUa21IzXaV2ZGh8W8efSegqVs6DO/M4Efg/DYlLkn4t7PPuBaejjZDPWo3LwCwzf0Z2i1icmeYHp7fZAbMPPJNS9y5jKh5dBGmdbYPGBJd/KVyINblfGpLpcVa5fJxAFdBXl/a3bPmDGDyZPlB7OdOHEikyZNSpf6soL1+65hYqDPmsntQCIhODScoxce0bFReeLj4zM8T5JTrW4JOvSpweRBWwgNSmxQH9Z5Nbp6WhQukZtug1348C6Q88cfYGCkh5mlIYMnN2XQpCaJNaurEf4lseaV+wcmZve3mvdfnyCb7/8hhN5NF/2y5uS+iqq1qkDHsc2Y1HIBoWnIwH4LOpOveG6G1kjsm7VgaRua9KtNP8fUv7czgkRNDa9bL1k3bgcAL++9Ia99Lhr2rvXXNpQ7t6lEx4ktmdhkdpqPa1KS5LhQIkl1YMWf5yX3WYz4HIFr6eHoZtOhdI1iuM7rzMdXfnLdsihzLJNuRHZnGX9rdid33m0Q4sVnE/nzbjWJBPfudVlx+Brv/EOS3ZZhNl0sjXMwoVMtxnf44bxbXY0vP2Tg7omdsDSWnnd//3u89G/ieffHoM+0nPzDefdPfwemDvVICHnA7R3zAAlq2U1RN7NFTe0p2XSbYJJjKB8CuxIXL72R6t0bNVYt1aZNxyjKOMQRFCRh/Uptli7QZtDwKEJDJHzyV2PRXB0Wz0vcT1wc6Osn7rtvNz38/aSN8d+ntqifTTbfzDyeZesSu178Oam/v4zkIvyLlh/Buq8x/1wc9QStpAsk49aZH55YffKBJ7dese7mVGq2rsCF/dKL4VdP3OfASulgmq88vbEvl596nasq3VDed1Yb8tnnYliDOWBuqNS6PzIw0MXczIBhQ+ox1C3xqQl1dTW+hCd+Rtat7o65ufxIq0cPJbZ9+PmF0q1nYr/TSb7nv09PpgZFz7tz5jKh74LOjKrjrtAAlmpqEkZvGcimybvxeZ7yUxmqoEwuqqlJSEiAGR0W8TVM+nldOXQj43cPZXG/tURHRlPCyZ52Y5qzuN9qnlx/gXVBC/ou7ErQx2C2Ttur8hqlyytwHJlcm1dWyM2sUMNfSOGG8r/ViBEjGDRokOx3PT09Bvbvz9S9SR9RjYqJY8JOD6bsPoNJdj0+hYXTomJxvkRGERwegbG+tLuEybtO8+Cd/BdW/A9Xwvuu3o+GujT4zA2ysb5fK1rMS2zQjv3himBAWDim2eXvzjbOJt3P9zvLv6tWrTDDhtXjzt032Ba0YLDbVgICEgfokKhJiIuLx9V1A3Hx8lcdIyKkX8gBAZ/p2WudbHqVKoWoWqUQ090PyaZ9/Rot+/+goC8YGyeGNoCRoT7BwUnvQBvQvxaOFW2B33+MSqIm/fJaNH4fT+/L33Ub/8Nrm9BrPeoa0kfjTM1zMHtLb/o1STy5/vEx2KCALxjllO+jzdBE+tqKlM7L0LbLCfALg1w5qVGhEGN61Wbsv4e56ZnY72mnRv/w0MuHrUekBwwv3wcQEXWGlRPbsHL3ZdnnYMaaUzx+IT/o4o//JkNn70NDXVp3TqNsLJvQms6jN8vmx/7QFU9QaDjGBvKfEaMcerJ5P3JqVZEhq12Z2noBd888JK16zmrPzlkHOb9TeufWG8/3mOXJSZuRTTK9oTw2JpYPL6XvrdftVxRyKEDTQfX413WVQus/vf6cGu1T7mZAlfot6kaFhg4MdZpIgI/yA8FlZu0/kqjwpoYZM2awb98+nj59iq6uLo6OjsyaNYtChRIfp0tISGDy5MmsWvU/9u46rqr7j+P463JpkJa0u7uwE7udrdg6u2NuU+fUTafzN2duinPOnDm7dXY3NraIIALScX5/XLlwJQQEgfl5Ph73sXHyc64X3vd8z/d8zzL8/f2pWrUqCxcupGTJktplwsPDGTt2LGvXriU0NJQGDRqwaNEicuXK2IelifQxadIkRo8erTPtv9SbHDRDu81Ytpcflu/HxtIUP/9gWjcoQ3BIOG+CQrHKofk7/6ny5H21G5dm5LS2zByzjkun7+vMi+3F/fDuS6xtzen+ZX2O7L6qze7/TdvKravvZ3fc96RvBq9Cra/5nmTnYMEcj/4M7vBr3PFFxR2fv+9brO3ey24bzTHE9iyPVadDVUYt7seMbgu4dDj1w1QNntcD1xblGdNwBr7xeqqXrlEUK3sLVt+Zr52m1lfT/4eutBnaGPdioxPZWsZ4/cKfx+8N/fL41jNqtUs4bMF/QZ2O1Rn9+5dM7zjvo77XvC/AN4joqGhs3ustZmVvyZuXCXsMArz2foONo3WC5aMiowj0i/s+riiK9nvK/SsPyVM8F10mttVpKP/Y7zJpIdktMlpi593Dhg1l5hrd825TY0NK5nOkaG57JnSuB2gaz/X0VJxdNIIh/9vM/eeahunv/zzAdS/d8+74PdCHL4g7785pZc7vYzvS5fvEz7v9AoKxtdDNQAdHZ1b/Op5m4xfz3McPPSMzwm7sx8UlJw7Wc3nxegCh4f9ql9+41pDiJaNp30lzbp2/IBgbhzNhpCk9+kRoG66Hjg6jaHHd4ZjejfIJwNRZoUS961zu56vHpNGm/LIs7rwu/s3vVjYK/v66LeIBbzQ/x/Ysj/XW8CWvzG7h8LYkplE2pFV4SAQPbz7HpYA9ga/fEhUZzeM7uv8OT+54U6Ja6saZ/nJWJ6o1LsO4VnPxffHmoxrK9d692XN/3o3nrec68+J/55g0eWPcdw67HMyf243+g+LaQ+J/53j9OjhB24eV1bvvHP5pP+8uXDE/1g5WLDo3SztNra+mdO3itB7SmGYm3XRqNslhQtHKBSlUPh9Df+kDaNpH9PT02BO+holNZnA5Dd9zkpOWXPR74Y/vs9faRnKAx57P0NPTI2cuG57d86bXd505sPqYdkzxh9cfY2xmxMilA1kzY3OyDdzpUWNKstvfO2GPdCt7ywS9zDODZHfG+E83lLu7u/PkyRMOHUp6XMbEbtU2Mkj+bYmKieFlgObkq2n5ohy76YWigN/bEF6+CSKXrSU7L95Kcv0X/nFflqOjNb/4T3wT/yW78ugFI5rVQF+tpw3y6kXz8jLgrc6wK03LF2VCx0ZcuvyYIoUdGTV6TYJbf+7de4larYeVtSnXriXeIyUmRuF5vFuY37wJITw8SmdafDdvPqdixXz8vSnuIV0VK+Xjxg3dk7ThwxpRs2YRRo1ew5+rBia6rdR44/cWX+8AHHPbcPify0ku5xOv7uh379+Lx4k/MObW5Ue4j2qCvoGaqHfjjg2e0pro6BjGd1/Ky6eak+JGrsWYPNCNb3/dxcnLXjrbMDbS1/6bxoptuFcB/oEh+PgF4WJvxb4TSX9GvONd4Ij9d3/63i1Bsa7dfcGgTjV1PiNVyuTl1esgnWFX6nWuzpjfv2Rmt/9pH8KZVsamRsS8F1ox0THo6aX8QUOfikqlwtAw5ePvFSyXH78XbzKuoCQMXdCXGm2qMLbeFLwfpu3J7ZlV+/tUGXhl++jRowwZMoTKlSsTFRXF5MmTcXNz4+bNm9qxO2fPns28efNYuXIlRYoU4fvvv6dRo0bcvn2bHDk0DWojR47kn3/+Yd26ddja2jJmzBhatGjBhQsXUKvVyZUgMlhas/u/Kjo6hlfvxrVs5FqUE5ceoCifPk9y2sQ1RtdtWoZR37XjhwnrOfvv7US3FUulUmFgqPle9cYvmFcvA3DKZcPhnUmPW+oT7+9Y7O3EL54kfvHQ88pjeo1wQ19fTdS7i98VqhfC92WgzrArdTtWY/SS/sxyX8TZPakfM3XIzz2p3qoi49xmJngQ1YE1J7h4SPeEdOY/4zi45gT7PvHF4xsnb5OriJPOtFyFnT74QM/sqF7nGoxZPpiZXedzdlfqh9xLTlRkFHcuPKBCozKc2Bp3F2SFhmU4uf1cout4nr5DtRa6z+ip6FaWO+cfJDo+uZZKhYFR8t9TUvtdJi0ku8XHSGt2GyZy3h0cFq7TyxvgizplqVwsN+OX7uCZbwBhEVG89A/Cxc6S3WeTOe9+HS8D3zU0PnmV+Hn31QcvGNpG97y7Wom8+Pi/xTsgDD0jM5TIcPQCn9G0yVi8Xw8hJOygzjbCw+H9j6Kenma/igI2tgq2djF4v9CjXsOkh1mxd4j7fVSrNbU4uyT+O1q8RDR/LDciMhJiR7a5dF4fG9sYHBzj1oltJLd/WwLTSLsk950SBob65CniyI3Td4mKjObOpYfkKuigs4xLQQd8niT9oNb3fflDZ6o3K8eENvN4mcT5emr4vwnh1atAnJysOHgo6aF4XsZ7QGnseXzSbR/P6NunDvr6ekS9a0CvVCkfvr5BOm0vqT3vvnTwOv3LjNWZNnb5lzy5/Yz1s7frNJIDhASGJli+5ZdulKtXkukdf8bbK23nkslJSy7eOHmb2l+4YmxmTNi7Z7q5FHHSfLd9qvleZ2RqhPJeJ86Y6BjtQ41T01CeUdl989QdKjYsw+b5O+OWaVSWmyeT/w78KUh2Z4z/dEO5s7Oz9gGMqRHbyD2ieQ3sLcyZvFYzzEjenFaUzuPI1UfeWJga0bNORQo52jJ5TdwwJIv2nmZi27q8DYvg+C0vDPXVlMzlgIWpMauOpv5L/K6Lt/jSrRozujTmtwNnyZPTin4NqrBk32ntMk3LF2VG18bcvPGM0qVy8cOPOzA01MfFxZqQkAiCg8OJiIji6VN/9h+4zsQJLViy5BB3773E0tKE8uXz4vXgFWfOPkimksRt3nye+fO70blzVU6cuEuNGoWpWCGfzpAvI4a70aBBCRYvPoS9veb27wIF7PHze8vbaIVXLwLoNboxtg6WzJ2wQbtegWKaEz1jM0MsbcwoUMxJc7X6vuYP/+oFBxj0dUtC3oZz/thtDAzVFC6VC3MLE7asPJ7qYzn8z2W6DmnI6FlfsH7pYfqNb0bxcnnYseY0ocHhWNuZ49qwJF9+2YSfVx3m+t3njOpZD1srM2b9to/g0AiOX3zApH6NaNuwLGeuPsTOyowRPepx494LfN+NX/b7plOMdq9HcGg4py4/xNBATbECDuQwM2bdrguprnvfCU/6tnPlm0FN+GPbGXI7WuPeuiorNseNg1avc3XGrxzCopF/4Hn6Ltbvbi8LD40gJDD1vftP77hA10lt8Xnsy6MbTylUPh/tRzVnr8fhVG8rPfWZ0YWzuy/x6okfJjlMqNe5BmXqluSrpjM082d2xc7Zhtm9ND0T245oxsuHr3h04wn6hvo06F6b2h2qMa39nE9a97CF/ajfpSZT2swmJCgM63e9J4IDQrQPOsmqtScqA69s79mzR+dnDw8P7O3tuXDhArVr10ZRFObPn8/kyZO1txr/8ccfODg4sGbNGgYOHEhAQADLly/nzz//pGFDze26q1evJnfu3Bw4cIDGjRtn3AGID0prdmd3X3aqSU4bc75brPmM53a0pkRBR27cf4GFmTGdm1WkQC477XzI+DwpmNuO3m2qsfXQVbo2r4RzTgt6tKzCgA7VWfLjTspVKUC9ZmVZPGsH4eGRNGhRDp8XATzx0jTKlqyQl/buNdm+Ni6P/lp0iEETmxP8Nozzx+9gYKhP4ZIu5LAwYfOqE6mu+fCuK3T7sj5jZrRn3W9HcMljR+d+dflrSVxjTd2mZRg7oz2Lx67m1tl7qc7AofPdqdfJlalfzCf0bZh2fc3f6EiCXr9N8JCuqMho/F8G8PSud2KbzDCb5u/if8e/o8vENhzdeIqiVQrRrH8D5g/6TbtMnxldsHOxYXavhdppBcvmBcDE3BjLnBYULJuXyIioBL3TM4qxmTEuhRy1Pzvmt6dg2XwEvn7Lqye+CTKwXucajP9jKItGerz7XmMFxP6bhiS2i1Tb9PMOJqwaxp3z9/E8dYdmAxpin8eOHUs049C/X9OOJftpNaQJA+e6s/u3AxR3LUKTPvWZ2XW+dpudJ7bhzvkHPL/vjYGhPlWaVaBRj9r8Mlj33ye57zIZRrJbfIS0ZndsI/fQNjWwtzLn25V7URS0PcZj+QeFEBEZpTN96T+nGde5LsFhEZy4rjnvLpHPgRymxvx1IPXn3XvO3mJAi2pM69WYFbvPksfeiuKWkcxc9AcxoYEooQEYvbhEwSKFqd3gOmERF1i13Aq/VwpjJsUQowRRpVoUC+YZs2u7ARUqRfH6tR6/LTKiSLFobO00DVpde0awbKERpqYKlapEERmp4u4dPd4GqWj7xYeH3XhfnfqRrFllyPzZxnzRNYLnz/TYsNaQzt3DtT3Yjx7Sx8fME9uQwhhFWRCl0gw9oocaPeXDTUL9prbnzL6r+Dx9jZVdDrqMboZpDmMOrNe0SWxauJ+Jv/Xj+ql7XDlxm0r1S1K1cWkmtEnZA16H/NiFuu0r813PxZqcfddm8NpQn4gIzQWFfn3qYGeXgx9mxz1UsWBBzRjrJiYGWFqaUrCgPVGR0Tx619D+x5/HGTq4ESEhEZw9ex8DA32KFnXE3NxYp6NfSh08dJOePWowYVxz/lp7ilwuNnTt4sqfq+Oej5GW8+7Qt2EJnk0VFhxGoN9b7fT42a0oSoLl3/gEEBkWmewzrj5WanPx0JrjdPu6PeNWDOaPqRuwtMvBgNk92OtxSHuOe3rHedqPasG9S17cOnMP50KOuH/XmVPbz+uMFJBRNaYku7f8spN5R7+j0/jWnNx2juqtK1OhYWmdoVI/9D0mw0h2Z4j/dEP5rFmzPrxQIk7d0QylkTOHGU7WcT2o9FR69KxTkXz21kRFx3Du3hN6/LKe5/5xVyE3n7lOWGQkvepWYnTLmoRGRHH3hS9/HktbT5e3YREMWLqJye3qs25UVwJDw1l19KJOo/sXrqUxUKspWyYPANO/a6+zjR9n72Tvu4dszZ69i+7dqzNoUH3s7HIQGBjKzZvPOHMm9Y3kADduPmP699vo07s2vXvV5vlzf6ZP38atW3G3XrVuXQGAceOaaaf17lWL3r1qsX/zBeZN2ohNTgvsnax0tr1wW9yteUVK5aJey/K8fOpPrwY/ArD373OEh0XQoW8d+o5rSlhIBA/veLP1j9SfaAOEvA1ncp/fGfxtG37ZNBTDd717WnZzpWU3V51lx/VpyLg+cePhhYVH8v3Svew6dgNTY0M6uJVjeLc6BIWEc+HGYxatjbsl758j1wiPiKRbi8oM6VKbsPBI7j/xZf3utH1GgkMjGDHrb8b0asCK77sTFBzG2l0XWBuvkaR5/4boG+gzfGFfhi/sq52+748jzOmzONX7/HW4B72+68TwX/tiZW+J3/PX7Fx2gNXT/07TMaQXKwcrJqwaho2TNcEBIXhdfcRXTWdoH5Jl62iNfZ64HhQGhvoMmNMTOxcbwkMjeHTjCZObz+Ts7o/rcZ9arb7UBMTcI7pjLs/pvZB9fxwBsm7tiUntle2PeTBjQICm94aNjeb2US8vL7y9vXFzc9PZVp06dTh58iQDBw7kwoULREZG6izj7OxMqVKlOHnyZJYN7M9FWrM7u7O1MsPB1kL7s56eiq7NK5HHSfOd48LNJwyYuhbveA/bzOg8CQuPxNTEkK7NNT1tRvSop1126NettP9fu3Fp9m+7yN2bz+g9wg1HF2uio2N48eQ1K+bvZdfGuJPRPZvPExYWQYdeteg7ugnhoRF43X3J1j/T9hDGkLfhfDXAgyGTW7Jg3WDeBoaxedUJnUb3Zl9URt9An2H/68Ww//XSTt/357/MHfDhoSxaDtTk/U/7J+tM/6n/Mvav/jexVTLNnfP3mdp+Ln1ndKH7N+3x9nrF4tF/cGhNXAcCWycr7HPb6qy35OJs7f8XqVSQBl1r4v3Qhx4Fh/EpFKlUgLmH4zLwy3m9ANi38ghz+ixMkIHNBzR6972mP8MX9tdOj10+PRzdcBILW3O6f9MBGydrHl7X5KzPY80J7/s1eT/04evmsxg0z51Wgxvj99yfRSNWcHzzGe0yxmbGDF/YD7tctoSHRvDk1jN+6LFA5yGkH/ouk1Eku8XHSGt2n/HUnHfbWZrhaJPjA0vr2nriOmERkfR0q8SIdprz7nvPfFlzMO3n3YPnb2Ji1/qs/qorgSHhzPzld/b8vRol/C0qA2NqNWzErO++eddT8kciQycSFPCMnFYteOk/ioZNoggNDWfHVgOWLzHCzFyhTLloevWP+11p3DwSI2OFzRsM8fjNCGNjyJc/mlbtU99IDmBmDt/PDmXxL0aM+tIU8xwKbTpE6DS6795hACoFP7M7+Jnd0U43D3fEPrj4B/dh52zFhKV9sbAxJ8DvLbcuPGBUk9n4vOsVfHLXZX4dt4aOI5owaGZHnt5/yfe9l3HjzP0PbFmjRZ86AMzeNkZn+o9zdrJ3n6Ydw8bWXNvpLtZvS/po/79oEScaNiiJt3cAXXtozm937b5KWFgUnTpWZUC/uoSFReL18BWb4j1kPDWCQ8IZN2E9I4a5sWRhL4KCwvj773Ns/Duu93J6n3fHSiy7P7XU5mJYcBgT3aYz5Je+LDz3A4F+QRzbeAqPd89RAfjr+00oikKv6ZoLAQGvAjm94zwrJq/9JDWmJLtvnrrDjC7z6TW9M+7fdebFfW9mdP6ZW2fvaZf50PeYjCLZnTFUSmruZciCnj59yuLFizl58iTe3t6oVCocHByoXr06X375ZZrGvSk9+ucPL5QF5bwS/uGFshijp28yu4RUe1MxZ2aXkGrm6z/u4amZRsn4J3gL2B+zMV2316Be6k6WatUJT9ODGRVFoXXr1vj7+/Pvv5rGqpMnT1KjRg2ePXuGs7OzdtkBAwbw6NEj9u7dy5o1a+jdu3eCLwlubm7kz5+fpUuXpqp+kXoZkd3ZlWvXuR9eKIuxvJb6ZyhkNuXe4w8vlMXERER8eKGsSLL7k5Ds1pDs/nQyIrsrDMye593rv8kCd3Cm0vDyrT68UBYTXi5fZpeQaupDmd9pKU0kuz8JyW6NrJ7d2bpH+fHjx2natCm5c+fGzc0NNzc3FEXBx8eHrVu3smDBAnbv3k2NGjUyu1QhhPh8pPL6a1ofzDh06FCuXr3K8eMJh1qKfVp5XElKgmnvS8ky4uNJdgshRBYk2S2SIdkthBBZkGR3hsjWDeWjRo2iX79+/Pxz4leiR40axciRIzl3LvXjTwkhhEgbVSrvU0rLgxmHDRvG9u3bOXbsmE4PJkdHzdhw3t7eODnFPdDOx8cHBwcH7TIRERH4+/tjbW2ts0z16tVTV7xINcluIYTIeiS7RXIku4UQIuuR7M4Y2fppWdevX2fQoEFJzh84cCDXr1//hBUJIYRAUVL3StWmFYYOHcrmzZs5dOgQ+fPn15mfP39+HB0d2b9/v3ZaREQER48e1YZxxYoVMTAw0FnmxYsXXL9+PUsH9n+FZLcQQmRBkt0iGZLdQgiRBUl2Z4hs3aPcycmJkydPUrRo0UTnnzp1SufKhhBCiIynysAh7oYMGcKaNWvYtm0bOXLkwNvbGwBLS0tMTExQqVSMHDmSmTNnUrhwYQoXLszMmTMxNTWla9eu2mX79u3LmDFjsLW1xcbGhrFjx1K6dGnt07hFxpHsFkKIrEeyWyRHslsIIbIeye6Mka0byseOHcugQYO4cOECjRo1wsHBAZVKhbe3N/v37+f3339n/vz5mV2mEEJ8XjLwGdGLF2ueFl+3bl2d6R4eHvTq1QuA8ePHExoayuDBg/H396dq1ars27ePHDlyaJf/+eef0dfXp2PHjoSGhtKgQQNWrlyJWq3OsNqFhmS3EEJkQZLdIhmS3UIIkQVJdmcIlaJk4Dv7Caxfv56ff/6ZCxcuEB0dDYBaraZixYqMHj2ajh07pnqbpUdnz6dv57wS/uGFshijp28yu4RUe1MxZ2aXkGrm689mdglpI0/f/iTS++nbjap/n7r9n/w6Xfcvsr6MyO7syrXr3MwuIdUsr73O7BJSTbn3OLNLSLWYiIjMLiFtJLs/Cclu8allRHZXGJg9z7vXfzMns0tIteHlW2V2CakWXi5fZpeQaupDlzK7hLSR7P4kJLuzh2zdoxygU6dOdOrUicjISHx9fQGws7PDwMAgkysTQojPkyp7X38Vn4BktxBCZC2S3eJDJLuFECJrkezOGNm+oTyWgYGBjIsmhBBZQbQEtkgZyW4hhMgiJLtFCkl2CyFEFiHZnSH+Mw3lQgghsga5si2EEEJkL5LdQgghRPYi2Z0xpKFcCCFE+pLAFkIIIbIXyW4hhBAie5HszhDSUC6EECJ9SWALIYQQ2YtktxBCCJG9SHZnCGkoT8TvI37J7BLSpPP2oZldQqo5H8uZ2SWkmsXtwMwuIdVUlhaZXUKaxAQFZXYJqaZER2d2CZlPHpouMkGMd5HMLiFNXtQekNklpFqkiW1ml5BqVtammV1CqunffJTZJaRJTED2+54k2Y1kt8gUf3w9N7NLSJPGG8dmdgmplq9MRGaXkGpG93wyu4RUizE2yuwS0iQmLDyzS0g9RYJLsjtjSEO5EEKIdCVjpQkhhBDZi2S3EEIIkb1IdmcMaSgXQgiRviSwhRBCiOxFslsIIYTIXiS7M4Q0lAshhEhfEthCCCFE9iLZLYQQQmQvkt0ZQhrKhRBCpC8JbCGEECJ7kewWQgghshfJ7gwhDeVCCCHSlzxURAghhMheJLuFEEKI7EWyO0NIQ7kQQoh0JQ8VEUIIIbIXyW4hhBAie5HszhjSUC6EECJ9SWALIYQQ2YtktxBCCJG9SHZnCGkoF0IIkb6i5R4wIYQQIluR7BZCCCGyF8nuDCEN5UIIIdKXXNkWQgghshfJbiGEECJ7kezOEHqZXcDHKF26NNOnT+fJkyeZXYoQQohYipK6l/isSHYLIUQWJNktkiHZLYQQWZBkd4ZQKUr2fbf09PSwsbHhzZs3NGzYkP79+9O6dWv09VPeUf7t27f873//48CBA/j5+VGiRAla9zlLgaKJvy2eV1TMGmeQYPoPv0fgnCfNh/JBT7xUrPpVTZP6wxk8eJjOvIjoVyxbV5X/eeRD9coPoqNRbKyJrlKRitWqMaF6LQpa22BioM+zoCDWXL/CissXM65YoKitHdPq1KesgyNvwsK4+9oPCyNjClrbEBYVxdPAAKJjYihgbo2hvhqvp34s33CSs1ceabcxeUhjmtUtlWDbXk986T76jwyrvUAeO0b3rU/Jwk4oCkRFx2BmYsjE2dv499w9Gud1oUWHyhQo6oiBgZpHD16xetlhIiOimbOsd4Lt9Wu/gCcPfTOs3nyF7BkyvjlFS7oQFBjKrs3n+eu3o9r5NeoVp0WLMhQolRsDI30e33rO6h//4cKhG2naX6eRTen9bTu2LDnA0q/WA2BsZkSfb9vh2rw8FtZmvHzix7alB9npcfQDW0teTFBQmtctXbMYX4xpSeEK+bF1tmFq+584uf28zjI9vulAs371Mbc259bZe/w6fAWPbj79qJqV6OhUr9NikBstB7nhkC8nAI9uPGX19I2c23P5g+uWrF6UuUem8fD6EwZVGJfqfQPsj9mYpvWS0rTA2FQtv/vBT+m6f5G1pUd2JybGuwjnrsCKtXDjDrzyU7Hge4WGtdKp8CTsOwq/LIfHzyGPM4zoB41qx81fuxVU5sPo2l03u5XoVyivalBg64AE26zmnJt1rTolmN5g3Qruv3md3oegVdTGju9qNqCsvSNvwsO4/soHlxwW5MphAcCrkGBCoiJxMcqBgb6aB8/9WLbtFKdvaLK7XoVCdKhbliJ5ciY6P6MUdLFjfLf6lMzvSGh4BAHBYZgZG5LTypwxv25DT6Wic5VSFCzsgIGBPo+8XrHK41/On3sAQP1GJenUxRWXXDYEB4dz7sx9li06SGBgaIbVnL9AToaObEyx4s4EBYaxY/tFVv9xXDu/Zu2itGpYQje7Z//DhcM307S/TiOa0Pubd9n99QYArHLmoO+37alQrwRmFqZcP3WHRZPW8fyBz0cdW0xAYKqW11Pr0fPbDtTvUhNrRytev/Bn36qjrJm5heROU+p3qcEXY1vhUsiR4IAQzu+7wrLxqwl6/TbVNac0u1t+6cYXY1tj62TFwxtPWTzKg+vHbyVdY9eadBzXGpfCTpoa91xm6bhV2hrd3OsyzmNIgvWamXQlMjwy2Voku8WnlFHn3Z36nqRQsaSHDoiMgI2rDTh2QJ83/ips7RTadY2kQdOo9DisRD16oGL5r0Y0qjciwXl3ZLQPK9dXZvbvBVH5xZ13x1SqhF2xYkyuXYdS9vbks7bmj0uXmH70SIbVGauorR1T69enrKPmvHvt1assOHNaO79xoUJ0K1OWivZOGBpq/r1CQyO4fOUxvy07wpOnGfe9AqBWraL07l0LZycrnr94w4rlxzh+4o52fpcu1ahVsyh58tgQHh7FjZvPtHUZfWQemZgZ0XN0U1wbl8LKNgf3bzxl6XdbuXNVc8GneuPSNOvqSqFSubC0MWdIs5944Pn8o/YZ45P28/5OY1tQo1UlchdxIiIskpun77L8m/U8veutXWbM0v64ddf9cut59h4j632X5v0CxISFp2r5Ht92oOeUL3SmvfZ+QyeXgR9ct2T1osw9PEVz/lpxQqr2q0NJ2bAjqcnucSuG4NarboLpD288oX/p0dqfzSxN6TOjCzXaViWHtRneXj4sHbuKs7svJVuLZHf2kK17lANcvXqVv//+G0NDQzp37oyzszNjx47F09MzRet//fXXnDx5ktmzZ/PPP/9Qo0YNfpygz+sP/H37cUUEv6yLezm6pP0YXnlDTzfDJOeHBsPsifpY2yrUbRaD35vb1G9YnZ8WV+Xik8pce96E29f0iMntQlTLJkR2aoeSyxn9nXsJ9fFh1dXLdNq8noarV/LrudOMqVaTLiVLp7lelxwWeA0bk+R8cwND/mzdgZfBwbRe/xdTjx3CNVceHge8od3GNfTc9jc2JiYUsrHlqznb6DNhNRevP2H2xLYUzmev3c58j8O07L9Y+2ozcCkBQaEcOnUnyX1/iGNOC05sTLp2UxND5n/TAd/Xwcz3OMzJC/dR66l0lildIS8Xz9znm+GrGdp9KVfPezHt564457YBoE/bX+jsNkf7evbYL831OjhZsffCtKTrNTNi1sKe+L0KYljPZSyavYv23avTvnt13XoP3+TbTr8wrN73XPn3NlPXDKVg6dyprqdI+Xw0da/Ng+u6vUkGzuhIpQalmDPwdwZU+5Yti/cz+McuVGtaNtX7SC/GZsY8uPqIX0d4JDq/49hWtBvZjF9HeDDM9Sv8vd/ww+6vMDE3/sSVgu9TP5ZP+oshlScypPJELh++zrStE8hbIley65lamDL+j6FcOnjtE1WaQkpM6l7is/Ox2Z2U0FAoWgi+Hpk+dW7ZDT1HJD3/0nUYPQ1aucHW5Zr/jp4KV+K1ZTrmBNdKEBFyh4eXqrNkXnXq1KnO/YstPrj/emuXU/mPRdqXV4B/mo8lVw4LHg5K+su0uYEhq1t8wcvgt7Ta9BdTjh+iukseLr98QatNq2m1aTVB4eEUt8nJ7L8O0eO7vzh/6wk/D29D0Tyai3zli+TizM1HjJi/JdH5aeFka8H55aOTnG9mbMjCMe3xffMW9+//YtORqzjbWnD6elzjfPkiubhw3ovJ49czuP9yLl96xPQfOlKosAOlSudiwlet2L3zMv3clzL9200ULebE6PHN01yzg6MlB45NTnK+qakhP87tip/vW4YM8ODX/+3li87V6NCpqnaZ0mXzcPGoJ992+YVhDWZw5fhtpv6V1uzOS9OeCbN7yqrBOOazY1qPhQytPx2fp6+ZtWkURqZJfyfNCJ3GtaL5gIb8OsKDfqXH8PukNXwxpiWthzZJcp2SNYoyzmMIez0OM6DsWL7vMp+iFQsyemnCC0/ppU7H6nz5c2/WztzElxXGc/24JzN3TSZnbrskaizG+D+GsWfFIfqXGs30jvMoUrkgo3/7Ume54IAQOjr113l9qJE8Q0h2iw/IiPPu78Yb4+erSnKdudONuHZRzeAx4fziEcrIyeG45En758/HW0WHhmZJzg8JhukTjLG2VWjYPJLXb27ToGF15i+pjOez8tz1bojnNTVKrlxEN2tKVPv2KM7OqHfvwTAgAL/QEBaePYPnq1dprjE+FwsLHoxKOgPNDQ1Z1b49Pm/f0mbNX0w7fIh+FSvSt0JF7TJVXHJx/PEjHjx4xfLlR9m95wpGRgZY5DBh9uxOGBsn7ASYUo0bl2be3K5Jzi9Rwplvv2nN/v3X6T9gBfv3X+fbb1tTrJiTdpmyZfKwbftFhg79k3Hj16NW6310XbFG/NCR8jWL8NPoNXzZZA4X/73DzD8HYetgCYCxqSE3zz/EY/bOj95XeihTsxj/LDvAyHrfManlj6j11czcPj5BLp/bd4XOBYZpX9+0m5sp9Xpdf0JH5wHa14CyH260NbUwYfzKwVw6dP0TVJj67F440kMnj7vkHkigXxDH/j6lXUbfQJ8f932DQ157pn8xl97FRjBvwFJ8n2XsRadESXZniGw/Rrm+vj5t2rShTZs2eHt74+HhgYeHBz///DNVq1alX79+9OnTJ9F1w8LC2LdvH4sWLaJy5coADBs2jO27fuHQP2o69E66d4mFFZiZJ13Xsb167Nygxtcb7BygUZtoGrZK2wfz5CE9IiOg/9hoLKwUjE2jqd7oJX//qaZm00hUKuj+JezYXk67TrRrFVRej/A8dZob0XFftp/dDqRxwcJUds7F2htxjWsdipdkYIXK5Law5GlQICuvXGT1tStpqrd10eIY6asZt38PETHR3Hntx9zTJ3AvU467rzWNxm03rOFC/8GoVCqeer9h6drj1KpckJqVCnD3oebKcXBIBMEhEdrt1qpciBxmxuw8rPtHtVndknRrXRkne0u8XwWycddFtuxLW+1utYpjaKBmxsI9REZFs23/Vbq3qcKX3eKu2i6Zu0dnHY+FB3GtU4wSZTUnr29eBxP8NizpfbQsxxfuNXF0tuLlizdsXXeGHRvPpane+k3LYGikz9ypW4iMjObRfR9c8trSrpsrm1af1Nar8oq7Mr7y+y24NitH1SZluX8t5bdPGpsZMX5pP/43chVdxug2IBSvXJAD605y9V3vgN1//Esz9zoUKZ+P07vT9m/xsc7tvcy5vZeTnN92eFPWztrKia2a935On0Wsf7aU+l1qsPO3g5+oSo3TOy7o/Ozx9VpaDHKjeLUiyfZwH7lkAIfWHicmOoYaratkdJkpl31vVBKfyMdkd3JqV9O8khIRCf/7HXYcgKC3UDg/jBkIVcqn7ThW/Q3VK8KA7pqfB+SFc1dg1UaYO0UzrV4NUJkDBtHkcfJlQFdYsQYuXoUCH2jz9AsNITAi6R4+XxQtxcBylcmdw5KnQQF4XL/E6huX03QsbQoXx0itZuzhd9nt78uCC6dwL12eScf2AdB6y19c7jUEUyNDnvi8YdHmE9QpV5BaZQty+/Er5q07orPN9+fHalmjJD2bVMI5pyUvfANZd/ASfx9OW1Y0qVYMIwM1U1fsJTIqmvvPThIaHkmnBnH/qPPWHcHqblzv8BW/HaF6zSJUq16Y8PBIXnoHsHWT5o4j7xcB7Nx+iY5dXXX207hpGTp2dcXJ0Qpv7zds3XSe7Vt1/3anVINGpTA01GfOrH+IjIzmodcrcuW2oUPHqvy9/gwAixfsR/9mXGP/yhlbcW1ajqqNy6Q+u5f043+j/qTLmGba6S4F7SleuSADa0zh0e0XAPw67i/W3ZpLvXZV2LP6eFKbTHfFqxXh1D8XtL2wXj56Rd1O1SlSsUDS61QpzMuHr9j6q+Y7mffDV+z8/QAdx7TKsDrbj2rBnhWH2L38EACLR62kkltZWn7pxoqv1iSssVphXj70YeuC3e9q9GHnsv10HNdaZzlFUfB/+SbD6k4xyW7xARlx3r1j9//Yt12fLn0SXhy6dFbNzatqFv4Zwrsbm7B3TPg5PbRHn20bDPB5oSKno0KzNpE0aZ22Huf/HtQnIkLF0HHhWFqBiUkUddxesH6VPvWbhaJSQe/BsPXvctp1YqpWRe/hI15cvsL0dz3svyiZ8K7oWB1KlGRApUrktrTkaWAgf1y6xOqraTzvLlYMI7Wacfv2EhEdzR0/P/JbW9O3YkWWX9RkVGyv9n07TmrXK1UyF9dvPKNMmdwUKezI1Xe5oq+vR58+tWnYoCRmZkY8fOjLst+OcOXK4zTV175dZc5f8GLtWk0P97VrT1O2TB46tK/M9zO2AzBx0gaddWbP3smWzSMoUtiR2zefpWm/AIZGBtRsUoZpA1Zw/azmDrK//rcXV7dSNO9enVVzd3Noi+Y9snexTvN+0tPkNrq9fecO+o0NjxZSuHx+rp+4rZ0eGR6F/8uAT11eAjFR0amuQ3P+euLd+WvlDKosTmqzOyQwhJDAEO3P1VtXxtzajL0eh7XTmvSpRw4bc0bU+JroKE2boc/jjBtBIFmS3RkiW/coV6l0rz47OjoyadIk7ty5w8GDBylYsCDDhw9Pcv2oqCiio6MxMjLSmW5gBHduJH1lG+CbLw0Y1tmAH8brc/Oy7rKHd+nxt4eaDr2j+OH3SDr0iWLTH2r+3Ze2t/uep4qiZRQM3l1INNbPx+SRJ/l7wyFym/+CkX4iZ9qKgioiAox1j62EnT0VHZ058yyu8a1zydKMrVaTn04fp+FfHsw59S+jq9agXbESaaq3gpMTZ549JSIm7kLDsUcPcTTPQS4LzbecHO/e88B3DcoqFZiYGGp/TkyL+qU4f+0RL33jhuNo2aA0A7vUZNna43Qb5cHSNf/Sv3MNmtZJW+2lijhx+eZTIqPiaj9z+SEA1pYmia6jUqkwMTMk5K2mMWPRmkGs2TuWHxa7U7ZSPp1lm7atSK8hDVi58CD9OvyKx68HcR9Un4Yt0tbzunjpXFy78IjIyLh6L5y6h529BQ7OVknXa25EkH9wqvY1ZHZXzu6/yqWjCXuN3Dh9j2pNymHrpNlnmZpFcSnowIWDaRveJaM55rfH1smaCweuaqdFRkRx9ZgnJVyLZGJlmltb63aqjrGZETeTuXuica+6OBd04M9p6Xv7VrqIUVL3Ep+Vj83ujzH5B00v8LnfwtYV0Lgu9B8PD9M44tKVG1D9ve/4NSrDpcT+9Knzosr5L2HmB5k2/WcqV/hwz+CdHXpytscg/mrxBa7Oust3Ll6asVVqMufscRqs92D22eOMqVyD9kVKpulYyjs4c+b5e9n95CGOZjnIlcMSPZWKlgWLYmJgwNX7mouvKpWmR3dgcOLZndj8NrVLM7hdDRZtOcEXX69k4ebjDGpTnebV05bbZQo6c/G2bm6fvvEQe+ukezOoVJpe3UFBYdy4/hS7nDmoUq0gAFbWZtSqW4wzp+5pl2/Wohy9+9fF47cj9Om5hBW/HaFX39o0apK2u/NKlHTh6pXHOtl9/uwD7HLmwNHJMomaVZiYGxPkH5Lo/KQM+bELZ/df49Ix3ew2MNT01IsIj2tMiolRiIqMpmTVQqnax8e6ceIW5eqVwqWwpodhgTJ5KFWjaLK3L988fQe7XDZUblIOACt7S2q1q8qZ3RkztKC+gT5FKhbgwnsdMS7sv0pJ16KJ13jyNna5bKnStLy2xtrtXTm7S7dGE3NjVnstYs3jJUzfPpGC5fJlyDF8kGS3SEZGnXcbGoLndXWi65w/paZgkRi2rTdgQCcThrmb8MdSQ8LjXT/ev1OftR4GdOkdwfwVoXTtE8G6lYYc2Ze2/oC3b+pRoky09rzbSD8/40ecZuOGw9ibLcJAnchYq4oCkZEJzrsT06lUacbUqMHckydo9MdKfjpxnFHVq9OuRNoysLyT5rw+It7wUccePsTR3Fx73v2+2PPuyAjNxYnAoLgLyePHNadUyVxM/34b/fuv4OjRW/z4Q0dc0tiQXKKEMxfOP9SZdv68FyVLJn07vpmZUYK60kKtr4daX01kuO5Fk4iwSEpWyv9R2/5UzCw07Q9B/rpDipWpVYz1D39l+eXZjPy1D5Y5c2RGeTgXdmTdk8WsureAr9aMwDG/fbLLN+5VF+cCDvz53d+fpL60ZPf7mvSpz6UD13Qawl1bVuLmqTsMW9iPDS9+Y9nVuXSZ1BY9vUxoXpXszhDZukd5cuMW1q1bl7p16xIYmPQ4iebm5pQtW5ZffvkFe3t7bGxs2Lt3Lw9uqXBI4m+3lY1C75FR5C+sEBkJJw7o8eMEfSbNiaJYGU092/5S02VgNJVran7O6aTw/FE0h3fpUcst9b3KA16rsHPQbOtt+GXu+43B55UXv8925Me5gyjhuIlrz9101tG7dBUio4gppDnxO9l7ADYmJuir9Pjf2VOsvxnXm3xo5WrMOH6Uvfc1J4VPAwMpbG1L11Jl2Xwr9WNh5jQ14+l777tvaLDOvK9r1uXc86d4PdH0MO/SshImRgYcPHk7wfYAbK3MqFY+P9P+p3tbVK8O1Viw6ihHz2pqf+ETSL5ctrRuVJbdR1Nfu62VGS9e6dbuH6CpPYdZ4kNytO9eHWNjQ47su8GjB6+46/kcAwM1DZqX5YfF7owbsJLrlzS9wrr2q82yn/dy4rDmhPXl8zfkKZCT5u0qcWBH6nsSWNuZ8/L5G916/TT12tgmnAfQfmgjjE2NOLb1fIJ5SanTrjKFyuZheIMZic5fPHEtI+b35K8bc4iKjCImRuF/I1Zx48y9RJfPbDaOVgAJroC/8QnAPk/it2FltHyl8vDLyRkYGhsQ+jaMae3m8Ngz8dY7l0KO9J3VjVG1vyUmOgveQiVXtkUyPja7AcLDwwkP1+1pbRAeg5FR0l9QHz+DnQfhyN9g/+7XvE9n+PcsbNkFo9IwYoPva7B779zRzlozPb6nj67wvxXjuXvvIS7OdsyY/iVW1utQfBMf3sMn+C0Tj+7l2quXGKnVtC1Skr9adqTz9vWcfaH5uzCsgiszTh1hr9ddzT6CAjTZXaIMm+6k/iJlTlMzngbp/k189S6793fqhYGempDICAbu3YbXC80BdnerhLGRAfvPJZ7dic3v16Iq89cf5fBFTT489w2kgLMt7eqUYefJNOS2pSnPfXU/L36ByTcmf9GpGsbGBhw9dJM3b0KYNX0bX09ti6GhPvr6ak4ev8Ov8/fGHYd7TZYuPMDxY5rj8H4RQN58drRoVYH9e1I/9JW1rTkvX+i+1/6vNe+1tY053i8S9s5qP6QRxqaGHNuWiuxuW5lCZfIyvFHC7H5y15uXj33p/XVbfhmzmrCQcNp92QgbB0tsHBJvrM8o6+dsx8zSlOXX5xITHYOeWo+V36znyPqTSa5z89Qdfuz5K5PXjMDQ2AB9A31Obj/PwhErM6RGS7scqPXVCXp++798g/W77xSJ1fhD91+YvG5UXI3bzvHrsBXaZZ7cesac3gvxuvYYUwsT2g5vzvzj3zOo3Fie3fNOdLsZRrJbJCOjzrvv3tLDySXxbb98oeLWdT0MDBXGTQsnKEDFb78Y8jbQkCHjNHcdb1ptgPvACKrV0jQUOzhF8/RRJPt26FPXLfW9yt/462HvoPluHRJxiSevR/LqlRe//ujCnHkDKeiwlbve9XXW0btyBSIjiSlY8IPbH1a1KjOPHWXvvbjz7kI2tnQpXYbNN9Nw3m1mmvC8OyTk3byE5+QAHb+ogrGJISVKuHD12hMevnuWlrOTFfXrl6BT54X4+WkaZjdsPEvlygVo0qQ0y5cfS3V9NjbmvH6vc9Zr/2CsrZMe/mbwlw20dX340kPSQoPDuXnBiy7DGvH43kve+AZRp1UFipbLw/MMfH5YehrwQ1eun7jNo3g968/vu8q/m8/y8okvjnlz4v5te2bvmsTQGt8SGZFxY/e/79bZe8zutZCnd15g7WBFt6/a8r/j0+lXekyizwpxKeRI35ldGFVn6ic7f01Ldsdn42hFlablmdntfzrTHQs4UK5+KQ6uOc7k5rNwKezIsF/7odZXs3r6p7kIoCXZnSGydUO5u7s7JiaJ9/KNZZHEldRYuXPnZsOGDTRr1gxFUQgPDyd3AQU9vcQbRZ1yg1PuuF/swiWief1Kxe6/1RQrE0XgG3j9SsXyeWpW/Bx3dTwmGkzi5cGk/vr4vtRcmY/9bPdvFTcOl52Dwqzf4v7QxV7EDwjTPBwxKBROnfLi8MVztKt/BDuz9tpl9e7cQ332AlHN3cBU8/503LQOMwNDyjs6Md61Fg/fvOGfu7ewMTbBJYcFPzZwY1b9Rtpt6OvpERTvdu+9Xd1xeXfPW2yPgusD4x5u8iwokMZr4h6wqaD7C6si7li/q9OAYnZ2fPH3OvSAhjWK0eeL6kycvZU3STw4q1ndkrwNDufYubiGVysLExztLJj0pRsTBsXVrtbTIzgkrvbV89xxyGmhU8f+P+Nqf/kqUOfhoAm+CMa++Yn8DarbuBQ9BtZl6ui13Lr2hFvxbof2vPaUnA6WdOhRneuXHmFpZYq9oxWjvm3NyK/jbg1Wq/UIfhtX77INQ7B/16Ms9r3e+u9X2vk+LwIY0HFhvHqTKDexettVofv4VkzrvpAA35Q9KNPOxZpBMzvzVfufE1yRj9V6YAOKVyrAlC4L8HniR6nqRRgypxuvXwYk2gM9y0jw5iV/IpCRnt5+zqDy4zC3MqVm+2qMWzmUMXWnJGgs19PTY9JfI1g1dQPP7r7IlFo/SAJbJCM9snvWrFlMm6b7/IZvx9gwZaxtkuvcvAOKoqJpd93PZ0QEWL3b3fOX0NI9bl5UNERFQcV4QyW3bART4z3q4r1OdiiJTMtpcYwhXTTDvew7doe27S5x4MAB9EzaJlrrgwB/HsQbj/ziyxc4meWgf9lKnH3xNC676zRmVp24C+X6Kj2doVr2dewVl93v8u9G37gef8+CAnHbsDLRGjTHplln9MFdPH0bSNP8RZhbrymDTm6gSO6cDGjtypgF2/BPpNdX4ypFE8y3MjfB0daCb3q5Mdk9Xm6r9XgbL7fXf9cTJ1vd7xzHFg7Vzn/hF0inb1fF7SzBn/Kk7wqs16AEPXrXYspXG3nzJoQ8ee0YMsKN1SuPc+7sA2xtzRkwuD4jxzZl7o87sbQ0xd7BkjETWjB6XNyFDbVaj+B4PeV//2MADrENzO92/8+euAcsv3wZQD/3ZfFKTnl4121Xme7jWjKtx6KUZ7ezNYNmdOKrL+Ynmt3RUdFM772EUfPd+fv+fKKjorl01JOz+z/9My/qdnSlQdda/NBjAQ9vPqVg2Xx8Obcnfi/82f9n4g0zeYq7MPhnd/76fhPn91/FxtGK/j92Y8SifswbsDTDak34nUuV5PeGPMVzMeR/vVk9/W/O772MrZM1/Wf3YMSSAczrtxgAzzN38TxzV7vOjRO3WXxhNq2HNWVREs9YyTCS3SIZGXXenbeAgp5e4s2hMYoKlQpGTArXDnnqPiiCud8Z0W94BGGh4PtKj0VzjVgyL2696GgwjXfePbKvSdx597tp3VuYaufbOSjMXx6XY7F/jt+GHX73XxWnTj3mxMVTNK/3L9amcQ8wVN29h975C0Q3aQwfeH9sTExwtrDgh0ZuzGz43nl3vIv/e3r2THDefW1IXAY+Cwqkyaq4DEx4OqNKdDpA/XrF6dmzJhcvPaRgAQeGj1itnVe4sAN6eipW/aHbc8DAQK19uLW9vQUeK/pp56nVeqjVeuzcETeO+v4DN5gf72Lz+4W8/x0pvuHDG1GggL1OXR/jp9FrGDW7M3+dmUp0VDT3bjzjyPZLFEqmR3tWMWReT/KXys2Yht/rTD+66Yz2/x/dfMbdS16s8vyZKk3KcWJ7yi+mf6xzey5r///h9Sd4nrrDH3d/wa1nHTbN1+3cqKenYtLq4ayatjFTzl9Tk93xufWqy9s3wZzcqjtMrp6eijc+gcwfsJSYmBjuXnyArbMNX4xtJQ3l/xHZuqHcw+Pjv0DOnDmTKVOmEBoaSnBwMHZ2dnw5qgKRESn/wBUqHsOJg5pG8djPaZ+R0RR87wne8e/EGPN9FNHvzlv8/VTMHGvA94vjxmZTx/uXsbRReOOvmyiBbzQ/m+cIITTiNsYG+YCX6N29j/rQUaKaNELJHfcgwNirybf9fLEzMWVkVVf+uXsLvXdJNenQPi6/1O25Eh1vsP8+/2xGX09zjI5m5qxr34nm6/7Uzo+Kd6v2q5BgcprqXiW2NdF8GeleuiyuufLQafM6vIPf0qN6USZ96cbX8/7h/LWkxz5rXr8Ue4/dJCoqrqbYLw4/LtnHjfd63cTExC03ZuZm9PU1tee0MWfhtE70Ghev9ni3a/u9CcbWSrd2awtN7UEhureW12lUklHftmbGhA1cejfu2ftuXXtK/WZlNPW+eyjo/O+3c/ua7nhr0fHq/Xr4am29tvY5+Om3PgzusiTRev1932Jjq3t7uZWNpn7/967k1m5biZG/9GRm76WparwuXDYv1vYW/Hr4a+00tb6aUtUL06pfPdrlG06vr9syvcci7Qm2181nFCydm/ZD3bJkQ/lr7zcAWDtaaf8fwCqnJW98Mme8t6jIKJ7f13yO71x4QNFKBWk7ohn/G7RMZzmTHMYUrVyIQuXzM3RBX0Dz2dLT02NPxDomNv6ey++N4//JSWCLZKRHdk+aNInRo3UfbmXgXyHZdWIUUKsV/l6mm8egvaaMvS1s/j1u+v5jmtfsuD9/mMeLCDsbePVe73E/f7B9r5e5oQHkfRfJpYrBtVuhPHx4h4K58gLPSYlLPs9pW1hza3Zsdk88to/LL3VPOKLj/f713rUZ/XcH62hmzvrWnWm2Me7kOipe9rwKCSaniW7+2Rlr8u+arw9PgwK49uolZewdGdu1HmULOjNhyQ7OeibM7kaVi/BNL7cE8/Xe5eD3f+znulfSuT3if1vQV2ty0N7KnGUTOtJ1WtxJc1S8W8z9AkKwtYxr8ACwsUi8saJu/eKMmdCC6d9u5uKFhwB06V6dG9eesmGdZvxUrwc+hM2LYP5Cdzx+P0rMu9tU583Zya2buv9W8Wv+avw6bXbb2eVg3oIeDOwb92HSyW6/t9jY6Ga3tbXmGPzf63lXu00lRs53Z2bfpQmGT0mONrsPxj1UVK2vppSrJrtbOg/m3pXHDKk3HdMcJhgYqgnwe8v8vZO4+27IuU+l/w/dWTdnG0c2aB6U9fD6Exzy2NF5fOskG8o7T2jDjZN32DhvBwBe1x4TFhLOz0emsfLb9TrZnh4CfIOIjorW3pEWy8rekjdJjM/aZWJbbpy4zcaftmtrDA0OZ/6/01n59dpEa1QUhdvn7+FSyCnBvAwn2S2SkVHn3cNGlyMiPPHepdY2MdjYqXSeC5YrTwyKouL1KxUmZprP7KDR4RRO5rx78swwot6dd7/2VTFljAlzlsY1jOvHO++2so7B/7XueXfAu/Nwc4sQwiJvYWiQH/BFde8e6qNHiW7UECVXLj4kNru/OrCfyy+SOe/esgWDd+fdDubmrOvYkRar4zIwMv55d3AIOc10M9D23Zca3xDdPKlbtxhjxzbj4qWHFC7kyMhRf+Eb7+KrSk9FdHQMgwat1Dk3BQgN1bRT+PoG0X9A3F0xtWoVpXatosyYuV07LSTeM8Zev04k76zMEmQdwLChjajuWjhBXR/jxWM/xndeiJGJIabmRvi/CmLigh54P8mEhy6mwuCfeuDavDxj3Gbg+zz5B7m/9g7A57EvLoUcPlF1iQsLCcfr+mNcCjsmmGeSw4SilQtSqHw+hv6ieY6B9vw1fA0Tm8zg8uH0H7I1LdkdX5Pe9Tmw+hhRkbodDl6/ePPuLvq435PHnk+xdbJG30A/wfIZSrI7Q2TrhvL0YGRkhJGRkfYKeEBAADcv6dGpX9IP8nzfo3t6WNloPqCW1mBtp+DzAqo3SHodu3h/x/TUmnWTGu6lUHGFjR56REWC/rtO59cvqLC2VcjpaIiJQUGCws9qepIfPEpU4wYo+RIZP+0dlUqF4bsTUN/QEF68DSKPpRXb7txKcp1nQXFhFXti/SjgTaLLXnzxgnGuNTHQ0yPy3bK18uQlOCKCGrnz0GXzBp4GBtKycDEm13djyvxdnLroleS+y5fIRW4na/45pNvLyT8gBB+/IJwdrNh3POna449pHv3uNp9nSZxAXb/zgoFdaqKvr6dtlK9SNu+7/cV9oarbuBSjv23DrMl/c/b43US3BVCwqCOv3+3/zetgXr0MwMnFhsO7k+6x5eMd90c7tt7nTxMPc89rT+k1pAH6+mrtSXjFaoXw9QnUGXalbrsqjFrgzg/9f0t1b7HLxzwZWGOKzrQxC3rz5O4LNvyyB7VaDwNDfWLe+yMdEx2jvTiQ1Xh7+eD3wp8KDUpz/12DgL6BmjK1i7M8kYd6ZAaVSoWhYcKnvYcEhtK/tG4DYcvBjSlXrxTTv5iLt5fPpyoxaTGJn/AIkV5iszu+mJDkxwUsXhiio1X4+StUSuKxEPr6cQ3aoGnwNjLSnRZf2ZJw8jz06hg37eQ5KP+BYcL11QbktC+IEp3ynj8lbR3weXfSq83uHJZsu5t04+mzt3G3XMeehD8KfJPospdePmdc1Vq62Z07H97BQTpDsuQ0NaOQkw3jF//DiasJs7txlaJ807sxk5ftTDD/dWAIL18H4ZLTkj1nks5tb7+Euf3UJ/G6r95/zpB2NdFX6xH1btlqJfPh4/9WZ5zyeg1KMHZiC2ZM28qZ03F3pxkbG2j3od3nu8ZxFfDGP5hXPoE4OVlzaH/SJ3E+L+O917HZ/Szxk9ubN57RZ0Bdne8aFSsXwPdVkM6wK3XbVWbU/9z5YcDvqc/ufz0ZWHOqzrQxC3rx5K43G37Zo70AABDyrse/cwF7CpfLy6pZ21K1r49lZGqIEpPYd4ikf6eNTAyJjtL9d9Peyp1cd8U0ioqM4s6FB1RoVIYTW89qp1doWIaT2xN/ILuRadI1vj/ec3wFy+bD63raHpz3USS7RQZL7Lz76kV9evSPSHT5YiVjOHVMn9DQuM7az5/qoaenYJNTwcgIbOxiePlCj9oNkj53z+kQ9/fl3SlwksO9FC0Rw5oVhkRGgsG7r+FXLqixsY3BwdEAY/3ChISfRXX3AeojR4hu2AAlb94UHb9vSAgvgoLIbWnJtltJZ+Dz+OfdSvLn3ZdePGdsjffOu/Pmw/vtW51hV1oWLcqEBm5cuvyYIoUdGTV6Dd7eug2F9+69RK3Ww8ralGvXEh/+MSZG4Xm8c8w3b0IID4/SmRbfzZvPqVgxH39vivs7WbFSPm7c0O00NnxYI2rWLJJoXekhPDSC8NAIzC1MqFi7GCt++Cfd95FehsztQfVWFRnXZBYvH314iJgcNubkzGWT7heIU8vAUJ88xVy4/m/Cz3ZIYCj9y4zVmdbySzfK1SvJ9I4/Z9j5a1qyO1aZOiVwKezEnncPAY3vxslb1OtSU6dneq4izvg9f/1pG8lBsjuD/Kcbyt3d3Xny5AmHDiX8cMf6999/URSF/Pnz8/jxY2bPno1jLoVajTUfuA3L1fj7wcDxmvDds1mPnA4KLvkUoiJVnDyox7njegz7Nq43eNse0axepMbEDMpUjiEqUoXXHRXBQdC0Q+o/yK71Y9i6Ws2yn9RMnjyBG7cOcuGoD32HWFHEfghqPXP27t+C+sArRs2bi0Pu3IzZoTnJ6VGpCs9DQ7jvr2loreTsQr/ylVh1Ne4BSf87c4optesRFBHO0UcPMVSrKW3vgKWRMcsvX0h1vdvveDKiiitzGjZh0fkz5LOyZnS1GsQoCiP37uJtZARdS5Zlap16LPzjKDfuPsfGypSebatiZWnK1Pdu1WnRoDQ37jzXjmce34oNpxjZpx7BoeGcvvQQAwM1xQo4kMPcmPU7Ul/7/uOe9PnClclDmrB+xwXKFnehV/tqADjbW1A4X04qVyrKwDFNuXzOi/pNynDr3ReJRi3L8eShL4/u+2BgoKZ+s7LUaliS78au025/9bIjfDmuKSHB4Zw7cRcDQzVFijtjbmHC5r9OpbreQ3uu0q1/HcZOa8PaFf/ikseGzn1q8ddvR7XL1G1cirHT2rJk0npunX+Atb3my2l4aKT25Dg5oW/DeeSp24suLCScQP9g7fSrx2/Tb1oHIkIjePnkNWVqFKFBJ1eWfb0hsU1+EsZmRjgXirui7ZjfngJl8xL0+i2vnvix5ZfddJnYhuf3vHl27wWdJ7QlPCScQ2tPfPJa+8zowtndl3j1xA+THCbU61yDMnVL8lVTzbiyfWZ2xc7Zhtm9fkVRFB7eeKKz/hufACLDIhNMzzRyZVt8hJRkd1KCQzRjkcd6+gI874KlBeTPDS0bKUycCeOHQInC4P8GTl+CIgWgTrXU19qzA/QYDr+tgQY14OAJOHUBVv8at8zPy6Brjwmoow4RFPCCM1ds6N5nMGZm5uC/BWjB+Cq1cDAzZ8zh3QD0KV2Bp0GB3PH3xUBPTdvCJWhWsAgD98Y1YM4/f5KpNerzNjKCI4+9MFSrKZPTEQsjI5ZfTX3+bbvnyYhK1fmpXlMWXjxDfksrRlWqzjrPa+TKYYGZgSGjK9egiLUt6w9e5vr9F4ztUhc7SzOm/7Gf4NAIGlcpyrS+Tfhp3RGu33+B7bs7ssIiowgO1TSELNt+inFd6hEcFsHJa14Y6OtTIp8DFmZG/LUv9Q9i3HPmFv1buTK1TxM8dp2hoIsdfZtXZfOxq3RvXAkXO0t6Na3MoDbVWfTLfspXyEeDRiX59X/7iAiP4tSJu4we34yWrStw/uwDbGzNGTysEZ43n2nHaF3l8S9DRrgREhLO2dP3MTRUU6SoE+Y5jNm04ewHKkzo0IEb9OhVi/GTWrJm9UlcctnQtXt1/vzjuHaZeg1KMParViz5ah23LqQxu28lkt2v32qn12pVkQC/IHyeviZfCRe+nNGJU7suc/FI6sfJ/Rind16ky8Q2+Dz25dHNpxQql492I5uzd+UR7TJ9vu+MrYsNc3ov0q4zakl/WgxsxPl9V7BxsuLLue7cOnuP1y+S732XVpt+3sGEVcO4c/4+nqfu0GxAQ+zz2LFjyT5NjfGyGuD0jguMWjaQFoPctEOvfPlzLzzP3MXvXY3dv+3ArdN3eXr3BWYWprQZ3pSC5fKxYOjyDDmGZEl2i4+Q1vNu59wx1GuiaVj663cD/HxVDJ+oyYuaDaL4+y8DFs4xopN7BEEBKv5cZki9xlHEXivv2DOSFQsNMTVVKF8lmsgIuH9HTfBbaNkh9Q1WNetHsfFPAxbONmLy5PHcvH2QM0d8GTDUgrw5h6CnZ86+/ZtRH/Zn9E8/YZ87N2P/edebWq2m+Lue5WaGBtiYmFA8Z04io6O591pzLv6/06eYUrcebyMiOOrlhaFan9IODlgaG7H8YuozcPutWwyv5sqcxk1YdFZz3j24ShV+OX1au0zLokX5qXETbt54RulSufjhxx0YGurj4mJNSEgEwcHhRERE8fSpP/sPXGfihBYsWXKIu/deYmlpQvnyefF68IozSdxBnZzNm88zf343OneuyokTd6lRozAVK+TTGVplxHA3GjQowdffbCIkJEI7fnlwcHhSm02xCrWLokLF0wc+OOezo++kljx94MO+jZrsNrc0xd7ZCtt3Q6flKqB5GKX/qyD806lXe2oM/dmdeh2rMbXTfELfhmH9rq7ggBAiwiIxNjOix+S2HN96ntfeb3DIa0fvqV8Q4PeWE9tT/93vYwyY3Z3TOy7g89gXK3tLuk5uh6mFCftWadoh+szogp2LDbN7LczU89fUZnespn0a4Hn6TqL1/bN4H62HNmXw/3qzdcFuXAo70WVSW7Yu2J2hx5Ioye4M8Z9uKHd2dv7gk2eDgoKYN28e3t7eWFlZ4ebmRq0OV7W3YL15DX4+cb0+oqNg7W/6+PuCoRG45FUY830kZavEfUDrNo3B0Ah2bdRj/e9qjIwhVz6Fxm1T3ks9PlMzGP9DFKsWqLl/3Zmalf5Hy+3WxCiveRt+iRve7di+wRtVjB4OoeG4BIdi6KEJH7WNPePatye3hSVRMTE8DnjD7JP/suZ63IMj19+8RmhUJAMqVGZijdqERkZy28+XFZdTH9YAQRER9Nj2N9/VacD2Tt0JCA/T9mBf176TzrIj+9RnZJ+4B6L4vdG9DcvM1JC6VQsz3+Nwovv659A1wiIi6dqqMoO71yYsPJL7j33ZsDNttQeHRDBy+t+M6duAxdO7YGgQN8788F71AHjtG4S+vppKroUAqN1I03Xwzs1nmOcwxjanBRHhkTx68Iqvh6/m3Im4Hud7tl4kPCySDj1q0Hd4I8JDI/C658OWtalvJAcIeRvOpCGrGDqhOb/+OYCgoDA2rT7FptVxD8Bq1q4S+gb6DP2pG0N/6qadvn/NSeYOTZ/xL2f1W0bvb9sxfmk/clib4fPEjz9mbGWnx9EPr5xBilQsyE8Hv9X+POinngDsW3WUn/ouZsNP2zEyMWTogj7ksDbj1tl7TGo2k9C3YUltMsNYOVgxYdUwbJysCQ4IwevqI75qOoOLB64CYOtonWkPGU2TrPiAUZFtpCS7k3LjNriPjMvsHxdq/r9NE4VZk2DGRFiyCmYvBB9fTQN6uZJQp2raai1fCuZ+C/9bDguWQ25nmDsVypaIW8bXHzwfOFKq9Dzy5LPGpoA/0eGX0XvzBcRoGiztzcy045ECGKjVfOVaB0czc8Kiorjj70evXZs48jiuh/b6W5rsHliuMhOrvcvu176sSEMjOWiyu/uOjXxXswH/tNdk911/PxrkK0DnEqUJiojAQE8PlUpF54bl6dywvHbd0Igopq3YS7s6ZdDXVzOxewMmdo+7re6fEzeYtkIzXum2f68TFhFFzyaVGN6hFqERUdx76sva/WnM7dAIhszdxITu9Vn1TTfCwiMxNTGke+NKAIzuXFe77PDRcYPN16lXgr27rzBn1g5MTQ1p3a4SA4c05O3bMC5ffMhvS+K+d+zeeZnw8Eg6dq5G/0H1CQuLxOuBD5s3Jt8bKcmag8OZMGYNw0Y1YdGyPgS9DePvDWf5e33cuKMtWlVA30DN0DndGDonXnavPcncYSvTtN/32ThYMmD6F1jltOD1ywAOrj/Fmrk7P7xiOls4wgP3aR0ZtqAPVvaW+D33Z9dvB1j9/aa4Wp2ssc8dl4P7Vx3FNIcxrb50Y8Ds7gS/CebykRv8Pinj7go7uuEkFrbmdP+mAzZO1jy8/oTJzWfi81jT4+/9rN73xxFMchjTekgTBv7Uk+A3wVw6dJ3fJ/6lXcbcyoyRSwdi7WhFcEAI9y95MbrOFG7HeybPJyPZLT5CWs+73b64oD3v9n+twtcnbhsmJvDtj2Es/9WICYNNyGGhUL1ONJ17x/VAb9gsCiMjhW0bDPjzN0OMjSFP/hiat4t8f/cpYmYO3/wYxu8LjLh9PRdVKy2gyXZrFOU1IREXuf+yFZvX+6CKUWMfHo5LaCgGqzRDesYUKcLOf+J6Kpd2cKR18eI8DQig9grNxa8N168TFhlF/0qVmFCzFqFRUdz29cUjDY3koMnunps2Ma1+fbZ17UZAeBjLL15g+cW47wJdSpfBQK2mbBnNHefTv2uvs40fZ+9k717NXUuzZ++ie/fqDBpUHzu7HAQGhnLz5jPOnEl9IznAjZvPmP79Nvr0rk3vXrV5/tyf6dO3cetW3LBxrVtrhs6b/3M3nXV/nL2TI7dSNjxdUsxyGNN7XHPsHK0ICgjh+J6r/PHTLu3dPtUalmTMT120y0/6VXO+uHr+Xv76395Et5mRWg7QfHf6ae9knek/DVzG/tXHiYmOIV/J3DTsWhMzS1Nee7/hyjFPZvZc+MnPYe1y2fLVX8OxsLMg4FUgnmfuMrz613GZ6GSFfe6knx30qaQ2uwFMLUyp2b4qi0Ym3lby6qkfExt/z5fz3Fl25Sd8n71myy+7WP/jp70jD5DsziAqJbOeXJeFnXmUP7NLSJPO24d+eKEsxjn1D8/OdOYPkn6ie1al8vq4LxmZJSbo01/J/1hKdNouiGWm/TEb03V7TewGfHihePb4LvvwQkJ8QIx3kcwuIU0KbE3d70tWYHcubRcyMpPV3Q/3ws5q9G8+yuwS0iQmIPt9T5LsluwWmePakw+P7Z0Vtf579IcXymLy7Uh8iJuszOhBFhhSMpVifD48XEpWFBP28T34Pzkl+zUSS3ZnD9m+R/nTp09ZvHgxJ0+exNvbG5VKhYODA9WrV+fLL78kVwoerCGEECIdxcj1V5E8yW4hhMhiJLvFB0h2CyFEFiPZnSGydUP58ePHadq0Kblz59bcuuXmhqIo+Pj4sHXrVhYsWMDu3bupUaNGZpcqhBCfD7lRSSRDslsIIbIgyW6RDMluIYTIgiS7M0S2bigfNWoU/fr14+eff05y/siRIzl3Lm1jSAohhEgDefq2SIZktxBCZEGS3SIZkt1CCJEFSXZniOw3yGQ8169fZ9CgQUnOHzhwINevX/+EFQkhhEBRUvcSnxXJbiGEyIIku0UyJLuFECILkuzOENm6odzJyYmTJ08mOf/UqVM4OTl9woqEEEIoMTGpeonPi2S3EEJkPZLdIjmS3UIIkfVIdmeMbD30ytixYxk0aBAXLlygUaNGODg4oFKp8Pb2Zv/+/fz+++/Mnz8/s8sUQojPi1ytFsmQ7BZCiCxIslskQ7JbCCGyIMnuDJGtG8oHDx6Mra0tP//8M0uXLiU6OhoAtVpNxYoVWbVqFR07dszkKoUQ4jMjT98WyZDsFkKILEiyWyRDslsIIbIgye4Mka0bygE6depEp06diIyMxNfXFwA7OzsMDAwyuTIhhPhMKXJbl0ieZLcQQmQxkt3iAyS7hRAii5HszhDZvqE8loGBgYyLJoQQWYAiV7ZFCkl2CyFE1iDZLVJKslsIIbIGye6M8Z9pKBdCCJFFyJVtIYQQInuR7BZCCCGyF8nuDCEN5UIIIdKV8m7cSiGEEEJkD5LdQgghRPYi2Z1BFPHJhIWFKVOmTFHCwsIyu5QUy441K0r2rFtq/jSyY82Kkn3rFiK7y46/e9mxZkXJnnVLzZ9GdqxZUbJv3UJkd9nxdy871qwo2bNuqfnTyI41K0r2rVukH5WiKDKozScSGBiIpaUlAQEBWFhYZHY5KZIda4bsWbfU/Glkx5oh+9YtRHaXHX/3smPNkD3rlpo/jexYM2TfuoXI7rLj7152rBmyZ91S86eRHWuG7Fu3SD96mV2AEEIIIYQQQgghhBBCCJGZpKFcCCGEEEIIIYQQQgghxGdNGsqFEEIIIYQQQgghhBBCfNakofwTMjIyYsqUKRgZGWV2KSmWHWuG7Fm31PxpZMeaIfvWLUR2lx1/97JjzZA965aaP43sWDNk37qFyO6y4+9edqwZsmfdUvOnkR1rhuxbt0g/8jBPIYQQQgghhBBCCCGEEJ816VEuhBBCCCGEEEIIIYQQ4rMmDeVCCCGEEEIIIYQQQgghPmvSUC6EEEIIIYQQQgghhBDisyYN5UIIIYQQQgghhBBCCCE+a9JQLoQQQgghhBBCCCGEEOKzJg3laRQUFMTIkSPJmzcvJiYmVK9enXPnzmnnK4rC1KlTcXZ2xsTEhLp163Ljxo0PbnfTpk2UKFECIyMjSpQowZYtW9Kt5qioKL7++mvy58+PiYkJBQoU4LvvviMmJka7jEqlSvQ1Z86cJLe7cuXKRNcJCwv7JDX36tUrwb6rVav2wW1n1Hv9oZojIyOZMGECpUuXxszMDGdnZ3r27Mnz58+T3W5Gvs8pqRuy3uc6X758ib4nQ4YMAbLe5zklNWe1z7MQ/yWS3XEku1NXs2S3ZLdktxCZQ7I7jmR36mqW7JbsluwWaaKINOnYsaNSokQJ5ejRo8rdu3eVKVOmKBYWFsrTp08VRVGUH374QcmRI4eyadMm5dq1a0qnTp0UJycnJTAwMMltnjx5UlGr1crMmTMVT09PZebMmYq+vr5y+vTpdKn5+++/V2xtbZUdO3YoXl5eysaNGxVzc3Nl/vz52mVevHih81qxYoWiUqmU+/fvJ7ldDw8PxcLCIsG6n6pmd3d3pUmTJjr79vPzS3a7Gflef6jmN2/eKA0bNlTWr1+v3Lp1Szl16pRStWpVpWLFisluNyPf55TUrShZ73Pt4+Oj817s379fAZTDhw8ripL1Ps8pqTmrfZ6F+C+R7I4j2Z26miW7Jbslu4XIHJLdcSS7U1ezZLdkt2S3SAtpKE+DkJAQRa1WKzt27NCZXrZsWWXy5MlKTEyM4ujoqPzwww/aeWFhYYqlpaWyZMmSJLfbsWNHpUmTJjrTGjdurHTu3Dld6m7evLnSp08fnWnt2rVTunfvnuQ6rVu3VurXr5/sdj08PBRLS8v0KDGBlNTs7u6utG7dOlXbzcj3Oi3v89mzZxVAefToUZLLZOT7rCgfrjurfq7jGzFihFKwYEElJiYm0fmZ/XlOzPs1Z7XPsxD/FZLduiS7dUl265LsTp5ktxCfhmS3LsluXZLduiS7kyfZLVJKhl5Jg6ioKKKjozE2NtaZbmJiwvHjx/Hy8sLb2xs3NzftPCMjI+rUqcPJkyeT3O6pU6d01gFo3LhxsuukRs2aNTl48CB37twB4MqVKxw/fpxmzZoluvzLly/ZuXMnffv2/eC23759S968ecmVKxctWrTg0qVLn7TmI0eOYG9vT5EiRejfvz8+Pj7Jbjcj3+vUvs8AAQEBqFQqrKyskt12Rr3PKak7q36uY0VERLB69Wr69OmDSqVKMD8rfJ7fl1TNWenzLMR/hWR3QpLdqa85PsnujyfZLdktRHIkuxOS7E59zfFJdn88yW7J7v+8zG6pz65cXV2VOnXqKM+ePVOioqKUP//8U1GpVEqRIkWUEydOKIDy7NkznXX69++vuLm5JblNAwMD5a+//tKZ9tdffymGhobpUnNMTIwyceJERaVSKfr6+opKpVJmzpyZ5PI//vijYm1trYSGhia73VOnTil//vmncvnyZeXYsWNK+/btFRMTE+XOnTufpOZ169YpO3bsUK5du6Zs375dKVu2rFKyZEklLCwsye1m5Hud2vc5NDRUqVixotKtW7dkt5uR73NK6s6qn+tY69evV9RqdYL6YmWFz3NKas5qn2ch/ksku+NIdqe+5vgku9OHZLdktxAfItkdR7I79TXHJ9mdPiS7Jbv/66ShPI3u3bun1K5dWwEUtVqtVK5cWenWrZtSvHhx7R+258+f66zTr18/pXHjxklu08DAQFmzZo3OtNWrVytGRkbpUvPatWuVXLlyKWvXrlWuXr2qrFq1SrGxsVFWrlyZ6PJFixZVhg4dmur9REdHK2XLllWGDRv2sSWnumZFUZTnz58rBgYGyqZNm5JcJiPf69TUHBERobRu3VopX768EhAQkKr9pOf7nJK6s+rnOpabm5vSokWLJOdnhc/z+z5Us6Jk/udZiP8Sye6kSXZLdscn2Z00yW4hPi3J7qRJdkt2xyfZnTTJbpEa+pnQif0/oWDBghw9epTg4GACAwNxcnKiU6dO5M+fH0dHRwC8vb1xcnLSruPj44ODg0OS23R0dMTb21tn2ofWSY1x48YxceJEOnfuDEDp0qV59OgRs2bNwt3dXWfZf//9l9u3b7N+/fpU70dPT4/KlStz9+7dT1pzLCcnJ/LmzZvs/jPyvU5pzZGRkXTs2BEvLy8OHTqEhYVFqvaTnu9zSurOqp9rgEePHnHgwAE2b96c6Pys8nmO70M1x8rsz7MQ/yWS3UmT7Jbsjk+yO3GS3UJ8epLdSZPsluyOT7I7cZLdIrVkjPKPZGZmhpOTE/7+/uzdu5fWrVtrQ3v//v3a5SIiIjh69CjVq1dPcluurq466wDs27cv2XVSIyQkBD093X9ytVpNTExMgmWXL19OxYoVKVu2bKr3oygKly9f1vmjnlapqTmWn58fT548SXb/Gflep6Tm2LC+e/cuBw4cwNbWNtX7Sc/3GT5cd1b9XAN4eHhgb29P8+bNE52fVT7P8X2o5liZ/XkW4r9IsjshyW7J7vgkuxMn2S1E5pHsTkiyW7I7PsnuxEl2i1TLtL7s2dyePXuU3bt3Kw8ePFD27dunlC1bVqlSpYoSERGhKIqi/PDDD4qlpaWyefNm5dq1a0qXLl0UJycnJTAwULuNHj16KBMnTtT+fOLECUWtVis//PCD4unpqfzwww+Kvr6+cvr06XSp2d3dXXFxcVF27NiheHl5KZs3b1bs7OyU8ePH6ywXEBCgmJqaKosXL050O+/XPXXqVGXPnj3K/fv3lUuXLim9e/dW9PX1lTNnzmR4zUFBQcqYMWOUkydPKl5eXsrhw4cVV1dXxcXFJdPe6w/VHBkZqbRq1UrJlSuXcvnyZeXFixfaV3h4eJI1Z+T7nJK6FSVrfq6jo6OVPHnyKBMmTEh0flb6PH+o5qz4eRbiv0SyW7I7rTVLdkt2S3YLkTkkuyW701qzZLdkt2S3SAtpKE+j9evXKwUKFFAMDQ0VR0dHZciQIcqbN2+082NiYpQpU6Yojo6OipGRkVK7dm3l2rVrOtuoU6eO4u7urjNt48aNStGiRRUDAwOlWLFiyY6PlFqBgYHKiBEjlDx58ijGxsZKgQIFlMmTJ+uEhKIoytKlSxUTExOd40mu7pEjRyp58uRRDA0NlZw5cypubm7KyZMnP0nNISEhipubm5IzZ07FwMBAyZMnj+Lu7q48fvw42ZoVJePe6w/V7OXlpQCJvg4fPpxkzRn5PqekbkXJmp/rvXv3KoBy+/btROdnpc/zh2rOip9nIf5LJLvj6pbsTl3Nkt2S3ZLdQmQOye64uiW7U1ezZLdkt2S3SAuVoijKp+u/LoQQQgghhBBCCCGEEEJkLTJGuRBCCCGEEEIIIYQQQojPmjSUCyGEEEIIIYQQQgghhPisSUO5EEIIIYQQQgghhBBCiM+aNJQLIYQQQgghhBBCCCGE+KxJQ7kQQgghhBBCCCGEEEKIz5o0lAshhBBCCCGEEEIIIYT4rElDuRBCCCGEEEIIIYQQQojPmjSUCyGEEEIIIYQQQgghhPisSUO5+E9SqVRs3bo1xcv36tWLNm3afNQ+Hz58iEql4vLlyx+1nbQ6cuQIKpWKN2/eZMr+hRBCiI8h2S2EEEJkL5LdQoj/GmkoF9mKt7c3I0aMoFChQhgbG+Pg4EDNmjVZsmQJISEhmV3eB9WtW5eRI0cmmL5y5UqsrKw+eT1CCCFERpPsFkIIIbIXyW4hxOdKP7MLECKlHjx4QI0aNbCysmLmzJmULl2aqKgo7ty5w4oVK3B2dqZVq1aZXWaWFR0djUqlQk9Pro8JIYT4NCS7P45ktxBCiE9NsvvjSHYLkb3Jb67INgYPHoy+vj7nz5+nY8eOFC9enNKlS9O+fXt27txJy5Ytk1z32rVr1K9fHxMTE2xtbRkwYABv375NsNy0adOwt7fHwsKCgQMHEhERoZ23Z88eatasiZWVFba2trRo0YL79++n+3E+fPgQPT09zp8/rzN9wYIF5M2bF0VRANi1axdFihTBxMSEevXq8fDhQ53lY6+W79ixgxIlSmBkZMSjR4/w9/enZ8+eWFtbY2pqStOmTbl7967Our/99hu5c+fG1NSUtm3bMm/evARX3v/55x8qVqyIsbExBQoUYNq0aURFRWnnq1Qqfv/9d9q2bYupqSmFCxdm+/bt6fdGCSGEyPIkuyW7hRBCZC+S3ZLdQnzOpKFcZAt+fn7s27ePIUOGYGZmlugyKpUq0ekhISE0adIEa2trzp07x8aNGzlw4ABDhw7VWe7gwYN4enpy+PBh1q5dy5YtW5g2bZp2fnBwMKNHj+bcuXMcPHgQPT092rZtS0xMTPodKJAvXz4aNmyIh4eHznQPDw969eqFSqXiyZMntGvXjmbNmnH58mX69evHxIkTEz32WbNm8fvvv3Pjxg3s7e3p1asX58+fZ/v27Zw6dQpFUWjWrBmRkZEAnDhxgkGDBjFixAguX75Mo0aNmDFjhs529+7dS/fu3Rk+fDg3b95k6dKlrFy5MsFy06ZNo2PHjly9epVmzZrRrVs3Xr9+na7vlxBCiKxJsluyWwghRPYi2S3ZLcRnTxEiGzh9+rQCKJs3b9aZbmtrq5iZmSlmZmbK+PHjtdMBZcuWLYqiKMqyZcsUa2tr5e3bt9r5O3fuVPT09BRvb29FURTF3d1dsbGxUYKDg7XLLF68WDE3N1eio6MTrcnHx0cBlGvXrimKoiheXl4KoFy6dCnJ46hTp45iYGCgrTn2ZWRkpFhaWmqXW79+vWJtba2EhYUpiqIoly9fVlQqleLl5aUoiqJMmjRJKV68uBITE6NdZ8KECQqg+Pv7K4qiKB4eHgqgXL58WbvMnTt3FEA5ceKEdpqvr69iYmKibNiwQVEURenUqZPSvHlznbq7deumU1+tWrWUmTNn6izz559/Kk5OTtqfAeXrr7/W/vz27VtFpVIpu3fvTvL9EUII8d8h2S3ZLYQQInuR7JbsFuJzJz3KRbby/tXrs2fPcvnyZUqWLEl4eHii63h6elK2bFmdK+I1atQgJiaG27dva6eVLVsWU1NT7c+urq68ffuWJ0+eAHD//n26du1KgQIFsLCwIH/+/AA8fvw4VcfQrVs3Ll++rPP67rvvdJZp06YN+vr6bNmyBYAVK1ZQr1498uXLpz2matWq6bwfrq6uCfZlaGhImTJldN4LfX19qlatqp1ma2tL0aJF8fT0BOD27dtUqVJFZzvv/3zhwgW+++47zM3Nta/+/fvz4sULnYe7xN+3mZkZOXLkwMfHJ0XvkxBCiP8Gye582mOS7BZCCJEdSHbn0x6TZLcQnxd5mKfIFgoVKoRKpeLWrVs60wsUKACAiYlJkusqipLk7WFJTU9smZYtW5I7d25+++03nJ2diYmJoVSpUjrjqaWEpaUlhQoV0plmb2+v87OhoSE9evTAw8ODdu3asWbNGubPn69zTClhYmKic4xJrRf/PUrs/Xp/vZiYGKZNm0a7du0SbMvY2Fj7/wYGBjrzVCpVut8yJ4QQImuS7JbsFkIIkb1Idkt2C/G5kx7lIluwtbWlUaNG/PrrrwQHB6dq3RIlSnD58mWd9U6cOIGenh5FihTRTrty5QqhoaHan0+fPo25uTm5cuXCz88PT09Pvv76axo0aEDx4sXx9/f/+ANLRr9+/Thw4ACLFi0iMjJSJxxLlCjB6dOndZZ//+fElChRgqioKM6cOaOd5ufnx507dyhevDgAxYoV4+zZszrrvf+AkwoVKnD79m0KFSqU4CVP9xZCCAGS3ZLdQgghshvJbsluIT538pslso1FixYRFRVFpUqVWL9+PZ6enty+fZvVq1dz69Yt1Gp1out169YNY2Nj3N3duX79OocPH2bYsGH06NEDBwcH7XIRERH07duXmzdvsnv3bqZMmcLQoUPR09PD2toaW1tbli1bxr179zh06BCjR4/O0OMtXrw41apVY8KECXTp0kXn6v2gQYO4f/8+o0eP5vbt26xZs4aVK1d+cJuFCxemdevW9O/fn+PHj3PlyhW6d++Oi4sLrVu3BmDYsGHs2rWLefPmcffuXZYuXcru3bt1rnZ/++23rFq1iqlTp3Ljxg08PT1Zv349X3/9dbq/D0IIIbIvyW7JbiGEENmLZLdktxCfM2koF9lGwYIFuXTpEg0bNmTSpEmULVuWSpUqsWDBAsaOHcv06dMTXc/U1JS9e/fy+vVrKleuTIcOHWjQoAG//vqrznINGjSgcOHC1K5dm44dO9KyZUumTp0KgJ6eHuvWrePChQuUKlWKUaNGMWfOnIw+ZPr27UtERAR9+vTRmZ4nTx42bdrEP//8Q9myZVmyZAkzZ85M0TY9PDyoWLEiLVq0wNXVFUVR2LVrl/Z2rRo1arBkyRLmzZtH2bJl2bNnD6NGjdK5tatx48bs2LGD/fv3U7lyZapVq8a8efPImzdv+h28EEKIbE+yO45ktxBCiOxAsjuOZLcQnx+VktJBl4QQn9yMGTNYt24d165dy9Q6+vfvz61bt/j3338ztQ4hhBAiq5PsFkIIIbIXyW4hRCx5mKcQWdDbt2/x9PRkwYIFSV6xz0g//fQTjRo1wszMjN27d/PHH3+waNGiT16HEEIIkV1IdgshhBDZi2S3EOJ90qNciCyoV69erF27ljZt2rBmzZokx4HLKB07duTIkSMEBQVRoEABhg0bxqBBgz5pDUIIIUR2ItkthBBCZC+S3UKI90lDuRBCCCGEEEIIIYQQQojPmjzMUwghhBBCCCGEEEIIIcRnTRrKxX/KypUrsbKyyuwykvSp6jt06BDFihUjJiYmw/f1sVLynowdO5bhw4d/moKEEEJ8UpLdGpLdQgghsgvJbg3JbiH+e6ShXHwSvXr1QqVSJTre1uDBg1GpVPTq1evTF/aeI0eOoFKpePPmTYqWi33lzJmTpk2bcuXKlWTX69SpE3fu3EnHihM3fvx4Jk+ejJ5e3K94eHg4s2bNonjx4piZmVG6dGl+++23BKHeq1cvJk6cCKA9vtOnT+ssEx4ejq2tLSqViiNHjgBQrVo1vvzyS53lFi9ejEqlYvny5TrT+/btS/Xq1VN1PB4eHnh5eaV4HSGEEB9HsltDsltDslsIIbI+yW4NyW4NyW4hUk8aysUnkzt3btatW0doaKh2WlhYGGvXriVPnjwfvf3IyMiP3kZq3b59mxcvXrBz5078/f1p0qQJAQEBiS4bGRmJiYkJ9vb2GVrTyZMnuXv3Ll988YXO9J49e7J8+XJmzZrF9evXWbBgAYcPH+bJkyfaZWJiYti5cyetW7fWTsudOzceHh4629qyZQvm5uY60+rVq8fhw4d1ph05coTcuXMnOr1evXopPiZ7e3vc3NxYsmRJitcRQgjx8SS7JbvjT5fsFkKIrE+yW7I7/nTJbiFSRxrKxSdToUIF8uTJw+bNm7XTNm/eTO7cuSlfvrzOsnv27KFmzZpYWVlha2tLixYtuH//vnb+w4cPUalUbNiwgbp162JsbMzq1asT7NPPz48qVarQqlUrwsLCUBSF2bNnU6BAAUxMTChbtix///23dpuxIWJtbZ2iq+329vY4OjpSpUoV5s6di7e3N6dPn06yvsRud9q+fTuVKlXC2NgYOzs72rVrp50XERHB+PHjcXFxwczMjKpVq2qvJCdl3bp1uLm5YWxsrJ127do1NmzYwKZNm2jTpg358+enbt26rFmzRufL0okTJ9DT06Nq1araae7u7gm+aK1YsQJ3d3ed/darV0/7BSbW0aNHmTRpkk7NT5484cGDBwkCe+/evRQvXhxzc3OaNGmisx2AVq1asXbt2mSPXQghRPqS7JbsBsluIYTITiS7JbtBsluItJKGcvFJ9e7dW+cq6YoVK+jTp0+C5YKDgxk9ejTnzp3j4MGD6Onp0bZt2wS3K02YMIHhw4fj6elJ48aNdeY9ffqUWrVqUaxYMTZv3oyxsTFff/01Hh4eLF68mBs3bjBq1Ci6d+/O0aNHyZ07N5s2bQLirlj/73//S/GxmZiYALpX2JOrD2Dnzp20a9eO5s2bc+nSJQ4ePEilSpV03q8TJ06wbt06rl69yhdffEGTJk24e/duknUcO3ZMZxvDhw+ncuXKANSoUQNzc3PMzc1p2rQpoLnNK9b27dtp2bKlzq1jFStWJH/+/Nr35smTJxw7dowePXro7LdGjRoYGBhow/nmzZuEhobSp08fAgMDtTUfPnwYQ0NDnVvAQkJC+Omnn/jzzz85duwYjx8/ZuzYsTrbr1KlCk+ePOHRo0dJHrsQQoj0J9mtS7JbQ7JbCCGyLsluXZLdGpLdQqSAIsQn4O7urrRu3Vp59eqVYmRkpHh5eSkPHz5UjI2NlVevXimtW7dW3N3dk1zfx8dHAZRr164piqIoXl5eCqDMnz9fZzkPDw/F0tJSuX37tpInTx5l2LBhSkxMjKIoivL27VvF2NhYOXnypM46ffv2Vbp06aIoiqIcPnxYARR/f/9kj+f95Xx9fZVWrVopOXLkUF6+fPnB+mK5uroq3bp1S3Qf9+7dU1QqlfLs2TOd6Q0aNFAmTZqUZG2WlpbKqlWrtD8/efJEGTZsmFK0aFHl7t272pevr2+CdYsUKaJs375d+zOgbNmyRZk/f75Sr149RVEUZdq0aUrbtm0Vf39/BVAOHz6sXb569erKgAEDFEVRlIULFyrNmjVTFEVRmjRpoixbtkxRFEXp3bu3UqtWLZ33BFDu3bunnbZw4ULFwcFBp7aAgAAFUI4cOZLksQshhEg/kt269cWS7JbsFkKIrEqyW7e+WJLdkt1CpJT+J2qPFwIAOzs7mjdvzh9//IGiKDRv3hw7O7sEy92/f59vvvmG06dP4+vrq72i/fjxY0qVKqVdLv4V3FihoaHUrFmTLl266FyZvnnzJmFhYTRq1Ehn+YiIiAS3oKVUrly5AM2V+MKFC7Nx40bs7e15+PBhkvXFd/nyZfr375/ovIsXL6IoCkWKFNGZHvtAj6SEhobq3P41e/ZslixZQlRUFOXKlQM0t2v9888/Out5enry9OlTGjZsmGCb3bt3Z+LEiTx48ICVK1fyyy+/JLrvevXqsXHjRkAzHlrdunUBqFOnDkeOHKF///4cOXKEnj176qxnampKwYIFtT87OTnh4+Ojs0xsz4GQkJAkj10IIUT6k+zWJdmtIdkthBBZl2S3LsluDcluIT5MGsrFJ9enTx+GDh0KwMKFCxNdpmXLluTOnZvffvsNZ2dnYmJiKFWqFBERETrLmZmZJVjXyMiIhg0bsnPnTsaNG6cN1djQ37lzJy4uLgnWSYt///0XCwsLcubMiYWFRYL5idUXX2wIJSYmJga1Ws2FCxdQq9U6895/oEd8dnZ2+Pv7a38eP348VatWpXv37hw+fBhra2usra0TrLd9+3YaNWqUaE2x49X17duXsLAwmjZtSlBQUILl6tWrx4wZM3j27BlHjx7V3sZVp04dFixYwOPHj/Hy8kowTpqBgYHOzyqVCkVRdKa9fv0agJw5cyZ57EIIITKGZHccyW4NyW4hhMjaJLvjSHZrSHYL8WEyRrn45Jo0aUJERAQRERGJjh/m5+eHp6cnX3/9NQ0aNKB48eI6AfQhenp6/Pnnn1SsWJH69evz/PlzAEqUKIGRkRGPHz+mUKFCOq/cuXMDYGhoCEB0dHSK9pU/f34KFiyYaFinRJkyZTh48GCi88qXL090dDQ+Pj4J6nV0dExym+XLl+fmzZvan3PlykWHDh3IkSMHp0+fplChQtor4wEBAdrg3bZtG61atUpyu3369NFelX7/C0Ss6tWrY2RkxKJFiwgNDaVixYqA5gp/QEAAS5cuxdjYmGrVqiX/xiTi+vXrGBgYULJkyVSvK4QQ4uNIdseR7E45yW4hhMg8kt1xJLtTTrJbfO6kR7n45NRqNZ6entr/f5+1tTW2trYsW7YMJycnHj9+zMSJE1O9j7/++osuXbpQv359jhw5gqOjI2PHjmXUqFHExMRQs2ZNAgMDOXnyJObm5ri7u5M3b15UKhU7duygWbNmmJiYJHsV+WNNmTKFBg0aULBgQTp37kxUVBS7d+9m/PjxFClShG7dutGzZ0/mzp1L+fLl8fX15dChQ5QuXZpmzZolus3GjRvzxx9/6EwzMjJizpw5jBkzBgMDAxo1aoSXlxdjxoxh27ZthIaGcu7cObZu3ZpkrU2aNOHVq1fJfjkxMTGhatWqLFiwgBo1amj/fQ0MDHB1dWXBggXaUE+tf//9l1q1aiXbG0AIIUTGkOyOI9mdcpLdQgiReSS740h2p5xkt/jcSY9ykSksLCyS/MOvp6fHunXruHDhAqVKlWLUqFHMmTMn1fvQ19dn7dq1lCxZkvr16+Pj48P06dP59ttvmTVrFsWLF6dx48b8888/5M+fHwAXFxemTZvGxIkTcXBw0N6qllHq1q3Lxo0b2b59O+XKlaN+/fqcOXNGO9/Dw4OePXsyZswYihYtSqtWrThz5oz2Snxiunfvzs2bN7l9+7bO9IEDBzJ//nz+97//UbJkSUaNGsWwYcPImzcv//zzD1WrVsXe3j7J7apUKuzs7LRX/5NSr149goKCtOOkxapTpw5BQUEJbv9KqbVr1yY5rpwQQoiMJ9mtIdmdcpLdQgiRuSS7NSS7U06yW3zuVMr7AxIJIbK98ePHa2+5SolWrVpRs2ZNxo8fn8GVpU3suHdXr15FX19uhBFCCPHfI9kthBBCZC+S3UL890iPciH+gyZPnkzevHlTPOZb7NPKs6rg4GA8PDwkrIUQQvxnSXYLIYQQ2YtktxD/PdKjXAghhBBCCCGEEEIIIcRnTXqUCyGEEEIIIYQQQgghhPisSUO5EEIIIYQQQgghhBBCiM+aNJQLIYQQQgghhBBCCCGE+KxJQ7kQQgghhBBCCCGEEEKIz5o0lAshhBBCCCGEEEIIIYT4rElDuRBCCCGEEEIIIYQQQojPmjSUCyGEEEIIIYQQQgghhPisSUO5EEIIIYQQQgghhBBCiM+aNJQLIYQQQgghhBBCCCGE+KxJQ7kQQgghhBBCCCGEEEKIz5o0lAshhBBCCCGEEEIIIYT4rElDuRBCCCGEEEIIIYQQQojPmjSUCyGEEEIIIYQQQgghhPisSUO5EEIIIYQQQgghhBBCiM+aNJQLIYQQQgghhBBCCCGE+KxJQ7lIlZUrV6JSqXReOXPmpG7duuzYsSPB8iqViqFDh6ZrDbt27WLq1KkftY1FixaxcuXKj9pGvnz56NWr10dtI6N9zHHmy5ePFi1apGs9vXr1SvD5if+KdeTIEVQqFX///Xei2xk6dKjO8rH1xt+WmZkZFSpU4Ndff0VRlHQ9DiGEyMrez2pjY2McHR2pV68es2bNwsfHJ8E6U6dOTfbv88OHD9OtvpMnTzJ16lTevHmT5m2sWbOG+fPnf1QddevWpW7duh+1jYz2McdZt25dSpUqla71pPRz8vDhQ1QqFT/99FOi2/npp58SfK7q1q2b4HNbokQJvv/+eyIiItL1OIQQIiu6evUqffv2pWDBgpiYmGBiYkLhwoUZOHAg58+f11k29u+xr69votsqVapUumec5HfKSX5LfovsSz+zCxDZk4eHB8WKFUNRFLy9vfn1119p2bIl27dvp2XLlhm67127drFw4cKPaixftGgRdnZ2Wb6h+2NlxeM0MTHh0KFDGbLtGjVqaEP9+fPnzJs3j2HDhhEYGMhXX32VIfsUQoisKjarIyMj8fHx4fjx4/z444/89NNPrF+/noYNGyZYZ8+ePVhaWiaY7uTklG51nTx5kmnTptGrVy+srKzStI01a9Zw/fp1Ro4cmW51ZUVZ9Tgz6nNSoEAB/vrrLwBevXrF77//zjfffMPjx49ZtmzZR21bCCGysqVLlzJ06FCKFi3KiBEjKFmyJCqVCk9PT9auXUvlypW5d+8eBQsWzLQaJb9TLqsep+S3EB8mDeUiTUqVKkWlSpW0Pzdp0gRra2vWrl2b4Q3lInvT09OjWrVqGbJtKysrnW03bNiQPHnysHTpUmkoF0J8dt7P6vbt2zNq1Chq1qxJu3btuHv3Lg4ODjrrVKxYETs7u09dqshmMupzYmJiopPjTZs2pUSJEvzxxx/88ssvGBsbp/s+hRAis504cYLBgwfTvHlz/v77bwwNDbXz6tevz5AhQ9i4cSMmJiaZWKX4L5D8FuLDZOgVkS6MjY0xNDTEwMAgQ/fTq1cvFi5cCJDorUJhYWFMmjSJ/PnzY2hoiIuLC0OGDNG5PSxfvnzcuHGDo0ePatfPly+fdv0xY8ZQrlw5LC0tsbGxwdXVlW3btqXbMaxZswZXV1fMzc0xNzenXLlyLF++XGeZFStWULZsWYyNjbGxsaFt27Z4enrqLPPgwQM6d+6Ms7MzRkZGODg40KBBAy5fvvzB40yNLVu2UKZMGYyNjSlQoAC//PKLzvzYYVLWrl3L5MmTcXZ2xsLCgoYNG3L79u1U7y89WVhYUKRIEV6+fJmpdQghRFaRJ08e5s6dS1BQEEuXLv3k+586dSrjxo0DIH/+/Np8OnLkCAAxMTHMnj2bYsWKYWRkhL29PT179uTp06fabdStW5edO3fy6NGjRIfvmjZtGlWrVsXGxgYLCwsqVKjA8uXL020Yrj179tCgQQMsLS0xNTWlePHizJo1S2eZ7du34+rqiqmpKTly5KBRo0acOnVKZ5lXr14xYMAAcufOjZGRETlz5qRGjRocOHAgRceZUv/++y/VqlXDxMQEFxcXvvnmG6Kjo7Xz499mPW/ePPLnz4+5uTmurq6cPn06De9Q+tHX16dcuXJERER81K3+QgiRlc2cORO1Ws3SpUt1Gsnj++KLL3B2dv7ElcWR/I4j+f1hkt8iO5Me5SJNoqOjiYqKQlEUXr58yZw5cwgODqZr164Zut9vvvmG4OBg/v77b53AcnJyQlEU2rRpw8GDB5k0aRK1atXi6tWrTJkyhVOnTnHq1CmMjIzYsmULHTp0wNLSkkWLFgFgZGQEQHh4OK9fv2bs2LG4uLgQERHBgQMHaNeuHR4eHvTs2fOj6v/222+ZPn067dq1Y8yYMVhaWnL9+nUePXqkXWbWrFl89dVXdOnShVmzZuHn58fUqVNxdXXl3LlzFC5cGIBmzZoRHR3N7NmzyZMnD76+vpw8eVIbRMkdZ0pdvnyZkSNHMnXqVBwdHfnrr78YMWIEERERjB07VmfZr776iho1avD7778TGBjIhAkTaNmyJZ6enqjVap1lo6KiEuxLT08PPb30vXYXFRXFkydPKFKkSLpuVwghsrNmzZqhVqs5duxYgnmx+R6fSqVK8Hc8rfr168fr169ZsGABmzdv1t7qW6JECQC+/PJLli1bxtChQ2nRogUPHz7km2++4ciRI1y8eBE7OzsWLVrEgAEDuH//Plu2bEmwj4cPHzJw4EDy5MkDwOnTpxk2bBjPnj3j22+//aj6ly9fTv/+/alTpw5LlizB3t6eO3fucP36de0ya9asoVu3bri5ubF27VrCw8OZPXs2devW5eDBg9SsWROAHj16cPHiRWbMmEGRIkV48+YNFy9exM/PD+CDx5kS3t7edO7cmYkTJ/Ldd9+xc+dOvv/+e/z9/fn11191ll24cCHFihXTjqn6zTff0KxZM7y8vBLcpp3Rn5P4vLy8sLKyImfOnOm+bSGEyGzR0dEcPnyYSpUqpWn4i8T+HmcEyW/J79SS/BbZliJEKnh4eChAgpeRkZGyaNGiBMsDypAhQ9K1hiFDhiiJfXT37NmjAMrs2bN1pq9fv14BlGXLlmmnlSxZUqlTp84H9xUVFaVERkYqffv2VcqXL68zL2/evIq7u3uK637w4IGiVquVbt26JbmMv7+/YmJiojRr1kxn+uPHjxUjIyOla9euiqIoiq+vrwIo8+fPT3afKT3OxOTNm1dRqVTK5cuXdaY3atRIsbCwUIKDgxVFUZTDhw8rQIKaN2zYoADKqVOntNPc3d0T/fwASoMGDbTLxW5z48aNidaW2Gcgb968SrNmzZTIyEglMjJSefTokdK/f3/FwMBA2bFjR5reAyGEyI5is/rcuXNJLuPg4KAUL15c+/OUKVOS/PtcsGDBdK1vzpw5CqB4eXnpTPf09FQAZfDgwTrTz5w5owDKV199pZ3WvHlzJW/evB/cV3R0tBIZGal89913iq2trRITE6OdV6dOnVRlZFBQkGJhYaHUrFlTZzvv78/Z2VkpXbq0Eh0drbOuvb29Ur16de00c3NzZeTIkcnuM6XHmZg6deoogLJt2zad6f3791f09PSUR48eKYqiKF5eXgqglC5dWomKitIud/bsWQVQ1q5dq52W0s9J7DbnzJmTaG2JfQbq1KmjlCxZUpvjL168UL799lsFUJYsWZKm90AIIbI6b29vBVA6d+6cYF7suWjsK372JPf3OPaV1vPApEh+a0h+S36L/zbpUS7SZNWqVRQvXhwAX19ftmzZwpAhQ4iOjmbo0KGp2lZMTAwxMTHan9N6RTP2AZHvP7jyiy++oE+fPhw8eJD+/ft/cDsbN25k/vz5XLlyheDgYO30jx1Xa//+/URHRzNkyJAklzl16hShoaEJjiF37tzUr1+fgwcPAmBjY0PBggWZM2cO0dHR1KtXj7Jly6Z7j+ySJUtStmxZnWldu3Zl//79XLx4UXtVHaBVq1Y6y5UpUwaAR48e6YxXZmJikmgvRgsLi4+ud9euXQmG/1myZAnNmzf/6G0LIcR/iZLEbcwHDhxI0PvoQ/mXXjl++PBhIGGOV6lSheLFi3Pw4EFmzJjxwe0cOnSImTNncu7cOQIDA3Xm+fj4JBiXPaVOnjxJYGAggwcPTvIW6tu3b/P8+XNGjhypk8nm5ua0b9+epUuXEhISgqmpKVWqVGHlypXY2trSsGFDKlasmO5D2OXIkSNBPnft2pXffvuNY8eO0b17d+305s2b6/y7xc/x96Xlc5ISN27cSPAeTJo0iYEDB370toUQIrupWLEiV65c0f48Z86cBHf1Jvb3GKBz584f3L7kdxzJ748j+S3+S2SMcpEmxYsXp1KlSlSqVIkmTZqwdOlS3NzcGD9+fKrHoOrTpw8GBgbaV4MGDdJUk5+fH/r6+glu7VGpVDg6OmpvhUrO5s2b6dixIy4uLqxevZpTp05x7tw5+vTpQ1hYWJrqivXq1SsAcuXKlewxQOJPnXZ2dtbOV6lUHDx4kMaNGzN79mwqVKhAzpw5GT58OEFBQR9VZ3yOjo5JTnv//bS1tdX5OXaYl9DQUJ3penp62s9O/Ff84VH09TXX8OKPwRZfVFSUdpn4atasyblz5zh9+jR//vkn+fLlY+jQoRw/fvxDhyqEEJ+N4OBg/Pz8Eh3rtGzZsgn+PpcqVSrZ7X333Xc6OV6wYME01ZXSDEzO2bNncXNzA+C3337jxIkTnDt3jsmTJwMJMyk10iPHY2Ji8Pf3B2D9+vW4u7vz+++/4+rqio2NDT179sTb2zvNNb4vsUaFj81x+PDnJCU5DiQ4qS5YsCDnzp3j7NmzbNy4kbJlyzJr1izWrVuX7HEKIUR2ZWdnh4mJSaKNmmvWrOHcuXNs3749yfUT+3tcqVKlFDV+Sn7HkfzWkPwWQsYoF+moTJky7N27lzt37lClSpUUrzd16lSdXug5cuRI0/5tbW2Jiori1atXOo3liqLg7e1N5cqVP7iN1atXkz9/ftavX69ztTk8PDxNNcUXW9PTp0/JnTt3osvEhtyLFy8SzHv+/LnOE6rz5s2rfQjonTt32LBhA1OnTiUiIoIlS5Z8dL1AomEfO+39QE5PsV8Mnj17luj8Z8+eJfrlwdLSkkqVKgFQtWpVqlatStmyZRk8eDCXL19O9x73QgiRHe3cuZPo6Gjq1q2bLtsbMGAALVq00P6c2udhxIqfge+fzL6fgUlZt24dBgYG7NixQ6eRYOvWrWmqKb74OZ6UD+W4np4e1tbWgKZxZP78+cyfP5/Hjx+zfft2Jk6ciI+PD3v27PnoeoFEH2b9KXLczs4OtVqdbI6r1eoENRgbG2tzvHLlytSrV4+SJUsycuRIWrRogbm5eYbVLIQQmUGtVlO/fn327dvHixcvdBpqY8f/fvjwYYbsW/I7juS3huS3ENKjXKSjy5cvA6T6YQ358uXTuaJZtGjRZJdP6gppbE/01atX60zftGkTwcHBOj3VjYyMEr3CqlKpMDQ01Gkk9/b2Ztu2bak6psS4ubmhVqtZvHhxksu4urpiYmKS4BiePn3KoUOHkuxtX6RIEb7++mtKly7NxYsXtdOTOs6UunHjhs7tfqDp2ZAjRw4qVKiQ5u1+SOHChcmbNy8bN25MMDzAq1evOHz4MA0bNkzRdsaPH8+1a9dYv359RpUrhBDZxuPHjxk7diyWlpbpdjuss7OzTo6XLl062eWTyvH69esDCXP83LlzeHp6pjjH9fX1dW5BDg0N5c8//0zdQSWievXqWFpasmTJkiSHrilatCguLi6sWbNGZ5ng4GA2bdqEq6srpqamCdbLkycPQ4cOpVGjRuma40FBQQl6Iq5ZswY9PT1q166d5u1+iLGxMTVq1GD79u0J7sgLCwtj+/bt1KxZ84M9Hm1tbfnhhx94+fIlCxYsyLB6hRAiM02aNIno6GgGDRpEZGTkJ9uv5HccyW8NyW8hpEe5SKPr169rb7vx8/Nj8+bN7N+/n7Zt25I/f/4M3XdsgP/44480bdoUtVpNmTJlaNSoEY0bN2bChAkEBgZSo0YNrl69ypQpUyhfvjw9evTQ2ca6detYv349BQoUwNjYmNKlS9OiRQs2b97M4MGD6dChA0+ePGH69Ok4OTlx9+7dj6o7X758fPXVV0yfPp3Q0FC6dOmCpaUlN2/exNfXl2nTpmFlZcU333zDV199Rc+ePenSpQt+fn5MmzYNY2NjpkyZAsDVq1cZOnQoX3zxBYULF8bQ0JBDhw5x9epVJk6c+MHjTClnZ2datWrF1KlTcXJyYvXq1ezfv58ff/wx0S8KKRETE8Pp06cTnVe+fHntF7CffvqJjh070uD/7N13dFP1/8fx503apouWMlpaRikbimwEQZYsFWSIguJgyBRFhqD8ZCpbUKYoUwFREUXxq4gKyFL2kr1boECBDqB0Jbm/PwptA21J2qTpbd+Pc3KgNzf3vhJSXu3n3nxuy5b07duXEiVKcPr0aaZOnYqbmxtjxoyxan/vvvsun3/+ORMmTKBr164OuaK3EELkRfe72mg0EhkZybZt21i2bBl6vZ61a9dmeGB73759Gc51Wq1aNbtcSwLSenz27Nn06NEDV1dXKleuTOXKlenXrx9z585Fp9PxzDPPcOHCBcaMGUPp0qUZOnSoxTZ+/PFHFixYQN26dVOn9WrXrh2ffPIJ3bt3p1+/fty8eZMZM2Zk+yy59Ly9vZk5cyZ9+vShVatW9O3bl4CAAM6cOcOhQ4eYN28eOp2O6dOn88orr9C+fXv69+9PYmIiH3/8MTExMUydOhWA2NhYWrRoQffu3alSpQqFChViz549/P777zz//POPfJ7WKlq0KAMHDiQ8PJxKlSrx22+/sWjRIgYOHEiZMmWy/VpY8z6ZOnUqLVq04IknnmDIkCGUKVOG8PBwZs2axbVr16z+OPbrr7/OJ598wowZMxg0aJDd3odCCJFXNG7cmPnz5/P2229Tp04d+vXrR2hoKDqdjitXrvDDDz8A9rmmU05If0t/S3+LAsGJFxIVGrRs2bKHrpLs6+ur1qpVS/3kk0/UhIQEi/UBddCgQXbNkJiYqPbp00ctXry4qiiKxVWX4+Pj1ffee08NDg5WXV1d1cDAQHXgwIFqdHS0xTYuXLigtmnTRi1UqJAKWFyReurUqWrZsmVVg8GgVq1aVV20aFHqVaLTCw4OVnv06GFz/uXLl6v169dX3d3dVW9vb7V27drqsmXLLNZZvHixWqNGDdXNzU319fVVO3bsqB49ejT1/mvXrqk9e/ZUq1Sponp5eane3t5qjRo11E8//dTiitdZPc9HCQ4OVtu1a6euWbNGDQ0NVd3c3NSyZcuqn3zyicV6mzdvVgH1+++/t1h+/4rZ6Z9bjx49srwy++nTpy228ddff6lt2rRRCxcurLq4uKiBgYHqq6+++tB66fNmZP78+SqgfvXVV1Y/fyGE0KoHu9rNzU319/dXmzVrpk6ePFmNjIx86DH3ey6z259//mnXjKNGjVKDgoJUnU6nAurmzZtVVVVVk8mkTps2Ta1UqZLq6uqqFitWTH311VfVixcvWjw+KipKfeGFF9TChQun/ixw39KlS9XKlSurBoNBLVeunDplyhR1yZIlFj8vqKqqNmvWTG3WrJnN2X/77Te1WbNmqpeXl+rp6alWq1ZNnTZtmsU6P/30k9qgQQPV3d1d9fLyUlu2bKnu2LEj9f6EhAR1wIABao0aNVQfHx/Vw8NDrVy5sjpu3Dg1Li7Oquf5KM2aNVNDQ0PVv//+W61Xr55qMBjUwMBA9f/+7//U5OTk1PXu9/XHH3/80DYAddy4calf2/o+2bt3r9q5c2e1WLFiql6vV4sVK6Z27txZ3bdvX6Z5M/Lrr7+qgDphwgSrn78QQmjNwYMH1V69eqkhISGqwWBQ3d3d1QoVKqivv/66unHjRot17/9/fP369Qy3FRoamq2OexTpb+nvzPJmRPpbaJGiqpl89kQIIYQQQgghhBBCCCGEKABkjnIhhBBCCCGEEEIIIYQQBZrMUS6EHZhMpkwvDAIpFyfJK3NjaymrEEIIkRu01I1ayiqEEEI4kpY6UUtZhSjI5IxyIeygfPnyuLq6ZnpLf6VvZ9NSViGEECI3tGzZMstuLF++vLMjptJSViGEEMKRtNSJWsoqREEmc5QLYQf//fcfiYmJmd5fqFAhKleunIuJMqelrEIIIURuOHnyJLdv3870foPBwGOPPZaLiTKnpaxCCCGEI2mpE7WUVYiCTAbKhRBCCCGEEEIIIYQQQhRoMvWKEEIIIYQQQgghhBBCiAJNLuaZAfPVSs6OIIQQuUZX4pRdt2fr/6H23r8omOr3+sTZEYQQItfsWTbMrtuT7hbOMP5IR2dHEEKIXDO++s923Z50t2PIQLkQQgi7MmO2aX35aJMQQgjhXNLdQgghhLZIdzuGDJQLIYSwK5NqW2FLEQkhhBDOJd0thBBCaIt0t2PI6ySEEMKuzMg1ooUQQggtke4WQgghtEW62zFkoFwIIYRd2foRMCGEEEI4l3S3EEIIoS3S3Y4hA+VCCCHsyqTKkW0hhBBCS6S7hRBCCG2R7nYMGSgXQghhV/IRMCGEEEJbpLuFEEIIbZHudgwZKBdCCGFXJilsIYQQQlOku4UQQghtke52DBkoF0IIYVfJNl59WwghhBDOJd0thBBCaIt0t2PIQLkQQgi7kroWQgghtEW6WwghhNAW6W7HkIFyIYQQdiUfARNCCCG0RbpbCCGE0BbpbsfQOTtATi1evJgePXqwbNkyAL777juqVq1KuXLlGDdunJPTCSFEwWNSbbuJgke6Wwgh8hbpbvEo0t1CCJG3SHc7hqbPKJ81axajR4+mbdu2fPDBB0RERPDpp58ydOhQzGYzM2fOpGTJkvTr18/mbe85BEu/gaOn4PpNhbkTVVo1ccCTSOePLTBnCYRHQJkgeKcPtG6adv/ClfDnVjgXDu4GqF0dhveHkDLazazV3JJZMue397Q9yUfARFYc2d054enuyoDOjWlepwJ+Pp6cCo9k5qrNHDt/Db1ex8DnG9O4Rggli/ty524iu4+FM2/NNm7ExOVqTq1n1mpuySyZ82Pu9KS7RVbyancnx5s4/M0NLu26TeItE34h7tTp7U/RCh4AxMcYObQikquH7pIUZ6J4NU/qvRFAoSC3XM2p9cxazS2ZJXN+zJ2edLdjaPqM8i+++IKFCxfyww8/8OuvvzJ+/HimTZvGBx98wJgxY/j0009ZuHBhtrYdHw+VK8DoIfbJunY9vP5O5vcfOALDJkCHNvDTkpQ/h42HQ8fS1tlzCLp3hm8XwJKZYDTBG+/C3XjtZtZqbsksmfPbe9qeTCg23UTB4sjuzonRvdrQILQM4xat5+Uxy9l5JIz5775A8cLeuLu5UCXYnyXrdvLa+JWMnPcLZUr4MXNwx1zPqfXMWs0tmSVzfsydnnS3yEpe7e7dn13l6qE4nhgcxDOfhFCipiebJ1zk7s1kVFVl27RL3LmWTJP3S/L0jLJ4FXdl04RwjAnOG17SYmat5pbMkjk/5k5PutsxND1QHhYWxpNPPglA7dq10ev1NGzYMPX+Jk2acPbs2Wxtu2lDGNIH2jTN+P6kZPh4ATTrAnXaQrcBsPtAtnYFwPI10Kgu9HsVygWn/NmwLiz/Pm2dRR9D52egYghUqQCT34cr1xSOntJuZq3mlsySOb+9p+3JrNp2EwWLI7s7uwyuLrSoW5E5q7dx4NRlLkXGsOjnf4m4EUuXp2oQF5/EWzN+4K89pwi7Gs2Rc1eY8fUmqoWUIKBIoVzNquXMWs0tmSVzfsz9IOlukZW82N3GRDMXd96m1uv++Id6UijQjce6FcfL35UzG2K4fSWZm6cSqN+vBEUreOBT0kC9vgEYE8yEbb+Vq1m1nFmruSWzZM6PuR8k3e0Ymh4o9/T0JC4u7SOLxYsXx9vb22Ido9HokH1/MDXlLM6ZY+GnpdC2OfQdCRcuZW97h45Co/qWyxrXhwNHM3/M7Tspf/pa+TO2FjODNnNLZsmcFa3mtpYc2RZZcWZ3Z0avV3DR60hKttxvQpKRWhVLZvgYbw8DZrPKnbuJuRHxIVrMDNrMLZlzhxYzg3ZzP0i6W2QlL3a3alZRzaB3tXw/6t0Urp+4izk55axPnVva/Tq9gs5F4frxu7ma9T4tZgZt5pbMuUOLmUG7uR8k3e0Ymh4or1KlCocPH079+uLFiwQHB6d+feLECcqWLZvlNhITE7l165bFLTEx649ShF+GXzfCrAlQryaUKQm9X4I6j8Ha37L3XG5EQTE/y2XF/FKWZ0RVYdp8qPuYSqVyj96+FjNrNbdklsz5MbctpLBFVhzV3WZT9n9Bv5uQzOEzEbzRoSHFCnuhUxSeeaIq1csFUszX66H13Vz0DHrhSTbsOkFcQlK295sTWswM2swtmXOHFjODdnM/SLpbZMVR3W1MMmU7k6uHnmKVPTi65gZ3o5Ixm1TOb4nl5ukE4qNN+JQ04FXchUMrr5N0x4QpWeXYjzdJiDERH539/eaEFjNrNbdklsz5MfeDpLsdQ9MX85w2bRpeXg//AHpfeHg4/fv3z3IbU6ZMYcKECRbLxg4vwrh3i2b6mGOnQFUVnnnV8rMLSUlQ2Cfl7xHX4LkeafcZTWA0Qt2n05Y91xrGD0/7WnngfatmsOy+j2bByXPw9dxMY2o+s1ZzS2bJnB9z28KsOq6Et27dyscff8y+ffu4cuUKa9eupVOnTqn3q6rKhAkTWLhwIdHR0TRo0ID58+cTGhqauk5iYiLvvvsu33zzDfHx8bRs2ZLPPvuMUqVKOSy3SOOo7g6s2YaStdtmO9fYhesZ27st6z/tj9Fk5mRYJBt2naByGX+L9fR6HZMGtkOnU5i2fGO292cPWswM2swtmXOHFjODdnOnJ90tsuKo7m42sBLN36yS7VwNBweya/4Vfu57FkUHfuXcCW7iQ/S5BHQuCk+OKMWuz67wQ4/TKDoIqOFFYO3Mn0du0GJmreaWzJI5P+ZOT7rbMTQ9UN64ceMs73/zzTcfuY1Ro0YxbNgwi2Wu0XWyfIxZBb1eZc1C0D1wTr5nygVy8S8KPy5OW/7n1pTb9NFpy7zTfY8VKwLXHzj782Y0FH3gLFGAibNg8w5YMRdK+D98f37JrNXcklky58fctnDk0eq4uDhq1qxJr1696NKly0P3T58+nU8++YQvv/ySSpUqMXHiRFq3bs3JkycpVChlnpkhQ4bwyy+/8O2331K0aFGGDx9O+/bt2bdvH3q93mHZRQpHdXeLtz7PUa7L12PpP2017m4ueHkYuBkbx+SB7Yi4EZu6jl6vY8rA9gQV8+XN6d87/WxQLWYGbeaWzLlDi5lBu7nTk+4WWXFUd08/0z1HuQqVcKPVR8EYE8wkx5vx8HNhx8zLePu7AlCkvDvPzAwhKc6E2aji7uvCH+9foEh59xztt6Bl1mpuySyZ82Pu9KS7HUPTA+X2YDAYMBgMFsvMd7OekaZqRTCZFG5Gq9SrmfE6Li4QnO4gSVE/MBgsl6VXMxT+2Qs9u6Yt+2cP1E47GIOqwsTZ8Nc2+Go2lArMMqbmM2s1t2SWzPkxty1MDpzV65lnnuGZZ57J8D5VVZk1axYffPABzz//PABfffUVAQEBrFq1iv79+xMbG8uSJUtYsWIFrVq1AmDlypWULl2av/76i7Zts39Gssg9GXW3Tm+fH2kSkowkJBkp5GmgYfVg5q7eBqQNcpUJKMyA6d8TG5dgl/3ZgxYzgzZzS+bcocXMoN3cIN0tHC+j7nZxs89AiYu7Dhd3HUl3TFw5GEet1yzPBnHzStnP7Ygkos4m8NhLxe2y35zQYmbQZm7JnDu0mBm0mxukux0lXw+U9+jRg4sXL7Jp0yabHxt3N2Uu4fsuXYHjp8HXB0JKw3OtVd6fDCMHQbWKEB0DOw9ApXLQrGGmm83U6y/Aa4Nh0Spo2Rg27oB/98HKeWnrfPhpytzG8yaBlwdcv5myvJA3uBu0mRm0mVsyS+b89J72tH2XWUpWbSvsxMREEhMtL2iW0S9Tj3L+/HmuXr1KmzZtLLbTrFkz/vnnH/r378++fftITk62WCcoKIjq1avzzz//5OnCLihy0t050bB6MAoKYVejKOVfmHe6NSXsSjTrth9Fr1OYNqg9VYIDGDprLXpFoahPyndObFwCRlPW1zaRzNrPLZklc37MnZ50t8gJZ3X3lQN3UAGfIDduX03m4PJIfEq6Ue4pXwDC/7mFwUePVzFXYsIT2b/0GiXrexNYy3nTJ2gxs1ZzS2bJnB9zpyfd7Rj5eqA8KCgI3YNzG1jp6EnoMSTtYwzT5qf8vdPTKlNGwaT34fPlMH0+RN5IGQCrFQrNGmQva+3qMHMszF4Cc5dA6SCYOR5qVktb59ufUzL0eMfysZPfV+n8jDYzgzZzS2bJnJ/e0116ZW+/mTHZWNgZzVk5btw4xo8fb9N2rl69CkBAQIDF8oCAAMLCwlLXcXNzw8/P76F17j9eOFdOujsnvD0MDHrhSfz9vLkVl8CmfWf47IftmExmAov60Kx2BQBWffi6xeP6T13N/pOXcj0vaDMzaDO3ZM4dWswM2s2dnnS3yAlndXfyXTOHvr7O3ZtG3Lx1lG5YiBrdi6NzSfm5Nz7ayIEvI0mINeJe2IWQ5r6EvlAs13NqPTNoM7dklsxZ0Wru9KS7HUNRVVV99GoFi/lqJWdHEEKIXKMrccqu29tywbb/QxsG/petI9uKolhcVOSff/6hcePGREREEBiYNrdM3759uXjxIr///jurVq2iV69eD+2vdevWlC9fns8/z9k818J56vf6xNkRhBAi1+xZNuzRK9lAuls4w/gjHZ0dQQghcs346j/bdXvS3Y6R+4d9c9HFixfp3bu3s2MIIUSBYkKx6WYwGPDx8bG42frxL4ASJUoAPHSEOjIyMvVod4kSJUhKSiI6OjrTdYRzSXcLIUTuk+4WOSHdLYQQuU+62zHy9UB5VFQUX331lbNjCCFEgWJSdTbd7CUkJIQSJUrw559/pi5LSkpiy5YtNGrUCIC6devi6upqsc6VK1c4cuRI6jrCuaS7hRAi90l3i5yQ7hZCiNwn3e0Ymp6jfN26dVnef+7cuVxKIoQQ4j4zyqNXyqY7d+5w5syZ1K/Pnz/PwYMHKVKkCGXKlGHIkCFMnjyZihUrUrFiRSZPnoynpyfdu3cHwNfXlzfeeIPhw4dTtGhRihQpwrvvvstjjz2WejVu4VjS3UIIkfdId4usSHcLIUTeI93tGJoeKO/UqROKopDVNOuK4rg3jhBCiIeZHPhhpb1799KiRYvUr4cNS5mjtUePHnz55ZeMHDmS+Ph43nzzTaKjo2nQoAF//PEHhQoVSn3Mp59+iouLC127diU+Pp6WLVvy5ZdfotfrHZZbpJHuFkKIvEe6W2RFulsIIfIe6W7H0PTFPEuWLMn8+fNTJ5R/0MGDB6lbty4mk8mm7crFPIUQBYm9L+b5y7kaNq3/XLnDdt2/yNsc1d1yMU8hREFi74t5SneLrDiqu+VinkKIgsTeF/OU7nYMTc9RXrduXfbv35/p/Y866i2EEML+zOhsuomCRbpbCCHyHulukRXpbiGEyHukux1D01OvjBgxgri4uEzvr1ChAps3b87FREIIIUyqfPRWZE66Wwgh8h7pbpEV6W4hhMh7pLsdQ9MD5U2aNMnyfi8vL5o1a5ZLaYQQQoBj50oT2ifdLYQQeY90t8iKdLcQQuQ90t2OoemBciGEEHmPWZXCFkIIIbREulsIIYTQFulux5CBciGEEHaVpObtq1gLIYQQwpJ0txBCCKEt0t2OIQPlQggh7EouFCKEEEJoi3S3EEIIoS3S3Y4hA+UZWHorwNkRsqW3zzVnRxBCCEzyETDhBMU2X3R2hGy50aK0syMUCHuWDXN2BJvV7/WJsyOIAkS6WzjDXZObsyMUGDpFdXYEm5k1eKFCLb7OQrukux1DBsqFEELYlRnt/VArhBBCFGTS3UIIIYS2SHc7hgyUCyGEsCs5si2EEEJoi3S3EEIIoS3S3Y4hA+VCCCHsyiRzpQkhhBCaIt0thBBCaIt0t2PIQLkQQgi70uJ8gkIIIURBJt0thBBCaIt0t2PIQLkQQgi7kiPbQgghhLZIdwshhBDaIt3tGDJQLoQQwq7MMleaEEIIoSnS3UIIIYS2SHc7hgyUCyGEsCuTXH1bCCGE0BTpbiGEEEJbpLsdQwbKhRBC2JUc2RZCCCG0RbpbCCGE0BbpbseQgXIhhBB2lazqnR1BCCGEEDaQ7hZCCCG0RbrbMWSgXAghhF2Z5Mi2EEIIoSnS3UIIIYS2SHc7huZf1UOHDjFx4kQ+++wzbty4YXHfrVu36N27t5OSCSFEwWRGsekmCh7pbiGEyFuku8WjSHcLIUTeIt3tGJo+o/yPP/7gueeeo2LFity+fZtx48axevVqWrRoAUB8fDxfffUVS5cuzdVcSXfNbP86jtP/JnI31ox/ORee6luIwEquAMRFm9ny5R0uHEwi8Y6ZUtXdaNXfG7+gnP1z7DkES7+Bo6fg+k2FuRNVWjWxxzPK3B9bYM4SCI+AMkHwTh9o3TTt/oUr4c+tcC4c3A1QuzoM7w8hZbSdWzJL5vz2nrYnObItspIXu1un1/HqkLa06FQXv+KFiIq8zV9rdvPN3D9RVRWAwsW86f3+c9RpUhkvHw+O7D7LgnE/EnHhxiO27jie7q4M6NyY5nUq4OfjyanwSGau2syx89fQ63UMfL4xjWuEULK4L3fuJrL7WDjz1mzjRkyc0zJrObfWaPF11mJmLedOT7pbZCUvdjdAcryJE99d48ruWBJjjfiGePBYzyD8KngCYEwwcezrq1zZc4uk20Y8/d0o90wxQtoUzdWcWs98P/fxb68RsfsWibFGCod4UKNXYFrueBNHv75KxJ5bJN024envRvlnilKurbzWtmbW4uustcxazp2edLdjaPpVHT9+PO+++y5HjhzhwoULjBw5kg4dOvD77787Ndfvc29z4UASzw7zoefcIpSt7cbqMTHcvmlCVVXWTooh9pqJzh/40mN2EXyK61g9OoakBDVH+42Ph8oVYPQQ+zyPtevh9Xcyv//AERg2ATq0gZ+WpPw5bDwcOpa2zp5D0L0zfLsAlswEowneeBfuxms7t2SWzPntPW1PZlWx6SYKlrzY3V0HPMWzrzTis7E/0q/VVJZO+YUu/VrQoWfaEa6xC9+gROmifNh3CW+1m0Hk5WgmrxyIwcPNablH92pDg9AyjFu0npfHLGfnkTDmv/sCxQt74+7mQpVgf5as28lr41cyct4vlCnhx8zBHZ2WV+u5tUaLr7MWM2s5d3rS3SIrebG7AQ5+fonrh29T563StJhZCf8a3vzz0Tnio5IBOPLlFSIP3qbu26Vp+Wllyrcrxn9LL3NlT6xkttGBBZeJPHyHem+XpuXMivjX9Gb7h+eJv5mS+/BXV7h28A71Bpem1axKVGhXjMNLI4jYc8tpmbX4WmvxddZiZi3nTk+62zE0PVB+9OjR1I94KYrCiBEjWLhwIS+88AK//PKLUzIlJ6qc+ieRZr28KV3dDb8gFxp398Y3QM/B3+KJjjBx5aSR1gNTzjAvUsqF1gMLkZSgcmJLQo723bQhDOkDbZpmfH9SMny8AJp1gTptodsA2H0g+/tbvgYa1YV+r0K54JQ/G9aF5d+nrbPoY+j8DFQMgSoVYPL7cOWawtFT2s4tmSVzfntP25MJnU03UbDkxe6uUqcsO/88wp7Nx4i8FM329YfYv+0kFR8rDUDJkOJUrVOWeaPXcOrwRS6fu8780Wvw8DLQvENtp2Q2uLrQom5F5qzexoFTl7kUGcOin/8l4kYsXZ6qQVx8Em/N+IG/9pwi7Go0R85dYcbXm6gWUoKAIoWcklnLubVGi6+zFjNrOfeDpLtFVvJid5uSzFzZFUu1VwMpVs0b7xIGqnQtgae/Gxf+uAlA1Ok4Sjfzo1ioN57+bpRtVRSfYA9izjrgTJF8mhnAlGgmYlcs1V8tQbFqXngHGqjaNQAvfzfO38996i5lmhemeKg3Xv5uhLQugm+wOzFn7zonswZfa02+zhrMrOXcD5LudgxNv1IGg4GYmBiLZS+//DJLlizhpZdeYu3atbmeSTWpqGZwcbM8WuPiBpePJWNKOTiFPt0JaDq9gt5F4dKxZIdm+2BqypmnM8fCT0uhbXPoOxIuXMre9g4dhUb1LZc1rg8Hjmb+mNt3Uv70teH3Ai3mlsySOStazW0tObItspIXu/vo3vPUalyJkiHFAQipGkRovXLs+TvlYxmubilToyUnpvW02axiTDYRWr9crucF0OsVXPQ6kpKNFssTkozUqlgyw8d4exgwm1Xu3E3MjYgZ0mpurdHi66zFzKDd3A+S7hZZyYvdbb73e7fe1fL9qHfTcfNEyrRGRSt7cXXfLeKjklFVletH7nDnSiL+tZxzkEqLmSHlZx7VDDo3y+EjnZvCzRMpg4ZFq3hxZe9t4m+mz52Ef015ra2lyddZg5lBu7kfJN3tGJqeo7xWrVps3ryZunXrWizv1q0bZrOZHj16PHIbiYmJJCZa/pCanGTG1S17xxDcPHUEVXHh32/jKFpKj2dhHce3JnLllBG/ID1FSunx8dex7as42rxVCFeDwt6f7hIXbSYu2pytfVoj/DL8uhH+XgP+xVKW9X4Jtu2Gtb/B0H62b/NGFBTzs1xWzC9leUZUFabNh7qPqVSyclxBi7kls2TOj7ltYdb2MVjhYI7qbrNqRKdk78ea7xdsxKuQOws3vo/ZpKLTK3w14ze2rEv5qMfFs9e4dimKniPbM/f/VpMQn0TnPs0p4u9DEX+fbO0zp+4mJHP4TARvdGjI+StRRMXepW3DKlQvF8jFa9EPre/momfQC0+yYdcJ4hKSnJA4hVZza40WX2ctZgbt5n6QdLfIiqO625hkwsVNn61Mrh56/Cp5cvKHSLxLuuNe2IVL22OIPnMXrxIpZ6U91juIg59f5o8Bx1H0KWfD1xpQiqJVvLK1z5zSYub7uYtU8uTkmkgKlTTg7uvCxR0xRJ+Jx/te7pq9Atn/xWV+H3AiNXftASUpVlVea1sya/F11lpmLed+kHS3Y2h6oHzgwIFs3bo1w/tefvllABYuXJjlNqZMmcKECRMslj33Vmk6vB2c7VzPDvPh99m3WdDzJooOAsq7ULWZgcizRvQuCh1H+fL7nNvMffkGig6Ca7kRUtexc5weOwWqqvDMq5bzoCclQeF7v+NHXIPn0v2MYzSB0Qh1n05b9lxrGD887WvlgYNSagbL7vtoFpw8B1/Pzd+5JbNkzo+5bWGSo9UiC47q7vK+DahY+IlsZWr2XG2e6lSX6e+sJOzUVcpVK0n/sZ2IunaLv37Yg8loZuKAZQyZ/hLfH56MyWjiwI5T7Nl87NEbd6CxC9cztndb1n/aH6PJzMmwSDbsOkHlMv4W6+n1OiYNbIdOpzBt+UYnpU2j1dxao8XXWYuZQbu505PuFllxVHc36l+VxgNDs52r7lulObDgUspApw58Qzwo1bgwMedTps4499tNok7H0WBkWTyKu3LzeByHFl/GUNgF/xrOOStUi5kB6r5div2fXeb3/idQdFA4xIPSTxYm5lxK7rPrbxJ96i4N3wvGs7grN47FcWhxBO5+rvjX8HZOZg2+1pp8nTWYWcu505PudgxND5R37tyZzp07Z3r/yy+/nFrcmRk1ahTDhg2zWPZ1+DM5yuUX6MLLU/1ISlBJumvGu4ieddNi8Q1IOVpeooIrPecUITHOjMkInr46Vg6PIqCCa472mxWzCnq9ypqFoHvgoJOnR8qf/kXhx8Vpy//cmnKbPjptmXe6g2fFisD1B85YvRkNRR84sxVg4izYvANWzIUS/g/fn59yS2bJnB9z28KRH+u6ffs2Y8aMYe3atURGRlK7dm1mz55N/fopc8/cuXOH999/n59++ombN29StmxZBg8ezMCBAx2WSdjGUd394mMfZDvTG6OeY/WCjWz5JeUM8gsnr+Bf0o+ub7bkrx/2AHDmyCXeenYGnoXccXXVExsVx6c/DeH04YvZ3m9OXb4eS/9pq3F3c8HLw8DN2DgmD2xHxI20i1Dp9TqmDGxPUDFf3pz+fZ44g1WrubVGi6+zFjODdnOnJ90tsuKo7h5/smeOcnmVMPDkhPIYE8wY4024+7my59MwvPzdMCWZOfbNVR4fEUyJOilno/gGexB7IZ6zv1x32kCoFjMDeJcw0PTDcha5d38Sjqe/G6ZEM0dXXaPhiDKUqJs+dwKn11132qCiFl9rLb7OWsys5dzpSXc7hqYHyu3BYDBgMBgslmV32pUHubkruLnrSbhj5sKBJJr1tPxmMnil7Cc6wsjVM0Yav+K4j3BUrQgmk8LNaJV6NTNex8UFgkulfV3UDwwGy2Xp1QyFf/ZCz65py/7ZA7XTnRSgqjBxNvy1Db6aDaUC839uySyZ82NuW5hVx30ErE+fPhw5coQVK1YQFBTEypUradWqFceOHaNkyZIMHTqUzZs3s3LlSsqWLcsff/zBm2++SVBQEB07dnRYLpG7Muru7E67AmDwcENVLT/lYTabUTL4WMbd2ykX3g4qW4yKj5Vmxcz12d6vvSQkGUlIMlLI00DD6sHMXb0NSBuYKxNQmAHTvyc2LmcXDbc3rebWGi2+zlrMDNrNDdLdwvEy6u7sTrvyIBd3HS7uOpLuGIk8dJvQVwMxG1VUk/rQJywVncIDle8UWswM6XOb0nKbUnKjswyu6JSUj7k6mRZfa22/ztrJDNrNDdLdjmL1b5VLly5NvdJ1Rm7fvs3QoUNZvHhxpusAqKrKli1b2LZtGxcuXODu3bsUL16c2rVr06pVK0qXLm19+kfo0aMHFy9eZNOmTXbbpjXO708EFfxKuhBzxcTfy+5QpKSe6q3cATi5PQEPXx0+xfVcv2Bk06LbVGhgIKSO4RFbzlrc3ZT5j++7dAWOnwZfHwgpDc+1Vnl/MowcBNUqQnQM7DwAlcpBs4a27+/1F+C1wbBoFbRsDBt3wL/7YOW8tHU+/DRlPuZ5k8DLA66nXECYQt7gbtBubsksmfPTe9rT9l1myYRjjmzHx8fzww8/8PPPP9O0aVMAxo8fz08//cSCBQuYOHEi//77Lz169KB58+YA9OvXjy+++IK9e/dqvrCzQ7rbOrs2HuWlQa2JvBxD2OkrVAgtxfNvNOeP73elrvPkszWJjbrD9csxlK0SyIBxnfn3j//Yv+1kruV8UMPqwSgohF2NopR/Yd7p1pSwK9Gs234UvU5h2qD2VAkOYOistegVhaI+Kd/tsXEJGE2Ouy5Kfs2tNVp8nbWYWcu505Puzjuku60XefA2KuAdZCDuaiJHV1zBO8hAmeZF0LkoFK3mxdGVV9C76fAo7sbNY3e4uCWa6j2CcjWn1jMDXDt4G9S03EdWXMU7yEBwCz90LgrFqnlxZMUV9G4KnsXcuHEsjvAt0TzWw4Fn5zyCFl9rLb7OWsys5dzpSXc7htUD5UOHDuXHH39k8eLFlChRwuK+DRs20LdvX/z8Mvic/z3x8fF8+umnfPbZZ9y8eZOaNWtSsmRJPDw8OHPmDD/99BN9+/alTZs2jB07loYNszFa9ICgoCB0D85tkAsS41S2Lr/DnRtm3AvpqNTIQJPXvNC7pLyJ70SZ2bzkDnExZrz9dIQ+5c4T3XJ+NvnRk9BjSNo3yrT5KX/v9LTKlFEw6X34fDlMnw+RN1IG7WqFQrMG2dtf7eowcyzMXgJzl0DpIJg5HmpWS1vn259TMvR4x/Kxk99X6fyMdnNLZsmcn97TXXplb7+ZMZptOzsoo4s7ZXTWkdFoxGQy4e7ubrHcw8OD7du3A/Dkk0+ybt06evfuTVBQEH///TenTp1i9uzZ2Xgm2ifdbZ0F437k9eHPMOijLhQu5k3UtVv8tuofVs35I3WdIv4+9BvdkcLFChEVeYuNP+7lm7l/ZLFVx/P2MDDohSfx9/PmVlwCm/ad4bMftmMymQks6kOz2hUAWPXh6xaP6z91NftPXnJGZEC7ubVGi6+zFjODdnOnJ92dd0h3Wy/5rolj31wl4WYyrt56ghr4UvXlEuju/d5db0gZjq26yr454STdMeFZ3I2qL5egbOsiuZ5Vy5lTc6+6Rvy93CUb+FAtXe76Q0pzdNU19s6+mJq72ssBhLSR19rmzFp8nTWWWcu505PudgxFffCzxpm4cOECvXr14vDhw8ybN4+XX36Z27dvM2TIEFauXMmIESMYN24crq4Zz7NdunRpGjRoQM+ePWnbtm2G64WFhbFq1So+//xzRo8eTd++fXP27LJp8akmTtlvTvX2uebsCEIIDdKVOGXX7fXZ29Om9Uv9r+xDF3caN24c48ePf2jdRo0a4ebmxqpVqwgICOCbb77h9ddfp2LFipw8eZKkpCT69u3L8uXLcXFxQafTsXjxYl577bUcPCPtKkjd/UzZoU7Zb07daGG/M/pE5vYsG/bolfKY+r0+cXYEkYfZ+z0t3Z13FKTuHnnoRafstyDSKXlovggrOXL+ZUfR4usscs/UGmvsuj3pbseweqD8vlmzZjF69GiaN2/Of//9h4+PD19++SV169bN8nFHjhyhevXqVu0jKSmJsLAwKlasaEu0h1y8eJFx48axdOlSmx4nA+VCiILE3gPlvfbYdor65zU+t+rINsDZs2fp3bs3W7duRa/XU6dOHSpVqsT+/fs5duwYM2bMYNGiRcyYMYPg4GC2bt3KqFGjWLt2La1atcrR89KygtDdMlAusiID5SK/sfd7Wro77ykI3S0D5blHiwO4MlAu8ht7D5RLdzuGzQPl8fHxvPLKK/z00094eXmxfft2atbM5Ip0GTAajUyaNInevXvbdV60jBw6dIg6depgMplsepwMlAshChJ7D5T32P2GTet/9fgSm/cRFxfHrVu3CAwMpFu3bty5c4c1a9bg6+vL2rVradeuXeq6ffr04dKlS/z+++827ye/KAjdLQPlIisyUC7yG3u/p6W7856C0N0yUJ57tDiAKwPlIr+x90C5dLdjWD1HOcCOHTvo1asXrq6u/P777yxevJgnnniCSZMmMXSodb+guri48PHHH9OjR49sBU5v3bp1Wd5/7ty5HO9DCCGEbXLjh1ovLy+8vLyIjo5mw4YNTJ8+neTkZJKTkx+aI1Ov12M2542LpTmDdLcQQohHke7OW6S7hRBCPIp0t2NYPVA+fPhw5s2bx1tvvcXkyZMxGAy0adOG7777jrfeeou1a9fy5ZdfUq5cuUduq1WrVvz999/07NkzJ9np1KkTiqKQ1UnxiqK9o5BCCKFlZgddfRtSLmKlqiqVK1fmzJkzjBgxgsqVK6f+MtmsWTNGjBiBh4cHwcHBbNmyheXLl/PJJwXzzEzpbiGEENaQ7s47pLuFEEJYQ7rbMaweKP/555/566+/aNLEclqSbt260bx5c/r370/NmjW5ffv2I7f1zDPPMGrUKI4cOULdunXx8vKyuL9Dhw5WZQoMDGT+/Pl06tQpw/sPHjz4yDnchBBC2Jcjj2zHxsYyatQoLl26RJEiRejSpQuTJk1KvVDVt99+y6hRo3jllVeIiooiODiYSZMmMWDAAIdlui8hIYF58+bx7rvvOnxf1pLuFkIIYQ3pbunurEh3CyFE3iPd7ZjutnqO8ri4uIeK9UErVqyw6gqnD56ebxFIUaye26xDhw7UqlWLDz/8MMP7Dx06RO3atW0+9V/mKBdCFCT2nqO827+2leN3T3xu1/070o0bN9i1axeurq60bNkSvV5PcnIyn332GVOmTMFoNHLjxg1nx0xVkLpb5igXWZE5ykV+Y+/3tHS3dHdWHNXdMkd57tHi3NkyR7nIb+w9R7l0t2O62+ozyh9V1oBVZQ3Ybc6aESNGEBcXl+n9FSpUYPPmzXbZlxBCCOto8Ydaa/zzzz+0a9eO2NhYFEWhXr16LFu2jE6dOmE2mxk9ejS9e/d2dkwL0t1CCCGsId2dd0h3CyGEsIZ0t2Nkfoj5AdWqVSMqKir16379+nH9+vXUryMjI/H09LRvukdo0qQJTz/9dKb3e3l50axZs1xMJIQQwoxi000rxowZQ9u2bTl8+DDvvPMOe/bsoX379owePZrTp0/z1ltv5XoPPop0txBCCGtId+cd0t1CCCGsId3tGFYPlJ84cQKj0Zj69bfffmsxL5qqqiQkJFi94y1btvDcc89RoUIFKlasSIcOHdi2bZvVjxdCCJE3mVXFpptWHDp0iDFjxlC9enUmTpyIoihMmzaN119/Pc9ewEq6WwghhDWku/MO6W4hhBDWkO52DKsHyh+U0dTm1gZeuXIlrVq1wtPTk8GDB/PWW2/h4eFBy5YtWbVqVXYjCSGEyAPya2FHRUVRvHhxADw9PfH09KR27dpOTmUb6W4hhBAZke7Ou6S7hRBCZES62zGsnqPcniZNmsT06dMZOjTtwlvvvPMOn3zyCR999BHdu3d3RiwhhBB2YDRn+xhsnqYoCrdv38bd3R1VVVEUhbt373Lr1i2L9Xx8fJyU0LGku4UQIv+S7pbuFkIIoS3S3Y7pbqsHyhVFeejIdXZPeT937hzPPffcQ8s7dOjA//3f/2Vrm/bU0+eKsyNki30u1ZK7dNn/UIMQIo/S0vxntlBVlUqVKll8nf7I9v0SN5lMzoiXoYLU3Tebl3Z2BJGH1e/1ibMjCJGnSXdLdztDvMnN2RGyRado8Tdv7TGr2hsrkPeGyE3S3Y7pbqsHylVVpWXLlri4pDwkPj6e5557Dje3lHJLP4/ao5QuXZqNGzdSoUIFi+UbN26kdGn5RVcIIbRMSx/rssXmzZudHcFm0t1CCCGsId2dd0h3CyGEsIZ0t2NYPVA+btw4i687duz40DpdunSxalvDhw9n8ODBHDx4kEaNGqEoCtu3b+fLL79k9uzZ1kYSQgiRB+XXwm7WrJmzI9hMulsIIYQ1pLvzDuluIYQQ1pDudoxsD5TnxMCBAylRogQzZ85k9erVAFStWpXvvvsuwx8EhBBCaEd+Lezw8PAMl/v6+uLr65vLaawj3S2EEMIa0t15h3S3EEIIa0h3O4ZNF/PctWsX69atIzk5mVatWtGmTZts77hz58507tw5248XQgiRN+XXwi5btmymc4QWL16ckSNHMmzYsFxO9WjS3UIIIR5Fujtvke4WQgjxKNLdjmH1QPnatWt58cUXcXd3x8XFhZkzZzJz5kyGDBli807LlSvHnj17KFq0qMXymJgY6tSpw7lz52zephBCiLxBzaeFfeDAgQyXx8TEsHv3biZNmoSnpycDBgzI5WSZk+4WQghhDelu6W4hhBDaIt3tmO62eqB88uTJ9OzZk88//xwXFxcmTpzIxIkTs1XYFy5cyPDqpImJiVy+fNnm7QkhhMg78uvVt2vWrJnpfc2aNSMwMJAZM2bkqV+2pbuFEEJYQ7pbulsIIYS2SHc7eaD85MmTfP3116lX3x4xYgTjx4/nxo0bFCtWzKptrFu3LvXvGzZssJhbxmQysXHjRsqWLWttJCGEEHlQfv0I2KM0atQoz52ZJd0thBDCGtLdeYd0txBCCGtIdzuG1QPld+7coXDhwqlfGwwGPDw8uHXrltWF3alTJwAURaFHjx4W97m6ulK2bFlmzpxpbSQhhBB5UH79CNijREdHW/RkXiDdLYQQwhrS3XmHdLcQQghrSHc7hk0X83zwaLTZbGbjxo0cOXIkdVmHDh0yfbzZbAYgJCSEPXv2WF30QgghtKMgHtlOSkpi+vTpNGzY0NlRHiLdLYQQ4lGku/MW6W4hhBCPIt3tGDYNlD94NBqgf//+qX9XFCXDOdAedP78eVt2K4QQQkPy65Ht559/PsPlsbGxHDlyBBcXF7Zt25bLqR5NulsIIcSjSHfnLdLdQgghHkW62zGsHii/f1TaHgYPHkyFChUYPHiwxfJ58+Zx5swZZs2aZZf9HD9+nHbt2mVr7pq9h2DpNzqOnYLrNxXmTDTRsoldYmXqjy0wd4mOixFQOgje6WOmVdO0+xetVPhzq8L5cHA3QK3qMKy/mZAy2s0MsOcQLP0Gjt7LPXeiSqtcyD1nCYRHQJkgeKcPtE6Xe+FK+HMrnLuXu3Z1GN6f1NySWTJnllnLue3FZM6fhZ3+zK70SpcuzQsvvMArr7yCj49PLqfKWkHr7pzwdHel//ONaV6nAn4+npwKi2Tmqs0cP38NvV7HwOcb06hGCCX9fblzN5E9x8KZ9/02bsTE5WrOBzMP6Jwuc3hK5mPpMjeuEULJ4imZdx8LZ94a52bWam7JLJnzY+70pLvzDulu6xnjTZxZfZnIvTEkxSZTqKwnVXqUwbe8V8r9CSZOf3OJyL0xJN824lHcQJmn/Snd2j9Xcz6Y+fTqCK7tiSUpNhmfsp5U7VnKIvOpVRFcS83sRvDT/pRpU9xpmbWaW94fkjk/5k5PutsxbDqjPCsmk4lffvkldT60rPzwww8WFxi5r1GjRkydOtVuhZ2UlERYWFi2HhsfD5UrqHR+VmXIGH2Os6xdr/Dz7wpfzs74B5+DR+DdCTre7q3SsonKxm0Kw8frWDHPTI1qKevsOaTwcmeVx6qoGE0wZ7GOvu/qWPeVGU8PbWaG+7mh87Pwzpgcx2btelj7OyyfnfH9B47AsAkwuDe0agJ/bYNh42HlPKiZmhu6d4bqVcBkglmL4Y134X9fke61lsyS+eHMoL3c3jmPaCG/Xn172bJlzo5gd/mtu3Pig15tKF+qKOMXrud6TBzPNKrK/BEv0O3/vuJuYhKVg/1Zum4npy5ex8fLnaHdmzPznY70mLAq17PeN7pXG8qXLMq4RfcyP1GV+e++QNcPUjJXCfZnybqdnL54nUKe7gzr3pyZgzvS40PnZdZqbsksmfNj7vSku7VDujvN0YUXuHMxnupvhuDu50rE9pvsm3SKRjNCcS/ixsnlF4k6dpvHBoXgUdzAzcO3OL40DIOfK/71/HI9L8CRL8K4cymBGoOCMfi5ErEtij0TT/PkzGq4F3HjxPJLRB29Q41BZfEo7sbNw7c5tjQcQxFXAuoVdkpmreaW94dkzo+505PudowcD5SfOHGCpUuX8tVXXxEdHU1SUtIjH3Pz5s0MjxD4+Phw48YNq/c9bNiwLO+/fv261dt6UJOG0KShmun9SckwZ7HCr38p3L4DFUJSzpR+vHb29rdijcITdaHvqyn7LBessueQwvLvFWaMS1m28GPLAeuJ75tp0lHPsVNQr6Y2MwM0bZhyyyr37MXwv7/g9h2oGJJyJmx2cy9fA43qQr9XU77uF5wyiLj8e5g5LmXZoo8tHzP5fWjcUeHoKZX6NSWzZM48M2gvd4OQ7O03M/n1I2CRkZH4+2d+honRaGT//v08/vjjuZgqe/Jrd2eXwdWFFvUqMmLOzxw4dRmART/9S7M65enyVA0+//Ef3p7xg8VjZqzcxFfjXiGgSCGuRd12Tua6FXk3feaf/6V5usxvPZj56018NdZ5mUGbuSWzZM6KVnM/SLpbujsrebG7TUlmIndHU2t4BYpULQRAhRdKcn1vDBf/vE7FbiWJOX2HoKZFKVIt5czDUi2Lc3HjdW6du+uUgVBTkplru2Oo/W751MwVXwwicm8s4X/eoFK3IGJOxRHUtAhFQ1Pu92xlSMl89q7TBue0mFveH5I5P+Z+kHS3Y7pbl50HxcXFsXTpUho3bkxoaCj79+9n0qRJREREWPX4ChUq8Pvvvz+0fP369ZQrV87qHLNnz2bLli0cOHAgw9uJEyes3patRk9VOHBEYcZYMz8uNdO2uUr/kTrCLmVvewePKjSqbznI3bi+ysGjmb/xb99J+dO3UP7NDPDB1JQzZmeOhZ+WQtvm0HckXMhm7kNHoVF9y2WN68OBo5k/xtbcklkyZ0Wrua1lVhWbbloRGBhIZGRk6tdVq1YlPDw89eubN2/yxBNPOCOaVaS7M6fXK7jodSQlGS2WJyYZqVmpZIaP8fYwYDar3LmbmBsRH5KaOdkyc0KSkVoV82Zm0GZuyZw7tJgZtJv7QdLdeZN0d+ZUk4pqBp2b5ZCGzk1HzMmUA1B+lQtxfV8MCVFJqKpK1NFb3L2SQNEazplu535mvavl95DOTUf0iZQfzv2qeBO5LzY1882jt4m7kkixms6bIkiLueX9kTu0mBm0m/tB0t2OYdMZ5f/++y+LFy9m9erVVKxYkVdeeYVdu3YxZ84cqlWrZvV2hg0bxltvvcX169d56qmnANi4cSMzZ8606eNfFStWZOjQobz66qsZ3n/w4EHq1q2b5TYSExNJTLT8IVWfqGIwZP4mCr8Mv21U2LTGjP+9C4j3ekll+26Ftb8pDOmX+VndmbkRBUUfOGhZ1C9leUZUFabP11HnMZWKVvyMo8XM93P/uhH+XkNq7t4vwbbdsPY3GNrP5tjciIJiD+Qu9ojc0+ZD3cdUKln5WktmyZzfcttCtf2/E01QH3hily5dwmg0ZrlOXlBQuttsMqLTZ++DcncTkjl8OoLeHRty/koUUbF3adOwCqHlArl4Lfqh9d1c9bz14pNs2HmCuIRHn9HnCHcTkjl8JoI3OqRlbtuwCtUzy+yiZ9ALT7Jhl/MygzZzS+bcocXMoN3cD8qD9WUX0t15u7tNSSb0btmbMtTFQ49vRS/O/RiBV5A7hsKuXNkRReyZODxLGACo0rM0RxeGsXXQYRS9AgqE9iuLXxUHnCliZebCFb048+NVvEpmnLlqz1IcWRjO328eQdEDikL1fmXwq2LvyRLzd255f0jm/Jj7QXmwvuzC2d1t9W+U1apV4+7du3Tv3p1du3alFvT7779v80579+5NYmIikyZN4qOPPgKgbNmyLFiwgNdff93q7dStW5d9+/ZlWtiKojzyxZsyZQoTJkywWDZmuB9j3y2S6WOOn0r5iMOzr1oenUxOgsL3Di5FXIMOPdLuN5nAaIR6T6cte661yrjhafmUDMbmM1oGMHGWwqlzsGKudRd70WJmgGP3cj/zquW/Y9IDuZ9Ld2F4473cdZ9OW/Zcaxg/PPOMaha5P5oFJ8/B13Mls2TOWWYt57ZFfv0ImDWUzF50JylI3R1Usw0la7W1OseDxi1cz5g32vLbrP4YTWZOhkWyYecJKgdbfuxPr9cxaWA7FEVh+vKN2d6fPYxduJ6xvduy/tN0mXedoHKZjDPrdArTnJwZtJlbMucOLWYG7eZOT7o77yhI3V2/X3Ua9K9hdY4HPTYohKOfX0gZ6NRBoRBPAhsV4daFuwCE/x5J7Jk71Hq3Ah7F3Ig+cSdlDurCrhR9zDlnhdYYVJb/vghLGXzTgU+IJ4GN/bh1Ph6AsPXXiTkdR50R5fAo5kbU8TscW3oRg58rxZyUWau55f0hmfNj7vSkux3D6oHyM2fO8NJLL9GiRQuqVq2a4x0PHDiQgQMHcv36dTw8PPD2tv2ozMyZMx86Kp1ezZo1H3nV8FGjRj0055o+OuuJgs2qgl6v8v1CM7oHJq+5fzE//6Lww+K0ff+1VeHPrQrTRqct8/ZKe1yxIg+f/Xkz+uEztgEmzVL4e4fCV3PNlLDygsxazJySG/R6lTULyTL3j4vTlv+5NeU2fXTasgdzX7cy98RZsHkHrJiLDa+1ZJbM+S+3LQpyYec1Bam7nxr0uc1Z0rt8PZYBU1fj7uaCl4eBm7FxTBrYjogbsanr6PU6przZnqBivrw57Xunnw16+Xos/adZZp6cUeaB9zJPd35m0GZuyZw7tJgZtJs7PenuvKMgdff7x7LxUcp0PAPcqT+uCsYEE6Z4EwY/Nw7NPotHcQOmJDOnv71MrWHlKV6nMACFgj25HXaXC/+76rSBUM8SBhqMq4QxwYQx3oy7nysHZ53D098NU5KZU99GUHt4Ofzr+KbLHM+F/0U6dXBOi7nl/SGZ82Pu9KS7HcPqgfLz58/z5ZdfMnDgQOLj43n55Zd55ZVXcjyKX7x48Ww/tkSJEjnaN4DBYMBgMFgsM97N+jlVrahiMumIioa6NTNex8UFgkulfV3ED9wNlsvSqxWq8u9ehR5d047E/7NHoVZo2teqCpNmK2zcpvDlbDOlArN+blrPnJIbTCaFm9Fq6sU/H5W7qB8YsshdMxT+2Qs9u6Yt+2cP1A5N+1pVYeJs+GsbfDUbG19rySyZ819uW2hp/jNbKIrC7du3cXd3R1VVFEXhzp073Lp1CyD1z7ykIHV3dqddeVBCkpGEJCOFPA00fCyYud9tA9IGyUsHFGbgtO+JjUuwy/7swSJz9WDmrk6XeWB7ygQUZsD0vJUZtJlbMucOLWYG7eYG6e68pCB1d3anXXmQi7seF3c9yXeM3Dx8i0rdS6EaVVSTCjrL103RkfLRSydLn/nG4dtU7l4yNfND/9Q6BdWcB0Kjzdzy/sgdWswM2s0N0t2OYvVvlSVLluSDDz7ggw8+YNOmTakXFTEajXz55Zf06dOHSpUqWb3jNWvWsHr1asLDwx+6Yvf+/futfwYOEnc3ZS7h+y5dUTh+WsXXB8qWhvatzYyarGPEIDNVK0J0DOw6oFCpnErThrbv79UXVHoMVli8SuGpxiqbdijs3Acr5qV9E370qcJvGxXmTjLj6QHXb6YsL+SdMqCtxcyQUW44fhp8fSCkdMp0L+9PhpGDoNq93DsPQKVy0CwbuV9/AV4bDItWQcvGsHEH/LsPVs5LW+fDT1PmkZ43Cbyseq0ls2TW7nva0/ZdZsmRc6Xdvn2bMWPGsHbtWiIjI6lduzazZ8+mfv20q5keP36c9957jy1btmA2mwkNDWX16tWUKVMmR/tWVdWi51RVpXbt2hZf57WPbxe07s6JhtWDQVEIvxJFqYDCDO7WlLAr0fyy/Sh6ncLUQe2pEhzAsFlr0esUivqmfOfE3knAaLJ+SjF7Z1ZQCLsaRSn/wrxzL/O6e5mn3cs8dNZa9IpCUZ97meOcl1mruSWzZM6PudOT7s47pLutd+NQLKjgGeRO/NUETq26hGegO0HNiqJz0eFX1ZtTX19E76bgXsxA9PHbRGy9SeXXSjst8/VDt0BV8Qpy5+7VRE5+fRmvQAMlmxdF56LgV9Wbk19fRuemw6O4G1HH7hCx9SZVXsvkjBnJnSl5f0jm/Jg7Pelux1DUHMyAHhsby9dff83SpUvZv38/1atX5/Dhw4983Jw5c/jggw/o0aMHixYtolevXpw9e5Y9e/YwaNAgJk2alN1IFnr06MHFixfZtGmTTY8zXq3A7gPQa8jDR7g7Pm1m8iiVZCN8sVxh3QaFazdS5hauFQqDepmpVP7hba5dr/Dz7ylnVWdmw98wd4mOixFQJggG9zXTumna/aHNMj7iPvF9M52fUTWZWYeO3Qegx5CH3+SdnlaZMgqSjfD5cvh5A0TeSBlsrBUKb/cik9yw9ndYPjvT2Gz4G2YvgUsRUDoI3ukLbdLlrtos42+6ye+rdH4GySyZM80M2svdpdepzDecDVXXTnj0Sukc7zzO6nW7devGkSNHWLBgAUFBQaxcuZJPP/2UY8eOUbJkSc6ePcvjjz/OG2+8wcsvv4yvry/Hjx+nfv36+PvnbK6ZLVu2WLVes2bNcrQfR8uv3f14z09ytN9W9Svx5otP4u/nza24BDbtPcOCH7YTF59EYDEffp7RJ8PHDZi6mv0nLmV7vzk5EaRV/UoMeiFd5n1n+Ox+5qI+rMskc/+pq9l/MvuZc0qLuSVz7tBiZnBO7j3Lhj16JRtId0t350R2u/vt/a/kaL9X/43i9LeXSYhKwtXbhYDHC1OhW0lcPVPOB0yMSeb0t5e4efgWyXeMuBc3UOqpYgQ/G5CjQRadkv0DXFf+jebUN5dJiErGzVtPwON+VHwpCFdPfWrmU99c5sbh2yTfMeJR3I1SLYtR9ll/px7UcUZus6p79EpZcMb7IyfvDdDm+0OLmZ2Ve3btb+z5FKS7HdTdORooT+/gwYMsXbqUOXPmPHLdKlWqMG7cOF5++WUKFSrEoUOHKFeuHGPHjiUqKop58+Y9chvWGDVqFFevXmXZsmU2Pc54tYJd9i8eTUfOyk8IkXO6EvYdKK/y44c2rX/i+bFWrRcfH0+hQoX4+eefadeuXeryWrVq0b59eyZOnMhLL72Eq6srK1assClDQZWfujunA+XOkk8/MSmEcDB7D5RLd2tHfurunA6UO0tOB0OFdXI6UO4M8t4QWbH3QLl0t2NYPfVKfHw8f/75Jy1atKBQoUIW9926dYvw8HA+/vhjq7YVHh5Oo0aNAPDw8OD27dsAvPbaazRs2NBuhT1lyhS7bEcIIYT1bD36mpiY+NAFojK8foTRiMlkwt3d3WK5h4cH27dvx2w28+uvvzJy5Ejatm3LgQMHCAkJYdSoUXTq1CkbzyRzZrOZM2fOEBkZ+dDFq5o2bZrJo3KfdLcQQghrSHdLd+eEdLcQQuQ+6W7HdLfVh+gWLlzI7NmzHyprAB8fH+bMmcPixYut2laJEiW4eTNlgtzg4GB27twJpFy4xE4nuANw8eJFevfubbftCSGEeDTVrNh0mzJlCr6+vha3jH7hKlSoEE888QQfffQRERERmEwmVq5cya5du7hy5QqRkZHcuXOHqVOn8vTTT/PHH3/QuXNnnn/+eas/vmWNnTt3UqFCBapWrUrTpk1p3rx56q1FixZ22489SHcLIYSwhnR33iHdLYQQwhrS3Y5h9UD5119/zZAhQzK9f8iQIXz11VdWbeupp57il19+AeCNN95g6NChtG7dmm7dutG5c2drIz1SVFSU1ZmEEELYh6oqNt1GjRpFbGysxW3UqFEZbnvFihWoqkrJkiUxGAzMmTOH7t27o9frU48wd+zYkaFDh1KrVi3ef/992rdvz+eff2635zdgwADq1avHkSNHiIqKIjo6OvUWFRVlt/3Yg3S3EEIIa0h35x3S3UIIIawh3e0YVk+9cvr0aWrWrJnp/TVq1OD06dNWbWvhwoWpL+yAAQMoUqQI27dv57nnnmPAgAHWRmLdunVZ3n/u3DmrtyWEEMI+bD1BKaOPe2WmfPnybNmyhbi4OG7dukVgYCDdunUjJCSEYsWK4eLiQrVq1SweU7VqVbZv325bqCycPn2aNWvWUKFC3r+ehXS3EEIIa0h35x3S3UIIIawh3e0YVg+UG41Grl+/TpkyZTK8//r16xiNxkwf//zzz/Pll1/i4+PDypUr6datGy4uKbvv2rUrXbt2tTE6dOrUCUVRsvzYmDOvoiuEEAWRmgtXJ/Ty8sLLy4vo6Gg2bNjA9OnTcXNzo379+pw8edJi3VOnThEcHGy3fTdo0IAzZ85o4pdt6W4hhBDWkO7OO6S7hRBCWEO62zGsHigPDQ3lr7/+om7duhne/+effxIaGprp4//3v/8RFxeHj48PvXr14umnn8bf39/2xOkEBgYyf/78TCeLP3jwYKZ5hRBCOIgDC3vDhg2oqkrlypU5c+YMI0aMoHLlyvTq1QuAESNG0K1bN5o2bUqLFi34/fff+eWXX/j777/tluHtt99m+PDhXL16lcceewxXV1eL+2vUqGG3feWUdLcQQgirSHfbbV85Jd0thBDCKtLddttXelYPlPfu3Zthw4YRGhpK+/btLe775ZdfmDhxIp988kmmj69SpQqjRo2iRYsWqKrK6tWr8fHxyXDd119/3apMdevWZf/+/ZkW9qOOegshhLA/R/63e38etUuXLlGkSBG6dOnCpEmTUkuzc+fOfP7550yZMoXBgwdTuXJlfvjhB5588km7ZejSpQuAxUWr7veNoiiYTCa77SunpLuFEEJYQ7pbujsr0t1CCJH3SHc7prsV1YZGe/XVV1m1ahVVqlShcuXKKIrC8ePHOXXqFF27duWbb77J9LH//PMPw4YN4+zZs0RFRVGoUKEMP56lKIrVk7Jv27aNuLg4nn766Qzvj4uLY+/evTRr1sy6J3iP8Wre/0hefqGz/nqyQggH0ZU4ZdftlVs12ab1z3X/P7vu39HCwsKyvN+eHzezh4LS3Y/3zHzQIC/LhU9MCiHyoT3Lhtl1e9Ld0t1ZcVR3v73/FZvWzyt0itnZEQoEs6q9sQJ5b4iszK6d+f/d2SHd7ZjutmmgHGD16tWsWrWK06dPo6oqlSpVonv37jbNdabT6bh69WqOPwLmKDJQnntkoFwI57P3QHnI11NsWv/8KxlfaVvYT0HobhkoF0IUJPYeKJfuznsKQnfLQLnIigyUi/zG3gPl0t2OYfXUK/dl9wIg6Z0/f57ixYvnaBtCCCHyqALwyduTJ08yd+5cjh8/jqIoVKlShbfffpvKlSs7O1qGpLuFEEJkSbo7z5HuFkIIkSXpbodwyiG64OBguSq2EELkU6qq2HTTmjVr1lC9enX27dtHzZo1qVGjBvv376d69ep8//33zo7nMNLdQgiRf0l350/S3UIIkX9JdzuGzWeUFwQmVZsfl9Er2vtokhltvtYid8jUPBqVz49sjxw5klGjRvHhhx9aLB83bhzvvfceL774opOSFXAafd9p70dWmS5GiHxJo/+HWku6O2+6Y3JzdoRs0Sva+4bR5fdvciEKonz+be2s7pZRKCGEEHam2HjTlqtXr/L6668/tPzVV1/l6tWrTkgkhBBC5JR0txBCCKEt0t2OIAPlQggh7Mts401jmjdvzrZt2x5avn37dpo0aeKEREIIIUQOSXcLIYQQ2iLd7RA2Tb1iNBpxd3fn4MGDVK9ePVs7/PXXX6lYsSKVKlXi9OnTnDp1inbt2mVrW0IIIfKgfDgvw7p161L/3qFDB9577z327dtHw4YNAdi5cyfff/89EyZMcFbETEl3CyGEeCTp7jxFulsIIcQjSXc7hKKqqk2z2pQvX54ff/yRmjVrZmuHBw4cYPTo0fz66688++yzTJ48mVq1amVrW46SeKWcsyNkixbnKBciKzJHee7QlThl1+0FL51u0/phvUfadf+OoNNZ915UFAWTyeTgNLYrCN39eI9PnB0hezT4820+/JlcCM3Zs2yYXbcn3S3d7Qy99vRydoRskTnKhRDZsbDeV3bdnnS3Y7rb5lGo0aNHM2rUKKKiorK1w9q1a1O/fn1ee+01Hn/88TxX1kIIIXJItfGmAWaz2apbXvxFG6S7hRBCPIJ0d54j3S2EECJL0t0OYdPUKwBz5szhzJkzBAUFERwcjJeXl8X9+/fvz/SxLVq0QFEUoqOjOXToELVq1WLLli0oisKmTZtsTy+EECLvkdNNAXjsscf47bffKF26tLOjSHcLIYTImnQ3IN0thBBCQ6S7Aft3t80D5Z06dcr2zjZv3gxAt27dePPNN9m4cSPffvtttrcnhBAi79Hgp1Ed4sKFCyQnJzs7BiDdLYQQImvS3Smku4UQQmiFdHcKe3e3zQPl48aNy9EOv/vuO4oUKULfvn05ePAg3333Hd26dcvRNoUQQuQhUth5jnS3EEKILEl35znS3UIIIbIk3e0QNg+UA8TExLBmzRrOnj3LiBEjKFKkCPv37ycgIICSJUtm+dg6derQpk0bACZNmkRkZGR2IgghhMir5CNgeZJ0txBCiExJd+dJ0t1CCCEyJd3tEDYPlB8+fJhWrVrh6+vLhQsX6Nu3L0WKFGHt2rWEhYWxfPnyLB9fsWLF1L8XLlyYwoUL2xw6IyaTiRs3bqAoCkWLFkWv19tlu0IIIWwkR7bzHOluIYQQWZLuznOku4UQQmRJutshdLY+YNiwYfTs2ZPTp0/j7u6euvyZZ55h69atdg1njbVr19K4cWM8PT0JCgoiMDAQT09PGjduzE8//ZTreYQQosDLh1ff1jrpbiGEEFmS7s5zpLuFEEJkSbrbIWw+o3zPnj188cUXDy0vWbIkV69etUsoa33xxRcMHjyY3r17M2LECAICAlBVlcjISDZs2MBLL73E3Llz6du3r83b3ntI4ctvdRw/pXD9psKsj4w81cSx76w/tyjMX6rnYgSUDoK3+5homW6fi7/WsXGrwvlwBYMBaoWqDOlvIqTM/cyw9Bsdx07B9ZsKcyaaaNnEoZH5YwvMXaJLzfxOHzOtmqbdv2ilwp9bFc6Hg7sBalWHYf3NqZm1mlsy507mPYdg6Tdw9F7muRNVWuVC5jlLIDwCygTBO32gdbrMC1fCn1vh3L3MtavD8P5YvKe1mttupITznILS3Tnh6e5K/+cb07xuBfx8PDkVFsnMrzdz/Pw19HodA7s0plGNEEr6+3LnbiJ7joUzb/U2bsTE5WrODDPXSZd5VbrMz2eQ+XvnZr6fe0DndLnDU3IfS5e7cY0QShZPyb37WDjz1jj/tZbMkjm/5bYg3Z3nSHc/mineRPiacG7uvYnxlhGvsl6UfbUshcoXSrk/wUTYd2FE7Y3CeMeIobiBwDaBlGhVIldzpmeMNxG2Jpybe6JIvpWMV1kvyr8WQqHy3qmZz38bxs290RjvJGMo7k5Q2xIEOTHz/dwX1lzkxr3c3mW9KP9aWXzS5T73bTg37uV2L26gpJNzS2bJnB9zW5Dudgibzyh3d3fn1q1bDy0/efIkxYsXt0soa3388cd89tlnLFiwgE6dOvHEE0/QqFEjOnXqxIIFC/jss8+YOnVqtrYdnwCVy6uMesdkl6w/r1fo/U7mH0s7dFRh5AQ97duYWbPYSPs2ZkaM13P4WNqcQ3sPKrzUyczKz4wsnGHEZIIBI1y4G38vczxUrqDywRCzXTKvXa/Q853M3yIHj8C7E3R0aKPy4xIzHdqoDB+v4/CxtHX2HFJ4ubPKNwvMLJppxmSCvu/qUjNrNbdkzs3MMHqIXSKzdj28/k7m9x84AsMmQIc28NOSlD+HjYdDFpmhe2f4dgEsmQlGE7zxLhm8p7WX214Us2LTTWuWL19OYmLiQ8uTkpIsPgb9xRdfEBAQkJvRMlVQujsnPujdhgbVyzB+4Xq6f7CcXUfCmD/yBYr7eePu5kLlYH+WrtvJa2NX8t7cXygd4MfMIR1zPadF5l5taBB6L/Po5ew6Gsb8ES9QvPADmcet5L15v1C6hB8z33FuZoDR93KPW7Sel8csZ+eRMOa/m5a7SrA/S9bt5LXxKxk57xfKlPBj5mDn5pbMkjk/5k5PujuFdHfG8mp3n1l8hpgjMVQcWJGaU2riW92XY1OPkRiV8m99fuV5Yg6l3F9rei0Cnw7k3PJzRO2LyvWs951edJaY/2KpPLAidabWxO+xwvw3JS3zuRUXiD4cQ+U3K1D341qUfCaQs1+d5+Ze52UGOLXoLNH/xVJlYAXqTa2J32O+HJ5ynMSoJADOrAgj6nAMVd8sT/2Pa1LymUBOf3WBG07MLZklc37MnZ50dwp7d7fNA+UdO3bkww8/JDk5GQBFUQgPD+f999+nS5cuWT72zJkz2UuZicuXL/Pkk09men+jRo2IiIjI1rabNFB5u4+ZVk0zPkSTnAyffK6j1QsuPP60C90H6tlzIPtvvJVrdDSsp9LnFTMhwdDnFTOP11FZuSbtn+jzj010fEalQkjKINyH75u4ck3h2KmU/TZpCO/0US3OIk0vKRlmLFBo0UVHvbY6XhqgY/eBbEdmxRqFJ+pC31dVygWn/NmgLiz/Pu11WPixmc73MlepABPfN9/LnLYdLeaWzLmTuWlDGNIH2mSR+eMF0KwL1GkL3QaQo8zL10CjutDvVSgXnPJnw7qw/Pu0dRZ9DJ2fgYr3Mk9+H65cUzia7j2t1dx2k88/AtarVy9iY2MfWn779m169eqV+nX37t3x8vLKzWiZKijdnV0GVxda1KvI3O+2ceDkZS5FxrDop3+JuB5Ll6dqEBefxNsf/8Bfu08RfjWaI2evMGPlJqqGlCCgSKFczfpQ5tXbOHAqXeYb6TLP+IG/9uSdzKm561ZkTvrcP1vmfute7rCr0Rw5d4UZX2+imrNfa8ksmfNZ7odIdwPS3ZnJi91tSjJxc89Ngl8KxreKLx4lPCjTpQyG4gaubbwGwO0ztynepDi+1XxxL+5OiadK4FXGizvn7uRq1vSZb+y5ScjLwfhW9cGjhAfBXUrjXtzAlb9SMt86c5uAJv4Uvpc58KkAvMt4cfu8czKn5DZzfU8U5V4uQ+GqPniUcKfsvdwR6XKXaFI8NXdQam7nfHJGMkvm/Jj7IdLdgP272+aB8hkzZnD9+nX8/f2Jj4+nWbNmVKhQgUKFCjFp0qQsH1upUiVKly7N66+/zrJly7hw4UJ2cwMQGhrKwoULM71/0aJFhIaG5mgfmRkzTc/BIwrTxpr4YYmRNs1UBo7UE3Ype9s7dFShUX3Ld27jx1UOHc188P3Ova70LWTdO370VIUDRxRmjDXz41IzbZur9B+py3bmgxllrq9yMIvMt1MzW78fLeaWzLmT+YOpKWdTzxwLPy2Fts2h70i4kO3vQ2hU33JZ4/pw4Gjmj8nOe1qruUUKVVVRlIffx5cuXcLX19cJiR5Nujtrer2Ci15HUrLRYnlispGaFUtm+BhvDwNms8qduw+f5ZAbUjMnPZA5yUjNSnkzM2T+WickGamV119ryexQWswM2s1d0Eh3X8hRlrzY3ZgAM+hcLYc0dG46bp1MORPfp5IPUfujSIxKRFVVYo/FEn81nsI1Cudu1nvUe5mVjDKfug2kZL6ZLnPM0ZTMfk7KDKCa1Exf69hTKa+1b6VC3NwfTWJUEqqqEn0vd5Eazvn+ksy5Q4uZQbu5CxpndbfNc5T7+Piwfft2Nm3axP79+zGbzdSpU4dWrVo98rFbtmxhy5Yt/P3337z11lskJCRQpkwZnnrqKVq0aEGLFi0oWTLjHygzMnPmTNq1a8fvv/9OmzZtCAgIQFEUrl69yp9//klYWBi//fZblttITEx8+FT+RBWDIfPBvIuXYf1GhT+/N+JfLGVZz5fM7Nit8NN6He/0tX1qixtRUMTPclCxiJ/KjUw+1aGq8PFnemo/ZqZiuUdvP/wy/LZRYdMac2rmXi+pbN+tsPY3hSH9bD+8dCMKivpZLivqR5aZp8/XUecx1arMWs0tmXMv868b4e81pGbu/RJs2w1rf4Oh/WyOzI0oKPZA5mKPyDxtPtR9TKWSDe9pLea2haLBo9XWqF27NoqioCgKLVu2xMUlrUJNJhPnz5/n6aefdmLCzBWE7jabjOj0Nv9YA8DdhGQOn46gd4eGnI+IIir2Lm2eqEJouUAuXot+aH03Vz1vdX2SDTtPEJeQlK195lRq5o4NOX/lXuaGj8j8onMzw73cZyJ4o0Na7rYNq1A9s9wuega98CQbdjn5tZbMDqfFzKDd3A+S7s57CkJ3m5JM6N0yn540K3oPPYUqFuLST5fwLOmJq68rN/65wZ2zd3APSLn4acjrIZxdfJZ9g/eh6BVQoHyf8vhU9snWPnPKxUNPoYreXPzpEp4lPXDzdeX6Pze4ffYOHiVSMpfvUZbTi8+x++39qZkr9imPr5My38/tU9GbsHS5Ix/IXaFHWU4tPsfOdLkr9ynntNySWTLnx9wPku52DJt/owwPDycgIICnnnqKp556KnW5qqpcvHiRMmUyvzJckyZNaNKkCaNHjyY5OZl///2Xv//+m7///ptvvvmGxMREKlSowMmTJ63K0qxZM44cOcKCBQvYuXNn6kVNSpQoQfv27RkwYABly5bNchtTpkxhwoQJFss+GFaYMe/6ZfIIOH5aQVUVnnvV8uVLTobC9w5qXLkGnXqk/8dMmRO4wdNpy9q3NjNmeNqg+kMHSlTIbLh+8mwdp88qfDnXmMkaD2Q+Baqq8OyrlkfMkpOg8L3v84hr0KFH2v0mExiNUO/ptGXPtVYZNzztuzGDgzsZLgOYOEvh1DlYMdf6AwlazC2ZcyfzsXuZn3nVsh2SHsj8XI+0+4z3MtdN93/qc61h/PDM86lZZP5oFpw8B1/PtSqypnPbRNXe/GfW6NSpEwAHDx6kbdu2eHt7p97n5uZG2bJlH/lRaGcpCN0dVKMNJWu1tSpDRsYtXM+YN9ry2+z+GE1mToZFsmHnCSoH+1usp9frmDSwHYqiMP2rjdnenz2kZp5lQ+blzs0MMHbhesb2bsv6T9Pl3nWCymUyzq3TKUxzcm7JnLFSptcAAQAASURBVDu0mBm0m9uCdHeeUxC6u2afmtTuV9uqDBmpOKAiZxadYe/be0EH3mW9KfZEMeIupEyNcGXDFW6fuU2VYVUwFDNw68Qtzn15DrfCbhSuXjjb+82JygMrcmrhGXa/te9eZi+KNyrGnXvTOURsuMrtM7epNrwy7sUMxJ64xdkvz+Hm54qfkzIDVBlYgZMLz7Lzrf2gg0JlvfBPl/vyhqvcOnOH0OGVcS/mRuyJ25z+8jxufm74VXfOGbiSWTLnx9wWpLsdwuaB8rJly1K1alXWrVtH+fLlU5dHRkYSEhKCyWTdxS9dXV1p2rQp9evX54knnmDDhg0sWrTI5vnUypYty7Rp02x6THqjRo1i2LBhlgujamb5GLMZ9DqVbxca0T8weY2nR8qfxYvC94vTBrH/2qbjr60KUz9Ie33ST6FTrAjcjFJIP3FQVIxC0SIP73/KbB1/79CxbI6REv4P359hZlVBr1f5fqEZXSaZ/YvCD4vTBin/2qrw51aFaaPTlnk/kPnBM1ZvRj98FjHApFkKf+9Q+Gqu2erMWs0tmXMrM+j1KmsWkmXmHxenLf9za8pt+ui0ZQ9mvm5l5omzYPMOWDEXG9/T2sxtk3x6ZHvcuHFASu+89NJLGAwGJyeyXkHo7qfe/Dzb2wO4HBnLgCmrcXdzwcvDwM3YOCa92Y6I62nz4un1OqYMak9QcV/enPq9088GvXw9lgFTH8g8sB0RNx7I/GZ7gor58uY052eGlNz9p1nmnpxR7oH3ck93fm7JnDu0mBm0m9uCdHeeUxC6+63/3sr29gDcA9ypPro6pgQTpngTbn5unJx7EkNxA6YkE+Grw6k8pDJFaqf8Uu1Vxou4sDgifo1w2kC5R4A7NcdYZj4+5xTu/imZL3wXTrWhlSlS2y81852wu1z+NcKpA+UeAe7UGhOKKcGEMd6Ewc+NY6m5zZz/7iKhQytR9F5u7zJe3AmL4+KvEU4bVJTMkjk/5rYg3e0Q2fqMctWqVXn88cdZvXo1LVu2TF2uqo/+V0pISOCff/5h8+bN/P333+zZs4eQkBCaNWvGggULaNasWXYiZZvBYHjoRU+My/qoTJWKKiazQlSMQt0aGT9nFxcoUyrt66KFVdzdFItl6dUMVfl3r8JrL6Yt+2ePQs3QtO2rasog+abtOpbMMlIqMOvnll7Viiomk46oaKibyXEAFxcITpeviB+4GyyXpVfrXuYeXdMy/rNHodYDmSfNVti4TeHL2WabMms1t2TOrcxgMincjFapZ2Xmon5gyCJzzVD4Zy/07Jq27J89UDvdlIuqChNnw1/b4KvZZOM9rc3cNsmnhX3fU089xfXr1ylVKuUfZPfu3axatYpq1arRr1825s7JJfm9u7M77cqDEpKMJCQZKeRpoGH1YOau3gakDZKXDijMwKnfExuXYJf92YNF5seCmftdusxv3ss8LW9lhke81gPbUyagMAOm563ckjl3aDEzaDc3IN2dR+X37s7utCsP0rvr0bvrMcYZifkvhuCXglGNKqpJRdFZ/m6v6BSrXj9Hu585Oc5I9H8xhLyclvnBj5UrOlBtn93VIdLnjvovlnIvl0E1mjPJrUAeyC2Zc4cWM4N2cwPS3Q5i82+ViqLw2Wef8fXXX9OuXTumT5/O4MGDU+/LSrNmzdizZw/ly5enadOmvP322zRr1oyAgIDspX+EHj16cPHiRTZt2mTzY+/eTZlL+L7LVxVOnFbx9YGypaFdKzMfTNbz7psmqlRUiYlV2L1foWI5lSYNbX+3vtLFTK/Bepau0tGisZnNO3Ts2qfw5dy0MwUmzdKx/i8dsyeZ8PKAGzdTlnt7pwxYxj2Q+dIVhePpMrdvbWbUZB0jBpmpWhGiY2DXAYVK5VSaNrQ5Mq++oNJjsMLiVQpPNVbZtENh5z5YMS/t+X/0qcJvGxXmTjLj6QHX72UudC8zaDO3ZHZWZjh+Gnx9IKR0ylQv70+GkYOg2r3MOw9ApXLQLBuZX38BXhsMi1ZBy8awcQf8uw9Wzktb58NPU+YYnzcJvKx+T+ft3J627zJL+XWutPu6d+9Ov379eO2117h69SqtWrWievXqrFy5kqtXrzJ27FhnR3xIQenunGhYPRgUhfArUZQKKMzgbk0JuxrNL9uOotcpTH2rPVWCAxj26Vr0OoWivinfObF3EjCanPMTc4aZr0Tzy/Z7mQfdyzwr72S+n1tBIexqFKX8C/POvdzr7uWedi/30Flr0SsKRX3u5Y5z7mstmSVzfsudnnS3dHdOOKu7ow9HgwoegR4kXEvgwjcX8Aj0wL+pPzoXHT5VfLjwzQV0rrrUqVeub79O2VfK5mpOy8wxqKqKZ6AH8dcSOL8qDM9ADwKaFkfnosO3qg/nvwlD56ZLmXrl+C0it10n5FXnZQaIOhxz77V2J/5aAudWheMZ6E6J1NyFOPdNOHq3lNc69vgtrm27TvlXgyWzZM5zmbWcOz3pbsd0t6LaeDhVp9Nx9epV/P39Wb9+PS+//DIvvPACY8eOfeRHwFxdXQkMDKRTp040b96cpk2bUqxYsRw/icyMGjWKq1evsmzZMpsel3ilHHsOKLwx9OHjCB3ampk4ykSyERau0PHLBh2RN1LmFq4ZqjKwlynDi+P9vF7h5991LJ2d+evzx98K85bouXQFSgfB231MtGqa9s9To7lrho/76D0jHZ9R2XdQR68hDx+V7/i0mcmjVJKN8MVyhXUbFK7dy1wrFAb1MlOp/MPbXbte4effU870zcyGv2HuEh0XI6BMEAzua6Z107T7Q5tlfJbAxPfNdH4m5bntPoDmckvm3Mm894COHkMe/kWg09MqU0ZBshE+Xw4/b4DIGykD0bVC4e1eZJIZ1v4Oy2dnGpkNf8PsJXApIuX78J2+0CZd5qrNMv7FZPL7Kp2fSfn77gNoKneXXqcy33A2lJ/5iU3rnx0+7NEr3XP79m3GjBnD2rVriYyMpHbt2syePZv69es/tG7//v1ZuHAhn376KUOGDLEpU1b8/PzYuXMnlStXZs6cOXz33Xfs2LGDP/74gwEDBnDu3Dm77cteCkJ3P97Dtvfdg1o9Xok3X3wSfz9vbsUlsGnvGRas2U5cfBKBxXz4eWafDB83YMpq9p+4lP0d52BqwVb1M8j8Q7rMMzLJPDVnmXM6HWKr+pUY9EK63PvO8Nn93EV9WJdJ7v5TV7P/ZA5e6xyQzLlDi5nBObn3LLO+O60h3S3dnRPZ7e5ee3rlaL83dt4gbHUYSVFJuHi5UPTxopR5sQwunim/xyfFJBH2XRixR2Ix3jFiKGYgoEUAgc8EPvJgQ1b0ORidur7zBhe+CycxKgkXbxeK1S9C2a6WmS98F070fzGpmUs8FUDJHGbW5fDU08idNzl/L7frvdwhXUtb5D733UWL3IFPBVDqmRI5yi2ZJXN+yr2w3lf2fArS3Q7q7hwNlAMcO3aMDh064OnpydGjR7Ms7Li4OLZt28bff//N5s2bOXjwIJUqVaJZs2Y0b96cZs2aUbx48Zw9IztIvJLBSLcG6BXdo1cSQkN0yHs6N+hK2HmgfIaNhf2u9YXdrVu31ItJBQUFsXLlSj799FOOHTtGyZIlU9f76aefGD9+PNevX2fEiBF2LWxvb2+OHDlC2bJl6dChA40bN+a9994jPDycypUrEx8fb7d92UtB6O6cDpQ7jQavwZNPrxskhKbYfaBcuttu+7KXgtDdOR0od5acDJQ7S04HyoUQOWf3gXLpbrvtKz2bR6GaNWuGm5tb6tfVqlVj9+7d+Pn5PXKuLy8vL55++mmmTp3Krl27uHHjBtOnT8fT05Pp06dTqlQpqlevbvuzyMTFixfp3bu33bYnhBDi0RTVtpu14uPj+eGHH5g+fTpNmzalQoUKjB8/npCQEBYsWJC63uXLl3nrrbf4+uuvcXXN+JM4OREaGsrnn3/Otm3b+PPPP3n66acBiIiIoGjRonbfnz1IdwshhMiKdHfeI90thBAiK9LdjmHzQPnmzZspXLiwxbIiRYqwZcsWzGbb5tjz8vKiSJEiFClSBD8/P1xcXDh+/LitkTIVFRXFV1/Z94iNEEKIR1AVm26JiYncunXL4paYmPjQZo1GIyaTCXd3d4vlHh4ebN++HQCz2cxrr73GiBEjCA0NfWgb9jBt2jS++OILmjdvzssvv0zNmilXZV23bh2PP/64Q/aZU9LdQgghsiTdnedIdwshhMiSdLdD2Hwxz+bNm9O7d29efPFFPDw8bHqs2Wxm7969qR8B27FjB3FxcZQsWZIWLVowf/58WrRoYfX21q1bl+X9eXGuOSGEyO8UG69LNmXKFCZMmGCxbNy4cYwfP95iWaFChXjiiSf46KOPqFq1KgEBAXzzzTfs2rWLihUrAill6uLiknqxK0do3rw5N27c4NatW/j5+aUu79evH56e9r40qn1IdwshhMiKdHfeI90thBAiK9LdjmHzQHndunUZOXIkb7/9Nl27duWNN96gYcOGVj22cOHCxMXFERgYSPPmzfnkk09o0aIF5ctncPU6K3Tq1AlFUbL86JkzLw4ghBAFko1TII4aNYphwyznSzMYDBmuu2LFCnr37k3JkiXR6/XUqVOH7t27s3//fvbt28fs2bPZv3+/w//v1+v1GI1Gtm/fjqIoVKpUibJlyzp0nzkh3S2EECJL0t15jnS3EEKILEl3O4TNU6/MnDmTy5cvs3z5cq5fv07Tpk2pVq0aM2bM4Nq1a1k+9uOPP+b48eNcunSJlStX0qdPn2yXNUBgYCA//PADZrM5w9v+/fuzvW0hhBDZY+tcaQaDAR8fH4tbZoVdvnx5tmzZwp07d7h48SK7d+8mOTmZkJAQtm3bRmRkJGXKlMHFxQUXFxfCwsIYPny4Xcs0Li6O3r17ExgYSNOmTWnSpAlBQUG88cYb3L171277sSfpbiGEEFmR7s57pLuFEEJkRbrbMWweKIeUEf2OHTvy008/cfnyZbp3786YMWMoXbo0nTp1YtOmTRk+rn///lSqVImNGzdmuu158+ZZnaNu3bpZlvKjjnoLIYRwANXGWzZ4eXkRGBhIdHQ0GzZsoGPHjrz22mscPnyYgwcPpt6CgoIYMWIEGzZssMMTSzFs2DC2bNnCL7/8QkxMDDExMfz8889s2bKF4cOH220/9ibdLYQQIlPS3XmSdLcQQohMSXc7hM1Tr6S3e/duli1bxjfffIO/vz89e/bkypUrPPfccwwcOJAZM2Zk+LguXbrw559/Ur9+fYvls2bNYuzYsbz11ltW7X/EiBHExcVlen+FChXYvHmz9U9ICCFEzjnw96QNGzagqiqVK1fmzJkzjBgxgsqVK9OrVy9cXV0fuvq1q6srJUqUoHLlynbL8MMPP7BmzRqaN2+euuzZZ5/Fw8ODrl27WlwJPC+S7hZCCPEQ6W677csRpLuFEEI8RLrbbvtKz+aB8sjISFasWMGyZcs4ffo0zz33HN9++y1t27ZNnZuma9eudOrUKdPC/vTTT3n22WfZsmUL1apVA2DGjBl89NFH/Prrr1ZnadKkSZb3e3l50axZM6u3J4QQIucUBxZ2bGwso0aN4tKlSxQpUoQuXbowadIkXF1dHbfTB9y9e5eAgICHlvv7++fZj29LdwshhMiKdHfeI90thBAiK9LdjmHzQHmpUqUoX748vXv3pmfPnhQvXvyhdR5//PGHjlqn16tXL27evEmbNm3Yvn073333HZMnT2b9+vU0atTI1khCCCEKiK5du9K1a1er179w4YLdMzzxxBOMGzeO5cuX4+7uDkB8fDwTJkzgiSeesPv+7EG6WwghhLNId2ePdLcQQghnKcjdbfNA+caNGx95RNnHx+eRH7169913uXnzJvXq1cNkMvHHH3/QoEEDW+MIIYTIa/L5FJWzZ8/m6aefplSpUtSsWRNFUTh48CDu7u52nZPNnqS7hRBCZEm6O8+R7hZCCJEl6W6HsHmg/FFlnZk5c+Y8tCwwMBBPT0+aNm3Krl272LVrFwCDBw/O1j6EEEI4nyM/ApYXVK9endOnT7Ny5UpOnDiBqqq89NJLvPLKK3h4eDg7Xoaku4UQQmRFujvvke4WQgiRFelux1BUKy5PXbt27dR50B4ls6thh4SEWBdIUTh37pxV6zrK1ctBTt1/dvnqDM6OYDMd1r2v8hK9onN2hALjaFKisyPYLNRNe9+HLiXO2HV7VcZ/atP6J8YPtev+RYqC1t2Nus506v6zy+ihvR7UYHWjajCzEFnZs2yYXbcn3Z03FLTu7vLPm07df3a56YzOjmAzXX4fURNCA75usMiu25Pudgyrzijv1KlTjnd0/vz5HG9DCCGEBuTzn8OnTJlCQEAAvXv3tli+dOlSrl+/znvvveekZJaku4UQQlhNuttJySxJdwshhLCadLdD9mvVQPm4cePssrNGjRrRqVMnOnToQJUqVeyyTSGEEHlLfj9h5YsvvmDVqlUPLQ8NDeWll17KM79sS3cLIYSwlnS3dLcQQghtke52THdnew6Jffv2sXLlSr7++msOHDhg1WP69evHrl27qF+/PpUqVWLEiBFs27YNK2Z/EUIIoRGK2bab1ly9epXAwMCHlhcvXpwrV644IZH1pLuFEEJkRLo775LuFkIIkRHpbsew+WKekZGRvPTSS/z9998ULlwYVVWJjY2lRYsWfPvttxQvXjzTx/bs2ZOePXuSmJjIxo0b+fnnn+nWrRvJycm0a9eOjh070rZtWzw9PXP0pIQQQjhRPv8drHTp0uzYseOhOUB37NhBUFDevMaFdLcQQogsSXfnOdLdQgghsiTd7RA2n1H+9ttvc+vWLY4ePUpUVBTR0dEcOXKEW7duWX3VbIPBwLPPPssXX3xBREQE//vf/yhZsiRjx46lWLFitG/fnh07dtj8ZIQQQuQBqo03jenTpw9Dhgxh2bJlhIWFERYWxtKlSxk6dCh9+/Z1drwMSXcLIYTIknR3niPdLYQQIkvS3Q5h8xnlv//+O3/99RdVq1ZNXVatWjXmz59PmzZtshWiQYMGNGjQgEmTJnH27FnWrVuX5z8CJ4QQImP5fa60kSNHEhUVxZtvvklSUhIA7u7uvPfee4waNcrJ6TIm3S2EECIr0t15j3S3EEKIrEh3O4bNA+VmsxlXV9eHlru6umI2Zz3pTVxcHP/73//o1q3bQ/dFRETw119/8cILLzB06FBbYwkhhMgr8nlhK4rCtGnTGDNmDMePH8fDw4OKFStiMBgs1rt06RJBQUHodNm+HIjdSHcLIYTIknQ3IN0thBBCQ6S7Aft3t81beeqpp3jnnXeIiIhIXXb58mWGDh1Ky5Yts3zsRx99xIkTJwBISEiwuC8oKIj//e9/TJo0ydZIQggh8pJ8/hGw+7y9valfvz7Vq1d/qKwh5ayvCxcu5H6wDEh3CyGEyJJ0NyDdLYQQQkOkuwH7d7fNA+Xz5s3j9u3blC1blvLly1OhQgVCQkK4ffs2c+fOzfKxq1evpn379gCEhIQQERGRevo8wKhRo/jmm29sjQSAyWTi2rVr3LhxI1uPF0IIYR+Katstv1LVvPPkpLuFEEJkRbo7hXT3o0l3CyFE3iDdncLe3W3z1CulS5dm//79/Pnnn5w4cQJVValWrRqtWrV65GNv3rxJ4cKFAbhz5w7x8fGEhISwZ88egoKCcHd359q1azbl+fXXX5k2bRq7d+8mOTkZgEKFCvHcc88xadIkypQpY+tTFEIIkRP5uIS1SrpbCCFElqS78xzpbiGEEFmS7nYImwbKjUYj7u7uHDx4kNatW9O6dWubdlatWjX++usvypcvj6IoANy6dSv142CLFy+mfv36Vm9vxYoVDBo0iDfeeIPGjRuzbNkyevXqRXBwMN9++y1169bln3/+oWLFijblFEIIkX35+Wi1Fkl3CyGEeBTp7rxFulsIIcSjSHc7hk0D5S4uLgQHB2MymbK1s2HDhtGrVy+Sk5Mxm83cunULVVXZsGEDmzZt4tdff+XPP/+0enuTJ09m0aJFqRcp6dKlC507dyY8PJwBAwbw0ksv8d577/Hjjz/anPXQIT3ffOfGqdM6bt7UMfHDeJo8abR5O7bYstWFJcvciIjQERRkpk/vJJo2SdvnylVubN3mQni4DoNBpXqoif59EylTJuW7Y98hha++1XP8lML1mwqffJTMU00c+53z1xaFz5a6cDECSgfBW32MFvtc8rWOjVt1XAhXMBigZqjKkP5GyqY74WDvIYUvv9Wl5p71kdHhuf/cojB/qT4199t9TLRMt8/FX+vYuFXh/L3ctUJVhvQ3EVLmfmZY+o2OY6fg+k2FORNNtGzi0Mj8sQXmLtGlZn6nj5lWTdPuX7RS4c+tCufDwd0AtarDsP5mTWc+dljHuu9dOX9KITpKx7vjE3m8cfb+/7HWzm16vvvSlWtXFAICVV7ulczjT6btc+03LuzerufyRR1uBqhUzcSrfZIJKp32/tHia21XUth5SkHq7pzwdHelb7fGNHu8In6+Hpw6f51ZX27i+NmUM+6aPV6BTq1qUrlcAIV9POgxYjmnw67nasaMMvd/vjHN61bAz8eTU2GRzPx6M8fPX0Ov1zGwS2Ma1QihpL8vd+4msudYOPNWb+NGTFzeyF0nXe5V6XI/n0Hu752b29PdlQGd02UOT8l8LF3mxjVCKFk8JfPuY+HMWyOZC0JmLee2IN2dp0h3W8cUbyRy7Tlu7b+O8VYS7mUKEdi9Ep7lfAA40mtjho8L6FqB4s8E52bUVKZ4IxE/XiB23w2SbyXjGexNqVfK43UvsynBRMTqc8Tsv4HxjhG3Yu74ty5J8ZZBTsmbPvflH8KISZe7zKvl8SpXKDX3pdXnidmXkttQzIB/m5L4OzG3ZJbM+TG3Beluh7B5jvLRo0czatQooqKibN7Ziy++yMcff8zEiROJj4+nXr16xMfHM3ToUG7dusWuXbto3Lix1dsLCwujQYMGqV/Xq1ePq1evcuXKFSDlB4TNmzfbnBMgPgEqlDcx5O3EbD3+Qet/d+GdoR6Z3n/kqI4JH7rTprWRJYvu0qa1kfEfunPseNo/0aFDejp3TGLBvLvM/Dgek0nh3ZGexMenZa5UXuX9d+wzoP/zeh1vvJP5sZRDRxXem+BCuzYmVi9Opl0bEyPHu/DfMSV1nX0HdXTrZGb5Z0Y+n2HEZIKBI1xTM9/PXbm8yqh37DMA+vN6hd7v6LPMPXKCnvZtzKxZbKR9GzMjxus5nC733oMKL3Uys/IzIwvv5R4wwoW791/reKhcQeWDIVlfcd5aa9cr9Hwn82/Hg0fg3Qk6OrRR+XGJmQ5tVIaP13H4WNo6ew4pvNxZ5ZsFZhbNNGMyQd93dZrOnJgAZcuZ6f1Wsl0y/71Bz/jhD1/84b5Tx3TMmuhG01ZGPv48gaatjHw60Y3T6b4Pjx3W07aDkUlzEhg9NQGzSWHi+wYS0r+nNfha21UBuajIo9w/gysvKCjdnRPvD2hL/RrBfDjvN14dvpzdhy8we8yLFPPzBsDD4Mrhk5dZsGpbrmfLzAe929CgehnGL1xP9w+Ws+tIGPNHvkBxP2/c3VyoHOzP0nU7eW3sSt6b+wulA/yYOaSjs2PzQa82NAi9l3v0cnYdDWP+iBcoXviB3ONW8t68Xyhdwo+Z7zg39+h7mcctWs/LY5az80gY899Ny1wl2J8l63by2viVjJz3C2VK+DFzsGQuCJm1nNuCdDcg3Z2ZvNrdl5cd587RKEr1rUaFjxrgXb0IF2bsJzk65cz5yrOetLiV7F0VFPCt65/rWe8LW3qK20eiCe5XhaqT6lGouh+npx8mKSpl3OHSqjPc+i+Ksv2rUm1KfQLaluTiytPE7HfunPAXlpzm1tFoQvpXJnRyXXyqF+bUtLTcF78+y63DUYQMqEL1qfUIeLoU4SvOEL3Pebkls2TOj7ktSHcD9u9umwfK58yZw7Zt2wgKCqJy5crUqVPH4vYoAwcO5NKlS3h4eLBixQoMBgMHDhxgw4YNPPbYYzZlKVu2LHv37k39ev/+/eh0OgICAgAoUqRI6vxptmrYwESfN5Jo2jTjQefkZFjwhYEuL3rR9llvBrzpyYGDmQ/OPsqaH9yoW8/Eq92TCC5j5tXuSdStY+L7NW6p63w8LZ5nnjYSEmKmQnkz749M4FqkjlOnUvb7ZAOVt/qYaNk04++A5GT49HM9rV9wpeHTrrw60IU9B7L/hvp6jY6G9VTeeMVMSDC88YqZx+uofL0m7W312cdGOj5jpkKISuUKKhPeN3LlmsKxU2n7bdJA5e0+ZlplkfuTz3W0esGFx592oftAfY5yr7yXu8+93H3u5V6ZLvfnH5vo+IxKhRCoXAE+fN9kkbtJQ3inj0rrphnvIykZZixQaNFFR722Ol4aoGP3gWxHZsUahSfqQt9XVcoFp/zZoC4s/z7tdVj4sZnO9zJXqQAT3zffy4xmM9d+3MxLvZJp0CTjgyjGZFi5yJX+L7nz2nMe/N/bBo4esvm/tVS//uhCjbpmOr9spGQZlc4vG6le28yvP6YdMPpgSiLN25ooXValbHmVN99N5EakjnOn0/arxdfanhQbb/lVXrogWEHp7uxyc3WheYOKfLZyKwePX+bytRiWfP8vEZGxPN+mJgC/bzvOsh92sue/sFzNlhmDqwst6lVk7nfbOHDyMpciY1j0079EXI+ly1M1iItP4u2Pf+Cv3acIvxrNkbNXmLFyE1VDShBQpJDzc6/exoFT6XLfSJd7xg/8tSfv5Da4utCibkXmpM/8s2Xmt+5lDrsazZFzV5jx9SaqSeZ8n1nLuR8k3Z1CujtjebG7zUkmbu27TomuFfCq7IchwJOATuVwK+ZB1KbLALj6Gixutw5cx6uKH27+mZ/A5ujMMXuvU7JbOQpVKYx7gAdBnctiKO7OjU0RAMSduUWRJ0tQqGphDMXdKdYiCI/S3tw9f9spme/njt57nVLdQlJzl3y+LG7F3bl+L/edM7co+mQAPvdyF28RiGcZb+6evyOZJXOeyqzl3A+S7k7h9It5duzYMcej9S4uLnz55Zc89dRTLF++nBIlSmRrO4MGDaJPnz7s2bMHd3d3Fi9ezGuvvYZenzJwvGvXLipVqpSjrJmZOt2dq1d1jB2TQLGiZrZtd2Hkex4sWxJHqVK2/yMdPabnxS5JFsvq1zOy5ge3TB4Bd+59WrOQj3X7GztNT8RVhWljjRQvqrJpm45BI134flkywaVsjszhozpeedFyAPOJx82sWqMHMh7YvHPv/xRfG34vGDNNT8RVmDbWhH9RlY3bdAwcqeeHZcZs5T50VOG1Fy3P9G38uOVAeea5Vaz5L2b0VIXLVxVmjDVTvBhs3KbQf6SOn5aZs5X54FGF11+0/HduXF9lxRqFzA4N3rbxtdZi5s9muHH9qsKQD5LwK6qye4eeyaMMzFiYQGA2vg9PHdPRrovlwbGa9Uz89mPm/1XejUt5P3gXsn5/WnytbaHY50R6zTt27BhBQXnjo3nS3Vlz0Su46HUkJlt2V1KSkRpVSuZqFmvp72VOSrb8Pysx2UjNihln9vYwYDar3Llrn0/LZUdq7qQHcicZqVkpb+bO7LVOSDJSK4++1pI592g194Oku1NId2csL3a3alLBrKK4Wv4Op7jpiDsd89D6xthEbh++Sak3quVSwoelZOahzDpXHXdOxwLgXcmX2AM3KdqkBK5+btw5EUPitXh8HivijMhAWm5dBrlvn7oFQKFKvsQcuEmxpim5bx+PJeFqPKVf8XNGZMmcS7SYGbSb+0HS3Sns3d02D5SPHz/eLjt+4YUXLP7MjkGDBqHT6Vi5ciWJiYn07NmTMWPGpN7/+OOPs2rVqiy3kZiYSGJi4gPLVAyGzH8ouXxZYeMmF9Z8F0exYimDUC91S2b3Hhd++92Vfn2SMn1sZqKiFPyKWA5o+RVRiYrOOIeqwvzP3HnsMSPlQh793XHxMvy+UceG75PxL5ayrMdLZv7ZrePn9XoG97V92pMbUVD0gf8jivqlLM8s88zPXKj9mJkK5awbVLx4GdZvVPjze2Nq7p4vmdmxW+Gn9Tre6Wv7/ww3oqCIn+X+i/ipWeb++DM9tR8zU7Hco7cffhl+26iwaY05NXOvl1S271ZY+5vCkH62D+Bm57WePl9HncfUfJv5aoTCjs16FqxKoMi978MOLxo5tEfP5g0udH/D9rNaYqIVCj/w3ijspxKTxffhV5+7UqW6iTIh1r1GWnytbZZ3Tsaym+eff97qde/Pz1m6dGlHxbFZQehus8mITm/zjzUA3E1I5r+TEfTq0pCwyzeJirlL6yerUK1CIBevRmdrm452NyGZw6cj6N2hIecjooiKvUubJ6oQWi6Qi9cezuzmquetrk+yYecJ4hJs/znFXlJzd2zI+Sv3cjd8RO4XnZv7bkIyh89E8EaHtMxtG1ahemaZXfQMeuFJNuySzLbQYmbQbu6HSHcD0t2ZcVR3m5JM6N2y96lsvYcLHuV9iVx3HkOgFy6+bsTuvEr8uVu4BXg+tH70jqvo3fX41Cuerf3Zg97DBa8KPlxdF4Z7kCeuvm5E/RtJ3LnbGAJSznIv9WoFwpee4sjQnaBXUBQo07sy3pV8nZ474ufwTHOXfq08YUtOcXjILhS9AgqUfaMShSo7J7dklsz5MfdDpLsB+3e3zb9RlitXjj179lC0aFGL5TExMdSpU4dz587ZLZw1Bg4cyMCBAzO8z5qrbk+ZMoUJEyZYLBs+1Jt3h2d+muWp03pUVeHV170sliclg8+9s7uvXVPo0SvtfpMJjCZ4+lnv1GWtWyczfGjaDwsPDcWpmZ+7PGuOgXPndMydczfzJ5fO8dMKqqrQ8VVXi+XJyeDrm5L5yjV4vkfa/fczP/F02rJ2rc2MHp42qP7gSQ5qFpmnzNZz6qzCl3OtH8C8n/u5Vy3fqsnJUPje/09XrkGnHmn338/d4Om0Ze1bmxkzPG1Q/aGTM7LIPXm2jtNnFb6ca93c78dPgaoqPPuq5dHJ5CQonHKNFiKuQYceafebTGA0Qr2n05Y911pl3PC0//kyOqEks5NMJs5SOHUOVsy17kCCFjOfP61DVRXe6eVusdyYDN73vg9vRCoMfSPtfvO998Zrz6V93LJJSyP9hmT+nszqPb1krivh53V8+Kn1Z4Rp8bW2WT4sbF/fPPQDUTYUhO4uVa01pUPbZjvTh/N+4/8GtmXdFwMwmsycOn+NP3ccp1JIQLa36WjjFq5nzBtt+W12f4wmMyfDItmw8wSVgy3nXtXrdUwa2A5FUZj+VcYXNstNqbln2ZB7uXNzj124nrG927L+03SZd52gcpmMM+t0CtMks820mBm0m9uCdHeeUxC6u0rvelR7o362M5XqV43LS49zcth20Cl4BBfCt0EJEsJvPbRu9LYIfBuWQOea/elS7aFsvyqELTnJkSE7QQeewYXwa+hPfFjKxz2v/3GZuLO3KDckFLei7tw5GcvF5adxLeyGT6jzzmQN6V+ZC4tPcfidXSm5yxaiyBP+3L2Qkjvyj8vcOXubCkNDcStq4M7JWMK+OoOrrxs+1Z2TWzJL5vyY24J0t0PYPFB+4cKFDK++nZiYyKVLl+wSKjeNGjWKYcOGWSyLvlE5y8eoKuh1Kgs/j0P3QM963Bt/K1pMZfGitCvZb93mytatLoz+IO3KeV7pDnQXKaISFWU5qhUdreDn9/A7f9YcAzv+cWHurLv4F7fuO0M1K+h1Kt8sTEb3wAwjnvcyFy8K3y1OGzDcuE3Hxq06Jn+QNkDsne7YQLEiD5+xGhUDRTP4VNjU2Xq27NCxdE4yATZcO8VsTnmtv11oRJ9F7u8Xp2X8a5uOv7YqTP0g7X3q9UDum1GWU1JExSgZ5p4yW8ffO3Qsm2OkhJW5zaqCXq/y/UJzpq+1f1H4YXHaIOVfWxX+3KowbXTaske91jejHz6LGGDSLIW/dyh8NdecrzOrKuh0KtM+S3gos7tHyr+tX1GVjz9PSF2+a7ueXdv1DH4/7QwuD8+090FGZ4/Hxij4ZvB9uHSeK/t26pkwM5GiVn4fgjZfa1sp+bCwly1b5uwIOVIQurtNrwU52ubla7EMGr8ad4MLXh4GbsbE8eGQ9lyJjM3Rdh3pcmQsA6asxt3tXubYOCa92Y6I62mZ9XodUwa1J6i4L29O/T5PnMF6+XosA6Y+kHtgOyJuPJD7zfYEFfPlzWnOz335eiz9p1lmnpxR5oH3Mk+XzNmhxcyg3dzpSXfnPQWhu1/fPyJH2zT4e1Lu/bqYE02Y4o24FjYQ/tl/uBaznIM87lQ0SVfv4jeweo72Zw+GAA8q/V8tTIkmzPcyn5t/DLfi7piTTESsOU+5waH41ko5QOJZxpv48DtErr/o1IFy9wAPqnxQE9O919qtsIGz845juJf78vcXKP9ONQqny303PI6r6y85bVBRMkvm/Jg7Pelux7B6oHzdunWpf9+wYYPFKL/JZGLjxo2EhITYN10O9ejRg4sXL7Jp06ZM1zEYDBgMBotld29nPRdcxQomTGaF6BgdNWtkPGWJix5KlUx71/oVNmMwqBbL0gutZmLvPhe6vpg2UL1nnwuhoWnbV1WYPcfAtu0uzP70LoGB1n9XVKloxmR2ISpGoU6NjB/n4gJl0s2PXKQwGNwsl6VXI9TMzr06i/m+d+7RUTM07WtVTRkk37Rdx+JZyZQMtDryvdwqJrNCVIxCXStzFy2s4u6mZJq7ZqjKv3sVXnsxbdk/exRqhqZtX1VTBsk3bdexZJaRUjbkrlpRxWTSERUNdWtmvI6LCxZzURfxA3cDmc5PXete5h5d0zL+s0eh1gOZJ81W2LhN4cvZ5nyfuWwFM2azQmyMQtXHMj4zWq+HEum+53wLq7i5WS5Lr1I1M//t09M+3Tzlh/fpqVTN8j29dJ4ru3foGT8jEX8bvg9Bm6+1zfJhYWtVQeru7E678qCERCMJiUYKeRloUDOYz1Zutct2HSkhyUhCkpFCngYaVg9m7uptQNogeemAwgyc+j2xcQmP2FLussj9WDBzv0uX+817uaflrdxZvtYD21MmoDADpkvmnNJiZtBubkC6Ow8pSN2d3WlXHqQz6NEZ9JjikrlzJIoSXStY3B+99QruZQvhUSbvXEBXb9CjN+gxxiVz+0gUJbuWQzWpKXMnPzAcoegU1DwyF3H63LeORFGqW1ruh+bU15HyS4iTSebcocXMoN3cgHS3g1j9W2WnTp0AUBSFHj16WNzn6upK2bJlmTlzptU7NplM3LhxA0VRKFq0aOqFQOwpKCgI3YOnbFrpbjxcvpz22CtXFE6f0eFTSKV0aZXWrZKZPNWdQQMSqVjRREyswoEDLpQLMdGwoe3zfb/wfBKDh3iy6hs3Gjc2smOHC/v26ZmXbmqVT2cb2LjRlUkT4/HwvH9WNHh7qRgMcPcuhF9O+0a+fFXhxGnw9VEJLg3PtjIxerILw980UqWiSnSswp79ChXKqTRpaPt3WPcuZt4Y7MKyVTqaNzbz9w4du/YpLJub9vwnz9Kz/i8dsyYZ8fKAGzdTlnt7pwz8wf3cadtNya3i6wNlS0O7VmY++H/27jwuivqP4/hrdoHlRgRB8MD7Pirv+8izTMtKS8vbUjNTM9Oflpp5ZqlpauaVWmpllh1m5n2ked/3LYooIMrN7n5/f6DAyiEgsKx8no8Hj2Jmdua947Jv+M7szEQ9wwaYqFBWcSdc478DGmWzmLvry2Z6DtKz6HsdzRqY2Xw/95JkuSfM0LHuHx0zJ5hS5HZxhMiHMl+7oXEyWeZ2Lc2MnKjjg3fMVCwLYXdgz0GNcqUUjetmOjJvvKLoPkhjwfcazRsoNu3U2L0fls1Oev7jp2v8uVFj1gQzzk5w635mt/v72hYzx0RDULLXdHCQxqVzGq7u4F9U0fBZI7OnOtDtrXhKljFz967GsYM6ipc080ydzP82+dxLRsYMNfDLSjtq1Texd5eeowcsL62ycJY9OzbZMXxcLE7Oijv3z+R2dgGH+69pW9vXrmmsN6uexCPbD/vpp5/44YcfuHLlCnFxlmcFHjhwwEqpUspv3f046lQPADSuXA+laGFP3nmzMVeuh/H7luMAuLk4UtjbDe+CCT8xxf0TPoYUcieS0PCMXQYtu9WtEgCaxpUboRT1LcCgzo25HBTGb9uPo9dpTB7YjgoBvgydvga9TsPLI+GjbOERMRhN1vuLO9XcN8L4bcf93O/czz0j7+SuWyUADY3LQaEU9SnAe/czr72fecr9zENmrEGvaXi5388cKZmf9My2nDs56W7p7sdhre6+dzThF1pDYWfigqMIWnUOg58zng2TzggxRRsJ33sTv9cefXmY3HD3aChKgaOfE7E3owlcdQFDYWe8GhVGs9PhWsGDwFUX0DnocfA2EHEqnJCdNyn6emmr5g4/kvBHj6OfEzE3Y7i28gKOhZ3xauSL7n7uqysvoDnoMHgbuHcqnJAdwRTrkhM3RJLMkjn/5k5OujtnultTKnOHQ0qWLMnevXvx9vbO0gbXrFnDtGnT2LdvH0ZjwlmbdnZ21KxZkw8++CDxFwNrCgr05+AhPYOHprwJSJvW8Yz8MAajEZYud2D93/bcvq3h7q6oXMlEzx5xlC6V8hfedX/Z8dd6e2ZOj04x74EtW+1YuMiB6zd0+Pub6dsrjsaNk85sbdI89SPgI4ZH07aNkTOHHek7xD7F/Bdamxg/0kS8Eb5Zpuf39TqCbydcD7laZUX/nibKpnJzzV/X6Vj7l46FM9O+NveGLRpfLbTj2g0o5g8D+xh5tnHSup5q6pDq48Z9aKRDWzM6NPYe1Og9JOUxm/atzXx6P/f8ZTp+S5a7+v3c5VJ5j/p1ncavf+lYNDPtAxZ/b9GYvVCfmPvdPiZaJMtdrWnK/Qgw/kMjHZ/T+O8g9Byc8pfMDm3MTBypiDfC10s11q7XuHk/81OV4Z2eZsql8jvOmnUav/6VcKZvWtZvgVkLdVy9DsX9YVBfMy0bJ82v3CT1X3o/HWHmpbbKJjP/sDeeccMcU8xv0tLIO8PjMBrh5+/s2fqPntDbGm7uUK6iiU7d41O9ueaW9Xq2/G3H2M/Tvqb47m16Vi6x5+YNjcJ+itd6xlOnUdJrqVPLlO8LAAOGxdK0tYnKDgab29ev9jyb5nqz4ukB0zO1/ME5Q7J1+zntyy+/ZNSoUXTv3p1vvvmGnj17cv78efbu3cs777zDhAkTrB0xhfzQ3fU7ZXzQIDXN65Wj/+uNKOTlyt2IGLbsOcvXK3YQGZ3wC9lzTSoz+p02KR638MddLPzx3yxv1+iU/qfY0tOidjkGvNoQH09X7kbGsGnfOeb+lJDZz9udXz/vk+rj+k36gQOnHuNj+1mPDECLWqnkXp0s97Q0ck/Oem6VDZnfeSVZ5v3nmPMgs5c7a9PI/PbkHzhw2jqXSJDMuccaufcuHvrohTJBulu62xpe3jXgsR4f/t9Ngn46jzEsBr2LPe41fPB9uTR656S/LUO3BHJjxRkqTG9kMf1xOOgydu+q1ITtCSbwx4vEh8Wid7HHs6Y3/q+UTMwWfyeOwB8vcO9YGMZIIw7eBryb+uHTumjKs1szQfeYI2qhe24R+ONF4kJjsXOxp0Atb4q8UgK7ZLmv/XiRu8fCMEYYMdzP7dumyGPllsyS+UnK/V2db7LzKUh351B3Z3qg/HF8/fXXDBo0iF69etG6dWt8fX1RShEcHMz69etZvHgxs2bNom/fvhle57Vr15g7dy67du0iKCgITdPw9fWlfv369O/fn6JF07hWQTqCAv0z/Zi8wENnePRCeYzucf/atgK9lvtnS+RXx+MyfpPMvKKyg+39HNoVPpet63umf+YK+8DcjBf2vXv3+Oijj1izZg3BwcE8/fTTzJw5k1q1ahEfH8/o0aP5888/uXDhAh4eHrRo0YLJkyfj75997+sVKlRgzJgxvP7667i5uXH48GFKlSrFxx9/TGhoKLNnz862beUFttLdjztQbi2PM1BuNTYY+XEHyoXIa7J7oFy6W7r7UXKiux93oNxaHmeg3Foed6BcCPH4snugXLo7Z7o70wPlgwYNokyZMgwaNMhi+uzZszl37hwzZsxI87FlypRh5MiR9O7dO9X5ixYtYsKECZw/fz5DWXbs2EHbtm0pVqwYrVq1svgFYMOGDVy9epV169bRoEGDDD8/kIHy3CQD5SI9MlCeO7J9oLxfJgt7XsYLu3Pnzhw7doy5c+fi7+/P8uXLmT59OidOnMDV1ZVXXnmFvn37Ur16dcLCwhg8eDBGo5F9+/Zl9mmkydnZmZMnTxIQEICPjw8bNmygevXqnD17lrp16xISEpJt28ou+aG7ZaA8F9lgZBkoF0+abB8ol+7Otm1ll/zQ3TJQnntkoFwI68v2gXLp7mzbVnKZ/uzR6tWrLW4w8kD9+vWZPHlyuoUdGBhIw4YN05xfv359rl+/nuEsQ4YMoU+fPkyfnvqLY8iQIQwePJi9e/dmeJ1CCCEeUw79Hh4dHc3q1av59ddfadw44boyY8eO5ZdffmHu3Ll8+umnbNiwweIxs2bNonbt2ly5coXixYtnS47ChQsTEhJCQEAAAQEB7N69m+rVq3Px4kVy8UNamSLdLYQQIl3S3XmOdLcQQoh0SXfniEyfGhsSEmJx5+0H3N3duX37drqPrVy5MvPnz09z/jfffEPlypUznOXYsWP069cvzflvv/02x44dy/D6hBBCPD5NZe4rNjaWu3fvWnzFxqb8NIHRaMRkMuHoaHndeicnJ3bs2JFqlvDwcDRNo0CBAtn2/Jo3b85vv/0GQO/evRkyZAgtW7akc+fOvPTSS9m2newk3S2EECI90t15j3S3EEKI9Eh354xMn1FepkwZ/vrrLwYOHGgxfd26dZQqlf7dXz///HOef/55/vrrr8SPbGmaRlBQEBs2bODy5cv8+eefGc7i5+fHrl27KF++fKrz//33X/z8/FKdJ4QQIodk8uDupEmTGDdunMW0MWPGMHbsWItpbm5u1KtXj/Hjx1OxYkV8fX1ZsWIFe/bsoWzZsinWGxMTw4gRI+jSpQvu7u6ZfRZpmj9/PmZzwo1V+/XrR8GCBdmxYwcvvPBCun9EWpN0txBCiHRJd+c50t1CCCHSJd2dIzI9UD506FAGDhzIrVu3aN68OQAbN27k888/T/fjXwBNmjRJvMbN7t27CQoKAhJOp2/Xrh39+vWjRIkSGc4ybNgw+vXrx/79+2nZsmWKXwAWLFjwyExCCCGyl2bOXGOPHDmSoUMtr7VqMKR+rfdly5bRq1cvihQpgl6v55lnnqFLly4cOHDAYrn4+Hhee+01zGYzc+bMydwTeIRr165RrFixxO87depEp06dUEpx9erVbPuoWXaS7hZCCJEe6W7p7vRIdwshRN4j3Z0z3Z3pm3kCzJ07lwkTJiRe16xEiRKMHTuWbt26ZXvAR1m1ahXTp09n//79mEwmAPR6PTVq1GDo0KF06tQp0+uUm3nmHrmZp0iP3Mwzd2T3zTxr9foiU8vvXZT5G5JFRkZy9+5d/Pz86Ny5MxEREfzxxx9AQll36tSJCxcusGnTJry8vDK9/vTo9Xpu3LiBj4+PxfSQkBB8fHwSuyivedK7W27mmYtsMLLczFM8abL7Zp7S3dLdj5IT3S0388w9cjNPIawvu2/mKd2dM92d6TPKAfr370///v25desWTk5OuLq6Znodly9fJigoCE3T8PX1JSAgICtR6Ny5M507dyY+Pj7xWm3e3t7Y29tnaX1CCCEeUy78Hu7i4oKLiwthYWGsX7+eqVOnAkllffbsWTZv3pztZQ2glELTUo66RUREpLiOW14i3S2EECJN0t15knS3EEKINEl354gsDZQbjUa2bNnC+fPn6dKlCwDXr1/H3d39keU9ffp0vvjiC65fv554l1JN0/D39+f9999n8ODBWYmEvb29XBdNCCHygJw8YWX9+vUopShfvjznzp3jgw8+oHz58vTs2ROj0cgrr7zCgQMH+P333zGZTIkfNS5YsCAODg6Pte0HH1PTNI2PPvoIZ2fnxHkmk4k9e/bw1FNPPdY2cpJ0txBCiLRId+dN0t1CCCHSIt2dMzI9UH758mXatGnDlStXiI2NpWXLlri5uTF16lRiYmKYN29emo8dP34806ZN43//+x+tW7fG19cXpRTBwcGsX7+esWPHEhERwejRox/rSQkhhLCiHCzs8PBwRo4cybVr1yhYsCAvv/wyEyZMwN7enkuXLrF27VqAFMW5efNmmjZt+ljbPnjwIJBwZPvo0aMWvwA4ODhQvXp1hg0b9ljbyCnS3UIIIdIl3Z3nSHcLIYRIl3R3jsj0NcpffPFF3NzcWLhwIV5eXhw+fJhSpUqxdetW+vTpw9mzZ9N8bLFixZg1axYvvvhiqvPXrFnDwIEDCQwMzNSTyG5yjfLcI9coF+mRa5Tnjuy+Rnmdbpm7Vtqepdl7ndWc1rNnT2bOnJmtd/TOafmhu+Ua5bnIBiPLNcrFkya7r1Eu3Z335IfulmuU5x65RrkQ1pfd1yiX7s4ZmT6jfMeOHezcuTPFqfQBAQGPLNqQkBDKly+f5vxy5coRFhaW2UhCCCHykif89/DFixcn/v+1a9fQNI0iRYpYMdGjSXcLIYRIl3R3niPdLYQQIl3S3Tki0wPlZrM51TuLXrt2DTc3t3QfW7t2bSZMmMCSJUuws7PctNFoZOLEidSuXTuzkbLd4bgC1o6QJWXtbe+XnYK6LF0m36pW3S1l7QiZ1sP9qrUjZEkFuTmQTXrST1gxm818+umnfP7550RERADg5ubG+++/z6hRo9Dp8t6nTvJDd+/64X1rR8iShh2nWTtCpsW75L3X+CPprR0g8+QseJGbpLvz3vtafujuS+Ge1o6QJWFnC1o7QqZVfeaitSNk2t042/ukbkHHaGtHEPmIdHfOdHemRylbtmzJjBkzmD9/PpBwcfWIiAjGjBnDc889l+5jZ82aRatWrfDx8aFJkyb4+vqiaRpBQUFs27YNg8HAhg0bsvZMhBBC5A2Zu6KXzRk1ahQLFy5k8uTJNGjQAKUUO3fuZOzYscTExDBhwgRrR0xBulsIIUS6pLutHTEF6W4hhBDpku7Oke1m+hrl169fp1mzZuj1es6ePUvNmjU5e/Ys3t7ebNu2DR8fn3Qff+/ePZYvX87u3bsT74pauHBh6tWrR5cuXfLEdePWX6xk7QhZImeU545V9+SMcpE2W7yGfXZfo7xel8xdK/rf723rTGB/f3/mzZtH+/btLab/+uuvDBgwwOrX+0xNfuhuWyVnlOcOJWeUiydMdl+jXLpbutsaaqwbZe0IWSJnlOcOOaNcPGlW15+TreuT7s6Z7s70KKW/vz+HDh1ixYoVHDhwALPZTO/evenatStOTk6PfLybmxv9+/enf//+WQoshBAij3uyD2wTGhpKhQoVUkyvUKECoaGhVkj0aNLdQggh0iXdnedIdwshhEiXdHeOyNLpvE5OTvTq1YtevXpl+rEmk4krV64QEBCATqcjNjaWX3/9FbPZTLNmzfD19c1KJCGEEHmElvJymk+U6tWrM3v2bL788kuL6bNnz6Z69epWSvVo0t1CCCHSIt2dN0l3CyGESIt0d87I0ED52rVrM7zCh0+JT+7w4cO0adOG4OBgqlSpwh9//EHbtm25ePEimqZhb2/P+vXrqVWrVoa3J4QQIm950m8qMnXqVJ5//nn++ecf6tWrh6Zp7Nq1i6tXr/Lnn39aO14i6W4hhBAZJd2dN0h3CyGEyCjp7pyRoYHyF198MUMr0zQt1TtzPzB8+HAaNmzImDFjWLBgAa1bt6Zy5cocOHAATdPo2bMn//vf/+TGIkIIYcue8JuKlCxZkjNnzvDVV19x6tQplFJ07NiRAQMGYDQarR0vkXS3EEKIDJPuzhOku4UQQmSYdHeOyPTNPB9HwYIF2blzJxUrViQ6Oho3Nzd27dpF7dq1ATh+/DhNmjTh9u3buRUpVXIzz9wjN/PMHXIzz9wjN/OEhi9n7uaEO1YPy9bt5zS9Xs+NGzdS3EQrJCQEHx+fdP9wtUW20t22Sm7mmTvkZp7iSZPdN/OU7pbutga5mWfukZt55g65madIT3bfzFO6O2e6O1dHKZVS2NklbPLh/0LCTjCbzbkZSQghRHZ7sg9sk9bx5YiICBwdHXM5Tc6T7hZCiHxAuvuJIt0thBD5gHR3jsjwQPlzzz3HihUr8PDwAGDChAm88847FChQAEgY0W/UqBEnTpxIcx01atRgypQpjBs3joULF1KyZElmz57NokWLAJg1axZVqlR5jKeT4ObNmyilKFy48GOvSwghROY8qddKGzo04ew9TdP4+OOPcXZ2TpxnMpnYs2cPTz31lJXSpU66WwghREZId+cd0t1CCCEyQro7Z2R4oHz9+vXExsYmfj9lyhRef/31xMI2Go2cPn063XVMmjSJNm3asHjxYry9vdm8eTO9evXCz88PnU5HWFgYv/32W4bDh4aG0rdvX/bt20e7du348ssvefvtt1m0aBGaplGnTh1Wr16Nn59fhtcphBDiMT2h10o7ePAgkHBk++jRozg4OCTOc3BwoHr16gwblrc+zibdLYQQIkOku/MM6W4hhBAZIt2dIzI8UP7wKe9ZubR5rVq1uHz5MqdPn6Z8+fK4urqyZcsWvvvuO6Kjo2nZsiXly5fP8PqGDRvGmTNn+OCDD/jpp5945ZVXuHDhAtu3b0en0/Hee+8xYsQIvv3220xnFUIIkTVP6pHtzZs3A9CzZ09mzpyJu7u7lRM9mnS3EEKIjJDuzjuku4UQQmSEdHfOyPU7Kbq6ulKjRo3E7x0dHendu3eW1vXXX3/x008/Ub9+fV599VX8/PxYv349DRo0AGD69Ol07tw5S+s+d1Sx8SczV8/C3VDo87GOavVz9q5Kh3Yo/lhq5vYN8PaDdt11VG+QtM2/V5o5slNx8xrYO0DJStC+lw7fYgnLHD2i56dVDpw7qyc0RMdH46Ko3zBn7+K+Y5sdSxcbuHFDh5+fme69Y2mQbJurvndg5w57rl3R4WBQVKpkotdbsRQtlnRNvIOHdSxfZc+pMxq3Q3RMHR9Lk4Y5e0OdTVv1fL3YnsDrGkX8Ff17x9O0UdI2l3xnx5btei5f0WEwQNXKJga+FU9A8cd/J4qLMrPzuwjO7Y4hKtyMTyl7mvV1p3BZewAiw0xs//Yelw/FERthpkhlB5q/7Y6n/+P9uO47rLFkpY6TZzRuhWjMGG+keaOcfWfdsFXjq0V6rl6HYv7wbh8Tzybb5oLvdGzcpnHxiobBAE9VVgx+20TJ4rabOSE3LFqh48QZuBWi8eWnJp5tlKOx+XsrzFqoS8z9Xh8zLRonzf9mucaGbRoXr4CjAZ6qAkPfNlvkzjZPaGE/sHjxYmtHyHW20t35jZOjPX27NKRxnbJ4ujtx5mIwMxdt5tS5IAAa1ylLh1bVKF/alwLuzvQY+i3nLt2ycmpwdrTn7Zcb0KRmGTzdnTlzOZgvlm3m5MWb6PU6+r3SgPrVS1LEx4OIqFj2Hr/CV6u2c/tOpHUzd2xA02eSMn/+fVLm/h0bUL9asswnrjD7R+tn7vdSssxXEjKfSJa5QbWSFCmUkPm/E1eY/ZNkzk+5LUh3P3HyQ3c76x3oX64FzXwr4engyum715l28g9OhAcCsL/thFQfN+PUOpZd3JGbURO52NsztG4DWpUui5ezE8dv3WL81k0cCb6ZYtlPm7WgS9XqjN+2mcWHDlghbRJTtJHbv5zn3oFgTPficCzuhs/r5XEqmXCJoFO9N6T6uEKvlsWrTYlcTJrESW+gV6k2NCxUBU97N85GBDL7zC+cvncVgM3NP0/1cfPO/caqK1tyMWkSU7SR4DUXuHvgFsa7CfvZr0s5nEslDBQe67kx1cf5dipDobYBuRk1kS1mBtvNbUG6O0foMrqgpmlompZiWkZduXIl46mAwMDARy4THh5OkSJFAPD19cXOzs7i417+/v7cuXMnU9t9IC4GipTUeHVAhndRuvb8bebLD9Ie/L14QrFkoplazTVGzNFRq7nG4olmLp1KeuWfO6po9ILG0Ok63pmkw2yCOaPMxMYkLBMTrVGqtJkB78ZkS+YNf9kzfKhzmvNPHtczabwTz7aMZ878SJ5tGc+kT5w4dVKfuMzRI3a80D6O6bMjmTg1CpMJRg13JibZzaCjY6BsaTPDBsVnS+7f/9LTf3Dad8g+elzH6E8caNvSyPIFMbRtaeR/4xw4diLp3/rgYT2vvGhk4VcxfPlZDCaTxqDhBqKz4SbWf8++y5VDcbQdUoBuX3oT8JQDP30Uyr0QE0op1k68Q3iQiQ6jPHljhjfuPnp++iiU+JjHu+FOdAyUL60Y+V72HIT4dZ1Gr/f0ac4/fFxj+Dg97VqZ+WmBkXatzHwwVs+RE0nvG/sOabz2opnlc4zMn2bEZIJ+H9gRFW27mQGio6F8GcWowdlzk6Q16zR6vJf2e9GhYzBsnI72rRQ/LzTTvpXi/bE6jiS7dOXewxqvv6RYMdfMN5+bMZmg7zCdRe7soqnMfYmck9+6O78Z8U5ralULYPzMP+k25Fv2Hr7MjDGv4l3QFUgYSD966jrzlm+3clJL/+vditpVijN23jq6jlzKnqOXmT3iFQp5uuLoYEf5Ej4s+mU33UYvZ8TM3yhe2JNpQzpYNfOonq2oU7k4Y+evo8vopew5fpmvPniFQgXuZw7wYdHa3bw5Zjkfzv6NYoU9+fw962YefT/zmG/W8fpHS9l97DJfDUvKXCHAh4Vrd/Pm2OUMn52wnz8fJJnzU+7kpLvzDunujPuo6kvU8SrDR4d/ovOOL9l9+xxza/WikCFhoKvVxkkWX2OPrMaszGwKOp7rWR+Y9GxrGhQPYOjff9L2u6XsuHKJZS+9iq+Lq8VyLUuV4anCfgRF3LNSUktB354g8kQI/n2qUHJcPZwre3H18wPEhyWMPZT5orHFV+GelUADtxo+Vsv8QYVO1PQsx6QTK+j132fsCz3NtKffxtsh4fXRccdYi68pJ1diVma2BR+xWubAxSeJOB5K0b6VKDO+Dq5VCnJpWtJ+Lj+jocVXkV4VQQMPK+5nW8xsy7mTk+7OGRkeBVZK0aNHDzp27EjHjh2JiYmhX79+id/36tUr3cfXqlWLvn378t9//6W5THh4ON988w1VqlTh559/fmSmsmXL8vvvvwOwbt06HB0d+fvvvxPnr1+/npIlS2bwGVqqVEujXQ8d1Rum/kuJMV7x6wIzH3U1MayDic/fM3H2cNZfeVt+UZR/Blq9lnCGeKvXdJR7CrasSVrngAl66rTS4VdCo0gpjS5DdYQFw9WzCfNr1THSvVcsDRqlfhZ5fDws/NrAG51cefF5Nwa/48KRQ2kPGj7KLz878EwNE527xFGsuJnOXeJ46hkTv6xOun7Qp5OjaNkmnoASZkqVNjNkeAzBwTrOnk3abv06Zvr1jqdZ49QHQ+PjYdY8e9q96kiTtk706m9g/6GsH8BY+ZMdtWua6dHVSIniih5djdR6xszK1UlnbM+cGku7NiZKlVSUK6P46MNYgm7qOHXm8Q6cxMcqzu6KoVEPV4pWccDT3476Xdzw8NVzZF0Ud66buHE6nmcHJJxhXrCoHc/2cyc+RnFq2+MdAGlUR/FuHzMtGqf+Oo2Phy/m6Wjxih2129jRpb+evQez/imK5T/pqFtT0aermZIB0KermdrPKJb/lLQP531mokNbRZmSUL4MfDLCxI2bGifOaDabGaBRXXivj6Jl49S2AnHxMG2uRrOXddRsreO1fjr+O5jl2Cz7SaNeDej7hqJUQMJ/69SApT8mZZr/mZmX7ueuUAY+HWG+nzvr202TWWXuS+SY/Nbd+YmDgx1N6pZjzrJtHD5xjcCgOyxatYsbweG81Lo6AOu3nmDJj/+y7/BlK6dNYrC3o1mtssxeuZ1DpwO5FnyHBWv+5fqtcDo+W43I6DgGTVnNxv/OcCUojGPnbzBt6SYqliqMr5eb9TLXLMusH7Zz8ExC5m9++Zfrt8N5uXlC5nenreafvckyL99ExZKF8S1oxcw1yvJl8sy/WmYeeD/z5aAwjl24wbTvNlFJMueb3ClId+cZ0t0ZY9DZ0dy3Ml+eXs/BsEtciwpl/rlNBEaH8Urx2gCExEVYfDX1rci+kIsERoflatbEzHo72pQpy5Sd29h7PZDL4XeYuedfrt4Np2vV6onL+bq4MrZpc4as/xOjOXtOvHkc5jgT9/YH4/NKWZzLe+Lg60yhDqWx93bkzuZrANh5GCy+Ig7ewrl8QRwKpX3iXU5y0NnRuFBVvj7/O0fuXOB6dAjfXvyboOhQ2hetD0BY3D2LrwbeVTgUdp4bMaFWyWyOM3F3/y0KdyqDS3lPDL7O+L5YCgdvJ0I3JRzQsvcwWHzdPXgLlwqeOPg4SeZ8kDsF6e4ckeFrOXTv3t3i+zfeeCPFMt26dUvz8SdPnmTixIm0adMGe3t7atasib+/P46OjoSFhXHixAmOHz9OzZo1+eyzz2jbtu0jM33wwQd0796dGTNmcO3aNZYvX86gQYPYs2cPOp2On3/+mS+++CKjTzFTvvtCEXpT0WOkDveCcGSXYu5oMyPm6fApkvmBuksnFU1fsnxcxRoaW35J+8UcE5XwX+cM/o79xWdOBAdpjBgdTUFvM7t22DN6hDNzF0RSpGjmC/jkCT0vvRxnMa1GTaPFQPnDou5/wtTNLeM/pOOnOHAjSGP8R3EU8lJs2aFn8HAD3y2KoXjRzP+wHz2h4/VXLA8m1K1lshgof1hEZMK/jbv74725KJNCmcHOwfLf2s5BI/BEHOUaOiZ8b580X6fX0NslzK/aKud+0fhoip7rQTDlYxM+XoqN23X0H65n9WIjAUUzv77DxzXefNXyddWgtuWg88MiIhL+65HB14ctZgYYPVkjMEhj2sdmCnnDxu0abw/X8ctic5ZyHzqu0e1Vy+03qKVY9pNGWp/HupeYO/PbeyTp4DxDuvvJpddp2Ol1xMVZ9llsnJFqFbPwRpJL9PqE3LHxKXNXL1ck1ce4OhswmxURkbGpzs9pDzKntq/TzOx0P3OUlTM/tJ9j4ow8VVYyZydbzZ2CdHeeId2dMXpNh51OT6zZ8lPJsaZ4nvJMeVmEgg4uNCxUnjFHfsqtiCnY6TTsdDpijZYniMUYjdT0T3i/0IDPW7Xlm/17ORsaYoWUKSlTwiCbZm/5N5Fmryfq3J0UyxvDY4k4ehu/XpVzKWFKek2PXqcnzvxQd5vjqeqR8qCOp70rdb0qMvnkityKmEKa+9lBR+TZOymWN4bHcu9ICEV7V8qlhCnZYmaw3dwpSHfniAwPlD/utWEKFizItGnT+PTTT/nzzz/Zvn07ly5dIjo6Gm9vb7p27Urr1q2pUqVKhtfZtWtXAgIC2LNnD/Xr16devXpUrFiRyZMnExUVxfz581P8ovGw2NhYi7uKA8TFmnEwpD0wduu64sAWxSfLdXh4JQxoPvuKxsl9Jvb8rXihZ+YHyu+GgZun5TQ3z4TpqVFKseZrM6Uqg3+JR2/v+nWNrZvsWLYyAi/vhJ+mVzrFsX+vHRv+sqdHn8z/oh4WqlHA03JQsYCnmdCw1PMoBfPnOlK5ipESJTM2MH8tUOPvTXp++yGGQvdzv9HZyO7/9Py+zo4BfTN/uZaQUI2CnpbvKAU9FSGhaeeeOcee6lVNlC6p2PcYn35zcNbhV8Ge3asiKFjUDucCOk5ti+HGmXg8/fUULGqHu4+OHUsjaPGOO/YGjf2/RhIZZiYyLOfOJrgaCOs2amz40YiPd8K0Hq+Z2fmfxi/rdLzXN/Pbvh1Kqvv5dhoH6JWCz+boebqqmbKlnszMAFcC4c+NGpt+Mifm7vmaYsd/Gmv+1Bj8Vubb7nYoeD30/uHlSbq5p36l45mqKsO5M0OTo9V5Rn7qboPBgMGQ9mW3njTRMfEcPRVIj1frcelaCGHhUbRoWIFKZf24dsM6Z8plRFRMPEfOXqfXi3W5dD2U0PAoWtWrQOXSfly9mTK3g72edzo1ZP2/p4iMiUtljTkvMXOHuly8cT9z3QpULpV25oGvNmT9bitnPned3u2TMreuW4EqaWW20/POKw1Zv0cyZ5at5n6YdHfekZ+62xxvRGeftfswRZniOBx2mT6lm3Ex4hahsRG09q9GlQJFuRKZcoC5XZFniDTGsunmiVTWljsi4+PZf+M6A2vX5VxYCLejonihXAWeKuzHpTsJ7xf9atbGpMwsOfwYHzfNZnonO5xKe3D794s4+Llg52Hg7p4gYi6G4+CT8kSu8F030Bn0Vr3sSrQplmPhl3izRAsuR94kLO4ezX2fpqJ7ca5F3U6xfGu/WkSZYtl266gV0iZ4sJ+D117E4OeCnYcD4buDiL5wFwfflPs5bGcQekc97jULWSFtAlvMDLab+2HS3Tkj12/m6ejomPixsezQsGFDGjZsmPh9pUqVWLp0aYYfP2nSJMaNG2cxresgb94cnPYPwLVzCQNN43tbDsQZ48Hl/s1YQ4MVE99Kmm82gckEw15MOnpcq7lG50FJA/IPD9MqlXLaAz9+pbh+Ed77PGOXAjl/Vo9SGn26W177LD4+6Szp4Jsab/dKmm+6n/ml55NOOW3eIp53hyRdAuThy+Wll3nOl45cvKBn2syM37jo9FkdSmm8+qajxfS4ePC4nzvopsZrPZLmm0xgNEHTtkkfiWnT0siIockG1TOR+7OZ9pw7r+PrWdlz1k/bIR6s/zKc+T1voenAp7Q9FRo7EnwhHr2dxgsjPPl7VjhzugSj6aB4dQdK1Ej7LP3scPKshlIaL7xh+ZYQHw8FPBL+/8ZNeLF70vwH+7lOm6Rp7Vqa+ej9pNd9isspprOfJ87Ucfa8xpJZGbsBrS1mBjh5BpTSeO4Ny5/d+DgocP/94/pNaN89ab7JBEYj1GyTNO2Floox7ycVY2qXrkzrcpafztA4cwGWzcqZgy9y/bMnjy1095gxYxg7dmy25LMV42f+yciBbfh1YX+MJjNnLtxkw/aTlCvla+1o6Ro7bx2j+7bmj1lvYzSZOX0pmPX/nqJCCcs/qPV6HZ++8zyaTuOzJanfUCm3jJm/jo96t+bPGfczXw5m/e5TlA9ImXlC/+fRNI2pS62b+eP56/i4V2vWTU+Wec8pyhdPPbNOpzFFMmeJreZOTrr7yWML3V24S0P830jjWoUZ8PGRn/i4akfWNx+B0Wzi1N0b/HX9CBU8/FMs26FoDdZdP5ziDOPc9v7ffzKlRWt29+6H0WzmePBN1p4+SWUfX6oU8qFH9Wd4YeUyq2ZMjV+fKtxYfJzzw7aDTsMxwA33OoWJuZzyLLLwHYG41/VDZ5/1y7xmh0knvmd4hc781HAMJrOJMxGBbLx5kLJuKT/t09avNv8EHSDeyq+Pom9VInDRSU4P3QE6DacANzzqFCbmyt0Uy4Ztv45H3cJW38+2mBlsN3dy0t05I9cHyvOakSNHMnToUItpW6/XTvcxSil0Ovhglg7dQz8nhvvjtR5e8OGcpEGtwzsVh3coun2YNM0x2YEq91TOHo+4k/Isc4Cf5pg5tlvx3jQdnoUydva62Qw6nWLWvEh0OsufJsf748le3oqv5kckTt+53Z6d2+0Z/r+oxGnOyTJ7FlSEhVoO9oXf0eHpmfKndc4sR3b/a8dn0yMpVCjjP81mM+h1im+/jkmxr52dEtbj7a1YtiBp8H7LNj2bt+kZNzrpLB0X56RtehVUhD509njYHY2CBVPmmvalPdt36fl6Ziy+mcidngJ+dnSe5EV8jJnYKIVrQT2/T72Dh2/Cj6NvGXvenOlNbKQZkxGcPXR8PywE3zL22bL91DzYzyvnG9E/dOzF+f7ro5AX/Lgg6ReHf7br+GebxuRRSQd/XFySHuddkPtn6Sftt9A7Gl4FU25/0kwdW3bqWPylkcIZPPHAFjMDmJWGXq/4cb4ZXRq5fbxg9YKkQex/tmls2KYxZXTSNNeHcj989nhIWMqzzAEmzNDYslPj21nmTOXOFClskcNS6+78dDb5A9dvhvPuR6twNNjj4uxASFgk495vx43gcGtHS1dgcDj9J/yAo8EOF0cDIeGRfPrO81y/lZRbr9cxcWA7/At5MGDSj1Y/8zbwVjj9Jv+Ao4MdLk4JmSf0f57rty0zTxrQDn9vDwZMyRuZ355imXliapn73888VTJnla3mtiDdLXJYat3dZMuEx1rntahQ3tqzAEe9Pa52jtyOvcekpzpzPcryD+unPAMo4VqIEYdWPtb2ssOV8HBeX/0DTnZ2uDoYuBUVyZdt2nEtPJxaRYri5ezMjp5vJS5vp9Pxv4ZN6PnUMzRessBquR18nAn4sBbmWBPmaCN2BQwEzjuCvbfl9ZqjzoQRFxSFf79qVkqa5Hp0CIMPzsFR54CznYHQuHt8XPlNgqIt/3Cq6lGS4i4+fHI84wd+corBx5lSI2pgjjVhijZiX8DAlTlHU+znyPv72bN/xj8ZklNsMTPYbm4L0t054okeKO/evTtXr15l06ZNaS6T2ke1HULSP0u7aGkt4bqC4VC6SuoD1Xq9RqFkB7LdPBT2DlDIP/XlS1TUOH1Q0SzZAf9TBxQlKyYtr5TipzmKI7sU707V4VU445d4KV3GjNmscSdMo0q11M8i1evBv0jST1qBAgoHg7KYllzFSiYO7Nfz0itJ0w7ss6Ni5aRBSKVg7ixHdu2wY8oXURT2y9xPcvmyZkxmjdA7Gk+nkdtOD8WSZfT0VBgMltOSq1rJzJ79el5/NWkAdc8+PVUrJ61fqYRB8q079MyZHot/JnNnhL2jDntHiIkwc/lgLI26W14s2uCS8DoMu27k5rl46nd1TW012aJCWZW4n2tUS/252tlB8WSXvfUqoHB00CymJVe9suLffRpvvpo0bddejeqVk9avVMKA86YdOhbOMFLU78nODFCxrMJk0hEaBjWqp76MnR0W1yov6AmOBtK8fvlT93N375SUc9dejaceyj1hpsbG7RpLZpoznTszNCWNLbIuq92dn8XExhMTG4+bi4HaT5Vg7tJt1o6UITGxRmJijbg5G6hbNYDZq7YDSYPkxQoXYMDEH7kb8Xg3s85OMXFGYuKSMs9KlnnSgHYU8y1A/yk/Eh6ZRzNXCWDWD8ky929Hcd8C9JsqmbODreYG6W7xeLLa3Vm97MrDYkzxxJjicbNzpJ53WWaeXm8x/8WiNTkRHsjZe0HZsr3sEG00Em004m4w0DgggMk7tvHX+bPsvGJ5A+4lL77ML6dO8uOJY1ZKakln0KMz6DFFxhN5LASfV8tazL+zPRDHADcci+WdmxXHmOOIiYvD1c6JWgXL8/X53y3mP+dfh9N3r3I+4oaVEqaUfD9HHAulcKcyFvPDtt3AsYQbTsXzzn62xcxgu7lBujunPNED5f7+/ugePmUzg2KjFbeuJ30fEqS4dj7hxpk+RTVqNtNY9pmZl/rqKFoGIsLhzGGFfwmNyrUzf43yJi9qfDlMseEHM9XqaRz5V3H6IAz+PGldP36l2L9Z0WeMDkcnuBua8EPh6AIOBo3oaLgemPR8bwbpOH9Oh5ubomgxM82ejWPaFCf69ouhdBkT4eEahw/aUaKUmdp1Mv8Row4d4/hgsDM/rHCgXgMj/+604+ABPdNmJp2B/tWXjmzZaM/H46Nwck46k9vFJWEwGyAqOuFa5A9cv6Fx5pyGuxsUL6Zo08LIuEkOvNc/nvJlzdwJ19h3UEfpkmYa1M38pSM6v2yk33sGlq6wo3EDE9t26vlvv475XyZdWuWzGfas32jHZ5/G4uKsCLl/0Dn52cdZdelALEpBwSJ67twwsW3JPTyL2FG5RcKRyzM7YnDy0HArpOf2JSNbFtyldB0DJZ5+vEGhqKiE62M/EBikceqswsMdShSD51uYGTVRz7ABJiqUVdwJ1/jvgEbZUopGdTP/Btz1ZTM9B+lZ9L2OZg3MbN6pY89+jSWzkg6kTJihY90/OmZOMOHiBLfvX07Q1TVhYNgWMwNEPpT72g2Nk8lyt2tpZuREHR+8Y6ZiWQi7A3sOapQrpWhcN9OxeeMVRfdBGgu+12jeQLFpp8bu/bBsdtI+GD9d48+NGrMmmHF2glv3c7u5QrYfgsm5y+mLfOBxuju/qf1UCTQNrgSGUcSvAO90a8LVwDD+2JTwx7SbqyO+3m54F0z4KS9eJOHjMaF3Igm9E5XmenNanaoBaGhcDgqlmG8B3n2tMZeDwvht23H0Oo3J77ajfAlf3v9iDTqdRkGPhI+z3Y2IwWiyzhtM3SoBoGlcuRFKUd8CDOrcmMs3wvhtx/3M77SjQoAvQ2esQa/T8LqfOdzKmR/s56I+BXjvfua19zNPuZ95yIw16DUNL/f7mSMlc37JbSGPxBC2yVrdXc+7DKBxOfI2xZwL8l6FtlyOvM1v1/YnLuNiZ6BF4SpMP7Uu1/OlplHxADRN40JYKCU8PBnRsDEXwsL46eRxjGYzd2IsD6QZzWZuRUVy8Y517z8Scew2KHAo7EJ8cBTBP57BobAzHg2Szg40RRu5t+8mPp3LWTFpkloFywNwNeoWRZy86VemHVejgll347/EZZz1Bpr4VGPu2d+sFdPCvaMJf6QZCjsTFxxF0KpzGPyc8WyYdJaTKdpI+N6b+L1WNq3V5CpbzAy2m9uCdHeOeKIHyidNmpTlx145A7M+THrVrZmvAEXtFhpvDNPo+r7G+hWw5hsz4SHg4gYlKkLlWpkfJAcoVUmj+0gdf3xr5s+lCm8/6DlSR4kKSevb8XvCoNes4ZY/DV2HatRppXH2tJ4P308ayZ0/N+E6MC1axfH+hzEMHR7DiuUGvpnnSMhtDTd3RcVKJmplYZAcoFJlEyNGR7N0sYFlSwz4+ZsZ+VE0FSomDSr+sTbh2tofDrUcYR76QTQt2yRcM/zkaR0DhiRdY3zGnITHPN/ayMcj4vjowzgWLbNn5lx7bt3W8HCHqpVN1K9jebfwjKpWxcz4j+P4eqE9Xy+yp6i/YsLHcVSplLRfV69NuMxJ/yGW10b/6MNYaJClzSaKjTKzY2kEEbdNOLrpKFPPkYZvuqK3S/i3jggzsWVRJFF3zLh46qjUzIm6nR9/KPP4aY3eQ5J+5D/7Sg/oad/azKcjTXwywsT8ZTqmzdETfDvhetnVKysaZuFgBMBTVRRTPjYxe6Ge2Yt0FPOHqWNMVKuUNHj7w68J19PpNdjyrWj8h0Y6tFU2mRng+GnoOTjpWkFTv0r4w6FDGzMTRyo+HaH4eil89pWOm/dzP1UZGtfJ2hHhp6vAZx+bmbVQx6yFGsX9YdpYM9WS3ZR71a8JGXq8Z3kNo09HmHm1Z5Y2myY5si0ex+N0d37j6mzg7TcaUcjLlbsRMWz99yzzv9+O6f7AW8NapRn1btvE5T95/wUAFq3axaJVu6ySGcDVycCATg3xKejK3cgYNu89x9wfd2AymfHzdqdxjYQzeZZP6GbxuP4TfuDAqWvWiJyQ+dWG+HgmZN607xxzVydlbvJMQubvxltm7jfZupnfeSVZ5v3nmPMgs5c7TZ5OyPz9J5aZ3578AwdOS+bMsNXcyUl3i8dhre52tXNkYPlW+Dh6cDcumo03jzPnzN8YVdLfAq38qqFpsP7GYatkfJibwcAH9RtR2NWV8JgY/jp3ls//3YHRnLdHvMzRRm6tPocxLAadiz1uNXwp9FJpNLukAyT3/ks4Y9+9dmFrxbTgYudIn9LPUchQgHvxUWy7dYSF59dhSvb6aO77NBoam27mjZunmqONBP10HmNYDHoXe9xr+OD7suV+Dt9zEwCPOnljP9tiZrDd3MlJd+cMTSnb3rPXrl1j7ty57Nq1i6CgIDRNw9fXl/r169O/f3+KFk3jWgXpWH+x0qMXyoPK2lv3KHNWFNTZ3rGaVfdKWTtCpvVwv2rtCPmGXrO9M2HtCp/L1vU92yxzfyxt3DwyW7cv8r6c6G5b1bDjNGtHyLR4F9t7n1N5695LGaKydu6FyCf2Lh766IUyQbpbPEpOdHeNdaNyIGnOCzubyg2M8riqz1y0doRMuxtne5fZK+gYbe0IIg9bXX9Otq5Pujtn2N5fOsns2LGDihUrsmbNGqpXr063bt144403qF69Or/88guVKlVi586d1o4phBD5i1KZ+8qEe/fuMXjwYAICAnBycqJ+/frs3bs32aYVY8eOxd/fHycnJ5o2bcrx48ez+xmKxyDdLYQQeZB0t0iHdLcQQuRB0t05wvZO501myJAh9OnTh+nTp6c5f/DgwRb/mEIIIXKWloOfU+rTpw/Hjh1j2bJl+Pv7s3z5clq0aMGJEycoUqQIU6dO5YsvvmDJkiWUK1eOTz/9lJYtW3L69Gnc3PLeDVjyI+luIYTIe6S7RXqku4UQIu+R7s4ZNn1G+bFjx+jXr1+a899++22OHcsbd4cWQoh8I4eObEdHR7N69WqmTp1K48aNKVOmDGPHjqVkyZLMnTsXpRQzZsxg1KhRdOzYkSpVqvDtt98SFRXF999/n4NPWGSGdLcQQuRB0t0iHdLdQgiRB0l35wibHij38/Nj1660b0b177//4ufnl+Z8IYQQ2U8zZ+4rNjaWu3fvWnzFxsamWK/RaMRkMuHoaHmTXScnJ3bs2MHFixcJCgqiVatWifMMBgNNmjRJtytE7pLuFkKIvEe6W6RHulsIIfIe6e6cYdOXXhk2bBj9+vVj//79tGzZEl9fXzRNIygoiA0bNrBgwQJmzJhh7ZhCCJG/ZPL6Z5MmTWLcuHEW08aMGcPYsWMtprm5uVGvXj3Gjx9PxYoV8fX1ZcWKFezZs4eyZcsSFBQEgK+vr8XjfH19uXz5cuafh8gR0t1CCJEHSXeLdEh3CyFEHiTdnSNseqB8wIABeHl5MX36dL7++mtMJhMAer2eGjVqsHTpUjp16mTllEIIkb9o5swV9siRIxk6dKjFNIMh9bvcL1u2jF69elGkSBH0ej3PPPMMXbp04cCBA0nb1zSLxyilUkwT1iPdLYQQeY90t0iPdLcQQuQ90t05w6YHygE6d+5M586diY+P5/bt2wB4e3tjb29v5WRCCJFPZfLItsFgSLOgH1a6dGm2bt1KZGQkd+/exc/Pj86dO1OyZEkKFy4MQFBQkMXHf4ODg1Mc7RbWJd0thBB5jHS3eATpbiGEyGOku3OETV+jPDl7e3v8/Pzw8/OTshZCCGsyZ/IrC1xcXPDz8yMsLIz169fToUOHxNLesGFD4nJxcXFs3bqV+vXrP84zEjlEulsIIfII6W6RQdLdQgiRR0h35wibP6NcCCFE3qJl8sh2Zqxfvx6lFOXLl+fcuXN88MEHlC9fnp49e6JpGoMHD2bixImULVuWsmXLMnHiRJydnenSpUuOZRJCCCFsnXS3EEIIYVuku3OGDJQLIYTIXjlY2OHh4YwcOZJr165RsGBBXn75ZSZMmJB4RtPw4cOJjo5mwIABhIWFUadOHf7++2/c3NxyLJMQQghh86S7hRBCCNsi3Z0jNKVycM/aqA47Blo7QpZ09D3w6IXymKcMV60dIdP87bL4mRUrctZs85iYHXprR8gXDH4XsnV9rWuMydTy6/ePe/RCQjxCS92r1o6QJbpnKls7QqbF+LlYO0Kmxbrb3tUGzfa2eTMkZZuxbc7exUMfvVAmSHcLaygzdbq1I2SJVjLS2hEyzcvd9jI72cdZO0KmOehN1o6Qb+g02xvKXNd4ZrauT7o7Z9jm6JkQQoi8y/aOJQkhhBD5m3S3EEIIYVuku3OEDJQLIYTIVjl5rTQhhBBCZD/pbiGEEMK2SHfnDBkoF0IIkb2ksIUQQgjbIt0thBBC2Bbp7hwhA+VCCCGylxS2EEIIYVuku4UQQgjbIt2dI2SgXAghRPaSwhZCCCFsi3S3EEIIYVuku3OEDJQLIYTIXnJTESGEEMK2SHcLIYQQtkW6O0fIQLkQQohspZmlsYUQQghbIt0thBBC2Bbp7pwhA+VCCCGyl1k+AiaEEELYFOluIYQQwrZId+cIGSgXQgiRveRaaUIIIYRtke4WQgghbIt0d47QWTvA46hatSrjx4/n6tWr1o4ihBDiAaUy9yXyFeluIYTIg6S7RTqku4UQIg+S7s4RNj1Qfvz4cWbOnEnJkiVp06YNq1evxmg0WjuWEELkb1LYIh3S3UIIkQdJd4t0SHcLIUQeJN2dI2z+0itHjhzhv//+Y9GiRbz22mt4enrSrVs3evfuTcWKFa2SyRRt5PYv57l3IBjTvTgci7vh83p5nEp6AHCq94ZUH1fo1bJ4tSmRi0mTxEYpti2P4vS/cUSFm/EtZUfLt1zwL5fwEokIM7N5SRQXD8YRE6koXtmeVm+7ULCI/rG3feKIjrU/2nPxjEZYqI5hY2Op3cD02OtNz+7telYtsefmDQ1fP8XrPeOp3TBpm2tW2PHfDj2BV3U4GKBcJRNv9InHv1jCm8uhwzq+X+XA6TM6QkJ0TBwfTeOGOZt5y1Y9CxYbCLyuUcRf0bd3LE0aJW1z2Xf2bN1ux+UrOgwGRdXKZvq/FUvx4gmZ9x/WWLrSjpNndNwO0fh8fBzNGuXszR82btUxZ5Ed165rFPVXvNPHSPNk21z0nZ5N2/RcuqJhMED1ymYGvW2kxP3M+w5rLFmp4+QZjVshGjPGG2neKGff4Dds1fhqkZ6r16GYP7zbx8Szyba54DsdG7dpXLyf+anKisFvmyhZPGkdtpo728i10sQj5LXu1ul1dBvbieZdGlGwcAFCb4Tx97db+O7T1aj7v1Q6ujjSZ3JX6neohbuXGzcvBbNm1jp+n/d3rud9wMnZge79mlO/WQUKeLpw/nQQcz9fx5kT1xOXeeOtpjz3Ug1c3Rw5dTyQr6b8weULt6yWGcDJyZ7eXRvSqF5ZPD2cOXshmFnfbOLU2SAAGtUrS/s21SlXxpcC7s70HvQt5y4GWzWzs6M9b73SgCa1yuLp7sSZS7eYvmwTJy/cBKBpzTK8+Gx1KpT0pYCbE2/+bylnL1t3Pzs72vN2xwY0faYMnu7OnLkczOffb+bkxZvo9Tr6d2xA/WolKeLjQURULHtPXGH2j9u5fSfSqpn7vZQs85WEzCeSZW5QrSRFCiVk/u/EFWb/ZN3MtpzbgnS3eIS81t0ALg72DG5Yn1Zly+Dl7MyJ4GDGb9zC0aCbKZYd3+pZXn+qGp9u3MKS/QetkDaBi50Dgys3oWWRCng5OnMiLIhPD/3N0bAbicuUdvPig2rPUrtQcTQ0zt29xaB/f+ZG9F2r5XbWO/BW2VY08amEp4MrZ+5eZ/qp3zl59xoAu1tPSvVxs07/yXeXtudm1EROegO9SrWhYaEqeNq7cTYikNlnfuH0vYRPRmxu/nmqj5t37jdWXdmSi0mTOOkNdC/xHPW9q1LA3pXzEYHMPf8zZ+5nXt9kRqqP++b8r/x0bXMuJk1ii5khIXe3gOeo510tMffX53/mTMQVANY1npnq4xZc+JXV1zblZtS0SXfnCJs+oxzAzs6OF198kbVr13L16lWGDBnC2rVrqVKlCvXr12fRokW5nino2xNEngjBv08VSo6rh3NlL65+foD4sBgAynzR2OKrcM9KoIFbDZ9cz/rAn7MiuHgonvbvu9JndgFKPm3PitF3uXfbhFKK1Z/e406QiVdGu9N7ZgHcfXR8P/oucTGP/4MZGwMlSpnpNTA+G54JbFmvZ+z7hjTnnzmhY8anDjRuYeSzeTE0bmFk+qcOnD2Z9ONw4oie1u2NTPgyhtGTYzCbND4dYSAmOmF+dIxGmdJmhg6KzZbMf/5lx8DBTmnOP3Zcx5hPHGndMp4lC6Jo3TKej8c5cvxEUuaDh/V0fDGer7+KZvpnMZhMMGS4E9H3M8fEaJQrrfjwvezZz2vX6en7nkOa8w8f1xgxzp7nW5lYuSCO51uZGDHWnqMntMRl9h/S0elFE9/OiWPutDiMJhjwgUNi5ugYKF9aMfK97DkI8es6jV7vpX1w5/BxjeHj9LRrZeanBUbatTLzwVg9R5Jl3ndI47UXzSyfY2T+NCMmE/T7wI6o6KT12GrubKPMmfsS+U5e6+7XPnyRdm+3ZPa7C+ldaTDffLicV4e158V32yYu0396d2q2forJb35J70qDWT3jDwZ+2Yt67WvmatbkhoxuzzN1SjH14zX0e20u+/ecZ/KcbngVcgOgU/cGdOxSj6+m/sm73b8hLCSCSV91w8k57ffu3DD83TbUfLoEE774k57vLmHvwUt8Pr4T3gVdAXBytOfYyUDmf7vNqjmT+1/f1tSuGsC4uX/yxoil/Hf0ErNGvkohz4TMjo72HDkTyJyV1hkMSM2onq2oU7k4Y+evo8vopew5fpmvPniFQgVccXSwo3yAD4vW7ubNMcv5cPZvFCvsyefvdbBq5tH3M4/5Zh2vf7SU3ccu89WwpMwVAnxYuHY3b45dzvDZv1G8sCefD7JuZlvObUG6WzxCXutugIltWtKwRADD/viL5xcvZcelyyzt/DK+ri4Wy7UoU5rqfoUJuheR6xkfNqHm8zTwLcUH//3K8+vns+PmRb5t0hVfx4TuLu7iyYpm3blw9zZvbFlG+w3f8NWJHcSarXsG//8qv0xtrzKMO/oDb+yayX8hZ5lVszeFDO4APLd5gsXX+KM/YVZmNt88ZrXMH1ToRE3Pckw6sYJe/33GvtDTTHv6bbwdEjJ33DHW4mvKyZWYlZltwUeslnlIudd4xrMcU08tp9++qewPO83kagPwckg46fK1XR9ZfH1+6nvMysyO25I5s94r+xpPe5Zn2unl9N8/hQN3TjExWe4u/462+PridELunbcPWzW3BenuHGHTA+Wapll8X7hwYUaOHMmZM2fYuHEjpUuXZtCgQbmayRxn4t7+YHxeKYtzeU8cfJ0p1KE09t6O3NmccLTVzsNg8RVx8BbO5QviUMg5V7M+EB+rOLUzjuY9nSlexZ6C/noad3XGw1fH/nWxhF43E3jaSJsBCWeYexXV06a/C/ExihNbH3+g+OnaZl7rGU+dRqkPKhrjYfk39rz9miNvvuDE/941cPxw1l+6f/xsR7UaZl563UiR4oqXXjdS5Wkzf/yc9AGLUZNiadraRLESihKlFQOGxXI7WMeFswnbrVfHxFu942jSOPXM8fEwZ54DL77qTIu2LvTt78SBQ1k/+/6Hn+ypWdPEm13jCSiueLNrPDWeMfHDavvEZb6YGsNzbYyUKmmmbBkzIz+M4eZNHafPJGRuUMfMO32MPNs49TfI+HiYMc+O1q8YqN/GQLf+Duw7mPX9/P1PdtSpaaZXVxMlAxS9upqo9YyZ739K2s9ffRZP+7YmSpdUlCujGDcinqCbGifOJPxsN6qjeLePmRaNUz8gEx8PX8zT0eIVO2q3saNLfz17D2qpLpsRy3/SUbemok9XMyUDoE9XM7WfUSz/KWk/zPvMRIe2ijIloXwZ+GSEiRvJMtty7mwjHwET6ciL3V2xbjl2rd3Hf38e4OblW2xfvZv9fx+mXI3SFstsWLqFI1tPcPPyLf785h/OH75MuZql01lzznEw2NGweSUWfLmBYwcvc/1aKMvnbyEo8A7tXqkFwIuv12Xl4m3s3HySy+eDmTZmDQZHe5q1qWqVzAAODnY0rl+OeYu3cuT4NQJv3GHJil3cuBlOh+eeAuDvzSf4duW/7D902Wo5kzPY29G0Vllmr9jGoVOBXLt5hwU//8v1W+F0bFEdgL92nGTRmt3sPZZ3MjerWZZZP2zn4JlArgXf4Ztf/uX67XBebl6NyOg43p22mn/2nuFKUBjHzt9g2vJNVCxZGN+CbtbLXKMsXybP/Ktl5oH3M18OCuPYhRtM+24TlayY2ZZzpyDdLdKRF7vbYKendbmyTNmynb3XArl8J5wvd+7m6p1wujxVPXE5X1cXxrZsxvu//4XRnLOfAH4Ug86O1kUqMvXIRvbevsKVyDBmndjGtcg7dCldA4AhVZqyNeg8U49u4sSdm1yNvMOWoHOExkZZNXdT38rMPr2OQ2GXuBYVwoLzG7keHUrHYnUACI2LsPhq7FOR/aEXuB4dZpXMDjo7Gheqytfnf+fInQtcjw7h24t/ExQdSvui9QEIi7tn8dXAuwqHws5zIybUSpntaVioGgsu/Max8Atcj7nN8st/ERQTSjv/BgmZ4+9ZfNXzrsrhO+cIigmRzJnOXZ2FF9dyLPw8N2Ju893lvwiKCeH5NHLX9arCESvnTkG6O0fY9EC5SucfumnTpixbtozr16+nuUxOUCYFZoVmb7lrNXs9UefupFjeGB5LxNHbeDTyz6WEKZlNCQeX9PaWvwDZO2hcOx6PKT5hP9s5JM3X6TV0dnD1RM4f2Z4zzYHTx3QMHhXHZ1/HULexiYkjDdy4lrUBvjMndFSrYflLUvWaJs6cSPvHISoyYVuubhl7c5k4xcDRY3rGfRTDtwuiaNbUyLDhjlzNYuZjJ/TUrmmZuU4tE8eOpz34Hnk/s7t7xrYxdoo9h4/pmPRxHKsWxtGiiYmBw+25ksXMR4/rqFvLclC+Xm0zh4+nvZ/vRSRsyyODfzd+NEXPoWMaUz42sXqhkVZNFP2H67l8LUuROXxco34ty3/jBrUVh4+nvQ8i7p+Y4pHB1wbYbu4MM6vMfYl8JS9297Gdp3i6eRWKlPUDoFS1AKo0rMB/6w4kLnN85ynqvVATL/+CAFRvWpmi5fzYt946Z5Xo9Tr0djri4ix7ODY2nspPFadwEU+8vN3Yv/t84rz4eBNHD1yiUrViuR03kV6vYadPmTsuzkjVSkWslCp9iZnjLXs4Ns5I9XJ5PPPDr490Mrs6GTCbFRFR2fNpucxK2s+WmWPijDxVNm9mBtvNnYJ0t0hHXuxuO50OO52O2IeulR5rNFKzaMLf1how7fk2fPPffs6GWH9wKzHzQ2eHx5iM1PAuhgY09SvDpXshLGr0OrtfGMJPzXvSwr+cdQLfp9d02On0xD2UO9ZspLpniRTLF3RwpUGhCvwWuC+XEqak1/ToU80cT1WPkimW97R3pa5XRf68sSe3Iqag13ToNT1xZstPgMea46nsUSrF8gXsXaldsBLrg3bnVsQUbDEzJOWOf+j1EWeOp7J7arndqF2wstVzpyDdnSNseqC8e/fuODmlfbkKAPdHjBLGxsZy9+5diy9TXNaPNOud7HAq7cHt3y8SHxaDMivC/71BzMVwTHdS/jIcvusGOoPeqpddMThrFKlgx86VUdwLMWM2KY5tjiXwjJGIMDNeRfV4+OjY/G0U0RFmTPGKXT9GExmmiAjN2Y9vBF3X2LlZz5CP4qhY1Uxhf0X7V41UqGJm8/qsXWL/TphGAU/LN4kCnoo7YakPKioF386zp0IVE8VLPvrNJTBQ459NdowfG0P1amaKFFF06RxP1aom/lxn/8jHpyY0VMPzocyenorQ0LQzz5pjoFpVE6VKPvrf6Gqgxl8bdUwdG8cz1RTFiii6vWbiqapmfl2XtTPhb4eC10OZvTwVIWkcoFcKvphjx1NVzZQp9ej9fDUQ1m3UmDbWRI1qimJFoMdrZp6uqvhlXdbe2m6HQsGHMhf0VNxOJ/Nnc/Q8XdVM2ZR9+kTlzhQ5si3SkVPdbVZZ7+5VU35h88qdLDo5g3WxK5h7YCo/z/yDzSt3Ji7z1aDFXD5xjZXXvmZd7AomrhvFrHcWcHznqSxv93FER8Vx4vBVuvRpQkFvN3Q6jeZtq1GhSlEKertS0CvhkiBhIZbXQA4LicTz/jxriI6O59jJQLq9Vg+vgi7odBotm1aiYjk/vDytlys9UTHxHDlznV4v1sW7gAs6TaNNg4pULu2HVwGXR6/ACqJi4jly9jq9OiTLXK8ilUv54e2RMrODvZ6BrzZk/e5TRMbEWSHx/cznrtO7fVLmtvUqUiWtzHZ63nmlIev3WC8z2G7uFKS7RTpyqrvVY9wQNDIungOB1xlYvw4+rgk/ex0qVaC6vx+F7l965e06tTCZFd9a8ZrkyUUa4zhw+yrvVGyEj6MrOjTaF69C9YJFKOTkipfBBVd7A29VqM+2oPP03PY9fwee5qv6r1LbOyduLJQxUaY4joRdplfp5ngb3NCh0cbvKSp7FMXLkPIMp+f8nyHSFMuWm8etkDZBtCmWY+GXeLNEC7wc3NGh0cL3GSq6F6egQ8rXamu/WkSZYtl266gV0iaINsVyIvwiXQJaU/B+5uY+NajglnrmloVrE22KYcct613CxBYzQ1Lu14u3SszdzKcm5d0CUs3dwrcW0aaYvHXZFZDuziE2fTPPxYsXP/Y6Jk2axLhx4yymletZiwq9amd5nX59qnBj8XHOD9sOOg3HADfc6xQm5vK9FMuG7wjEva4fOvvHvynm42j/viu/z4xgVvcwNB0ULq2nchMHgs6b0NtpdPyfG3/MjGD6awnzSz5lT+kaWRv0zYyLZ3UopfFeT0eL6cZ4cHVP+EG/HawxpHfSfLMJjCZ484WkX+YaPWvkrcFpX5tbqYQzDlKzcJY9Vy7q+GR6xs76OX0/8+tvWl5KJy4ePO5nDrqp8WaPpPmm+5lbtk36g6pVSyMfDE3apvZwwHQyfzHTgfPndcyZlbELUJ86q6GUxotvWF7bPT4ePDwSBtpv3IRXuifNf5C5QZukac+1NDHq/aRfeB/OnN5+njzTjrPndSyalbH9fPJ+5hfesHwbi4+HAh4kZn6xe9L8B5nrtEma1q6lmY/eTzqYkJn9PHGmjrPnNZbMyvgv+baaO1OkhEU6cqq7S1KR0lTO0vqadq7Ps10bManrTC4dv0aZp0rQf3oPQq6HsWHpVgBeHNSWinXL8VH7ydy8fItqjSvx7ld9CLkRxsGN1vmjaurHPzP04w6s+Ot9TEYz507fYPNfRylTwS9poYd+HjUNsPKP6IQv/uTD99rw87cDMJrMnD1/k3+2nqRcaeudNPAo4+b+yai3WvP7V/0wmsycvnSTv3edpHxJX2tHS9OY+ev4qHdr/pzxdkLmy8Gs332K8gGW+1mv1zGh//NomsbUpRutlDbBx/PX8XGv1qybnizznlOUL556Zp1OY4qVM4Pt5rYg3S3SkVPd7dmiFQVbtsnyOof98ReT27Zi14C3MJrNHL8ZzG8nTlHZ14fKvj50r/E0HZZ+97jRs9UH/61lUq127HxhcELmOzf47coxKnsWRnf/F/qN18+w5Ox/AJwMv8kz3kV5vXQN/rt9xWq5xx39gVFVXub3pv/DaDZx+t51/r5xmPLuKT8Z365IDf6+fijF2dy5bdKJ7xleoTM/NRyDyWziTEQgG28epKxbyk/7tPWrzT9BB1KcYZzbpp5aztDyr7Oi3ieYlIlz966xOfgAZVyLpli2deE6bAreT7ySzFkx7fQyhpTrwnd1xyfm3pJG7laF67I5j+S2IN2dI2x6oDw7jBw5kqFDh1pM67Lvw8dap4OPMwEf1sIca8IcbcSugIHAeUew97Y8Ch91Joy4oCj8+1V7rO1lB08/PW9O9iAuRhEXpXAtqGPNlHsU8E04w9WvjB19ZhUgJtKMyQguHjqWDA2ncNmcHeBXCnQ6xZQ5MegeOtnW0SnhTcHTS/HZvJjE6Xt26NmzQ8+gEUln6Tg5J72BpHb2ePgdDQ/PlG8yi2bbs3+3nnGfx+JVKGNvQsqsodcpFn4dhe6h3fPgRAxvb8XiBUnXmdu6zY4t2+wYMzrpebgkG2cvWDDl2eNhdzQ8C6bMNP1LB3busmP2zGh8MpjZbAa9TvHd/LgU+9n5/n4u5AUrFiTt003bdWzapufTUUkHIFxdkrbnXRBuP5Q59I5GwYIptz9lph3bdupZ8GUcvhkcJ3mQeeV8I/oUmUnM/OOCpDL7Z7uOf7ZpTB6VdOapS7KTvbwLQkio5ShS6B0Nr1QyT5qpY8tOHYu/NFI4E2M7tpo7U6SwRQ5Lrbtf8uiR5fX1nfomq6b8wpZVuwC4dOwKPgHevDbiJTYs3YqDowO9JnRhbMfP+O/PhMuxXDx6hdJPleDV99tbbaD8RmAYH7y9BIOjPS4uBkJDIvjfxFcIuh5GaEjC9ZU8vV0T/x+gQEEXwkKtezOz60F3eG/kShwN9jg7OxAaFsmY4S9w42a4VXOlJzA4nAGf/oCjwQ4XJwMhdyL59N12XA/Ow5lvhdNv8g84OtzPHB7JhP7Pc/12Uma9XsekAe3w9/ZgwJQfrX6Gc+CtcN6eYpl5YmqZ+9/PPNX6mcF2c1uQ7hY5LLXufnr214+1zit3wumy4kec7O1wdTBwKzKSme2f42p4OLWKFsHLxZlt/fokLm+n0zGyWWN61Hyapl/n/s1HAa5EhtF1yzKc9Pa42hu4FRPBjLovcS3yDmGxUcSbTZy7e9viMefv3qaGt/UumwYQGB3KgL3f4Ki3x0XvSEjcPT6t9nqKa5BXL1CCEq4+jD6ywkpJk1yPDmHwwTk46hxwtjMQGnePjyu/SVC05cduq3qUpLiLD58cX2qlpEluxITwweHZGHQOuNg5Ehp3l/9V7J7iuthVPEpRzNmXiSe+tVLSJLaYGRJyDz8yC4POAWc7R8Li7jKiQsrcld0Tck86ucQ6QdMj3Z0jnuiB8u7du3P16lU2bdqU5jIGgwGDwfIsWr1D9gz+6gx6dAY9psh4Io+F4PNqWYv5d7YH4hjghmOxvHMjHwdHDQdHjegIMxcOxNO8p+VZ0Y4uCSN7oYEmbpwz0viN9D+C97hKlDFjNmuE39GoWDX1S4jo9VC4SNIbhEcBhYOD5bTkylUyc3S/nnYvJw1EHtmvp1ylpPUrlTBI/t9OPWOnxeLjl/E3oLJlTZjMGmF3NKpXSz2znR6KJsvn6akwGCynJVelkom9+/V0fjVpUPq/fXqqVE4aOFUqYZB82w47Zk2Pxj8TmSuUVZjMGqF34JlqqT/Ozg6KF02aV7AAGBwspyVXtbKZPft0vPFqUsbde3VUr2y5n6fMtGPzDj3fzIijSJYya9RIN3PS914FFI4OmsW05KpXVvy7T+PNV5Om7dqrUb1y0vqVShhs3rRDx8IZRor6pbKiJzB3ppise6MkYduy2t06Levd7eiccL3g5MwmMzpdwsE+O3s99g52KLPle7op2TLWFBsTT2xMPK5ujtSoV4YFX24gKDCMkNv3eKZOac6fDgLAzk5P1WdKsHDWBisnThATG09MbDyuLgZqPV2Cr5dstXakR4qJNRITa8TN2UCdqgHMXrHN2pEeKSbOSExcQua6VQOYtWo7kDRIXsy3AP2n/Eh4ZMwj1pR7LDJXCWDWD8ky929Hcd8C9JuatzKD7eYGpLvFY8lqd2t22TMcER1vJDreiLvBQKMSAUzZuoP1p8+y87LlGdiLX+3Ir8dP8tMx610S5IFoUzzRpnjc7R1p5FuaqUc2Eq/MHA29Tkk3L4tlS7gV5HpU3jgwG2OKJ8YUj5udI3W8yzL7zDqL+e2L1uRk+DXO3QuyUsKUYsxxxMTF4WrnRK2C5fn6/O8W85/zr8Ppu1c5H3HDSglTijXHEXs/c42CFVhwYa3F/NaF63Lm3hUuRObuvQHSY4uZIWXuRWnkvpjHcgPS3TnkiR4o9/f3R/fw6bG5IOLYbVDgUNiF+OAogn88g0NhZzwaJH0syRRt5N6+m/h0tu6NOR64sD8OBXgV0RN2w8TGRVF4FdFTrUXCLzMnd8Ti7K7D3UfHrUsmNsyPpFxdB0o94/DY246JhqDApIGG4CCNS+c0XN3Bv6ii4bNGZk91oNtb8ZQsY+buXY1jB3UUL2nmmTqZv0b6cy8ZGTPUwC8r7ahV38TeXXqOHrC8tMrCWfbs2GTH8HGxODkr7tw/6OzsAthBVDQEBia9tm7c0HH2nMLNTVG8mKJVi3g+neTIwP6xlC1rJjxcY/9BPaVLmqlXN/NvZq++HM/A95xYvsKeRg2MbN9px779euZ8mXRplc9nGPhnox2TPo3G2fnBGcYJZ3k7O0JUVMK1yB8IDNI4fVbD3V0RUEzRtoWJjyfaM2SAkQplFXfCYe8BHWVKKRrWzfx+7vKykT6DHFjyvZ4mDcxs3anjv/06Fs5KOoNq8gw71v2jZ/qEOJydFLfvH7x1dQVHQ0LmK4FJ6wwM0jh1VuHhDiWKwfMtzIyaqGfYANP9zBr/HdAoW0rRqG7mj652fdlMz0F6Fn2vo1kDM5t36tizX2PJrKR/swkzdKz7R8fMCSZcnEiRGWwvtyGN9WaZHNkWj8Ea3b37t/10+V9Hgq/c5vLxq5R5uiQvD3mB9YsT/uCPuhfN4S3H6Tv1TWKj4wi+fJtqTSrR8s0mzHvfemfF1KhbGk3TuHr5NkWKFaTPoFZcu3ybv9cmXIv1lxW7ea1nIwKvhBB4NZTXezYiNiaezX9Z7/qbALWeLoGmwZXAMIr6FaBfz6ZcDQzlz3+OAeDm6ohvIXe8CiZ8dKZYEU8AQsMiCb0TmdZqc1SdqgFomsblG6EU8/VkYJfGXLkRxu/bEgZb3F0c8fV2w7tAwnXWA/wSPtITcieS0PCoNNebk+pWCQBN48qNUIr6FmBQ58ZcvhHGbzuOo9dpTH6nHRUCfBk6Yw16nYaXR8LJEeERMRhNOXsPmvQya2hcDgqlqE8B3rufee39zFPuZx4yYw16TcPL/X7mSOtltuXcFqS7xWOw1t/djUoEoGlwITSMgAIF+LBpIy6EhrH66HGMZjN3YiwPShnNJm5FRnIxNCyNNea8hr6l0ICL90IJcPXkw+rPcvFeCKsvJVz7eMHp3cyo15G9t66wO/gSjQuXprlfOd7YssxqmQHqeJVN6MHIWxRz9mJgubZcibzN74H7E5dx1hto7luVL0//YcWkSWoVLA/A1ahbFHHypl+ZdlyNCmbdjf8Sl3HWG2jiU425Z3+zVkwLNTwroAFXo4Mp4uRNn1IduBYVzN9BSTcZddYbaFyoOvPP/2q9oMnYYmaAZ+7nvhYdjL9jIXqXap+Q+6Zl7kaFnuKbC3kntwXp7hzxRA+UT5o0ySrbNUcbubX6HMawGHQu9rjV8KXQS6XR7JJ+ebj3X8IRVvfaha2S8WExUYot30Zx77YZRzeNCvUdaNLNGb1dwsBqRKiZfxZEEXnHjKunjqrNDTR8LXvOJj9/Rse4YUnXGF86L2HwvUlLI+8Mj2PAsDh+/s6epfPtCb2t4eYO5SqaeKZO1o6ela9sZvCoOFYusWfVt/YU9lMMHhVH2YpJf6j8/VvC9dfHDrO8NvqAYbGUeN7MqdN6Bg1Jev6z5iQMNbZtHc+oEbH878NYvl3mwOy5Bm7d1vBwV1SubKZeFjNXrWJm7McxfLPQwIJFDhTxV3zycQyVk50F/8vahMzvDrH8FMD/PozhlbZw4rSOt4YkHdj44quE5V9obWLcyHjGjohnwTI7ps+xI/i2RgH3hLPCG9TN2nW4qldRTPo4njkL7ZizyI6i/opJY+KpWinpzfzHXxPegvoOthyqHfthPO3bmjh+WqP3kKS3qc++0gN62rc28+lIE5+MMDF/mY5pc/QE34YC7glnV2dlYB/gqSqKKR+bmL1Qz+xFOor5w9QxJqoly/zDrwlnrfYabPn2Of5DIx3aJixna7k79crSZtMmd9QWj8Ea3T170EJ6jH+NQV/1oYCPByHXQ/lj/gaWf/JT4jITXp9B74ldGLn8PdwKunLz8i0Wj17B7/P+zvW8D7i4OtJz4LN4+7hz7240OzedZPFXGzHdH3j74dudOBjsGTjiedzcnDh17BojBy4jOsq6l3xwdTHQt1tjCnm7cu9eDFt3nWHBsu2JuRvUKc3Iwc8lLj/2w/YALP5+J0tW7LJOZmcD/Ts3wqegK3cjYti89yzzftiRmLlRjdJ89HbSdXY/fbcdAAtW72LBz/9aJ7OTgQGvNsTH05W7kTFs2neOuasTMvt5u9PkmTIAfDe+m8Xj+k3+gQOnrlkjMq5OBt55JVnm/eeY8yCzlztNnk7I/P0nlpnfnvwDB05bJzPYbm4L0t3iMVjr7243g4FhjRtQ2M2VOzGxrD9zls+37cRoziMHoFLhZm9gWNXmFHZy405cNOsDT/HF0S0YVULmDddPM2b/n7xdoQEfPd2Ki/dCGPjvT+wPuWrV3K52jvQv1xofRw/uxkex+eZx5p1dj0kl7euWftXQNPg7KG/c8NDFzpE+pZ+jkKEA9+Kj2HbrCAvPr7PI3Nz3aTQ0Nt3MGzd8dbFzpGfJdngbCnAvPpKdt4+w+OIfFpmb+DwDaGwOPmC9oMnYYmYAF70jPUu+kJh7x+3DfHvpodyFEnJvCd6f9oqsSbo7R2hK2fYhiGvXrjF37lx27dpFUFAQmqbh6+tL/fr16d+/P0WLpnGtgnR02DEwB5LmvI6+eedNJ6OeMli38LPC3y7v/uKVFmfNNo+J2WHdm9zmFwa/C9m6vjbeb2Vq+b9uz8/W7Yu8Lye6u6Xu1UcvlAfpnsnaDUitKcbP5dEL5TGx7rl/puPjMttb/7I+WaFsM7bN2bt46KMXygTpbvEoOdHdZaZOz4GkOU8raZ1PNz0OL3fby+xkn8fu5ZABDnq5FEZu0Wm2N5S5rvHMbF2fdHfOsM3Rs/t27NhB27ZtKVasGK1ataJVq1YopQgODuaXX35h1qxZrFu3jgYNGlg7qhBC5B9yZFukQ7pbCCHyIOlukQ7pbiGEyIOku3OETQ+UDxkyhD59+jB9eupHoocMGcLgwYPZu3dvLicTQoh8zLY/qCRymHS3EELkQdLdIh3S3UIIkQdJd+cI2/scajLHjh2jX79+ac5/++23OXbsWC4mEkIIgdmcua9MMBqNjB49mpIlS+Lk5ESpUqX45JNPMCdbT0REBAMHDqRo0aI4OTlRsWJF5s6dm93PUmSRdLcQQuRB0t0iHdLdQgiRB0l35wibPqPcz8+PXbt2Ub58+VTn//vvv/j5+eVyKiGEyOdy8Mj2lClTmDdvHt9++y2VK1dm37599OzZEw8PD9577z0g4aymzZs3s3z5ckqUKMHff//NgAED8Pf3p0OHDjmWTWSMdLcQQuRB0t0iHdLdQgiRB0l35wibHigfNmwY/fr1Y//+/bRs2RJfX180TSMoKIgNGzawYMECZsyYYe2YQgiRr6hMHq3OjH///ZcOHTrw/PPPA1CiRAlWrFjBvn37LJbp3r07TZs2BeCtt97i66+/Zt++fTZd2E8K6W4hhMh7pLtFeqS7hRAi75Huzhk2PVA+YMAAvLy8mD59Ol9//TUmU8IdhvV6PTVq1GDp0qV06tTJyimFECKfyeSR7djYWGJjYy2mGQwGDAZDimUbNmzIvHnzOHPmDOXKlePw4cPs2LHD4o+zhg0bsnbtWnr16oW/vz9btmzhzJkzzJyZvXcZF1kj3S2EEHmQdLdIh3S3EELkQdLdOcKmB8oBOnfuTOfOnYmPj+f27dsAeHt7Y29vb+VkQgiRT2Xy7tuTJk1i3LhxFtPGjBnD2LFjUyz74YcfEh4eToUKFdDr9ZhMJiZMmMDrr7+euMyXX35J3759KVq0KHZ2duh0OhYsWEDDhg2z9HRE9pPuFkKIPEa6WzyCdLcQQuQx0t05wuYHyh+wt7eX66IJIUReoDL3EbCRI0cydOhQi2mpHdUGWLVqFcuXL+f777+ncuXKHDp0iMGDB+Pv70/37t2BhMLevXs3a9euJSAggG3btjFgwAD8/Pxo0aJF1p6TyBHS3UIIkUdId4sMku4WQog8Qro7RzwxA+VCCCHyBnX/47gZldbHvVLzwQcfMGLECF577TUAqlatyuXLl5k0aRLdu3cnOjqa//3vf6xZsybxemrVqlXj0KFDTJs2zaYLWwghhMgp0t1CCCGEbZHuzhkyUC6EECJbqUx+BCwzoqKi0Ol0FtP0ej3m+zcyiY+PJz4+Pt1lhBBCCGFJulsIIYSwLdLdOUMGyoUQQmSvTH4ELDNeeOEFJkyYQPHixalcuTIHDx7kiy++oFevXgC4u7vTpEkTPvjgA5ycnAgICGDr1q0sXbqUL774IsdyCSGEEDZNulsIIYSwLdLdOUOJXBMTE6PGjBmjYmJirB0lw2wxs1K2mVsy5w5bzKyU7ebObnfv3lXvvfeeKl68uHJ0dFSlSpVSo0aNUrGxsYnL3LhxQ/Xo0UP5+/srR0dHVb58efX5558rs9lsxeTCVtniz54tZlbKNnNL5txhi5mVst3c2U26W+Q2W/zZs8XMStlmbsmcO2wxs1K2mzu75efu1pRSOXeuvrBw9+5dPDw8CA8Px93d3dpxMsQWM4Nt5pbMucMWM4Pt5hbC1tniz54tZgbbzC2Zc4ctZgbbzS2ErbPFnz1bzAy2mVsy5w5bzAy2m1tkH92jFxFCCCGEEEIIIYQQQgghnlwyUC6EEEIIIYQQQgghhBAiX5OBciGEEEIIIYQQQgghhBD5mgyU5yKDwcCYMWMwGAzWjpJhtpgZbDO3ZM4dtpgZbDe3ELbOFn/2bDEz2GZuyZw7bDEz2G5uIWydLf7s2WJmsM3ckjl32GJmsN3cIvvIzTyFEEIIIYQQQgghhBBC5GtyRrkQQgghhBBCCCGEEEKIfE0GyoUQQgghhBBCCCGEEELkazJQLoQQQgghhBBCCCGEECJfk4FyIYQQQgghhBBCCCGEEPmaDJQLIYQQQgghhBBCCCGEyNdkoDyL7t27x+DBgwkICMDJyYn69euzd+/exPlKKcaOHYu/vz9OTk40bdqU48ePP3K9q1evplKlShgMBipVqsSaNWuyLbPRaGT06NGULFkSJycnSpUqxSeffILZbE5cRtO0VL8+++yzNNe7ZMmSVB8TExOTK5l79OiRYtt169Z95Lpzal8/KnN8fDwffvghVatWxcXFBX9/f7p168b169fTXW9O7ueM5Ia897ouUaJEqvvknXfeAfLe6zkjmfPa61mIJ4l0dxLp7sxllu6W7pbuFsI6pLuTSHdnLrN0t3S3dLfIEiWypFOnTqpSpUpq69at6uzZs2rMmDHK3d1dXbt2TSml1OTJk5Wbm5tavXq1Onr0qOrcubPy8/NTd+/eTXOdu3btUnq9Xk2cOFGdPHlSTZw4UdnZ2andu3dnS+ZPP/1UeXl5qd9//11dvHhR/fjjj8rV1VXNmDEjcZkbN25YfC1atEhpmqbOnz+f5noXL16s3N3dUzw2tzJ3795dtWnTxmLbISEh6a43J/f1ozLfuXNHtWjRQq1atUqdOnVK/fvvv6pOnTqqRo0a6a43J/dzRnIrlfde18HBwRb7YsOGDQpQmzdvVkrlvddzRjLntdezEE8S6e4k0t2ZyyzdLd0t3S2EdUh3J5Huzlxm6W7pbulukRUyUJ4FUVFRSq/Xq99//91ievXq1dWoUaOU2WxWhQsXVpMnT06cFxMTozw8PNS8efPSXG+nTp1UmzZtLKa1bt1avfbaa9mS+/nnn1e9evWymNaxY0f1xhtvpPmYDh06qObNm6e73sWLFysPD4/siJhCRjJ3795ddejQIVPrzcl9nZX9/N9//ylAXb58Oc1lcnI/K/Xo3Hn1dZ3ce++9p0qXLq3MZnOq8639ek7Nw5nz2utZiCeFdLcl6W5L0t2WpLvTJ90tRO6Q7rYk3W1JutuSdHf6pLtFRsmlV7LAaDRiMplwdHS0mO7k5MSOHTu4ePEiQUFBtGrVKnGewWCgSZMm7Nq1K831/vvvvxaPAWjdunW6j8mMhg0bsnHjRs6cOQPA4cOH2bFjB88991yqy9+8eZM//viD3r17P3LdERERBAQEULRoUdq1a8fBgwdzNfOWLVvw8fGhXLly9O3bl+Dg4HTXm5P7OrP7GSA8PBxN0yhQoEC6686p/ZyR3Hn1df1AXFwcy5cvp1evXmialmJ+Xng9PyytzHnp9SzEk0K6OyXp7sxnTk66+/FJd0t3C5Ee6e6UpLsznzk56e7HJ90t3f3Es/ZIva2qV6+eatKkiQoMDFRGo1EtW7ZMaZqmypUrp3bu3KkAFRgYaPGYvn37qlatWqW5Tnt7e/Xdd99ZTPvuu++Ug4NDtmQ2m81qxIgRStM0ZWdnpzRNUxMnTkxz+SlTpihPT08VHR2d7nr//fdftWzZMnXo0CG1bds29fLLLysnJyd15syZXMm8cuVK9fvvv6ujR4+qtWvXqurVq6vKlSurmJiYNNebk/s6s/s5Ojpa1ahRQ3Xt2jXd9ebkfs5I7rz6un5g1apVSq/Xp8j3QF54PWckc157PQvxJJHuTiLdnfnMyUl3Zw/pbuluIR5FujuJdHfmMycn3Z09pLulu590MlCeRefOnVONGzdWgNLr9apWrVqqa9euqmLFiolvbNevX7d4TJ8+fVTr1q3TXKe9vb36/vvvLaYtX75cGQyGbMm8YsUKVbRoUbVixQp15MgRtXTpUlWwYEG1ZMmSVJcvX768GjhwYKa3YzKZVPXq1dW77777uJEznVkppa5fv67s7e3V6tWr01wmJ/d1ZjLHxcWpDh06qKefflqFh4dnajvZuZ8zkjuvvq4faNWqlWrXrl2a8/PC6/lhj8qslPVfz0I8SaS70ybdLd2dnHR32qS7hchd0t1pk+6W7k5Oujtt0t0iM+yscBL7E6F06dJs3bqVyMhI7t69i5+fH507d6ZkyZIULlwYgKCgIPz8/BIfExwcjK+vb5rrLFy4MEFBQRbTHvWYzPjggw8YMWIEr732GgBVq1bl8uXLTJo0ie7du1ssu337dk6fPs2qVasyvR2dTketWrU4e/ZsrmZ+wM/Pj4CAgHS3n5P7OqOZ4+Pj6dSpExcvXmTTpk24u7tnajvZuZ8zkjuvvq4BLl++zD///MPPP/+c6vy88npO7lGZH7D261mIJ4l0d9qku6W7k5PuTp10txC5T7o7bdLd0t3JSXenTrpbZJZco/wxubi44OfnR1hYGOvXr6dDhw6Jpb1hw4bE5eLi4ti6dSv169dPc1316tWzeAzA33//ne5jMiMqKgqdzvKfXK/XYzabUyy7cOFCatSoQfXq1TO9HaUUhw4dsnhTz6rMZH4gJCSEq1evprv9nNzXGcn8oKzPnj3LP//8g5eXV6a3k537GR6dO6++rgEWL16Mj48Pzz//fKrz88rrOblHZX7A2q9nIZ5E0t0pSXdLdycn3Z066W4hrEe6OyXpbunu5KS7UyfdLTLNauey27i//vpLrVu3Tl24cEH9/fffqnr16qp27doqLi5OKaXU5MmTlYeHh/r555/V0aNH1euvv678/PzU3bt3E9fx5ptvqhEjRiR+v3PnTqXX69XkyZPVyZMn1eTJk5WdnZ3avXt3tmTu3r27KlKkiPr999/VxYsX1c8//6y8vb3V8OHDLZYLDw9Xzs7Oau7cuamu5+HcY8eOVX/99Zc6f/68OnjwoOrZs6eys7NTe/bsyfHM9+7dU++//77atWuXunjxotq8ebOqV6+eKlKkiNX29aMyx8fHq/bt26uiRYuqQ4cOqRs3biR+xcbGppk5J/dzRnIrlTdf1yaTSRUvXlx9+OGHqc7PS6/nR2XOi69nIZ4k0t3S3VnNLN0t3S3dLYR1SHdLd2c1s3S3dLd0t8gKGSjPolWrVqlSpUopBwcHVbhwYfXOO++oO3fuJM43m81qzJgxqnDhwspgMKjGjRuro0ePWqyjSZMmqnv37hbTfvzxR1W+fHllb2+vKlSokO71kTLr7t276r333lPFixdXjo6OqlSpUmrUqFEWJaGUUl9//bVycnKyeD7p5R48eLAqXry4cnBwUIUKFVKtWrVSu3btypXMUVFRqlWrVqpQoULK3t5eFS9eXHXv3l1duXIl3cxK5dy+flTmixcvKiDVr82bN6eZOSf3c0ZyK5U3X9fr169XgDp9+nSq8/PS6/lRmfPi61mIJ4l0d1Ju6e7MZZbulu6W7hbCOqS7k3JLd2cus3S3dLd0t8gKTSmlcu/8dSGEEEIIIYQQQgghhBAib5FrlAshhBBCCCGEEEIIIYTI12SgXAghhBBCCCGEEEIIIUS+JgPlQgghhBBCCCGEEEIIIfI1GSgXQgghhBBCCCGEEEIIka/JQLkQQgghhBBCCCGEEEKIfE0GyoUQQgghhBBCCCGEEELkazJQLoQQQgghhBBCCCGEECJfk4Fy8UTSNI1ffvklw8v36NGDF1988bG2eenSJTRN49ChQ4+1nqzasmULmqZx584dq2xfCCGEeBzS3UIIIYRtke4WQjxpZKBc2JSgoCDee+89ypQpg6OjI76+vjRs2JB58+YRFRVl7XiP1LRpUwYPHpxi+pIlSyhQoECu5xFCCCFymnS3EEIIYVuku4UQ+ZWdtQMIkVEXLlygQYMGFChQgIkTJ1K1alWMRiNnzpxh0aJF+Pv70759e2vHzLNMJhOapqHTyfExIYQQuUO6+/FIdwshhMht0t2PR7pbCNsmP7nCZgwYMAA7Ozv27dtHp06dqFixIlWrVuXll1/mjz/+4IUXXkjzsUePHqV58+Y4OTnh5eXFW2+9RURERIrlxo0bh4+PD+7u7rz99tvExcUlzvvrr79o2LAhBQoUwMvLi3bt2nH+/Plsf56XLl1Cp9Oxb98+i+mzZs0iICAApRQAf/75J+XKlcPJyYlmzZpx6dIli+UfHC3//fffqVSpEgaDgcuXLxMWFka3bt3w9PTE2dmZtm3bcvbsWYvHfvPNNxQrVgxnZ2deeuklvvjiixRH3n/77Tdq1KiBo6MjpUqVYty4cRiNxsT5mqaxYMECXnrpJZydnSlbtixr167Nvh0lhBAiz5Pulu4WQghhW6S7pbuFyM9koFzYhJCQEP7++2/eeecdXFxcUl1G07RUp0dFRdGmTRs8PT3Zu3cvP/74I//88w8DBw60WG7jxo2cPHmSzZs3s2LFCtasWcO4ceMS50dGRjJ06FD27t3Lxo0b0el0vPTSS5jN5ux7okCJEiVo0aIFixcvtpi+ePFievTogaZpXL16lY4dO/Lcc89x6NAh+vTpw4gRI1J97pMmTWLBggUcP34cHx8fevTowb59+1i7di3//vsvSimee+454uPjAdi5cyf9+vXjvffe49ChQ7Rs2ZIJEyZYrHf9+vW88cYbDBo0iBMnTvD111+zZMmSFMuNGzeOTp06ceTIEZ577jm6du1KaGhotu4vIYQQeZN0t3S3EEII2yLdLd0tRL6nhLABu3fvVoD6+eefLaZ7eXkpFxcX5eLiooYPH544HVBr1qxRSik1f/585enpqSIiIhLn//HHH0qn06mgoCCllFLdu3dXBQsWVJGRkYnLzJ07V7m6uiqTyZRqpuDgYAWoo0ePKqWUunjxogLUwYMH03weTZo0Ufb29omZH3wZDAbl4eGRuNyqVauUp6eniomJUUopdejQIaVpmrp48aJSSqmRI0eqihUrKrPZnPiYDz/8UAEqLCxMKaXU4sWLFaAOHTqUuMyZM2cUoHbu3Jk47fbt28rJyUn98MMPSimlOnfurJ5//nmL3F27drXI16hRIzVx4kSLZZYtW6b8/PwSvwfU6NGjE7+PiIhQmqapdevWpbl/hBBCPDmku6W7hRBC2BbpbuluIfI7OaNc2JSHj17/999/HDp0iMqVKxMbG5vqY06ePEn16tUtjog3aNAAs9nM6dOnE6dVr14dZ2fnxO/r1atHREQEV69eBeD8+fN06dKFUqVK4e7uTsmSJQG4cuVKpp5D165dOXTokMXXJ598YrHMiy++iJ2dHWvWrAFg0aJFNGvWjBIlSiQ+p7p161rsj3r16qXYloODA9WqVbPYF3Z2dtSpUydxmpeXF+XLl+fkyZMAnD59mtq1a1us5+Hv9+/fzyeffIKrq2viV9++fblx44bFzV2Sb9vFxQU3NzeCg4MztJ+EEEI8GaS7SyQ+J+luIYQQtkC6u0Tic5LuFiJ/kZt5CptQpkwZNE3j1KlTFtNLlSoFgJOTU5qPVUql+fGwtKantswLL7xAsWLF+Oabb/D398dsNlOlShWL66llhIeHB2XKlLGY5uPjY/G9g4MDb775JosXL6Zjx458//33zJgxw+I5ZYSTk5PFc0zrccn3UWr76+HHmc1mxo0bR8eOHVOsy9HRMfH/7e3tLeZpmpbtH5kTQgiRN0l3S3cLIYSwLdLd0t1C5HdyRrmwCV5eXrRs2ZLZs2cTGRmZqcdWqlSJQ4cOWTxu586d6HQ6ypUrlzjt8OHDREdHJ36/e/duXF1dKVq0KCEhIZw8eZLRo0fz7LPPUrFiRcLCwh7/iaWjT58+/PPPP8yZM4f4+HiLcqxUqRK7d++2WP7h71NTqVIljEYje/bsSZwWEhLCmTNnqFixIgAVKlTgv//+s3jcwzc4eeaZZzh9+jRlypRJ8SV39xZCCAHS3dLdQgghbI10t3S3EPmd/GQJmzFnzhyMRiM1a9Zk1apVnDx5ktOnT7N8+XJOnTqFXq9P9XFdu3bF0dGR7t27c+zYMTZv3sy7777Lm2++ia+vb+JycXFx9O7dmxMnTrBu3TrGjBnDwIED0el0eHp64uXlxfz58zl37hybNm1i6NChOfp8K1asSN26dfnwww95/fXXLY7e9+vXj/PnzzN06FBOnz7N999/z5IlSx65zrJly9KhQwf69u3Ljh07OHz4MG+88QZFihShQ4cOALz77rv8+eeffPHFF5w9e5avv/6adevWWRzt/vjjj1m6dCljx47l+PHjnDx5klWrVjF69Ohs3w9CCCFsl3S3dLcQQgjbIt0t3S1EfiYD5cJmlC5dmoMHD9KiRQtGjhxJ9erVqVmzJrNmzWLYsGGMHz8+1cc5Ozuzfv16QkNDqVWrFq+88grPPvsss2fPtlju2WefpWzZsjRu3JhOnTrxwgsvMHbsWAB0Oh0rV65k//79VKlShSFDhvDZZ5/l9FOmd+/exMXF0atXL4vpxYsXZ/Xq1fz2229Ur16defPmMXHixAytc/HixdSoUYN27dpRr149lFL8+eefiR/XatCgAfPmzeOLL76gevXq/PXXXwwZMsTio12tW7fm999/Z8OGDdSqVYu6devyxRdfEBAQkH1PXgghhM2T7k4i3S2EEMIWSHcnke4WIv/RVEYvuiSEyHUTJkxg5cqVHD161Ko5+vbty6lTp9i+fbtVcwghhBB5nXS3EEIIYVuku4UQD8jNPIXIgyIiIjh58iSzZs1K84h9Tpo2bRotW7bExcWFdevW8e233zJnzpxczyGEEELYCuluIYQQwrZIdwshHiZnlAuRB/Xo0YMVK1bw4osv8v3336d5Hbic0qlTJ7Zs2cK9e/coVaoU7777Lv369cvVDEIIIYQtke4WQgghbIt0txDiYTJQLoQQQgghhBBCCCGEECJfk5t5CiGEEEIIIYQQQgghhMjXZKBcCCGEEEIIIYQQQgghRL4mA+XiibJkyRIKFChg7Rhpyq18mzZtokKFCpjN5hzf1uPKyD4ZNmwYgwYNyp1AQgghcpV0dwLpbiGEELZCujuBdLcQTx4ZKBe5okePHmialuqNKQYMGICmafTo0SP3gz1ky5YtaJrGnTt3MrTcg69ChQrRtm1bDh8+nO7jOnfuzJkzZ7IxceqGDx/OqFGj0OmSfsRjY2OZNGkSFStWxMXFhapVq/LNN9+kKPUePXowYsQIgMTnt3v3botlYmNj8fLyQtM0tmzZAkDdunXp37+/xXJz585F0zQWLlxoMb13797Ur18/U89n8eLFXLx4McOPEUII8XikuxNIdyeQ7hZCiLxPujuBdHcC6W4hMk8GykWuKVasGCtXriQ6OjpxWkxMDCtWrKB48eKPvf74+PjHXkdmnT59mhs3bvDHH38QFhZGmzZtCA8PT3XZ+Ph4nJyc8PHxydFMu3bt4uzZs7z66qsW07t168bChQuZNGkSx44dY9asWWzevJmrV68mLmM2m/njjz/o0KFD4rRixYqxePFii3WtWbMGV1dXi2nNmjVj8+bNFtO2bNlCsWLFUp3erFmzDD8nHx8fWrVqxbx58zL8GCGEEI9Pulu6O/l06W4hhMj7pLulu5NPl+4WInNkoFzkmmeeeYbixYvz888/J077+eefKVasGE8//bTFsn/99RcNGzakQIECeHl50a5dO86fP584/9KlS2iaxg8//EDTpk1xdHRk+fLlKbYZEhJC7dq1ad++PTExMSilmDp1KqVKlcLJyYnq1avz008/Ja7zQYl4enpm6Gi7j48PhQsXpnbt2nz++ecEBQWxe/fuNPOl9nGntWvXUrNmTRwdHfH29qZjx46J8+Li4hg+fDhFihTBxcWFOnXqJB5JTsvKlStp1aoVjo6OidOOHj3KDz/8wOrVq3nxxRcpWbIkTZs25fvvv7f4ZWnnzp3odDrq1KmTOK179+4pftFatGgR3bt3t9hus2bNEn+BeWDr1q2MHDnSIvPVq1e5cOFCisJev349FStWxNXVlTZt2lisB6B9+/asWLEi3ecuhBAie0l3S3eDdLcQQtgS6W7pbpDuFiKrZKBc5KqePXtaHCVdtGgRvXr1SrFcZGQkQ4cOZe/evWzcuBGdTsdLL72U4uNKH374IYMGDeLkyZO0bt3aYt61a9do1KgRFSpU4Oeff8bR0ZHRo0ezePFi5s6dy/HjxxkyZAhvvPEGW7dupVixYqxevRpIOmI9c+bMDD83JycnwPIIe3r5AP744w86duzI888/z8GDB9m4cSM1a9a02F87d+5k5cqVHDlyhFdffZU2bdpw9uzZNHNs27bNYh2DBg2iVq1aADRo0ABXV1dcXV1p27YtkPAxrwfWrl3LCy+8YPHRsRo1alCyZMnEfXP16lW2bdvGm2++abHdBg0aYG9vn1jOJ06cIDo6ml69enH37t3EzJs3b8bBwcHiI2BRUVFMmzaNZcuWsW3bNq5cucKwYcMs1l+7dm2uXr3K5cuX03zuQgghsp90tyXp7gTS3UIIkXdJd1uS7k4g3S1EBighckH37t1Vhw4d1K1bt5TBYFAXL15Uly5dUo6OjurWrVuqQ4cOqnv37mk+Pjg4WAHq6NGjSimlLl68qAA1Y8YMi+UWL16sPDw81OnTp1Xx4sXVu+++q8xms1JKqYiICOXo6Kh27dpl8ZjevXur119/XSml1ObNmxWgwsLC0n0+Dy93+/Zt1b59e+Xm5qZu3rz5yHwP1KtXT3Xt2jXVbZw7d05pmqYCAwMtpj/77LNq5MiRaWbz8PBQS5cuTfz+6tWr6t1331Xly5dXZ8+eTfy6fft2iseWK1dOrV27NvF7QK1Zs0bNmDFDNWvWTCml1Lhx49RLL72kwsLCFKA2b96cuHz9+vXVW2+9pZRS6quvvlLPPfecUkqpNm3aqPnz5yullOrZs6dq1KiRxT4B1Llz5xKnffXVV8rX19ciW3h4uALUli1b0nzuQgghso90t2W+B6S7pbuFECKvku62zPeAdLd0txAZZZdL4/FCAODt7c3zzz/Pt99+i1KK559/Hm9v7xTLnT9/no8++ojdu3dz+/btxCPaV65coUqVKonLJT+C+0B0dDQNGzbk9ddftzgyfeLECWJiYmjZsqXF8nFxcSk+gpZRRYsWBRKOxJctW5Yff/wRHx8fLl26lGa+5A4dOkTfvn1TnXfgwAGUUpQrV85i+oMbeqQlOjra4uNfU6dOZd68eRiNRp566ikg4eNav/32m8XjTp48ybVr12jRokWKdb7xxhuMGDGCCxcusGTJEr788stUt92sWTN+/PFHIOF6aE2bNgWgSZMmbNmyhb59+7Jlyxa6detm8ThnZ2dKly6d+L2fnx/BwcEWyzw4cyAqKirN5y6EECL7SXdbku5OIN0thBB5l3S3JenuBNLdQjyaDJSLXNerVy8GDhwIwFdffZXqMi+88ALFihXjm2++wd/fH7PZTJUqVYiLi7NYzsXFJcVjDQYDLVq04I8//uCDDz5ILNUHpf/HH39QpEiRFI/Jiu3bt+Pu7k6hQoVwd3dPMT+1fMk9KKHUmM1m9Ho9+/fvR6/XW8x7+IYeyXl7exMWFpb4/fDhw6lTpw5vvPEGmzdvxtPTE09PzxSPW7t2LS1btkw104Pr1fXu3ZuYmBjatm3LvXv3UizXrFkzJkyYQGBgIFu3bk38GFeTJk2YNWsWV65c4eLFiymuk2Zvb2/xvaZpKKUspoWGhgJQqFChNJ+7EEKInCHdnUS6O4F0txBC5G3S3UmkuxNIdwvxaHKNcpHr2rRpQ1xcHHFxcalePywkJISTJ08yevRonn32WSpWrGhRQI+i0+lYtmwZNWrUoHnz5ly/fh2ASpUqYTAYuHLlCmXKlLH4KlasGAAODg4AmEymDG2rZMmSlC5dOtWyzohq1aqxcePGVOc9/fTTmEwmgoODU+QtXLhwmut8+umnOXHiROL3RYsW5ZVXXsHNzY3du3dTpkyZxCPj4eHhicX766+/0r59+zTX26tXr8Sj0g//AvFA/fr1MRgMzJkzh+joaGrUqAEkHOEPDw/n66+/xtHRkbp166a/Y1Jx7Ngx7O3tqVy5cqYfK4QQ4vFIdyeR7s446W4hhLAe6e4k0t0ZJ90t8js5o1zkOr1ez8mTJxP//2Genp54eXkxf/58/Pz8uHLlCiNGjMj0Nr777jtef/11mjdvzpYtWyhcuDDDhg1jyJAhmM1mGjZsyN27d9m1axeurq50796dgIAANE3j999/57nnnsPJySndo8iPa8yYMTz77LOULl2a1157DaPRyLp16xg+fDjlypWja9eudOvWjc8//5ynn36a27dvs2nTJqpWrcpzzz2X6jpbt27Nt99+azHNYDDw2Wef8f7772Nvb0/Lli25ePEi77//Pr/++ivR0dHs3buXX375Jc2sbdq04datW+n+cuLk5ESdOnWYNWsWDRo0SPz3tbe3p169esyaNSux1DNr+/btNGrUKN2zAYQQQuQM6e4k0t0ZJ90thBDWI92dRLo746S7RX4nZ5QLq3B3d0/zjV+n07Fy5Ur2799PlSpVGDJkCJ999lmmt2FnZ8eKFSuoXLkyzZs3Jzg4mPHjx/Pxxx8zadIkKlasSOvWrfntt98oWbIkAEWKFGHcuHGMGDECX1/fxI+q5ZSmTZvy448/snbtWp566imaN2/Onj17EucvXryYbt268f7771O+fHnat2/Pnj17Eo/Ep+aNN97gxIkTnD592mL622+/zYwZM5g5cyaVK1dmyJAhvPvuuwQEBPDbb79Rp04dfHx80lyvpml4e3snHv1PS7Nmzbh3717iddIeaNKkCffu3Uvx8a+MWrFiRZrXlRNCCJHzpLsTSHdnnHS3EEJYl3R3AunujJPuFvmdph6+IJEQwuYNHz488SNXGdG+fXsaNmzI8OHDczhZ1jy47t2RI0ews5MPwgghhHjySHcLIYQQtkW6W4gnj5xRLsQTaNSoUQQEBGT4mm8P7laeV0VGRrJ48WIpayGEEE8s6W4hhBDCtkh3C/HkkTPKhRBCCCGEEEIIIYQQQuRrcka5EEIIIYQQQgghhBBCiHxNBsqFEEIIIYQQQgghhBBC5GsyUC6EEEIIIYQQQgghhBAiX5OBciGEEEIIIYQQQgghhBD5mgyUCyGEEEIIIYQQQgghhMjXZKBcCCGEEEIIIYQQQgghRL4mA+VCCCGEEEIIIYQQQggh8jUZKBdCCCGEEEIIIYQQQgiRr8lAuRBCCCGEEEIIIYQQQoh8TQbKhRBCCCGEEEIIIYQQQuRrMlAuhBBCCCGEEEIIIYQQIl+TgXIhhBBCCCGEEEIIIYQQ+ZoMlAshhBBCCCGEEEIIIYTI12SgXAghhBBCCCGEEEIIIUS+JgPlQgjxf/buOiyKtQ0D+L10d6uAoAiioIAtoiIWgnXsQLBALBQTPYqK2N2fio1dx26PLdiNAYiBoEiIkjvfH3tYWTZYcJdd9Pmda6/rMPPOzLOz696T7xBCCCGEEEIIIYSQPxodKP9NbNmyBSwWi+dlbGyMli1b4tixY3ztWSwWRo4cKYNKJePDhw+YOXMm7t+/L+tS5E7Lli3RsmVLWZchFml8D1u2bMn3b6HoZW1tzW1X9G8mNjZW4Hw6derE076o3uIvHR0dNG3aFNHR0RJ9D4SQ31fJvFZTU4OZmRlatWqFyMhIpKSk8E0zc+ZMob9rLBYLCQkJFf9GJOD79++YOXMmLl26JOtS5M6gQYP4MkheWVtbo1OnThKd56BBg0R+54tcunQJLBYL+/fvFzifkSNH8rQvqrf4vDQ1NeHi4oJVq1aBYRiJvg9CyO/j4cOHGDx4MGxtbaGurg51dXXUrFkTw4cP59ufKMrtz58/C5xXnTp1Ks3+miCU38JRflN+k8pPSdYFEMmKioqCvb09GIZBcnIyVq1aBR8fHxw9ehQ+Pj6yLk9iPnz4gPDwcFhbW6NevXqyLkeurFmzRtYlyJyNjQ127tzJN1xVVfWX5/3XX39h/PjxYBgG8fHxmDt3Lvr27QuGYdC3b99fnj8h5M9QlNf5+flISUnB1atXMX/+fCxatAh79uxBmzZt+KY5deoUdHV1+Yabm5tXRMkS9/37d4SHhwNApT5gIA3Tp0/HmDFjZF2GTKmrq+PChQtSmXezZs2waNEiAJxtyiVLlmDUqFHIzMzE1KlTpbJMQkjltX79eowcORK1atXCmDFj4OjoCBaLhWfPniE6OhoNGjTAq1evYGtrK+tSKwTlt3CU35TfpPKjA+W/mTp16sDNzY37d/v27aGvr4/o6Ojf6kA5Ea527dqyLkHm1NXV0bhxY6nM29TUlDvvJk2aoFmzZrC2tsb69evpQDkhRGwl87p79+4ICQlB8+bN0a1bN7x8+RKmpqY807i6usLIyKiiSyUy8KccbBFFQUFBalmup6fHM+82bdrA0tIS69evpx1tQgiPa9euYcSIEfD29sb+/fuhoqLCHde6dWsEBwdj3759UFdXl2GVRF5QflN+k8qPul75zampqUFFRQXKyspSX9abN2/Qu3dvWFhYQFVVFaampvD09OR2jzJ48GAYGBjg+/fvfNO2bt0ajo6O3L/37duHRo0aQVdXFxoaGrCxsUFAQAAAzm06DRo0AAD4+/tzb72ZOXMmd/rY2Fj4+vrCwMAAampqqF+/Pvbu3cuzzKLb3y9cuIChQ4fC0NAQOjo6GDhwILKzs5GcnIyePXtCT08P5ubmCA0NRX5+fpnWyb1799CpUyeYmJhAVVUVFhYW8Pb2xrt377htVq9ejRYtWsDExASampqoW7cuFixYwLOssWPHQlNTE5mZmXzL6NWrF0xNTbntS3a9kpCQABaLhUWLFmHJkiWoXr06tLS00KRJE9y8eZNvfv/73/9gZ2cHVVVV1K5dG7t27RJ4C9natWvh7OwMLS0taGtrw97evtzhtH79ep5l7t69m2d80Wd18eJFBAUFwcjICIaGhujWrRs+fPhQrmVKipWVFYyNjfHp0yeZ1kEIqfwsLS2xePFiZGVlYf369TKpITU1FcOGDUO1atWgqqoKY2NjNGvWDOfOnQMAzJ49G0pKSkhKSuKbNiAgAIaGhsjJyQEAXLhwAS1btoShoSHU1dVhaWmJ7t274/v370hISICxsTEAIDw8nJvlgwYN4s7v5cuX6Nu3LzdDHRwcsHr1ap5lFt26u2vXLkyaNAnm5ubQ0tKCj48PPn36hKysLAwbNgxGRkYwMjKCv78/vn37VqZ1Utr2DQDs2bMHbdu2hbm5OdTV1eHg4IDJkycjOzub22bZsmVgsVh49eoV3zImTZoEFRUV7m36gnK3qLuy7du3w8HBARoaGnB2dhbYxd6RI0fg5OQEVVVV2NjYYPny5dyuAIoTtb1VVocOHYKTkxPU1NRgY2ODFStW8Iwv+qyio6MRFhYGCwsL6OjooE2bNnjx4kW5likpOjo6sLOzoywnhPCZO3cuFBUVsX79ep6D5MX16NEDFhYWFVwZL8pvfpTf4qH8JoQXXVH+myksLERBQQEYhsGnT5+wcOFCZGdnV8iVrh07dkRhYSEWLFgAS0tLfP78GdevX0d6ejoAYMyYMdi8eTN27dqFIUOGcKd7+vQpLl68yA3PGzduoFevXujVqxdmzpwJNTU1JCYmcm/fcXFxQVRUFPz9/TFt2jR4e3sDAKpWrQoAuHjxItq3b49GjRph3bp10NXVxe7du9GrVy98//6dJ8QBYMiQIejWrRt2796Ne/fuYerUqSgoKMCLFy/QrVs3DBs2DOfOncP8+fNhYWGBcePGibU+srOz4eXlherVq2P16tUwNTVFcnIyLl68iKysLG67169fo2/fvqhevTpUVFTw4MEDRERE4Pnz59i8eTMAzsbL8uXLsXfvXp51l56ejiNHjiA4OLjUkyGrV6+Gvb09li1bBoBzW1jHjh0RHx/PvZV/w4YNGD58OLp3746lS5ciIyMD4eHhyM3N5ZnX7t27MWLECIwaNQqLFi2CgoICXr16hadPn4q1boo7evQoLl68iFmzZkFTUxNr1qxBnz59oKSkhL/++oun7ZAhQ+Dt7Y1du3YhKSkJEyZMQP/+/QXe2lVQUMA3TEFBAQoKkj0/mJGRgbS0NKmdNSeE/Fk6duwIRUVF/Pvvv3zjijK+OBaLBUVFRYktf8CAAbh79y4iIiJgZ2eH9PR03L17F1++fAEADB8+HBEREVi/fj3mzJnDnS4tLQ27d+/GyJEjoaamhoSEBHh7e8Pd3R2bN2+Gnp4e3r9/j1OnTiEvLw/m5uY4deoU2rdvj8GDB3OzrWjn++nTp2jatCn35IGZmRlOnz6N0aNH4/Pnz5gxYwZP3VOnTkWrVq2wZcsWJCQkIDQ0lJslzs7OiI6O5ma8trY2306gKKVt3wCcgwIdO3bknth+/vw55s+fj9u3b3Mzqn///pg0aRK2bNnCs+4KCwuxY8cO+Pj4lHrHwPHjxxETE4NZs2ZBS0sLCxYsQNeuXfHixQvY2NgA4HTR061bN7Ro0QJ79uxBQUEBFi1axLcTWdr2Vlncv38fY8eOxcyZM2FmZoadO3dizJgxyMvLQ2hoKE/bqVOnolmzZti4cSMyMzMxadIk+Pj44NmzZ3zf5YrK8oKCAiQlJcHOzk6i8yWEVG6FhYW4ePEi3NzcytXNmaDclhbKb36U36Wj/CZEAIb8FqKiohgAfC9VVVVmzZo1fO0BMMHBwRJb/ufPnxkAzLJly0S28/DwYOrVq8czLCgoiNHR0WGysrIYhmGYRYsWMQCY9PR0ofOJiYlhADBRUVF84+zt7Zn69esz+fn5PMM7derEmJubM4WFhQzD/Fxno0aN4mnXpUsXBgCzZMkSnuH16tVjXFxcRL6/4mJjYxkAzOHDh8WeprCwkMnPz2e2bdvGKCoqMmlpadxxLi4uTNOmTXnar1mzhgHAPHr0iDvMw8OD8fDw4P4dHx/PAGDq1q3LFBQUcIffvn2bAcBER0dzl21mZsY0atSIZxmJiYmMsrIyY2VlxR02cuRIRk9PT+z3JQwARl1dnUlOTuYOKygoYOzt7ZkaNWpwhxV9ViNGjOCZfsGCBQwA5uPHj9xhHh4eAv8tAGAGDx7MN8+YmBiBtXl7e/O856J6R4wYweTn5zN5eXlMXFwc4+vry2hrazOxsbG/sioIIX+I0n57GIZhTE1NGQcHB+7fM2bMEPq7ZmtrK9H6tLS0mLFjx4ps4+fnx5iYmDC5ubncYfPnz2cUFBSY+Ph4hmEYZv/+/QwA5v79+0Lnk5qaygBgZsyYwTeuXbt2TNWqVZmMjAye4SNHjmTU1NS4+Xjx4kUGAOPj48PTbuzYsQwAZvTo0TzDu3TpwhgYGIh8f8WJu31THJvNZvLz85nLly8zAJgHDx5wx3Xr1o2pWrUqd1uEYRjmxIkTDADmn3/+4Q7z8/MTmEGmpqZMZmYmd1hycjKjoKDAREZGcoc1aNCAqVatGs/nk5WVxRgaGjLFN/3F2d4Sh5WVFcNisfg+ay8vL0ZHR4fJzs5mGObnZ9WxY0eednv37mUAMDdu3OAO8/PzE/qd9/T05LYrmue+ffsE1hYcHMzznovq7dixI5Ofn8/k5+cziYmJzNChQxllZWXm2LFjv7QuCCG/l+TkZAYA07t3b75xBQUF3N+R/Px8hs1mc8eJyu2iV/H9NUmg/OZF+V06ym9CBKOuV34z27ZtQ0xMDGJiYnDy5En4+fkhODgYq1atKvO82Gw2CgoKuK/CwkKhbQ0MDGBra4uFCxdiyZIluHfvHthsNl+7MWPG4P79+7h27RoAIDMzE9u3b4efnx+0tLQAgNutSs+ePbF37168f/9e7JpfvXqF58+fo1+/fgDAU3/Hjh3x8eNHvtuDSj7p2cHBAQC4V6oXH56YmCh2LTVq1IC+vj4mTZqEdevWCb3a+t69e/D19YWhoSEUFRWhrKyMgQMHorCwEHFxcdx2/v7+uH79Ok/9UVFRaNCgAerUqVNqPd7e3jxnep2cnACA+55evHjB7W6mOEtLSzRr1oxnWMOGDZGeno4+ffrgyJEjQp/oLg5PT0+efngVFRXRq1cvvHr1iqeLGgDw9fXl+bvkeyhia2vL/XdQ/DV9+vRy11lkzZo1UFZWhoqKCuzs7HDy5ElER0fD1dX1l+dNCCEAwDCMwOHnzp3j+107fPiwyHmVJcsBzu970RVTN2/eFNjl2JgxY5CSkoJ9+/Zxl7F27Vp4e3tzbzeuV68eVFRUMGzYMGzduhVv3rwp/Y3/JycnB+fPn0fXrl2hoaHBl+U5OTl8XYeVJcvT0tLEvn1b3O2bN2/eoG/fvjAzM+NmuYeHBwDg2bNn3Hb+/v549+4d91Z4gJPlZmZm6NChQ6n1tGrVCtra2ty/TU1NYWJiws3B7OxsxMbGokuXLjxdBBTdzl7cr2xvleTo6AhnZ2eeYX379kVmZibu3r3LM1zcLFdXVxeY5ZJ4aPmJEyegrKwMZWVlWFlZ4X//+x9WrlzJ930hhBBhXF1dub8jysrKWLx4MV8bQbkdExMjVj/WlN+U3wDld0mU36Qi0IHy34yDgwPc3Nzg5uaG9u3bY/369Wjbti0mTpzIc4uROAICAnjC39PTU2hbFouF8+fPo127dliwYAFcXFxgbGyM0aNH83Qz0rlzZ1hbW3O7WdmyZQuys7MRHBzMbdOiRQscPnwYBQUFGDhwIKpWrYo6deogOjq61JqLbksKDQ3lqV1ZWRkjRowAAL6DugYGBjx/FwWToOFF/baJQ1dXF5cvX0a9evUwdepUODo6wsLCAjNmzOBuuLx9+xbu7u54//49li9fjitXriAmJoa7fn78+MGdX79+/aCqqootW7YA4NzWFhMTA39/f7HqMTQ05PlbVVWVZxlFt+WVfHicoGEDBgzA5s2bkZiYiO7du8PExASNGjXC2bNnxaqlODMzM6HDimoS9z0UUVNT4/47KP6ysrLitlFS4vQ8JWyjs6CgQGB3Nj179kRMTAyuX7+O9evXQ1tbG71798bLly9Le6uEEFKq7OxsfPnyRWBfp87Ozny/a6WdKJ01axZPFpa2c75nzx74+flh48aNaNKkCQwMDDBw4EAkJydz29SvXx/u7u7crDp27BgSEhIwcuRIbhtbW1ucO3cOJiYmCA4Ohq2tLWxtbbF8+fJS18GXL19QUFCAlStX8mV5x44dAfxalgMQO8/F2b759u0b3N3dcevWLcyZMweXLl1CTEwMDh48CIA3ozp06ABzc3NERUUBAL5+/YqjR49i4MCBYnWhUzIHAU4WFi3j69evYBhGrCz/le2tkqSR5QoKCgKzvPjt1eJkeVGb4po3b46YmBjcvHkT27dvh7W1NUaOHImrV6+W9lYJIX8QIyMjqKurC7xYateuXYiJicHRo0eFTi8ot93c3KCmplbqsim/Kb+LUH7/RPlNKgL1Uf4HcHJywunTpxEXF4eGDRuKPd3MmTN5QrP4GVBBrKyssGnTJgBAXFwc9u7di5kzZyIvLw/r1q0DwPnRDA4OxtSpU7F48WKsWbMGnp6eqFWrFs+8OnfujM6dOyM3Nxc3b95EZGQk+vbtC2trazRp0kRoDUV9g02ZMgXdunUT2KbksqSpbt262L17NxiGwcOHD7FlyxbMmjUL6urqmDx5Mg4fPozs7GwcPHiQ5yBu8QeMFNHX10fnzp2xbds2zJkzB1FRUVBTU0OfPn0kUmtR8Al6EEbxDawi/v7+8Pf3R3Z2Nv7991/MmDEDnTp1QlxcHM97KY2geRcNE7RBISlFGxzCzsC/f/9e4IaKsbEx3NzcAABNmjSBg4MDPDw8EBISIvCBLIQQUhbHjx9HYWEhz0OZf8WwYcN4rtYq2qkRxsjICMuWLcOyZcvw9u1bHD16FJMnT0ZKSgpOnTrFbTd69Gj06NEDd+/exapVq2BnZwcvLy+eebm7u8Pd3R2FhYWIjY3FypUrMXbsWJiamqJ3795Ca9DX14eioiIGDBjAcyK9uOrVq4vz9iWitO2bCxcu4MOHD7h06RL3KjQAAi9QKHpfK1asQHp6Onbt2oXc3FyxT3qXRl9fHywWS+wsL+/2ljjzlucs19XV5WZ5o0aN0KhRIzg7O2PEiBG4f/++xPtQJYRUToqKimjdujXOnDmDjx8/8vRTXrt2bQBAQkKCVJZN+f3rKL9LR/lNCD/6Fv0Big66Fj1gQ1zW1tY8ZwDLcoDZzs4O06ZNQ926dflu2RkyZAhUVFTQr18/vHjxgudgfEmqqqrw8PDA/PnzAXC6KSkaDvCfvaxVqxZq1qyJBw8eCDyL6ebmVuoBf2lgsVhwdnbG0qVLoaenx10nRU+vLr7hwzAM/ve//wmcj7+/Pz58+IATJ05gx44d6Nq1K/T09CRSY61atWBmZoa9e/fyDH/79i2uX78udDpNTU106NABYWFhyMvLw5MnT8q03PPnz/NsEBQWFmLPnj2wtbXlPqBVGho3bgwtLS3s2bOHb9zTp0/x5MkTtGnTptT5uLu7Y+DAgTh+/Dhu3LghjVIJIX+It2/fIjQ0FLq6uhg+fLhE5mlhYcGTgXXr1hV7WktLS4wcORJeXl58Wd61a1dYWlpi/PjxOHfuHEaMGMHNtJIUFRXRqFEj7hVsRfMSluUaGhpo1aoV7t27BycnJ4FZLs2dN1EEbd8IynIAWL9+vcB5+Pv7IycnB9HR0diyZQuaNGkCe3t7idSnqakJNzc3HD58GHl5edzh3759E3kyV9j2lriePHmCBw8e8AzbtWsXtLW14eLiUqZ5lUXNmjVhZWWFffv28XVZlJqaiosXL4qV5TVr1sTEiRPx6NEjgdsFhJA/15QpU1BYWIjAwECB3ZlIC+W3ZFF+C0b5TQg/uqL8N/P48WPuE4a/fPmCgwcP4uzZs+jatatUz94+fPgQI0eORI8ePVCzZk2oqKjgwoULePjwISZPnszTVk9PDwMHDsTatWthZWXF1+fW33//jXfv3sHT0xNVq1ZFeno6li9fztNfmK2tLdTV1bFz5044ODhAS0sLFhYWsLCwwPr169GhQwe0a9cOgwYNQpUqVZCWloZnz57h7t273D7ZpO3YsWNYs2YNunTpAhsbGzAMg4MHDyI9PZ171t7LywsqKiro06cPJk6ciJycHKxduxZfv34VOM+2bduiatWqGDFiBJKTkyV2BhvgXO0fHh6O4cOH46+//kJAQADS09MRHh4Oc3NznrOzQ4cOhbq6Opo1awZzc3MkJycjMjISurq63D7TxGVkZITWrVtj+vTp0NTUxJo1a/D8+XPs3r273O/lx48ffP3fFWncuDEAzh0S4eHhGD9+PNhsNnr16gV9fX08evQIc+fOhZWVFUaPHi3W8mbPno09e/Zg+vTpPP3WEUKIMEV5XVBQgJSUFFy5cgVRUVFQVFTEoUOHBJ7cvnPnDnR1dfmG165dGzo6Or9cU0ZGBlq1aoW+ffvC3t4e2traiImJwalTp/ju0lJUVERwcDAmTZoETU1NDBo0iGd80ZVa3t7esLS0RE5ODjZv3gwA3B0fbW1tWFlZ4ciRI/D09ISBgQGMjIxgbW2N5cuXo3nz5nB3d0dQUBCsra2RlZWFV69e4Z9//sGFCxd++f2KQ5ztm6ZNm0JfXx+BgYGYMWMGlJWVsXPnTr4dzyL29vZo0qQJIiMjkZSUhA0bNki05lmzZsHb2xvt2rXDmDFjUFhYiIULF0JLSwtpaWncduJsb4nLwsICvr6+mDlzJszNzbFjxw6cPXsW8+fPh4aGRrneB5vNFprl9evX5x7YWLRoEXr27AlPT08MHToUZmZmePnyJebNmwcVFRWxn08SGhqKdevWITw8HD179hTrVnpCyO+vWbNmWL16NUaNGgUXFxcMGzYMjo6OUFBQwMePH3HgwAEAkEgOlxflNz/Kb/FQfhMigOyeI0okKSoqiu+pwrq6uky9evWYJUuWMDk5OTztATDBwcESW/6nT5+YQYMGMfb29oympiajpaXFODk5MUuXLmUKCgr42l+6dIkBwMybN49v3LFjx5gOHTowVapUYVRUVBgTExOmY8eOzJUrV3jaRUdHM/b29oyysjLfU7cfPHjA9OzZkzExMWGUlZUZMzMzpnXr1sy6deu4bYrWWUxMDM98i55SnpqayjPcz8+P0dTUFHudPH/+nOnTpw9ja2vLqKurM7q6ukzDhg2ZLVu28LT7559/GGdnZ0ZNTY2pUqUKM2HCBObkyZMMAObixYt88506dSoDgKlWrRrPU7eLeHh48DxFPT4+ngHALFy4kK9tyfXGMAyzYcMGpkaNGoyKigpjZ2fHbN68mencuTNTv359bputW7cyrVq1YkxNTRkVFRXGwsKC6dmzJ/Pw4UOx10/R8oODg5k1a9Ywtra2jLKyMmNvb8/s3LmTp52wz6roadnF15OHh4fIJ8zn5+fzzGPv3r1M8+bNGW1tbUZJSYmxtLRkgoKCmOTkZKH1CjJhwgQGAHP58uUyrQNCyJ+lZF4X5ZyHhwczd+5cJiUlhW+aolwS9jp79qxEasvJyWECAwMZJycnRkdHh1FXV2dq1arFzJgxg8nOzuZrn5CQwABgAgMD+cbduHGD6dq1K2NlZcWoqqoyhoaGjIeHB3P06FGedufOnWPq16/PqKqqMgAYPz8/7rj4+HgmICCAqVKlCqOsrMwYGxszTZs2ZebMmcNtU5QD+/bt45lvWTNeGHG3b65fv840adKE0dDQYIyNjZkhQ4Ywd+/eZQAwUVFRfPPdsGEDA4BRV1dnMjIy+Mb7+fkxVlZWPMOEZZCVlRXPemMYhjl06BBTt25dRkVFhbG0tGTmzZvHjB49mtHX1+e2EXd7qzRWVlaMt7c3s3//fsbR0ZFRUVFhrK2tmSVLlvC0E/ZZFW2nFF9Pfn5+Ir/zL1++5JnHuXPnmLZt2zJ6enqMkpISY25uzvTv35+vXfF6BVm9ejUDgNm6dWuZ1gEh5Pd3//59xt/fn6levTqjqqrKqKmpMTVq1GAGDhzInD9/nqdtaVnj6OjIs7/2qyi/+VF+l47ymxDBWAxT4j4HQirA+PHjsXbtWiQlJcns9isinvT0dNjZ2aFLly4SP2tOCCGk8lq5ciVGjx6Nx48fw9HRUdblEBHy8/NRr149VKlSBWfOnJF1OYQQQmSI8rvyoPwmpOJR1yukQt28eRNxcXFYs2YNhg8fTgfJ5UxycjIiIiLQqlUrGBoaIjExEUuXLkVWVhbGjBkj6/IIIYTIgXv37iE+Ph6zZs1C586daSdbDg0ePBheXl7c7tHWrVuHZ8+eYfny5bIujRBCiIxQfss/ym9CZI8OlJMK1aRJE2hoaKBTp06YM2eOrMspt8LCQr6HThTHYrEqZd9YqqqqSEhIwIgRI5CWlgYNDQ00btwY69atK9OGVFE/+cIoKCjQE6kJIaSS6tq1K5KTk+Hu7o5169bJupxyY7PZYLPZItsoKVXOTeWsrCyEhoYiNTUVysrKcHFxwYkTJ8R6MFaR33VbhxBC/lSU3/KP8psQ2aOuVwgph5YtW+Ly5ctCx1tZWSEhIaHiCpIzwp6cXsTPzw9btmypmGIIIYQQAQYNGoStW7eKbPMnbyZbW1sjMTFR6HgPDw9cunSp4goihBBCQPldGspvQn4NHSgnpBxevHiBrKwsoeNVVVVRt27dCqxIvsTGxoocX/RUdEIIIURWEhIS8PnzZ5Ft3NzcKqga+fPo0SPk5uYKHa+trY1atWpVYEWEEEII5XdpKL8J+TV0oJwQQgghhBBCCCGEEELIH406CSaEEEIIIYQQQgghhBDyR6ucTziQMi/FXrIuoXwY0Q+0IIQQQc6y90l0fuxkuzK1VzCLk+jyyZ/JS6GHrEsghJAKQ9lNfgeU3YSQPwlld+VAV5QTQgiRKHYZ/yuvyMhIsFgsjB07VnLFE0IIIX8gym5CCCGkcqHslg66opwQQohEFZbx7pbyBFFMTAw2bNgAJyenckxNCCGEkOIouwkhhJDKhbJbOuiKckIIIRLFBlOmV1l9+/YN/fr1w//+9z/o6+tL4R0QQgghfxbKbkIIIaRyoeyWDjpQTgghRKLKegtYbm4uMjMzeV65ublC5x8cHAxvb2+0adOmAt8VIYQQ8vui7CaEEEIqF8pu6aAD5YQQQiSqkGHK9IqMjISuri7PKzIyUuC8d+/ejbt37wodTwghhJCyo+wmhBBCKhfKbumgPsoJIYRIVH4ZHxQyZcoUjBs3jmeYqqoqX7ukpCSMGTMGZ86cgZqa2i/VSAghhJCfKLsJIYSQyoWyWzroQDkhhBCJKmv/Z6qqqgIDuqQ7d+4gJSUFrq6u3GGFhYX4999/sWrVKuTm5kJRUbHM9RJCCCF/OspuQgghpHKh7JYOOlBOCCFEogqZsj8oRByenp549OgRzzB/f3/Y29tj0qRJv3VYE0IIIdJE2U0IIYRULpTd0kEHygkhhEhU2W4AE5+2tjbq1KnDM0xTUxOGhoZ8wwkhhBAiPspuQgghpHKh7JYOOlBOCCFEogrLeAsYIYQQQmSLspsQQgipXCi7pUNB1gX8qo0bN8LPzw9RUVEAgD179sDBwQE2NjaYMWOGjKsjhJA/TyFTttevuHTpEpYtWyaRuknFoewmhBD5QtlNSkPZTQgh8oWyWzoq9RXly5Ytw7Rp09CuXTuEhYXhw4cPWLp0KUJCQsBms7F48WJUqVIFw4YNk8jyfALbokeoDwzN9ZDw5B3WjtuKx1efC23v1MIBwxcNhLVjVXz58BV7Fx3FsfXnuOM7DGkNr/4tYF2nGgDg5Z14bJ4WjRcxr7ltOgV6wWe4F0ytjQEAiU/eYcecA4g5dV+8moPaokdo5581h0SVUnNtDF/s97PmhUdwbP1Z7nir2lXhF94LNV1tYGZtgjUhUTi0/ATPPOq6O6BHqC/sXG1gaGGAGV0X4PqRmAqrEQCad2uEQbN6w9zWFB9ff0LUtGhcO3xb4Px6T+6CwXP74eDy41gbsoU7XE1TDUPm9UPTzg2gY6iNTwkpOLTyJI6tOyOTmsVdr5b2VTBkXn+4eDlBWZXzTzzxyTusCP5fhazX0tbNhM3BaDuoJc80z27GYXTTMJ5pPyWk4kd2LqrZW6AwvxCv7ydgase5yMvJq/Caixuzbhg6DfMS+N0vsvnZclSrZYEb/8Ti787zBbZp3rUhOgW2g209ayirKiHxyTtsD9+L2DMPBLYvC+NqRhi1ajDqta6DvB95uBB9FRtCt6MgvwAAYGpljB3xa355OcJI6xYw8nuo8OyWwe+1upYaBs3ujWZdGkLPRBev7sVjzdgoxMW+Lrk4uam5U2Bb+AS25d3emL2Pu70hq6wWtVxFJUX4z+mNhh1cYGZjgu8Z33H33CNsmrITXz5+5c6j49A2aN2nOWq4VIemjga66PshO+O7iE9APGVdJ+IaMKMHBs7oyTMsLTkdvSyGCmxvYKaH4Yv8UNPVBlVqmuHwypM82zO/orQ8KfLXeB94D20DEytj5P3Ig5aeJt92lbzULCwDp3SIQOzp+xKpAZDe90NaKLuJKNLObnndHxwwowda9moGs+omUFLi9Mn77uVHLB22TuYZCAB6JroYOq8/XNs6QVNPE4/+fYbVozfh/atkAKK3+Wf3XIx/998U+h7EUdl+54DKWTNQOeummqWPsls6KvUV5evXr8eGDRtw4MABHD9+HDNnzsT8+fMRFhaG6dOnY+nSpdiwYYNEluXRswmClvohOvIQglwn4/HV55h7fAqMqxkKbG9mbYw5xzjtglwnI3reYYxY5o/m3Rpy2zh7OOLi7uuY4DkLY5pNR0rSZ8w7FQZDC31um8/vvmDT1F0IbjgVwQ2n4v7Fxwg/NAFWtauKUXNTBC31R/TcAwhymYjHV59h7okwGFczElKzCeYcn4LHV58hyGUioiMPYsTyADTv1ojbRlVDFR/jU/h2QotT01TFm4eJWDVqk0xqdGhsh2m7Q3Bux2UE1gvFuR2XMW1PCOwb1uCbn52bLToO9cLrBwl844KW+sGtXT3MG7ACg2uPxYFlxzFyRQCGzu8vk5rFWa/mNqZYemU2GDBQVFLA5rBorBixEU9vvKiQGsX9PG+fvIee5kO5rzDvSJ5pF/qvgVl1E1SvUw0zOs/HyIaTcWT1KTBstsxqBoCmnRvAoWFNfH6fJvQzGL54IEyE/C4UV7dFbdw99wBh3nMR7DYJDy49xqyjk2Fbz7rUaUVRUFBAxLEpUNNUQ4j7dET0WQb3bo0xfPFAvrYT24Sjp7ngAy+/ohCsMr3In6Vis1s2GTPuf0FwaeOE+QNXYpjTeNw5+wALzv4NQwsDua3587sv2DRlJ4IbTEZwg8mc7Y3Dk2BVu6rMaiptuaoaqqhR3wY75uzHCNdJCO++CFXtzDHryCSeelQ1VBBz+j6iIw+Vuv7FVdZ1Ulbxj9/y5OQwp/FC2yqrKiPjcyZ2zT2ANw8SJbJ8QPw8GbHcHx0Ge2LDhO2Y02sJcrJz8eF1ssh5y7pm4GcGFr3uX3gssTqk/f2QBspuIoo0s1ue9wffxX3Elf03oMBiYfusvbh66BbMq5tg7knZZyAAhB+aCDMbE/zdZQGCXCbi09tUzD/7N9Q0VAEAqUlfeH7nepoPxdYZe/DjWw5un7wv8nMpTWX8nauMNQOVs26quWJQdktHpT5QnpiYiObNmwMA6tevD0VFRTRu3Jg73t3dHa9fi3f1Vmm6j/XGqc0XcHLTBbx9/h5rx21FatIX+AS2Fdi+03AvpL79grXjtuLt8/c4uekCTkddRI9xPtw28wasxD/rzuD1g0QkvfiApcPWg6XAQn3Putw2N4/dxe2T9/H+5Ue8f/kRUdM5webQuGbpNYd04q05ZAtSkz7DJ0hIzYFeSH37GWtDthSr+QJ6jPfltomLfY3/TdyOS3uuIz83X+B8Yk7dx5bpu3H1kOAz9tKusdsYb9w5+xC75x1G0osP2D3vMO6df4xuY7x55qWmqYYpO0Zj6bB1+PY1m29ZDo3tcHbbJTy8/BSfElNx4n/n8PpBIlr3dZdJzeKsV/85fXD7xD3om+rh5KYL2DP/MI5vOItlgRsqpEZxP8/83Hx8/ZTOfWV9/cYzbbcxHbFn4RF8fPMJ9ds44f2rZFw5cBP5eQUyq9nQwgAjVw5GZP/lfFfSFXFoVBNdRnbEgkGrhX5GRdaGbMHehUcRF/sa718lY3NYNN6//IgmPm487doNaolNT5bi+Ped2PR0mdDPsIhrWydY1q6K+QNW4PX9BNw7/wjrQ7ei4xBPaGir87TN/PINXz+ll1prWbGZsr3In6VCs1sGGaOipgL37o3wv0k78OjKM3x4nYzt4fuQHJ9S6r9fWdUMADeP3cHtk/d+bm9Mi/5ve8NOZjWVttzvmd8xud1s/LvvBt7FfcCzWy+xavRm2LnZ8uzUHFp+AnvmH8azm3Glrn9xlXWdlBW7gM2TkxmfM4W2/ZSYijVjo3Bu+78ir5SXRp5Y2leBT2BbzOiyAPcuPMawBQOwYNAqpCZ9ETlvWdZcpCgDi17Csr08pP39kAbKbiKKNLNbnvcHL0ZfhYuXM05uvoAdsw9g8eC1UFZVRubnLJlnYJWa5qjdxA4rRvwPcbGv8S7uA1aO2Ah1LTW06tMMAMBm82bJ10/paNalIS7tvY6c7BwxPyHBKuPvXGWsGaicdVPNFYOyWzoq9YFyDQ0NZGf/DDRjY2NoaWnxtCko+PWNXiVlRdi52uDO2Yc8w++cfQDHJnYCp3FobIc7Z3m7UIg98wB2bjZQ/O+2rZJUNVShpKyErLRvAscrKLDQsldTqGmq4ukN0Tt7SspKnJpLdONw5+xDODapJaJm3vcYe1p0zb9CWjXWbiJo3d9H7aa88xy1ajBunbiLe+cfCVzWk2vP0cTHjXsFoHNLR1S1M4e+qa7MahaFxWKhkbcLPrxJhn2DGmjVuxlW3JiLpp0bVEiNZfk8nVs6Ym/yRkQ9X46QDcNhZKHPnVbPWAcOje2QnpIBTV1N/DXOB4svhsOxmb3MamaxWJi0bRT2LTqKxKfvBK5DVXUVzD0Zhtsn7+Lf/TcEthGFxWJBQ1ud599/hyGe8J/TB1HTojG4dgiiwnZh0Kze8BroIXQ+tZvUQsLjtzx3fMSefgAVNRXUdLXhaTvryCTsTd5Y5lpLQ2e2iSgVl92yyRhFJQUoKikiv1g3UQCQ+yMPdUr8jslLzSUpKChwtzdexL6WSU3lWRcAoKmrATabjex0/gMeklLe2srCoqYZdr9bj22vV2PqrrEwq27yS/OTVp409nHFxzcpaNzJBXs+bIC+qR5a9W4mke3GisrAZVdmw71745KzKreK+H5IA2U3EUVa2S3r3Cttf7B4fUrKSug4rA2+pWcj9vR9mWegsqoyACAv5+fFa2w2G/l5BajTzEFgbTVdbFCjfnWc2nRe4HhxVcbfucpYM1A566aaKw5lt3RU6j7K7e3t8fDhQzg4cIIgKSmJZ/zz589hbW0tch65ubnIzc3lGcZmCqHA+rmBr2ukA0UlRXz9lMHT7uunDOib6Qmcr4GZLmIFtFdSVoKukTbSktP5phkS2Ref36fh7jneoLauUw0rrs2BipoyfnzLQXj3RXj77L3I96VrpP1fzbzL+fopXUTNeogV0F5Uzb9CWjXqm+mV+lm17NUUNV1sENxwstD6Vo+OQsiG4dj9bj0K8gvAZjP434TtCF4RIJOaS6NnogsNbXX0mOALlgILa8ZGwcBcHzMOhGJC63Cp1yju53n71D1c3n8DKYmpMKtugkGzemP+uRncac1tTAEAA2f0xINLT1DT1QYv773BgnN/Y1jdcdw+9yqy5l6TOoNdUIhDKwT3SQ4As45OAsNmMKfXUqFtRPlrvA/UNFVxee917rD+0/7C+tBt3LsIkhNSYFm7KryHeeHstssC56Nvpof0Eu/5W3o28nLzYfDfe/rxLQdrx23Bk2svwLDZWB0juB/18qIQJqJUXHbLJmN+fMvBk+sv0G/aX3j77D2+fspAqz7NYN+oBt6/FN0dhSxzEQCs61hixfWIn9sb3RYiMzVTJjWVZ10oqypjSGQ/XNh1Fd+zfghsIwnlqa0snt96iQV+q/Au7iP0TXXRL6w7ll+LwJA6IUIvpiiNtPLE3MYUplZG6DS8LdJTM7E8cAOGzu8PU2sTxN35tTtDKioDm/g2QNjuECwctArnd175pZoB6X8/pIWym4girezWNtSQ6/3Bon/PU3aMhrKaMtI+pmNS29lw9XKCk4ej1OoT53ck6fl7JCekYPDcvlgWuAE52bnoPq4TDM31YWCuB0HaD26NxKfvSr3orjSV8XeuMtYMVM66qeaKQ9ktHZX6QPn8+fOhqakpdPzbt28xfPhwkfOIjIxEeHg4z7DqqA1bVh2+tgzDe68Ci8XiG8bbnvdvFoslcD4A0DPUFy17N0No63C+Lk3evfiAQJeJ0NLTRPNujTAhKhjjW80s9WC5sBpE18z/HgXNR5KkUiNfm5/DjKsaYsQyf0xuN0do9zEA0GV0Bzg0tsN033n4lJgKpxa1MTiyr0xqFoeCAmeed04/RPOuDfEu7iPObrsMxya10Gm4FxKeJFVIjaWtm+IHghOeJCEu9jV2JKzlTsv6730c33AWOdm5sHKshnXjtqJ+67poF9Aam6fuqtCaa7rYoOtob4xwnQhh2vm3grOHI8a6/y3yOyVMq97NMGBGD8zosgDpqZzb63WNdGBiaYRxG4MQsiGQ21ZRSYF7m3rE8amo687ZYfmUmIqhdcf99374P+fi7ynzSxYOLjte5jrFxWYosIlw0stuB9iCf6dVFr/X8weuROimEdj9fgMKCwrx8m48Luy6ipouvFe0Cq+h4msG/tveqD8BWnoaaN69MSZsGYnZPRbLtCZxl6uopIiw6LFgKbCwMljyd8oIUtZ1Iq7iD2xPeAw8uxGHra9Woa1fSxxYeqzM85NmnrAUFKCipgItfU1MbDMLbx4mYvGQtVh7ZwG09IT/O5dlzSUzMO7OG2jpa6LnhM4SOVBeRFrfD2mh7CaiSCu7G5m3ACC/+4NF5vutwud3X9BhaBtM2zMOl3ZflXkGFhYUYtZfizF+YxAOpW1BYUEh7p57hNsn7gqsSUVNBa37NMfOOftFvNOyqWy/c0DlrBmonHVTzdJH2S0dlfpAebNmzUSOHzFiRKnzmDJlCsaNG8czrKteAM/fGZ8zUVhQyL0SpYieiQ7fVStF0pIzYGCmy9e+IL8AmV94rwb6a1wn9JnSBZPazkH8o7d88yrIL8SH158AcDbma7nZouvojlge9D+h7yvjc5aQmnVF1JwOAzN9vvacmrOELqu8pFXj12T+s356Jrrcs/Y1XW2gb6qHNbE/r6JVVFJE3RYO6BzcHh3V+kJJRQkBEX0xs9tC7sZG/KO3qOFSHe38WlV4zeLI+JyFgvwCvH4QjyY+rtwa3z5/hzrN7JGeminVGsvzeRYtOyUxFeY2pjAw08Pr+wkAgMSn71CrQQ3utG+fvYdJsT5nK6rmOu720DPRwc7EtdzxikqKGL7ID93GeGOATTCadWkIRSVFrLg+h2c+jTu54kzhXrRX7g02W/AzqT16NsW4jUGY3XMJz22fRScMlg5bh+e3XvFMwy7kzGvJ0HVQVVcBAG7fql+T0/keVKSlpwllFaUyfZ9+RR4k31UT+X1ILbt1B/H8LauMAYCPbz5hfKsZUNNQhYaOOtKS0xEWHYLk+BSR70uWNQOc35GihzAWbW+07u8uk5rKsi4UlRQxbc84mFU3wQTPcKleTV7W2iQh53su4h+9RZWa5uWaXpp5kvbxKwoLCqFrpMOzXQUAbQZ4wLOfOzqq9RWagbKoWZBnN+PQYbBnmWoUpqK/H5JC2U1EkVZ29zAaIrf7g2w2m/vvmV3IxrNbL/Hs1ktsebECTh615SIDX959g0CXCdDQ0YCyihIyPmdixY25eCngjp4WfzWGqoYqzm77V2DdZVEZf+cqY81A5aybaq44lN3SUan7KJcEVVVV6Ojo8LyK37oNcA5Ux915A5c2TjzDXdo44YmQ25ae3Yzja+/q5YS42DcoLCjkDusx3gf9p3XH1I6RiLvzRqyaWSxARVX0OY6C/AJOzV6Can4hfs1tnflqlhRp1fj0Rhxc+da9M55e58zz3vlHGFp3HALrT+C+XsS8woWdVxFYfwLYbDaUlBWhrKIEpsSOXUF+Ib5nfa/wmsVRkF+AFzGvUcXWnGe9VqlpgU+Jn6VeY3k+TwDQNtCCcTVDJCekwMXLCckJKfj8Pg1Va1nwTFvVzhwpb1MrvOZz2//FcOdQnu/L5/dp2LfoKKa0jwDAeTDnjK4LMLPbQu4L4Dz8dmqHCKEHCFr1boYJUcGI7Lec7+qP9JQMpL77AnMbU3x4nczzSk7gHGz78iGNOyzl7ef/3vMLWNex5Al517bOyMvJw0sxf2N+FZthlelFSFmJl92yyZjicr7nIi05HVp6mnBr54zrR2NEvi95qLk4FosFZSUlmdQk7rooOkhepaYZJnnNLnfXJGVR3rwrL2UVJVg6VEFasX63y0KaefLk2nNOtwQdIrgZWdQF2c1/YrnbVfJUsyA16lcv9/otqaK/H5JC2U2kTVB2swsYud0fBIT8e2axUKWmuVxkYJHvmd+R8TkTVWqYwc7NFteP8G9vtA9ojRtHY0U+HFpclfF3rjLWDFTOuqnmikPZLR2V+ory0vj5+SEpKQkXLlz45XkdWHYck7aORNyd13h24yU6DvWEiaURjq0/CwAIiOgDoyoGWDBoNQDg2Pqz8A1uh+GLBuDkxgtwaFIT7QNaY26/5dx59gz1hd+snojsvwLJCSnQN+Vcgf7jWw5ysjn9twXM6Y3bp+4jNekL1LXV0KpXUzi1dMTUjnNLr3npMUzaNgpxsa/x7EYcOg5rw6l53RnOvOf2hZGFARYMWsWped1Z+Aa3x/DFfjj5v3NwaGLHqbnvMu48lZSVYFW7KgDOjptRFUPYOlvjx7cc7lVoappqqFLDjDuNWXUT2DpbIzPtG1KTPku9xkMrjmPJ5VnoNbEzrh+JQdPODeDSpi5C3Kdz12/CE95+9XKyc5GZlsUd/j3rBx5ceoKhCwYg90ceUhI/w8mjNrwGeOD8rivoMNizQmsWd73uW3QUYbtDcHrLRXQc7AlNHXU08XHFlYO3KqTG0j5PNU01DJzZA1cO3ELax68wtTZGQERfZHzOwo7Z+xGyIRBxsa9xdtsl9JrQGQzDIObkPfjN6gXrOpbcneOKrDkr7RvfgZeC/AKkJX/Fu7gPADhXj3588wklpSWnI/a/B4KUXOetejfDxK0jsWZsFJ7dfAl9Uz0AnAf+fc/k3Fa+PXwvRiwPwPfMH7h98h6UVZVRy80GWvpaQm+/v3PmId4+fYdJ20Zhw8Tt0DHQwrCFA3Bi43nuVZZeAz1QkF+I1/fiwZbC46+przTyKySa3TLIGABwa+sMsFh49+IDLGqYYdiCAUh68QGnoy7Kbc0BEX1w++S9/7Y31NGqdzPO9kaHCGgbaMmkptLWhYKiAv7eNx41XKpjus88KCgqcH9Ls9K+ca8y1jfVg4GZHjdDq9e1xI+sHKS8/Yysr+U7sF5abb9i2MIBuPnPHaS8/Qw9Ex30DesODR11nNl6CQD/+gYAW2drAIC6lhp0jXRg62yN/LwCvH3GeQC1tPLk7rlHiLvzBn0md8WakCgoKCig5wRfZKV9Q3JCCne7Sp5qLpmBjX1c0WVUR2ycvKMcn5Zg0vx+SAtlN/kVv5Ld8ro/qKahir5h3XDzn1gM+LsH0lMyYO1YDWbWxsjPK5B5BgKcq8TTUzOR8vYzqte1xIhl/rh++Dbfw0QtbM1Qt4UDwrwjy/z5CFMZf+cqY81A5aybaq4YlN3S8VsfKLewsICCgmQumr+89wZ0DLTRf1p3GJjrI+FxEsI6zeNewWJorgeTaobc9skJqZjWaR4CF/vBd0Q7fPnwFWvGRuHqwdvcNj5BXlBRVcaMfeN5lrUtfB+2z+L0HaZnqotJW4NhYK6P7IzviH/4FlM7zuV74Kfgmq9Dx1AL/af/9bNm77k/azbTh4nlz64skhNSMM07EoFLitU8ZjOuHrzFbWNooY919xZy/+4Z6oueob54cOkJQlvPBADYudlg8cWf/c8FLRkEADiz5RIWBqyWeo1Pb8Qhos8yDJrdG36zeuPj62RE9F6K57d5b90tTUSfZRg8ty+m7BgDbQMtfEpMRdS0aBxYegyv7r6p8JrFWa/XDt/G8qAN6DO5KxgALXo0BcMwsLA1q5AaS/s82YVsVK9jiTYDPKClp4m0j1/x4OITRPReitR3X6CmqcqdNuNzJhSVFRFxYirePEjE3XMPoK2vVeE1S0rJde49zAtKykoYvXooRq8eyh1e/PM8uekCcr7noWeoL4bM74+c7FwkPHqLg8uF9y/OZrMR1ikSo1cPwbKrc5D3Iw8Xoq9iQ+g2nnb9wrrDxMqIewu7JBUyf/zNSuQXSDa7ZZMxGroaGDy3L4yqGiIr7RuuHryFzWHRYt2dJaua9Uz1MGnbqGLbG4mY2iECd89xdrZlUVNp68K4qiGadm4AAFh/fxHPehzfagYeXn4KAOgU6IWBM3pyxy39dzYAYKH/au7B57KSZnYYVTHE1F1joGOkg4zUTDy7GYfRTcKErm8APNtmdm628OznjuSEFAywCQYgvTxhGAZ/+85D8IoALLk8CznZuYg5eQ+FBbzZIk81A7wZ+D7uIxYPXiPR/skrattCkii7ya/4leyW1/3BwkI2qtWqAvtGNQEWC/3CuoPFYuFd3AcsC9wg8wwEAANzfQxf7Ad9Uz2kffyKs9svY+fsA3zvpX1AK3x+n4Y7/13AIwmV8XeuMtYMVM66qeaKQdktHSxGnnumlxEvxV6yLqF8GMkf8CKE/P7OsvdJdH6XE+zK1N7DWnAXVoSUhZdCD1mXQAghFYaym/wOKLsJIX8Syu7K4bc+/ZCUlISAgIDSGxJCCJGYQrDK9CKkOMpuQgipeJTd5FdQdhNCSMWj7JaO3/pAeVpaGrZu3SrrMggh5I9SyCiU6UVIcZTdhBBS8Si7ya+g7CaEkIpH2S0dlbqP8qNHj4oc/+aN8KfbE0IIkQ42na0mIlB2E0KI/KHsJqJQdhNCiPyh7JaOSn2gvEuXLmCxWBDVzTqLRV8cQgipSIW/981K5BdRdhNCiPyh7CaiUHYTQoj8oeyWjkq9Vs3NzXHgwAGw2WyBr7t378q6REII+ePQLWBEFMpuQgiRP5TdRBTKbkIIkT+U3dJRqdeUq6uryFAu7aw3IYQQyWNDoUwv8meh7CaEEPlD2U1EoewmhBD5Q9ktHZW665UJEyYgOztb6PgaNWrg4sWLFVgRIYSQQoZuvSXCUXYTQoj8oewmolB2E0KI/KHslo5KfaDc3d1d5HhNTU14eHhUUDWEEEIAIJ+p1NFCpIyymxBC5A9lNxGFspsQQuQPZbd00FolhBAiUfRQEUIIIaRyoewmhBBCKhfKbumgA+WEEEIkim4BI4QQQioXym5CCCGkcqHslg46UE4IIUSi6EEhhBBCSOVC2U0IIYRULpTd0kEHygV4vbiRrEsoF9vxt2RdQtkxbFlXQAiRsEKGAptUPI1/TWVdQrl8b/FJ1iX8Ec6y98m6hDLzUugh6xLIH4SymxBCCKlcKLulgw6UE0IIkSg26BYwQgghpDKh7CaEEEIqF8pu6aAD5YQQQiSKzmwTQgghlQtlNyGEEFK5UHZLBx0oJ4QQIlH09G1CCCGkcqHsJoQQQioXym7poAPlhBBCJIpNT98mhBBCKhXKbkIIIaRyoeyWDjpQTgghRKLozDYhhBBSuVB2E0IIIZULZbd00FolhBAiUWxGoUwvebF//35Zl0AIIYTIBGU3IYQQUrlQdkuH/KwpQgghv4V8RrFMr4pSUFCAJ0+eIC4ujmf4kSNH4OzsjH79+lVYLYQQQog8oewmhBBCKhfKbumgA+WEEEIkqhCsMr0qwtOnT2FnZwcnJyc4ODigW7du+PTpEzw8PODn5wcvLy+8evWqQmohhBBC5A1lNyGEEFK5UHZLB/VRTgghRKLk6bauIpMnT0b16tWxYsUK7Ny5E3v27MHjx4/Rv39/HDt2DNra2rIukRBCCJEZym5CCCGkcqHslg46UE4IIUSiCuUwsG/fvo0TJ07AxcUFzZs3x549ezBhwgQMHTpU1qURQgghMkfZTQghhFQulN3SIX9rtYwePHiAOXPmYM2aNfj8+TPPuMzMTAQEBMioMkII+TOxwSrTqyKkpKSgSpUqAAA9PT1oaGjAw8OjQpZN+FF2E0KIfKHsJqWh7CaEEPlC2S0dlfqK8jNnzsDHxwc1a9ZEVlYWZsyYgb1796JVq1YAgB8/fmDr1q3YvHmzTOsMatAA7WxrwsbAADkFBbj78QPmX72C+K9fpb5sn8C26BHqA0NzPSQ8eYe147bi8dXnQts7tXDA8EUDYe1YFV8+fMXeRUdxbP057vgOQ1rDq38LWNepBgB4eScem6dF40XMa26bToFe8BnuBVNrYwBA4pN32DHnAGJO3Re/7qC26BHa+WfdIVGl1F0bwxf7/ax74REcW3+WO96qdlX4hfdCTVcbmFmbYE1IFA4tP8Ezj7ruDugR6gs7VxsYWhhgRtcFuH4kpkLqA4Dm3Rph0KzeMLc1xcfXnxA1LRrXDt8WOL/ek7tg8Nx+OLj8ONaGbOEOn7A5GG0HteRp++xmHEY3DZNZ3eKsVzVNNQyZ1w+t+zaHlq4mACDl3WfM67+iQtZraeulqL6mnRtAx1AbnxJScGjlSRxbd4Y7vV94L2gbaIFhAEVFBXTR90N2xneZ1j1gRg+07NUMxtUMUZBXgJd33iBqWjSe3/7ZJ9iiCzOFrt/ykscz2ywWCwoKP+tSUFCAsrKyDCv6c8lTdn85Ho+suynI+5gNlooC1G31YNyjJlTNNEVO9/VCEr5eSEL+5x9QNlCDYafq0G1qUe46ZPHbPGBGDwyc0ZNnmrTkdPSy4L3aw9K+CobM6w8nj9pgKbCQ+CQJs3stReNOLnKXJ4pKivCf0xsNO7jAzMYE3zO+4+65R9g0ZafQuv5EZf2+iWP7m9UwszbhG350zSmsHLmJb7iTR20svhjONzzAYQySXnz4pVqMqxlh1KrBqNe6DvJ+5OFC9FVsCN2OgvwCAIK/+wDwIzsHvtoDfmnZxUljPUsTZTcRRdbZLYt9w4quCSg9B3tP7oLmXRuhmn0V5P7Iw9PrL7Bx8k68i/v5u1l8v0XPRJdzaIwFvHn4tsL2WUWtG1FZ/eXjz+MjY9YNg4tnXRhaGODHt5z/3usOJL34IJN1r6CogIEze6J1X3cYmOkh7eNXnNl6CTvnHADDMGU6llCSY9NaWHwpHAmPkxDoMkGsaUQpLQdNrYyxI34N33Rvn73DuvFbxTpuIy81T+kQgdjTpdcrLsruX/c7ZLf8rdUymDlzJkJDQ/H48WMkJCRg4sSJ8PX1xalTp2RdGo+GVaph+8P76L47GgMP7ocSSwHbunaHupJ0z1N49GyCoKV+iI48hCDXyXh89TnmHp8C42qGAtubWRtjzjFOuyDXyYiedxgjlvmjebeG3DbOHo64uPs6JnjOwphm05GS9BnzToXB0EKf2+bzuy/YNHUXghtORXDDqbh/8THCD02AVe2qYtbdFEFL/RE99wCCXCbi8dVnmHsiDMbVjITUbYI5x6fg8dVnCHKZiOjIgxixPADNuzXitlHVUMXH+BS+AC5OTVMVbx4mYtUo/h06adfn0NgO03aH4NyOywisF4pzOy5j2p4Q2DeswTc/OzdbdBzqhdcPEgQu7/bJe+hpPpT7CvOOlGnd4qzXoKV+cO/eGOpaatg0dSe2he+FcVVDzDs9Xer1ibNegpb6wa1dPcwbsAKDa4/FgWXHMXJFAJr4unGnv3vuIQ4uO45nNzlPdjaqaiDzut/FfcSqUZswzGk8Qtyn41NiKuadng5dIx2hn4UksBlWmV4VgWEY2NnZwcDAAAYGBvj27Rvq16/P/bvoRaRPnrL7e9xX6LWqBquwhqg23hUMm0HS4rtg5xYKnebrxSSkHngJI18bVJ/dBEadbfFpx3Nk3U8tVw2yzJT4x2958mKY03ie8eY2plh6ZTbevniP8a1mYHi9UOyYcwAN2jnLZZ6oaqiiRn0b7JizHyNcJyG8+yJUtTPHrCOTRH8If5Cyft/ENbLhFJ7v0kSvWQCAy/tuiJxuUK3RPNO9f5n8S3UoKCgg4tgUqGmqIcR9OiL6LIN7t8YYvnggt82+Rf/wLLOn+VAkPEnClX03f2nZxUlrPUsTZTcRRZbZLat9w4quSZwcdGrhiKNrTmN0k6mY3HY2FJUUMe/0NKhpqHLbFO23nNp8HiwAF3dfA4vFwpcPaRVSY2nrRtysfnnnDRYFrMHg2mMxpf0csFgszDs9Ha16NZPJuu89qQs6DffCqlGbMLj2WPxv0g70CPVFl1EdAIh/LKEkDR0NTNw6EvfOPyrTdMKIk4NFoqZFI7LfcoxpNg1jmk3D9SMxCD88qdTjNrKseWKbcJ78vn/hsURqACi7JeV3yO5KfUX5kydPsH37dgCcsxYTJkxA1apV8ddffyE6OhoNGzYsZQ4Vw//wQZ6/J549jdjhQahjaoqY9++lttzuY71xavMFnNx0AQCwdtxWuLV1hk9gW2wOi+Zr32m4F1LffsHacVsBAG+fv4edqw16jPPB1YOcs6nzBqzkmWbpsPVw794I9T3r4tz2fwEAN4/d5WkTNX0POgW2hUPjmkh8+q70ukM68dYdsoVTd1BbbJ66i7/uQC+kvv3MvbL67fP3sHOzRY/xvrh68BYAIC72NeJiOVe9D47sJ3C5Mafui3X2VBr1dRvjjTtnH2L3vMMAgN3zDsOphSO6jfHG3H7LufNS01TDlB2jsXTYOvQL6y6wvvzcfHz9lC43dYuzXh0a26GwoBAnN13AngVHAABNfBvA1MpI6vWJs14cGtvh7LZLeHj5KQDgxP/OwXuYF+zcbOHq5YxTmy9gxYj/Afh5lVz7AE+sH79VpnVfjL7Ks+x147aiw2BP2DhZ4p4ENypKKpTDc7BRUVGyLoH8R56yu1qIC8/f5gGOeDX2MnISMqFRS1/gNJk3PkLPoyp0GpoBAFSMNfDjTQbSTiZAu55xmWuQZaawC9gC86KI/5w+uH3iHjZO2sEdlhyfghU35splnnzP/I7J7WbzDFs1ejNW354ndJo/TVm/b+LK+JzJ83fvyV3w/lUyNzeFSU/JEHr3FQC0G9QSPSd0hll1EyQnpOLwyhP4Z+0Zoe1d2zrBsnZVTLEM5B78Wh+6FROighEVFo3vWT+Qk52DnOwc7jQ2TlawdqyG5UEbxHmrYpHWepYmym4iiiyzW1b7hhVdkzg5OLVjBM98FwWswf6UTajpaoNHV54B+Lnf0sjbFSf/20excqyG1w8SUKWGmcz3rURltXE1I6Qmcbr1OfG/n3e1f0pMRdT0aGx4sBi9JnWRybp3aGyH60djcfvEXW5NrXo3g52rLQDxjyWUNHbdMFyIvgp2IRvNOvP/O5JGDha5dfwuz8V3T2+8QMdhXnBobCfyuI0sa8788k3ktuuvoOyWjN8huyv1gXJVVVWkp6fzDOvTpw8UFBTQu3dvLF68WDaFlUJbhXPGNyMnp5SW5aekrAg7VxvuQccid84+gGMTO4HTODS2w52zD3iGxZ55gPYBraCopIjCAv4r7FQ1VKGkrISstG8C56mgwEKLHk2gpqmKpzfixKhbiVP3/MMl6n4Ixya1RNT9kLfu0w/QPqC10LrLS1r11W5ihwPLjvG2OXMf3cZ48wwbtWowbp24i3vnHwk9UO7c0hF7kzciOz0bD/99iqiwaHxL/y7Tukvz9MYLdBzShrvB6tzSEVXtzBFz6r5U6xO/sWh9AAEAAElEQVT383xy7Tma+Ljh1OaL+PIhjVvf+tDH6DO5K9/0AATeDVDRdRenpKyEjsPa4Ft6Nl4/SBTYRlIq6mx1Wfj5+cm6BPIfec5u9nfO7Z2KmsJvD2QXsMFS5t0oZako4Ed8BpgCNlhK4m+wKrEUZfrbbFHTDLvfrUdebgGe33qJzWG7kByfwnlPLBYaebtg78IjiDwZBtv61ZEcn4J9i47IdZ6UpKmrATabzXML6J+qPNlR3uV49nPHgaXHSm279u5CqKgp4+3Td9gZcQAPLj3hjuswxBN+M3ti1ahNeHUvATXqWyNkQyBysnNxdttlgfOr3aQWEh6/5blCNPb0A6ioqaCmqw3P/IsvJ+nFB4ndWl1R61nSKLuJKLLKbnncN5T1/mBxmroaAMCzL/7k2nM08XVDjXrVsWf+Ye5+y5qxD6CpoyEX+1aC3gebzUZ2erbA8Woaqmjn3wof33yCdZ1q2D5rn9jzl9S6f3ztOToN90KVmuZ4//IjbJysUKe5PU83qGXVblBLWNiaYt6AFeg3jX/fXto5OOvIJCirKePDy484uOIEFBRYpR63kaeaDyw7jisHJHM3GGW35PwO2V2pD5TXq1cPFy9ehKurK8/wXr16gc1mi/UB5ebmIjc3l2cYU1AAlhS7RQlr4YGY9+8Q9+WL1Jaha6QDRSVFfP2UwTP866cM6JvpCZzGwEwXsQLaKykrQddIG2nJ6XzTDInsi8/v03D3HO9tN9Z1qmHFtTlQUVPGj285CO++CG+flX71vK6R9n918y7r66d0EXXrIVZAe1F1l5e06tM30yv1s2rZqylqutgguOFkofXdPnUPl/ffQEpiKsyqm2DQrN5YcH4GpvvMk1nd4tgVcQjeQ70wfmMQxqwdCjabwdKh62BczRBeA1tKrT5xP8/Vo6MQsmE4dr9bj4L8Am597+M+CJweAPRNdGVeNwA08nZBWHQIVDVUkPYxHZPazkbmlyzu+PO7rsC5paPAWsuLLYdnton8kFZ2F+YVQlFFsdx1MQyDlD0voF5TD6pVtYS203I0RPqV99CubwJVK23kJGYi4+oHoJBB4bd8KOmpCp22JB1lLZn9Nj+/9RIL/FbhXdxH6Jvqol9Ydyy/FoEhdUKQlfYNeia60NBWR69JXbBl+m5snLwTbu3rYdqecVBQUJDbPClOWVUZQyL74cKuq2jTv0W55/O7KM82THk07dIAWnqaOLPlktA2aR/TsWTYOry88wbKqspoM6AFFpz7G6GtZnKviuw/7S+sD92Gq4c4dzUmJ6TAsnZVeA/zErqzrW+mh/QS36Nv6dnIy82HgYD3qKyihNZ93bFn/qHyvVkBKmo9SxplNxFFWtnNZgqhwBKe3fK4byjL/cGSAhf74dGVZ0h4ksQdtnp0FCZvH4VabjUwbW8I2IWc/ZYn157DqYWDVGssz7opntXFrxwGOP1FD50/AOpaanj77B0i+6/AiusRMln3e+YfhqauBjY/WwZ2IRsKigqImhaNi7uvCVxuaarUMMPgyH4IafE32IVsgW2klYM/vuVg7bgteHLtBcyrm2DitlGYtjsEud/zEN5tId4+E3w1ubzUzLDZaOLbAGG7Q7Bw0Cqc33lF4HzLgrKbFFepD5QHBQXh33//FTiuT58+AIANG0TfRhkZGYnwcN6HCem1awv99u0kU2QJ4a1aw97YCD337pHK/EtiGIbnbxaLxTeMtz3v3ywWS+B8AKBnqC9a9m6G0NbhyM/N5xn37sUHBLpMhJaeJpp3a4QJUcEY32qmWAfLhdUhum7+9yloPpIilfr42vwcZlzVECOW+WNyuzl867q4y3uvc/8/4UkS4mJfY0fCWtT3rCOTusXVfjDnQUAbJmxD7JkHcGpRG6NWD8G/+29USH2lrZcuozvAobEdpvvOw6fEVG59S4auFTi9oNpkUTcAPLj4BIH1J0DXSBsdhrbBtD3jMLrxFKSncm6TP7nxPMZtCBRaa3kUyuGZbQUFBe56Lk5HRwe1atXCxIkT0a1bNxlU9ueRVnbb+TeAfUD5b/3+tPM5ct59g9XkBiLbGfrYoCAjDwlzbwMMoKSjAt2mFkg7lQAolO+7L4vf5uK3Byc8Bp7diMPWV6vQ1q8lDiw9BoX/3suNI7E4uOw4AOD1gwTUa1kHbu2c5TZPiigqKSIseixYCiysDN5IB8qLKetnV1YdAlrj9sl7Ivv9fRf3gefhc89uxsG4qiF6jPfFoyvPoGukAxNLI4zbGISQYhmlqKTA7aol4vhU1HV3AMC5BX5o3XEABOevsPfYvFsjaGir4ew2wb9Jv0La61nSKLuJKNLK7upwgC1Kv2BDHvcNZZ2Do1YNRnUnS4S4T+cZ3mV0B9RwsQEALPJfAy09TYxaPQRfPn6tsBrFXTcls7qk8zuv4u7ZhzAw10eP8b4Ys25YmeYvyffVsldTePZzR2S/5Uh48g416lkjaOkgfPnwVegBYGEUFBQwZecYbJu5F+9ffhTYRpo5mPkl6+e23f0ExDmGwD+iN5xb1sGELSMxvuUMvoPl8lQzAMTdeQMtfU30nNBZIgfKi1B2/7rfIbsr9YHyrl27omvXrkLH9+nThxvcwkyZMgXjxo3jGea8YZ1E6itpRstW8LSxRe99e5D8TXBXJZKS8TkThQWFfFfP6Jno8J2tK5KWnAEDM12+9gX5Bcj8wlvvX+M6oc+ULpjUdg7iH73lm1dBfiE+vP4EgPMjVsvNFl1Hd8TyoP+VUneWkLp1RdSdDgMzfb72nLqzBE5TXtKq72sy/5lKPRNd7pntmq420DfVw5rY+dzxikqKqNvCAZ2D26OjWl+w2fxnddOS05GSmAp9Uz2Z1C0OFTUV9J7UFYWFbHx4/Qnxj94i/tFb2NazhounEz4lCn5AniTqE+fzVFFTQUBEX8zstpDbJ11Rfe39PQVOD4B7IFpWdRfJ+Z6LD6+T8eF1Mp7deoktL1ag/eDW3D74pEEebwE7dEjw1YLp6em4ffs2+vfvj61bt6JHjx4VXNmfR1rZ3Te2/A9sTN75HN/up8JyUgMoG6iJbKugogjzAEeYDXRAQWYelPRUkX75HRTUFKGoVbYnumfmf5Ob3+ac77mIf/QWVWqaA+D8zhTkFyDxWRJPu/hHCXBt6yQXNQujqKSIaXvGway6CSZ4hvNdofanKs82TFmZWBqhfhsnhHdfWOZpn996Cc9+7gAA1n8napYOW4fnt17xtCu6im3J0HVQVVcBABTkc7pN+pqcztf1mZaeJpRVlAR+lzoM9sTNY3cl2t9pRaxnaaDsJqJIK7u76g4SOY087hvKan+wuOAVAWjs44bxHjPw+X0ad3jRfsvsnosxY38ocrJzcX7nFdjWs0aP8b54F/dBqjWWZd2Ik9XfM7/je+Z3vH+VjGc3X+JgWhTYhWyZrPuhCwZgz/zDuLSHc2FawuO3MLEyQu/JXct8oFxdWw21GtRAjfrVMXLlYACc3FNQUMCpvN2Y3G4O9y4BaedgQX4BPrxOxo2jsWji0wBPrj1H1zEdsTyQ98SXPNVc5NnNOHQY7Cl0fFlQdkvO75DdlfpAuSSoqqpCVZX3NmlpdLsys2VrtK1RA33378W7TMEH0CSpIL8QcXfewKWNE64djuEOd2njhOtHYwVO8+xmHBp34r2dztXLCXGxb3j6cusx3gf9wrphSoe5iLvzRqx6WCxARbX09VqQX8Cp28sJ1w7fLlF3jMBpOHW78dbd1pmvbkmQVn1Pb8TBtY0Tz1lSVy9nPL3+AgBw7/wj7tnWIqGbRyDp+QfsWXBY4EFyANA20IJxNUOkvvsik7rFoaSsCGUVJSS9eM9TX2EhGzpG2riw+6rA6SRRnzifZ1F9TIl1XFjIBosFgdMDwPPbvBsHFV23UCwWlFXLdjCvrPKZ8nd/IS2dO3cWOs7Pzw+1a9fGokWL5DqwyU+Csrs83a4wDINPu17g290UWE50hYqxutjTspQUuAfVM28nQ8vZmHtwT1wFTKHc/DYrqyjB0qEKHl/ldHtRkF+AFzGvUc2uCk87c1tzZH75Jhc1C1K0412lphkmtA4X+gyVP9EvZYeY2vm3QnpKBm4dv1t64xJs61XHl4/pADgP+Ux99wXmNqa4sEvwdsCXD2l8w57eeIE+U7vBwEyP272Ca1tn5OXk4WWJbVYzaxM4t3LE353n883nV1TEepYGym4ibYKyW1S3K4B87hvKan+wyMiVg9GsS0OEtpqB5IQUnnFF+y0Febw1FhayoaDAknqN4q6b8mY1i8VCckKqTNa9moYq2GzeK4vZ/63Xsvqe+YNv395nRDvUa1UHs3ssRnJ8CnK+50o9B4urUb860v6760BFhX9fUZ5rlgTKbsn5HbJb7CPCmzdvRkBAgNDxWVlZCAkJwcaN/LfMFMcwDC5fvowrV64gISEB379/h7GxMerXr482bdqgWrVq4ldfCj8/PyQlJeHChQsSm2d5zGrVGr729hh29Ci+5eXBSOO/h27k5iG3sEBqyz2w7DgmbR2JuDuv8ezGS3Qc6gkTSyMcW38WABAQ0QdGVQywYNBqAMCx9WfhG9wOwxcNwMmNF+DQpCbaB7TmPukZ4HS34jerJyL7r0ByQgr0TTlXoP/4loOcbE6fcwFzeuP2qftITfoCdW01tOrVFE4tHTG141zx6l56DJO2jUJc7Gs8uxGHjsPacOpex3lScsDcvjCyMMCCQas4da87C9/g9hi+2A8n/3cODk3sOHX3Xcadp5KyEqxqVwXAORhgVMUQts7W+PEtBx9eJwMA1DTVUKWGGXcas+omsHW2RmbaN+7Tt6VV36EVx7Hk8iz0mtgZ14/EoGnnBnBpU5d7K92Pbzk8fc8BQE52LjLTsrjD1TTVMHBmD1w5cAtpH7/C1NoYARF9kfE5C9cO3UZ+bkGF1y3Oev2e9QMPLj2BuY0pOg7xxKeEVCgoKqB9QGuwC9hSr6+0z7OovqELBiD3Rx5SEj/DyaM2vAZ4YN34rchK+4ZJ20bhfdxHfEpMhU9QWwDA0+vPYetsDS+/ltAx0KrwutU0VNE3rBtuHI3Fl49foWOoDd8R7WBc1QD/7rsBADC3MeVevSdJ8nhmuzRt27bFtGnTZF2GxFF2i/Zpx3Nk3kpG1VHOUFBTQkEGJ8cU1JWg8N+B95QDL1HwNRcWQzhdWOUlZ+NHfCbUbXRQmF2AtDOJyH2fDfPBdcpVgywyBQCGLRyAm//cQcrbz9Az0UHfsO7Q0FHHma2XuG32LTqKsN0heHjlKR5cfIIG7euhiY8rdszej75h3eUuTxQUFfD3vvGo4VId033mQUFRAfqmeuX6XH5XpX3ffgWLxUK7Qa1wdttlvr5LS34nuo7piE8JqUh8kgQlFSV49m+BFn815rkSfXv4XoxYHoDvmT9w++Q9KKsqo5abDbT0tYQ+KPTOmYd4+/QdJm0bhQ0Tt0PHQAvDFg7AiY3n+a5WbBfQCmkf0xFz8v4vv/eSpLmepYWyW35QdvOS1b5hRdckTg6OWj0Erfs0x4wuC/A9K4ebcdkZ35GXk8ez33L14E30mdwNyqrK8OzbHE+uvaiQGktbN6KyOivtGwryC2BW3QQtezXFnTMPkZ6aCaMqBug1sTPyfuRhz/xDGLlqSIWv+5v/3EHfqd2Q8vYzEp8koUb96uge4oPTUZzvfGnbKMXrYhiGb98+PSUD+Tn5PMOllYNeAz1QkF8IZ4/aeHD5Kawcq6LL6I54eOkJ6rWui6kdIvjWpbzU/PpePNhsBo19XNFlVEdsnLxD4DzLg7K7YlSG7Bb7QHlISAgOHjyIjRs3wszMjGfc6dOnMXToUOjr6wuZGvjx4weWLl2KNWvW4MuXL3B2dkaVKlWgrq6OV69e4fDhwxg6dCjatm2Lv//+G40bNy7/u/qPhYUFFBRk37l9f+d6AIDdPXryDJ9w5hQOPH0qteVe3nsDOgba6D+tOwzM9ZHwOAlhneYh5S3noK+huR5Mqhly2ycnpGJap3kIXOwH3xHt8OXDV6wZG4WrB3+eUfMJ8oKKqjJm7BvPs6xt4fuwfdZ+AICeqS4mbQ2Ggbk+sjO+I/7hW0ztOJfvgZ/C674OHUMt9J/+18+6vef+rNtMHyaWRsXqTsE070gELilW95jNuHrwFreNoYU+1t37ufPVM9QXPUN98eDSE4S2ngkAsHOzweKLP/vNC1oyCABwZsslLAxYLdX6nt6IQ0SfZRg0uzf8ZvXGx9fJiOi9VOhVyYKwC9moXscSbQZ4QEtPE2kfv+LBxSeI6L0UP77lyKxucdZrRJ9lGDy3L5p1bYghkf0AAJ/fpyGy/3Kp11faeile35QdY6BtoIVPiamImhbNDU0dQy0ERPSFlp4md5q/94UCAB5ffYbCgp8HDCqq7sJCNqrVqgKv/S2hY6SNrC9ZeBHzGiEt/kbiU06fcwV5Bajfui7/l+kXsRnZ/+6W1Y8fP6CmJrrLjcqIslu09EucfwtvF9zhGW7m7wi95hYAgIL0XOSn5XDHMWwGaacTkfcpGyxFBWjU0ofV1AZQMRL/avTiZPXbbFTFEFN3jYGOkQ4yUjPx7GYcRjcJ4/ntu3b4NpYHbUCfyV0RvDwA7158QPhfi3DjaCwyPmfKXZ4YVzVE086cPubX319Urs/jdydO5pWXS5u6MLUyxqnN/AfKSn4nlFWUMGzhQBhVMUDujzwkPuHUcfvkPW6bk5suIOd7HnqG+mLI/P7Iyc5FwqO3OLj8ON/8i7DZbIR1isTo1UOw7Ooc5P3Iw4Xoq9gQuo2nHYvFQlu/ljiz9ZLQu/J+hTTXs7RQdssPym5esto3rOiaxMlB3yDOc9QWX+Lt632h/2ruie6i/ZYOg9uAAeA1oAVYLBY09TQrpMbS1o2orB7fagYeXn6K/Jx81G3ugG5jvKGlr4Wvn9Lx6N9nGNNsGt7FfYCismKFr/tVozdh0OzeGL16CPRMdPHlQxqObziLHf8dAyltG6VkXeKQZg72C+uOKjXN0GGIJwAWfnz7ARaLhakdInD33EOB61IeajaxMgK7kI33cR+xePAaifZPTtldMSpDdrMYMXumT0hIgL+/Px4+fIhVq1ahT58+yMrKwtixY7Fjxw5MmDABM2bMgLKy4Fv6q1WrhkaNGmHQoEFo166dwHaJiYnYtWsX1q1bh2nTpmHo0KG/9u7KyWbZEpks91fZjr9VeiN5w0h+54QQUjZn2fskOr8hsYPK1H6j2xaJLr88Ro0ahdevX+PEiROyLkWi/qTs7nx1pEyW+6u+t/gk6xL+CJL+nasIXgrye0sqkT3Kbsru3yG76XeOEPInoeyuHNkt9hXl1tbWuHjxIpYtW4ahQ4di586dePToEXR0dHD9+nW4urqKnP7kyZOoU0f0bclWVlaYMmUKxo8fj8TERHFLEyopKQkzZszA5s2bf3lehBBCxCOPT98u+fCoIhkZGYiNjcXr169x5YrkrkiQF5TdhBBCxEHZLT8ouwkhhIiDsls6yvzUyuHDh+Pff//F4cOHoampiaNHj8LZ2bnU6YrCuqCgABEREQgICBDaL5qKigpq1qxZ1tL4pKWlYevWrRTYhBBSgeTxFrB79+4JHK6jo4P27dtjxIgRsLKyquCqKg5lNyGEEFEou+UPZTchhBBRKLulo0wHyq9duwZ/f38oKyvj1KlT2LhxI5o0aYKIiAiEhISIt0AlJSxcuBB+fn7lKri4o0ePihz/5o3wJ+QSQgiRDmk+VGTt2rVYu3YtEhISAACOjo74+++/0aFDB5HTXbx4UWo1yTvKbkIIIaWh7JYvlN2EEEJKQ9ktHWIfKB8/fjxWrVqFkSNHYu7cuVBVVUXbtm2xZ88ejBw5EocOHcKWLVtgY2NT6rzatGmDS5cuYdCgQb9SO7p06QIWiwVR3ayzWPJ3KwIhhPzO2JDe727VqlUxb9481KhRAwCwdetWdO7cGffu3YOjo2O558swDFJTU2FiYiKpUuUCZTchhBBxUHbLD8puQggh4qDslg6xD5QfOXIE586dg7u7O8/wXr16oWXLlhg+fDicnZ2RlZVV6rw6dOiAKVOm4PHjx3B1dYWmpibPeF9fX7FqMjc3x+rVq9GlSxeB4+/fv19qH26EEEIkS5pntn18fHj+joiIwNq1a3Hz5k2Rga2hoYHExEQYGxsDANq3b4+oqCiYm5sDAFJSUmBhYYHCwkKp1S4LlN2EEELEQdktPyi7CSGEiIOyWzrEPlD+4MEDvmAtYmpqisOHD2P79u1izSsoKAgAsGTJEr5xLBZL7BXm6uqKu3fvCg3s0s56E0IIkbyy9pWWm5uL3NxcnmGqqqpQVVUVOV1hYSH27duH7OxsNGnSRGTbnJwcnjy4du0afvz4wdPmd8wLym5CCCHioOyWH5TdhBBCxEHZLR1ir1VhYV3cgAEDxJoXm80W+irLWYUJEyagadOmQsfXqFHjt+gfhxBCKhM2wyrTKzIyErq6ujyvyMhIofN/9OgRtLS0oKqqisDAQBw6dAi1a9f+5bp/x1uGKbsJIYSIg7JbflB2E0IIEQdlt3SIfaC8du3aSEtL4/49bNgwpKamcv9OSUmBhoaGZKsrhbu7O9q3by90vKamJjw8PCqwIkIIIWywyvSaMmUKMjIyeF5TpkwROv9atWrh/v37uHnzJoKCguDn54enT59W4DusPCi7CSGEiIOyW35QdhNCCBEHZbd0iH2g/Pnz5ygoKOD+vXv3bp5+0RiGQU5OjtgLvnz5Mnx8fFCjRg3UrFkTvr6+uHLlitjTE0IIkU8FbIUyvVRVVaGjo8PzEnX7l4qKCmrUqAE3NzdERkbC2dkZy5cvF1kTi8XiOXNd8u/fFWU3IYQQcVB2yw/KbkIIIeKg7JaOsnVoU4ygPmXEffM7duxAmzZtoKGhgdGjR2PkyJFQV1eHp6cndu3aVd6SCCGEyIGy3gL2qxiG4etrTVAbOzs7GBgYwMDAAN++fUP9+vW5f9vb2/9yHZUBZTchhBBBKLvlF2U3IYQQQSi7pUPsh3lKUkREBBYsWICQkBDusDFjxmDJkiWYPXs2+vbtK4uyuGpMjJXp8stNoXKdpQEAhl3uczWyw7BlXQEhck2aT9+eOnUqOnTogGrVqiErKwu7d+/GpUuXcOrUKZHTRUVFSa2mP4W8Z/d3j9TSG5E/lpdCD1mXQIhco+z+Pcl7doNVCfcFAdofrCiV8ftB3w1SgSi7pUPsA+WCLpcv7+Xzb968gY+PD99wX19fTJ06tVzzJIQQIh/YkF5gf/r0CQMGDMDHjx+hq6sLJycnnDp1Cl5eXiKn8/Pzk1pN8oyymxBCiDgou+UHZTchhBBxUHZLh9gHyhmGgaenJ5SUOJP8+PEDPj4+UFFRAQCeftRKU61aNZw/fx41atTgGX7+/HlUq1ZN7PkQQgiRP9I8s71p0yaJzCcvLw8pKSlgs3mv+rC0tJTI/OUFZTchhBBxUHbLD8puQggh4qDslg6xD5TPmDGD5+/OnTvztenevbtY8xo/fjxGjx6N+/fvo2nTpmCxWLh69Sq2bNlSasfwhBBC5Js0A/tXxcXFYfDgwbh+/TrPcIZhwGKxUFhYKKPKpIOymxBCiDgou+UHZTchhBBxUHZLR7kPlP+KoKAgmJmZYfHixdi7dy8AwMHBAXv27BG4IUAIIaTykOfA9vf3h5KSEo4dOwZzc/NK9wTusqLsJoQQIg7KbvlB2U0IIUQclN3SUaaHed66dQtHjx5Ffn4+2rRpg7Zt25Z7wV27dkXXrl3LPT0hhBD5JM+Bff/+fdy5c6dSPG1bUii7CSGElIayW75QdhNCCCkNZbd0iP0Y4UOHDqFZs2ZYvnw5NmzYgA4dOmDZsmXlWqiNjQ2+fPnCNzw9PR02NjblmichhBD5wDCsMr0qUu3atfH58+cKXaYsUXYTQggRB2W3/KDsJoQQIg7KbukQ+0D53LlzMWjQIKSnpyM9PR3h4eGYM2dOuRaakJAgsD+a3NxcvH//vlzzJIQQIh/YYJXpVZHmz5+PiRMn4tKlS/jy5QsyMzN5Xr8bym5CCCHioOyWH5TdhBBCxEHZLR1id73y4sUL7Ny5k/v07QkTJmDmzJn4/PkzjIyMxJrH0aNHuf9/+vRp6Orqcv8uLCzE+fPnYW1tLW5JhBBC5JA83wLWpk0bAICnpyfP8MrwUJHyoOwmhBAiDspu+UHZTQghRByU3dIh9oHyb9++QU9Pj/u3qqoq1NXVkZmZKXZgd+nSBQDAYrHg5+fHM05ZWRnW1tZYvHixuCURQgiRQxV9W1dZXLx4UdYlVCjKbkIIIeKg7JYflN2EEELEQdktHWV6mGfJs9FsNhvnz5/H48ePucN8fX2FTs9mswEA1atXR0xMjNhBTwghpPIoZIvdq1eF8/DwkHUJFY6ymxBCSGkou+ULZTchhJDSUHZLR5kOlJc8Gw0Aw4cP5/6/uJfPx8fHl2Wx5fbs2TN4e3vjzZs3FbI8Qggh8n0LGAB8/foVmzZtwrNnz8BiseDg4AB/f38YGBjIujSpoOwmhBBSGspu+ULZTQghpDSU3dIh9ukHNptd6kvcPmZGjx6NFStW8A1ftWoVxo4dK3bxpcnLy0NiYqLE5uczvA22vViGY5lbsPpmBOo0qyWyfV13e6y+GYFjmVuw9fkyeA/l7ZvHa0ALnMnbxfdSVlXmtlFQVMCg8B7Y9mIZ/sngzKdfWFewWOL9g/AJ9MK2uBU4lrUNq2/NRZ1m9qXU7IDVt+biWNY2bH2xHN7D2vCMb9alAVbdjMDB1E04mr4Fa2PnwbOfO08bdS01BC4eiO2vVuKfzG1Y+u8s2LmV7anqPoFtse3VShzP3o7VtyNRp7noup1aOGD17Ugcz96ObS9XoNNw3ro7DGmNJZdm4uDnTTj4eRPmn56GWg1shc6v96QuOFu4B0FL+DdShdYc1BbbXq/G8e87sTpmvhg118bqmPk4/n0ntr1ahU7DvXjGW9Wuir/3jcf2N6txlr0PXcd05JtHp8C2WH9/EQ6nb8Xh9K1Yfi0CDdrXq7AaAaB5t0bY+Hgpjv/YhY2Pl6JZl4Z8bQwtDDBp2ygcSN2Mf77twLq7C1HT5ed3Qk1TDSNXDsaut+twLHsnNj1Zik6BbWVWc1nX65h1w3g+I1nUXNfdAbOOTMLud+txlr0PTTs34JvHWfY+gS9JY5iyvSrS5cuXYW1tjRUrVuDr169IS0vDihUrUL16dVy+fLlii6kAlN38JJ0vzbs2xOpbc3Hoy2YczdyKdXfmo01/dyFzE7NGGeRJ78ldsOpWJI5kbMPe5I2YeXACqtpZVFiNgGR+m4vnyYmcaJzMicbJ3OgKzTxR60ZRSRFD5vXDhgeLcTRrO3a/W4+JW0bC0FyfZx4dh7bBogszcTh9K86y90FTV0Nk7WVR1s9OHkirZnGyszgDMz1M2TEGm58tx+mCPQhaOkgidQCAcTUjzDoyCUeztmN/yiaMWO4PJWX+a5r+Gu+DqOfLJbbcIpTd8oOyu3LsC8oiB9W11BC0dBB2xK/BseydWHZ1DuzceN+HvO1XlbZ9IW4uFier74ehhT4mbRuJAykb8U/WNqy7Mx81XaqLXLakUHaXb54VsW0HcPYHIk+GYX/KJpxl74OtszXfPMasG1a2NysGym7pkNh1+oWFhTh8+LBYbQ8cOIBmzZrxDW/atCn2798v9jLHjRsn8rVo0SKx51Uajx6NEbh4IHbNO4yghlPx6OpzRPwzCcbVDAW2N7M2RsTRiXh09TmCGk5F9PzDGLHUD8278m6AZ2d8R69qQTyv/Nx87vheE3zgPbQNVo3dgiFOodg4dRd6jOuEzsHtxKi5CQIX+2HXvEMIajCZU/OxyaJr/mcSp+YGk/+reRCad/35Q5GVlo3oyMMY4z4dw10m4fTWywjdGAhXLydum5D1w+HiWRcLBq3G8PoTcPfsQ8w/NQ2GFsLDjqfunk0QtNQP0ZGHEOQ6GY+vPsfc41NE1j3nGKddkOtkRM87jBHL/NG828+6nT0ccXH3dUzwnIUxzaYjJekz5p0KE1iTnZstOg71xOsH4m/sefRsiqCl/oieewBBLhPx+OozzD0RBuNqgm9zNLM2wZzjU/D46jMEuUxEdORBjFgegObdGnHbqGqo4mN8CjZN2YkvH78KnM/nd1+wacpOBDeYjOAGk3H/4mOEH54Eq9pVK6RGh8Z2mLY7BOd2XEZgvVCc23EZ0/aEwL5hDW4bLT1NLLs6G4X5hZjacS6GOIZgfehWfEvP5rYJWuoHt3b1MG/ACgyuPRYHlh3HyBUBGDq/v0xqLst6bdq5ARwa1sTn92kyXc9qmqp48zARq0ZtErgcAOhpPpTntShgNffWXEmS56dvBwcHo1evXoiPj8fBgwdx8OBBvHnzBr1790ZwcHCF1iIPfvfsLkka+ZKZ9g27Ig9hTLPpGF5vIk5vuYTQTUFwa+tczhplkydOLRxxdM1pjG4yFZPbzoaikiLmnZ4GNQ3VCqlRUr/NRXlyavN5sABc3H0NLBYLXz6kVUiNpa0bVQ1V1Khvgx1z9mOE6ySEd1+EqnbmmHVkEk89qhoqiDl9H9GRhwTWW15l/ezkgTRrFic7i1NWVUbG50zsmnsAb8qwnVgaBQUFRBybAjVNNYS4T0dEn2Vw79YYwxcP5Gk3Yrk/Ogz2xIYJ2yW27CKU3ZXH757dlWFfUFY5OO5/QXBp44T5A1dimNN43Dn7AAvO/g1Di59XZ8rbflVp2xfi5uLPdS+b74eWniaWXZnF2af1jsSQOuOxfsJ2fEv/LnC5kkTZXb55VtS2HcA5QfXk+gtsmrJTaP0v70j+jhvKbulgMcyvnVd4/vw5Nm/ejK1bt+Lr16/Iy8srdRo1NTU8fvwYNWrU4Bn+6tUr1KlTBzk5OWItW1FREfXq1YOOjo7A8d++fcPdu3fL/DTVtip9+YatuDoLL+8lYOWozdxhGx8uxPWjsdg8bQ9f+8Fze6NJJ1cMcZrAHTZ6VQBsnKwwtsUMAJwryoMWD0A3k6FCa5l1KBTpKRlYMvx/3GHT94xF7vdcLPBfy9uY4T3gteLaHLy8F4+VI39u/G98uBjXj8Zg87TdAmru+1/N43/WvHowp2b3v4XWuPp2JG6fuIetM/dCRU0ZR75uwYxui3D75D1um7Wx83Dr+F1smbG3RMn8X78V1+fg1b14rAj+Wfemx0tw7UgMNodF87UfEtkXTXzcMLjOOO6wMWuGwMbJCmOaTxdYs4ICCwe/bMaq0VE4t/1f7nA1TVWsjZ2HFSM3o9/Urnj9IBFrx23lnZjhP7C44sZcTs0jfn5Om54s5dQ8dRd/zfP6cWp2DPlZ89qhsHGyxphmYXztt79ZjYPLj+PQ8hMC309xBz5H4X8Tt+PU5gtSrzEsOgQaOuoI857LbTP3RBi+ff2Guf04VzsNjuwHx6a1MM5D+Hdow8PFuLz3OnbOOcAdtjpmPgzM9HDjn9gKr1kQQevV0MIAK2/OxZT2czDn2BQcXH4crXo3l8l6Lu4sex9mdF2A60dihL4fAJh5cAI0tNVR37OuyHZl5XJiWpna3+04R6LLF0VdXR33799HrVq8dwS9ePEC9erVw48fPyqsFln6HbPbS7FXqW0qIl8AYE3MPNw6cRdbS2SeQCWzW07yRNdIB/tTNmGcx994dOWZ1GuU1G9zUZ408nbl1rg6Zj5un7yLFt0bS73Gsq4bgHNQZvXteehrFYTUpM8845w8amPxxXB00fdDdsav74yXpz5Zq6iaxc3OIosuzMTrBwlYG7KFb1y7QS3Rc0JnmFU3QXJCKg6vPIF/1p4ROq8G7eth9j9T0M8ykHsyq2WvppgQFYwepkPwPesHLO2rYP2DRRhadzzexX2Q+B1hlN3y70/JbrnfFyxeYwXmoIqaCo5mbsPfXRbg9om73Dbr7i7EzeN3sGU6Z/9e3verRG1fFOHmovUIpCZ94Rknq+/H4Ll9OPu0LWcKnIZLwLGCX0XZXb55ymLbztTKGDvi1yCw/gS8fpDAVxNld+XI7nJdUZ6dnY3NmzejWbNmcHR0xN27dxEREYEPHz6INX2NGjVw6tQpvuEnT56EjY34XXTUrFkTISEhuHjxosDX//73v9JnIgYlZUXUdKmOu+ce8gy/c/YRaje2EzhN7UY1cefsoxLtH8LOtToUlRS5w9S11LD95XLsfLMSsw6FwraeFc80T66/QL1WdVClphkAwMbJEnWa1sLtU/fFq/lsiZrPPUTtJkJqblwTd0q+xzMPYedqw1NzcfVa1UE1O3NuyCkqKUJRSRF5Ofk87XJ/5MGxlG5fiuq2c7XBnZJ1n30ARyF1OzS2w52zD3iGxZ55ADs34XWraqhCSVkJWWnfeIaPWjUYt07cw73zjwROJ7hmJU7NZ3hruHP2IRybCO6eh1Mz73uMPS265tIoKCigZa+mUNNUxdMbcRVSY+0mgtb9fdRu+nOeTXzcEHfnNabvGYe9yRux9s4CdBjC2w3Rk2vP0cTHjXs1hHNLR1S1M4e+qa5Mai5O2HplsViYtG0U9i06isSn7zhtFRVktp7LSs9EF428XXCyxAkVSWAzrDK9KpKLiwuePePfKH/27Bnq1atXobVUtD8tu0uqqHyp37oOqtYyF7rzJ7pG+cgTANyuPkrmpCzzpDhhv81Prj1HE183bo1FeRJ7+oHUayzPugE465rNZiO72J1W0lDe+mSpMtbcYYgn/Of0QdS0aAyuHYKosF0YNKs3vAYKf6hV7Sa1kPD4Lc8dH7GnH0BFTQU1XTm/r419XPHxTQoad3LBtterJV43Zbd8+tOyuzLsC3JrrOAcVFRSgKKSIvJzeE+Q5P7I4+leVZ73qwDh2xcl23BykfcEsSy/H5x92jeYvicEez9uwNrYeegwpLXQ9yAplTEHpVGzrLY/5X39U3ZLR5ke5nnjxg1s3LgRe/fuRc2aNdGvXz/cunULK1asQO3atcWez7hx4zBy5EikpqaidWvOj8v58+exePFiLFu2TOz5uLq64s6dO+jfv7/A8SwWC6VdMJ+bm4vc3FyeYWymEAqsnz+aOkbaUFRSxNdPGTztvqZkQN9MF4Lom+nhawrvP8qvnzKgpKwEXSNtpCWnI+nFBywasg7xj5Ogoa2OrqPaY+mlmQh0m4IPr5IBAHsW/gNNXQ1serQI7EI2FBQVsOXvvbi054bI96VjpMOpOaVEzZ8yoG+qJ7hmUz2B77F4zQCgoaOO6MS1UFZVAruQjZWjNuPufxsTP77l4MmNOPQL64a3z98j/VM6WvVuBvuGNfD+ZbLImgHOGWaB6/pTBvTNBNdtYKaLWAHtS9Zd3JDIvvj8Pg13z/3cCGrZqylq1q+O4EZTS62Tt+ai7wfvcr5+ShdRsx5iBbQXVbMw1nUsseJ6BFTUlPHjWw7Cuy3E22fvKqRGfTMB35kSn5W5jQl8AtviwNJj2BV5EPYNayB4eQDyc/O5Z+hXj45CyIbh2P1uPQryC8BmM/jfhO0IXhEgk5qB0tdrr0mdwS4oxKEVP6/KVNNUldl6Lqu2fh74npWDqwdvlXsewlR0/2elefjw52/x6NGjMWbMGLx69QqNGzcGANy8eROrV6/GvHnzZFWiVP2p2V2SNPNFQ0cdu5PWcXNxxchNPPkiLlnnSXGBi/3w6MozJDxJqpAaJfXbvHp0FCZvH4VabjUwbW8I2IUMlg5dhyfXnsOphYNUayzPulFWVcaQyH64sOsqvmdJ98qa8tQna5Wx5v7T/sL60G24eug2ACA5IQWWtavCe5gXzm4T3Cenvpke0kt8t76lZyMvNx8G/71PcxtTmFoZocVfTbDAbyWW/jtbonVTdsuXPzW7K8O+4M8aeecr7Rz88S0HT66/QL9pf+Hts/f4+ikDrfo0g30j3v1sedyvKk7Y9kURUbkoy+8HZ5/WCweWHseuyEOcfdpl/sjPLeC5K0HSKmMOSqNmWW1/yvv6p+yWDrEPlNeuXRvfv39H3759cevWLW5AT548ucwLDQgIQG5uLiIiIjB7Nmcjz9raGmvXrsXAgQNLmfqnxYsX84Vtcc7OzqX2vxsZGYnw8HCeYTYKdWCryN8VQckvIYsFQNQXU+AE4G5EPL/9Cs9vv+KOfnI9DmtuR6DLiLZYM24bAKBlzybw7NMc8wauRsLTd7B1tkLQogH48vErzm6/IvK9FV8Wb80iiuarmX8+P7JyEOQ2CWpaaqjfqg6GLxyAj29S8PDfpwCABYNWY/z/hmP327UoLCjEy3vxuLj7GmrUE/9BF/x1i9744l/VvOu6uJ6hvmjZuxlCW4dz+4M3rmqIEUv9MLn9XJ4+4stCUA2ia+Z/j4LmU5p3Lz4gsP4EaOlpoHn3xpiwZSTGt5zBd7BcajWW8h1jKSggLvY191a41/cTYOVYDT6B7bgbFV1Gd4BDYztM952HT4mpcGpRG4Mj+8qsZkD0eq3pYoOuo70xwnWikBpkU3NZtPNvjQu7rpT7+y4KI2dP365Xrx7fZzBxIv9n17dvX/TqVXr3HZXJn5Td1VEbtqw6pS5fGvnyIysHgS4Toa6lhvqt6yJw0UBOLl5+Wmo94i6zIvKkyKhVg1HdyRIh7sK7l5HH32aAkyc1/ntY9CL/NdDS08So1UPw5ePXCqtR3HWjqKSIsOixYCmwsDJ4o9C6JK2sn508qCw16xrpwMTSCOM2BiFkQyB3uKKSArfrnIjjU1HX3QEA8CkxFUPrcroDEPR+ir9PloICVNRUMN9vFd6//Cjx2im75Qdld+XYF5RFDs4fuBKhm0Zg9/sNnP3su/G4sOsqarr8vDtAHveripS2fSFuLlb09wMotk/7Xxe2r+8nwKp2VfgM95LqgfIilSUHi5NGzbL6Dsvr+qfslg6xD5S/evUKvXv3RqtWreDg4PDLCw4KCkJQUBBSU1Ohrq4OLS2tMs/DzMzsl+uYMmUKxo0bxzOsmyFvn+GZn7NQWFAIgxJXj+sZ6/KdfSryNTmd78ptfRMdFOQXIPOL4NuMGIbBi9g3qFLj5/saGtkXuxcexaW9nCvIEx4nwdTSCL0ndhZ5oDzzcyan5hI16Jno8l1lzq1ZwFkxfWNdvpoZhsGH158AAG8eJMLSoQp6T+rMPVD+8c0nhHrOgpqGKjR01JGWnI6pO8cgOSFFaL1FMorqLlGHnokO35U2RdKSM/g/GyHr+q9xndBnShdMajsH8Y/ecofXdK0OfVM9rImJ5A5TVFJE3RYO6BzcDh3V+4EtoD91Ts1ZQmrWFVFzOgzM9Pnac2rOEjiNMAX5BfjwmnMVQdydN6jlZouuYzpieeAGqdf4NZn/O6NnwvvvIu3jV76D9m+fvYd7N85ZRRU1FQRE9MXMbgu5/e3FP3qLGi7V0c6vlUxqBkSv1zru9tAz0cHOxJ/PCVBUUsSAv3uCYRiZ1SyuOs3tYWlfBRG9l5Zr+tLIW2DHx8fLugSZ+ZOyu6tegMhppJkvxXPx9X+52GdylzIfKJd1ngBA8IoANPZxw3iPGdyHFFdEjZL4bS7Kk9k9F2PG/lDkZOfi/M4rsK1njR7jffEu7oNUayzLulFUUsS0PeNgVt0EEzzDpX41eVnrkxeVrWaWAif/lg5bh+e3XvGMYxdyDiIuGboOquoqADjfZ4Dz3Sr+4DCA8+A4ZRUl7vcr7eNXFOQXSOUgOUDZLU/+5OyuDPuCwmuUfg5+fPMJ41vN4NnPDosOQXI8Zz9bXvergNK3LwTmIou3p2BZfT+Aon3a9zzD3j5/D/diD4aUhsqWg4B0apbV9qe8r3/KbukQu4/y+Ph41KpVC0FBQahatSpCQ0Nx79497hmZ8jI2Ni5XWEuKqqoqdHR0eF4lb90uyOecrXUp8cA7lzZ18PQmb1/QRZ7eegmXNnVKtHdC3J14FBYIf8iJrbMVvhS7/UdVQ4XvgZfsQjZ3Q1wYbs1tStTsWZev/2puzTdf8r9HLyfE3XkjsmYWiwVlVWW+4Tnfc5GWnA4tPU24tXXCjX/uiKy5qO64O2/g0saJt442TngipO5nN+P42rt6OSEulrfuHuN90H9ad0ztGIm4Ek8cvnf+MYY6hSLQZRL39SLmNS7suopAl0lCD5Jzai7g1OwlqOYX4tfc1pmv5vJgsVhQUeH9PKRV49MbcXDlW/fOeHr95zyfXHuBqnYWPG2q2pnjU2IqAE5fc8oqSmBKXIVSkF+I71nfZVKzIMXX67nt/2K4cygC60/gvj6/T8O+RUfx5mGi3NQsTIcAT8TFvsabh4nlmr408tZXmpWVldivIt7e3vj4UToHIyrSn5zdJUkzX/iwAGWVMvVu91+Nss2TkSsHo3nXRpjoGS705LYs80SQ4r/NRXlSkMdbY2EhGwoKLKnXKO66KToYUKWmGSZ5zRbZT6skleezk7XKVnN6SgZS332BuY0pPrxO5nkV/Zv68iGNOyzlLefhrU9vvIB1HUueHXHXts7Iy8nDy/+2WZ9cew4lZSWY25hKpXbKbvnxJ2d3ZdgX5NYowxzk2c9u54zrRzkPIZbX/arSti/EzUVZfT8AzrPjqtqZ8wyrWvPnPq20VLYcBKRTs6y2P+V9/VN2S4fYB8qrVKmCsLAwvHr1Ctu3b0dycjKaNWuGgoICbNmyBXFxgn+YhNm/fz969uyJxo0bw8XFheclKX5+fty+2H7VgeUn0D6gFdr5eaCavQUCF/aHSTUjHNtwHgAQMKcXJmwO4rY/vuE8TC2NMHxBf1Szt0A7Pw+092+J/UuPcdv0n9YNrl5OMKtuAhtnK4zbMAy2zlY4/t88AeDm8bvoM7kzGnaoB1MrIzTr7IZuYzri2pGY0mtedhztA1qj3aCWnJoXDYSJpRGObTj3X829MSFqRLGaz8LUygjDFw7g1DyoJdr7t8L+JT9r7j2xM1w868Ksugmq1bJA97Ed0aa/O87v+nl1u6uXE9zaOsPM2hgunnWx8Nx0vIv7iNNbLom3rpcdR4fBrdHOvyUs7asgcPF/da8/y6k7og8mbgnmtj+2/ixMrIwwfNEAWNpXQTv/lmgf0Br7lvzDbdMz1BeDZvfCoiFrkZyQAn1TXeib6kJNUxUAp8+3hCdJPK+c7BxkfvkmtP80npqXHkOHwZ5o59+KU/MSP07N685wap7bFxO3jPxZ87r/al7s91/NrTg1Lz7KbaOkrARbZ2vYOltDWUUJRlUMYetsDQvbn1d0BET0QZ3m9jC1MoZ1HUv4z+kDp5aOPJ+HNGs8tOI4XNs6o9fEzqhWywK9JnaGS5u6OLj8eLHP8xgcGtdEnyldYWFrhlZ9mqPj0DY4uobzYKHvWT/w4NITDF0wAE4etWFmbYK2fi3hNcADl/fflEnNpa3XrLRvfN+XgvwCpCV/RXTkIZnUrKapxv2+AIBZdRPYOlvDuJoRz/dAQ1sd7j0a4+Sm85AWhinbSx79+++/cv0kbnH96dldkjTypfekLnBpUzwXveE1oAXO77pavhpllCejVg+BZz93RPZbju9ZOdA31YO+qR5U1FQqpEZJ/DYXz5PY0/fQcbAnxm0MQtuBHlBQVKiYzCtl3SgoKuDvfeNh52aDef1XQEFRgbuulZR/nlzRN9WDrbM19y7D6nUtYetsDW39XzvIVVp98kiaNZeWnSW/JwC47dW11KBrpANbZ2tYOlTljt8evhe9J3dF19EdUaWmOazrWKLdoJboHtJJaB13zjzE26fvMGnbKNjWs0b91nUwbOEAnNh4nnu3wd1zjxB35w1CN42AbT3rX37vJVF2y48/Pbsrw76grHLQra0z3NrVg5m1CVzaOGHRhZlIevEBp6MuApDP/arSti9E5yL/RRCy+H5wlnuCs087uQssbE3Rqk8zdBzqiaNrpZ+flN3izVNW23YAoK2vBVtna1jV5mwPVK1lAVtna24vE2bVTdB7cpdyv3dhKLulo+yXOwFo3bo1WrdujYyMDOzcuRObN2/GokWLUKdOHZ7O24VZsWIFwsLC4OfnhyNHjsDf3x+vX79GTEwMgoODS51eXBYWFlBQEPtcgEiX992EjoEW+oV1g4G5HhKfvMM03wXcK0EMzPRgUs2Q2z45IRVhvgsQuGgAfIK8kPbhK9aEbMXVQz8PcGvpamDsmsHQN9PD94zveHU/EeNbz8aL2NfcNqvHboXfzB4YtcIfeia6+PLhK05sPI8dcw6KUfMN6BhqoV9Y9/9qTsI0n3k/azbXh0mxg2jJCakI85mPwMUD4RPU9r+at3AfRgRwHlY4amUAjKoaIvdHHpJefMB8v9W4vO/nw0U1dTUQMKcPjKoaICvtG64euo2o6bvFvrLt8t4b0DHQRv9p3WFgro+Ex0kI6/SzbkNz/nU9rdM8BC72g++Idvjy4SvWjI3C1YM/6/YJ8oKKqjJm7BvPs6xt4fuwfdZ+seoSXfN16Bhqof/0v37W7D33Z81m+jCxLL6uUzDNOxKBS4rVPGYzz4MVDS30se7eQu7fPUN90TPUFw8uPUFo65kAAD1TPUzaNgoG5vrIzviO+IeJmNohAnfP8f87lEaNT2/EIaLPMgya3Rt+s3rj4+tkRPReytP3flzsa8zsthCD5/ZD/+l/ITk+BWtDtuBCsYNIEX2WYfDcvpiyYwy0DbTwKTEVUdOicWDpMby6+6bCay7LepWX9WznZoPFF3/2+xi0ZBAA4MyWS1gYsJo7vGXvZmCxWLgQfa3U91Je8nYLGOH4E7O7JGnki5qmKkavGvwzF5+/x7yBq3B5r+iHbguvUTZ54hvUDgCw+BJv/7EL/VfjzNZLUq9RUr/NRXnSYXAbMAC8BrQAi8WCpp5mhdRY2roxrmqIpp0bAADW31/Es17Ht5rB7a6nU6AXBs7oyR1X9OBGQZ9HWZRWnzySZs2lZWfJ7wkAnn9Ldm628OznjuSEFAyw4fwOntx0ATnf89Az1BdD5vdHTnYuEh695dnpLonNZiOsUyRGrx6CZVfnIO9HHi5EX8WG0G3cNgzD4G/feQheEYAll2f98nsvibJbPv2J2V0Z9gVllYMauhoYPLcvjKoacvazD97C5rBonv1seduvKm37QmQutg7n68ZOVt+PuNjXmNl9MQZH9EH/6d2RHJ+KteO28uzTSgtlt3jzlNW2HQA08XXDhKifv6nTdocAALaF78X28H3Iz8lH3ea/3pVWSZTd0sFiJNQD/f3797F582asWLGi1Lb29vaYMWMG+vTpA21tbTx48AA2Njb4+++/kZaWhlWrVkmipHJrq9JXpssvN0b0A1TkUcluZSqFSrieCRHlLHufROdX62DZduBfdPtbosuXhOLZ9Dv7nbLbS1F+HwgjEmUKIaQcKLv5UXbzo+yWEsruisGSzoUTUkXfDSICZTc/ecxusX95fvz4gaNHjyIri//BUJmZmXj79i0WLlwoYEp+b9++RdOmTQEA6urq3HkOGDAA0dHR4pZUqqSkJAQEiH64FyGEEMliGFaZXkR6KLsJIYSIg7JbflB2E0IIEQdlt3SIfaB8w4YNWL58ObS1tfnG6ejoYMWKFdi4caNY8zIzM8OXL18AcDp7v3nzJgDOg0skdIE7ACAtLQ1bt26V2PwIIYSIgSnji0gNZTchhBCxUHbLDcpuQgghYqHslgqx+yjfuXMnpk+fLnT82LFjMWvWLLH6OmvdujX++ecfuLi4YPDgwQgJCcH+/fsRGxuLbt26iVsSjh49KnL8mzf8TysmhBAiXXS2Wn5QdhNCCBEHZbf8oOwmhBAiDspu6RD7QPnLly/h7OwsdLyTkxNevnwp1rw2bNgANpvTd1NgYCAMDAxw9epV+Pj4IDAwUNyS0KVLF7BYLJFnw1ks+uIQQkhFktcnapfF1KlTYWBgIOsyfhllNyGEEHFQdssPym5CCCHioOyWDrG7XikoKEBqaqrQ8ampqSgoKBA6vlu3bsjMzAQA7NixA4WFP5/M3LNnT6xYsQKjR4+GioqKuCXB3NwcBw4cAJvNFvi6e/eu2PMihBAiGfLcV9rWrVtx/Phx7t8TJ06Enp4emjZtisTERO7wKVOmQE9Pr0JrkwbKbkIIIeKg7JYflN2EEELEQdktHWIfKHd0dMS5c+eEjj979iwcHR2Fjj927Biys7MBAP7+/sjIyChDmYK5urqKDOXSznoTQgiRAoZVtlcFmjt3LtTV1QEAN27cwKpVq7BgwQIYGRkhJCSkQmupCJTdhBBCxELZLTcouwkhhIiFslsqxO56JSAgAOPGjYOjoyM6derEM+6ff/7BnDlzsGTJEqHT29vbY8qUKWjVqhUYhsHevXuho6MjsO3AgQPFqmnChAncjQBBatSogYsXL4o1L0IIIZIhz/tJSUlJqFGjBgDg8OHD+OuvvzBs2DA0a9YMLVu2lG1xUkDZTQghRByU3fKDspsQQog4KLulQ+wD5cOGDcO///4LX19f2Nvbo1atWmCxWHj27Bni4uLQs2dPDBs2TOj069atw7hx43D8+HGwWCxMmzZNYD9mLBZL7MB2d3cXOV5TUxMeHh5izYsQQoiEyHFga2lp4cuXL7C0tMSZM2e4Z7PV1NTw48cPGVcneZTdhBBCxELZLTcouwkhhIiFslsqxD5QDnD6OPP19cWuXbsQFxcHhmFQq1YthIeHo2fPniKnbdq0KW7evAkAUFBQQFxcHExMTMpfOSGEELkkz0/f9vLywpAhQ1C/fn3ExcXB29sbAPDkyRNYW1vLtjgpoewmhBBSGspu+ULZTQghpDSU3dJRpgPlAOcBIKWFc2ni4+NhbGz8S/MghBAip+T4zPbq1asxbdo0JCUl4cCBAzA0NAQA3LlzB3369JFxddJD2U0IIUQkym65Q9lNCCFEJMpuqWAx9NQNPm1V+sq6hPJh2LKuoMwYdiX8+lXC9UyIKGfZ+yQ6P+tt88rUPmHgZIkun/yZvBR7ybqE8qFMIYSUA2U3+R1QdhORWAqyrqDs6LtBRKDsrhzKfEX5n4ClXDlXC5NfIOsSyoylUPmChGFTYBMimvzeAvbw4UOBw1ksFtTU1GBpaQlVVdUKropIgoKKiqxLKBd2Xp6sSyg7yhRCfkOU3aTiKVTS/W52JdzvrpTZXRlrJqRCUXZLQ+VMJkIIIfJLjm8UqVevnsAHWhVRVlZGr169sH79eqipqVVgZYQQQogMUXYTQgghlQtlt1RUwktjCSGEyDWmjK//s3fWYVFlDRx+hxBEpaUMTFRsxO5uxW6xBXNRrLXWtdu1u3vttbBdO0BsAYOSFAELUeL7Y3RwYBgYJMZvz/s899E595xzf+fOcH/3dDZy+PBhSpYsyfr16/H09OTevXusX7+eUqVKsXv3bjZt2sSFCxeYMmVK9goTCAQCgSAnEd4tEAgEAsGvhfDuLEGlEeVxcXHo6uri6elJuXLlMnTBEydOULJkSWxsbPDx8ZHb/VQgEAgE/weo8e7bs2fP5q+//qJ58+aysAoVKlCwYEGmTp3K7du3yZMnD2PHjmXRokU5qDTzEN4tEAgEgjQR3q1WCO8WCAQCQZoI784SVBpRrqWlhbW1NfHx8Rm+oJWVFS4uLgCMHj2aAgUKZDgvgUAgEKgfiYmqHdnJw4cPsba2ThFubW3Nw4cPAek0seDg4OwVloUI7xYIBAJBWgjvVi+EdwsEAoEgLYR3Zw0qL70yZcoUJk2axNu3bzN0wcqVK1O1alX69OlDtWrVqFSpUobyEQgEAoGaosZTwEqXLs28efP48sMGil+/fmXevHmULl0agNevX2Nubp69wrIY4d0CgUAgUIrwbrVDeLdAIBAIlCK8O0tQeTPP5cuX8/z5c6ysrLC2tiZPnjxy5z08PFJN27BhQyQSCZGRkdy/f59KlSpx+fJlJBIJFy5cUF29QCAQCNQPNZ4CtmrVKtq1a0fBggWpUKECEomEBw8eEB8fz/HjxwF4+fIlw4YNy2GlmYvwboFAIBAoRXi32iG8WyAQCARKEd6dJajcUO7g4JDhi128eBGAbt26MWzYMM6fP8/evXsznJ9AIBAI1A+JGu++XatWLXx9fdm5cyfe3t4kJibSuXNnevbsSb58+QDo06dPDqvMfIR3CwQCgUAZwrvVD+HdAoFAIFCG8O6sQeWG8unTp//UBfft24exsTGDBw/G09OTffv20a1bt5/KUyAQCARqhBobNkDevHlxcnLKaRnZivBugUAgEChFeLfaIbxbIBAIBEoR3p0lqNxQDhAVFcWBAwd48eIF48aNw9jYGA8PD8zNzdPcJMTOzo5mzZoB0l1Qw8LCMiJBIBAIBOqKGk8BA/D29ubSpUuEhYWRkJAgd27atGk5pCrrEd4tEAgEglQR3q2WCO8WCAQCQaoI784SVG4of/DgAU2aNMHAwABfX18GDx6MsbExhw8fxs/Pj+3btytNX7JkSdn/DQ0NMTQ0VFm0IuLj43nz5g0SiQQTExM0NTUzJV+BQCAQqIga92xv2LABZ2dnTE1NsbCwQCJJermQSCRqbdg/g/BugUAgEChFeLfaIbxbIBAIBEoR3p0laKiaYMyYMfTr1w8fHx90dXVl4S1btuTff//NVHHp4fDhw9SuXRs9PT2srKywtLRET0+P2rVrc+TIkWzXIxAIBP95ElQ8spFZs2Yxe/ZsQkJC8PT05N69e7JD2aZYvzrCuwUCgUCgFOHdaofwboFAIBAoRXh3lqDyiPI7d+6wbt26FOEFChQgJCQkU0Sll3Xr1jFq1CgGDBjAuHHjMDc3JzExkbCwMNzc3OjevTsrVqxg8ODB2aapzeDGdPmtFcYWBvg9fc3a8bt4dN1bYVxjCwOGzO1JiUpFKFDCnKNrzrJ2/K5M1dN2aBO6jGmDsaUhfk9es2bsdh5d80o1fvm6pXFa2Adr2wJEBEWxf/E/nNhwXna+aZ96jNuUco2h1vkc+Rr7NUV49/HtGDCrO4eWn2Kt647063ZqSpcxbb/pDmTNmO08uvZMie4yOC3qg7VtQSKCIqW615+Tna/tUJUeEx2wKm6BlrYmr5+HcGDpCc7vuiKL02ZoU9oMbYK5dX4A/J4EsmvWIe64eaZbt3wZmtHFtS0mlob4Pg5kzZhtPLqaehkq1CvD0EV9KVL2WxkWHeP4uqQytBzUiKa961GkXCEAfNxfsXnKHrzuvMiQPoC2zs3o4to+SaPLljQ02jJ0sWOSxoVHOb7urOy8tW1BHGd0o2SVYlgUMWO1yxYO/3VSLo/ydcvQxbUdNlWKYWJlzPQOC7h+9E62aQSo07E6/f7sjmVxc4JfhLJlyh6uHbktO99nehf6Tu8ql+ZtSBTdrJKeJXU6VKP1kKaUrFIMA1N9nCqP48V9X7UqR/eJDtTpUJ1CpQsQG/OFJ9e92DhxF4HeQaleN1NQ4ylgkZGRdOnSJadlZDv/Ze9uM6QxXVxaS335yWvWjt/Jo2uKfRmgfJ3SDJ3fU+qDwVH8veQEJzZekJ3X1NKk+7i2NOldB1MrIwK9Q9g0ZS93zz6UxSlXuxRdXFpT0q4IJpZG/NF1GTf+cU+35sz2jzodqkk9sIQFmtqaBPmEcGDpcc7tTPJA6bO5LTZ2RaXP5o4LuX70buoac+CZljuvLv1mdqe2QzUMzQx4fu8Vq3/bgvfdJB/UzaPLoHm9qNW+Kvom+Qj1DePwilMcX3tGbZ/DfaZ3oUG32uQvZELclzh83F+yZcoent1+nqq2n0HV+6AOCM3ZgPButeO/7d1N6DKmNcYW0jrs2nE70qzDDp3fO8m7Fx/nxMakOuyCM5OpWM82Rbpbp+4xrcMiALZ5LcPiWz3wR46tPcuq37amqTkn6n47XqzAoohZSs2r3VgxcnNKjWro3ZpamvSf1Z1qLe2wKGbGp+hPeJx7yKZJu4gIjswRzempryp738gKfjlPQWjOFoR3ZwkqjyjX1dXl3bt3KcK9vLzInz+lsWQlCxcuZPXq1axZswYHBwdq1qxJrVq1cHBwYM2aNaxevZp58+Zlm576narjtKAXexYcY1itaTy67s2sw67kL2iiML52Lm2i3rxj78JjvHwYkPl6utTAaXFfds87gnO133l49Rmz/5lA/kKK9VgUyc/sY+N5ePUZztV+Z8/8Iwxb6kidDlXl4n2M/kS3Qs5yh6JGcpsqxWg1sBEvHvipqLsmTosd2T3vMM5VJ0p1H5+oXPc/E6S6q078prsfdTpUk8V5//Yje+YeYXTdqQy1m4Dbtsu4bnSiStMKsjhvAiPY9PseRtSYzIgak/G8+Jg/DrlibVtQJf0A9bvWxHmpI3vmHsa5ykQeXX3GnBOTlJZh1nFpPOcqE9kz7wjDlvWnTsekMlSsX5aLe68zrvGfjK49lbCAN8w7PRkTKyOV9Uk11sJ5aX/2zDmIs914Hl19ypyTk8lfyDQVjWbMOjGJR1ef4mw3nj1zDzHsrwHU6VhdFkdHT4fgV2GyFxtF6ObR4eUDP1aO3JQjGsvUsGHKXhfO7byMUyVXzu28zJR9LpSuVkIur1eP/OlqOVh2DKkwNlk5dHl83YtNk9Lu3MqpclSoV5Zjq90YVfN3JjabiaaWJvPcpqCrp5Om5p9BkqjakZ106dKFM2ey5gVWnfmvenf9ztVxWtibPfOPMqzGVB5d92LWkXGpPovNrfMz64grj657MazGVPYuOIbz4j7UcbCXxen3R2daDWrI6jE7GFx5Iic2XmDavt8oXtFaFkc3jw4vH/qzykX5tHiFmrPAP969/cDuuYcZXXsqQyuNx23rJVw3OWPfrKK85vt+rBy1JR0ac+aZNmaDM3ZNKjC/7wqGVBiL+9n7LDg7DRMrY1kc56WO2DevxLw+yxlo+xsHl51gxPIBDJ7fW22fw4HewawcuYkhFcbiUncqoX7hzHObioGpfprfhaqo+t2pA0Jz9iC8W/3473p3DZwW9ZF6d/XJPLr2jFlHx6fu3UXyM+vIOB5de8aw6pPZu+Aozkv6UschqQ47s9syulsPkx1DKo8nPi6eK4eSGkdH1Z4qF2diqzkAXDl0K23NOVT3G1H9d7paDZEd45vNAuDygZsKNKqnd+vo6VCicjF2zjrAsCoTmNFpEQVtLPnz6IQc05ye+mpq7xs129mnmiaj/IqeIjRnD8K7swZJYmKiSrdryJAhhIeHs3//foyNjXnw4AGampo4ODhQr149li1blmra58+fU6JEiVTPq0ru3Lnx9PSkVKlSCs8/e/aMypUrExMTo1K+zfP0zZCevy5N57mnLyt+2yYL2+A+j+vH3dky/W+laRecmsTLh/4/NaI88Wuc3OflV//E556vXG/yxgcLuX7sLpun7EuRfuCc7tRsU4VBFcbJwkatHECxCtb8Vk+663rTPvVwXtyHjmbKRwvo5tFh9e05rBi5hZ6THHhx30/xiPLElPM/ll+bhc+9V6wYkWRMGx8s5vqxO2yesleB7p7fdCc1ZI5aNVCqu27q6x6tuj2X2yfvse2P/anGORC6kY0Td3F6y8UfJKf9J7P8+iye33vF8uFJZdj0aAnXjt5h8+Q9KeIPmtuTmm3tGVhujCxs9OpBFKtgzeg6UxVeQ0NDwqGIzawctYVzO9KYfqnoPt+YI9U4bEOSxsdLpRp/351S47xeUo1lXZI0rhlMsQpFGF17cor4O16u4tBfJ1KMKP+Rswl/Kx1RnhUaJ+9xQU8/N5Nbz5HFmXNyMh8iPzCn11+AdHRf7fbVcLIbR1qYW+dn56vVSkeU51Q5kmNgqs+BsE2MqT+Nh1eeysLPJih/PqlK0RWLVYr/auTYtCNlEnPnzmXJkiW0bt2a8uXLo62tLXd+1KhR2aYlO/lPeHfuPinC/vr3D57f82XF6K2ysA335nH9Hw+2TEv57B84qxs1WldmcOWJsrBRy/tRtEJhXBr8CcDul8vZM/8Y//ww6mv6/t+I+fCZBQPWpsjTLWaH0hHlCV++yH3ODv8AWH1nHrdOerBtesr7cDZ+n9IR5TKN2fhMy6Wbi2PvtjPNYQG3TyZN11zrsZCbJ9zZOlX6frD+wWIu77/OrlkHZXFW3ZmPsYUhN/65q7bP4R/Ry5ebo9HbGd9kBvcuPFIYJ6Oo6kfqgNCsGOHdSQjvTskv4926vVKE/fXvDGmd+oeO2w2eC7j+jztbpiqow87qTo02dgyuNF4WNmrFAIqWL4xLgz8UXrfDiBb0mdaZHkWGE/spVmEcp4W9qd6qMv3LpvytJySvd6tJ3c95iSPVW9vRr9ToFOfU2buTY2NfnFW35/H83iue3vLJUe9Orb6a2vvG7VMebJuW8nf6MwgfzB6Ed2cuv7J3qzyifNGiRYSHh2NmZkZMTAz169enRIkS5MuXj9mzZytNa2NjQ6FChejbty9btmzB19c3o7oBKFu2LOvXr0/1/IYNGyhbtuxPXSO9aGlrUrJyEdzPy1do3C88xLZ6yVRSZbEeu6J4nHsgr+fsQ2xr2ChMY1u9JO4/TB2Xxn+ATZWiaGolbdKSO68uO3z+YtfLFfx52JXilayTZ8XI5f25ffKeyhU8me6zyXSfe4BtzVR01yiJe/JynnmATZVicrp/pFLDchSysUy1kqqhIaFB15ro5tHhyc3Up+inVgabKsVwT16Gs/cpm0oZytSwwf3sfbmwu2fuY2Ofehl09HTQ0tbi/dsPKumTatSSajwjf033sw8oW1PxC7BUo3yZ7rop1/gzZJVG25qK7rUntrXk87QqacHewHVsf7GK33f/hkXRlNMaf4Vy/EgeAz2ADP1m/l9Yv349efPm5fLly6xcuZKlS5fKDmUVzl+d/6J3J/lyMl87/wjbGop9uUz1Eil8/O65h9jYJfmgdi4tvnyWn0UVG/OFsrUUP99V1Zwd/lG5UTkKlkrdA9OlMZufaZpaGmhqafL1s3zHQmzMF8rVLi37/PjaM2q2tZeNVKvYoCwFbSwxMjf4JZ7DWtpatBrShA9RH3lxX7UZeWmRET/KaYRmAQjv/s95t11R3M8l8+5zD1P37holU8S/q6AO+yPN+zXg8t83Um0k19LWpFGPOrhtu5wuzepQ99PS1qRxrzq4/TDAK4VGNfXu5OQx0CMhIYGi5QurhXcrIrX3jbtu99NIqRq/oqcIzQL4tb1b5TXK9fX1uXr1KhcuXMDDw4OEhATs7Oxo0qRJmmkvX77M5cuXuXTpEiNGjODz588ULlyYRo0a0bBhQxo2bEiBAgXSrWXx4sW0bt2a06dP06xZM8zNzZFIJISEhHD27Fn8/Pw4eTL10awAsbGxxMbKG2RCYjwaEtUa/vRN8qGppUlUWLRceFToO4yaGKiUV2agbyrVExkqrycyLBojC8V6jCwMiQyTN5bI0Gi0tLUwMM3H25AoAryCWDRoLa8eBaCXLzcdRrZg6aU/cLKfRNBz6Vp5DbrWpETlIoyomfpIttR160t1J7uPkaHRGJkbKtZtbqiwnD/qBtDTz80evzVo62iREJ/AipGb8UjWgFKkXCH+ujKTXLraxHz4zIzOi/F/+lqlMhh8L0NyTaHRGFkoLoOxhQF3FcRPXoYfGTS3J29ev8Uj2Yth+jR+/33I5xsZGqVEoyF3FcRXpvFnyCqNRhYKfi/Jvptnt3xY4LiSQO9gjMwN6DW5E39dm82gci4qNzLnZDmS47TYkYdXnuL7OPOXevqRrJzWNXfuXA4dOsSzZ8/InTs3tWrVYv78+amOcErOq1evsk6cGvNf9O7vPhgVJj9tPSo0GiPzVHzQ3ICoZH9XUWHvvv3t5eVtSDTu5x7SaVQLHl59RvDLMCo3LEvNNnZoaKo89iAFWekfevq52RuwVuaBy0dsyqB/6OfIMy3mw2ceX/ei15TO+D99TWRoNA171KZ09RK89klaq3fVqC24rB/K3sB1xH2NIyEhkQ3jdjB8+QC1fg5Xb23H5D0u6Ojl4m1wFBOazeRdxPtU88kIGfGjnEZozj6Ed6sf/23vTu7FaXi3gvip1VFK2RejaLlCLHVKveG/Vjt78hrqcSatWbuoT92vlkNV8hrm4YyCxn119+4f0dbRZtDcXlw9fJt6nWqohXcrQtH7xtLBa3msZF+1jPAreorQnH0I784aVG4o9/f3x9zcnEaNGtGoUSNZeGJiIgEBARQuXDjVtHXr1qVu3bpMmTKFr1+/cuPGDS5dusSlS5fYs2cPsbGxlChRAi+v1Dfq+JH69evz6NEj1qxZw82bN2WbmlhYWNCmTRucnJwoUqSI0jzmzp3LjBkz5MKKaVWgRK6KqaRQTvKFbCQSBYHZiGI9qiaQfr8Az24/l9tc6vF1b1bfno3DsGasHrOd/AWNcV7cl0mt5ypctzz9uuV1pHkfU+hOmU/M+884209AN68ulRuWY+jCPgS/DOPBv09kcQK9gnC2n0AewzzU7VCNcZuH4dp4hsqN5YrLIEkRprQIye79j3R1bUeD7rVxbTTjJ+9zymsq15iyTIryyUyyRGMav687pz1l//d9BE9veLPt+UqaOTbg4NLjKulP5ZLZUo4fGblyoHT5iLqqd2CpTBZuKnL58mWGDx9O1apViYuLY/LkyTRr1ownT56QJ0+eLLvur85/wrs1y1NCO6V3K/xbUuFZnOQn0n/XuO7kt9UD2Xh/ASQmEvQyjDPbr9Csb12lmlUhK/wj5v1nnOzGkzuvLpUblcdpUV+pB15+QkbIiWfa/L4rcN00jL2v1xMfF4+Pxysu7L5KSbtisjgOo1pSpoYNU9vNI9QvnAr1bBk4t2eOaf4RZc/h+xcf41R5HAam+Wg5uAlT9o1hVI1JRIWnXJ/4Z1H1PqgDQnM2ILxb7fhveHc5SmhVSBFXsXennndK7069HtW8XwNePQrA6+7LVPNr3q8Bd9zu8zY4KvWLptCQs3W/lgMacfu0Z6r7RKV2TXXw7u9oamkyec9vSDQkbPl9N/U61chx704NRe8bI1cNIiI4knvnVR+IkBa/nKcgNGcLwruzBJUbyosUKUKZMmU4duwYxYsXl4WHhYVRtGhR4uPj05WPtrY29erVo2rVqtSsWRM3Nzc2bNjA8+fP006cTM/8+fNVSvMjkyZNYsyYMXJhnSycVc7nXcR74uPiU/R0G5jpExmW+ZWcNPW8keoxTjZ63DC/QYoe1O9EhkSlGLVtZKZP3Nc43kUoHkWbmJiI192XFChhAUBJu2IYmRuw6mbSdEBNLU3K1y1N+2HNaJ23LwlK1vh+9+adVHcyHYZmBilGmct0K+jlM8pvkEJ3YmIiQS9CAXh534/CZQrQfUJ7uYbyuK/xsjg+7i+xsS9Oh5Et+WvYxlQ1Jyf6exmSaTI0008xUvE7b0OiU35Xqdz7zmPa0GOSAxOazeLVQ/9065LX+D4VjSlHUyZpjMLYwihFfKnGzB31lpUaI0NS/l4MzVL/uwD4/CmWVw/9KVDS8pcsx/DlA6jR1p6x9afz5vVblcugMiq+SygaYaSjo4OOTspNR0+fPi33ecuWLZiZmeHu7k69evUU5j9mzBhmzpxJnjx5Ujzvk7NkyRLVxP8i/Ce828xJ7vN3H1TFl6UjipL7pvyzOPrNe2Z0XYa2jjb6JnmJCIpk4KxuhPqGZ7g838lK//jRA19888AeEx1UbihPXWPWP9OCX4YytuF0dPV00NPPzduQKCbvcSHkVRgAuXRzMWB2T/7ouFC2Fuqrh/6UsCtKc8eGav0c/vwplqAXIQS9COHpLR+2ei2nxcBG7J13RKG+jJARP8pphOZsRHi32vGf8O78Q+Q+J3m3oVy4QX59JXXBlKPNk3v3d3Ry56JBl5ps//NAqjrNCptSuVE5ZnZblkaJpKhD3c+ssCmVG5dnRmfF6xWrs3d/R1NLkyn7xmBR1IxxjWcQ8/5zjtehUiO1943ilYrQZWy7TG0o/xU9RWjORoR3ZwkZmidcpkwZqlWrxvnz5+XC09PT8vnzZy5cuMDUqVOpW7cuRkZGjBo1ig8fPrBmzRr8/TPW8JdRdHR00NfXlztUXXYFpA2sPvd8sWtUTi7crmE5ntzyySy5qunxeIVd4/LyepqUS3XN7Se3fLBrkkx/kwp4u78iPi71F7HiFa2J+DY97N6FRwypPB7nqpNkh9fdF1zYcw3nqpOUNpLL6W6STHfj8jy5kYrumz4py9m0At7uL5XqlkgkaOtop3o+vXGSE/c1Hm/3l9g1kR8dYdekAo9TKcPTm94p4ldpWgHvu/Jl6DK2Lb2ndOL3VnPxdk99FETaGuOkGpsq0qh4ZIlCjc0qptCYWWSVxic3vKmS4l5X5Mn11EfUaOfSonCZArxVMkJDXcsxYsVA6nSozvjGMwjxlX8hzTISVTvmzp2LgYGB3DF37tx0XSo6WvriYmxsnGqce/fu8fXrV9n/Uzs8PT0zVt5fhP+ad6fqy43K8eSmYl9+eut5ivhVGpfH2yOlD36N/UpEUCSaWprUcajKjeMe/CxZ6R8pkEifbRnWmIPP5s+fYnkbEkVewzzYN6/I9WPSDba0tDXRzqVFYoL8BtZxX+P59P7Tr/UczsD7R1pkxI9yGqE5GxHerZb8J73b4xV2jZN5d+PyqXu3grpglSblFdZh63WugbaOFuf3XEtVZ7O+9YgKi+bWqXvpKpc61P2a92sg1XxC8buIOns3JDWSFyhpwYSmM3n/9kOO16GUkdr7Rnx8AhoamTvC91f0FKE5GxHenSWoXEOSSCSsXr2aXbt20bp1axYsWCDbrfT7tJbUqF+/Pnfu3KF48eLUq1ePkSNHUr9+fczNzTOmPg0cHR0JCAjgwoULWZJ/cg6tOM24jUPxvveKp7ee02pAA8wKmXBio/T6/Wd0wdTKiIWDk9ZDK1ZBOmUud15dDEzzUaxCYeK+xOH/LOin9Rz86yTjtwzD2/0lT2750HpgI8wKmXJ8vfRFa8CsbphYGbNwwBoATqw/T3vnZgxd0JuTmy9gW70kLfo3YG6fFbI8e0/pyNNbz3n9PAQ9/dw4DG9O8YrWrBy1FZCuQ+b7OFBOx+ePsbyL+JAiPFXdy04wfutwqe6b3rQe1ASzwqYcX3/um+7umBQwZmH/1d90n6X9sGYMXdiHk5vOY1vDhhb9GzK393JZnt3Ht8fb/SVBL0PRzqVFtZaVaNK7LstHJO1M3n9md+6c9iQ8MILc+XRp0LUWFerbMrl1+h4cycswYdsIvN1f8PSGD60GN5aWYd1ZaRlm98C0gDEL+q0C4Pi6s7Qb3pyhi/pwauMFytQsSYsBjeR23u7q2g7HP7syt/dyQnzDZCMnYj585vNHxRvRKNW49DgTto/E++4Lnt7wptWQb/d57Rmpxjk9MbUyZkG/lVKNa8/SbngLhi525NSGc5SpaSPV2HOZLE8tbS2sbQsC0gYY0wImFK9YhJgPnwl6IZ2iqZtHVzYDAcCiqBnFKxbh3dsPhAe8yXKNh5efYMnlP+k2vj3Xj96hVvuq2DUpLzcVfsjCPtz8x50w/zcYmunTc3In9PRzc2bbJVmcfEZ5MStsiomVdNRCwVJWgHQkQ/K1zXKqHCNXDaJRjzpMd1jAp/efZaNzPkZ/4kuyTXUyE1XXSlM0wkhRr3ZyEhMTGTNmDHXq1KFcuXKpxrt48aLC//+X+K9696Hlpxi3yQlvj2++PLDhN1+W+mD/P7tKfXnQOgCOb7hAO6emDJnfk1ObL1Gmegma96vPPMdVsjxLVS2OqZURL+77YVrAiN6TOyLRkLB/yQlZHN08OlgVT7o/FkXyU6xCYd5HfiQ8IEKp5qzwj+4THPB2f0HQi+8eWJmmfeqxfHiSB+rm0ZF/Nhcxo3hF62/PZnnNOfVMs29WESQSAr2CsCphwZAFfQjwCpJtXPbpfQz3Lz1m8II+xMZ8IczvDRXq29K0T33O775Cy4GN1e45rKunQ8/JHblx7C4RwZHom+Sj3bDm5C9ozL9/31D6W8kIaX136ojQnD0I71Y//tPevdlZ6t03fWg1sJHUuzd88+6Z3aTePXAtAMc3nqedc1OGzO/Fqc0XKVOjJM37NWBe35Up8m7Rrz7Xj7mnuueQRCKhWd/6nNt5hYT4BIVxFJGTdT+JRELzfg04u/2yUs3q6t0amhpM+3ssJeyKMrXtPDQ0NWReeWT5SVy3DM92zWnVV5W9b6wdu03ZTyVD/IqeIjRnD8K7swaVG8q/9167uLhQunRpevTowYMHD5g2bVqaaa9fv46lpSUNGzakQYMG1KtXD1NTU9VVpxMrKys0NH5+c630cvngLfIZ56XXxPYYWxji9ySQKR0XE/atgmlsYUj+giZyadbcmCX7v41dURp1q0WIXziOtmN/Xs/fN9E3zkuvyR0xtjTE73EgU9otIMz/jUyPWaEkPSG+4UxutwCnRX1o69yUt0GRrHbZxtXDSb29eQ30+G31QIwsDPkU/Ynnnn6MbTQTr7svflpvku4b6JvkpdfkTt90BzCl7bwk3ZZGmBVK+t2E+IYzue18nBb3pa1zs2+6t3L18G1ZHN08OoxcMQDTgibExnwhwCuI+Y6ruPxDJdTI3IDxW4djbCkt28uH/kxuPTfFhp/pKsP+G+gb56P3lE4YWxrh+yiAyW2SymBimfLeT2kzD6fFjrQb1pyIoEhW/7aFq4eSytDWuSm5dLSZ/rf8b2P7jL/ZoWT6YOoar6NvkpfeUzsnaWw9J0mjhRFmhX+8z2FMaT0XpyU/aBy9mauHbsnimFgZsfbeQtnnrq7t6OrajvuXHuPa6A8AbOyLsfhi0vqEzkv6AXBm6yUWDkhqjMoqjU9ueDO7xzL6zeyO45/dCX4RwuzuS+XW3jctYMLvu0ejb6pPdPg7nt70ZlTNybLrAtRsZ8+4LcNln6fsdQFg+4z97Jjxt1qUo51zcwAWX5JfD3Jh/1Vyjf6ZjoqGndp0r7QYMWIEDx484OrVq+lOs23bNjp37vx/v65acv6r3n35wDdf/t1B6suPA5nisIgw/x98+YdncahfOFMcFjF0QS/aDm3C2+Ao1ozdwdUjd2Vxculo4zi9M5ZF8xPzIZY7bvdZMHAtH6M/yeLY2BVl4ZnJss9OC3oBcGbHFRYPSX3zMMga/9DNo8OolQOTPPDZa+b1Xcnl/UkeaGNfnMUXpss+Oy9xlGredknWoZ6kMWeeaXoGegyc0xPTgia8f/uBq4dusXnyHrnRd7N7LGPgnJ5M2jmafMZ5CfULZ8uUPRxcepznHi/V7jkcH59AoVIFaHqgAfqm+Xgf8R6vOy9wqTcNvyfpG2CgCml9d+qI0JxNCO9WO/673n3zm3d3+MG7F8rVYeW82zecKQ4LGbqgN22dmvI2OJI1Y7Zz9cgduXwLlLCgXO3STFIyCKpy43KYFzbFTcGGmEo152Ddz65Jecyt83N6y6U0NKqnd+cvaEKt9lUBWOe5SE7z2IbTWeOyJds1p6e+mtr7RlY0qv6KniI0ZxPCu7MESaKKK9NraGgQEhKCmZkZAE+ePKFdu3bo6enx+PFjpWulffz4kStXrnDp0iUuXryIp6cnNjY21K9fnwYNGlC/fn3y58//cyXKBJrn6ZvTEjJE4te4nJagOonp76lXFxLTWD5GLfkF77Mg+zib8HfakVSg+CLV1ht74ap8/TJFjBw5kiNHjvDvv/9StGjRdKfLnz8/nz59om3btvTu3ZsWLVqgpaX68hO/Gv8J787dJ6clZIiEL1k3uyPLEJ4iEOQ4wruFd/9feLdur5yWkCESRL1bIBBkAOHdv4Z3q9ztW79+fXLlyiX7bGtry+3btzEyMkpzrbQ8efLQokUL5s2bx61bt3jz5g0LFixAT0+PBQsWULBgQaXD+FUlICCAAQMGZFp+AoFAIEgbSYJEpUMVEhMTGTFiBIcOHeLChQsqmTVAcHAw+/btQ1NTk+7du2NpacmwYcO4fv26Svn8agjvFggEAoEyhHerH8K7BQKBQKAM4d1Zg8oN5RcvXsTQ0FAuzNjYmMuXL5OQoFovZZ48eTA2NsbY2BgjIyO0tLR4+vSpqpJS5e3bt2zblvlrRAkEAoFACSpuKqIKw4cPZ+fOnezevZt8+fIREhJCSEgIMTEx6UqvpaVFmzZt2LVrF2FhYSxbtgw/Pz8aNmxI8eLFVRPzCyG8WyAQCARKEd6tdgjvFggEAoFShHdnCSqPe2/QoAEDBgygS5cu5M6dW6W0CQkJ3L17VzYF7Nq1a3z8+JECBQrQsGFDVq1aRcOGDdOd37Fjx5Sef/ky9Z2hBQKBQJA1qLqpiCqsWSNdK7lBgwZy4Vu2bKFfv34q5aWnp0fz5s2JjIzEz88vUyuM6obwboFAIBAoQ3i3+iG8WyAQCATKEN6dNajcUF6lShXGjx/PyJEj6dq1KwMHDqRGjRrpSmtoaMjHjx+xtLSkQYMGLFmy5Kd6ExwcHJBIJEqnnqW1I7hAIBAIMpksNGwVt9VQyKdPnzh8+DC7du3i3LlzFCpUiB49evD335m7Zpw6IbxbIBAIBEoR3q12CO8WCAQCgVKEd2cJKi+9snjxYl6/fs327dsJDw+nXr162NrasmjRIkJDQ5WmXbhwIU+fPiUwMJCdO3cyaNCgnxpyb2lpycGDB0lISFB4eHh4ZDhvgUAgEGQMSaJqR3bSo0cPzMzMcHFxoWjRoly6dIkXL14wa9YsypQpk71ishHh3QKBQCBQhvBu9UN4t0AgEAiUIbw7a1C5oRxAU1OT9u3bc+TIEV6/fk3Pnj2ZOnUqhQoVwsHBgQsXLihMN3ToUGxsbDh//nyqea9cuTLdOqpUqaLUlNPq9RYIBAJBFpCFa6X9LBKJhH379hEUFMSqVauoVatW9grIQYR3CwQCgSBVhHerJcK7BQKBQJAqwruzhAw1lH/n9u3bTJs2jUWLFmFmZsakSZMwMzOjbdu2uLq6ppquU6dO3LlzJ0X4smXL+P3339N9/XHjxim92SVKlODixYvpzk8gEAgEmYAaG/bu3btp3bo1Wloqrzz2f4PwboFAIBCkQHi3WiO8WyAQCAQpEN6dJaisOCwsjB07drBlyxZ8fHxo27Yte/fupXnz5rJ1ybp27YqDgwOLFi1SmMfSpUtp1aoVly9fxtbWFoBFixYxc+ZMTpw4kW4tdevWVXo+T5481K9fP935CQQCgeDnye5pXary8eNHLl++jL+/P1++fJE7N2rUqBxSlbUI7xYIBAKBMoR3qx/CuwUCgUCgDOHdWYPKDeUFCxakePHiDBgwgH79+pE/f/4UcapVq0bVqlVTzaN///5ERETQrFkzrl69yr59+5gzZw6nTp36pYbjCwQCgeDX4t69e7Rq1YpPnz7x8eNHjI2NefPmDXp6epiZmam1Yf8MwrsFAoFA8KsivFt4t0AgEAh+LX5l71a5ofz8+fNp9ijr6+unOfXK1dWViIgI7O3tiY+P58yZM1SvXl1VOQKBQCBQN9S4Z9vFxYW2bduyZs0aDA0NuXnzJtra2vTu3ZvRo0fntLwsQ3i3QCAQCJQivFvtEN4tEAgEAqUI784SVG4oT8usU2P58uUpwiwtLdHT06NevXrcunWLW7duAeo9BF8gEAgEylHnKWCenp6sW7cOTU1NNDU1iY2NpVixYixYsABHR0c6duyY0xKzBOHdAoFAIFCG8G71Q3i3QCAQCJQhvDtrSFdDeeXKlWXroKVFarthL126VGG4pqYm165d49q1a4B0Z9ScNmyNwgVy9PoZJTEoNKclqExCzOeclqAyEo2EnJagMokJP7Vvb47xpZV9TktQmVwnbue0hJxHjQ1bW1tb5mfm5ub4+/tTpkwZDAwM8Pf3z2F1mct/zbslJQrn6PUzisarwJyWoDKJsbE5LUFlEuPjc1qCQKDeCO9WC/5r3q1haJCj188wUdE5rUBlEr7G5bQE1Un89erdAkG2Irw7S0hXQ7mDg8NPX+jVq1c/nYdAIBAI1B+JGr/TVq5cmbt372JjY0PDhg2ZNm0ab968YceOHZQvXz6n5WUqwrsFAoFAkF6Ed6sHwrsFAoFAkF6Ed2cN6Woonz59eqZcrFatWjg4ONCuXTtKly6dKXkKBAKBQM1Q457tOXPm8P79ewBmzpyJo6Mjzs7OlChRgi1btuSwusxFeLdAIBAI0o3wbrVAeLdAIBAI0o3w7ixB5TXKv+Pu7s7Tp0+RSCTY2tpSuXLlNNMMGTKEf/75h5kzZ2JpaUn79u1p164dderUSfcUM4FAIBCoN+q8Vpq9fdJyPvnz5+fkyZM5qCb7Ed4tEAgEAkUI71ZfhHcLBAKBQBHCu7MGlRvKw8LC6N69O5cuXcLQ0JDExESio6Np2LAhe/fuJX/+/Kmm7devH/369SM2Npbz589z9OhRunXrxtevX2ndujXt27enefPm6Onp/VShBAKBQJCDqLFhx8TEkJiYKPMZPz8/Dh8+jK2tLc2aNcthdVmH8G6BQCAQKEV4t9ohvFsgEAgEShHenSWovMPfyJEjeffuHY8fP+bt27dERkby6NEj3r17l+7NQHR0dGjVqhXr1q0jKCiI48ePU6BAAaZNm4apqSlt2rSRbTIiEAgEgl+MRBWPbKR9+/Zs374dgKioKKpVq8bixYtp3749a9asyV4x2YjwboFAIBAoRXi32iG8WyAQCARKEd6dJajcUH769GnWrFlDmTJlZGG2trasWrWKU6dOZUhE9erVmT17Ng8fPuThw4c0btyY4ODgDOUlEAgEgpxFkqjakZ14eHhQt25dAA4cOICFhQV+fn5s376d5cuXZ6+YbER4t0AgEAiUIbxb/RDeLRAIBAJlCO/OGlRuKE9ISEBbWztFuLa2NgkJyrdc/fjxI/v27VN4LigoiO3bt2NpaYmLiwudO3dWVZpAIBAI1AE17tn+9OkT+fLlA+DMmTN07NgRDQ0NatSogZ+fX/aKyUaEdwsEAoFAKcK71Q7h3QKBQCBQivDuLEHlhvJGjRoxevRogoKCZGGvX7/GxcWFxo0bK007c+ZMnj17BsDnz5/lzllZWXH8+HFmz56tqiSBQCAQqBNqbNglSpTgyJEjBAQE4ObmJlsfLSwsDH19/ewVk40I7xYIBAKBUoR3qx3CuwUCgUCgFOHdWYLKDeUrV67k/fv3FClShOLFi1OiRAmKFi3K+/fvWbFihdK0+/fvp02bNgAULVqUoKAgvnz5Ijs/adIk9uzZo6okAOLj4wkNDeXNmzcZSi8QCASCzEGdp4BNmzYNV1dXihQpQvXq1alZsyYg7eWuXLly9orJRoR3CwQCgUAZwrvVD+HdAoFAIFCG8O6sQUvVBIUKFcLDw4OzZ8/y7NkzEhMTsbW1pUmTJmmmjYiIwNDQEIAPHz4QExND0aJFuXPnDlZWVujq6hIaGqqSnhMnTjB//nxu377N169fAciXLx9t27Zl9uzZFC5cWNUiCgQCgeBnyGYTVoXOnTtTp04dgoODqVixoiy8cePGdOjQQfY5MDAQKysrNDRU7k9WS4R3CwQCgUApwrvVDuHdAoFAIFCK8O4sQaWG8ri4OHR1dfH09KRp06Y0bdpUpYvZ2tpy7tw5ihcvjkQiAeDdu3ey6WAbN26katWq6c5vx44dDB8+nIEDB1K7dm22bNlC//79sba2Zu/evVSpUoXr169TsmRJlXQKBAKBIONkd2+1qlhYWGBhYSEXVq1aNbnPtra2eHp6UqxYseyUliUI7xYIBAJBWgjvVi+EdwsEAoEgLYR3Zw0qNZRraWlhbW1NfHx8hi42ZswY+vfvz9evX0lISODdu3ckJibi5ubGhQsXOHHiBGfPnk13fnPmzGHDhg1069YNgE6dOtGhQwf8/f1xcnKie/fuTJgwgUOHDmVIb1q07lGDzgPqYpw/H37Pw1g39ziP3X3TTGdb2ZoF2wfj6xPKiI7y0+by5NPF8bdm1G5alrz6uQkJjGTjgpPc+dcr03S3GdSQzqNaYGxuiN+z16yduIfHN3wUxjU2N2Dw7G6UrFQEq+JmHF17nnWTUp+mV79TNSZtduL6cQ/+7LUywxrbDm1ClzFtMLY0xO/Ja9aM3c6ja6nfg/J1S+O0sA/WtgWICIpi/+J/OLHhvOx80z71GLfJKUW61vkc+RorHRGhoalB32mdaNS9NkYWhrwNjuLMjsvsnnOExMS0n0BtnZrSZUzbb5oDWTNmO4+uPVOiuQxOi/pgbVuQiKBIqeb152TnaztUpcdEB6yKW6Clrcnr5yEcWHqC87uuyOK0GdqUNkObYG6dHwC/J4HsmnWIO26eaeqVam5GF9e2mFga4vs4kDVjtvHoauqaK9Qrw9BFfSlS9pvmRcc4vi5Js7VtQRxndKWkXVEsipix2mUbh5eflMsjd15d+v3ZjdoOVTE0M+D5vVesdtmG990X6dKsCIdWlejesSrGRnnx9X/Dyg0XePDktZL4lenYpjIWZvqEhr9n5/6buF18LDtft2ZJenepQQFLQ7S0NAgMimL/kTucufgkXXraOjeji2v7pPvqsiWN+2rL0MWOSfd14VGOr5N/FtbpWJ1+f3bHsrg5wS9C2TJlD9eO3Jad7zO9C32nd5VL8zYkim5Wg+XiNOhWm/yFTIj7EoeP+0u2TMnYtFulqLlhp4f0/M3/KgjvlqdNt+p07ldH6t0vwlg7/wSPPRRvKFPBvigLtgxKET6o3VICX0mnnFsXN6PP8MaUtC2AeQEj1s4/wZGd1zNf9+BGdBndCmMLA/yeBrF2wi4eXfdWGNfY3IAhc3tQolIRCpQw5+ias6ydsFsuTu12Veju2harYmZoaWvx+kUIB5ef5vzejGvPCR/8ke7j2zNgdg8OLT/J2rHbU+rLgWezhqYGff/oSqOedTG2MORtcCRntl1i16yDcs+ZwqULMGhebyrUt0WiIcHvcQAzuy0lPOBNjuguX7cMXVzbYVOlGCZWxkzvsIDrR+/I59GhGq2HNKVklWIYmOrjVHkcL+77pqrrZ1D1HqgDv5zm/wPbE96dxP+bd7fuV4/Ow5pgbGaAn1cw66b9zeNbiusOtVpVorVjXYqXK4h2Li38vILZuegEHpeeyuI06VaDsX/1TZG2nfUovsbGZUhjmyFN6DKmNcYW0vrr2nE70qy/Dp3fW1p/DY7i78XHObExqf664MxkKtazTZHu1ql7TOuwCJB6TJ+pnWjUvRZG5oa8DYni7I5/2T03ffVXyPz6YMtBjWjaux5FyhUCwMf9FZun7MHrTtL31WdaZ/pO7yKX79uQKLoVGJpSXw54IICJlTGD5vWiWsvK5Mqdi9fewSwetAYfj5cA6ObRZdC8XtRqL63TSgAk8PKBf7ZpTOve/KhR3yQfob5hHF5xiuNrz8jiLLrwBxUblJXLNz4+gReevtlSju4THajToTqFShcgNuYLT657sXHiLgK9pXszaGpp0n9Wd6q1tMOimBmfoj/x8oE/GpoSipQtlOo7SnIa9axD13HtKVDSko/Rn7h72pN147bz/u0HpenSIn8hU0auHEilRuX4EvOFC3uust51B3Ffpc8Rc+v87Hy1+qeuoZT/A9tTR+9WeWz7lClTmDRpEm/fvlX5Yl26dGHhwoXMmjWLmJgY7O3tiYmJwcXFhXfv3nHr1i1q166d7vz8/PyoXr267LO9vT0hISEEBwcD0heEixcvqqwzPdRrWZ6hE1uzd91FRnRcwWN3X2au60d+SwOl6fTy6uA6rwueN1Mau5a2JnM2DcS8gBGzR+9mcKslLJ92iDeh0Zmnu2NVhs7twd5Fxxle9w8eXfdh1gEX8hc0VhhfW0eL6Dfv2bPoOC8fBSjN26yQCYNmduWhkheC9FC/Sw2cFvdl97wjOFf7nYdXnzH7nwnkL2SiML5FkfzMPjaeh1ef4Vztd/bMP8KwpY7U6SA/SuJj9Ce6FXKWO743kgN0G9eW1oObsPK3rQyq4MrG33fTZUwb2g9vng7NNXFa7MjueYdxrjpRqvn4ROWa/5kg1Vx14jfN/ajTIal37f3bj+yZe4TRdacy1G4Cbtsu47rRiSpNK8jivAmMYNPvexhRYzIjakzG8+Jj/jjkirVtwbQ1d62J81JH9sw9jHOViTy6+ow5JyYp1TzruDSec5WJ7Jl3hGHL+lOnY5JmHT0dgl+Gsun3PUQERyrMZ8yGodg1Kc98x1UMqeiK+9kHLDgzBRMrozQ1K6JhnVKMGNSIHftvMnj0Nh48DmT+H50xy59PYfz2LSsxxLEuW3Zfw3H4FrbsvsZvTk2oVbW4LM7795/Zuf8mw8ftYsDIbZw695AJo1tStXKRNPXU71oL56X92TPnIM5243l09SlzTk4mfyFThfEtipgx68QkHl19irPdePbMPcSwvwZQp2PSs61MDRum7HXh3M7LOFVy5dzOy0zZ50LpaiXk8nr1yJ+uloNlx5AKY+XOB3oHs3LkJoZUGItL3amE+oUzz21qmmVSFXVeK+2/ivBuKfWal2fohFbs3XCZ4V1W8cjdl1lrHMlvody7B7ZZQo8Gc2VHkF+E7JyOrjYhgZFsXubG2/D3WaK7fqdqOM3vxZ6F/zCs9jQeXfdi1qGxSrxbm6g379m78B9ePlTs3e8jP7Jn4T/81ngmTjWmcGbnFcauHUSVxuUypjGHfPA7NvbFaDWoMS8eKO70yKlnc/cJDrQZ2pSVIzcx0PY3NkzYSRfXdjiMbCmLY1nMnKVXZuLv9ZqxDacztJIrO2cd5OvnLzmmWzePDi8f+LFy5CaF15HG0eXxdS82TdqVapzMQNV7oA78ipqFd6sfwrul1GtfhaF/dmbvstOMaDqXx7eeM3P3cPIXUFx3KF+jBPf+fca0XqsZ2Wwe969588d2Z4qXk68ffXwXQ8/yE+WOjDaS1+9cA6dFfdgz/yjDqk/m0bVnzDo6PlUPNC+Sn1lHxvHo2jOGVZ/M3gVHcV7SlzoOSfXXmd2W0d16mOwYUnk88XHxXDmU1MjYzbUtrQc1ZtVv2xhcaRwbf99DZ5fWtB/WLH26s6A+WLF+WS7uvc64xn8yuvZUwgLeMO/05BR1vVePAuhqNUR2DKnoqkBfznhgXsM8LLs6k/iv8fzeag6DyrqwznUbH6I+yuI4L3XEvnklTm8+jwS4uPcaEomEiKC32aIxPffmu8Z5fZYz0PY3Di47wYjlA6jZzl5O04kN51g6dB1xX+JYO3Ybo2r+nm33ukK9shxb7caomr8zsdlMNLU0mec2BV09HUDavlCicjF2zjrAsCoTmNFpEeZFTClStrDSd5QfKVu7NOO3jeT05gsMLjeGmV2XYFO1OGM2OKcrfWpoaGgw+/gkdPPo4lJ3KrN7LKNuxxoMXZyyE258kxl0tRysIJefQ3h31qByQ/ny5cu5cuUKVlZWlCpVCjs7O7kjLZydnQkMDCR37tzs2LEDHR0d7t27h5ubG+XLl1dJS5EiRbh7967ss4eHBxoaGpibmwNgbGwsWz8ts+ngWJczh+7iduAuAS/DWTf3OOEh0bTuXkNpulEzOnDxxH2eevqnONesYxXyGeTmzxE7eHLPj7CgKB57+PHKKyTTdHcc3hy3HVc4vf0KAd7BrJu0h/DXb2kzsKHC+KH+EayduIfze6/zKTom1Xw1NCRM2DCEnXOPEuIb/lMaO41uxektlzi95RIBz4JY67qD8MAI2g5VvB5f6yGNCQuIYK3rDgKeBXF6yyXctl6is0sbuXiJiYlEhkbLHT9SpnpJbvxzl9unPAn1e8OVQ7dxP/cQmypF09b8W2tOb7nI6c0XpZrHbic8IIK2QxVPk2w9pClh/hGsHbtdqnnzRdy2XqTzmCTND/59wrWjdwh4FkTwy1COrDjFy4f+lKtdWhbn5gkP7pz25LVPMK99gtk6bR8xHz5Tpnra0x47/daa05svcGrTBfyfvWbNmG1SzU6KX6zaDG1KuH8Ea8Zsw//Za05tuoDblot0GdNWFsf77gs2TNjFpX3X5TohvpNLV5u6HauzYeIuHl55StCLUHb8eYCQV2GpXjctujrYc/LsQ06ceYhf4FtWbrxI+Jv3tG9ZSWH8Zg1tOXb6PhevehEcGs2FK884cfYBPTonveB5Pgrgyk0f/ALfEhQSxcF/PHjpG0552wJp6unk0kb+vrpslY0IVEQbp6aE+79hjcvWH+7rBbqMbSeL03F0a9zPPmDvvCMEeAWxd94R7p1/RMfRreXySohLIDI0SnZEv3knd/7inqvcO/+QkFdh+D0JZO2YbeQx0EuzTCqjxrtv/1cR3i2lY9/auB1y5/ShuwS8CmfdgpOEh0TTplt1pemi3n4kMuKD7EhISPrhej9+zcYlp7l8+iFfv2Ssgp2m7hEtcNv+L6e3XSbAK5i1E3ZLvXtQY4XxQ/3fsHb8Ls7tucbHd58Uxnlw5RnX/3EnwCuY4FdhHFl9lpePAihbyyZDGnPKB0HaqDtx20iWOq3nQ+TH5JeS6suhZ3OZGjZcP3aX2yc9CPUL58rBm7ifuY9NlaTO2f6zenD75D02TtjJC09fQl6FcfukB1Hh73JM953Tnmyduperh28rugwA53b+y86ZB/A49zDVOJmBqvdAHfgVNQvvVj+Ed0vpMLQRZ/Zcx233dQJ8Qlg37QDhr6No7VhPYfx10w5wYNVZvD39CHoVzra5xwh6FUb1ZvJlTkxMJDL8ndyRUTqOaonb1m/1V68g1o7bSXhgBG2GKK6/thn0rf46bicBXtL665ltl+n0W9Jz+H3kR7l6q13j8nz+9IV/D96SxSlTvSQ3jrtz+7S0/nr18G08zj2kZJX0LWGQFfXBeX1W8M/aM7y470eAVxBLh6xDoiGhcmP5+58QFy9Xvug3KQcb5JQHdpvgQHhABIsGrsbrznNC/cK5d+ERwS+T1vUvU8OGs9svYd+8Mqc2X2BBv5W8uO/Hi/u+2aIxPffmu8YHl58Q6hfOyQ3neHHfDxv74nKaYj/F0mJAI05tvsDBpcfxvvsi2+71761mc2bbJfyeBPLygR+LBqzG3Dq/7Df86d0nJjafyb9/3yDQO4int3yY33clJlZGeN19qVBbcsrUKEmobxhHVpwixDeMx9eecWL9WWzs5f9OmvdrwKbHSznxaRebnixL07OrNKtAYduCzO+znBeevtw7/5B1rttoNagxevlyy8V9F/GByNCodOlVCeHdWYLKm3m2b99ets5Zhi+qpcXWrVtp1KgR27dvT7FmTXoZPnw4gwYN4s6dO+jq6rJx40b69OmDpqYmALdu3cLGJmMVPmVoaWtSsqwVf2+8JBfucc0H28qpb2LStEMVLAuZsGD8fno4pWyYrtHIlqee/gyf2p4ajcoQHfmRS8fv8/fGy3KV8p/SXcma/Uvll8LwuPCYMslGpqpKzwntiHrzHrcdVyhXM+Nr02lpa1LSrij7Fh6TC3c/+xDbGoq/S9vqJXE/+zBZ/Ae06N8ATS1N4uOkUxZz59Vlh89faGhq8OK+H9tm/M0Lz6SRZ4+ve9F6cBMKlLTgtU8IxSoUplytUqxxTTl9W6HmBUflNZx7gG3NVDTXKIn7uQfy8c88oEX/hnKaf6RSw3IUsrFk06TdKc6BtLOiXuca6ObR4clNxdPxf9RsU6VYSs1n71M2Fc1latjgfva+XNjdM/dpMSB1zcnR1NJEU0uTr5/lX6RjY75QrnapNNMnR0tLA5sSFuw+IF+Rv3PPl3JlFDdqa2tr8iVZY1bslzjKlLREU1OD+PiEFGnsKhSmUAEj1m0NTFtPlWLsm39ELtz97APK1lRcPul9lf8t3HW7T4sBjWT31bamDQeXHZePc8YzRUO5VUkL9gau40tsHM9u+bB58m5CXoUp1qqtRashTfgQ9ZG8hnmUlktVRG+1+iG8G7S0NClpa8X+Tf/KhXtcf06ZSso3IFu1fzi5dLTxexHGnvUXeXDnVabrSw0tbU1KVi7CviUn5MLdzz/CtsbPefePVGpgS6GSlmyeul/ltDntgyNXDOD2qXvcu/CInr93VKgvp57Nj649o83QphQoaclrn2CKVbCmXJ3SrHHZCoBEIqF6azv2LzzK3FOTKV65KCGvwtg77zC3T97LUU9RB7S0tVS+BznNr6gZhHerI8K7v/lLhcL8veKMXLjH5afYVk1fY7BEIiF3Hl3eR8l3HOfOo8PWuzPR1NDgxeNAdsz/hxePlL/rp6rRrij7Fv0jF+5+7iG2NRTXi8vUKIl7sk7Gu2cf0Lxf/VQ9sHm/Blz++waxn2JlYY+ue9F6cGMKlLDg9fMQipUvTNlapVg7bke6dGdHfVBHTwctba0US1xYlbRgb8Aaab3l9nM2T94jV2/JSe+u2daeu2c8mbpvDOXr2xLx+i3H1rhx6oelcR5fe0bNdvaUqFSUffOPULFBWQraWLL6t/vk0dfLUo3p9ZnH155Rs609pzdfJCLorZzGH2nUsy4GpvkwsTRiyMI+7JjxNzEfPufI+8b3QVzKlkTJY6BHQkICH6MUD45IzpPrXvSf1YNqLStz+9Q9DM0MqNepJrdPesjitBzUGMc/urJy5Cae3/OlROUiuKx34vPHWM5uv6wwX9uapfB95C83k/6u231y6eaiZJVi3L+UtLTrn0cnoK2rnS69qiC8O2tQuaH8jz/+yJQLd+7cWe7fjDB8+HA0NDTYuXMnsbGx9OvXj6lTk5YRqFatGrt3K25U/E5sbCyxsbFyYQkJcWhopH5r9A310NTSJPKN/B9vVMQHjEwVL/dgZW1C/zHNGddnPQkKGuIALAoaUbF6MS4e92Ta0K0UKGLKsKnt0dTSYPfqC0rLkR70TfJJdYfJj6SODH+HsbnyaefKsK1eguZ96jK8zh8/qRD0Tb9pTDbaOzIsGqNUpsYbWRgSGSb/kI4MjUZLWwsD03y8DYkiwCuIRYPW8upRAHr5ctNhZAuWXvoDJ/tJBD2Xjtjft/Af8hjosenhIhLiE9DQ1GDrtP1c2ncjDc36iu9raDRG5oaKNZsbKizjj5oB9PRzs8dvDdo6WiTEJ7Bi5GY8zsu/VBUpV4i/rswkl642MR8+M6PzYvyfpr4+N4DBd83JNYRGY2ShWLOxhQF3FcRPrlkZMR8+8/i6F70md8T/6WsiQ6No2KM2pauX4LWP6jMnDPRzo6WpwdtkJhkZ9RHjVBp/73j40qZZBa7efI73i1BKlTCnVZPyaGtrYqCfm7ffRiPm0cvFga3O5NLWJD4hkWVrznLXU/GU/h/1SO9rlLye0Cgl99WQuwri/3hfjSwU/F6SfVfPbvmwwHElgd7BGJkb0GtyJ/66NptB5VzkXjSqt7Zj8h4XdPRy8TY4ignNZrLq9jyl5VKZ/wPD/tmKqbohvBv0jb55d4S8d0dGfMDYJK/CNG/fvGfZH4d5/iQI7VyaNGpTmXkbBzB+wCYepWNPkszgu3dHJfOYqLBojMwy7t0g9Zjd3suSPMZlOx4/7NeQbo056IMNutakROWijKgxOW19OfBs3jf/CHkM9Nj8dJns3WLLlD1c3HsNAEMzA/Ty5abbBAe2Tt3Lxom7sG9RiekHXZnZZUmO6VYXDGTvhVFy4cruQU7zK2oGhHerIf8J706MR0OimWoafeO80r+nZEubRYW/wyi/frq0d3RujK5eLv495i4LC/QJYfHoHfg+fY1ePl0cBjdk0TFXhjeeTdAr1WZHf6+/KvTpVOrYRuYGCuOnVq8qZV+MouUKsdRpvVz4/kXS+uvGBwuT6q/T/+bSfuX1V8i++uCguT158/qt3OyjZ7efs6Dfqm/1FkN6/d6Bv67OZFD5sbJ6i0EOerdlMTPaOjXj4NLj7J57iNLVSjD8rwF8jf3KuR3SARerRm1h4o6RlLIvwZT9LiTEJ7J08FoeX3tGhXplslRjen1m1agtuKwfyt7AdcR9jSMhIUnjd87vvsKnd5+YsncMJzeeo3n/RhSrUISJzWfmyPuG02JHHl55iu9jxUsHautoM2huLy7svsqn96mvePAjT254M6/3cibvdSGXrjZa2lpcP3qHlSM3y+L0ntKZda7bZTPpQnzDKGxbkNZDmqbaUG5kYUhUsvJ9iPrIl9ivGH8rY8yHz6wZs5XH17xITEhg1Z356dKcboR3ZwkqN5QXK1aMO3fuYGIiv25VVFQUdnZ2vHyZvukPmYWzszPOzorXFkrPrttz585lxowZcmHFTWpTMn/dNNMm/01KJIoXotfQkDBhYXd2rjzHa983qeYn0dAgKuIjy6cdJiEhkedPgjDOr0/ngXUzpaE8NeESiSTDC+jnzqvL+A2D+WvUNt795EYIP5JcjkSC8oeAwgRJ38ez2895dvu57PTj696svj0bh2HNWD1GOmK8QdeaNO5Rh3l9V+H7JJDiFa1xXtSHiOBIzu5QvHGYvAR5DVLNSkSn0Jwyn5j3n3G2n4BuXl0qNyzH0IV9CH4ZxoN/kzaVDPQKwtl+AnkM81C3QzXGbR6Ga+MZaTaWK9as/LeQ8jbL3+f0MN9xFa4bndgbuJb4uHh8PF5xYc81SlZOe4mb1IUl+yyRkJjKD2bbvhsYG+VhzaJeIJEQGfWR0+cf0bNzdbmZG59ivjBo9DZy6+bCrmJhhg1sSFBINJ5prNUPiu+T8vua8ntIkU8av687pz1l//d9BE9veLPt+UqaOTbg4NKknvz7Fx/jVHkcBqb5aDm4CVP2jUmzPCrzf2DY6ripyM/wn/Du/HUoYa54GrY8Cp57qcQM9H1D4A++/fR+APktDOjsWCfbGsq/o/g58XO/05j3nxlWayq6eXSp3MCWoXN7EOIbzoMrGdtwMLt9MH9BE5yXODKp1RyFy32leblseDY36FaLxr3qMrfXX/g+DqREpSI4L+1HRFAkZ7dfRkNDmueNo3c5tEw6a+DFfV/K1ixFkz71cky3uqHqPVAHfjnNaiwtvaj1/c0A/wnvzmNPybxVU0mRhKp1lu/Ud7Cnt2trZjiuJfqHQW7PPHx55uEr+/zk9ktWnJ1Iu4ENWDvl7zTzTa9GZX9XKeQrqVc179eAV48CUiw1Ub9LDRr3qM08x1X4PXlN8YrWOC3sTURwJOd2pl1/TU13ZtUHu7q2o0H32rg2miHn0/L1lgBpvcVnOc361ufgMvkZdDnhgRINDbzvvmDz5D0AvPD0xbpsIdo6NZc1lDuMakkJO+mshkX9V5PXMA8jVw0iIjgy23w6rXvjMKolZWrYMLXdPEL9wqlQz1am8d63QQenNp7HxFK6frzHuYfcPnmP1XfnU6Jy0Wx/3xi5ciBFKxTGpa7iPbQ0tTSZvOc3JBoSVgzfmKqu5BQuU5Dhf/Vn58wD3HXzxMTSiMEL+jB67RCWDFqDgak+ZoVNGbPRGZf1Tj9cT4OP0dKZKLNP/E75umUACPULZ3D5MQrvgbSMSfftXcR72ftdlvB/YHvq6N0qN5T7+voq3H07NjaWwEDVpyrlNJMmTWLMGPmGoi5VZypN8y7qE/Fx8Ribyo9AMzDOS1REysbi3Hl0sClfkOJlLBk2Rbpmk0RDgoaGBscfzmLyoM3cv/WSyPB3xMUlyDXWBbwMwzi/PlramsR9zdiu5zLdEe+Jj4tP0bNtaJqPyLCMrclmWTQ/Ftb5mbFvlCxM8q3SdyJiA4PsfydYhV75d2+kGo2TjR43zG+QojfyO5EhUSlGrBmZ6RP3NY53Cr4PkP4xet19SYESSdMPB8/tyd6Fx2Q98L6PAjAvbEr38e2VNpS/e/NOqjmZBkMzgxSj62SaFfTOGuU3SKE5MTGRoBfStdBe3vejcJkCdJ/QXq6hPO5rvCyOj/tLbOyL02FkS/4alrp5RH/XnEyDoZl+il7R77wNiU75vaRxnxUR/DKUsY1moKung55+bt6GRDF5z2hCfBUvEaKM6HcxxMUnYGwkP3rcyECPyCjF6/J++RLH/OWnWbTqDMaGekREfqRt84p8/BRL9A9r+SYmwuvgKACevwrDupAJvbpUV9pQHv0uJpX7aqDkvkZhbGGUIr70vkpHz0SGpPy9GJql/jcB8PlTLK8e+lOgpGWK8KAXIQS9COHpLR+2ei1PNY+M8v8wBezJkydYWVnltIxM47/g3Z1rzlaa5l2k1LuNTORnfhka50kxylwZzx4E0KhNxfSL/UmSvNtQLtwgv36Gvfs7iYmJBL2UPntfPvSnUCkruo1to3JDeU75YEm7ohiZG7Lq1lxZfE0tTcrXLU37Yc1pnac3CQmJSfpy4Nk8eEEf9s0/wqV91wHwfeSPmbUp3Sd24Oz2y0S/eU/c1zj8nsp7i/+zQMrXKa02npJTRMveCw3lwpXdg5zmV9QMwrvVkf+Cd3cpOU5pmndvP0j/nszkR48bmOYjSsGa1j9Sr30VflvSmzlDNuJ5xUtp3MTERLw9/bAqZqY0nkKNb5T5dGoemHK0uWF+xfUqndy5aNClJtv/PJAin8Fze7Jv4T9c/vsmAL6PAzArbEr3ce3SbCjP6vpg5zFt6DHJgQnNZvHqYcr92X7k86dYXj3yp0DJpLp56vqy3gPfBkfi/1T+b8z/6WvqdpTuR5dLNxcDZvdkZtfFTD/gyuePsZzfdYXilYrQZWw7Ar2DslRjenzmu8Y/Oi6ULTHy6qG/TOO9H2bn/ZjftSO3+foljgIlLbP1fWP48gHUaGvP2PrTefM65QbGmlqaTNk3BouiZoxrPCPdo8kBekzswONrXvy96JjsPsR8jGXZlZlsnbJH1v62dMhant16Lpf2+2oQSwavRSd3LgDivsbJylc62RLGeQ3zoJ1LK9veqYR3Zw3pbig/dixpzWg3NzcMDJIekPHx8Zw/f56iRX9iRGgW4OjoSEBAABcupD4aW0dHBx0dHbkwZVO3Qdow6fM4iMq1SnL9XFKDpV2tEty48DRF/E8fYnFqt0wurE2PGlSsXozZv+0mJFD6IHjs4UfDNpXkeqAKFDElIuzdTzeSy3R7+lG5oS3Xjyetx1S5YVlunryXoTwDvIMZWkO+x89xSgdy59Nl7YQ9hAeqtkt73FfpCGO7xuW5djRpwxi7JuW48Y+7wjRPbvlQo7X8hjZ2TSrg7f5K6brZxSta8+qHRk8dvVwkJlsLPiE+Qdbwn6bmJuW5dvROkobG5bnxz12FaZ7cVKC5aQW83V8q1SyRSNDWUb62VXrixH2Nx9v9JXZNKnDtyA+am1Tg+jHFmp/e9KZGmypyYVWaVsD7rnLNqfH5UyyfP8WS1zAP9s0qsmHiLpXziItLwPt5CPaVrbly00cWbl/JmqvJTC458fEJhH97oWtUrzQ37rxQOphOgnR98zT1uL/ErmkFrh1JWjddel/vKEwjva/yO49XaVZR7r4+ueFNlSYV5HqjqzStyJPrqb/0a+fSonCZAjy6mvKZJF+wLJjqpMaG/fnzZ1asWMHFixcJCwsjIUF+KSwPD+mzsVChQjkhL9MR3p1EXFw8Pk+CqFyzBNcvJHl35ZoluHkxjb+THyhe2pK34cor55lJ3Nd4fO75YteoLNd/8EG7RmW5cTxj3p0aEglo66g8hiLHfPDehUcMqeQqd37sRmcCvILYv/CorOIj87wceDbr6umk2GcmIT5BNpI87mscXndeUMhGfl+NAiWtCPF9g0RTUy08JaeI+xqn8neX0/yKmgHh3WrEf8q7lSy7At/85YE/leuX4fqppHWV7eqX5sbpB6mmq+9gj8vS3sx33sKdc4/SVYbi5Qrhm44ZuQo1erzCrnE5uXqUXePy3DiuuP769KYP1ZN5YJUm5RXWX+t1roG2jhbn91xLkY9O7lwkJvt7SE/99bvurKoPdhnbll6TOzKp5Ry83dOe+aCdS4vCpQvw6IeO+pz07sfXvChoI99wV9DGklA/6QBALW1NtHNpEfdF/nkf/83fs1pjenzmu8bkv4/4H95BvvNjfq99gtHOpcXb4Mhse98YsWIgtR2q4dpwusLBc98byQuUtGBcoxlK1y9XhI5eLuLjUv6dgPS9MiosivDACCyLmXNh91WFeUQEpWzXenLDix6/d8TYwlC27FCVZhX58vkLPun43WcKwruzhHTXhhwcHADpD8nR0VHunLa2NkWKFGHx4sXpvnB8fDxv3rxBIpFgYmIi2wgkM7GyskJDQyPT8wU4vO0KrvO64vMokKee/rTsWo38loac3CfdhbqfS3NMzPVZPPFvEhMT8fMJlUsfFfGBL7FxcuEn9t6iXe9aOP3ehmO7bmBlbUK3IQ04tvN6puk+tMqNcesG43PPl6e3X9CyX33MChpzYvMlAPpP74SJpRGLnJJGIxcrL/3h6ubVxcA0L8XKFyLuSzz+XkF8jY3DL9kLxffpKcnD08vBv04yfsswvN1f8uSWD60HNsKskCnH10s3zxgwqxsmVsYsHLAGgBPrz9PeuRlDF/Tm5OYL2FYvSYv+DZjbZ4Usz95TOvL01nNePw9BTz83DsObU7yiNStHbZXFuXnCgx4T2xMW8Aa/J9Lp0R1Ht8Jt26W0NS87wfitw6Wab3rTelATzAqbcnz9uW+au2NSwJiF/Vd/03yW9sOaMXRhH05uOo9tDRta9G/I3N5Jo3u7j2+Pt/tLgl6Gop1Li2otK9Gkd12Wj9gki9N/ZnfunPYkPDCC3Pl0adC1FhXq2zK59VzS4uCyE0zYNgJv9xc8veFDq8GNpZrXnZVqnt0D0wLGLOi3CoDj687Sbnhzhi7qw6mNFyhTsyQtBjRiTq+/ZHlqaWtibVsQkL7wmBYwonhFa2I+fJaNCLRvVhEk0iVjrEpYMGR+bwK8gnDbkvZ9VsT+I3eZPKY1Xj4hPH4WRJsWFTHLr8+xby/Tg/vWJb9JPuZ828S2oJURZWwseeIVRL68unR1sKdoYVPm/rDJba/O1fF6HsLr4Ci0tTWpUaUYzRuVZcmas2nf16XHmbB9JN53X/D0hjethnz7LayVbkI0YE5PTK2MWdBvpfS+rj1Lu+EtGLrYkVMbzlGmpo30vvZcJsvz8PITLLn8J93Gt+f60TvUal8Vuybl5aalDVnYh5v/uBPm/wZDM316Tu6Enn5uznz7/erq6dBzckduHLtLRHAk+ib5aDesOfkLGmfovitDnXu2BwwYwNmzZ+ncuTPVqlVTyzXRMhPh3fIc2n6NcXM74/P4NU/v+9OyS1XMLA04sV9ayeg/uhkmZvosmiwdteXQuxahQZH4PQ9DW1uTRm0qUbdZOWb+ltSxp6WlSeHi0hFoWtqamJrpU6yUJTGfYgkOUK2zOFXdK08zbsNQvD1e8fT2c1r1b4hZQRNObJI2SPT/owumVkYsHJK0dmmx8tINSnPn0cXANB/Fyhcm7msc/s+CAOg2tg0+Hq8IehWGdi4tqjarQJOetVnxm/INrFMjJ3ww5sNnfB/Lj/j6/DGWdxHvU4Tn1LP55j/u9Py9I2H+b/B7HECJykXp5NIWty1JjUl/LzrG5L0uPLjyhPsXH1O1RSVqtq3C2IZ/YFrAOEd06+bRlZt1Z1HUjOIVi/Du7QfCA6TLEeUzyotZYVNMrKQjygqWkjYqvA2JSrFu6s+Q1nenjvyKmoV3qw/Cu+U5vO4Crisc8bnvx9O7r2jZuzb5Cxhxcrt0xHS/39tjYmnI4pHbAGkjuesKR9ZO/Ztn7q9ka5nHfv7Cp/efAeg5thXP3F8R9DIMvXy5aT+oAcXKFmTVpL0Z0nho+SnGbXaW+vRNH1oNbIRZIRNObJDWX/vP7Cb16YFrATi+8TztnJsyZH4vTm2+SJkaJWnerwHz+q5MkXeLfvW5fsxdYePgzZP36D7BgbCACPyeBlK8YhE6jmrJmW2K11ROTlbUB7u6tsPxz67M7b2cEN8w2cj5mA+f+fxRukb9kAW9uXn8e73FgJ6TO0rrLcnWgs4p7z647Dh/XZtFj0kduLz/BqWqlaDV4CYsG7oOgE/vY7h/6TGDF/Th6qGb9JjYEW0dbRr3rMPja17ZozGNe/OjxtiYL4T5vaFCfVua9qnP2rHSvxXLYuY07lWX2yc9OLfjX5yX9qN2+6r4PgmgTsfq2VKOkasG0ahHHaY7LODT+8+ymRkfoz/x5fMXNDQ1mPb3WErYFWVq23loaGpgUdQci6JmfPrW7pT8HSW51pvH3XFZP5Q2Ts1kS684L+3H01s+so04d8zYz7C/BvDpXQy3T91DW0ebUvbFyGuUV24Z0x9xP/MA/yeBTNg+kvXjd6BvnJchC/twcuN52Yj3pn3rE/c1nhf3XqUYOJEZCO/OGtLdUP699b9o0aLcuXMHU1PTDF3w8OHDLFq0iLt37xIXJ52yoKWlhb29PePGjZO9GGQGc+em3ViYUf499ZB8hnnoOawxxvnz4esTyjSnrYQFRQFgnD8fZpaGKuX5JiSayYM2M3Ria1YfGUVE6DuO7rjO3xvTZ3Tp0n3oDvrGeek1vh1GFgb4PX3N1C7LCAuIkOo2N8AsWcPZ6qtJa8nZVC5Co641CfV7g2OF8Zmm60cu/31TqnFyR4wtDfF7HMiUdgsI85dWzIwtDDErlLRWX4hvOJPbLcBpUR/aOjflbVAkq122cfVwUu9nXgM9fls9ECMLQz5Ff+K5px9jG83E6+4LWZxVv23D8Y8ujFzeH0MzAyKCIjm58Tw7Zx1Kh+Yb6JvkpdfkTt80BzCl7bwkzZZGmBVK+psJ8Q1nctv5OC3uS1vnZt80b5VtHgGgm0eHkSsGYFrQhNiYLwR4BTHfcRWX/07anMXI3IDxW4djbCkt18uH/kxuPTfFhp8KNe+/gb5xPnpP6YSxpRG+jwKY3CZJs4llyvs8pc08nBY70m5YcyKCIln92xauHkrSbGJlzFqPBbLPXV3b0dW1HfcvPca18Z8A6BnkZuDsHpgWNOH92w9cPXSLzVP2ZmhUOsDFq14Y6Oemb/damBjn4ZXfGybMOEhouHRJAhPjvJjlT1pqQVNDQjcHewoVNCYuLoF7D/0ZPn4XIT8sYaCrq42Lc1Pym+Ql9ksc/oFvmbX4BBevpj3a7vL+6+ib5KX31M5J97X1nKT7amGEWeEffwthTGk9F6clP9zX0Zu5euiWLM6TG97M7rGMfjO74/hnd4JfhDC7+1K5dfdNC5jw++7R6JvqEx3+jqc3vRlVc7LsuvHxCRQqVYCmBxqgb5qP9xHv8brzApd60/5Tm3meOHGCkydPUrt27ZyWki0I75bnX7eH6Bvq0cupIUb58+H3PJSpw7YT9m2ZJal3J43c09LWZPDYlpiY6fMl9it+z8OYOmwbd654y+KYmOVj9YERss+d+9elc/+6PLjzkvEDkjo2f4bLB2+TzzgvvSa2x9jCEL8nr5nSaUmSd1sYkL+QvHevuZG0jJyNXVEadatFiF84jmWlI7B18+gwYmlfTAsY8yXmCwHewSwYtI7LB2+TEXLKB9OtL4eezStHbaLfzO6MWjXo27vFW06sP8vOH6bQXztym7+c19NjYgeG/zWAQK8gZnReJNtsKyd029gXY/HFpPc/5yX9ADiz9RILB0gbTGq2s2fcluGyOFP2ugCwfcZ+dszI2Bq/ikjru1NHfkXNwrvVB+Hd8vx71J18RnnoOaYVxmb6+D4LZlqv1YR9m7lsbK6PWYGkJSBa9a2DlrYmI+Z1Z8S87rLws/tusGT0DgDy6udm1KKeGOfX5+P7z7x4GMA4hyV43/PLkMbLB25Kffr3DlKffhzIFIeFcvXX/D/Uq0J9w5nisJChC3rT1qkpb4MjWTNmO1ePyI/eLVDCgnK1SzMplUFQq1224Ti9MyOW98cwvz4RwZGc3HSBXbPTrr9C1tQH2zo3JZeONtP/Hit3re0z/mbHN+8zLWjC77tGJdVbbvkwqtaUFM/InPJu77sv+KPjQgbO6UXvqZ0JeRXGGpetcqONZ/dYxsA5PWk5sAmJQNM+9ZBIJOQxzJMtGtPjM981Tto5mnzGeQn1C2fLlD2yxu+4L3FUblSeDqNaoZtXlw+RH9DNq4u+ST6+xHzNlnK0c24OwOJL8vsXLOy/ijPbLpG/oAm12kv3MVjnuQhFJH9HSa71zLZL5M6nS/vhLRi6qC8foz5y78IjNv4wo/3Upgt8/vSFrq7tGDS/N58/xuL70J9Df6W+vnhCQgKT28xl1KpBLLs6iy8xX7iw5yrrXeUHnfSa3Akza1PZKPZMRXh3liBJzMaV09etW8eoUaMYMGAAzZs3x9zcnMTERMLCwnBzc2PLli2sWLGCwYMHpzvPwMBA1qxZw/Xr1wkJCUEikWBubk6tWrVwdnamYMGCKutsWWaSymnUgcSg0LQjqRkJMZ9zWoLqJGbBAy6LSb6kzK/Cl1b2aUdSM3KdyFgjU05yNiHzGjQA7JyXqhTfY41Lpl5fGba2tuzdu5cKFSpk2zV/dX4V725RfrLKadSBxFe/3jqzibGxOS1BZRIVrPMrEPzKCO8WKONX8e6WFsNUTqMOJESp734DqZHwbV3lX4pfsN4tEChDePevgcoLUY4aNYoSJUowatQoufCVK1fy/Plzli1blmrahQsXsnr1agYOHJjinIODA1WrVmX27NnpNuyrV6/SsmVLChUqRLNmzWjWrJnsBeDIkSOsWLGCU6dO/ZI9GAKBQPDLosb9MosXL2bChAmsXbsWa2vrnJaTbQjvFggEAoFShHerHcK7BQKBQKAU4d1ZgsoN5QcPHpTbYOQ7tWrVYt68eUoN+/Xr19SpUyfV87Vq1SIoKCjdWlxcXBg0aBBLlyruRXFxceG3337jzh013jhHIBAI/s+QqPHgD3t7ez5//kyxYsXQ09NDW1t+49u3bzNnTWl1Q3i3QCAQCJQhvFv9EN4tEAgEAmUI784aVG4oj4iIkNt5+zv6+vq8eaN83b2yZcuyfv36VDcf2bBhA2XLlk23lkePHrFz585Uzw8dOpS1a9emOz+BQCAQZAJq3LPdo0cPXr9+zZw5czA3N/+lNhX5GYR3CwQCgUApwrvVDuHdAoFAIFCK8O4sQeWG8hIlSnD69GlGjBghF37q1CmKFSumNO3ixYtp3bo1p0+fplmzZrKbFRISwtmzZ/Hz8+PkyZPp1mJpacn169cpVaqUwvM3btzA0tIy3fkJBAKB4OeRZN/WFypz/fp1bty4QcWKFXNaSrYivFsgEAgEyhDerX4I7xYIBAKBMoR3Zw0qN5SPGTOGESNGEB4eTqNGjQA4f/48ixcvVjr9C6B+/fo8evSINWvWcPPmTUJCQgCwsLCgTZs2ODk5UaRIkXRrcXV1xcnJCXd3d5o2bZriBWDjxo1pahIIBAJBJqO+fk3p0qWJiYnJaRnZjvBugUAgEChFeLfaIbxbIBAIBEoR3p0lqNxQPmDAAGJjY5k9ezYzZ84EoEiRIqxZs4a+ffummb5IkSLMnz9fdaUKGDZsGCYmJixdupR169YRHx8PgKamJlWqVGH79u107do1U64lEAgEgvQhUWPDnjdvHmPHjmX27NmUL18+xVpp+vr6OaQsaxHeLRAIBAJlCO9WP4R3CwQCgUAZwruzBkliYsbH6oeHh5M7d27y5s2rclo/Pz9CQkKQSCSYm5v/9C6oX79+la3VZmpqmuJLUIWWZSb9lJacIjEoNKclqExCzOeclqA6iWq8Y0IqJCao8RNUCV9a2ee0BJXJdeJ2TktQmbMJf2dqflX7L1Ep/p0tYzL1+srQ0NAASLFGWmJiIhKJRFbx+3/m/9W7W5Sf/FNacorEV4E5LUFlEmNjc1qCyiT+B/62Bf8thHcL704v6uzdLS2G/ZSWnCIhKjqnJahMwte4nJagOr9gvVsgUIbw7l/Du1UeUQ4QFxfHpUuXePHiBT179gQgKCgIfX39NM176dKlLFmyhKCgIL630UskEqysrBg7diy//fZbRiShra0t1kUTCAQCNUCde7YvXryY0xJyDOHdAoFAIEgN4d3qifBugUAgEKSG8O6sQeWGcj8/P1q0aIG/vz+xsbE0bdqUfPnysWDBAj5//qx0t+uZM2eyaNEifv/9d5o3b465uTmJiYmEhYXh5ubGH3/8wYcPH5gyZcpPFUogEAgEOYgaG3b9+vVzWkKOILxbIBAIBEoR3q12CO8WCAQCgVKEd2cJGqomGD16NPb29kRGRpI7d25ZeIcOHTh//rzStOvXr2fbtm1MmDCBSpUqYWlpiZWVFZUqVWLChAls2bKFNWvWqF4KgUAgEKgNkkTVjuzmypUr9O7dm1q1avH69WsAduzYwdWrV7NfTDYhvFsgEAgEyhDerX4I7xYIBAKBMoR3Zw0qN5RfvXqVKVOmkCtXLrlwa2trWcFTIyIiglKlSqV63sbGhsjISFUlCQQCgUCdSFTxyEYOHjxI8+bNyZ07Nx4eHsR+W2v5/fv3zJkzJ3vFZCPCuwUCgUCgFOHdaofwboFAIBAoRXh3lqDy0isJCQkKF10PDAwkX758StNWq1aN2bNns3XrVrS05C8dFxfHnDlzqFatmqqSMp3QBmY5LSFDmLrnTjuSmqHpF5zTElTGe3zJnJagMsXG38ppCRki18m7OS1BkAHUea20WbNmsXbtWvr27cvevXtl4bVq1eLPP//MQWVZy3/Bu08/nJ3TEjJEk3q/nm6tJ345LUFlEqLf5bQElREbkAqyE+Hd6sd/wbs/VS2a0xIyhNVkn5yWoDJvG3/OaQkqo2FdMKclqEzcs1/vtyH4dRHenTWo3FDetGlTli1bxvr16wHphiAfPnxg+vTptGrVSmnaFStW0KxZM8zMzKhfvz7m5uZIJBJCQkL4999/0dHR4ezZsxkriUAgEAjUg0T1dWwvLy/q1auXIlxfX5+oqKjsF5RNCO8WCAQCgVKEd6sdwrsFAoFAoBTh3VmCyg3lS5cupWHDhtja2vL582d69uyJj48Ppqam7NmzR2na8uXL4+3tzc6dO7l58yavXr0CwMLCgtmzZ9OzZ0/09fUzVhKBQCAQqAWShJxWkDqWlpY8f/6cIkWKyIVfvXqVYsWK5YyobEB4t0AgEAiUIbxb/RDeLRAIBAJlCO/OGlRuKLeyssLT05M9e/bg4eFBQkICAwcOpFevXnKbjKRGvnz5cHZ2xtnZOUOCBQKBQKDeqLNhDx06lNGjR7N582YkEglBQUHcuHEDV1dXpk2bltPysgzh3QKBQCBQhvBu9UN4t0AgEAiUIbw7a1C5oRwgd+7cDBgwgAEDBqicNj4+Hn9/f6ytrdHQ0CA2NpajR4+SkJBAw4YNMTc3z4gkgUAgEKgL6jsDjPHjxxMdHU3Dhg35/Pkz9erVQ0dHB1dXV0aMGJHT8rIU4d0CgUAgSBXh3WqJ8G6BQCAQpIrw7iwhXQ3lx44dS3eG7dq1S/Xc/fv3adGiBWFhYZQrV44TJ07QsmVLXr16hUQiQVtbGzc3N6pWrZru6wkEAoFAvVDnTUUAZs+ezeTJk3ny5AkJCQnY2tqSN2/enJaV6QjvFggEAkF6Ed6tHgjvFggEAkF6Ed6dNaSrodzBwSFdmUkkEoU7c39n/Pjx1KlTh+nTp7Nx40aaN29O2bJl8fDwQCKR0L9/f37//XexsYhAIBD8ymThpiL//vsvCxcuxN3dneDgYA4fPpxujwIYMGAAf/31F/ny5cPe3l4W/vHjR0aOHMnmzZuzQHXOILxbIBAIBOlGeLdaILxbIBAIBOlGeHeWoJGeSAkJCek6lJk1wJ07d/jzzz8pV64cc+fOxcvLC1dXV7S1tdHS0mLixIncu3cvUwomEAgEgpxBkqjaoQofP36kYsWKrFy5MkPatm3bRkxMTIrwmJgYtm/fnqE81RXh3QKBQCBIL8K71QPh3QKBQCBIL8K7s4YMrVGeURITE9HSkl4y+b8AmpqaJCSo8Wr0AoFAIEgbFU04NjaW2NhYuTAdHR10dHRSxG3ZsiUtW7ZUWdK7d+9ITEwkMTGR9+/fo6urKzsXHx/PyZMnMTMzUznf/wLCuwUCgeA/gPDu/yuEdwsEAsF/AOHdWUK6RpQDtGrViujoaNnn2bNnExUVJfscERGBra2t0jyqVKnC/Pnzef36NXPnzqVo0aJyvRMrVqygXLlyKshXTGhoKCEhIT+dj0AgEAhUR9We7blz52JgYCB3zJ07N1M1GRoaYmxsjEQiwcbGBiMjI9lhamrKgAEDGD58eKZeUx0Q3i0QCASC9CC8W30Q3i0QCASC9CC8O2tI94hyNzc3uZ6H+fPn06NHDwwNDQGIi4vDy8tLaR5z586lRYsWbNmyBVNTUy5evMiAAQOwtLREQ0ODyMhI/vnnn3SLf/v2LYMHD+bu3bu0adOG5cuXM3ToUDZv3oxEIqF69eocPHgQS0vLdOcpEAgEgp9ExbXSJk2axJgxY+TCFPVq/wwXL14kMTGRRo0acfDgQYyNjWXncuXKhbW1NVZWVpl6TXVAeLdAIBAI0oXwbrVBeLdAIBAI0oXw7iwh3Q3licm+gOSf00PVqlXx8/PDy8uLUqVKkTdvXi5dusSuXbuIiYmhadOmlCpVKt35ubq64u3tzbhx4zhw4ACdO3fm5cuXXLlyBQ0NDUaPHs3EiRPZtm2bylozgl2JAvRtak+ZwmbkN8zLmLXHuHT/RbrSVixmxYYxXXgR9IYec3Zlqc62nezp0qcmxib58HsZxpqlZ3jk6Z9qfG1tTXoNqkfjFuUxMsnLm7B37NlyFbd/PAGo3aA0PfrXwaqgMVpaGrwOeMuBXTc4f+phpmlu3a8enYc3xdjMAD+vYNZN/ZvHt54rjFurVSVa96tH8bIF0dbRws8rmJ0Lj+Nx6alcnG6jW2BVND9a2pq8fhnGoTXnuHDgdqZpTg9O1arSvGRJihkbExsXh0dQEPP/vcKryMhs1fGdtk7N6OLaFhNLQ3wfB7JmzDYeXX2WavwK9cowdFFfipQtSERQJPsXHeP4unOy83U6VKPHRAesSligqa1JkE8IB5Ye59zOK2qj0dq2II4zulLSrigWRcxY7bKNw8tPyuWhoalB3+ldaNSzDsYWhrwNjuTMtsvsmn0oQ89CgLbOzeji2j6pHC5b0iiHLUMXOyaVY+FRjq9L2oBJWo5ulKxS7Fs5tnD4r5Op5peVqLr+WWrTvTKT+vXrA/Dq1SsKFy6MRCLJ0uupC8K7/39o51CFLj1qYGKcF1/fcFavOMujBwEK446b1IbmLSumCPd9Fc4gx/UA1KlXih69a1OggBGaWhq8DozkwL6bnDvzKMvK0KZ/fTqPaI6xuQF+XkGsnbyPxzcVe3nt1pVp3b8+xcoVQltHC/9nQexc8A/uF59kqqa2Tk3pMqYtxpaG+D0JZM2Y7Ty6lvqzuHzdMjgt6oO17bdn8eJ/OLH+nMK4DbrW5Pddo7l+9A5/dF4sC28ztClthjbB3Do/AH5PAtk16xB33DwVa8xkvwCo07E6/f7sjmVxc4JfhLJlyh6uHUl6B9LQ1KDvH11p1LPuD753iV2zDsqeI32md6FBt9pYFDVDS0sTgECfYJYOWZvl+tJ7XwqXLsCgeb2pUN8WiYYEv8cBzOy2lPCANwAsuvAHFRuUlUtzce815vRclqr+9KLq95bTCO9WH4R3p8ShVSW6d6yKsVFefP3fsHLDBR48ea0kfmU6tqmMhZk+oeHv2bn/Jm4XH8vO161Zkt5dalDA0hAtLQ0Cg6LYf+QOZzLZY9JD+Pkgwi8E8eXNZwByF9DDor01BhVNsl0LQJvBjenyWyuMLQzwe/qateN38ei6t8K4xhYGDJnbkxKVilCghDlH15xl7Xj5tgzrMgXoO6UjJSoXwcI6P2vH7+LwKrdM1dy6e3U6D6iLcf58+D0PY928Ezx2900znW3lwizYNhjf56GM6Jg042L+1kFUqFYsRfzbl58x3Tl9ayvnhHf/SPeJDgyc04tDf51gjctWWbihmQGD5/WmSrMK5DHMw8N/n7Jq1CZeP8/8mSG/mg/Cr6dZeHfWkK1rlAPkzZuXKlWqyD7r6uoycODADOV1+vRpDhw4QK1atejSpQuWlpa4ublRu3ZtAJYuXUq3bt0yRXd60NXRxvt1OMduPGbR0LbpTpdXNxd/9mvOHS9/jPPpZaFCqN/EFqcxzVmx4CSP7wfQuoMds5f1ZFC31YSHvlOYZvKczhgZ52HJrH8ICnyLoVEeNDWTVu15/y6GPVuu4O8bQdzXeKrXKYnr1PZERX7C/Wb6OgqUUa99FYbO7MKqiXt5cvsFrfrWZeae4Qyt+yfhr1M2KJevWZJ7l5+ybc5RPkR/ommPWvyxYxguLefz4lGgVHPUR/YtO0XA81DivsRRrVl5xvzVl6g37+Ua1LOa6gULsdPTkwchoWhqSBhbuw7bOnei+ZatxMTFZZsOgPpda+K81JEVIzbx+JoXrYc0Yc6JSQwsN4bwgIgU8S2K5GfW8Ymc2niB+X1XUrZ2KUauHEhU+DuuHpIa9ru3H9g99zABz4L4+iWOGq3tcN3kTFTYO+6eua8WGnX0dAh+Gcq/B27itLivwut2H9+eNkObsKD/avweB2JjXwzXTc58jP7E4RWnMlCOWjgv7c+K4Ruk5RjalDknJzOwrIus8i5fDjNmnZjEqY3nmd9nubQcqwZ/K8etpHK8CuPfAzdwWtJPZU2ZStZtvv3TPH36lICAAOrUqQPAqlWr2LBhA7a2tqxatQojI6McVqie/D97969Ag0ZlcB7ZlOVLTvP4UQCt29kxd0F3BvZdR1hYSu9evfwsG9ddlH3W1NRg/eZB/PuDv71/F8PuHdcI8H/D16/x1KhVknET2xIV+Ym7d15mehnqOdgzdHY3Vo3fzeNbz2nlWI9Ze0cxpPYfhL9+myJ+uZol8bj8lK2zD/MhOoZmPWrxx64R/NZ8Li8eKu4gUJX6XWritNiRFSM38fi6F60HN2H28YkMqjA2VU+Z/c8ETm66wDzHlZStVYqRKwYSHf6Oq4flK6pmhU0ZPL83D6+kfKd4ExjBpt/3EPQiFICmferxxyFXhlWdiN+TQHmNWeAXZWrYMGWvC1un7eXa4dvU7lCNKftccKk7lWe3pR0X3Sc40GZoUxb0W4Xf4wBs7IvjunmY1Pe+dSYHegdz5cANuo13YMef+yla3pqabe2Zc2oyA22zVl967otlMXOWXpnJqc0X2PbHPj5Gf6JwmYJ8/fxFTtOJDefYNm2f7HNsjPz5jKDq96YWCO/+v+P/xbsb1inFiEGNWLr2LI+evKZti4rM/6MzjsM3Exb+PkX89i0rMcSxLgtXuPHMJ4QyNpaMG9Gc9x8+c/2OtG76/v1ndu6/iX9gBF/jEqhZtRgTRrckMuoTd+75Zkk5UkPbOBcFuhZFxzw3ABFXQ3n512NK/1mF3AXzZKuW+p2q47SgFyt/28bjmz60HtiQWYddGVxlEuGBKX1RO5c2UW/esXfhMTqMaKEwT53cuQj2Deffw7cZOr9Xpmuu16I8Qye1ZtWfx3hyz49WXasxc50jQ9suIzw4OtV0enl1cJ3bBc+bLzA0zSt3buboXWhra8o+5zPUY/WhkVxxS99ggpzy7u/Y2Ben1eCmvLjvm+JaMw6PJ+5rHNMcFvDpXQydxrRh/tlpDCrrwudPsSniZ5Rf0Qd/Rc3Cu7OGdK9RLpFIUvQEqNIz4O+f+ohlRbx+nXoP8Xeio6MpUKAAAObm5mhpaclN97KyspJbzy2ruf7Yl9XHrnPBU/HoqNSY3KsJp+8848HL4CxSlkSnnjU5fewep4/eI8D3DWuXniE8NJq2newVxrevUZwKdtZMcdnNvTuvCA2OxutJEE8eJlXkHnj4ce2SFwG+bwh+HcmRfbd5+TyUchULZYrmDk6NObP7Om67rhHgE8K6qX8T/jqS1v3qKYy/burfHFh1Fm9PP4JehbNtzlGCXoZRvVkFWZyH1324fuo+AT4hBPu94eiGi7x68pqy1Utkiub00v/QIQ4+foJPRATPwt8wwc2NAvr6lDM3z1YdAJ1+a83pzRc4tekC/s9es2bMNsIDImjr1Exh/DZDmxLuH8GaMdvwf/aaU5su4LblIl3GJHUSPbj8hGtH7uD/7DXBL0M5vOIULx/4U7Z2+kewZLVG77sv2DBhF5f2Xedr7FeF+ZSpWZLrx+5y++Q9Qv3CuXLwFu5nH2Bjn3KkQbrK4dJGvhwuWwkPeENb51TK4dSUcP83rHHZ+kM5LtBlbDv5cozfobQc2UVW7r79s4wbN45376QNiw8fPmTMmDG0atWKly9fppiG9v+A8O7/Dzp1rc7pE56cOuGJv18Ea1acJSz8HW0d7BTG//gxlsi3H2WHTSlL8ubLzemTSR2U9z39uXbFC3+/CIKDojh84A4vX4ZRrkLmeHdyOjo3xW3XVU7vvCr18in7CQ+KpE3/+grjr5uynwMr3PC+50fQyzC2zj4i9fLmFRTGzwidfmvN6S0XOb35IgHPglg7drvUU4Y2VRi/9ZCmhPlHsHbsdgKeBXF680Xctl6k85g2cvE0NCRM3D6CHX8eIPhVWIp8bp7w4M5pT177BPPaJ5it0/YR8+EzZaqXTKkxC/yi4+jWuJ99wN55RwjwCmLvvCPcO/+IjqNby+KUqWHzzfc8vvneTdzP3MemSnFZnIt7rmLXtCKnNl9g58yDLB64Bm0dbd69eZ/l+tJzX/rP6sHtk/fYOGEnLzx9CXkVxu2THkSFy3cuxX6KJTI0SnZ8evdJoXZVUPV7UweEd6sPwrvl6epgz8mzDzlx5iF+gW9ZufEi4W/e075lJYXxmzW05djp+1y86kVwaDQXrjzjxNkH9OhcTRbH81EAV2764Bf4lqCQKA7+48FL33DK2xbIkjIow7CyKQYVTdC10EPXQo8CnYuioavJxxeKB7FlJR1HtsBt22VOb7tMgFcQa8fvIjzwLW0GN1IYP9T/DWvH7eLc7mt8jFb87PT2eMXGyXu5fOBWltRROvSrw5mD7rgdvEvAy3DWzTtBeHA0rbtXV5pu1B8duHjiPk/vp+x8/xAdQ+SbD7LDrmYJYj9/5Ypb+mbM55R3A+jm0WXSzlEsHbKWD5Ef5c4VKGmJbU0blg/bgPfdFwR6B7Fi2EZy59WlYY/a6SpbevkVffBX1Cy8O2tId0N5YmIi/fr1o2PHjnTs2JHPnz/j5OQk+zxgwACl6atWrcrgwYO5fTv1pS2io6PZsGED5cqV49ChQ2lqKlmyJMePHwfg1KlT6OrqcubMGdl5Nzc3ihYtms4S5gztatpS0NSA9SduZvm1tLQ0KFnaEo9b8qO83W+9xDaVinHNejZ4Pw2iS5/a7D7+G5sPDGfwqKbk0kl9MkKlqkUpZG3Cw3uqvaQp1KytSckKhfG4JD8NzuPyU2zT2UgpkUjInVeX91EfU41TqW4pCpYw59ENn5/S+7Pk+zYNJvrz52y9rpa2JjZViuF+9oFcuPvZ+5StaaMwTZkaNriflR8VfvfMfWzsi6GppakwTeVG5ShYylLhCDt10aiIR1e9qNyoHAVKSisExSpYU652KW6fuqdiKUBLW0tajmQj6t3PPqBsTcUdCNJyyJf7rpvq5cg24hNVO1Tgw4cPeHp64unpCUindHl6eqa7Uvjq1SvZBlgHDx6kbdu2zJkzh9WrV3PqlOqzA9Qd4d2/PlpaGtjYWHL3ziu5cPc7L7EtVzBdebRsXQkP91eEpTJzDKCyXREKFjLmwf2f9+7kaGlrUrJiYTySTWn3uPiEMtWKp5JKHpmXR/58I6ZMk11RPJJ7yrkH2KbiKbY1SuJ+Lln8Mw+wqSL/LO41pRPR4e84veVi8ixSoKEhoUHXmujm0eHJTfmp7VnlF7Y1FXmjJ7a1kvJ8dO1ZSt+rU5rbpzwU6tPS1qLVkCZ8iPrIXTfPLNWXnvsikUio3tqOQJ8g5p6azP6QjSy/MYda7aum0NSoZ10OhG1iw8MlDFnYh9x5dRVqTy8Z+d7UAuHdaoPw7iS0tDSwKWGRYpT3nXu+lCujuFFbW1uTL1/kZ+bGfomjTElLuVnRP2JXoTCFChjx4HGgwvPZRWJCIm9vhpEQG0+eEvrZem0tbU1KVi6C+3n5UdPuFx5iq6AjVx3Q0takpK0VHtfk6/Ae159jW8k61XRNO9hhWciYXasvpOs6zTrZc/nkA2Jj0m7oz0nvBhi5ciC3Tnpw73zKRn1tHW0AvnxOKkdCQgJfv8RRrnaZNMuWXn5FH/wVNQPCu7OIdC+94ujoKPe5d+/eKeL07at42QKQDrufM2cOLVq0QFtbG3t7e6ysrNDV1SUyMpInT57w+PFj7O3tWbhwIS1btkxT07hx43B0dGTZsmUEBgayc+dORo0axa1bt9DQ0ODQoUMsWbJEaR6xsbFym6UAJMTHoaGZ9avSFMpvyEiHOgxcvJ/4hKzv3tE31ENTS4PICPkG48i3HzEyUTyty6KAEeUqFubLlzhmjN+PvqEeI8e3Ip++LktmJW0Ao5dHhz0nXNDOpUlCfCIrFpzE4/bPT93WN86LppYmkcmm1UWFv8fIzCBdeXR0boKuXi7+PeYhF66XT5ed9+einUubhPgEVk3cw71/c3b9qd8b1OdOYCDeESmntmUlBqb60vscKj89LTI0GiMLQ4VpjC0MuKsgvpa2Fgam+XgbEgWAnn5u9gasRVtHi4T4BJaP2ITHOdXXr89KjWmxb8FR8hjosfnJEhLiE9DQ1GDLlH1c3Hs9A+XI960c8teODI1SUg5D7iqIr2o5sous7K2+e/cuDRs2lH3+3hvt6OjI1q1b00yfK1cuPn2SNrSdO3dO5lvGxsayHu//J/5L3p0da+7lBAYG37w78oNceOTbjxgb500lVRLGJnmpVr04c2YeSXEuTx4d9h4cJfPu5UtP43H3VcpMfhJ9k+9eLv83Fhn+DmOz9DUEdBreVOrlR+9mjqbvnhKmwFPMDRWmMTI3TOlBYfKeYlvLhhb9G+JsP1Hp9YuUK8RfV2aSS1ebmA+fmdF5Mf5P5Ud1ZpVfGFkoKEcyL903/4jU954u+8H39nBx77UU+ibtHIW2rjZvg6OY0GwmVZpWoEJ9+XW/M1Nfeu6LoZkBevly022CA1un7mXjxF3Yt6jE9IOujGs0gwf/Sjttzu++QsirMCJDoihSrhAD5vSiWIUiTGw+U6H+9JCR700dEN6tPvyXvDutereBfm60NDV4m2zAU2TUR4wNFddf73j40qZZBa7efI73i1BKlTCnVZPyaGtrYqCfm7ffRtnm0cvFga3O5NLWJD4hkWVrznLX0y/Ne5EVxAR8wGvmPRK+JqCpq0mxUWXJXSB7l13RN5E+u6KS+WJU6DuMmqSv3p3dSNs3NImMkH9Hiop4j5Gp4sZ9K2sT+ru0YFyfdSTEJ6R5DZvyBSlqY8GyqWl3KEHOeneDbrUoaVeM4dUUv4MEPHtNiG8YA+f0ZJnTej5/jKXTmDaYWBphbKlYW0b4FX3wV9QMwruzinS3Bm/ZsuWnLmRsbMyiRYuYNWsWJ0+e5MqVK/j6+hITE4OpqSm9evWiefPmlCtXLt159urVC2tra27dukWtWrWoWbMmZcqUYd68eXz69In169eneNFIzty5c5kxY4ZcmEWVZlhWVbzGVmahIZEwZ0BL1h6/iX9YVJZeKznJ/5YkEgWB39CQSEhMTGTe1MN8+ih9sVm37AxT53Vh5cJTfImV9tbHfIrFufc6dHPnonLVogz9rRnBryN54JE5LxuJyQRKJOnb2KZ+B3t6j2vNDMe1RL+Rb2yP+RDL8EZzyJ1Hh0p1SzF4RmeC/d7w8HrOjCr/o3EjSpua0m3vvrQjZxHJ76nk2/efenz5z9+nhf6YJub9Z5zsxpM7ry6VG5XHaVFfgl+G8eByxjbLyQqNadGgWy0a96rD3N4r8H0cQIlKRXBe4khE8FvObv83/eLT0KW8HCnLrSgftSALRTVo0CDDG6gC1KlThzFjxlC7dm1u377Nvn3Svzdvb28KFkzf6Nxfif+Sd0+fPp0//vgjI8X8JVD1mfGd5i0q8OHDZ65d8Upx7tOnWIYO3Eju3LmoXKUITsObEBwUyX0lG3z/FArLkHayBh2r0ntcW2b0WZ3Cy39aUopnK8qfYSm+iKR8cufVZeLWESxz2sC7COU6A72CcLafQB7DPNTtUI1xm4fh2nhGisZyhZfMDL9Io9xS36vL3F5/4fs4UOp7S/sRERTJ2e2X5dLOd1zJm8AIWg5uwpR9Y7i092qW61MQRe6+aGhI87xx9C6Hlp0A4MV9X8rWLEWboU1lDeWnNp6Xpfd9HMBrnxBW351PicpFeX7v5zqNMvo3m2MI71Yb/kveXbhkE4qUSseyBgoqsMnrh9/Ztu8GxkZ5WLOoF0gkREZ95PT5R/TsXJ2EHwanfYr5wqDR28itmwu7ioUZNrAhQSHReD7KnH0wVEHHUo/SM+2J/xRH1J1w/DZ4UXJSxWxvLAdFzy4FgWqG4vphyngaGhImLOjGzlXneO2XvoFpzTvZ88o7BO+Hqs02yG7vzl/QhGHL+jOx+axUl7iJj4vnz86LGbvRmcNvtxIfF4/HuYfcPumhMP7P8sv5IL+gZuHdWUK2b+apq6srmzaWGdSpU0e2ODyAra0t27enbydigEmTJqVYH6ee67pM0aYMPd1clC1iQalCZkzoJu2l0ZBI0NCQcHvlaIavOMQdr8w16XdRn4iPS8A42ehxQ6M8RL5VvCzJ24gPvAl/L2skB/D3fYOGhgRTM32CAqQbcCUmQlBgJAAvfUIpXNSU7v3q/HRD+bu3H4iPi8c4v/yIMwPTfCnWmExOvfZV+G1JH+YM3oCngpHiiYmJBPuGSzU/DqSQjSXdRrXIkYby6Y0a0qR4cbrv3UfIhw9pJ8hkot+8k97nZL2lhmb6RCXruf7O25BojC0MUsSP+xrHux969RMTE2Ublr2470fhMgXoMdFB5YbyrNSYFoPn92Lf/KNc2icdQe77KACzwvnpPsFB5Yby6DfvUymHgZJyRGFsYZQivrQcmdtolBlk9/pnqrBy5UqGDRvGgQMHWLNmjWy9zVOnTtGiRdZ2kP7K/Are/f84mhwgOvqbdycbPW5opEdkZOpLin2neeuKnDvzkLi4lKOmEhMh6Num2C+eh1LY2pQevWtlekP5uwiplxslGz1uaJovxSjz5NRzsOe3ZY7MGbiOe/9m3mbb7757SrLR44ZmBilGmX9H0agio/wGMk+xLlsQi6Jm/HlknOy85FuD7amYXQwoO4bgl1I/jPsaL/NGH/eX2NgXp8PIlvw1bKMsbVb5RWRIynIYmhnIjVQbvKAP++Yf+cH3/DGzNqX7xA6yhvLv+hLiE3h6y4ent3zY6rWcCvVts1Rfeu5L9Jv3xH2Nw++p/Lu0/7NAytUurVAbgI/HS75+iaNAScsMN5Rn5HtTB4R3///xK3h36+6rlKaJfhdDXHwCxkby9VcjAz0ioxQvxfXlSxzzl59m0aozGBvqERH5kbbNK/LxUyzRP+xBkJgIr4OjAHj+KgzrQib06lI9RxrKNbQ00P22mWeeovn49Oo94WdeU7i/4qXAsoJ3EdJnl5G5fN3JwEyfSAUbh6sD0vaNeIxN88mFGxjnJUpBXS93Hh1syhekeBlLhk2W7lkl0ZCgoaHB8QczmTx4C/dvJc2K19HVpn7LCuxYcS7dmnLKu0tWKYaRuSGr786XndfU0qR8vTK0H96CVro9SUhIwMfjJU5249DT10M7lxbRb96x/MYcfNzll+f9GX5FH/wVNYPw7qwi2xvK1Q1FU7WzY9mVj59j6TJT/sWiS72KVC1ViPEbjvP6Teb/McbFJeDzLBi7asW4dilpZJldtWLc+DflSDOAx/cDqNvYFt3c2nz+tiZXwcLGxMcn8EaJYUokErmdojOs+Ws8Pg/8qVy/DNdPJa0XZVevDDfc7qearn4He1yW9mG+82bunEvf7tQSCWjnyv4/iemNGtGsRAl67d9PYA5NQYn7Go+3+0vsmlTg2pE7snC7JhW4fkzxNPenN72p0aaKXFiVphXwvvuS+Lj41C+WwfucrRqToaunQ0Ky3tSE+ATZiDVViPsaJy1H0wpcO5K0dqS0HHcUppGWQ37D3SrNKqpcjmxDjQ27cOHCsjU2f2Tp0qU5oEaQUf5fl1lRRFxcAt7ewVSxLyo3KryKfVGuX/VWkhIqVipMwYLG/HEidb/8EYkEtLUz3wfjvsbjc9+fyg1suX7SUxZeuUEZbp5KXVuDjlVx+cuReUM2cvus6kt2panJ4xV2Tcpz7egPntK4PDf+UewpT276UKO1/Aaqdk0r4O0ufRYHPAtiSCVXufP9ZnQjd77crBkj3RAqNSQSiWzt0CSNWeMXT254U6VJBdlIa4AqTSvy5HrS70tXT0du5CWk9D2F+iQSCpS05NQmxeu+Zoa+9NyXuK9xeN15QSEb+TWMC5S0ItQv9e+hSNlCaOfS4m1wZKpx0iIj35taILxbkMVkpN4dF5eA9/MQ7Ctbc+Vm0mAm+0rWXL31XGna+PgEwr81ljaqV5obd14oHXwpgUypv2YWCQo6uLOSuK/x+Nzzxa5ROa7/4y4Lt2tYjhsnsmbE8c8S9zUenydBVK5VguvnkwZh2dUqwY0LKQdlffoQi1O7v+TC2vSoTsXqxZn9225CXr+VO1e3RXm0c2ly4Z97KmjKGe++d/4hg8vLd0S5bh5GwLMg9i04QkKC/O/p+8bVBUpYYGNfnG3T9qa7jGnxK/rgr6gZEN6dRaR7M89fEUdHRxo1UrxDc1aQW0cbm4L5sSmYH4ACJvrYFMyPhZG0h3NE+9r86dgckPZgvwiKkDsi33/iy9c4XgRF8DnZBiSZxcHdN2jR3o7mbStRqIgpTi7NMLMw4PghqRkOGNaIcX+0l8W/4PaQ99GfcJ3WnsJFTSlfuTCDRzXF7R9P2bIr3R1rY1etGBZWhhSyNqFTzxo0aVWB86czp1J7eO15mveqTbMeNSlU0oIhf3Ymf0EjTm67AkC/ye0ZuyJpql/9Dva4rujHhj8O8uzuK4zy62OUXx+9fEmbM3Ud1ZzK9UpjYW1KwRLmdBjamMZdanDhYOqb3mQFMxo3wqFMaVxOnuTDly+Y6ulhqqeHjlb2N9gfXHaClgMb0bx/AwqXLoDT4r6YFTbl+LqzAAyY3YPxW4fL4h9fdxYza1OGLupD4dIFaN6/AS0GNOLvJUlr13ef4IBdk/JYFDWjUCkrOv3WmqZ96nF+91W10ailrUnxitYUr2iNdi4tTAsYUbyiNVbFzWVxbh53p+ekDlRrVRlz6/zUdqhKJ5fWcg32KpVj6XFaDmxM8/4NpeVY4igtx1rppkgD5vRk/NYRSeVY+60cix2/laOhtByLj/1QDi2KVyxC8YpFvpXDhOIVi2BV3CJDGn8GSWKiSkd20qBBA7Zv305MTEy2XleQfrLbu38FDu6/Rcs2lWjRqiKFrU1wHtEEMzMD/jkqrbj+j727DotibcMAfi/d3a0oCgYqGFiAhYrYYqCCjd3dcez87MRjYcuxG2yPiS0YgCAgiJQoue/3B4eFdZdYZGFXnt917XXOzrwz+8w67D35zpDhLpg+y0Nguvbu9fDm1WeEh8ULjOvr1RQNHKvA2FgL5ha66OHZCG3d6uDq5ZKdXBbVya1X0L5/c7Tr1yw3y5d4wsBUB+f25l6dPGhON0zZPIjX3qV7Q0zZPBg75x3D28cfoW2gAW0DDaioK5dZTSfWn0P7wa3g5uMC85om8F39X6bsyL1ybPCSPpjqN4rX/tyOKzC01MOIVQNgXtMEbj4uaD/IFcfX5u4EZGVkIfxVFN/re/IP/Ez9ifBXUcjOyt3ZHbS4D2o3qwlDS31Y1TaHz6LeqOtsh+tCslEceXHqf+fg0M4evad1gXkNE/Se1gUN2tTByQ35O9/3zzxGv1nd0ahjg/9yrxF6TPTg7TwqqShi8F99cf/MI3Qc0hoD5vfC3KOTYGSlDyVVJbHXV9z3AgDHVp+Gc++m6DC0NUysjdBldHs4eTjg9NZLAADjqoboP7cnbByqwtBSH4061Mfco5Pw7slHvLoj/AKSkipJfZKGspv8DnFm99GAR3BvWxcd29SGpZkORg91hYG+Bk7/d6J12MAWmDWxI6+9mYk22rrYwdRYCzWrG2He1E6oYqGHnftu8dp49WwMx3qWMDbUhIWZDjy7OMKtVS1cCSpd15C/4/Oxj/gekoSM+HT8jPyOz8fDkPomCTpOBuVey8mNF9HexxntBraEeQ0TjFjRDwbmuji3K/fk56CFvTB153C+aarWtUDVuhZQVlOCpp46qta1gEVNE954OXlZXht5BTnommijal0LmFQtm+U7tfc23Ho6ol13B5hX1cfw6R2hb6yJ80dy88pnYjtMXtYTQO6dzhHvv/C9kr6lITMzCxHvvwg8rNOthyPuXXuD1GTRfnsqIrt/fk9H+KtIvld6WgZSvqUi/FX+XRItezZBXWc7GFUxgFNnRyy/PBd3Ax4IPEz0d0ljDkpjzZTd4vFHX1FuYmICGZnyOxdgZ2GInZN68d5P7uUCADh97xUW7LsMPU1VGOmoFzJ1+bhx9TU0NFXgNaQldPTUEPEhDnMmHkJcbO4V7Dp6ajAocLtV+s8szBhzAKOndMCmv4chNfkHblx9jb3bAnltlJQVMHZaB+gZaCAjIxuREV+xYt4p3LhaNhsaN/95DHVtVfSb5A4dQw2Ev43BvH6bEReVe8ZXx0ATBqY6vPYdB7SAnLwsxqzoizEr+vKGXzl8D2vH517Fr6SiiNEr+kLPWAuZ6VmIfB+LVaP9cPOfxyhP/evVAwD49/bkGz7t4kWceFW+G2o3jt6Dho46+s/pAR1jbYS/jMTsTssR9yn3yitdYy0YmOvy2seGx2NOp+XwXeONzqPckBCdiC0T/HD7ZP7JBiVVRYzbNAR6ZrrI+JmJyLefsXzgJtw4ek9iatQ10cG2Jyt57z2ndIbnlM54FvQKU1ovAgBsGucHn0W9MW7TEGgZaCIh+hvO7biKA4uPl3I57kJDVw395/bMXw73pfnLYaQNAwu9AssRhznuy+C7tsByjN+D2yf/LbAc2tj2dJXw5Wi1oFR1llr5XgAjEgcHB0ybNg1jx46Fp6cnhgwZgiZNmlR0WaSA8s5uaRB0/Q00NFTQ37s5dHTVEB4Wj1nTDyPuS+5dSDq6/NkN5D6os4VzTWz5n/CNeyVleYyb1B76+uq52f0pAcuX/IOg62XXvUlBNwMeQUNbFV5T3KFtqImIt9GY23djfpYbasLArECWe7fMzfJVXhizyos3/Ir/XawZu7dMarpx7B40dNXgNbsHdIy1EPEqEnM88jNFx1gbBuYFf4vjMdtjBXzXDITHyHb4Fp2ILRP34vYp0U6yaxtqYtre0dAx1sKP5B/4+OITZrsvw5NrghcYiCMvXt8LxV9918NncR94L+qDmA+x+KvPOrx9kH915qZxu+GzuA/GbR5aIPeu4MCi3NzLyeHCvIYpajauDnA48JrdAxwOB1Gh0Vjvu0Ps9RX3vQDAnYAH2DByB/rO6IbRGwYjKiQaC3uuxqs7ud3xZWdmo36rOug2riOU1JQQH5mAB+efYP/CYwJX3omqJPVJHMpu8hvEmd2Bt0OgqaGMgX2aQldHFWERXzF94Ql8+a/rLl0dNRjo5+9jy8pw0LurI8zNdJCdzcXTF58wetpBxBa4G1pJSR4TR7aFvq4aMjKz8SnqG5asOYfA2793kqw0slOyEL7jLbKSMiGrLAdlc1VUm1IHGrV1ip+4jN048S/UddTgNaMLdIy0EPE6CnO6r0FcZG5/3jpGWtA30+WbZuu9Jbz/t2lQBa16N0VsRDy87SYDAHSNtfna9JrQEb0mdMSzm28wrcOy36755sUXUNdSQb+RraCjr47wd18wb8TfiItOyq1ZTx0GpXhQpamlLmo7WGHWkD0iT1tR2V0SOsbaGLHGG9qGWvgWk4gr+2/g4OITIi9jcaQxB6WxZspu8eAwie6ZvmI0GCn5twIIo/dY8voqLo5sRExFlyCy0GnCn6AtyapO+7f4RqRsMAlOq0Jc4R4r0/m1biXaRu+16zPL9POLk5OTg7Nnz8LPzw/nz59HtWrVMHjwYAwYMACGhobFz4CQMtSm5V8VXYLI5F6XzYO6yxM3WTL7Vy0Ky5HArrWIxKDspuz+Ezh7rCq+kQQymV3+z7T6Xd9ap1d0CSKTsZTsB/4Jk/1W+tYNUn4ou6Uju6X+kq2oqCjMnj0brq6usLW1hZ2dHVxdXTF79mxERYn2ZGJCCCFlgIn4KmeysrLo0qULAgIC8PnzZ/Tr1w9z586Fubk5unbtiuvXhfetS8oOZTchhEgYym5SDMpuQgiRMJTdYiHVB8pv374NW1tbnDp1Cvb29hg4cCD69+8Pe3t7BAQEwM7ODnfu3KnoMgkhpHJhTLRXBXnw4AHmzZuH1atXw8DAADNnzoSBgQE8PDwwZcqU4mdASoWymxBCJBBlNykCZTchhEggym6xkOo+yidOnIihQ4cW+tTUiRMnYsKECXj4UIKfUksIIX8YjgR36BUXF4f9+/fDz88P7969g4eHBw4fPgw3NzdwOBwAgKenJ7p27YrVq1dXcLV/JspuQgiRPJTdpCiU3YQQInkou8VDqg+Uv3z5EgcOHCh0/IgRI7Bt27ZyrIgQQkhFnq0ujpmZGaytrTF48GD4+PhAX19foE2jRo3QsGHDCqiucqDsJoQQCUTZTYpA2U0IIRKIslsspPpAubGxMe7evYsaNWoIHX/v3j0YGxuXc1WEEFK5cXIkN7CvXr0KBwcHqKqqAgAiIiJw6tQp2Nraws3NDQCgoaGBwMDAiizzj0bZTQghkoeymxSFspsQQiQPZbd4SPWB8ilTpsDX1xePHz9G27ZtYWhoCA6Hg9jYWFy5cgW7du3C+vXrK7pMQgipXCQ3r7FkyRJ0794dvr6+SEpKQqNGjaCgoICvX79i7dq1GDlyZEWX+Mej7CaEEAlE2U2KQNlNCCESiLJbLKT6QPmoUaOgq6uLdevWYfv27cjJyQGQ+2RVBwcH7Nu3D56enhVcJSGEVC4cCb4F7MmTJ7z+NY8fPw4jIyM8ffoUJ06cwLx58yQ6sP8UlN2EECJ5KLtJUSi7CSFE8lB2i4dUHygHgN69e6N3797IysrC169fAQB6enqQl5ev4MoIIaSSkuDA/vHjB9TV1QEAly9fRvfu3SEjI4MmTZogIiKigqurPCi7CSFEwlB2k2JQdhNCiISh7BYLmYouoKzIy8vD2NgYxsbGFNaEEFKRuCK+ylG1atUQEBCAyMhIXLp0Ce3atQOQ+1RuDQ2N8i2GUHYTQoikoOwmJUTZTQghEoKyWyz+mAPlhBBCJAOHMZFe5WnevHmYMmUKrKys0LhxYzg5OQHIPctdv379cq2FEEIIkRSU3YQQQoh0oewWD6nveoUQQoiEkeBbwHr27InmzZsjJiYG9vb2vOGtW7dGt27dKrAyQgghpAJRdhNCCCHShbJbLOhAuRBLpu2u6BJKZeL+IRVdgshMbitWdAkis9kYWdEliIyroFDRJZQKNzOzoksgpSHBgQ0ARkZGMDIy4hvWqFGjCqqGlBVurE1Fl1Aq7/sMr+gSRGZ2Vfq+a/Unnyu6BJFxY+MquoRSoeyWUpTdpALUW/SkoksolVvbpG/dM7BOqOgSRMYiYyu6BJFxZGUruoRSYf89oJdIGcpusaAD5YQQQspWOfd/RgghhJDfRNlNCCGESBfKbrGgA+WEEELKVHn3f0YIIYSQ30PZTQghhEgXym7xoAPlhBBCyhYFNiGEECJdKLsJIYQQ6ULZLRZ0oJwQQkjZosAmhBBCpAtlNyGEECJdKLvFgg6UE0IIKVs5FNiEEEKIVKHsJoQQQqQLZbdY0IFyQgghZYr6SiOEEEKkC2U3IYQQIl0ou8WDDpQTQggpWxTYhBBCiHSh7CaEEEKkC2W3WNCBckIIIWWLS4FNCCGESBXKbkIIIUS6UHaLBR0oJ4QQUrbozDYhhBAiXSi7CSGEEOlC2S0WMhVdwO+oU6cOFi9ejMjIyIouhRBCSB7GRHuRSoWymxBCJBBlNykCZTchhEggym6xkOoD5a9evcKGDRtQpUoVtG/fHidOnEB2dnZFl0UIIZUbBTYpAmU3IYRIIMpuUgTKbkIIkUCU3WIh9V2vPH/+HA8ePMCePXvQp08faGtrY+DAgRgyZAhsbW3LrY47Z3Nw5ywX3+Jy3xtZcODmJQPbhoWfi8jOZLh0iIvH17lISQS09IC2fWTR2K38zl84WphiSFNH1DY2gIG6GkYdOY1rIR+KnMajdk0MbeoIS10tpKZn4taHcKy8chNJP9PFVmcXj/ro3asRdHXUEB7xFZu2XsOLl1GFtm/Tyg59ejWGqak20tIy8OBRGLbtuI6UVMEaXV1sMW9WZ9y+G4q5C06VWc3u/Zuh5whX6BhoICI0FtsXBeDVw49C29ZyrIJBMzxgbm0ARWV5xH1OxPlD9xCw+4bQ9s4e9TFj40DcvfwCi4fvKXWNnYa3Rq+J7tAx0kTE68/YNu0AXt4JLbR9neY1MWJFP1jamSIhJgnH1p7DuV3X+dp0G+MG92GtYWCui5SEVNw69RB75h5FVkYWAEBZTQne83ugaWdHaOlr4MOzCGydsh+hj8NKvRwevu3Qa4oHdI21EP4qClsn/Y2Xt98W2r5uS1uMWD0QVrXMkBCdiKOrT+Ps9qu88c27NULfGV1hUs0IsvKyiH4Xi+PrzuLqgVulr3FkO/Sa0iW/xol+xdRohxFrvPNrXPUPzm6/whtvaWcG74W9Ud2hKoysDLBloh9ObTjPN48B83th4HxPvmHfYpPQ22RYqZejRKivNFIMScnuX+04AKzbycGAngyzxgpvE5cArNwMvAoFIqKA/j1QaFtxGNWgEdyq2sBaSwfp2dl4EvsZy+/fxMekxEKn0VdRxZymLqitb4gqWtrY+/wJFt0JLL+ii2FvZ4Z+XRqihrUh9HTUMHN5AG49eF8htUhHdrdBr0nu0DHSys3uqfvx8k5Ioe3rtKiJESv652f3mrM4t+saXxtVTRX4LPREsy6OUNdWRWx4PHZMP4iHl54BAGRkZTBgbg+06tMU2oZa+BabhCv7b+LQsgCwUu54VUQulmc9ANC8e2P4LOoDY2tDxHz4Ar85/rgT8ECkz526ZzTa+bjwTfPmfuHbaqVG2U2KISnZ/elyPD5djcfP+EwAgJqZMqp1N4J+fU2h7WMfJCLyylekhP8EN5ub276nMfTtNcqtZgBoUN0UA9s5wtbCAPpaapi05TSCnhW+313P2gTjureAlZE2lBTkEfMtBSdvPsfBa0/FWmen3o3Q06cFdPTUEPEhDttWnserJxFC29Z1rIKVe4YIDB/aeT2iwr8CANr3cEQbj3qwrGYIAHj/Ohp+/7uM0Jefy67mIS7oOdYNOoZaiHgbjW2zDuPVvXdC2+oYamLYEk9Ut7eEibUB/tl+DdtnHeFrs/LMVNRtXkNg2geXn2Ne7/+VqkYP37boNckDOsZaiHgdha2T9uHlncIzpk4LW/iuHgBLu/8yZs0ZnNtxVWhbF08nzDo4Hnf/eYgFPdfkz6N5TfSa7IHqDapA10QHC3qsxt3Tj0pecwXk4v6Pm2FkZSAw79NbLmLjmN0Sm9XNuzWC+/C2qO5QFZp6GvCtPxUfnoXzzcO4qmGhdZYaZbdYSPUV5QAgJyeHrl274vTp04iMjMTEiRNx+vRp1K5dG02bNsWePaXfERGFph4HnQbLYtL/5DDpf3KoXo+D3QtzEBNe+Ir799IcvAtm6D1BFrN2ymHADFkYmJdLuTwqCvII+RKPRRdKtsPsYG6CFV3dcDz4JTpt3YcJx8+ijokhlni0FVuNrs41Mdq3NQ4cuodhI/fi+YsorPirFwz01YW2r13LFDOmuuP8pecYNHw3FiwJQM0aRpgyqYNAW0MDDYwc5opnL8r2NsKWnephxLyuOLzpCsZ0XI1XDz9i8d7h0DfREto+/Wcmzuy7hamemzC8zXL4b7wC78kd0KGvk0BbA1NtDJ3VGS/+LfqERnGcezaG76r+8F/xD0Y1mYuXd0OwJGAq9M11hbY3tNTHkoApeHk3BKOazMXhlacxcs0ANO/qyGvj2qcpBi/2xMGlpzCs3nSs9d0F556NMXhx/sHaiVuHoEGr2lg5eBt8HWfi8dUXWH5uBnRNtEu3HJ5OGLnOG/7LTmGkwwy8vP0WS8/NLHQ5jKz0seRsbruRDjPgvzwAo9YPQvPujXhtUr59x6FlpzC+2VyMqDcNl/YGYcrukXBsZ1/KGpti5LpB8F96AiMbTMPL22+w9Pxs6JvrFVKjAZacm4mXt99gZINp8F92EqM2DEbz7o15bRRVFBETFofdMw8iIabwA2RhLz/B03gY7zW87uRSLYNIGFe0F6l0JCW7C3rxBjh6BqhhXfQGZ1YmoKMFjOgP1LQun9oKamxijv0vnqLbiYMYcOYYZGVksM+jF5Tl5AudRlFWFt/Sf2Dzk/t48zWuHKstGWVFebwPj8PandeKbyxG0pHdTeC7ekBudjeejZd33mLJP9MKz24rfSwJmIqXd95iVOPZOLzyH4xcOxDNuzbktZGTl8WyczNgaKmHJf3+hyF1p2L9qF1IiM7Plt5TPOA+tDU2T/gbw+pNxa5Z/ug50R1dRrUr3XJUYC6WVz22TWww5/BEXD1wA771puDqgRuYc2QiajaqJvLnPrjwlC/LZ7svE2n5SoSymxRDUrJbSVceNfqaoulfNdH0r5rQraWGJ6s/IjXyp9D2iW++Q7eOOhxnWKPp0prQtVPDk5UfkBL2o1zq5dWtII/QqHisOFyy/e6fmVk4EhSMoauPoceCv7H7/L8Y1aUZureoI7YaW7rVxohpHXF4ZxBGe27ByycRWLJlIPSNhJ+EyDPEYx36ui7nvaI/JfDG1XWsgqALzzF9yG5M7L8dcTFJWLrNB7oGwvflRa65W0OMWNoHh9ecx2jnRXh5LxRLjo6HvpmO0PbyCnJI/poK/zXn8LGQC+8WDdiCvjUm8V4jnOYhJzsHtwJKfpC5IOdeTvBd441Dy09hZMMZeHH7Lf46O6PI/dW/zkzHi9tvMbLhDPivCMCodT5o3q2RQFsDCz0MW9EfL269ERinpKqEj88jsGm8n+g1V1Aujmk0ky/vprVdBAC4ceyeRGe1kqoSXt0Nwe6ZB4XWoqSiiOWX5pTgmxcRZbdYSPWBcg6Hw/feyMgIM2fORGhoKK5duwZra2uMGzeuXGqp3UQGdo1kYGDGgYEZB+4+slBUAiLeCt/hfvOIi/cvGIYtlkWNBjLQMeLAsoYMqtiV7z/JzffhWB94F1feluzKLXszY3xOSsH+B8GISkrB48hoHHn8ArWNxXB27D+9ejTE+YvPcf7ic3yKTMDmbdcQF5+Kzh71hba3szVF7JdknAx4jNjYZLx89RlnzgWjho0RXzsZGQ5mz/DA3v23EROTVKY1dxvqgstH/8WlI/8i8kMcti8KQHxMEtz7NxPa/sOrz7hx+ik+vYtFXFQiAgMe4/HNENRqWFWg5mnr+2P/uouIjUwQOq+S6j6uAy7tvYGLe28gMiQa26YeRHxUAjoNay20fadhrRAX+RXbph5EZEg0Lu69gct/30CPCR15bewaV8Ore+8QeOQevnz6iifXXiLo6D3YNKgCAFBQkkfzrg2xa/ZhvLwTguiPcTjw1ynEhscX+rnF6THBHRf3XMeF3dfx6e1nbJ30N+IjE+DhK3znvdOItoj/lICtk/7Gp7efcWH3dVzyC0SvSR68Ns9vvMadgIf49PYzYj5+wamNF/Dx+SfUaiZ4ZUGJapzYib/GiXsRH/kVHiMLqdG3LeI/fcXWiXsL1HgdvSZ35rUJffQBO6ftR9CRu7yr9YXhZnOR+CWJ90r+mlKqZRAJ3QJGiiBJ2Z0n7QcwdQmwaCqgUcx+m6kxMGsc0LU9oKZWPvUV5H32BI6HvMK7xAS8SYjH1OsXYaaugTr6hedwVGoKFt4OxMmQ10jNzCzHakvm/tMw7PS/g5v/Cr/6q7xIT3YH4aJf0H/ZfSA3u4e3Edq+09DWiItMwLapB3Kz2y/ov+x257Vx83aBuo4aFvZah9f3QhH36Ste3Q3FxxefeG1sG1fHvbOP8eBiML5EfMXtUw/w5OoLVHeoKuxji1WRuVhe9XQf747HV57j8PIARIZE4/DyADy99hLdx+d/9yX93KyMLL4sT038LtLylQhlNymCJGW3gYMW9OtrQtVECaomSrDpYwo5JRkkv0sT2t7W2xxVOxtB01oVqsZKsOlrClVjRcQ9SS6XevPcfRWOLf/cxfWnJdvvDomMx6WHIfgYk4CYhBSc//ct7r0OR/1qpmKrsfvAZrh06jEunnyMyLB4bF95HvGxyejkKXiAtqCkb2lITPjOe3ELXOW6cuYxnD3yAB9DYhEV/hUbFgaAI8NBvcZlc7VB91FtcenAbVzcfwuRoTHYPusI4j8notNgF6Htv0QmYNvMw7h25B5+pAg/ufI9KQ2JcSm8V30XO6T/yMTNf0p3oLzHBHdc9AvExT2BiHwbjW2T9+Xur44QfrGh+/C2iPuUgG2T9yHybTQu7gnEpb2B6DmpE187GRkOZuwbg/2LjiMmTPBCiIeXgrF3/lHcCXgoes0VlIvJX1P48q5JJwd8fh+L5zdeS3RWXz1wEwcWH8eTqy+E1lKrWQ0YCrlS/rdRdouFVB8oL+pWTxcXF+zfvx/R0dHlWFEubg7DkyAuMjIAK1uO0Dav7jOYV+fg+jEuFnhlYemQLPyzMweZGZK98j6NjIaRhhpaVrMCAOiqqsDNrjpuvCt9txlFkZOTgU11Izx6wj//R4/DUNtO+EbCq9efoa+njsb/7ahqa6nAuUUN3P/lKq6BXs2QlPwD5y8+L9ua5WVRvbYZntzivw36ya0Q2DlYlWge1rVMYetghRf/8m9I9RvvhuRv33H56L+/X2N9Kzy+xv9D/vjaS9g1qS50GtvG1fD42ku+YY+uvoBNgyqQlZMFALy8G4rq9a1QwzH3uzey0kdDN3v8ezEYACArJwtZOVlkpvPvwGakZ6JWU5tSLYeNQ1U8vsL/b/j4yjPUchI+P9smNnh85Rn/clx+BhvHqrzl+FX9VrVhVsNY6Jn64muUy63xMv9nPr7yHLWchB94z62Rf5keXSq6xsKYVDfC4ajt2PdhM2YdmgCjKmII6F9xmWgvUqlIYnYvXg84OwFNHYttKnHUFRQBAEkZ4uv+rDKQmuxuUAWPf9kJe3z1ReHZ3aS6QPtHV57DxiE/u5t0aoA3/77DmA0+OByxBdsfL0efaZ0hI5O/DfvybgjqudaCabXciw6q1rFAraY18PC/fBdtOSo2F8urHjsnYdsbwbBrWkPkz7V3qYWjsbvg93YDJu4YAS19MXQZQdlNiiCJ2Q0AjMsQc/cbsjO40LJRLfE02T9zIK/6e78d5a2GuT7qVjXB49DCux/9HXJysqhua4Ind/kz7Mm997CtZ1HktJuPjsaha9OxbOcg1G1Ypci2ikrykJOTRWqy8IPUItUsL4vq9Szx5Por/poDX8G2Udnd9uc2oDlunHyAjB+iX2yQl91Pft1fvfocdoXsr9o1qY7HV39pf/k5bBz4M89rTg8kx6fgol/ZdqdXUbkorI7WXi1wye+6VGR1UeQV5cVzoJqyWyykuo9yb29vKCsrF9lGQ6PoDcmMjAxkZGTwDcvK4EJeUfRzCNFhDBsmZiM7E1BQBgbPlYWRpfAD5QkxDGGvGOQVgEHzZJGWDBzflIMfqQx9J0nuP8vTqBhMOXUR63u4Q0FOFvKysrgW8gGLL4qnr1NNDRXIysogMZH/1rjExDRoawvfGHr1+jP+WnEW82Z3hoKCHOTkZHHn7jv8b3N+n1617UzRsX1dDB0p+m1IxdHQVoWsnCwS41P5hifFp0Jbr+j1cf+9+dDUUYOMnAwOrr+IS0fyd6rtHKrAzbMxRndc/fs16qlDVk4WSXH8VxcnfUmGtqHwW+u0DTWR9IX/youkuBTIyctBU08N32KTcePYfWjqqWPNtbngcHKD5cz2qzi6+iwA4Of3dLy+/w79ZnbFp5BoJH1JhounE2o2tMbn919EXg5NPY3c7/qXuhK/JEPbSEvoNDpGmngkpH3ucqjjW2wSAEBFQxmHI7dBXlEO3Bwu/jdmd6FniIuuUf2/GpN++cykImrUwiMh7X+tsThv/32Hld6bEBUaA21DTXjN7oENd/7C0NoTkfpNDFej5aGz1aQI4spu+QwuFEuR3eeuAa9DgWPbRZ5UIsxp5oIH0VEI/fa1okuRatKV3b9mcTHZLaR9wTwxrmKAei52uH74LuZ0XQnTakYYs94HsnKyOLg099ktR1efgaqmCnY9XwVuDhcysjLYO/8Ygo7eE3k5KjIXy7MebSOtIrdPSvq5Dy4+xY3j9xAXEQ+jKgbwWdQHK6/NL8WSFoOymxRBXNmdnZkDOQXRD1infvqJ+3NDwM3iQlZJFg0mV4WaWdH15Qk/F4ecDC6MnErX7WN5u7B8KLTVlCErK4PtZ+4j4M7L4icqBQ1tldzfpAT+fYTEhDTo6Am/he7b11SsXxiA968/Q15eDq086mH5zkGYNmQPXj4OFzrN4AntkBCXgqf3f68rMgDQ0FX7L7v592kT41OgY1B0dzElZdOgCqrYmWHd2L9LNb1G3v5qnJA8MNQSOo22oZD8+CW77ZraoP0gV4x0nFGquopSUbn4q6ZdG0JNSxWX9wZJfFYX5839d0hPy4CqpkqJpykRym6xkNwjsiXg5/f7BzmXLVuGhQsX8g3rN04fXhNEv+rSwAyYskUOP78zPL/NcGhNDsas5Ag9WM5lAIcD9J8uC2XV3PFdhwN7/8pBj9EMCorCD7BXNGs9Hcxp74LNN+/j9ocI6KurYlqbFljo3hqzz1wpfgalJHAVA6fw78fSQhdjR7XGvoN38fBRGHR11DBimAsmjXfDqrUXoKysgFkzOmH1+otIKeR2qzKpGfw1cziCw341pddGKKsqomZ9Swya3gnREV9x4/RTKKsqYup6L2yYeQQpicJvKyxVjezXGjlF/tgKjOLwD6/boib6TuuMTeP34u3DDzCxNsTI1f3xLTYJh5b/AwBYOXgbJm0fBv+PG5GTnYP3weEIPHIP1epZlelyFHXli+DqxBGYz8/UdPg2mAZlNSXUb1UHvqsHIuZjHJ7feF3KGgU/s+gahfzbCJlPUQpe6Rf+EnhzLxR/v9+Edt4uOLHubMlnJCou9X9GCieu7J43WQfzpwjv67EwMXHAso3ArtWAouJvl1XuFrVoDVtdffQ85V/RpfwxpDe7i2r/y4BfMo8jw0FSfAo2jNoFLpfh/dNw6Bpro+dEd96BcudeTdC6bzMs996MiNefYW1vCd9V/ZEQk1jqB11XRC6Wez0CbQSHFfe5N47e5f1/+KtIhD76gAPhWwutq9Qou0kRxJXdjYbXQhNf0fvcVjVRRNMVNZGdloPYB0l4viUCjedXL/ZgefSdb3h/PAb1p1SFombhz/aQJENWHYWKojzqVDXG2G7NERmfhEsPC3+A828Tsttd2E9hVPhX3kM7AeDN80joG2mip3czoQfKew5qDpcOdTFt8G5kZWaXYc2i7QuKov2A5gh7HYXQX+5wF5VgZqDoABMIh/z5KKspYcbeMVjvuxMpCamC05aRisrFPB0Gt8KDC0+REJMIXWPtCq1J1M/9VfLXFCz2XIPll+aWeJoSoewWC6k+UF4WZs6ciUmTJvENC4xuUqp5yclzoG8CABxY2ACfQhluBnDhOV7wLLmGDqCpC95BcgAwtOCAMSD5K6Avvq7HfsuI5o3wJDIau+89BgCExH3Fz8wsHBrUG+sD7yL+e9ntCAJAcsoP5ORwoaPDf/W4tpYKEgvZ6ezXpwlevvqMI8dyn1T8MSweP9MzsXFdf+zeexPaWqowNtLC0kU9eNPk/WBevTAVAwfvRPRv9FmekpiGnOwc6PxyW6ymnjqSvhYdZF+ivgEAwkNioKWnjv7j2+PG6acwttSFkbkuFuwaml/zf7dEn32/GsNaLUPMp5L3e5ryNRU52TkCV6BpGmggMU54H9a5Z1b522vpayA7Kxsp/1154D2/J67538HFvTdyl+NVFJRUFDF+82D4rzgNxhhiwuIwtd1fUFRRhKqGEr7FJmPW/tGIDY8vcf15kr+m5H7Xv5zN1TLQELj6Pc+32GTo/LocBvzLAeSGavSH3KvcPzyLgIWtKfrO6CrygfLk/75rwRoFr9DPrzEJOkbaAu1zayz9xlD6jwyEvfgE0+rGpZ5HiVBgEzETlt3yiQ1Ens+rECAhkYOew/M3dHNyOHj0jOHQKeDZFUBWQu/MXtC8FdpUsYbnqSOITRPjHSKVhHRltxZ/jfoaAleq5UkUcqfYr9n9LTYJOVk5fH3KfnobDV1jbcjJyyI7KwfDlvXDkVVncOPY/dxlfRUJAws99JnaWeQD5ZKUi+KsJzFW8GozLQNN3pVrpfncvM+Oi4gv+yyn7CZiJiy7Z74ZWkjrosnIyUDVSAkAoGmtipQPPxB+IR61hxXeRUjM3W94uT0C9SZUhV4dMXRfJCbRCbn7Zu+jE6CjoYIRnZqI5UB5SuKP3Iz55epxLR1VgavMi/L2eSRaudsLDO/h3Qx9hjhj5nA/hL0T/U5iYVISvufW/MvV41p66gJXmZeGorICnLs3xL6l/5R6Hil5+6u/ZLeWgWYR2S2YH9r6mrzstqxlBqMqBlgUMJU3Pm/74sLPgxhcaxJiPpb+O66oXCzIwEIP9dvUxcIeqyq0ptJmtTC/dgNTJii7xUKq+ygvjre3N1q1alVkG0VFRWhoaPC9StPtSmGys4SfZapiJ4Pkb0DGz/zxcZ8ZODKApvCH9koEJXk5cH85c5aTd0WSGD4vO5uL0HexcGxgxTfcoYEVXr7+LLxGRXmwX/pfytv544CDT5EJGDR8N4aO9OO97t5/h+BnERg60g9xvxmq2Vk5ePcyCvWb8/c51qC5DV4XcguaMBwOIK+Yey4r8kMcfNutwOiOq3mv+1df4fm99xjdcTXiRTywn52Vg3dPw9GgVW3+GlvVxuv7wh+m9ubf9wLtHVrXQeiTMORk5wDI3ZgQ/O654HA4AjcBZPzIwLfYZKhpqcChTR3cO/tEpGXIW47Qxx/RoE1d/uVoUxev7oUKX477oQLtHdrWReijj7zlEIqT+5R00WvMzq2xrbAahW/kCq2xnX3xNRZDXkEOFram+BaTWOp5lAg9VIT8htJmd2m6XXFyAP7xYzi5C7xX7RoMndrk/r+kHiRf2KI12letjn7/HEVUavk+jOxPJTXZ/SQMDVr/kt2t6xSe3fffoUFr/qs1HdrUQejj/Ox+fS8UxtaGfA/rM6tuhIToRGRnFcx3/p0xbg6Xt2Mu2nJITi6Ks57X90LhILC9YY/Xd0NK/bkAoK6jBn1z0e6eKRHKbvIbSpvdpel2RRjGAG5W4QeMou98w4utEbAfWwUGDcqmS46KwAEHCr/5XIbCZGfn4N2baNR3qsY3vH6TangT/KmQqQRZ1zTGt6/8B9Z7+jRHv+GumDPqb7x7XXZ92Wdn5eBdcATqu9rxDa/vYoc3D36/a5eWXR0hryCP60fvl3oevOxuw5/FDVrXwetC9ldfC8nuBm3rIvRxbsZEvo3G8HpTMNJxOu91/8xjPAt6jZGO0xEf+Xvd8VVULhbkNsgVSXHJ+PfckwqtqbRZXW4ou8Xijz5QbmJiAktLy3L5rHN+OfjwkotvsQzRYQzn9ubg/XMGh1a5X/HZPTk4uCr/9iIHVw5U1QH/NTmIjWD48IKLM7ty0Lgdp1y7XVGRl0dNQ33UNNQHAJhpaaCmoT6MNdQBAJNaNcOKLm689oGhH9G2ZjX0dagLMy1NNDA3wRw3Fzz7HIO4Mr6aPM+xEw/Rsb09OrjVgYW5Lkb5toKhgQbOnA0GAAwd3BIzp+Y/lfju/fdo0dwGnTvVg7GRJmrbmWLsqDZ48zYaCd++IysrB+HhX/le379n4MfPTISHf0V29u+flTu1KwhuvZugXa9GMLc2wPC5XaFvoo3zB3Nvn/WZ5o7Ja/rx2nca0AyNW9eCiZUeTKz00LZXI/QY5orrp3KfrJ2VkY2I0Fi+V1rKT/xIy0BEaCxvR1YUJ/93Ae0HuaDdwJYwr2GCESu9YGCui3O7rgEABi3yxNRdI3jtz+68DkMLPQxf0Q/mNUzQbmBLuPk448T687w2988/hfuw1nDu1QSGlvpo0Ko2vOf1xP1zT3gnKxza1IFj2zq88SsvzkLUu1hc3ndT5GUAgBPrz6HDkFZwG+QCi5qm8F0zEAYWeji7PbcroMF/9cW0vaPzl2P7FRhY6mHE6gGwqGkKt0EuaD+4FY6tPcNr02d6VzRoUwdGVQxgXsMEPSa4o+2Alrh26Hbpalx3Fh2GtIbbINfcGtd659a47XJujUv7YdreMfk1bvuvxjXe/9XomlvjmtO8NnLycrC2t4K1vRXkFeSgZ6oLa3srmFgb8doMXzUAdVvawcjKADUbVcPcY5OhoqGMy38HlWo5SowCm/yG8sxuVRXApir/S1kZ0NLM/X8AWLsDmP4X/3Rv3uW+fvwEEpNy//99eLmUjMUt26CbjS3GXz2HtMxM6CurQF9ZBYqy+SfypjVpgTWtO/BNZ6erDztdfajIy0NHWRl2uvqopi2Gg22loKwkj2pW+qhmlbstYmygiWpW+jDUUy/XOqQnu13Rztv5v+zun5vdO//L7sW9MXW3L6/92V3XYGihi+ErvHKz29sZbj4uOLH+XH6bHVehoaOGkWsGwLSaERq1r4c+07rgzPb8LvXun3+KPtO7olH7ejC01EPTzo7oPq4D7v7zSORlACouF8uznlP/OweHdvboPa0LzGuYoPe0LmjQpg5ObjhX4s9VUlXC8FUDYNvEBoaW+qjrbIfFp2cguZi7HEqFspv8hvLM7lD/z/j25jt+xGUg9dNPhB7+jG+vU2HSXAcAEOL/Gc83h/PaR9/5hhdbwlFzgBm0qqsiIykLGUlZyPrxeyfZRKWsKA8bM33YmOVmnameBmzM9GGknZt1Y7o2wyKf/P1uTxd7tKxbFeYGWjA30ELnpnYY0M4B5x+8FVuNJ/fdQfvuDmjXtQHMq+hj+NQOMDDWxLljDwEAg8a1xZS/8u/K7trfCU6utjCx0IWltQEGjWuLFm1r44x//oHlnoOaY+CYNlg7/yS+fE6Ctq4atHXVoKSsUDY1b7mC9gNaoJ1XM5jbGGP4X71hYKaDc35BuTXP644pWwfzTVO1tjmq1jaHkqoiNPXUUbW2OSxqCN6l4zagOe6ef4rU3+w+7cT6c2g/uBXcfFxgXtMEvqv/21/dkfsMtcFL+mCq3yhe+3M7rsDQUg8jVg2AeU0TuPm4oP0gVxxfm9t1ZlZGFsJfRfG9vif/wM/Unwh/FcXbvlBSVURVe0tUtc/92zSqYoCq9pYlOtlaUbkI5N7t7+bjiiv7boCbk39sRlKzGgDUtdVgbW8FSzszAIBZDRNY21vx3QXo5uNS7PcuMspusfiju15ZtmxZuX1WaiLDwZVcpCQCyiqAcRUORiyRRY0GuQfKU74xJMblt1dU5sB3mRxObsnB2nHZUFUH6rWUQQfv8j13UdvEEPu9e/Hez3JzAQCcDH6FmacvQ19NFcaa+Tuqp569hqqCvLWvXQABAABJREFUArwa1sP0di2Rmp6B+2GRWHWtdP1TlkTgjbfQ0FDGQK9m0NFRRXjEV8yYcwxf/usiRFdHDQYG+bfPXbryEioqCujW2QEjh7fC97R0PA3+hB27gsRW469ung2GupYq+o13g46+BsJDYzBv0A7Efc69klfHQAMGpvm3AcnIyMBnmjuMzHWQk81FzKcE+K08i/MHRX9IVkndOP4v1HXU4DWrK3SMtBDxKgpzuq5G3H+3gesYafGF6JeIeMzpuhojVnrBY0QbfItJwtbJ+3E7IH8n+dDyf8AY4DO/J3RNtJH8NQX3zwVj74JjvDaqmsoYtMgTeqY6SP2Whjv/PITf/GOlviLsxtF70NBRR/85PaBjrI3wl5GY3Wk54j7lnknXNdaCQYHliA2Px5xOy+G7xhudR7khIToRWyb44fbJB7w2SqqKGLdpCPTMdJHxMxORbz9j+cBNuFGKh5bl1ngXGrpq6D+3Z36N7kvzazTShoFF/q0kseFxmOO+DL5rC9Q4fg9un8x/QJyuiTa2PV3Fe+85pTM8p3TGs6BXmNJqAQBAz1QXsw6Nh4aeBpLjU/DmfijGOc3mfa7Y0BO1yW8oz+wuifiE3L7MC+o+NP+E9qsQ4OxVwMSI4doR8dczoHY9AMCRrn34hk+5dgHHQ14BAAxUVGGqxn9b+fne3rz/r2tghK42dohKSUbzAzvFW3AJ1LQ2wsbFvXnvxw12BQCcv/4SSzddLLc6pCO77/+X3d0KZPcq3u+6QHaHx2NO11UYsbI/PHzb4ltMIrZO2ofbAQ95beKjvmFWp+UYsXIAtj1ahq/RiQjYfBFHV+efQN4y8W94z++JMf8bBC19DSTEJOL87us4+NfJ0i1HBeViedbz+l4o/uq7Hj6L+8B7UR/EfIjFX33W4e2D9yX+XG4OF1VqW6DNAGeoaaniW0wingW+wl991uHQp22if/FFoewmv6E8szsjORvPN4cjIykL8iqyULdQhuPMatCrm5t7GYlZ+Pk1k9c+8upXsBzg9Z5IvN4TyRtu0lIHdUdZlVvddpaG2Dk5f797sqcLAOD03VdY8Pdl6Gmqwkgnf7+bw+FgTNdmMNXTRDaXi6j4JGw8eRsnbomh+4b/3Lz0EhpaKvAa4QptfXVEvP+CuaP3I+6/O6B09NVhUKALCjl5WQyb3B66BhrIzMhCxIc4zB21Dw9v518p7eHZGAoKcpi7th/fZx3Yeh0Htl7//ZpPPYSGjiq8pnlA21ATEW+iMbf3BsRF5naLpmOoCQMz/gPDW27N5/2/TX0rtOrVBF8+fYW3ff6DMU2tDVHbyQYzu6397RpvHLsHDV01eM3uAR1jLUS8isQcj/z9VR1jbRiYF8yYeMz2WAHfNQPhMbIdvkUnYsvEvbh96kFhHyGUjYM1Vl+bx3vvu3ogAODyvhtYPaToZ11UVC4CQIM2uRfVXdzDv35IalYDgFNnR0z1y784b87hiQCAfQuPYv/C3GMhZjXE0L8yZbdYcFhZPeWggkRFRWHr1q24e/cuYmNjweFwYGhoiKZNm2LkyJEwMzMTeZ7nw2oX30gCTdw/pKJLEJnJ7cziG0kYpdDYii5BZNwvYj4wKibcTOlbP8Ckr5+wK9xjxTcSQXu94SK1v/h1R5l+PpF84shubqxN8Y0kUNWTov29SAKzqxVdgejUnwjvrk2ScWPjim8kgaQyu6UQZTcpb+LI7vFP+4qhUvG7ta1RRZcgMoN7JX8mhsSIlML97u/S+dwYllO+d1hUVpTd0kGqryi/ffs2OnToAHNzc7Rr1w7t2rUDYwxxcXEICAjAxo0bceHCBTRr1qyiSyWEkMqDzmyTIlB2E0KIBKLsJkWg7CaEEAlE2S0WUn2gfOLEiRg6dCjWrVtX6PgJEybg4cOHQscTQggRA+m+UYmIGWU3IYRIIMpuUgTKbkIIkUCU3WIh1Q/zfPnyJXx9fQsdP2LECLx8+bIcKyKEEAIuV7QXqVQouwkhRAJRdpMiUHYTQogEouwWC6k+UG5sbIy7d+8WOv7evXswNhZ8ejEhhBAxoqdvkyJQdhNCiASi7CZFoOwmhBAJRNktFlLd9cqUKVPg6+uLx48fo23btjA0NASHw0FsbCyuXLmCXbt2Yf369RVdJiGEVCqMzlaTIlB2E0KI5KHsJkWh7CaEEMlD2S0eUn2gfNSoUdDV1cW6deuwfft25Pz3pF5ZWVk4ODhg37598PT0rOAqCSGkksmhwCaFo+wmhBAJRNlNikDZTQghEoiyWyyk+kA5APTu3Ru9e/dGVlYWvn79CgDQ09ODvLx8BVdGCCGVFKPAJkWj7CaEEAlD2U2KQdlNCCEShrJbLKT+QHkeeXl56heNEEIkAONS/2ekZCi7CSFEMlB2k5Ki7CaEEMlA2S0eUv0wT0IIIRKIcUV7iWjLli2oUqUKlJSU4ODggFu3bolhIQghhJBKhLKbEEIIkS6U3WJBB8oJIYSUKcZlIr1EceTIEUyYMAGzZ8/G06dP0aJFC3To0AGfPn0S09IQQgghfz7KbkIIIUS6UHaLBx0oJ4QQUrZEPLOdkZGBlJQUvldGRobQWa9duxZDhgzB0KFDYWtri/Xr18Pc3Bxbt24t54UkhBBC/iCU3YQQQoh0oewWD0bKTXp6Ops/fz5LT0+v6FJKTBprZkw666aay4c01syY9NZdEvPnz2cA+F7z588XaJeRkcFkZWXZyZMn+YaPGzeOtWzZspyqJZWNNP7tSWPNjEln3VRz+ZDGmhmT3rpLgrKbSDJp/NuTxpoZk866qebyIY01Mya9dZcEZXfJcBhj1Pt7OUlJSYGmpiaSk5OhoaFR0eWUiDTWDEhn3VRz+ZDGmgHprbskMjIyBM5kKyoqQlFRkW9YdHQ0TE1NcefOHTRt2pQ3fOnSpfj7778REhJSLvWSykUa//aksWZAOuummsuHNNYMSG/dJUHZTSSZNP7tSWPNgHTWTTWXD2msGZDeukuCsrtk5Cq6AEIIIZWbsHAuCofD4XvPGBMYRgghhBDxoewmhBBCpAtld8lQH+WEEEKkgp6eHmRlZREbG8s3PC4uDoaGhhVUFSGEEEIKQ9lNCCGESJfKnt10oJwQQohUUFBQgIODA65cucI3/MqVK3y3hBFCCCFEMlB2E0IIIdKlsmc3db1SjhQVFTF//nyRbnWoaNJYMyCddVPN5UMaawakt+6yNmnSJAwYMACOjo5wcnLCjh078OnTJ/j6+lZ0aeQPJY1/e9JYMyCddVPN5UMaawakt+6yRtlNyps0/u1JY82AdNZNNZcPaawZkN66y1plzm56mCchhBCpsmXLFqxcuRIxMTGoXbs21q1bh5YtW1Z0WYQQQggpBGU3IYQQIl0qa3bTgXJCCCGEEEIIIYQQQgghlRr1UU4IIYQQQgghhBBCCCGkUqMD5YQQQgghhBBCCCGEEEIqNTpQTgghhBBCCCGEEEIIIaRSowPlhBBCCCGEEEIIIYQQQio1OlBeSqmpqZgwYQIsLS2hrKyMpk2b4uHDh7zxjDEsWLAAJiYmUFZWhouLC169elXsfE+cOAE7OzsoKirCzs4Op06dKrOas7OzMWfOHFSpUgXKysqoWrUqFi1aBC6Xy2vD4XCEvlatWlXofPfu3St0mvT09HKp2cfHR+CzmzRpUuy8xfVdF1dzVlYWpk+fjjp16kBVVRUmJiYYOHAgoqOji5yvOL/nktQNSN56bWVlJfQ7GT16NADJW59LUrOkrc+E/Ekou/NRdotWM2U3ZTdlNyEVg7I7H2W3aDVTdlN2U3aTUmGkVDw9PZmdnR27ceMGe/fuHZs/fz7T0NBgUVFRjDHGli9fztTV1dmJEyfYixcvWO/evZmxsTFLSUkpdJ53795lsrKybOnSpezNmzds6dKlTE5Ojt2/f79Mal6yZAnT1dVlZ8+eZWFhYezYsWNMTU2NrV+/ntcmJiaG77Vnzx7G4XDYhw8fCp2vn58f09DQEJi2vGr29vZm7du35/vshISEIucrzu+6uJqTkpJYmzZt2JEjR9jbt2/ZvXv3WOPGjZmDg0OR8xXn91ySuhmTvPU6Li6O77u4cuUKA8ACAwMZY5K3PpekZklbnwn5k1B256PsFq1mym7KbspuQioGZXc+ym7Raqbspuym7CalQQfKS+HHjx9MVlaWnT17lm+4vb09mz17NuNyuczIyIgtX76cNy49PZ1pamqybdu2FTpfT09P1r59e75hbm5urE+fPmVSt7u7Oxs8eDDfsO7du7P+/fsXOk2XLl1Yq1atipyvn58f09TULIsSBZSkZm9vb9alSxeR5ivO77o03/ODBw8YABYREVFoG3F+z4wVX7ekrtcFjR8/nllbWzMulyt0fEWvz8L8WrOkrc+E/Ckou/lRdvOj7OZH2V00ym5CygdlNz/Kbn6U3fwou4tG2U1KirpeKYXs7Gzk5ORASUmJb7iysjJu376NsLAwxMbGol27drxxioqKcHZ2xt27dwud77179/imAQA3N7cipxFF8+bNce3aNYSGhgIAnj17htu3b6Njx45C23/58gXnzp3DkCFDip339+/fYWlpCTMzM3Tq1AlPnz4t15qDgoJgYGAAGxsbDBs2DHFxcUXOV5zftajfMwAkJyeDw+FAS0uryHmL63suSd2Sul7nyczMxIEDBzB48GBwOByB8ZKwPv+qsJolaX0m5E9B2S2Islv0mgui7P59lN2U3YQUhbJbEGW36DUXRNn9+yi7Kbv/eBV9pF5aOTk5MWdnZ/b582eWnZ3N9u/fzzgcDrOxsWF37txhANjnz5/5phk2bBhr165dofOUl5dnBw8e5Bt28OBBpqCgUCY1c7lcNmPGDMbhcJicnBzjcDhs6dKlhbZfsWIF09bWZj9//ixyvvfu3WP79+9nwcHB7ObNm6xHjx5MWVmZhYaGlkvNhw8fZmfPnmUvXrxgp0+fZvb29qxWrVosPT290PmK87sW9Xv++fMnc3BwYF5eXkXOV5zfc0nqltT1Os+RI0eYrKysQH15JGF9LknNkrY+E/InoezOR9ktes0FUXaXDcpuym5CikPZnY+yW/SaC6LsLhuU3ZTdfzo6UF5K79+/Zy1btmQAmKysLGvYsCHz8vJitra2vB+26OhovmmGDh3K3NzcCp2nvLw8O3ToEN+wAwcOMEVFxTKp2d/fn5mZmTF/f3/2/Plztm/fPqajo8P27t0rtH2NGjXYmDFjRP6cnJwcZm9vz8aOHfu7JYtcM2OMRUdHM3l5eXbixIlC24jzuxal5szMTNalSxdWv359lpycLNLnlOX3XJK6JXW9ztOuXTvWqVOnQsdLwvr8q+JqZqzi12dC/iSU3YWj7KbsLoiyu3CU3YSUL8ruwlF2U3YXRNldOMpuIgq5CriI/Y9gbW2NGzduIC0tDSkpKTA2Nkbv3r1RpUoVGBkZAQBiY2NhbGzMmyYuLg6GhoaFztPIyAixsbF8w4qbRhRTp07FjBkz0KdPHwBAnTp1EBERgWXLlsHb25uv7a1btxASEoIjR46I/DkyMjJo2LAh3r17V6415zE2NoalpWWRny/O77qkNWdlZcHT0xNhYWG4fv06NDQ0RPqcsvyeS1K3pK7XABAREYGrV6/i5MmTQsdLyvpcUHE156no9ZmQPwlld+Eouym7C6LsFo6ym5DyR9ldOMpuyu6CKLuFo+wmoqI+yn+TqqoqjI2NkZiYiEuXLqFLly680L5y5QqvXWZmJm7cuIGmTZsWOi8nJye+aQDg8uXLRU4jih8/fkBGhv+fXFZWFlwuV6Dt7t274eDgAHt7e5E/hzGG4OBgvh/10hKl5jwJCQmIjIws8vPF+V2XpOa8sH737h2uXr0KXV1dkT+nLL9noPi6JXW9BgA/Pz8YGBjA3d1d6HhJWZ8LKq7mPBW9PhPyJ6LsFkTZTdldEGW3cJTdhFQcym5BlN2U3QVRdgtH2U1EVmHXsku5ixcvsgsXLrCPHz+yy5cvM3t7e9aoUSOWmZnJGGNs+fLlTFNTk508eZK9ePGC9e3blxkbG7OUlBTePAYMGMBmzJjBe3/nzh0mKyvLli9fzt68ecOWL1/O5OTk2P3798ukZm9vb2ZqasrOnj3LwsLC2MmTJ5menh6bNm0aX7vk5GSmoqLCtm7dKnQ+v9a9YMECdvHiRfbhwwf29OlTNmjQICYnJ8f+/fdfsdecmprKJk+ezO7evcvCwsJYYGAgc3JyYqamphX2XRdXc1ZWFuvcuTMzMzNjwcHBLCYmhvfKyMgotGZxfs8lqZsxyVyvc3JymIWFBZs+fbrQ8ZK0PhdXsySuz4T8SSi7KbtLWzNlN2U3ZTchFYOym7K7tDVTdlN2U3aT0qAD5aV05MgRVrVqVaagoMCMjIzY6NGjWVJSEm88l8tl8+fPZ0ZGRkxRUZG1bNmSvXjxgm8ezs7OzNvbm2/YsWPHWI0aNZi8vDyrWbNmkf0jiSolJYWNHz+eWVhYMCUlJVa1alU2e/ZsvpBgjLHt27czZWVlvuUpqu4JEyYwCwsLpqCgwPT19Vm7du3Y3bt3y6XmHz9+sHbt2jF9fX0mLy/PLCwsmLe3N/v06VORNTMmvu+6uJrDwsIYAKGvwMDAQmsW5/dckroZk8z1+tKlSwwACwkJETpektbn4mqWxPWZkD8JZXd+3ZTdotVM2U3ZTdlNSMWg7M6vm7JbtJopuym7KbtJaXAYY6z8rl8nhBBCCCGEEEIIIYQQQiQL9VFOCCGEEEIIIYQQQgghpFKjA+WEEEIIIYQQQgghhBBCKjU6UE4IIYQQQgghhBBCCCGkUqMD5YQQQgghhBBCCCGEEEIqNTpQTgghhBBCCCGEEEIIIaRSowPlhBBCCCGEEEIIIYQQQio1OlBOCCGEEEIIIYQQQgghpFKjA+Xkj8ThcBAQEFDi9j4+PujatetvfWZ4eDg4HA6Cg4N/az6lFRQUBA6Hg6SkpAr5fEIIIeR3UHYTQggh0oWymxDyp6ED5USqxMbGYvz48ahWrRqUlJRgaGiI5s2bY9u2bfjx40dFl1csFxcXTJgwQWD43r17oaWlVe71EEIIIeJG2U0IIYRIF8puQkhlJVfRBRBSUh8/fkSzZs2gpaWFpUuXok6dOsjOzkZoaCj27NkDExMTdO7cuaLLlFg5OTngcDiQkaHzY4QQQsoHZffvoewmhBBS3ii7fw9lNyHSjf5yidQYNWoU5OTk8OjRI3h6esLW1hZ16tRBjx49cO7cOXh4eBQ67YsXL9CqVSsoKytDV1cXw4cPx/fv3wXaLVy4EAYGBtDQ0MCIESOQmZnJG3fx4kU0b94cWlpa0NXVRadOnfDhw4cyX87w8HDIyMjg0aNHfMM3btwIS0tLMMYAAOfPn4eNjQ2UlZXh6uqK8PBwvvZ5Z8vPnj0LOzs7KCoqIiIiAomJiRg4cCC0tbWhoqKCDh064N27d3zT7ty5E+bm5lBRUUG3bt2wdu1agTPvZ86cgYODA5SUlFC1alUsXLgQ2dnZvPEcDge7du1Ct27doKKigurVq+P06dNl90URQgiReJTdlN2EEEKkC2U3ZTchlRkdKCdSISEhAZcvX8bo0aOhqqoqtA2HwxE6/MePH2jfvj20tbXx8OFDHDt2DFevXsWYMWP42l27dg1v3rxBYGAg/P39cerUKSxcuJA3Pi0tDZMmTcLDhw9x7do1yMjIoFu3buByuWW3oACsrKzQpk0b+Pn58Q338/ODj48POBwOIiMj0b17d3Ts2BHBwcEYOnQoZsyYIXTZly1bhl27duHVq1cwMDCAj48PHj16hNOnT+PevXtgjKFjx47IysoCANy5cwe+vr4YP348goOD0bZtW/z1119887106RL69++PcePG4fXr19i+fTv27t0r0G7hwoXw9PTE8+fP0bFjR3h5eeHbt29l+n0RQgiRTJTdlN2EEEKkC2U3ZTchlR4jRArcv3+fAWAnT57kG66rq8tUVVWZqqoqmzZtGm84AHbq1CnGGGM7duxg2tra7Pv377zx586dYzIyMiw2NpYxxpi3tzfT0dFhaWlpvDZbt25lampqLCcnR2hNcXFxDAB78eIFY4yxsLAwBoA9ffq00OVwdnZm8vLyvJrzXoqKikxTU5PX7siRI0xbW5ulp6czxhgLDg5mHA6HhYWFMcYYmzlzJrO1tWVcLpc3zfTp0xkAlpiYyBhjzM/PjwFgwcHBvDahoaEMALtz5w5v2NevX5mysjI7evQoY4yx3r17M3d3d766vby8+Opr0aIFW7p0KV+b/fv3M2NjY957AGzOnDm899+/f2ccDodduHCh0O+HEELIn4Oym7KbEEKIdKHspuwmpLKjK8qJVPn17PWDBw8QHByMWrVqISMjQ+g0b968gb29Pd8Z8WbNmoHL5SIkJIQ3zN7eHioqKrz3Tk5O+P79OyIjIwEAHz58QL9+/VC1alVoaGigSpUqAIBPnz6JtAxeXl4IDg7mey1atIivTdeuXSEnJ4dTp04BAPbs2QNXV1dYWVnxlqlJkyZ834eTk5PAZykoKKBu3bp834WcnBwaN27MG6arq4saNWrgzZs3AICQkBA0atSIbz6/vn/8+DEWLVoENTU13mvYsGGIiYnhe7hLwc9WVVWFuro64uLiSvQ9EUII+TNQdlvxlomymxBCiDSg7LbiLRNlNyGVCz3Mk0iFatWqgcPh4O3bt3zDq1atCgBQVlYudFrGWKG3hxU2XFgbDw8PmJubY+fOnTAxMQGXy0Xt2rX5+lMrCU1NTVSrVo1vmIGBAd97BQUFDBgwAH5+fujevTsOHTqE9evX8y1TSSgrK/MtY2HTFfyOhH1fv07H5XKxcOFCdO/eXWBeSkpKvP+Xl5fnG8fhcMr8ljlCCCGSibKbspsQQoh0oeym7CaksqMryolU0NXVRdu2bbFp0yakpaWJNK2dnR2Cg4P5prtz5w5kZGRgY2PDG/bs2TP8/PmT9/7+/ftQU1ODmZkZEhIS8ObNG8yZMwetW7eGra0tEhMTf3/BijB06FBcvXoVW7ZsQVZWFl842tnZ4f79+3ztf30vjJ2dHbKzs/Hvv//yhiUkJCA0NBS2trYAgJo1a+LBgwd80/36gJMGDRogJCQE1apVE3jR070JIYQAlN2U3YQQQqQNZTdlNyGVHf1lEamxZcsWZGdnw9HREUeOHMGbN28QEhKCAwcO4O3bt5CVlRU6nZeXF5SUlODt7Y2XL18iMDAQY8eOxYABA2BoaMhrl5mZiSFDhuD169e4cOEC5s+fjzFjxkBGRgba2trQ1dXFjh078P79e1y/fh2TJk0S6/La2tqiSZMmmD59Ovr27ct39t7X1xcfPnzApEmTEBISgkOHDmHv3r3FzrN69ero0qULhg0bhtu3b+PZs2fo378/TE1N0aVLFwDA2LFjcf78eaxduxbv3r3D9u3bceHCBb6z3fPmzcO+ffuwYMECvHr1Cm/evMGRI0cwZ86cMv8eCCGESC/KbspuQggh0oWym7KbkMqMDpQTqWFtbY2nT5+iTZs2mDlzJuzt7eHo6IiNGzdiypQpWLx4sdDpVFRUcOnSJXz79g0NGzZEz5490bp1a2zatImvXevWrVG9enW0bNkSnp6e8PDwwIIFCwAAMjIyOHz4MB4/fozatWtj4sSJWLVqlbgXGUOGDEFmZiYGDx7MN9zCwgInTpzAmTNnYG9vj23btmHp0qUlmqefnx8cHBzQqVMnODk5gTGG8+fP827XatasGbZt24a1a9fC3t4eFy9exMSJE/lu7XJzc8PZs2dx5coVNGzYEE2aNMHatWthaWlZdgtPCCFE6lF256PsJoQQIg0ou/NRdhNS+XBYSTtdIoSUu7/++guHDx/GixcvKrSOYcOG4e3bt7h161aF1kEIIYRIOspuQgghRLpQdhNC8tDDPAmRQN+/f8ebN2+wcePGQs/Yi9Pq1avRtm1bqKqq4sKFC/j777+xZcuWcq+DEEIIkRaU3YQQQoh0oewmhPyKrignRAL5+PjA398fXbt2xaFDhwrtB05cPD09ERQUhNTUVFStWhVjx46Fr69vudZACCGESBPKbkIIIUS6UHYTQn5FB8oJIYQQQgghhBBCCCGEVGr0ME9CCCGEEEIIIYQQQgghlRodKCeEEEIIIYQQQgghhBBSqdGBcvJH2bt3L7S0tCq6jEKVV33Xr19HzZo1weVyxf5Zv6sk38mUKVMwbty48imIEEJIuaLszkXZTQghRFpQduei7Cbkz0MHykm58PHxAYfDEfpgilGjRoHD4cDHx6f8C/tFUFAQOBwOkpKSStQu76Wvr48OHTrg2bNnRU7Xu3dvhIaGlmHFwk2bNg2zZ8+GjEz+n3hGRgaWLVsGW1tbqKqqok6dOti5c6dAqPv4+GDGjBkAwFu++/fv87XJyMiArq4uOBwOgoKCAABNmjTByJEj+dpt3boVHA4Hu3fv5hs+ZMgQNG3aVKTl8fPzQ1hYWImnIYQQ8nsou3NRduei7CaEEMlH2Z2LsjsXZTchoqMD5aTcmJub4/Dhw/j58ydvWHp6Ovz9/WFhYfHb88/KyvrteYgqJCQEMTExOHfuHBITE9G+fXskJycLbZuVlQVlZWUYGBiItaa7d+/i3bt36NWrF9/wgQMHYvfu3Vi2bBlevnyJjRs3IjAwEJGRkbw2XC4X586dQ5cuXXjDzM3N4efnxzevU6dOQU1NjW+Yq6srAgMD+YYFBQXB3Nxc6HBXV9cSL5OBgQHatWuHbdu2lXgaQgghv4+ym7K74HDKbkIIkXyU3ZTdBYdTdhMiGjpQTspNgwYNYGFhgZMnT/KGnTx5Eubm5qhfvz5f24sXL6J58+bQ0tKCrq4uOnXqhA8fPvDGh4eHg8Ph4OjRo3BxcYGSkhIOHDgg8JkJCQlo1KgROnfujPT0dDDGsHLlSlStWhXKysqwt7fH8ePHefPMCxFtbe0SnW03MDCAkZERGjVqhDVr1iA2Nhb3798vtD5htzudPn0ajo6OUFJSgp6eHrp3784bl5mZiWnTpsHU1BSqqqpo3Lgx70xyYQ4fPox27dpBSUmJN+zFixc4evQoTpw4ga5du6JKlSpwcXHBoUOH+DaW7ty5AxkZGTRu3Jg3zNvbW2BDa8+ePfD29ub7XFdXV94GTJ4bN25g5syZfDVHRkbi48ePAoF96dIl2NraQk1NDe3bt+ebDwB07twZ/v7+RS47IYSQskXZTdkNUHYTQog0oeym7AYouwkpLTpQTsrVoEGD+M6S7tmzB4MHDxZol5aWhkmTJuHhw4e4du0aZGRk0K1bN4HblaZPn45x48bhzZs3cHNz4xsXFRWFFi1aoGbNmjh58iSUlJQwZ84c+Pn5YevWrXj16hUmTpyI/v3748aNGzA3N8eJEycA5J+x3rBhQ4mXTVlZGQD/Gfai6gOAc+fOoXv37nB3d8fTp09x7do1ODo68n1fd+7cweHDh/H8+XP06tUL7du3x7t37wqt4+bNm3zzGDduHBo2bAgAaNasGdTU1KCmpoYOHToAyL3NK8/p06fh4eHBd+uYg4MDqlSpwvtuIiMjcfPmTQwYMIDvc5s1awZ5eXleOL9+/Ro/f/7E4MGDkZKSwqs5MDAQCgoKfLeA/fjxA6tXr8b+/ftx8+ZNfPr0CVOmTOGbf6NGjRAZGYmIiIhCl50QQkjZo+zmR9mdi7KbEEIkF2U3P8ruXJTdhJQAI6QceHt7sy5durD4+HimqKjIwsLCWHh4OFNSUmLx8fGsS5cuzNvbu9Dp4+LiGAD24sULxhhjYWFhDABbv349Xzs/Pz+mqanJQkJCmIWFBRs7dizjcrmMMca+f//OlJSU2N27d/mmGTJkCOvbty9jjLHAwEAGgCUmJha5PL+2+/r1K+vcuTNTV1dnX758Kba+PE5OTszLy0voZ7x//55xOBz2+fNnvuGtW7dmM2fOLLQ2TU1Ntm/fPt77yMhINnbsWFajRg327t073uvr168C09rY2LDTp0/z3gNgp06dYuvXr2eurq6MMcYWLlzIunXrxhITExkAFhgYyGvftGlTNnz4cMYYY5s3b2YdO3ZkjDHWvn17tmPHDsYYY4MGDWItWrTg+04AsPfv3/OGbd68mRkaGvLVlpyczACwoKCgQpedEEJI2aHs5q8vD2U3ZTchhEgqym7++vJQdlN2E1JScuV0PJ4QAICenh7c3d3x999/gzEGd3d36OnpCbT78OED5s6di/v37+Pr16+8M9qfPn1C7dq1ee0KnsHN8/PnTzRv3hx9+/blOzP9+vVrpKeno23btnztMzMzBW5BKykzMzMAuWfiq1evjmPHjsHAwADh4eGF1ldQcHAwhg0bJnTckydPwBiDjY0N3/C8B3oU5ufPn3y3f61cuRLbtm1DdnY26tWrByD3dq0zZ87wTffmzRtERUWhTZs2AvPs378/ZsyYgY8fP2Lv3r343//+J/SzXV1dcezYMQC5/aG5uLgAAJydnREUFIRhw4YhKCgIAwcO5JtORUUF1tbWvPfGxsaIi4vja5N35cCPHz8KXXZCCCFlj7KbH2V3LspuQgiRXJTd/Ci7c1F2E1I8OlBOyt3gwYMxZswYAMDmzZuFtvHw8IC5uTl27twJExMTcLlc1K5dG5mZmXztVFVVBaZVVFREmzZtcO7cOUydOpUXqnmhf+7cOZiamgpMUxq3bt2ChoYG9PX1oaGhITBeWH0F5YWQMFwuF7Kysnj8+DFkZWX5xv36QI+C9PT0kJiYyHs/bdo0NG7cGP3790dgYCC0tbWhra0tMN3p06fRtm1boTXl9Vc3ZMgQpKeno0OHDkhNTRVo5+rqir/++gufP3/GjRs3eLdxOTs7Y+PGjfj06RPCwsIE+kmTl5fne8/hcMAY4xv27ds3AIC+vn6hy04IIUQ8KLvzUXbnouwmhBDJRtmdj7I7F2U3IcWjPspJuWvfvj0yMzORmZkptP+whIQEvHnzBnPmzEHr1q1ha2vLF0DFkZGRwf79++Hg4IBWrVohOjoaAGBnZwdFRUV8+vQJ1apV43uZm5sDABQUFAAAOTk5JfqsKlWqwNraWmhYl0TdunVx7do1oePq16+PnJwcxMXFCdRrZGRU6Dzr16+P169f896bmZmhZ8+eUFdXx/3791GtWjXemfHk5GRe8P7zzz/o3LlzofMdPHgw76z0rxsQeZo2bQpFRUVs2bIFP3/+hIODA4DcM/zJycnYvn07lJSU0KRJk6K/GCFevnwJeXl51KpVS+RpCSGE/B7K7nyU3SVH2U0IIRWHsjsfZXfJUXaTyo6uKCflTlZWFm/evOH9/6+0tbWhq6uLHTt2wNjYGJ8+fcKMGTNE/oyDBw+ib9++aNWqFYKCgmBkZIQpU6Zg4sSJ4HK5aN68OVJSUnD37l2oqanB29sblpaW4HA4OHv2LDp27AhlZeUizyL/rvnz56N169awtrZGnz59kJ2djQsXLmDatGmwsbGBl5cXBg4ciDVr1qB+/fr4+vUrrl+/jjp16qBjx45C5+nm5oa///6bb5iioiJWrVqFyZMnQ15eHm3btkVYWBgmT56Mf/75Bz9//sTDhw8REBBQaK3t27dHfHx8kRsnysrKaNy4MTZu3IhmzZrx/n3l5eXh5OSEjRs38kJdVLdu3UKLFi2KvBqAEEKIeFB256PsLjnKbkIIqTiU3fkou0uOsptUdnRFOakQGhoahf7wy8jI4PDhw3j8+DFq166NiRMnYtWqVSJ/hpycHPz9/VGrVi20atUKcXFxWLx4MebNm4dly5bB1tYWbm5uOHPmDKpUqQIAMDU1xcKFCzFjxgwYGhryblUTFxcXFxw7dgynT59GvXr10KpVK/z777+88X5+fhg4cCAmT56MGjVqoHPnzvj33395Z+KF6d+/P16/fo2QkBC+4SNGjMD69euxYcMG1KpVCxMnTsTYsWNhaWmJM2fOoHHjxjAwMCh0vhwOB3p6eryz/4VxdXVFamoqr5+0PM7OzkhNTRW4/auk/P39C+1XjhBCiPhRduei7C45ym5CCKlYlN25KLtLjrKbVHYc9muHRIQQqTdt2jTeLVcl0blzZzRv3hzTpk0Tc2Wlk9fv3fPnzyEnRzfCEEII+fNQdhNCCCHShbKbkD8PXVFOyB9o9uzZsLS0LHGfb3lPK5dUaWlp8PPzo7AmhBDyx6LsJoQQQqQLZTchfx66opwQQgghhBBCCCGEEEJIpUZXlBNCCCGEEEIIIYQQQgip1OhAOSGEEEIIIYQQQgghhJBKjQ6UE0IIIYQQQgghhBBCCKnU6EA5IYQQQgghhBBCCCGEkEqNDpQTQgghhBBCCCGEEEIIqdToQDkhhBBCCCGEEEIIIYSQSo0OlBNCCCGEEEIIIYQQQgip1OhAOSGEEEIIIYQQQgghhJBKjQ6UE0IIIYQQQgghhBBCCKnU6EA5IYQQQgghhBBCCCGEkEqNDpQTQgghhBBCCCGEEEIIqdToQDkhhBBCCCGEEEIIIYSQSo0OlBNCCCGEEEIIIYQQQgip1OhAOSGEEEIIIYQQQgghhJBKjQ6UE0IIIYQQQgghhBBCCKnU6EB5Gdu7dy84HA7fS19fHy4uLjh79qxAew6HgzFjxlRApWUjOjoaCxYsQHBwcEWXInFcXFzg4uJS0WWUiJWVlcB6m/cquAwLFiwAh8PB169fhc6ndu3afO3Dw8P55iUjIwNtbW20bt0aly9fFvNSiZePj0+h31nBl4+PDzp16gR1dXVkZ2fzzePp06fgcDgwNjYWmP+tW7fA4XDwv//9D0D+b8ujR4/KZfkI+ZP9mtVKSkowMjKCq6srli1bhri4OIFp8n7/CnuFh4eX/4KUgR8/fmDBggUICgqq6FIkjo+PD6ysrCq6jBJxcXEpdN0suAzFZUmnTp0ElvnX+WloaKBp06bw9/cX4xKJX3F/0wW3g8aMGQMOh4PY2Fi+eXz79g0yMjKQl5fH9+/f+cZFRUWBw+Fg0qRJAICgoCBwOBwcP3683JaRkD/N8+fPMWTIEFhbW0NZWRnKysqoXr06RowYIfC7Jup+i7Sh/C4c5Xcuym/Kb1I6chVdwJ/Kz88PNWvWBGMMsbGx2LRpEzw8PHD69Gl4eHhUdHllJjo6GgsXLoSVlRXq1atX0eVIlC1btlR0CSJp1qwZVq9eLTBcQ0Pjt+c9duxY9OvXDzk5OXj79i0WLlyIjh074vr162jZsuVvz78izJ07F76+vrz3T548wejRo7F06VK4urryhuvr6yMgIADnzp3Do0eP0KRJE964oKAgqKqqIjY2Fm/fvkXNmjX5xgHgmxchpGzlZXVWVhbi4uJw+/ZtrFixAqtXr8aRI0fQpk0bgWkuXrwITU1NgeHCTnhJgx8/fmDhwoUAINUHDMRh7ty5GD9+fEWXUWJVq1bFwYMHBYYrKir+9rx79uyJyZMngzGGsLAwLF26FP369QNjDP369fvt+VeEoUOHon379rz3MTEx6N69O2+bJY+GhgbevHmDzZs3IygoCH369OGNu3HjBuTkcnenbt++zTe/wMBAAJTjhJSV7du3Y8yYMahRowbGjx+PWrVqgcPh4M2bN/D390fDhg3x/v17WFtbV3Sp5YLyu3CU3/kovym/iejoQLmY1K5dG46Ojrz37du3h7a2Nvz9/f+oA+WkcHZ2dhVdgki0tLT4DuKWJQsLC968mzVrhurVq8PZ2Rm7d++WyAPlP3/+hJKSEjgcTqFtrK2t+TbE09PTAQDVq1cX+B7zQjYoKEjgQHmXLl0QGBiIwMBAgQPlenp6qF27dpksEyFE0K9Z3aNHD0ycOBHNmzdH9+7d8e7dOxgaGvJN4+DgAD09vfIulVQAaTvYoqysLLYcNzQ05M3byckJzZo1g5WVFbZv3y6RO9pZWVngcDi8nWBhzMzMYGZmxnufd1dIwW2WPIaGhuBwOAI72kFBQWjYsCEYYwgMDOTb0Q4KCoKMjIxEbucQIm3u3LmDUaNGwd3dHcePH4eCggJvXKtWrTB69GgcO3YMysrKFVglkRSU3/kovym/ieio65VyoqSkBAUFBcjLy4v9sz5+/Ig+ffrAxMQEioqKMDQ0ROvWrXndowwZMgQ6Ojr48eOHwLStWrVCrVq1eO+PHTuGxo0bQ1NTEyoqKqhatSoGDx4MIP/HBQAGDRrEu8VlwYIFvOkfPXqEzp07Q0dHB0pKSqhfvz6OHj3K95l5txFdv34dw4YNg66uLjQ0NDBw4ECkpaUhNjYWnp6e0NLSgrGxMaZMmYKsrCyRvpOnT5+iU6dOMDAwgKKiIkxMTODu7o6oqChem82bN6Nly5YwMDCAqqoq6tSpg5UrV/J91oQJE6CqqoqUlBSBz+jduzcMDQ157X/teiWvG5LVq1dj7dq1qFKlCtTU1ODk5IT79+8LzG/nzp2wsbGBoqIi7OzscOjQIaG3kW3duhX29vZQU1ODuro6atasiVmzZon0/ZS3vANTX758EWm6vNueDhw4gEmTJsHIyAjKyspwdnbG06dPBdqLsv5dvnwZgwcPhr6+PlRUVJCRkVH6BfxFvXr1oK2tzXdrJJfLxa1bt+Di4gJnZ2femWsAyMzMxL1793i34hWUmpqKkSNHQk9PD7q6uujevTuio6PLrFZCKjsLCwusWbMGqamp2L59e4XUEB8fj+HDh8Pc3ByKiorQ19dHs2bNcPXqVQDA4sWLIScnh8jISIFpBw8eDF1dXd7Ju+vXr8PFxQW6urpQVlaGhYUFevTogR8/fiA8PBz6+voAgIULF/J1GZXn3bt36NevHy8/bW1tsXnzZr7PzPttPnToEKZPnw5jY2OoqanBw8MDX758QWpqKoYPHw49PT3o6elh0KBBAre5Fqe4bRsAOHLkCNq1awdjY2MoKyvD1tYWM2bMQFpaGq/N+vXrweFw8P79e4HPmD59OhQUFHi36QvL3Lwu8/bv3w9bW1uoqKjA3t5eaPd6//zzD+rWrQtFRUVUrVoVGzZs4N0uXFBR21qSytLSEvr6+iLneN620MqVK/HXX3/BwsICSkpKcHR0xLVr1wTai7L+7d+/H5MnT4apqSkUFRWF/huXlq6uLurUqSPQxUFQUJDQHM8b16BBA4E7ULKysjB79myYmJhAQ0MDbdq0QUhISJnVSsifaOnSpZCVlcX27dv5DpIX1KtXL5iYmJRzZfwovwVRfksWyu/8z6b8JoWhA+VikpOTg+zsbGRlZSEqKgoTJkxAWlpauZy169ixIx4/foyVK1fiypUr2Lp1K+rXr4+kpCQAwPjx45GYmIhDhw7xTff69WsEBgZi9OjRAIB79+6hd+/eqFq1Kg4fPoxz585h3rx5vH6WGzRoAD8/PwDAnDlzcO/ePdy7dw9Dhw4FkHvLSrNmzZCUlIRt27bhn3/+Qb169dC7d2/s3btXoO6hQ4dCU1MThw8fxpw5c3Do0CEMGzYM7u7usLe3x/Hjx+Ht7Y01a9Zg48aNJf4+0tLS0LZtW3z58gWbN2/GlStXsH79elhYWCA1NZXX7sOHD+jXrx/279+Ps2fPYsiQIVi1ahVGjBjBazN48GD8+PFD4GBrUlIS/vnnH/Tv37/YkyEFazh48CDS0tLQsWNHJCcn89rs2LEDw4cPR926dXHy5EnMmTMHCxcuFPiBP3z4MEaNGgVnZ2ecOnUKAQEBmDhxIt9GRUkxxpCdnS3wYoyJPK/ihIWFAQBsbGxKNf2sWbPw8eNH7Nq1C7t27UJ0dDRcXFzw8eNHXhtR17/BgwdDXl4e+/fvx/Hjx8v0pFbeGenbt2/z/n6Cg4ORmJgIZ2dnODs748aNG7z29+/fx8+fP4Xe7jV06FDIy8vj0KFDWLlyJYKCgtC/f/8yq5UQkpujsrKyuHnzpsC4vHwv+MrJySnTzx8wYAACAgIwb948XL58Gbt27UKbNm2QkJAAABgxYgTk5OQEDuR/+/YNhw8fxpAhQ6CkpITw8HC4u7tDQUEBe/bswcWLF7F8+XKoqqoiMzMTxsbGuHjxIoDck+h5OT537lwAudsFDRs2xMuXL7FmzRqcPXsW7u7uGDduHO9274JmzZqFuLg47N27F2vWrEFQUBD69u2LHj16QFNTE/7+/pg2bRr2798v8gnd4rZtgNydso4dO2L37t24ePEiJkyYgKNHj/Ldyde/f38oKCgI5EBOTg4OHDgADw+PYu8YOHfuHDZt2oRFixbhxIkT0NHRQbdu3fgy6OLFi+jevTt0dXVx5MgRrFy5Ev7+/vj777/55lXctpaohOU4l8st1byKkpycjG/fvpU6xzdt2oSLFy9i/fr1OHDgAGRkZNChQwfcu3eP10bU9W/mzJn49OkTtm3bhjNnzsDAwKDUyyeMq6srQkJCEBMTAwBISEjAixcveDn+5MkT3oUUkZGR+Pjxo9AcnzVrFiIiIrBr1y7s2LED7969g4eHR5n/jhDyp8jJyUFgYCAcHR1L1c2ZsNwu7W9scSi/BVF+lwzlN+U3kSCMlCk/Pz8GQOClqKjItmzZItAeABs9enSZff7Xr18ZALZ+/foi2zk7O7N69erxDRs5ciTT0NBgqampjDHGVq9ezQCwpKSkQufz8OFDBoD5+fkJjKtZsyarX78+y8rK4hveqVMnZmxszHJychhj+d/Z2LFj+dp17dqVAWBr167lG16vXj3WoEGDIpevoEePHjEALCAgoMTT5OTksKysLLZv3z4mKyvLvn37xhvXoEED1rRpU772W7ZsYQDYixcveMOcnZ2Zs7Mz731YWBgDwOrUqcOys7N5wx88eMAAMH9/f95nGxkZscaNG/N9RkREBJOXl2eWlpa8YWPGjGFaWlolXq7CWFpaCl1vAbDFixfz2s2fP58BYPHx8ULnU6tWLaHLvGLFCpaVlcXS09NZcHAwc3JyYsbGxiwsLEykOgMDAxkA1qBBA8blcnnDw8PDmby8PBs6dChvmKjr38CBA0WqpbDajh07JnT8+vXrGQB29+5dxhhja9asYcbGxowxxl6/fs0AsJcvXzLGGFu4cCEDwF6/fs2bPq/OUaNG8c135cqVDACLiYn5rfoJqUzy/p4ePnxYaBtDQ0Nma2vLe5/3+yfsZW1tXab1qampsQkTJhTZxtvbmxkYGLCMjAzesBUrVjAZGRneb+vx48cZABYcHFzofOLj4xkANn/+fIFxbm5uzMzMjCUnJ/MNHzNmDFNSUuJlY97vn4eHB1+7CRMmMABs3LhxfMO7du3KdHR0ily+gkq6bVMQl8tlWVlZ7MaNGwwAe/bsGW9c9+7dmZmZGS8HGGPs/PnzDAA7c+YMb5i3tzdf5jKWu91maGjIUlJSeMNiY2OZjIwMW7ZsGW9Yw4YNmbm5Od+/T2pqKtPV1WUFN79Lsq1VEs7OzoWun0OGDOG1K27dd3d3F7rMo0aNYllZWSwzM5OFhoayzp07M3V1dfbo0SOR6szbLjAxMWE/f/7kDU9JSWE6OjqsTZs2vGGirn8tW7YUqZbCalu1apXQ8QEBAQwAO3ToEGOMsRMnTjA5OTmWmprKUlJSmKysLDt79ixjjLG///6bAWDnz5/nTZ9XZ8eOHfnme/ToUQaA3bt377fqJ+RPFRsbywCwPn36CIzLzs5mWVlZvFfB/YOicjvvVXC/pSxQfvOj/C4e5TflN5E8dEW5mOzbtw8PHz7Ew4cPceHCBXh7e2P06NHYtGmTyPPicrklvnJNR0cH1tbWWLVqFdauXYunT58KPRM5fvx4BAcH486dOwCAlJQU7N+/H97e3lBTUwMAXrcqnp6eOHr0KD5//lzimt+/f4+3b9/Cy8sLAP8Z0o4dOyImJkbgNpVOnTrxvbe1tQUAuLu7CwyPiIgocS3VqlWDtrY2pk+fjm3btuH169dC2z19+hSdO3eGrq4uZGVlIS8vj4EDByInJwehoaG8doMGDcLdu3f56vfz80PDhg1L1J+0u7s7ZGVlee/r1q0LALxlCgkJ4XU3U5CFhQWaNWvGN6xRo0ZISkpC37598c8//xT6VPeSaN68OW+dLfgaMmRIqeeZZ/r06ZCXl4eSkhLq1auHly9f4syZM6V+Gnm/fv34bn2ztLRE06ZNebdNlWb969GjR+kWroQK9lOe919nZ2cAueu0gYEBr/6goCAYGhry/gYK6ty5M9/7X9efsnbz5k14eHjAxMQEHA4HAQEBIs/j6NGjqFevHlRUVGBpaYlVq1aVfaGElDFWyN00V69eFfidLO7vQpQcB3J/2/fu3YslS5bg/v37QrsbGz9+POLi4nDs2DHeZ2zduhXu7u6839Z69epBQUEBw4cPx99//813xVRx0tPTce3aNXTr1g0qKioCv6Pp6ekC3YaJkuPfvn0r8e3bJd22+fjxI/r16wcjIyNejuf9zr5584bXbtCgQYiKiuLdCg/k5riRkRE6dOhQbD2urq5QV1fnvTc0NISBgQHvdzgtLQ2PHj1C165d+boIyLudvaDf2db6lbW1tdAcz7vC8Hds2bIF8vLyUFBQgI2NDS5cuAB/f384ODiUan7du3eHkpIS7726ujo8PDxw8+ZN5OTklGr9E3eOOzs7Q0ZGhi/HHR0deV3fNWjQgC/H5eTk0Lx5c4H5lEeOU3aTysLBwQHy8vK815o1awTaCMvthw8flqgfa8pvym+A8rsgyu98ZZ3flN2Sgw6Ui4mtrS0cHR3h6OiI9u3bY/v27WjXrh2mTZvGd5tRSeR1CZH3at26daFtORwOrl27Bjc3N6xcuRINGjSAvr4+xo0bx9fNSJcuXWBlZcXrJ2rv3r1IS0vjdbsCAC1btkRAQACys7MxcOBAmJmZoXbt2vD39y+25rw+r6ZMmcJXu7y8PEaNGgUAAgd1dXR0+N7nhZOw4Xl9t5WEpqYmbty4gXr16mHWrFmoVasWTExMMH/+fN7Gy6dPn9CiRQt8/vwZGzZswK1bt/Dw4UPe9/Pz50/e/Ly8vKCoqMi77ev169d4+PAhBg0aVKJ6dHV1+d7nPc067zPybs379QFywoYNGDAAe/bsQUREBHr06AEDAwM0btwYV65cKVEtBWlqavLW2YKvgrc45j1Uo7CNxOzsbKFdlowfPx4PHz7E7du3sXr1amRlZaFLly68ZRWVkZGR0GF58yvN+leaWzlFUadOHejp6SEwMJDXP3neBiCQ+/cWFBSEjIwM3Lt3r9CnbBe3/pS1tLQ02Nvbl+okHwBcuHABXl5e8PX1xcuXL7FlyxasXbu21PMjpDykpaUhISFBaF+n9vb2Ar+TxZ0kXbRoEd/vUHE750eOHIG3tzd27doFJycn6OjoYODAgYiNjeW1qV+/Plq0aMHLqbNnzyI8PBxjxozhtbG2tsbVq1dhYGCA0aNH8x5CvGHDhmK/g4SEBGRnZ2Pjxo0Cv6MdO3YE8Hs5DqDEWV6SbZvv37+jRYsW+Pfff7FkyRIEBQXh4cOHOHnyJAD+38gOHTrA2NiY131cYmIiTp8+jYEDB/KdyC7Mr7/DQO5vcd5nJCYmgjFWohz/nW2tX+X1Ffrry9LSktemtDnu6emJhw8f4u7du9i+fTvU1dXRp08fvHv3TuQ6gcJzPDMzE9+/fy/V+ifuHNfS0kK9evV4O9OBgYF8Oe7s7MzbCc/rJqLgAZk85ZHjlN3kT6KnpwdlZWWhB6MOHTqEhw8f4vTp04VOLyy3HR0d+Q72FYbym/I7D+V3LsrvfGWd35TdkqPwR8mSMle3bl1cunQJoaGhaNSoUYmnW7BgAV9wCvujLcjS0hK7d+8GAISGhuLo0aNYsGABMjMzsW3bNgC5fSaPHj0as2bNwpo1a7Blyxa0bt0aNWrU4JtXly5d0KVLF2RkZOD+/ftYtmwZ+vXrBysrKzg5ORVaQ17/YDNnzkT37t2Ftvn1s8SpTp06OHz4MBhjeP78Ofbu3YtFixZBWVkZM2bMQEBAANLS0nDy5Em+QCr4kJE82tra6NKlC/bt24clS5bAz88PSkpK6Nu3b5nUmvcDLOwBGwU3svIMGjQIgwYNQlpaGm7evIn58+ejU6dOCA0N5VuWspC3gfD582eBjQXGGGJiYngP6izIzMyMN7xZs2YwMjJC//79MX/+/FL9cAv7HmJjY3nfXWnWv18fzlLWOBwOnJ2dcfHiRTx48ABJSUkCAb1gwQLcu3cP6enphR4oL28dOnQo8gqNzMxMzJkzBwcPHkRSUhJq166NFStW8B5ku3//fnTt2hW+vr4AgKpVq2L69OlYsWIFRo8eLfbvnZDSOHfuHHJycvgeyPw7hg8fzne1Vt6GdWH09PSwfv16rF+/Hp8+fcLp06cxY8YMxMXF8fokBYBx48ahV69eePLkCTZt2gQbGxu0bduWb14tWrRAixYtkJOTg0ePHmHjxo2YMGECDA0N0adPn0Jr0NbWhqysLAYMGMB3Er2gKlWqlGTxy0Rx2zbXr19HdHQ03906AIRenJC3XP/73/+QlJSEQ4cOISMjo8QnvIujra0NDodT4hwv7bZWaRTMcWGE5TsA6Ovr83LcyckJtra2cHZ2xsSJE4U+CK04heW4goIC1NTUIC8vL/L6Vx554urqijVr1uD58+d49eoVVq5cyRvn7OyMtWvX4vnz5wgPDy+z7cLSoOwmfxJZWVm0atUKly9fRkxMDN9BNTs7OwC5DxoUB8rv30f5XTYov3+PNOQ3ZbfkoCvKy1HeQde8J1SXlJWVFd+ZRVEOMNvY2GDOnDmoU6cOnjx5wjdu6NChUFBQgJeXF0JCQvgOxv9KUVERzs7OWLFiBYDcbkryhgOCZ9Fq1KiB6tWr49mzZ0LPjhZ2lk7cOBwO7O3tsW7dOmhpafG+k7wfjYIbP4wx7Ny5U+h8Bg0ahOjoaJw/fx4HDhxAt27doKWlVSY11qhRA0ZGRgIPDP306RPu3r1b6HSqqqro0KEDZs+ejczMTLx69apM6imoVatW4HA4OHLkiMC4ixcvIiUlBW3atCl2Pl5eXnBxccHOnTtLdauSv78/X7cIERERuHv3Li8kJHX9c3V1RVpaGlatWgUDAwO+rlWcnZ2RkJDAe1CtpBwoL86gQYNw584dHD58GM+fP0evXr3Qvn173lUKGRkZAlfsKCsrIyoqSmzdxRDyOz59+oQpU6ZAU1OT72HOv8PExITv96dOnTolntbCwgJjxoxB27ZtBXK8W7dusLCwwOTJk3H16lWMGjWq0I1gWVlZNG7cmHcFW968CstxFRUVuLq64unTp6hbt67Q31FhV2aVB2HbNsJyHIDAA9PyDBo0COnp6fD398fevXvh5OSEmjVrlkl9qqqqcHR0REBAADIzM3nDv3//XuROaWHbWmWpSZMmUFNTE5rjr1+/xqtXr0qU4y1atMDAgQNx7tw5vgd4ldTJkyf5rkhMTU3FmTNn0KJFC8jKykrs+peXzQsXLoSMjAzfrdl5/5/3oDJJznHKbiJtZs6ciZycHPj6+grtzkRcKL/LFuV36VF+/54/Ib8pu8sPXVEuJi9fvuQ98TghIQEnT57ElStX0K1bN7GewX3+/DnGjBmDXr16oXr16lBQUMD169fx/PlzzJgxg6+tlpYWBg4ciK1bt8LS0lKg36158+YhKioKrVu3hpmZGZKSkrBhwwa+PsOsra2hrKyMgwcPwtbWFmpqajAxMYGJiQm2b9+ODh06wM3NDT4+PjA1NcW3b9/w5s0bPHnyhNcvm7idPXsWW7ZsQdeuXVG1alUwxnDy5EkkJSXxzty3bdsWCgoK6Nu3L6ZNm4b09HRs3boViYmJQufZrl07mJmZYdSoUYiNjS2zs9hA7tX+CxcuxIgRI9CzZ08MHjwYSUlJWLhwIYyNjSEjk39+a9iwYVBWVkazZs1gbGyM2NhYLFu2DJqamrx+00oqKSlJoL8wIDf469evDyD333vMmDFYtWoVkpKS0LFjRygrK+Phw4dYvnw5HB0d0a9fvxJ93ooVK9C4cWMsXrwYu3btEqnWuLg4dOvWDcOGDUNycjLmz58PJSUlzJw5k9dGUta/gvJC99SpU+jZsyffuNq1a0NXVxenTp2CqakpqlevXu71ierDhw/w9/dHVFQUr4uKKVOm4OLFi/Dz88PSpUvh5uaGiRMnwsfHB66urnj//j3Wr18PAIiJiSl1P/WElIW8rM7OzkZcXBxu3boFPz8/yMrK4tSpU0JPbD9+/BiampoCw+3s7KChofHbNSUnJ8PV1RX9+vVDzZo1oa6ujocPH+LixYsCd8jIyspi9OjRmD59OlRVVeHj48M3Pu9KLXd3d1hYWCA9PR179uwBAN7OlLq6OiwtLfHPP/+gdevW0NHRgZ6eHqysrLBhwwY0b94cLVq0wMiRI2FlZYXU1FS8f/8eZ86cwfXr1397eUuiJNs2TZs2hba2Nnx9fTF//nzIy8vj4MGDePbsmdB51qxZE05OTli2bBkiIyOxY8eOMq150aJFcHd3h5ubG8aPH4+cnBysWrUKampq+PbtG69dSba1Surnz59CcxzI3cEGcv+9Fy5ciMmTJ4PL5aJ3797Q1tbGixcvsHTpUlhaWmLcuHEl+rzFixfjyJEjmDt3Ll9/sSUhKyuLtm3bYtKkSeByuVixYgVSUlJ4O6kAJGb9K6hly5a834dfT7praWnB3t4ep06dgry8vMBzZSQFZTeRRs2aNcPmzZsxduxYNGjQAMOHD0etWrUgIyODmJgYnDhxAgDKJIdLi/JbEOV3yVB+i5+05zdldzmruOeI/pnynkZc8KWpqcnq1avH1q5dy9LT0/naA2CjR48us8//8uUL8/HxYTVr1mSqqqpMTU2N1a1bl61bt45lZ2cLtA8KCmIA2PLlywXGnT17lnXo0IGZmpoyBQUFZmBgwDp27Mhu3brF187f35/VrFmTycvLCzx5+9mzZ8zT05MZGBgweXl5ZmRkxFq1asW2bdvGa1PYE5zznlQeHx/PN9zb25upqqqW+Dt5+/Yt69u3L7O2tmbKyspMU1OTNWrUiO3du5ev3ZkzZ5i9vT1TUlJipqambOrUqezChQsMAAsMDBSY76xZsxgAZm5uzvfk7TzOzs58T1Iv6mnMv35vjDG2Y8cOVq1aNaagoMBsbGzYnj17WJcuXVj9+vV5bf7++2/m6urKDA0NmYKCAjMxMWGenp7s+fPnJf5+GGPM0tKy0Kdtm5qa8rXlcrls69atzNHRkamoqDAFBQVWvXp1Nn36dJaamsrXtrgnUPfq1YvJycmx9+/fl6jOvCdO79+/n40bN47p6+szRUVF1qJFC6FP7v6d9U9UebUdO3asyHZGRkYMANu0aZPAuK5duzIAzMvLS2BcYXXmfa6wdbSsAWCnTp3ivc970reqqirfS05Ojnl6ejLGcteXadOmMSUlJSYrK8u0tbXZggULGAD277//ir1mQoT5NavzMs7Z2ZktXbqUxcXFCUyTl0mFva5cuVImtaWnpzNfX19Wt25dpqGhwZSVlVmNGjXY/PnzWVpamkD78PBwBoD5+voKjLt37x7r1q0bs7S0ZIqKikxXV5c5Ozuz06dP87W7evUqq1+/PlNUVGQAmLe3N29cWFgYGzx4MDM1NWXy8vJMX1+fNW3alC1ZsoTXprDfP1HzvTAl3ba5e/cuc3JyYioqKkxfX58NHTqUPXnyhAFgfn5+AvPdsWMHA8CUlZVZcnKywHhvb29maWnJN6yw7TZLS0u+740xxk6dOsXq1KnDFBQUmIWFBVu+fDkbN24c09bW5rUp6bZWcZydnYtcP7OysvjaHz16lDVv3pypq6szOTk5ZmFhwUaOHMliY2MF5l3UturUqVMZAHbjxo0S1Zm3XbBixQq2cOFCZmZmxhQUFFj9+vXZpUuXhLYv7fonquK2WfI0atSIAWBTpkwRGDdhwgQGgDVr1kxgXGF15n2usHW0LFB2kz9JcHAwGzRoEKtSpQpTVFRkSkpKrFq1amzgwIHs2rVrfG2Ly5patWrx7av9LspvQZTfxaP8pvwWhrK7YnEYK9B/Aal0Jk+ejK1btyIyMrLCbsEiJZOUlAQbGxt07dq1zM+cS4ugoCC4urri2LFjAldkE/HjcDg4deoUunbtCiD3gUVeXl549eqVwAN01NTU+B72kpOTg9jYWOjr6+PatWvo2LEjvnz5AgMDg/JcBEL+OBs3bsS4cePw8uVL1KpVq6LLIUXIyspCvXr1YGpqisuXL1d0ORUiPDwcVapUwapVqzBlypSKLqdSoOwmRDJRfksPym/K7/JG2V2xqOuVSur+/fsIDQ3Fli1bMGLECDpILmFiY2Px119/wdXVFbq6uoiIiMC6deuQmpqK8ePHV3R5hAAA6tevj5ycHMTFxaFFixZFtpWVlYWpqSmA3D7mnZycKKwJ+Q1Pnz5FWFgYFi1ahC5dutBOtgQaMmQI2rZty+sabdu2bXjz5g02bNhQ0aWRSoyym5CKRfkt+Si/iaSh7C5fdKC8knJycoKKigo6deqEJUuWVHQ5pZaTk4OiborgcDgCZ9ykgaKiIsLDwzFq1Ch8+/YNKioqaNKkCbZt2ybSxlReP/mFkZGR4evzvKIwxpCTk1Nkm/L+d5SW707cvn//jvfv3/Peh4WFITg4GDo6OrCxsYGXlxcGDhyINWvWoH79+vj69SuuX7+OOnXqoGPHjvj69SuOHz8OFxcXpKenw8/PD8eOHcONGzcqcKkIkX7dunVDbGwsWrRogW3btlV0OaXG5XLB5XKLbCMnJ52bq6mpqZgyZQri4+MhLy+PBg0a4Pz58yV62FYeadrOKUlulqfKnOOU3YRILspvyUf5zY/yu3xQdkuQiuz3hZDfVVyfXr/2TVbZFPXd4Jd+7CpSXr9fRb3E1XenMHn9jRX1+rVP+T9VYf82eetOZmYmmzdvHrOysuL1A9+tWzdeP/nx8fGsSZMmTFVVlamoqLDWrVuz+/fvV+ASEUIkibe3d7G/t5VZUc8QAVCm/ev+DknMTWnZBhIHym5CiLhRfheN8rv0Kmt+U3ZLDuqjnEi1kJAQpKamFjpeUVERderUKceKJMujR4+KHJ/3ZPSKlpqaipCQkCLbVKlSpdy6CMrMzMTz58+LbGNiYsJ74jQhhJDSCQ8Px9evX4ts4+joWE7VSJ4XL14gIyOj0PHq6uqoUaNGOVYknCTmprRsAxFCiDSi/C4a5XfpUX6TikYHygkhhBBCCCGEEEIIIYRUan9exz6EEEIIIYQQQgghhBBCiAik8+kKYtZWpldFl0AIIeXmCvdYmc6PG2sjUnsZo9Ay/XxSOVF2EyIZZBSVKroEkXEz0iu6BJFRdpM/AWU3IaQyoeyWDnSgnBBCSJnigitSe7q1iRBCCKlYlN2EEEKIdKHsFg86UE4IIaRM5TDRApuCiBBCCKlYlN2EEEKIdKHsFg/6ngghhJQpLugZ0YQQQog0oewmhBBCpAtlt3jQgXJCCCFlKovliNReWUx1EEIIIaRkKLsJIYQQ6ULZLR50oJwQQkiZojPbhBBCiHSh7CaEEEKkC2W3eNCBckIIIWUqhwKbEEIIkSqU3YQQQoh0oewWDzpQTgghpEzRmW1CCCFEulB2E0IIIdKFsls86EA5IYSQMpXDKLAJIYQQaULZTQghhEgXym7xoAPlhBBCyhS3ogsghBBCiEgouwkhhBDpQtktHnSgnBBCSJmivtIIIYQQ6ULZTQghhEgXym7xkKnoAn7Xrl274O3tDT8/PwDAkSNHYGtri6pVq2L+/PkVXB0hhFQ+OUy0F6l8KLsJIUSyUHaT4lB2E0KIZKHsFg+pvqJ8/fr1mDNnDtzc3DB79mxER0dj3bp1mDhxIrhcLtasWQNTU1MMHz78tz6nz4yuGLLUCyc3nMPWiXvLpnghmndvDJ9FfWBsbYiYD1/gN8cfdwIe8LXRNdHB0OVeaNShPhSUFfA5NAZrhm7Fuycf0cm3HTx828HQSh8AEPEqCgcWH8PDi8EVXvOSMzNQpY4FZGRlwM3m4uWdt1jvuwNRodFFzr/zKDd0Gd0ehlYGiPv0FYeWnsDV/TfFtjwAYFXbAmM3DoFdUxswBoAxfE/+gdd3Q7BrxkFEhUZDXkEO/ef1QmuvFtA20sLXqAQcWnoSaUlp6OTrBut6VpBXlEPEqyjsX3gUjy4/o5oLqdnWyQYcDsDNYcjKzOJbbwur+frBW0KHX/ILFHu9NRpVQ+q37zi/6ypk5WTRql8L6Bhp4VtMIq4euAlZOdlC66rVrCaGLfeCeU1TKKoo4ktEPM7tuIKT68+JrW5htZ/bcQUHFh8X2+fRLWCkKOWV3QXVdbbDmsCFAsMH245HZEjROfQ7Cv7t/fyejtRvqVBRV4auiQ7md1uJu/88LPR37pJfIFr1aw7PqV1gWt0Yack/8OhiMLZP3YfUb9/LpeacrByoaCjzjf8Wm4T+ViMlMk8K+40T17+/x8h26DWlC3SNtRD+KgpbJ/rh5e23pZpXnRa26DWlM2wcqvKtH4XRMdLCiNXeqO5QFabVjRCw8YJYt1HzFLdON+vSCO18XASmi3gdheEOM3nv7ZyqY/Xl2Qh/FYVRTeaIt+ZaZhi9zhs1HKsiNfE7zu8KxMFlAXxtxPG3VpbrR3mg7CZFEWd295nRFc27NYZ5TVNk/Mzk238Rp5Lsxzbr1hijNwyCrok2ZGRkEBMWh8W91uDdk4/Fzr9W0xpYE7QQ4S8j4dtgqrgWA0DJtvWL2t4oLWn7nQOks2ZAOuummsWPsls8pPpA+fbt27Fjxw7069cPT58+RaNGjbBt2zYMGTIEAGBmZobNmzf/1s62jaM1Og5riw/Pwn+r1nbeLmjn7YIprRYIHW/bxAZzDk/E3nmHcefUAzTr1ghzjkzExBZz8fbBewCAmpYq1t9ejGeBrzCr41IkxSXDxNoQ35PSAABfoxKwe+ZBfH4fy/vMhQHTMbLBVES8jqrQmuXkZHFo6Um8vP0WRlb6cO3THMsvzcHQWhOR/iND6Pw7+bbD4KX9sG74doQ8fI+ajaph4g5ffE9Mw/2zj0VeHgAwtNTHgbAtaCvTS+h4FXVlrLg8F88CX+Ltv+/xPvgj2vm44ur+GzCvYcqreebB8dA21MSaoVsR/T4WWgaakJWTgbNnUzy5+gx7Zh9CWlIa3Aa5YtHpGRjbZCY+BIdTzUJq3jZpL3SMtdBtvDvObLkELpfx1tvBf/UTWvOcI5OEDi8tUeod02gGzGyMMfPgeOTkcLGk9zpEvIqEjaM1ZvtPQHxUQqF1pael45/NF/HxeQTS0zJQu3lNjN82HOlpGTi/82q51T7FbzTS09JxfO3ZUn1mcXLAEct8yZ9BXNmtpKJYaJ7k8akxDj9SfvLeJ8eniL4A/xH1b8+ld1P0mtoFQf630c7HldeusN+zWs1qYtrfY7Ft0l7cP/MYuqY6GL91GCbtHImFPVaVS81ec3qgZU8nHFhyDGe35f5GcXO4hdZc0XlS3G9cWf77O3s2xch1g7Bx9E68uhMC9xFtsfT8bAypNRHxkV9Fnp+SqiI+Po/A5b2BmH+i+AMq8orySP6agkNLT6DHhE6lWQQBZbFOb57ghz0L8g/OyMrJYOu/f+HmyfyDTyoaypi6awSeBr6CtoHm79VsoYd9IevgpjygkJqVsOzsdDy7+QZjm8+HWXUjTN4xHOk/MnBiwwUAQK2mNmX+t1bW60d5oOwmRRHnfnfdlrVwesslhDx8D1k5WQxa0rfY/cTilNV+7LgtQ5EYm4SAjRcwbEV/XPa7ztv3LoqKhgqm/T0GT6+9gLahVqmWIU9Z5WBZ7z9J4++cNNYMSGfdVHP5oOwWD6k+UB4REYHmzZsDAOrXrw9ZWVk0adKEN75FixaYNGlSqeevpKqEmQfGYd3wbfCa3YNvnJy8HHyW9EHrfi2gqqWC8JeR2DXjAJ7feF2qz+o+3h2PrzzH4eUBAIDDywNQt2UtdB/vjqVeGwAAvad3RXxkAlYP2cKb7ktEPO//fz147DfHH51828G2iQ0iXkdVaM2TnOfxTXsn4CGOx+1GdYeqeHHrjdD5t+nfEud2XMWNo3cBALFhcbBtYoPe07ryLaubjws8p3aBURUDxIbHI2DjeZzZerlUy9TKqwUUlOSxatBmZGVmAwC+fk5E1zEd4Ft/Ko7H7Uanke1Q19kOA63HIDUx90qjvH+H1/dC+ea3Z7Y/nDo3hJOHI99BAqpZsOaf3zPQdUwH9DUfgU6+7dBhSGuhNTu61St0WQoSZ73hryIRGx4PA3M9PDj/BABgXtMUjMvw9sF7PL32QmhdH4LD+b7TLxHxaN6tMeo0t+U7UC7u2k1tTNBjoofYDpRz6bYuUgRxZXdReZInKS4Zack/Ch0vzr+9vfOO4Gda7u9cnqJ+z3pO9sCX8DgEbMw9mBcbHodzO67Ac2qXcqv509vPSPyShI5D22L/wuPF1iwJeVLUb1xx//6i6DGxEy7uuY4Lu68DALZO3AvHdvbwGNkOe2YdEnl+Dy8Gi3QH4JeIeGyZkNv9QftBrQptV97r9I+UH0jPyL++ycnDAWraqrhc4G7A8ZsGI/DIPXBzuGjq4SDwOe0GtECvSe4wstLHl4ivCNhyGWd3XCtdzX2aQUFJHmuG7UBWZjYiXkfBtLoRuo9rzztQbtuoWon+1kRR1utHeaDsJkUR5373rI5/8b1fPXiLwH5iRe3Hfg6N4e3HDlvRHx9ffELMxy/Fzn/CtuG47n8b3BwumnVpJDC+vHOwpPtPopDG3zlprBmQzrqp5vJB2S0eUn2gXEVFBWlp+Wd09fX1oaamxtcmOzu71PMfu2kI/j3/BE+vvRA4UD5lzygYWenjr77rkBCdiGbdGmHZhdkYXncy74puUdg52eDEev4dukeXg9F9vDvvvZOHIx5dDsbcI5NQx9kOCZ+/4fTWS7iwS3DnQUZGBi17NYGSqiJvx1WSan4W+AoAirylVV5RHpnpmXzDMn5mokajapCVk0VOdg46DG0N7wWe2DR2N94/DUe1+laYuMMX6WkZuLLvhujL1MQGz2+85h28BYBHl4IxdJkXLGuZA8i9yyD00Qd4TuuCNv1bIj0tHffOPMLeuUcE6uVwOFBRV+ZbTqq56Jq7jukAJVVFaBtrCa1ZRV252GUpj3ofX36GbuM6op5rbQQHvoTbIFew/7N312FR5W0Yx79DK0qJhNhid66tGFhrd63t2q61dq352rnGmrv2WuvqWmut3V1Y2IiCCIL0vH8gIyMwzCDDDPp8rstrlzMnnnPmzO8+fZRKLKzM2fh0mcZlHCtPiZwUqpifNWM3qrql5rJ2yemEj7evzuNMirGf2fby8uLo0aP4+voSHa1+w9q4ceMSGUqkFH1ltzaPSFhyaSYWVuY8ufWM9VO2cfXoTdVnqfnbi1WhUZlE27Nbp+7SZXJbytUrybm9l7FzsqVq8wqqk3OpVXMG+wxYprNgw+Ml3Dh5l6jIqDSTJ5+3cZq+f12YmZuRr3RuNv9vp1r3iwevUbhC/mSNUx8MsU5/rm6nalw+fBPfJ35AzEFw19xO/K/LEtqNiH8gul6X6nQc24zFg37n/pXHuJfIwU+LuxIaHMa/60/oXHPB79y5fvyOen4fvE63Sa1xzpGZV49fc+vMPTpNaKHxt6aLtLJ+fE6yW2ii7/3uuKxt0wPquW4M+7EApWoX0/hYLIg5CJ4ljzPTOy6g/Zjm8T43RA5q2t5IbD9Fk7TYzqXFmiFt1i01px7Jbv1I0wfKCxQowLVr1yhYsCAAT58+Vfv8zp075MyZU+M4wsLCCAtTv6UrWhlFjTZVyFsqN33LjYg3jGtuZzzaVqJdtl74vXwLwNbZf1O2TgnqdPFg1eiN8YZJir2LHW9fvVPr9vbVO+xd7OJM14mGvTzZNnc3G6Ztp0A5d/rO70pEWITqud05i2RnwakpWFiZ8+F9KBObzeTJ7WdGV/OTO8+4fvw23jefkpiLB65Qr1tNTu08z71LD8lXOjd1u3hgbmGGrWPGmOekjmnBsqG/c2JHzC29Pt6+ZC+UlQY9aydrQ8PBxQ6fz86uB3ycx86/tOb68dtksLWmSOUChIdGMKHZTGwdM9J/cXcyOmRgdrclasO2GNIQK2tL1VXxgNScQM05i2Rn3vFJAHSZ0paJzWbSpH/9BGs2NTPF1jGjxnlJjWW8+X87aTqgPv87OJboqGjVyRsTE5Mkl/GGJ0uxzWyDqZkpf0zcojprnVq1x64f9i52ejlQHqE03vdE//bbb/Tu3RtHR0dcXFxQKD5tXCgUCqMO7K9FSmd3unTpUCgUPLzhjYnCNMH+/V8GMKfnUu5dfIi5pTm1OlZlxr/jGOoxQXW1Wmr+9mK55nLW2DZP77CA0ZsGYWFljpm5Gaf+Os+i/qtUw+u75jtn77F4wCoG/9aLzTN3UaXZdxSqkA+lUmm0eQLx2zhtvn9d2DpmxNTMlLevAtS6v30VoLYNZGiGWKfV+7elbJ1iTO8ccydkljzOdJ3UmiG1JhMdlfBTNduNbMzyERs4+dcFIOaKx+wF3GjQvUayDpTbO9vy6rH67dJvfd+p6os9UJ7Ub00XaWX9+Jxkt9BEn/vdn2d3r9md1PYTjWU/dumlmdTvVpM7Z+8l+s4sN3cXuk1rz6Cq4xJt5wyRg0ltb+gqLbZzabFmSJt1S82pR7JbP9L0gfL//e9/WFtbJ/r5kydP+PHHHzWOY9q0aUycqP6Cp4pZPegzrwsj6kwmIiwi3jB5S+XCxMSE1XcXqHU3tzQj0C/mzHfmbI6svDlX9ZmpmQmm5mbsCvxD1e3Q+v+Y3/u3TyNQqt83oVCod1OYmOB14YFqY+DBFW9yFM5Gw151VGH97O4LepUcRga79FRuXp5ha/oxpPp4chbOajQ1N+pTlxwFs9Epbz80WTdpG/Yudiw4PQWFQsHbV+84sPYorX9uQnRUNLaONjhld2Twit4MWt5Lre64t1b/dn0Ozjkyfywo5j9x5+nV49f0KPrpVkHlZ/PExx90FncX+pUbwdCVfVAqYVqHBYQExkxn2ZC1jP1zCAv7rlSdlfdoU4mO41syvskMAj4+B1VqTrjmZ3dfMLzOZOafmMzJHWcZtqYfz71eJFjzuK1DCQ+NSHRe0mWwSpVlXKFxWQB+H7+Fk3+dZ9T6geQsko0zey5y9/z9RJcxwOCq47DKYEXB8nnpPq09L+77cGTTyVRfPz7//aYUYz6zPXnyZKZMmcLw4cMNXco3KyWze9GiRTRo0IDKlStjgQ15KJxg/8+8Xqi9FOz2GS8yZ81EyyGNuH78dur/9j4yMVEk2jbvXLiPvvO7sG7SVi7sv0ImV3t6zOjIwKU9mdN9SarUfH7fFTJlcQDA6/x99q86zHa/1ZiYmhhtnqgt54/dk/r+kyv+ZBXxazEQQ63TcdXuUJX3ASGc2nURExMFI9b24Y/J2xO9+tPWMSNO2RwZtKQ7Py3u9lnNn54tv/ziNJyyO36cfMz0d77+tG3q++SN2otDP685dpjY7tkLZNH4W0suY14/EiLZLTTR1353LgqqZXf/Rd3IVSw7g6qMVXUzln1vgIv/XlPb947LxMSEkesH8vuELTy/9zLBZWCoHNS0vfH5foou0lo7B2mzZkibdUvN+ifZrR9p+kB5pUqVNH7ep0+fJMcxcuTIeM9Tm/XDr9g72/Hrhf+pupmamVK0akEa963LtA4LiIqMok+Z4fHOFH94HwqA3wt/epX89DKmys3KUblZeaZ3+BTwsSEF8NYn/pkqOydbtTPd/i/f8uS2+ks5n9x+TpVmn54PFxkRyYsHMTsgXhcfkr9MHpoOrM+VwzeMoua+C7qSOVsm3gcE8+a5P5qEh4Yzu9sS5v24HHtnW/xfBlC/Zy2CA0N49yYI28w2AMztuZQ7Z++rDRt3Hkc3mIqZecyq7ujmwOyjE9XmMzLi021q/j4BOHz2wpUfZ8W8IGpK67m8ee6P38u3vHnur7Ysntx+jomJCZmzOvD8vg/VWlVk8IreTGo1R/W8agCFiUJqTqDmyIhIwj6+rOf3CX+SKYsDmbM5JlizQqEgwPddovMS/PFFbfpexh3HxbxQ59D64/h4+3Lv0kMyZbGn2cAG7Fl2MMFlHCv2Km7vG0+wd7al4/hWHNl0MtXWDzunmN/O51fSpJQojPfM9tu3b2nZMuGXIYnUkVLZPWrUKMzMzAgODubWrVs0te2sUx13zt6jZvsqQOq1zbG/vVia2uYfxrfg5sm7/DlrFwCPrj/hQ3AY845PYs2YjUR/fChharYXoSFhBPoFYWltZbR58nnNiYn7/evq3ZsgoiKjcEhgG0jTFdapyVDrdFx1OlXl0MaTREZEYW2bnvylc+NePAd95/6gqtHExIR/gtYw8vsZPP64vTiv7yrunlOvOSrq007qmKazMDOLuQI1UxYHZh0cTZ/vRn+qOTJK9f9vX73DwVn9haF2mWPXj5gTOK2HNdT4W/P3CUh0HhOSFtaPhEh2C030td8dN7v7LuhK+YZlGFJtvNp+osLExCj2YwFeP/PDvUSuBOcvXUYr8pd1x71kLvot7Pax9ph2bl/4JkbUmay6Sj61c1CbfUFdpMV2Li3WDGmzbqk59Uh260eaPlCeEiwtLbG0tFTrduXwTbUztBDzXLSnd16wecZOIsIjMTUzxc7Jhhsn7iQ43uioaNUBa4AA30DCP4SrdYvr1mkvStcqxvZ5e1TdStcuzq1Td1V/3zx5l6z5sqgNlzWfq8YXcSgUCiwszLl/+ZHBa+63sBuVmpTj1F/n482HJlGRUaqNJY/WlTi7+xJKpZIA33e8fuaHa25nDm9I/HZc3yefbrmN+rjzlOg8nfGi65S2mJmbERkRSb+F3ShXrxT+PgFcPxFz1dnNU3ep2rICVtZWhAbHbJy55XMlKiqa18/88WhTiSEr+zC13bx4z7eUmhOuGaCMZ3HePPfHx9sXhUJBoF8QeUrkjFdzdHQ0tpltEp2X8NDwVKk3fcZ0vA8IVh30vnnqLh5tK6tekPN5XYlRKBSYW8Y0xYZY1voQrTTeM9stW7bkwIED9OrVK+mehdGKm9sZM2YESPSxK4nJUyIXfi8DgNT/7Tm6xVylraltVipRHQyPFbsTHXPCMCDV2wtzCzMs0llgmc4izeRJYuJ+/7qKjIjE6+JDStUuxsmd51TdS9Uqxqldmp9dm1oMtU7HKlalAG7uLuxbE/MYgZDAD2pXeQM07FmTEtULMandQny8XxMWEsbr5/645szMkU2nSEzs885jao75Tbx4mPB3ffvsfTpPbImZuSmRETHzV7pWEd688FdtP1ultyTysztI4/7WdJUW1o+ESHYLfUtovzs2u2P3E4d6jI/XdhvDfmwsxyz2ie57hwR+iHcMoWGfOpTwKMKklrPxeeRLaEiYQXIwqX1BXaXFdi4t1gxps26pOfVIduvHV32gvFOnTjx9+pTDhw8n3XMcH96Hxnt2dmhwGIH+Qaru/677j5/X9mf50LXcv+yNjWNGStYowqPrTzi397LOte5YsIc5x36h9c+NOfXXeSo2LkupWkXVbjvbNm83809Opu3Iphzbcpr85dyp36MW835cBkDXKW05t/cyr5/6kS5jOjzaVKJY9cKMqjeF5/deGrTmBaenkL1gVnbM/4fmQ77nt2F/YO9sR/C7ENWtXl2ntsMxiwMzOi8CwC2vKwXKuXPn7D0y2Geg+aDvyVkkm+pzgD8mbqHP/K6EBH7g3N7LmFuak79MbjLYZ2DbXPUXtGjj8IYTdBzXkmGr+6IwUVChYWmUSti9bD/2H8/Un9h+lvZjmjNsVR+CAoJxyu6Iay4n9q8+TKUmZfl5bT9+/Wk1t8/cUw0T9iFcdQZfalavOTQ4FB9vX9oMb8qe5QfoMrktxaoXZkLTmfRf3I3F56bzzOsFW+f8Tc8ZHTn4+zFK1izKsFV9WDthC7aOGek5oyP7Vx9WrUv6rHfjtO245XXF1NyUyIhIytUvxeObTwkJ+oCpqQnRkdFkL5gVW8eMDF3Vh5cPX6nqatSnDr5P3vD0znMAilQuQMshjdi5aK9qWqlRe9uRzVg36U+dx6UtY7sFbMGCT1cTubu7M3bsWM6cOUPRokUxNzdX63fAgAGpXZ74THKz28LKItE8aTqwPq+8X/P45lPMLMyo2aEqVVuUZ2Lzmarh9f3by1U0O+1HN2fPbwdpMbgRLrmcuH3mHu8DghNsm2+evMug5T/yfS9P1eMges/tzO2z91TPaNV3zV0mt6VkzaLsWLCHAuXcaTe6Oaamprx7E2iUeZJYG6fN96+rbXN3M/z3/nhdeMDt017U71kLp+yO7F56IFnjs7K2ws3dRfW3Sy4n8hTPSaD/e14/fRNvnQbIUzwnAOkyWGHraEOe4jmJCI9UXQFpiHU6T/GcvA+OoE7narx58ZZWgxsws/sylEolj2+pX5kZ8DqQ8NAIte7rJm+n9+yOhAR94Pz+a5hbmpGvVC4y2FuzfcE+3WvefIr2o5ow9LeebJzxN27uzrQZ1oj103aq+jmz5zI//dpV429NVym9fqQGyW7xJZKb3QD9F3enRtvKjG8yg5CgUFV2xO4nGno/tu+CLlw8cA2A0p4l+GPiFjJnc4zXNiuVynjHEAJ83xERGqHW3RA5eHjDCdW+YGL7T7pKi+1cWqwZ0mbdUnPqkOzWD4XSmB+484VGjhyJj48Pq1ev1mm42ibxbw+YdXgCD656s2TQGiDmUSztxzSnVsdqOLo5EOgXxO3TXqydsAXvG0/iDe/ZqTqenaoztMaERKdbpXl5Ok9qg2tuZ14+8GH1mI2ql3zE+q5BKbpNbY9bXhd8Hvmyde5u9q44BMDgFb0pWaMIDq72BL8L4dG1x2ye8ReX/r1m8Jon/z0yweFndlnMgbVHARi2qi/OOTOrppe9gBsj1w8ka/4sREVEceXIDVaMWK/2nFEAj7aVaTW0EdkLZSU0OAzv60/YPn+P2pnAWM45MrPu0a8JfsexchbJTv9F3ShWtVCiNd8+40XfBd0o4VGYqMhodv26j9VjNjH1n1EUrx7/GbkH1hxlZtfFUnMCNReu+Okt0oH+79XW22z5szDj0HgcnO1488Kf//48zeoxm3DO4UjfBd0oXCk/gX5Bqu5xN/T0VW+Bcu4EvQ1m3+rDpLO2olKTctg52eL3wp+LB6/i5p6FQhXzEegXREjgBwL9ghhSfTwAjfvVpUHP2rjkciI6MubKl39WHGLPsoNqzz7Td+27lx1g3S9bVZ8fjE7Zg+bHvd116r9KzvtJ9/QFcuVK+BbZzykUCh4+fKjXWkTSkpvdmvKk1bBG1O9RG0c3B8I+hPP45lM2Td8Rb+dan7+9D8Fh2GbKGK+fEzvOki5Dunhtc3hoOI371eX7Hz1xyeVEcEAwlw/H5KDfi09Xf+mzZqUy5ko2c0tz3r0O5PYZL9aM24wyOtoo8ySxNk7b719XDXt70mpYYxxc7fG+8ZSlg9ck+5nnxaoVYvaRifG6xy67z9dpSLjt9vH2pWPuvqq/DbFOH950ioqNSvPw6mMiIqL4uc7UBMfVYXRTKjYsTZ/yY9S6e7SuQIuf6pO9oBthwWE8uvmMHYv2cWrXxfg1Z3fk97tzqZOuY+I1F85Kv3mdyF8mN0FvQ9iz4jDrp+5Q66dhj+pJ/tZ0lZLrR0Iku2NIdhuHL9nvTmxdjpvrhtqPbTO8Cd2mtY83rKa2Oa6O41tSqXE5epUaptY9tXMQIFv+LEnuP+lK3+2cPqTFmiFt1i01xyfZHcPYs/urPlCeXJpCSAghvjYpHdjHvPPp1H+1nF4pOn3xbZLsFsI4mFhaGboEnUWHhRq6BJ1JdouvgWS3EOJbItmdNhjvk99TwNOnT+natauhyxBCiG9KFAqd/qWGf//9l9DQtHcg5Fsk2S2EEKlPslt8CcluIYRIfZLd+vFVHyj39/dn7dq1hi5DCCG+KVFKE53+pQZPT0/s7OyoWrUq48eP5+jRo4SHJ/9WU6E/kt1CCJH6JLvFl5DsFkKI1CfZrR9p+mWeu3bt0vi5MT/zRgghvlbRRvZSEUD1gqljx46xbt06Jk2ahJWVFRUqVMDDwwMPDw++++47zMzSdCymCZLdQghhfCS7hSaS3UIIYXwku/UjTT+j3MTEBIVCgaZZUCgUREVF6TReeVaaEOJbktLPSvvnURGd+q+f60aKTl8bT58+5ciRIxw9epSjR4/y+PFj0qdPT1BQUKrX8q2R7Bbi6ybPKE8dkt2S3alJslsIIb6cZHfayO40/egVV1dXtm3bRnR0dIL/Ll26ZOgShRDimxOhNNPpnyFky5aNSpUqUaFCBSpUqECGDBk07vyJlCPZLYQQxkeyW2gi2S2EEMZHsls/0vSB8tKlS2sM5aTOegshhEh5UUqFTv9Sy8OHD1m1ahUdO3Yka9aslCpViu3bt1OkSBH27t3L27dvU62Wb5lktxBCGB/JbqGJZLcQQhgfyW79MN6Hwmhh2LBhBAcHJ/q5u7s7R44cScWKhBBCRBnhOdgcOXIQGBhI5cqVqVq1Kv3796d06dKYmpoaurRvjmS3EEIYH8luoYlktxBCGB/Jbv1I0wfKq1SpovFza2trqlWrlkrVCCGEAIhOpTdq6yIsLAyIueLJ1NQUU1NTTEyMr85vgWS3EEIYH8luoYlktxBCGB/Jbv1I0wfKhRBCGB9jPLPt4+PDnTt3OHr0KEeOHGHGjBmEhoZSuXJlqlevTrVq1ShdunSaC3EhhBAiJUh2CyGEEGmLZLd+GG9lQggh0iR9PittwoQJKBQKtX8uLi5aDVugQAF69erF5s2b8fHx4fTp09SvX59z585Rq1YtHBwckjO7QgghRJon2S2EEEKkLZLd+iFXlAshhEhR0Xo+B1u4cGH+/fdf1d/Jed7Zq1evuHbtGteuXePq1asEBQVhaWmZkmUKIYQQaYZktxBCCJG2SHbrhxwoF0IIkaKidHxWWlhYmOpZZrEsLS0TDVAzMzOtz2bH8vX15ejRo6pbwLy8vDA3N6dcuXK0adMGDw8PKlSooNM4hRBpx8HoPw1dgs5qm7Q0dAnJEh0WaugSRDJIdgshxJdTpKEXFsb1oUFpQ5egM6td5wxdgsFJduuHHCgXQgiRoqLR7bauadOmMXHiRLVu48ePZ8KECQn2f+/ePbJkyYKlpSXfffcdU6dOJXfu3Bqn4eLigrm5OWXKlKF58+ZUr16dSpUqkS5dOp1qFUIIIb5Gkt1CCCFE2iLZrR8KpVKpNHQRxiatXsEjhBDJkdJXWi67W02n/jvnPKD1me29e/cSEhJCvnz5ePXqFZMnT+bOnTvcvHmTTJkyJV7TsmW0bdsWGxsbnWoTaYdkt9BErigXXxvJbvE1kHZOfG3kivLUkxavKJfsThvkinIhhBApSte3b2u63etz9erVU/1/0aJFqVChAnny5GHt2rUMHjw40eH69OlD06ZN03RgCyGEEPoi2S2EEEKkLZLd+iEHyoUQQqSoaB3fqP0lrK2tKVq0KPfu3dPYn9w8JYQQQiROslsIIYRIWyS79UMOlAshhEhREcrUi5awsDBu375NlSpVUm2aQgghxNdGslsIIYRIWyS79UMOlAshhEhRUTq+VEQXQ4cOpWHDhmTPnh1fX18mT55MYGAgnTp1SnLYFStWkCFDBo39DBgwIKVKFUIIIdIMyW4hhBAibZHs1g85UC6EECJFRSt1e1aaLp49e0bbtm158+YNmTNnpnz58pw5c4YcOXIkOezSpUsx1fCCHYVCYdSBLYQQQuiLZLcQQgiRtkh264ccKBdCCJGi9Hlme9OmTcke9sKFCzg5OaVgNUIIIcTXQbJbCCGESFsku/VDDpQLIYRIUfo8s51cCkXqvehECCGESGsku4UQQoi0RbJbP4xvqero6tWrTJ48mV9//ZU3b96ofRYYGEjXrl0NVJkQQnybopQmOv1LDV/D27e/JpLdQghhXCS7RVIku4UQwrhIdutHmr6i/MCBAzRs2JC8efMSFBTE+PHj2bJlCx4eHgB8+PCBtWvXsmrVKp3Gm69MHrwuPEjws2Gr+uLZuXq87t43n9Kj6GCd50FbOYtkp//CbuQv506Q/3v2LD/IuklbaTOiCd2mtmf7/D2sGL6ODuNaUrN9Fexd7HjzzI8NU7dzfu9lfpzVibylc+OW14WdC/eyZNAavdWaVM1xNe5bl/ZjW2DrmBGFQkFEWAR/LznA0iFr9VZX5Wbf0fmXNrjmceblg1esHrORkzvPqfWTKYsDk/8eQa6i2TExNSE6MpobJ+8wr9dynnm9SHTcxaoVYvaRifG6dy04kKd3Ex/uS8Uu60IV86FUAkol79+FcOvUXVaMWM8zrxeYW5gluH7sX31E42fGWnOjPnVo3Lcuzjmd8H3yhg1Tt/HvH//prd64Necv505keCQf3oeS3iYdYR/CVXW/8vZNtObClQrQY3p7shVwwzK9Ja8ev2bP8oNsn7cn1epO7LeYkqL1eAtYco0fPz7JF4rE1adPH3755RccHR31WNW3SV/ZrYmhf3uJtXNtRzRNdJtieO1fjCK7X9x/SebsmXFwscP/5VsOrD3Klhl/0X5si0Qzw9Dtc2q0c2lZw96etBzamEyudnjffMaSQau5ceKOTuNoM6IJlZt+R7YCbmoZqGkbycHFzijW6YTWDX1sB6XEck5Nkt1CE0Nkt6H3q/KXc+fD+1CC/INInzEdmbI4ML7pDE79dT7RNuPlw1cGrznI/z1HNp7A3sWOcvVKYpHOgudeL5nfeznlG5ZJtJ2r0a4yrYY1xi2vK8HvQriw7wrLhv1OkP97vdddoHxeiFYSGRFFept0quWc2DowqOpYGvaqY9A8ifpYa1z+PgF0zNOP9mOaU7Nd5Y/L2Z+N03dwft8Ves7oSN5SuWJqXrSPpUN+T4Was9Fvfhfyl41ZNy4cuIJdZlvylspFpiwOXD5yg5IeReIN9+jJG34YsFqtW9ECbiyY0oZHT97QdZD+jtcA5M7hyKAetSiY14XA96Hs2n+VNVtOq/Wjj+1Nye4v9zVkd5o+UD5hwgSGDh3KlClTUCqVzJo1i0aNGvHnn39St27dZI93xsFxdCs8CL8X/vE+W/zTalaMXK/629TMhGVXZvHf1tPx+tWWc47MrHv0K7VNWib4efqM6fjfgbFcPXKDfuVGkDWfK0NX9yWjgzUVGpXjwVVvAMZsHoy9sy2zuy/hxX0f7JxsMTUzwdzSnHdvAtkwdRvNf/o+2XWmRM2hwaFsnbNb1V/N9lUI8n/Pbz//ge+TN9TuWI3G/eqyd+UhHt96pnNdnp2q49mpOkNrTEjw84Ll8zFm0yDWjNvEyR3nqNS0HGM2D2JQlbHcOXcfgAx21sw7MQkzM1M2TN3OjRN3cMmZGY82lZm+fwzdCw8iNCRMYx2d8w8gJPCD6u93rwN1npdYuizrO2fvc//KQzw7e/DvH8fIlt9NVfPI9QMTXD8g8XXHWGv+vpcnXae2Y27PZdw9f58C5dwZtLwX798Gc2b3Rb3X3K/cCIb/3p9sBbLw16J9HFp/nC6T2zJ9/xgeXX+CrWPGBJdlaHAofy3ex8NrjwkNDqNI5QIMXNqT0OAw/vnt31SpO7HfYkpKrbPVuhg/frxO/a9bt46hQ4caVWB/LfSV3ZoY+reXWDvXv8KoRLcpjCG7245sikebyuxbfYj1k7eTr0wehq7qQ9UWFQgNDk2wnTOG9jk12rm0qlqrivSe24WFfX/j5sm7NPixNlP/GU23woN4/fRN0iP4qFjVwuz6dT93z9/H1MxUlYGatpGMYZ1ObN1I6e2glFrOqUmyW2iir+y2Sm9ptPtV/cqNoHrrirQc1pijG0/g2dlD1V9ibYaZhZnBa3YvmZNha/px7+JDRtWfSoDvO7LkcabTL21In9EqwXaucKUC/Ly2P0sHr+HM3xfJ5ObAwCU9GPxbbyY2n6n3upf8tJqSNYtSrn6pBPv9fHlapbc0eJ60H9Ocqi0qsG7yn+xeGrMtGR0VzeiNP2HvbMucnst48eAVdk42mJqZqjJw4/QdNBtYP8Vq/uP+QjzN2yRa8/S9o7l69Cb9K4zCLa8rw9f25dapeywauJrxfw5h36rDTO+4kNBaxQEwNVWwem5njpy6qzYu6/QWjP6pPpeuPcbezvqL6nZxsuHP5T9SpUnC61b6dBbMmdCKy9ef0GPYOrJlsWfUgHp8CItg818XAGhStwRd21VK0e1Nye6U8TVkd5o+UH7z5k3++OMPIOY5OMOGDSNr1qy0aNGCjRs3Uq5cuWSN1+eRLw17e7JmbPyH14cEhhASGKL6u2LjsmSwt453xUmdztVpNawxLrmc8PF+zc6F//D3kgPJqqdG+ypYWJkzs8tiIsIj8b75lBxFstNxbAtG1ptC+9HNcc6RmWLVCvFDnn4EvY056/vq8WvVOH79KeZsYN0uNRKdjr5rdsuXheaDGqp2TMrUKUG2Am5qNV89epMKjctSsHw+Ht96hpm5GZ0nt6FmuypY26XH+8ZTVoxYx7Vjt5JVV7OBDbh48Bqbpu8EYNP0nRSrWphmAxswtf18AFoPb8Lrp34MrjZObdiTO8+z1XcleUvn5vrx2xqnE+D7juB3IYl+rs9lDfDm+Vua9KtHr5LD2Oq7ku97eya6fpSpU0LjumOMNfec+QN7lv/LsS2ngJjfbMHy+Wj9cxO1YNRnzb1L/0zr4U1o0q8evw1fx6yuv7LVdyUZHTLQIWefBJflgyvePLjirfr71ePXVG76HUUrF1Q7WJfav8WUFq00vjPbuvoabhkzVvrKbk2M4bcH8du5rHld1fIk7jaF75M3Bs/u9Dbp8br4gLJ1SzGnxzJePX5Ns4ENyF/OndauPRJs52p1qGrw9jk12rm0qvmg79m36jB7Vx4GYMmgNZTxLE7D3p6sGrVB6/GMqj9F7e/YDNS0jfTq8WuDr9OJbY9qsx2ki5RazqlJsltooq/sNvb9qjXjNvMhOIwm/eqp+tHUZhSrVsjgNdfsUBXfx2/IlMWBu+djLgTLVsCN/GXzJNrOFSyfl1fevuxcuBcAH29f9iw/SKthjVOt7t3LDtJ6eBO6T2sfr9+Elqeh8+TJnee8fRVA/e61+WNizF1KZeqUoFjVgnTKN4Cgt8GA+nJeMnjtx7o84k/gI89O1Wg1pBEuuTLzyvs1Oxfv4++lB5NXc7vKWFiZM6vbko8Z+Iz1k7fTuG9dTu48D0BYSDhvX73jQ0BMvVW+cydjBiv+OXRDbVzDenty8L9bREcrqfJd3njTql+jCG2blsPV2RYf33ds3XOJnXuvJKtuz2qFsLAwZeqCvURERvHoyRuyZbGndaMyqgPlntULabW9qQvJbsMwxuxO0wfKLS0tCQgIUOvWtm1bTExMaNOmDbNnz07WeMM+hFOkUgGt+q3btQaX/72O75NPZ5jqda9JpwmtWNR/Jfcve+NeMieDlvciNDiMg78f07meQuXzce3YLdWONkD+MnkwNTPl5YNXALjkdsbrwgNa/dyYWh2qEhocyum/L7Bm7GbCQ8OTnEZq1Hxh/xW6T2uPS04nfLx9qdCoTLyan3m9IJ21JbdOewEwdFUfXHJmZkrbufi9eEulpuWYtnc0PYsN4fl9H93rqpCPbfPUd5ovHLhCs4ENVH9XaFiGCweuMHbzYIpWK4Tfc392LdnP1SM3AbS6/WzJpZlYWJnz5NYz1k/ZxtWjN1WfpeayzlE4G/DpcUIJrR8JfQ+frzvGVrO5pXm89TrsQzj5y7ljamZKVGRUqq/TJqYxZ3O9bzzR+neYp0ROClXMz5qxG1XdDPFbTGlRaf/1F0KP9JXdujD0by+2nfs8TxLaptBE3zXfOHmHpv3rkSmLAy45nUhvk468pXLx7O6LRNs5Y2yf9dHOpUVm5mbkK52bzf/bqdb94sFrFK6Q/4vGbW2bHtBuG0kTY9ke1WUb+nP6XM76JNktNNFXdqel/apYmtoMY6i5QsMy3Dx1h5rtq7LNdxW+T9/w/l2Ixnbu1qm7dJnclnL1SnJu72XsnGyp2rwC5/65lGp1w6dlbe9kq9avpuWZmNSoN4N9BizTWbDh8RJunLxLVGQUXhcf0nJoI2q1r0JocBind19k7fjNhIdGJF1ztxr8MK4Fiwau5sEVb/KUyMmgj3dAHkzGI0UKls/Ltf9uqy/jg9foNrUdLjkzJzhMg1pFuXDtMa/i3AVRv0YRsrjYMWnuHn5oVSHeMA1rF6Nr20rMXf4v9x76kje3Ez/3qUNoaAT7jiT9XX2ucP4sXLnxlIjIKFW3c5e96fVDNVydbHnp+w4Lc9Mktzd1Idkt4krTB8pLlCjBkSNHKF26tFr31q1bEx0dTadOnZIcR3R0NNHR0Xz48AGlUom5uTkFvnPn+b2kD8I6fHzuV+yVyLE6jGnBsqG/c2JHzHOvfbx9yV4oKw161k5Wo+zgYodPnDOR1VtXxM3dFQB7FzsArG3Sky2fK+GhEUxoNhNbx4z0X9ydjA4ZmN1tSZLT0HfNAAGv3qlq9vH2xTWXM0UqF8DU3JSM9tbYu9iRxd2FS4eu8+T2M1xzO+PRthLtsvXC7+VbALbO/puydUpQp4sHq0ZvjDfdpNi72PH2Yx2x3r56p1qOAK65nWjYy5Ntc3ezYdp2CpRzp+/8rjy584zrx2/jffNpouP3fxnAnJ5LuXfxIeaW5tTqWJUZ/45jqMcE1dUSqbmsO//SmuvHb5PB1poilQskuH5kcnVI9LPYdcfYar544Ar1utXk1M7z3Lv0kHylc1O3iwfmFmbYOmbE3ycg1dfptiOaEuT/HveSuQj0e6/xd7jhyVJsM8fchvfHxC2qs9ZgmN9iSvsazmwL/UmJ7A4LCyMsLOZWbRsbG0JCQohWRmGiMNU4nLH89mLbubh5ktg2hSb6rnnz/3bimMWBJv3rscZrAQoTBS/u++CW14WchbMl2M4ZY/ssB8pj2DpmxNTMlLevAtS6v30VoLYdlBy9ZndKchtJG4bcHk3uNvTn9Lmc9UmyW2iS0tmdLl06FAoFD294J5rdxrZfFUtTm7H5f38ZvGbX3E645nYGYOnQtVhYmTNgcQ+io6ITbedunfZieocFjN40CAsrc8zMzTj113kW9f/0zPnUXNbW9jGP9tBmHUiMvuu9c/YeiwesYvBvvdg8cxdVmn1HoQr5UCqVhIdGMLHlbGwyZaT/wm5kdLBmTo9lSU6j/ahmLPt5nepqbx/v1+QomJX6PWol60C5g7NdvDuk3sbJwM9lsrfmu1K5+SXO3XhZXe348Yeq9Bu1kajohK/87dSqAotWH+G/M/cAeOn7jpzZMtGoTvFkHSh3sLfGx1f9d+f/8Yp3B3trXvq+49xlb+onsb2pC8luEVeaPlDeu3dv/vsv4Qajbdu2ACxfvlzjOBYuXEiJEiWoVq0akZGRXLp0iRderyhZqmSS0/fsXJ33AcGc+tiQAdg62uCU3ZHBK3ozaHkvVXdTMxO124V+uz4H5xwfz+J9XLd3Bf6h+vzV49dqLweNvR0hc9ZM9JnXhWkdFjLj4Fj42F2hiPnfaR0WqB4Ns2zIWsb+OYSFfVdqvCJG3zWrKBSxHwBgYqJAqYRfWswmg501GezS03ZkUyo1/Y48JXLh5u6MiYkJq+8uUBuNuaUZgX4xVx9kzubIyptz1Wo2NTdTq+vQ+v+Y3/u3TyP4rC6FQr2bwsQErwsPVAfiH1zxplGfuuQomI1OefvFW35xPfN6ofYiq9tnvMicNRMthzTi+vHbqb6ss7i70K/cCIau7JPo+nHl8E2N6066DFZGV3Nzx67Yu9ix4PQUFAoFb1+948Dao7T+uQnRUdGpvpxbDmlIrmLZeXT9CfnLuSf5OxxcdRxWGawoWD4v3ae158V9H45sOmmw32JKi5Yz20KDlMjuadOmMXFizMudlEol7dq14xFe5KGwxuGM5bcX287FldA2hSapUXP11hWp0vw7AGZ0XoSJiQlDVvRGSeKZsW7SNqNqn/XVzqVl8ReV4otue+2/qBu5imVnUJWxX1SXobdHk7MNrUlKL2d9k+wWmqRkdi9atIgGDRpQuXJlLLBJNLuNbb8qVlJtxt4Vhwxas8LEhEfXHpOvTB6e3X3B7bP3aDeyGY7ZMiVas0suJ/rO78K6SVu5sP8KmVzt6TGjIwOX9mRO9yUGa5+TWgcSkxr1nt93hUxZHADwOn+f/asOs91vNSamJkz/YaHqmerLhv3O2M2DWNR/lcarym0dM8bUvPxHBi3tmWjNy6/MVNUcu7j+ertGreaeJYYlWHPcYRLKo3o1ivA+OJTjZ2MOeJuYKBg3+HtWbTzJ0xdvE6zbziYdzpltGNGvLj/3qfOpblMTguO8f+D3BV1wzmyjVsP+jQM/1f06UO3loQllaNy612w5TeagkES3N5NLsltAGj9Q3rRpU5o2bZro523btlUFd2J69epFWFgYgYGBKBQKChQoQPCjCHweJX31Ud0uNfh33X9ERny6lUVhEvMDnttzKXfO3lfrP+4PdnSDqZiZxyx+RzcHZh+dSK+Snxq0uOP09wnAwdkOiHmOm72zHdP2joqZzvFJmJqZqn68oe9DVcM9uf0cExMTMmd10PiYEn3XHMvOKaZhjD2L6ffyLW+e+xPoF0SgXxAAq8dsonKz8rT+uREnd54nKjKKPmWGx2vsPnycT78X/mo1VG5WjsrNyjO9w6eD63GfKf/WJ/4ZQTsnW7WrzP1fvuXJ7U8vEu27oCuZs2XifUAwb57Hf8FrUu6cvUfN9lWA1FvWP87qCMCU1nN589xftazjLovY9SMkKCTRzzJndSD4Y8gbU822jhmZ3W0J835cjr2zLf4vA6jfsxbBgSG8exOE7ccQTq11ulCF/PxUeQwdx7ckk5tDossy9ncYe3Wj940n2Dvb0nF8K45sOmmw32JKi4iWwBaJS4nsHjlyJIMHf9px2bBhAw2tOyQ5bUP/9j5v5+JKaJtCk9SouceMjhz4/RhtRzTl1ikvfLx9aTboe3IWzqaxnTOm9llf7Vxa9O5NEFGRUTgksB30+RWT2uq7oCvlG5ZhSLXxydpGisvQ26NJZbe29LGcU4Nkt9AkpbJ71KhRmJmZERwczK1bt2hq21mnOgyxXxXbZsTStc1I7Zr9X77F9+kb8pXJo2rn3rx8q3Efpe2Iptw8eZc/Z+0C4NH1J3wIDmPe8UmsGbOR6I9XEqfWsg4OSPz57nGXZ2IMkSehIWEE+gVhaW2l9uLRJ3dilrNj1ky80HhMJqYNntdrOXfOJV7zmEb/w8w85i6MTFkcmH14PL3LDI9T86dHjvi/CsA+Xs0xj7VJKI/q1yzKgaO3iIyMmV76dBYUzOtK3tzO/NSzFgAmCgUmJgqObBvCkAl/8ujj4wJnLN7PLa+X6nXHuQJ92KRtmH18VGnmTBlYOKUtXQet/VR3nHn0fxuMg116tXHZf3zE29uP60Z4eKTG7U1dSXaLuNL0gfKUYGlpiaWlpVq3snVK8NvwdRqHK1atEG55XdkX57ZtiHnRxOtnfrjmdubwhhOJDh/3+aOxz0968SDhhvPWGS+6TmmLmbkZlw9dp0fRwdTt6kGNdlX5udZEhq7qQ3RUNLmL58QinQWhwTEHkd3yuRIVFc3rZ5p3XPRdc2zAlPEszpvn/qoDFTdP3aVqywpYWVup1axUKomKiOb+5UeYmpli52TDjRN3EpxOdFS0Wg0BvoGEfwhPvK7TXpSuVYzt8/aoupWuXZxbcd7qfPPkXbLmywJAv4XdqNSkHKf+Oq/qpqs8JXLh9zLgY336X9b9FnajXL1S+PsEcP1EzJn2xJZ1VFQ0lw9dp0ydEgl+9vqZP+Gh4UZXc+w6HRUZpdox92hdibO7L6FUKlNtne6/qDtRUdEMqT4OH29frWr+nEKhwNwypik21G8xpUUb4du3ASIjI5kyZQpdu3YlW7ZsGvvt0KEDNjY2GvsRhvN5dqdPnz7Jx658LrV/ewm1c7ES26bQJDVqtkpvSfb8WdTai1fevuQpniPJds7Q7bO+27m0KDIiEq+LDylVuxgnd55TdS9Vqxindml3J0NcsdtIQz3Gp8hyNrbtUW22oROS0ss5tUh2C32Lm9sZM2YE0Dm7U3u/Cj61GY5uMVcP69pmpHbNN0/epVCFfGrtXOj7UBQKRaI1W6a3ICpS/cK02IOzCoWCAN+AVFvWAG99Ez8wGXd5JsYQeWJuYYZFOgss01lgZW1JaHDM1dRZ88Ys5zfP/LSrOZczhzee1LLm6I81v0qw39tn7tFlUmvMzE1VB9BL1yr2sWb1R7KUKJKNbFnsGf3vdVW34JAwtau8AZrWK0GpotkZO2MXL1+9IzQsAt83QWRxsePgf4lf5R/3medR0TF1P0/k8Sg3776gZ4cqmJmZqA7aly2Rk9d+Qbz8bN1IbHtTV5LdKSutZ/dXfaC8U6dOPH36lMOHtd/xBHh69wX7Vx8BoOvUdjhmcWBG50Vq/dTrWpPbZ7wSfBbjHxO30Gd+V0ICP3Bu72XMLc3JXyY3GewzsG3u7nj9J+XwhhN0HNeSYav7snHadtzyulK3a03WTfoT75tPCQ0Ow/vmUzK5OTBsVR+CAoJxyu6Iay4n9q8+THhoOHmK5wQgXQYrbB1tyFM8Z8zbmj9eOZ0aNbcd2Yx1k/5U66fnzI5M2jWcDVO3kzmrAz/O6gRKOPjHMZ7fe8m/6/7j57X9WT50Lfcve2PjmJGSNYrw6PoTzu29rHNdOxbsYc6xX2j9c2NO/XWeio3LUqpWUbXbhbfN2838k5NZcHoK2QtmZcf8f2g+5Ht+G/YH9s52BL8LUd2G+/n60XRgfV55v+bxzaeYWZhRs0NVqrYoz8TmM1Xj1+eyVpgoqNCwNEol7F62X3UG+cT2s7Qf0zzB9ePA2mO0Ht6EYav6sHbCFmwdM9JzRkfVumOMNWfOlokC5dy5c/YeGewz0HzQ9+Qskk3td6rvdbrnzI4UqpCPv5fsJyQoFHtnOy79e51A/yDVsmw3sinlG5VRLctGferg++QNT+88B6BI5QK0HNKInYv2plrdCf0WU1pU7L2LRsbMzIyZM2dq9RzNJUt0fy6tSBnJze48xXMS6P+e10/fxGubDf3bS6ydi82Tel1r8ua5P62GNVZrxwyd3Q+vPqZC47LsX30Y5xyZcS+Zi6JVCvLhfWii7ZxbXleDt8+p0c6lVdvm7mb47/3xuvCA26e9qN+zFk7ZHdm99IBO4+m/uDs12lZmfJMZqgwENG4jgeHX6cS2R2O3NxLbDtJVSi3n1CTZLb5EcrPbwsrCaPerNk7bTq6i2Wk/ujl7fjtIi8GNcMnlxO0z93gfEJzgPkqDH2sZvOb7Vx7h0bYS5/deJkseF/KXc6dQhfwEfaw5oew+s/sig5b/yPe9PFWPXuk9tzO3z95TvStMn3Vvn7ebIpUL0n50cwBccjmRp3hOKjYpy4Mr3pStWwIHV3se33qmWp6GzpMuk9tSsmZRdizYQ4Fy7rQb3RxTU1MC3wQxdEVv3n9cN1xyOrF/zRHCQyPIXTzHx5otsctsQ+7iOYgMj+TJ7Zjt0z8mbaXP3M4EB33g/L4rmFvGvGAyo7012+b9o3vNG0/QYUxzhq7sw6b/7cDN3ZW2I5qwd9VhVS0uuZzIXTwHLRqU4ubdF3hWLYhjpoxMmf8PSiWqK8ZjvX0XQnhElFr31ZtOMrBHTYJDwjh76RHm5qYUyONCxgxWbN51Qee6D/53i86tKzJqQD3+2HqWrK72dGxRnjVbTqn6yZbFnmLtq2jc3tSVZHfKSevZrVBqebpl1apVdO3aNdHPg4KCGDRoECtWrNA4HqVSybFjxzh+/Dje3t6EhISQOXNmSpYsSa1atZI826CLkSNH4uPjw+rVq5PuOY7Gdp1UtyUNW9UX55yZGVpjgurz9Dbp2fxiOb/+tFrtGWRxebStTKuhjcheKGvMgezrT9g+f4/a2alYzjkys+7Rr9Q2aZloTTmLZKf/om4UKOdO0Ntgdi87wLpftgIw6/AEHlz1ZvfSA/Rd0I0SHoWJioxm16/7WD1mE+Gh4RyMjr+z6OPtS8fcfQ1Sc6xxfw6hXP1SWFiZo4xW8vqZHwv6rlC9YdvUzJT2Y5pTq2M1HN0cCPQL4vZpL9ZO2IL3jSfxpunZqTqenaqrfV+fq9K8PJ0ntcE1tzMvH/iwesxG1Us+Yn3XoBST/x6Z4PAzuyzmwNqjQPz1o9WwRtTvURtHNwfCPoTz+OZTNk3fEe+gvr6WdbGqhRKt+fYZr0TXj2z5s9B3QTcKV8pPoF8Q//15WvWZMdbskjMzI9cPJGv+LERFRHHlyA1WjFiv9gw7fdZcoJw7FlYWCfazcuR6StQoSuFK+VEqlbz3f0/n/AMJDw2ncb+6NOhZG5dcTkRHxtwN8c+KQ+xZdlDtzHdq/xYTah++RK+LHXXqf2npP5LuKYU0adKEJk2a0Llz51SbpiF9S9kNcGDNUWZ2XRyvbTb0b09TO3dixzk2v1jOgyveRIZHquWXwbM7IJhX3q/J5GqPnZMtfi/8ObLpJEc3n6TX7M4JtnPZC7gZvH1OjXYuNWia3y/RsLcnrYY1xsHVHu8bT1k6eE2SL0X7XGLLU9M2UmLDGcP2qDbbQbpKieWsiWT31+tbym5j3q8qUM6dD8Fh2GbKGK+fEzvOki5Dunj7KE361zV4zUFvg7ly5Dq5i+bELa8LPo982Tp3NzeO31a1c59nN8RsK33/oycuuZwIDgjm8uGY/PZ78ekqeX3VXbB8XswtzON97nXhAdZ21rjkzIxSGfOM8tjlaeg8USpjrmY2tzTn3etAbp/xYs24zaBQ0HdeZ4pX/7huLNnPmnGbCQ+N4EDEpgRqfs0Peft/qrlNJVoO+Z7sBT/WfOMJOxbs5eRf8a9qds6RmT/uL8TTvI2GmrPRf0FX8pfNQ9DbYC7sv0qdztXj9RcVFc3spQcpWtANFycbBozZnOD4urSpSJXv8qo9NgWgVtWCtG1SlpzZMhEaGsHDx2/Y8vdF1fPO43JxsuHP5T9SpcnMeJ/Fyp3DkUE9a1Ewryvv34eyc/9V1mz+dKA8R1YHJnSrkeT2pq4ku1NOWs5urQ+U29raUqVKFVasWIGLi4vaZ/v376dHjx7Y29tz9erVBIf/8OEDc+fO5ddff8XPz4/ixYvj5uZGunTp8Pf358aNG7x48QJPT0/GjRtH+fLlv3zukklfOyZCCGGMUjqwe15I+sxxXMvLrE26pxSybNkyJkyYQPv27SldujTW1tZqnzdq1CjVakkNkt1CxJAD5eJrI9n9iWS3OsluIQxHYarb44SMxYcGpQ1dgs6sdsU/4WHsJLs/Mebs1vrRK1evXqVLly4ULlyYRYsW0bZtW4KCgvjpp59Yt24dw4YNY/z48YkOny9fPr777juWLl1KnTp1MDePf8bw8ePHbNiwgdatWzNmzBh69OiRvLn66OnTp4wfP55Vq1Z90XiEEEJoL9pIbwED6N27NwBz5syJ95lCoSAqKipe97RMslsIIYQ2JLuNh2S3EEIIbUh264fWV5THmjdvHmPGjKF69epcv34dGxsb1qxZQ+nSms9A3bhxgyJFimg1jfDwcB4/fkzevHl1KS2eq1evUqpUKZ2/ADmzLYT4lqT0me0u57vo1P/qsro/YkPoRrJbfOvkinLxtZHs/vpJdguR9sgV5alHriiX7NYXnV/m+eOPP/Lff/+xc+dOrK2t2bVrF8WLF09yuNiw1ubtpxYWFlqF9a5duzR+/vDhwyTHIYQQImUZ69u3PxcaGoqVlZWhy0gVkt1CCCE0kew2PpLdQgghNJHs1g+dDpSfPHmSLl26YG5uzr59+1ixYgUVKlRgypQpDBo0SLsJ6vD206Q0adIEhUKBpoviFQrjvRVBCCG+RtFK4213o6KimDp1KkuXLuXVq1d4eXmRO3duxo4dS86cOenWrZuhS0xxkt1CCCGSItltXCS7hRBCJEWyWz+0Pv0wZMgQatSoQcOGDbl06RKenp5s2bKF1atXM3XqVKpWrar1meRatWpx9OjR5Nas4urqyrZt24iOjk7w36VLl754GkIIIXQTjUKnf6lpypQprFmzhhkzZmBhYaHqXrRoUVasWJGqtaQGyW4hhBDakOw2HpLdQgghtCHZrR9aX1H+119/8e+//1KlShW17q1bt6Z69er8+OOPFC9enKCgoCTHVa9ePUaOHMmNGze+6O2npUuX5tKlSzRp0iTBz5M66y2EECLlGfOZ7d9//53ly5dTs2ZNevXqpeperFgx7ty5Y8DK9EOyWwghhDYku42HZLcQQghtSHbrh9YHyq9evRovWGM5Ozuzc+dO/vjjD63GlVJvPx02bBjBwcGJfu7u7s6RI0e0GpcQQoiUYczPSnv+/Dnu7u7xukdHRxMREWGAivRLslsIIYQ2JLuNh2S3EEIIbUh264fWB8oTC+u4OnbsqNW4oqOjtZ2sRp+fZf+ctbU11apVS5FpCSGE0E6kEQd24cKFOX78ODly5FDr/ueff1KyZEkDVaU/kt1CCCG0IdltPCS7hRBCaEOyWz+0PlBeqFAhTpw4gYODAwA9e/ZkypQpZM6cGQBfX19y5sxJSEiIfioVQgiRJhjzLWDjx4+nY8eOPH/+nOjoaLZv387du3f5/fff2b17t6HLS3GS3UIIIbQh2W08JLuFEEJoQ7JbP7Q+/XDnzh0iIyNVf2/atEntuWhKpZLQ0FCtJ3zs2DEaNmyIu7s7efPmpVGjRhw/flzr4YUQQhinaKVCp3+pqWHDhmzevJl//vkHhULBuHHjuH37Nn///Te1a9dO1VpSg2S3EEIIbUh2Gw/JbiGEENqQ7NYPra8o/1xCL+tQKLRb8OvWraNLly40a9aMAQMGoFQqOXXqFDVr1mTNmjW0a9cuuWUJIYQwMGM+sw1Qp04d6tSpY+gyDEKyWwghREIku42XZLcQQoiESHbrR7IPlH+JKVOmMGPGDAYNGqTqNnDgQObMmcOkSZMksIUQIg0z9sAGuHDhArdv30ahUFCwYEFKly5t6JKMnmS3SMtqm7Q0dAlCGDXJ7q+TZLcQqUup5QtyjY3VrnOGLkFn+19cNXQJBifZrR9aHyhXKBTxzlxreyb7cw8fPqRhw4bxujdq1IhRo0Yla5xCCCGMQzTGG9jPnj2jbdu2nDx5Ejs7OwACAgKoWLEiGzduJFu2bIYtMIVJdgshhNCGZLfxkOwWQgihDclu/dD6QLlSqaRmzZqYmcUM8uHDBxo2bIiFhQWA2nPUkpItWzYOHTqEu7u7WvdDhw4Z9cISQgiRNGM+s921a1ciIiK4ffs2+fPnB+Du3bt07dqVbt26ceDAAQNXmLIku4UQQmhDstt4SHYLIYTQhmS3fmh9oHz8+PFqfzdu3DheP82bN9dqXEOGDGHAgAFcuXKFihUrolAoOHHiBGvWrGH+/PnaliSEEMIIGXNgHz9+nFOnTqnCGiB//vwsXLiQSpUqGbAy/ZDsFkIIoQ3JbuMh2S2EEEIbkt36kewD5V+id+/euLi4MHv2bLZs2QJAwYIF2bx5c4IbAkIIIdIOYw7s7NmzExEREa97ZGQkbm5uBqhIvyS7hRBCaEOy23hIdgshhNCGZLd+mOjS89mzZxk9ejQ///zzF18m37RpU06cOIGfnx9+fn6cOHFCwloIIb4C0UqFTv+Sa9q0aSgUCn766Seth5kxYwb9+/fnwoULKJVKIOYFIwMHDmTWrFnJrsWYSXYLIYRIimS3cZHsFkIIkRTJbv1QKGMrTsKOHTto2bIlVlZWmJmZERQUxOzZs3VaULFy587N+fPnyZQpk1r3gIAASpUqxcOHD3UeZ0qqbdLSoNMXQojUdDD6zxQdX/VDQ3Xq/2hN3YPy/PnztGrVChsbGzw8PJg3b55Ww9nb2xMSEkJkZKTq2Z+x/29tba3Wr7+/v851GRvJbiGE+DpJdkt2a0OyWwjxtdr/4qqhS9CZiYtXio5Psls/tH70ytSpU+ncuTNLly7FzMyMyZMnM3ny5GQFtre3N1FRUfG6h4WF8fz5c53HJ4QQwnjo++3b79+/p3379vz2229MnjxZp2G1DfavhWS3EEIIbUh2Gw/JbiGEENqQ7NYPrQ+U3717l/Xr16vOBAwbNowJEybw5s0bHB0dtRrHrl27VP+/f/9+bG1tVX9HRUVx6NAhcubMqW1JQgghjFBUtE5P9SIsLIywsDC1bpaWllhaWibYf9++fWnQoAG1atXSObA7deqkVX/Tp08nICAAOzs7ncZvbCS7hRBCaEOy23hIdgshhNCGZLd+aH2g/P3792qFW1paki5dOgIDA7UO7CZNmgCgUCjiLTRzc3Ny5szJ7NmztS1JCCGEEdL1+WfTpk1j4sSJat3Gjx/PhAkT4vW7adMmLl26xPnz57+kxCRNnTqVVq1aGVVgJ4dktxBCCG1IdhsPyW4hhBDakOzWD60PlEP8s9HR0dEcOnSIGzduqLo1atQo0eGjo6MByJUrF+fPn9c66IUQQqQdSh0De+TIkQwePFitW0JntZ8+fcrAgQM5cOAAVlZWX1RjUrR8fUeaINkthBAiKZLdxkWyWwghRFIku/VD65d5mpgkfUm/QqFI8BlohnL79m0aNGig80tK5KUiQohvSUq/EKzcvlE69X+u7lSt+tu5cydNmzbF1NRU1S0qKgqFQoGJiQlhYWFqn32JjBkzcvXqVXLnzp0i4zMUyW4hhPg6SXbHJ9ltOJLdQojUJi/zlOzWF62vKI89K50SBgwYgLu7OwMGDFDrvmjRIu7fv59iD30PDw/n8ePHOg+Xt1Ru7l1KOOSLVSvE7CMT43XvWnAgT+++0Hla2spZJDv9F3ajUMX8mJmrr5D+PgG0ztIDcwszOoxrSc32VbB3sePNMz/8fQIoUqlAvPF533xKj6KD43VP6Xrzl3MnyP89e5YfZN2krQC0GdGEblPbs3PhXkKCPqjVu2HqdvavPgKQ4PzE/VzfdUeERRAeGoFlegsAHt98xrpJf3Ll8I0E6ypWpRCenavHG2dqLutvoea433/hivmZfXQi3jee0qvUML3V+3nNyV2na7SrTKthjXHL60rwuxAu7LvCsmG/E+T/3iB164u+TgrXrFmT69evq3Xr0qULBQoUYPjw4SkW1l+Tbym7Ab7v5UnDXp4458wMfGpPzu+7kiK1JaRys+/o/EsbXPM48/LBK1aP2cjJnefU+uk6pR31e9bCxiEDACGBH5jZdTEnd5xLaJSA4bc38pdz58P7UIL8g0ifMR2ZsjgwvukMTv11XmM+G2s793nNoe9DscmUke3z97Bk0Bq91ZbU+tFxfEt+GN9KbZjY7Tp9adjbk5ZDG5PJ1Q7vm89YMmg1N07c0dv0UkJK1dxmRBMqN/2ObAXcCPsQzq1Td1kxYj3PvBL/TQ1b1dfg20qpkd+S3cbjW8tuTQyZKYUq5ov5XSiVvH8XotZeaLOfaqj9lORkd1qr+eXDVwbfRtJ2eyOljmF8y9kd4OBDYCZftW4mkZoPZa7fARu2w3MfcHWGHztAk7o6T1onXg9g0ny4fhtsbaBVQ+jTCRRxLvpev34969at4/nz57i6utK7d2/Vo7KSQ7JbP3R69IomUVFR/P3331p9ydu2bVN7wUisihUrMn36dK0D+/NbBj73+vVrrcbzufcBwUn20zn/AEICP6j+fvc6MFnTAnDOkZl1j35N9Ix6+ozp+N+BsVw9coN/fvuX8t+XIoO9NVvn/M3upf8SHRWzMTVm82DsnW2Z3X0JL+77YOdki7VtOh5df6oal6mZCcuuzOK/radTpd5+5UaQNZ8rQ1f3JTQ4lGv/3aZ+j9o8uOpNufolefc6UK1eU7NPV1AkND9xP9d33TXaVabpwPrsXLCXfauP4NmpOhN3DufGidtYpbeMV9fxbWdZMXK9anyGWNbfQs2q8dik5+e1/bh86Dr2znbJrjc5NSdnnS5cqQA/r+3P0sFrOPP3RTK5OTBwSQ8G/9abic1npnrdW+fsTtY0taGvt29nzJiRIkWKqHWztrYmU6ZM8boL7XxN2Q3w5pkfK0eu5/l9HwBVe9K71DAe33qm8/g8O1XHs1N1htaYkODnBcvnY8ymQawZt4mTO85RqWk5xmwexKAqY7lz7j4AGeysafZTfbwuPOSvxfsICQyh47iW9FvQjYv7rxIaEpbguGMZanujX7kRVG9dkZbDGnN04wk8O3uo+kssn425nYtbs1V6SwYs6cHzey+TVVOslFg/AB7deMLw2pNUf8du1+lDtVYV6T23Cwv7/sbNk3dp8GNtpv4zmm6FB/H66Ru9TfdLpGTNxaoWZtev+7l7/j6mZqZ0mdyW6fvH0L3woER/i4t/Wm3wbaXUyG/J7rTja8puq/SWif72DJ0pd87e5/6Vh3h29uDfP46RLb+bqr0YuX6gxv1UQ+6n6JrdabFmM4uYw1iG3EbSZnsjJY5hgGQ3gHmYJU7P415xrABuJtjvxp0wdzn8MgyKFoBrt2HcTLDNCB6VkjU7PH8JtdoouH0s4SPT74Oh21AoVwK2LAPvZzBqGqRPB11af6pr9vLZTJ48maJFi3Lt2jXGjBmDjY0NNWrUSFZdkt368cUHyu/cucOqVatYu3Ytb9++JTw8PMlh/Pz81J65FsvGxoY3b7T/0cyfP58SJUpgY2OT4Ofv3yfvTPPLh6+S7CfA9x3B70IS/bxO5+q0GtYYl1xO+Hi/ZufCf/h7yYFk1VOjfRUsrMyZ2WUxbUY2Jcg/mF1LDtCkXz3+mBhzBrNMnRIUq1aIH/L0I+htzHy/ehx/g6Vi47JksLeOd0ZTX/VGhEfiffMpbvmy0HxwQxr0rM3cnkvpNbsTjlkz0a/cyATr1XZ+9Fn3qtEbCQ78QJN+9Vg5agOrx2ykSf96FCyfj3bZeiVYV0jgp3XCEMv6W6kZ4KelPTm88QTRUdFUalwu3nSMbZ0uWD4vr7x92blwLwA+3r7sWX6QVsMap37dgxqqNujK1CmRrHFrouuz0kTq+xqzG+DM7otqf68es5Hve3lSsHw+Ht96hpm5GZ0nt6FmuypY26XH+8ZTVoxYx7Vjt5I1vWYDG3Dx4DU2Td8JwKbpOylWtTDNBjZgavv5ALQe3gSvCw8ZXG2cajivCw/Z6ruSvKVzc/34bY3TMNT2RkR4JGvGbeZDcBhN+tVT9aMpn1sMaWi07VxszRHhkSy5+D9mdFpE+9HN1cZliPUDIDoymrevApI1DV01H/Q9+1YdZu/KwwAsGbSGMp7Fadjbk1WjNqRKDbpKyZpH1Z+i9vesrr8m+VsMCQwx+LZSQut1SpPsNn5fY3Zr+u0Zw7YzwJvnb2nSrx69Sg5jq+9Kvu/tmeR+qiH3U3TN7rRYc7FqhQDDbiMltb2h6RiGrr717I6hwDTKXKs+dx2A1o2g/sdjz9mywNVbsGKj+oHy7f/Ayo3wzAfcXKBDM2jXNBmlAX8fhLBwmDYSLCwgX254/BTWbIHOrWKuKt91AFq3bk39+vVj6sqWjStXrvDbb78l+0C5ZLd+JOtAeXBwMJs3b2blypWcOXMGDw8PpkyZovUtA+7u7uzbt49+/fqpdd+7d69Oz6XJmzcvgwYNokOHDgl+fuXKFUqXLq31+HSx5NJMLKzMeXLrGeunbOPq0U9ns+p1r0mnCa1Y1H8l9y97414yJ4OW9yI0OIyDvx/TeVqFyufj2rFbqrDOkteFFoO/xy6zLZP+Gs7in1ZToVEZvC48oNXPjanVoSqhwaGc/vsCa8ZuJjz000ZU3a41uPzvdXyffNow0ne9ABf2X6H7tPbsW3WYy4euY5MpIwGvAhKtV5v5Sc26XXM7k79sHizTW3L33L0klzMYfll/zTXX6VydLHmcmd5xAe3HNI83DWNcp2+dukuXyW0pV68k5/Zexs7JlqrNK3Dun0sGqdslpxM+3r5UaFRG5/EmRde3b3+Jo0eP6mW8VapUIV26dHoZt6F8a9ltYmJC1ZblsbK25NbpmOcBDl3VB5ecmZnSdi5+L95SqWk5pu0dTc9iQ1RXoeuiUIV8bJunftDqwoErNBvYQPV3hYZluHDgCmM3D6ZotUL4PfdXXYmqza3jhtzegE9thmp+NOSzMbdzsTU36V+PiLAIytYtgcJEva0yxPoBMdt1m54tIzwskjtn77Fq9AZ8HqnfYpwSzMzNyFc6N5v/t1Ot+8WD1yhcIX+KTy8l6Ltma9v0gHa/xViG3laKXa9TmmS3cfras1vTb8/YMiVH4WwA5CuTR+N+qjHtp8RKat86rdUcy1i2kRLa3khqv1tbkt0xIs3DeJ7rFigVWIamx+6NS6L9hkfEHKyOy8oy5pEoEZFgbgZb/oZFq2HMT1AoL9y6F3PVefp0yXtEy5WbULa4+nQrlYU5yxU891GS1TWmrs9fnGllZcX169eJiIjA3Fy7EwFxSXbrh04Hyk+fPs2KFSvYsmULefPmpX379pw9e5YFCxZQqFAhrcczePBg+vXrx+vXr1VnTg4dOsTs2bN1ek5a6dKluXjxYqKBrVAoknyDqlKpJDw8nIiICExNTbGysqJmhyocWnc8wf79XwYwp+dS7l18iLmlObU6VmXGv+MY6jFBdTa8w5gWLBv6Oyc+PnvUx9uX7IWy0qBn7WQ1yg4udvh8PBN55+w9ZnRaxPu3wcw8NJ5Mbg7MPzkF75tPKVIpP+GhEUxoNhNbx4z0X9ydjA4ZmN1tiWo85eqVVLuKSd/1xir4XT4ADnwcn0U6C6xt0pGzcLYE63XN5UyRygU0zk9q1J3RPuZ5sqvvzOfD+1AeXH6Ee8lcBPq9T7Su2HEZall/7TVvmraDbtPaM6jquERvTzfGdfrWaS+md1jA6E2DsLAyx8zcjFN/nWdR/1WpWnfAq3cA2LvY4ePti2suZ53HmxQjfHF1ki5dusS4cePYvTvmoNY///xj4IpSzteY3WFhYYSFqd+qHa2MwkRhSs4i2VlwagoWVuZ8eB/KxGYzeXL7Ga65nfFoW4l22Xrh9/ItAFtn/03ZOiWo08WDVaM3aj0Psexd7Hj78TcV6+2rd9i72Kn+ds3tRMNenmybu5sN07ZToJw7/Rf34OndF3jffEpiDL29ESvgs/lLKp+NtZ0rUrkAGR0y4P/iLcuGrqX3vC5YWJpz//KjmPky0PoRu133zOsl9s62tB/dnPknp9C9yKAUfwavrWNGTM1M4129/vZVgFpNxkTfNfea3Ynrx29r/C3GZchtpc/X65Qm2W1cvvbsTpcuHQqFgoc3vDFRJPysW2Pbdu78S2uuH79NBlvrRHPQWPZTdMnutFjz5v/9ZVTbSJ9vb2g6hqEryW6wDE2PxavsmIVbEG0ayTsHX3yyPeDtO7CPf8MMlcvC1t1QqzIUygc378ZcPR4RqeDtOyVOmWDp7zC8D3hWjRkmqys88IbNu5J3oPyNf8xV6XE5OsT897VfzPgrl4WtW7dSq1YtChcuzI0bN9i2bRsRERG8ffsWJycnnacr2a0fWh8oL1SoECEhIbRr146zZ8+qAnrEiBE6T7Rr166EhYUxZcoUJk2KeSZjzpw5WbJkCT/88IPW45k9e3a8HeW4ihcvnuTLUJ49e0b27NlVf8+fPx/P3lUTPVD+zOuF2gt/bp/xInPWTLQc0ojrx29j62iDU3ZHBq/ozaDlvVT9mZqZqN0W9Nv1OTjniHnZWOxjhXYF/qH6/NXj12ovCIrd8Ih9IVmmLDG/umVD1jJq4yAyZ3VAqYRpHRaobg9dNmQtY/8cwsK+KwkPDcezc3XeBwRzaud51Xj1XS9A5qyZ6PRLzIOZIsMiVKNQkni9JiYKjfOTLoOV3usGePHxMTxzeiwla/4stBjcEGV0tMblDBhsWX8LNeculoPfJ2xJ9NmyxrpOu+Ryou/8LqybtJUL+6+QydWeHjM6MnBpT+Z0X5Jqy1r1NpGP3U0+u6IyJRjrLWAHDx7kwIEDmJub0717d3Lnzs2dO3cYMWIEf//9N7Vr1zZ0iSnua83uadOmMXGi+kucclGQPBTm2d0X9Co5jAx26ancvDzD1vRjSPXx5CycFRMTE1bfXaA2nLmlGYF+MQckM2dzZOXNuarPTM1MMDU3U/uNHVr/H/N7//ZpBJ/9xhQK9W4KExO8LjxQHWit370mocGhfHgfqnEeDb29oT5Dn2jK550L9xltO6ckpu0e7jmJh9ceY2JqwritQzExjXluaN5SuQyyfsR90az3Dbh92ou19xfh2ak62+bq6xEb6n9rc4DL0PRRc/9F3chVLDuDqozVehhDbit9vl6nNMlu4/G1Z/eiRYto0KABlStXxgIb8lA4wf6zF8xqVJmSxd2FfuVGMHRln0Rz0Bj2U+LWHEtTdqfFmhf2XcneFYdU/Rp8Gynu9kYSx2SS61vO7nQh6o98snhhzYucd/hrH3RuHb//3p1iDly36R2zf57JPubg98qNYGoC/gHw0lfBmBlKxs36NFxkFGS0/vT3953g5Sv1eSkd5yC6qzPsXht3/tTriB0mtnvvTvDmQxVat26NUqkkU6ZMNG3alBUrViT75ZiS3fqh9YHy+/fv06ZNGzw8PChYsOAXT7h379707t2b169fky5dOjJkyKDzOFxcEr/dQltZsmTh3btPZy/Nzc0J9k/8OVcJuXP2HjXbVwFQ3cY7t+dS7py9r9Zf3DO0oxtMxcw8ZvE7ujkw++hEepX89GbpyIhPt/T4+wTg8NkLNeycYhqLV4/f8Oj6E5yyZ+LNc3+1Zyg+uf0cExMTMmd14Pl9H+p2qcG/6/5TG3dq1Ju3dG7sMsfUO/d4zAaaqZkpSqWS7W9WUd+qHdHR0Wr1+r18q3F+gj++tEPfyzmjfUxLee3YLQ6sPYrnD9WxsrbUuJwBgy3rb6HmfKXzkKd4Tvot7Kaq0cTEhH3hmxhRZ7LqqjBjW6fbjmjKzZN3+XNWzAuVHl1/wofgMOYdn8SaMRuJjlamyrKObTtir3KMvXIyJRljYK9du5YuXbrg4OCAv78/K1asYM6cOfTp04fmzZtz9erVr/LFJF9rdo8cOTLei8Wa2nYGYn4DLx7EtGteFx+Sv0wemg6sz5XDN4iKjKJPmeHxrpiKPWjt98Jf7fdUuVk5Kjcrz/QOnw6exm2X3vrEvzLGzslW7Spi/5dveXI75kWifRd0pXzDMmyZuYuGvTx1nm9Dbm/E0pTPP4xvYbTt3Pu3wWRytefXC/9T9adQKGjUpw4Ne3kyrcMCg6wfnwsNCePR9Se45XVNtJ/kevcmiKjIKBwSqOnzK/mMhb5qjv0tDqk2njfP/bUezpDbSp+v1ylNstt4fM3ZPWrUKMzMzAgODubWrVuq7E6IsWw7/zirIwBTWs/lzXN/jTloDPspoFt2p8Wa4+7DxjLkNlLc7Q1dataGZHd8JkoTLMKt8H4WkeDnVpYwZQRMGAp+/pA5U8yjVqzTK7G3jTlQDjEv+yz2WRMb93j1sv9B5MdV4NUb6DQQtq/49LlZnKOpjg4xB+fj8nv76bPYuqZNm8Yvv/yCn58fmTNnZvPmzVhbW2Nvb6/bQvhIsls/tD5Q/ujRI9asWUPv3r358OEDbdu2pX379ig+P22io8yZM3/R8F/K1NQ03ktJHj5+otM48pTIhd/LACDmhRKvn/nhmtuZwxtOJDpM3OcaRkVGAah27D9364wXXae0xczcTNVYl/EsHhPUL/zJXtCNe5ceUqpWMaysrQgNjtmhc8vnSlRUNK+f+VOsWiHc8rqy7+PLFGKlRr2XD11n29y/qdGuKj/XirkCcNLfI8icNRMDKo5RXX0Qt96bp+5StWWFROcnPDQ8VZdz7C2uwYEh2DnZJFoXYNBl/S3U3P+7kUSEfQrFhn3qUMKjCJNazsbnkS+hIWFGuU5bprcgKlL94EvshppCoSDAN8Agy/rmqbt4dqqe6PSSIyra+AJ77ty5TJ06lREjRrBlyxbatGnD3LlzuXz5Mnny5DF0eXrztWa3paVlvGf8JXbrtkKhwMIi5hEbpmam2DnZcOPEnQT7jY6KVvs9BfgGEv4hPPHf2GkvStcqxvZ5e1TdStcuzq1Td1V/3zx5l6z5stBvYTcqNSnHUI/xNOxTJ1kvdzLk9oajW8xWvqZ8VipRHbiIZSztXNWWFehbbiThH2KuiCzuUZi+87tydNMpNk7bTkR4pEHWj8+ZW5iRvaAbN05ofslrckRGROJ18SGlahfj5M5zqu6lahXj1K7zGoY0HH3UHPe3qMsjTIxtWymlSXYbj685u2NlzJgRSDy7AaPYdu63sBvl6pXC3yeA6x/bZU05aAz7KaBbdqfFmmP3YeMy5DbS59sb2tasDcnu+JSKaCLMw8icSXN/5mbg8vFpJv8chuoVwMQk5sC1c2YlT19AQw0XNsd9lIrZx6YqR9aE+y1RGOb99vH56B8fNX7yAjg5KuM9ksXc3Fx18vGff/7Bw8MDExMTzTOTCMlu/dD6QLmbmxujR49m9OjRHD58mFWrVlGpUiUiIyNZs2YN3bt3J1++fFpPeOvWrWzZsoUnT57Ee2P3pUuXEhlKN506deLp06ccPnw46Z7j2PXrPtX/d53aDscsDszovAiApgPr88r7NY9vPsXMwoyaHapStUV5JjafqRrmj4lb6DO/KyGBHzi39zLmlubkL5ObDPYZknUb7eENJ+g4riXDVvclIjyCF/d9aP1zE/avOczYP4eQ3iYdK0asZ/r+XCw+N51nXi/YOudves7oyP7VhwkPDade15rcPuOV4DMY9VnvxmnbccvrSt2uNVk36U/V9F8/9cMmU0ZaD2vE2glbaDeyKeUblVHVe3jDCdqPac6wVX1YO2ELto4Z1eYnNer+YUIrytQpwfb5u8lZJDsebSrhlteVQL8ghq3qQ1BAME7ZHXHN5aRWlyGX9bdQ871LD9XGF+D7jojQCLXajXGdPrP7IoOW/8j3vTxVt4/2ntuZ22fvqa7qTo26245sxrpJf6r1M2jZjzqPWxNjPLP94MEDWreOuTevRYsWmJqaMmfOnDQT1sn1LWU3QNcpbTm39zKvn/qRLmM6PNpUolj1woyqN4Xn917y77r/+Hltf5YPXcv9y97YOGakZI0iPLr+hHN7L+s8vR0L9jDn2C+0/rkxp/46T8XGZSlVq6jaoxy2zdvNwtNTyVcmD7O7L6FkrWLU71mL34b9gYWVhaodNrbtjY3TtpOraHbaj27Ont8O0mJwI1xyOXH7zD3eBwQn2D7fPHnXaNu59mOaq9pnW8eMNOlXD3+fAAJev1O144ZYP3rO7MiZvy/i++QNdk42tBvdnPQ26Tiw9qjO09PGtrm7Gf57f7wuPOD2aS/q96yFU3ZHdi89oJfppYSUrLn/4u7UaFuZ8U1mEBIUiv3HqwOD34Uk+luMZeht6c/X65Qm2W08vqXs1pSDht52VpgoqNCwNEol7F62X9VenNh+VrWfaoz7Kbpmd1qsucGPtQy+jaRpe0PTMYzk+Naz+63jC9IF22AWYUGUaSTvHF4RbRKlepb4nOXw6jX8b3TM34+exry4s1ghCAyCNVvg3iOYPvLTOPt2hqkLIIM1VPkOIsLhxt2Y/hN6nEtSvq8Fv66FUdOgZwd4/AyWr4M+nT49euXRU7hx9i+KFy9OYGAgq1ev5t69e0yfPl33CX4k2a0fOr3MM1aNGjWoUaMG7969Y/369axatYpZs2ZRpEgRrl27luTwCxYsYPTo0XTq1Im//vqLLl268ODBA86fP0/fvn2TU1KCsmTJkqwzM3HPOmZysccpu6Pqb3MLM3rO/AFHNwfCPoTz+OZTRjeYqrYDtXflYUJDwmk1tBHd/9eB0OAwvK8/Yfv8PSRHSGAIwz0n0X9RNwpXyo8CBUqUVGlegdtnvBhQYTRP7zxnhOckZhwaT/nvS+NeKhf//Xma1WM2kd4mPZWbf8evP61OcPz6rHfx+ekEvQ1m69y/2TrnUyBFR0VzcsdZHFwdWHx+Okqlkvf+71k8IKbG0OBQRnhOou+CmHEE+gWp5ie16o6OVhIZHknLoY2p36M2j649ZlS9Kbx++oa+C7pRqWk5oiKj2fXrPlVdhl7W30rNSTHGdfrA2qOky2hF4751+XHWDwQHBHP58A1WjFhv0Lpjr3ZIScYY2MHBwVhbxzzix8TEBCsrK7Jly2bgqlLX157dAHbOdgz/vT8OrvYEvwtRtSeX/o2Zv1ldf6X9mOb0nNUJRzcHAv2CuH3ai7P/6H4QFGKuGJ7Sdh6dJ7Wh0y9tePnAhylt5nLn3KfbfL0uPMDE1ATLdBaMWj9Q1X3A4h6EhYSrDoga2/bG4vPT+RAcRrqM6WgxuBEAved0BuDEjrNY21nHa5/DQ8ONtp1LaJsiXxn1DXZDrB+ObpkYtWEgNo42vHsdqNqui3uVW0o6tuUUNpky0GFsCxxc7fG+EbNe6Wt6KSEla27Uuw4As4+qv+NgZpfFif4WwfDbSgmt1ylNsts4fe3ZXb11xUR/e4bedi5W9dNLU38Y35ofxscc+JnZZbEqU4xxP0XX7E6LNTfpX9fg20i6bG9ou5wT861nd5RZBH4uT4gyjcI0yhSL0PS4PHPHzSXmDr3XfvAyzs1W0VGwZnPMgWkzM/iuJGxcDG5xnmrX8ntIZwmrNsGspZDeCvLmhh9aJG9+M2aAlbPgl3nQ8kewyQCdW8X8i1vX6tWrefToEWZmZnz33Xds3LiRrFkTuUxdC5Ld+qFQptAbAK5cucKqVatYsGBBkv0WKFCA8ePH07ZtWzJmzMjVq1fJnTs348aNw9/fn0WLFiU5Dn2qbdLSoNMXQojUdDA6Za9Qy7/9F536v9tsXIpOPyEmJiasXbsWW9uYV6O3bduWefPm4ezsrNZfo0aN9F6LMZHsFkKItEmy+xPJ7sRJdgshvlb7X1w1dAk6M3HxStHxSXbrh9ZXlH/48IGDBw/i4eGheqZYrMDAQJ48ecLMmTMTGVrdkydPqFixIgDp0qUjKCgIgI4dO1K+fPkUC+ynT58yfvx4Vq1alSLjE0IIkTRjPLMNMbcFx/Xjj+qPnFEoFERFRaVmSXon2S2EEEIbkt3GQ7JbCCGENiS79UPr+6OWL1/O/Pnz44U1gI2NDQsWLGDFihUJDBmfi4sLfn5+AOTIkYMzZ84AMS8uSaEL3AHw9/dn7dq1KTY+IYQQWlDq+C8VREdHJ/nPmMM6uSS7hRBCaEWy22hIdgshhNCKZLdeaH1F+fr16xk7dmyin//000/88ssvWj3rrEaNGvz999+UKlWKbt26MWjQILZu3cqFCxdo1qyZtiWxa9cujZ8/fPhQ4+dCCCFSnrGe2f4WSXYLIYTQhmS38ZDsFkIIoQ3Jbv3Q+kD5vXv3KF68eKKfFytWjHv37mk1ruXLlxMdHQ1Ar169cHBw4MSJEzRs2JBevXppWxJNmjRBoVBoPBuuUMiKI4QQqSkFL1BKMb///nuC3W1tbcmfPz8FChRI5YpSh2S3EEIIbUh2Gw/JbiGEENqQ7NYPrQ+UR0ZG8vr1a7Jnz57g569fvyYyMjLR4Zs1a8aaNWuwsbFh3bp1tG7dGjOzmMm3atWKVq1aJTpsYlxdXVm8eDFNmjRJ8PMrV65QunRpnccrhBAi+YzxzPbAgQMT7P7+/Xuio6OpX78+GzZsSPA257RMslsIIYQ2JLuNh2S3EEIIbUh264fWzygvXLgw//77b6KfHzx4kMKFCyf6+e7duwkODgagS5cuvHv3TocyE1a6dGkuXbqU6OdJnfUWQgihB0qFbv9Swdu3bxP8FxYWxpkzZ3jy5AkTJ05MlVpSk2S3EEIIrUh2Gw3JbiGEEFqR7NYLra8o79q1K4MHD6Zw4cJ8//33ap/9/fffTJ48mTlz5iQ6fIECBRg5ciQeHh4olUq2bNmCjY1Ngv3+8MMPWtU0bNgw1UZAQtzd3Tly5IhW4xJCCJEy0tJ+komJCWXLlmX27Nn07duXWbNmGbqkFCXZLYQQQhuS3cZDslsIIYQ2JLv1Q6HU4dRvhw4d2LBhAwUKFCB//vwoFApu376Nl5cXrVq1YuPGjYkOe+rUKQYPHsyDBw/w9/cnY8aMCT7HTKFQ4O/vn7y5SSG1TVoadPpCCJGaDkb/maLjy71hqk79P2w3KkWnnxze3t4ULlxY405gWiXZLYQQXx/JbsnuxEh2CyG+BftfXDV0CTozcfFK0fFJduuH1leUA6xbt45GjRqxYcMGvLy8UCqV5M+fn4kTJyb5rLOKFSty5swZIOZMgpeXF05OTsmvXAghhFFSRhvfs9KS8uDBA7JmzWroMvRCslsIIURSJLuNi2S3EEKIpEh264dOB8oh+S8AievRo0dkzpz5i8YhhBDCOBnjS0USo1QquXz5MkOGDKFhw4aGLkdvJLuFEEJoItltfCS7hRBCaCLZrR86HyhPCTly5DDEZIUQQqQGI3xWmr29fYK3Hb9//56oqCjq1q3LhAkTUr+wNESyWwghvmKS3V8lyW4hhPiKSXbrhUEOlAshhPiaGd+Z7blz5yYY2DY2NhQoUICCBQsaoCohhBDCWEh2CyGESDvqZClu6BJ0djA6pcco2a0PcqBcCCFEyjLCM9udO3c2dAlCCCGE8ZLsFkIIIdIWyW69MDF0AUIIIb4ySh3/pYItW7YQHh6u+tvb25uoqCjV3yEhIcyYMSN1ihFCCCGMjWS3EEIIkbZIduuFTgfKIyMjMTMz48aNG8me4J49e/Dy8gLg3r177NmzJ9njEkIIYYSUCt3+pYK2bdsSEBCg+rtYsWI8fvxY9XdQUBAjR45MlVpSm2S3EEKIJEl2GxXJbiGEEEmS7NYLnQ6Um5mZkSNHDrWzAbrKkiULgwYNAmDgwIG4ubkle1xCCCGMj1Kp27/UqUmp8e+vmWS3EEKIpEh2GxfJbiGEEEmR7NYPnR+9MmbMGEaOHIm/v3+yJliyZEnKli1Lx44dKVeuHCVKlEjWeIQQQhgpI7wF7Fsn2S2EEEIjyW6jI9kthBBCI8luvdD5ZZ4LFizg/v37ZMmShRw5cmBtba32+aVLlxId1sPDA4VCwdu3b7l69SolSpTg2LFjKBQKDh8+rHv1QgghjE8q3dYltCfZLYQQQiPJbqMj2S2EEEIjyW690PlAeZMmTZI9sSNHjgDQunVr+vTpw6FDh9i0aVOyxyeEEML4KIz0bPX+/fuxtbUFIDo6mkOHDqme/Rn3OWpfI8luIYQQmkh2Gx/JbiGEEJpIduuHzgfKx48f/0UT3Lx5Mw4ODvTo0YMrV66wefNmWrdu/UXjFEIIYUSMNLA7deqk9vePP/6o9rdC8fWekZfsFkIIoZFkt9GR7BZCCKGRZLde6HygHGLOAGzdupUHDx4wbNgwHBwcuHTpEs7Ozkm+JKRUqVJ4enoCMGXKFHx9fZNTghBCCGMVbXzBFx0dbegSDE6yWwghRKIku42SZLcQQohESXbrhc4v87x27Rr58uXjf//7H7NmzVJdNr9jxw5GjhyZ5PB58+bF3t4eADs7O/Lly6drCQmKiori1atX+Pr6ftHbwYUQQnyhr+ClIg0aNODly5eGLiPFSHYLIYTQSLLb6Eh2CyGE0EiyWy90PlA+ePBgOnfuzL1797CyslJ1r1evHv/991+KFqeNHTt2UKlSJdKnT0+WLFlwdXUlffr0VKpUiZ07d6Z6PUII8c3TY2AvWbKEYsWKYWNjg42NDRUqVGDv3r0pWHyM//77jw8fPqT4eA1FslsIIYRGkt1GR7JbCCGERpLdeqHzo1fOnz/PsmXL4nV3c3PDx8cnRYrS1rJlyxgwYABdu3Zl2LBhODs7o1Qq8fX1Zf/+/bRp04aFCxfSo0cPncf9fS9PGvbyxDlnZgAe33zGukl/cn7flRSei08qN/uOzr+0wTWPMy8fvGL1mI2c3HlOrZ9MWRzoPr095eqVxCKdBcEBIWTKYs/2+XtYMmhNouM2tzCjw7iW1GxfBXsXO94882PD1O3sX31Eb/OTs0h2+i/sRv5y7gT5v2fP8oOsm7RVrZ/Ov7Sm/ZgWat2C34XQxF79mUYpSZ/LuUa7yrQa1hi3vK4Evwvhwr4rLBv2O0H+7/U2P3GXc0RYBOGhEVimtwA+rbdXDt9I9Ps3dM2R4ZF8eB9Kept0hH0I59apu6wYsZ5X3r4a11lD153YOt24b13aj22BrWNGFAoFEWER/L3kAEuHrNVbXclZp597vWR29yXcu/Qw5QvS49u3s2bNyvTp03F3dwdg7dq1NG7cmMuXL1O4cGG9TTet+1ayOzGVm5bj+151yFMiJ+aWZjy++Yw/Jm7hwoGrKTaNhMS2GYUq5kOpBJRK3r8LUbVzz7xeaMxnY83u9qOb07B3HexdbFEoFISGhLFhynY2Td+ht7pAu7auUtPv6Du/C5my2GNiYsLLR75Majk70baucKUC9JjenmwF3LBMb8mrx6/Zs/wg2+ft0eu8aLOc9fX9N+ztScuhjcnkaof3zWcsGbSaGyfufNE49U1qTgWS3UbnW8/uYav64tm5erzu3jef0qPo4BSbzue+NLtjFa6Yn9lHJ+J94ym9Sg3TW71xa07uvpWDix0/zupE3tK5ccvrws6FezXu86Z03QXK54VoJZERUaS3Scf4pjM49dd5IOEsPL/vClnzZTHYdp1kt3ak5lQg2a0XOh8ot7KyIjAwMF73u3fvkjlz5hQpSlszZ87k119/pVu3bvE+a9KkCWXLlmXKlCnJCuw3z/xYOXI9z+/HbIR4dqrOxJ3D6V1qGI9vPdN5fJ6dquPZqTpDa0xI8POC5fMxZtMg1ozbxMkd56jUtBxjNg9iUJWx3Dl3H4AMdtbMOzGJq0duMqr+VBxc7PhpaU+e3E66njGbB2PvbMvs7kt4cd8HOydbTM10vqFAxTlHZtY9+pXaJi0T/Dx9xnT878BYrh65Qb9yI8iaz5Whq/sSGhzK1jm7Vf1VbVGB0JAwZnRexKtHr7FxzIgi+WUZdDkXrlSAn9f2Z+ngNZz5+yKZ3BwYuKQHg3/rzcTmM5M1P7ou5xrtKtN0YH12LtjLvtVHVOvtjRO3sUpvGe/7N4aah//en2wFsvDXon0cWn+cLpPbMn3/GB5df4KtY8YE11ljqDuxdbpm+yoE+b/nt5//wPfJG2p3rEbjfnXZu/KQ0bQdAb7vyJLHmfcBwTrXow19vn27YcOGan9PmTKFJUuWcObMma8+sL/Et5DdVuktCQ0JS/CzolULcenfq6wavYHggGDqdPHgl10j6F9+JA+ueCdnNnRqM+6cvc/9Kw/x7OzBv38cI1t+N6bvH0P3woMYuX5govlsrNnduF89Prz/wNyey/B74U+7Uc1pOqAeOxf8k+h3kJSUausG/Nqdtz4B7Fy4lx7/68CB1Yc1tnWhwaH8tXgfD689JjQ4jCKVCzBwaU9Cg8P457d/kzUvKbWcU/r7B6jWqiK953ZhYd/fuHnyLg1+rM3Uf0bTrfAgXj9980Xj1hepOXVIdhufbz27F/+0mhUj16v+NjUzYdmVWfy39bRuxceRGtkNkN4mPT+v7cflQ9exd7ZLdr261pzcfStzS3PevQlkw9RtNP/p+y+qNzl1L/lpNSVrFqVc/VLx+ksoC1sM+d6g23WS3UmTmlOHZLd+6HygvHHjxvzyyy9s2bIFiHlb6ZMnTxgxYgTNmzfXOOz9+/dVZyNSwvPnz6lcuXKin1esWJEXL14ka9xndl9U+3v1mI1838uTguXz8fjWM8zMzeg8uQ0121XB2i493jeesmLEOq4du5Ws6TUb2ICLB6+xafpOADZN30mxqoVpNrABU9vPB6D18Ca8furHrG6/YmVtxYg/+jP9h4W0H615uZepU4Ji1QrxQ55+BL2Nudr21ePX8fqr07k6rYY1xiWXEz7er9m58B/+XnIgWfNTo30VLKzMmdllMRHhkXjffIpbviw0H9RQFSRl6pTAOWdmnt/z4fjWMwmOJy0t54Ll8/LK25edC2NuR/Hx9mXP8oO0GtZYrT99LudVozcSHPiBJv3qsXLUBlaP2UiT/vUoWD4f7bL1ivf9txjS0OA19y79M62HN6FJv3r8Nnwds7r+ylbflWR0yECHnH0SXGeNYVkntk5nK+Cm9lu7evQmFRqXNZq2I1ZCbUCK0TGww8LCCAtT30mytLTE0tJS43BRUVH8+eefBAcHU6FCBV2r/KZ8C9mdt3Rurh+/neBnn18VtWr0Rio0KkuFhmXUdqj02WYAvHn+lib96tGr5DC2+q7k+96eieazMWe3uaUZ3QqNVNXldeEhW31Xqn0Hhmrrnnu9ZHC1cQD0+F8HHl5/wsuHrxId74Mr3mrrwKvHr6nc9DuKVi6odqDcEMtZm+9fV80Hfc++VYfZu/IwEPPbKONZnIa9PVk1asMXj18fpOZUItltdL717A4JDCEkMOTTNBqXJYO9dbwrc40pu2P9tLQnhzeeIDoqmkqNy8WbjrHtW716/Jpff1oNQN0uNRKdlj7r3r3sIK2HN6H7tPaqfhLLwilt5qmNyxDbdZLdmknNqUSyWy90PrU1a9YsXr9+jZOTEx8+fKBatWq4u7uTMWNGpkyZonHYfPnykS1bNn744QdWr16Nt7d3cusGoHDhwixfvjzRz3/77bcUOdNhYmJC9dYVsbK25NZpLwCGrupDkYr5mdJ2Lj8WH8p/W08zbe9o3NxdkjWNQhXycfGg+q1CFw5coVDF/Kq/KzQsg9fFB4zdPJitvivJYGeNSy6nJMddoVEZvC48oNXPjdn4dBmr78yn58yOWFhZqPqp170mXSa3ZfWYjXQrNIjVozfQ+Zc21P6hWvLmp3w+rh27pdrAALiw/wqObg645HRS1eX34i3Z8mdhX8Rm9oZtZOWteWQv8OkN7mlpOd86dRfHrJkoV68kAHZOtlRtXoFz/1xS9ZOay9k1tzPVW1fEMr0lD696J/j9G1vNLjmdsLZND4D3jSeJrrPGWDck/FubtGs46Yyo7djis4IlF2dQr3vNZE1PH6ZNm4atra3av2nTpiXa//Xr18mQIQOWlpb06tWLHTt2UKhQoVSsOO35FrJbl8cuKRQK0mdMpzZMarYZOQpnAyBfmTyJ5rMxZ/fndXWd1g5Q/w6Moa0DKFW7mE7TyVMiJ4Uq5ufafzdV3YxlOX/+/evKzNyMfKVzc/GzW9MvHrxG4Qr5ExnKsKRm4yXZrX+S3erqdq3B5X+v4/vk05WdxpbdEHNwNkseZ/6Y+GeC0zDGfSttpFbdAPZOtoD2WWjo7TrJbnVSs/GS7NaOzleU29jYcOLECQ4fPsylS5eIjo6mVKlS1KpVK8lhjx07xrFjxzh69Cj9+vUjNDSU7NmzU6NGDTw8PPDw8MDNzS3J8cSaPXs2DRo0YN++fXh6euLs7IxCocDHx4eDBw/y+PFj/vnnH43jSOiMSrQyChOFKTmLZGfBqSlYWJnz4X0oE5vN5MntZ7jmdsajbSXaZeuF38u3AGyd/Tdl65SgThcPVo3eqPU8xLJ3sePtq3dq3d6+eoe9i53qb9fcTjTs5cn5fVd488yP7fP30Hd+V155+2oct2suZ4pULkB4aAQTms3E1jEj/Rd3J6NDBmZ3WwJAhzEtWDb0d07siHnWp4+3L9kLZaVBz9oc/P2YzvPj4GKHz2dnTwM+zp+9ix0+3r645nLGMasDD689Zuucv3HJ5USHsS349cL/aJu9FxnsrNPUcr512ovpHRYwetMgLKzMMTM349Rf51nUf5Wqn9RYzhntMwCw+s58PrwP5cHlR7iXzEWg3/sEv39jqDnuutF2RFOC/N9rrNlYlnVC63SRygUwNTclo7019i52ZHF34dKh60bRdmybu5sN07ZToJw7fed3JSIsgn//SPmXQel6C9jIkSMZPFj9WZOazmrnz5+fK1euEBAQwLZt2+jUqRPHjh37JkI7ub7m7E6XLh0KhYKHN7wxUZhqVUOLIQ2xsrbk2JZTqm6p2WZ0/qU114/fJoOtdaL5nMnVwWiz+/O6xv45BH+fALxvPgUwmrZu6aWZ1O9Wkztn7yXZ1m14shTbzDaYmpnyx8QtqquJwHiW8+ffv65sHTNiambK21cBat3fvgpQW47GRGpOPZLdxkey+xMHFzvK1SupuoMolrFl96ZpO+g2rT2Dqo4jOio6wWkY476VNlKzbmt7a0C74xhg+O06yW51UnPqkezWD50PlD958gRnZ2dq1KhBjRqfbstRKpU8ffqU7NmzJzpslSpVqFKlCmPGjCEiIoLTp09z9OhRjh49ysaNGwkLC8Pd3Z27d+9qVUu1atW4ceOG6jk5sS81cXFx4fvvv6dXr17kzJlT4zimTZvGxIkT1brloiB5KMyzuy/oVXIYGezSU7l5eYat6ceQ6uPJWTgrJiYmrL67QG04c0szAv1izmJmzubIyptzVZ+Zmplgam7GrsA/VN0Orf+P+b1/+zQCpfparlCod1OYmPDw2mMKVcjHiDqTeXjtMVnzZ8Hzh+oa59HERIFSCdM6LFDdvrZsyFrG/jmEhX1Xki6DFU7ZHRm8ojeDlvdSqzn43afb3X67PgfnHB+fh/fxnQFx5+fV49dqL1ZRfjY/MTP0aZ5MTBRERykZVusXVV0+j3wZuX4g9brVxOfRqzS1nLMXzErf+V1YN2krF/ZfIZOrPT1mdGTg0p7M6b4EW0ebVFnOLz7eYj6nx1Ky5s9Ci8ENUUZHJ/j971y4zyhqjl03Wg5pSK5i2Xl0/Qn5y7knus665HIyqrrjrtNKJfzSYjYZ7KzJYJeetiObUqnpd+QpkQs3d2eDrdNeFx6oDk49uOJNjsLZaNirjl4OlOv6UhFtbveKy8LCQnU7cZkyZTh//jzz589P8IVXyTVq1CgcHBxSbHyG9rVm96JFi2jQoAGVK1fGAhvykPTVbB5tKtFxfEvGN5lBwOuYZ7+mdpuRxd2FfuVGMHRln0Tz+crhm0ab3XHr6r+oG6HvQ7FzssHCyoLw0HDylsplFG0dwMV/r2nV1g2uOg6rDFYULJ+X7tPa8+K+D0c2nTR4niT2/YeHhmucH03iT1oRvx4jIzWnAsluoyPZ/Yln5+q8Dwjm1M7zqm7GmN25i+Xg9wlbeH7vZYLzYaz7VkllijFnoTFs10l2J0xqTgWS3Xqh84HynDlzUrBgQXbt2kWePHlU3X19fcmVKxdRUVFajcfc3JyqVatStmxZKlSowP79+/ntt9+4f/++zvX873//02mYuBI6o9LUtjMAkRGRvHgQsxHgdfEh+cvkoenA+lw5fIOoyCj6lBke70zxh/ehAPi98KdXyU9vt67crByVm5VneodPO41xn7n21if+mSo7J1u1q6f8X77lfcB78pfJw68XYuZZoVBgYmpCk/71aNy3LvWt2hEdrV6T38u3vHnurza9J7efY2JiQuasDgQHfgBgbs+l3Dmrvvzjzt/oBlMxM49ZZRzdHJh9dKLaPEZGfLoNyd8nAIfPXlxi52QTM68f5ymhuh5c8UahUJCneA5ePX6dppZz2xFNuXnyLn/O2gXAo+tP+BAcxrzjk1gzZiPR0TENrL6Xc8aPZ+CvHbvFgbVH8fyhOlbWlgl+/z+Mb2EUNceuG4Uq5OenymPoOL4lmdwcEl1njWVZJ7ZOB/oFEegXBMDqMZuo3Kw8rX9uxMmd5w22Tn/+Mtont59TpVl59CKVtyWUSmW8O4MSs3btWhwdHWnQoAEAP//8M8uXL6dQoUJs3LiRHDlyADHZ8DX5GrN71KhRmJmZERwczK1bt1TZrUm1VhUZvKI3k1rN4fKh66ruCpOYjUx9txk/zuoIwJTWc3nz3F9jPocEhRh9dvdd0JXyDcswrf18/ndwHJmzOvD8vg8KExOjaeteP/PDvUQukuLz8a4x7xtPsHe2peP4VhzZdDLV1g1ttpHifv+xL5vXxbs3QURFRuGQwHIM+OxqfWMhNaciyW6jI9n9Sd0uNfh33X9qbakxZne+0nnIUzwn/RZ2U9VoYmLCvvBNjKgzWXXnlbHtWyWVKamdhcEBMXUmlYXupXIbdLtOsjthUnMqkuzWC50PlAMULFiQcuXKsWXLFmrW/PScW23OtISGhnLq1CmOHDnC0aNHOX/+PLly5aJatWosWbKEatWS98yo5ErojEpit38pFAosLMy5f/kRpmam2DnZcOPEnQT7jY6KVh1kBwjwDST8Q7hat7hunfaidK1ibJ+3R9WtdO3i3Dr16Sz/zZN3cc6ZWe2sZqufG1O5aTlO7jjP5hk74x28Bbh56i5VW1bAytqK0OCYHVS3fK5ERUXz+pk/4aHhvH7mh2tuZw5vOJFgfYDa8+CiImM2zBKdnzNedJ3SFjNzM1XAlPEszpvn/qqd0YTqyl4oK0qlkhcPXqW55WyZ3oKoSPXusUGsUCgI8A0wyHIODgzBzskmwe9fqUR1UNmQNfdf1J2oqGiGVB+Hj7dvkuussS7rxOpWKpVERUQbdJ3Omi+L2nBZ87nq74WeegzsUaNGUa9ePbJly0ZQUBCbNm3i6NGj7Nu3T6vhp06dypIlMbc+nj59mkWLFjFv3jx2797NoEGD2L59u/6KN7CvLbtjZcyYEUg8u2N5tKnEkJV9mNpuntr7DAACfN/pvc3ot7Ab5eqVwt8ngOsnYl5cpqmtu3zoOmXqlDDa7B64pCflvy/NUI/xZC+UVVUXYFRtnWMWe53bOoVCgbml2ce69L9ugPZ5Enc56yoyIhKviw8pVbsYJ3eeU3UvVasYp3ad1zCk4UjNqUiy2yh969kNUKxaIdzyurIvziOxwDizu/93I4kIi1CNr2GfOpTwKMKklrPxeeRLaEiYUe5bJSU1sxDgrW/MgUlNdReqkJ+BS3sabLsutl7J7vik5lQk2a0XOr/MU6FQ8OuvvzJmzBgaNGjAggUL1D7TpFq1ajg4ODBw4ED8/f3p378/jx8/5vbt2yxdupR27drp9Ky0pHTq1EntNjVddJ3SliKVC+CcIzM5i2Sny+S2FKtemEMbjvP83kv+XfcfP6/tT+Wm5XDJ6US+Mnlo/XNj1csFdbVjwR5Kexan9c+NyZY/C61/bkypWkXZPv/TDuG2ebvJXzYPFRqVITw0glzFclC52Xf4PvUj0D9IdYa669R2/Lymn2q4wxtOEOgXxLBVfcheMCtFqxSk54yO7F99WHX7zx8Tt9BmRFOaDqiPW15XchbJTp3O1Wk+6Ptkzc/hDSeICItk2Oq+5CycjUpNytF2ZDO2zf1brZ/oyCgm7xpBqVrFaNCzNj+v6UdkRBR7Vx5Kc8v5zO6LVG5Wju97eeKSy4nCFfPTd34Xbp+9p3pGq76X87g/h9B+TAv2rzmsWm/d8roS6P+eYav68NOyH5m6d7Tq+z/113mD1zz1n1EUqpCPPcsOEBIUir2zHZf+vU6g/6d1dsTv/Rn+e3/VOmsMyzqxdToqMopJu4ZTsmZRPDtVY+jKPqCEg38cM+g6XbB8XtqObEqWPC54tK1M/R612PWrdiGnK4VSt3+6ePXqFR07diR//vzUrFmTs2fPsm/fPmrXrq3V8E+fPlXdPrZz505atGhBz549mTZtGsePH9d1VtOMbyG7474o6fP22aNNJX5e249lQ9dy+8w97J3tsHe2I71NelU/+mwzRm34iTqdq2NiasLuZftV0z+x/awqnz9vnw+sPWa82R0dTd0uHqwctYEchbPRa3Ynjmz6tCNq6Lau74IulP++NAClPUtwZvcFMmdzBOKvG4361KH896Vxc3fBzd2FOp2r03JIIw6t/9QeGGo5J/X9J8e2ubup160mdbp4kL2AG73mdMIpuyO7lx5I9jj1TWpOHZLdxudbz+5Y9brW5PYZL9U+WFzGlt33Lj3E++ZT1b8A33dEhEbgffMpoSFheq85uftWAHmK5yRP8Zyky2CFraMNeYrnJHvBrKmyrPOXyUPzn76n/ejmALjkciJP8Zxc/+82gX5BLD43nYk7flZl4bVjNxm8opfBtusku5MmNacOyW790PmK8tiz14MGDaJAgQK0bduWa9euMW7cuCSHPXXqFK6urnh4eFC9enWqVq2Ko6Oj7lVrKUuWLJiY6HwuAAA7ZzuG/94fB1d7gt+F8OjaY0bVm8Klf68BMKvrr7Qf05yeszrh6OZAoF8Qt097cfafy8ma3q3TXkxpO4/Ok9rQ6Zc2vHzgw5Q2c7lz7tOtQl4XHjCh2Uy6TW1Ph7Et8Hnky5JBa6jZrorauDK52OOU/dNyDQ0OZYTnJPou6Mbi89MJ9Avivz9Ps3rMJlU/e1ceJjQknFZDG9H9fx0IDQ7D+/oTtR1QXYQEhjDccxL9F8VMM+htMFvn/s3WObvV6rp+4g4laxZl+v4xREdF8/KRL5Nbz1Wd3U1Ly/nA2qOky2hF4751+XHWDwQHBHP58A1WjFiv6kffyzk6WklkeCQthzamfo/aqvX29dM39F3QjUpNyxEVGc2uX/exeswmwkPDDV5z7AZyoz51adSnrqq/lSPXU6JGURafn45SqeS9/3sWD1gNGMeyTmydvnTwGuXql+J/B8aijFby+pkf/+u0yCjbDk1XWHyRhN9dlCJWrlz5RcNnyJABPz8/smfPzoEDBxg0aBAAVlZWfPjwISVKNErfQnZXb12RA2uPAvHb5wY9a2NmbsaAxT0YsLiHqvuBNUeZ2XUxoN82o1jVTy+8+WF8a34Y3xqAmV0Wq/I5ofbZWLM7fYZ0AAxf++mARpY8Llz+97rqOzBUW7d23Ga6TWtPk371AbCwNKfb1PZky+fGzK6L460bChMFXae2wyWXE9GRMVe5rxi5nj3LDqr6MdRyTur7T45jW05hkykDHca2wMHVHu8bTxndYKraVXXGRmpOJZLdRudbz26A9Dbpqdz8O379aXWCwxtbdmvDGPetAJZenqn6/3xl8lCzfRV8vH3pmLuv3uuee2IS5hbmqs96z+kMxGynjfCcxIxD4yn/fWncS+Xivz9Pk69MHoNu10l2J01qTiWS3XqhUOr4ZHoTExN8fHxwcnIC4NatWzRq1Ij06dNz8+ZNjc9KCw4O5vjx4xw9epQjR45w5coV8uXLR7Vq1ahevTrVqlUjc+bMXzZHKaC2SUtDlyCEEKnmYPSfKTo+95lzdOr//rDBSfeUQtq3b8+dO3coWbIkGzdu5MmTJ2TKlIldu3YxatQobty4kWq1pCbJbiGE+LpIdkt2S3YLIUTaItmdNrJb59O+1apVw8Li0y1ShQoV4ty5c9jb2yf5rDRra2vq1q3L9OnTOXv2LG/evGHGjBmkT5+eGTNmkDVrVooUKaL7XCTi6dOndO3aNcXGJ4QQQgtKhW7/UtHixYupUKECr1+/Ztu2bWTKlAmAixcv0rZt21StJTVJdgshhNBIstvoSHYLIYTQSLJbL3S+ojwlRUdHc/78eY4cOcKRI0c4ceIEoaGhWr/BOylXr16lVKlSOo9PzmwLIb4lKX5m+39zder//vBBKTp9oV+S3UIIYXiS3UIXkt1CCGF4kt1pg87PKK9evTpdu3alZcuWpEuXTqdho6OjuXDhguoWsJMnTxIcHIybmxseHh4sXrwYDw8Prce3a9cujZ8/fPhQp/qEEEJ8OV1fFJKarl27lmB3hUKBlZUV2bNnx9LSMpWr0j/JbiGEEJpIdhsfyW4hhBCaSHbrh84HykuXLs3PP/9M//79adWqFd26daN8+fJaDWtnZ0dwcDCurq5Ur16dOXPm4OHhQZ48eXQuHKBJkyYoFAqNt54l9UZwIYQQKcyIA7tEiRIac8Hc3JzWrVuzbNkyrKysUrEy/ZLsFkIIoZFkt9GR7BZCCKGRZLde6PyM8tmzZ/P8+XN+//13Xr9+TdWqVSlUqBCzZs3i1atXGoedOXMmt2/f5tmzZ6xbt47u3bsnO6wBXF1d2bZtG9HR0Qn+u3TpUrLHLYQQInkUSt3+paYdO3aQN29eli9fzpUrV7h8+TLLly8nf/78bNiwgZUrV3L48GHGjBmTuoXpmWS3EEIITSS7jY9ktxBCCE0ku/VD5wPlAKampjRu3JidO3fy/Plz2rVrx9ixY8mWLRtNmjTh8OHDCQ73448/ki9fPg4dOpTouBctWqR1HaVLl9YYykmd9RZCCKEHSh3/paIpU6Ywf/58unXrRtGiRSlWrBjdunVj7ty5zJ49m/bt27Nw4UJ27NiRuoWlAsluIYQQiZLsNkqS3UIIIRIl2a0XyTpQHuvcuXOMGzeOWbNm4eTkxMiRI3FycqJhw4YMHTo00eGaN2/O+fPn43WfN28eo0aN0nr6w4YNo2LFiol+7u7uzpEjR7QenxBCiBRgxIF9/fp1cuTIEa97jhw5uH79OhBzm9jLly9Tt7BUJNkthBAiHsluoybZLYQQIh7Jbr3Q+UC5r68vs2fPpkiRIlSpUoXXr1+zadMmvL29mThxIsuXL+evv/5i6dKliY5j7ty51K9fn1u3bqm6zZo1i/Hjx7Nnzx6ta6lSpQp169ZN9HNra2uqVaum9fiEEEJ8OWO+BaxAgQJMnz6d8PBwVbeIiAimT59OgQIFAHj+/DnOzs6pW5ieSXYLIYTQRLLb+Eh2CyGE0ESyWz90fpln1qxZyZMnD127dqVz585kzpw5Xj/lypWjbNmyiY6jS5cu+Pn54enpyYkTJ9i8eTNTp05l7969Gs9UCyGEEF9i8eLFNGrUiKxZs1KsWDEUCgXXrl0jKiqK3bt3A/Dw4UP69Olj4EpTlmS3EEKItEqyW7JbCCFE2pKWs1vnA+WHDh2iSpUqGvuxsbFJ8taroUOH4ufnR5kyZYiKiuLAgQN89913upYjhBDC2BjxIyorVqyIt7c369atw8vLC6VSSYsWLWjXrh0ZM2YEoGPHjgauMuVJdgshhNBIstvoSHYLIYTQSLJbL3Q+UJ5UWCdmwYIF8bq5urqSPn16qlatytmzZzl79iwAAwYMSNY0hBBCGJ4i2tAVaJYhQwZ69epl6DJSlWS3EEIITSS7jY9ktxBCCE0ku/VDqwPlJUuWRKFQaDXCxN6GPXfu3AS7m5qacvLkSU6ePAnEvDFbAlsIIdIwIz6zDeDl5cXRo0fx9fUlOlp962LcuHEGqirlSXYLIYTQmmS3UZDsFkII7Zi5ZTF0CYYn2a0XWh0ob9KkyRdP6NGjR188DiGEEMYvtV8UoovffvuN3r174+joiIuLi9rOqEKhMOrA1pVktxBCCG1JdhsHyW4hhBDakuzWD60OlI8fPz5FJlaxYkWaNGlCo0aNVG85FUII8ZUx4sCePHkyU6ZMYfjw4YYuRe8ku4UQQmhNstsoSHYLIYTQmmS3Xpgkd8CLFy+ybt061q9fz+XLl7UapmfPnpw9e5ayZcuSL18+hg0bxvHjx1EqjfjbFUIIoROFUrd/qent27e0bNkydSdqRCS7hRBCJESy23hJdgshhEiIZLd+6Hyg3NfXlxo1alC2bFkGDBhAv379KF26NDVr1uT169cah+3cuTPbtm3jzZs3zJs3j8DAQFq3bo2TkxOdO3dmx44dhISEJHtmhBBCGAGljv9SUcuWLTlw4EDqTtQISHYLIYTQSLLb6Eh2CyGE0EiyWy+0evRKXP379ycwMJCbN29SsGBBAG7dukWnTp0YMGAAGzduTHIclpaW1K9fn/r167Ns2TLOnj3Lrl27GDduHO3bt6dGjRqMHDmSSpUq6T5HQgghDMuIL1Zyd3dn7NixnDlzhqJFi2Jubq72+df6UivJbiGEEBpJdhsdyW4hhBAaSXbrhUKp4/1Xtra2/Pvvv5QtW1at+7lz5/D09CQgIOCLCnrw4AG7du0iW7ZstGjR4ovGlVy1TdLm7QFCCJEc/2fvvuNruv84jr9udiJkiEwjZsyqIrVqVmyxVVFbzSo1S42qUWqV1ihi1aj5a6k9a8/U3iJWREiETEnO7480lytDbuQuPs/HI4/2nvm5x7nnfc73rJ1Ja7N1eqVGzNBq+AuTBmbr/DNSsGDBdPupVCpu3rypt1r0SbJbCCHeLZLdySS7s06yWwhhyiy8PA1dgta23pmVrdOT7NYNra8oT0pKSnUmAMDS0pKkpKQMx42KimLz5s20bds2Vb/79++za9cuWrVqxcCB+vvHE0IIkc2M+Mz2rVu3DF2CQUh2CyGEyJBkt9GR7BZCCJEhyW6d0PoZ5bVr12bAgAHcv39f3e3evXsMHDiQOnXqZDju+PHjuXz5MgCxsbEa/Tw9Pdm8eTMTJkzQtiQhhBDGxIiflfa+kuwWQgiRIcluoyPZLYQQIkOS3Tqh9RXlc+bMwd/fH29vb/Lly4dKpSI4OJgyZcqwYsWKDMf9448/WLs2+TbBggULcurUKVxcXLCysgJgxIgRtGzZMkuhnZiYSFhYGObm5ri4uGg9vhBCiOyh7zdqv8mgQYMYP348OXLkYNCgQRkOO336dD1VpV+S3UIIITIi2W18JLuFEEJkRLJbN7RuKM+XLx+nT59m586dXL58GUVRKFmyJJ9++ukbx338+DGOjo4APH/+nJiYGAoWLMiJEyfw9PTExsaGhw8falXPli1b+PHHHzl+/DgvXrwAIGfOnDRp0oQJEyaQP39+bb+iEEKIt2FkgX3mzBl1Ppw5cybd4VQqlb5K0jvJbiGEEBmS7DY6kt1CCCEyJNmtE1o1lCckJGBjY0NgYCB169albt26Ws2sZMmS7Nq1i8KFC6sXTGRkpPp2sIULF6Z6WUlGli9fTt++fenWrRtVq1YlICCALl26UKBAAVavXk358uU5fPgwRYsW1apOIYQQWafK+LGZerd37940//99IdkthBDiTSS7jYtktxBCiDeR7NYNrRrKLSwsKFCgAImJiVma2aBBg+jSpQsvXrwgKSmJyMhIFEVh+/bt7Nmzhy1btrBz585MT2/ixIn89ttv6peUtGzZkubNmxMcHEyvXr347LPPGDZsGBs2bMhSvWkZsrgvfp1rpuoedOEOPcpkfGvB2/AunZ/+s7tRskoxFAVQFJ4/jebi4SssHP47d6/ex9LKgg6jW1On/Sc4uTsSdvcxKydu4MTWM3z5UyeKli+EV1F3Ns3eytyBS3RW6+s1+/gW4UXcC+JjX2Btl3y73+0Ld1kxfi2Be84bbc3Pnjxny4KdrBi/js+GN6PbxPZsmLWFhcNWpFnzB5+UNOi68XrNgLruTbO3Ev0sJlXN2wOSN15N+9TDv2993LxdCQ0OY+XE9exafkBnNb9e9/Pw5zy8HUZuTyccXR24fuYWv34dwK2zt412/UiITyDmeSx2uWyJi4lX/xYfBoWmWXPKsq79eTXaDPHHq6gHUU+jObktkPlDlvHsyXO91P36OqITRnZm+1VLly6lVatW5MiRw9Cl6I1kNzi7Oxp8mxHzPJZnT55hl9OW3J7OjGk+hcP/O5Fudm8P2Gu024v2I1vSpHc9nNwdUKlUxEbHsXLCBlZP3qizugCqtfiYzt9/hkdhNx7ceEjAqFUc2nRcY5iqzT+m76wu5PZ0wszMjAe3QhnfehrXTt9Md7oZ/RvoyuvLee+qgzi5O+LboBxWtlbcu/qAWb0XUKlJhTTr+qBGSabtHZdqul1LDODOlftpzFE3db++fuiqria9/Wg92J/cHo4EXbjL3IEBnD94OcvT0weTq1my26hIdkOpqsXpMbk9+Yp7YW1nzcPbj9iyYCcbZm7Jtnmk5W2Ou6Miomjcqx6FP/TG0tqC2xfusnzcH5zc8a9eas7qMYqh95OKVyoKSQoJLxKxy2Wr3keC9DN6z+//GDS7LSzNMbcwTzXM5nk7iHzy3KTaCtLyam4buq0grXaZA+uOUL1V5VTj9ag5gbs3QrG0Mufzr+tTq3kFnPPkIiwkgtWzd7BjzTHd1Vzcgz7jW1Hsw/w8i4hm64rDrJy1XWfzAyS7dUTrR6+MGjWKESNGsGLFCpydnbUat3Xr1oSFhTFu3DhiYmKoUKECAAMHDqRGjRocO3aMMmXKZHp6t2/f5uOPP1Z/rlChAiEhITx48ABPT08GDRpEvXr1tKoRwMbOmtjouDT7/fJ1AAtH/K7+bG5hxvzAnziw7ojW80nhViAPK279Sl2z1mn2t8tpy487vuPfvee5fOw61wNv4te5FruW7yefjxeTt4+ie6mBjPh9AE5uDkzrPpf710NwdHXA3MIMS2tLnoZFsnLielp+3TjLdWa15n6+w6n9eTWaD2jIpp+3si1gL36dajJu0zDOH7yEjZ21Udact5gHgwP6ktM5B5Wb+nLj3yAARq0ZlOZy/mf9MYOuG6/WHBsVy9kDl2jYoy43/g3Ct2E5nj6KTFUzQONefnSd+Dkzes7nyonrFPctwsAFvXgeHsXRzaf0UveAeT0pWakYm+fvYP2MLdTp8AlTdo7m0tGr5HCwM8r1Y9iy/uQr7sn/5mxj9+//0OWHdkzePopb54JxcMmZ5rIuVbU4Q5f2Z96gJRz96xS5vZwZMLcHg37rzbiWU/VS96vryLrpm7M0zzcx5hupBg8eTJ8+fWjSpAkdOnSgfv36WFhoHYUm533PbmPYZtRsW4XWQ/zZt+ogfp1rqYdLL1OMeXvh368BMc9jmNFzPo/vP+Hzb1vS/KsGbPr573T/Dd7Er1NN/DrVZHDtsWn2L1GpGKNWD2TJ6NUc2nicqs19GbVmIAM/+Y7Lx68DYO+Yg69+7U54SASbZm+lx48d2BGwh+cRURnOO71/g6zSdjkXKefNkCX9uHbqJt82nEhE6FM8C7vR6fvPsMtpk2FdnX2+IjoyRv356aNIvdWdUZ5kZ1012lSh94wuzO77GxcOXaHRl3WZ+PdIupUayKM7YVmeri6ZYs2S3cbnfc/u2KhY/vfLNm6evU1sVBylqxVnwLyexEbF8fdvu7SeF+j+uLtGmyqc3vUvi0euJCoiinpdavH9n8PpX2kENwKDdF5zVo9RDL2fNPfrAMrVKYNvw49SDZdeRhs6u4tVKETfn7uybvpfbJ63C+/S+ZiyczTepfNjbmFmMm0F92+E4FnYPd3cNoa2gvTaZQC6V/+B6OcvX1j89HHyxSQj5nbBySUnM4es4n5QGI4u9pibZ339cM3rzNIjY2iQb0DaNdtbM+H3Ppw9co0BjafjVTAP30xvT2xMPBsWJJ+8KVWxUJbnnx7Jbt3Qusqff/6Z69ev4+npSYECBVKdHTh9+nSG4/fu3ZsePXrg6OjIggUL6N69O6dOnaJEiRLaloK3tzcnT57E29tbPW8zMzPc3NwAcHZ2Vj8fRxtFyxfi3D+X0uwXHRlNdGS0+nMV/4rYO+VIdeayXueatBnij3tBV0KCHrFp9t/8NXeH1rUA1G7/CVY2lkzt8gsv4hMACLsXTrN+DehVbgjrQhfRuLcfH9QoyReF+/EsPHnj8PD2I/U0fv06AID6XWqnOx9d1rx45CqiImNo1q8Bi75dScCoVTTr34ASlYrxeb5eRllz0IU7FCidn47ftWJEgwm0H9kStwJ5MlzOhl43gi7cwauYJy0HNaFRz7rM6DmPXtM64ZI3N/18R6RZ86cdqrNlwS72/3EYgJBboZSoVIy2Q5tphJ+u6laZmVHi46LsXL6fKv6+zO63iOXj1vJphxp8UKMkn3l9aZTrR+/yQ2k7rBnN+jXgt2Er+Knrr6wLXUROZ3s6ePdJs+YSlYryMCiUTbO3AhASFMqWBTtpM8Rfb3Wr15GBTXTWUG7MZ7YfPHjAtm3bWLVqFZ999hm2tra0bt2aDh06UKVKFUOXpzPve3Y/vP3I4NuMJaPXEBMVR7N+DdTDVKj3YbqZ0uqbJka5vahQ70MsrS3oVvJlplw9eZN1oYs0/g0sLC3o/MNn1Pn8E3I42hF0/g4Lh6/g7P6LWaqtxYBGnNp5ltWTNwGwevImPqheihYDGjGx/SwA2g5rxr2rDxhUYzQAPX7swM1zwTy4mf5zeDP6N3iVLpdznQ7VCb0dRm5PZ66cSG70z1fcC5+Khd9YV0ToU6KeRqfqro+6M8qTN9WljZYDG7Nt8R62LtoDwNyBS6jgV5Ymvf1Y/O3KbJlHdjPFmiW7jc/7nt03AoM0Gpcf3n5EteYfU6ZaCY2GcmM67r545KrG9BaPXEXlphWp3KSCxncxtmMUY9hP2jx/J22HNaP7pJdXOKeX0caQ3UEX7uDk7kSzfg1YPi75SufH95/gXTqfSbUV9JzaEUg/tw3dVpBeu0yKiMfPiXqlgR+gfM3ilPm4MF2qjed5RPJ3Cr37JNV86rb5mFa9auOeLzcP7z7hfwEH2LLsYJZqrtW8AlbWFkwf9Dsv4hO5feUBXoVcad6jprqhvPhHBbI07QxJduuE1g3l/v7+b/3gdQsLC5YsWULt2rVZtmwZ7u7uWZpO37596d69OydOnMDGxoaFCxfSsWNHzM2Tb4E5duwYxYoV03q62tzSXL9rbc7sOkdo8MurQxp0r0OnsW2Y038R188EUaScNwMX9CI2Ko6dy/ZrXU/JSsU4u/+iOqwBTm4PpPuk9hQolQ+AYhUKc/XkDdoM9efTDtWJjYrlyF8nWfLdGuJj4984D33W7FHIDZ+KhbG2s+bK8WtGXbNPhcKYW5jz4EbyQbZ7IbdML2dDrxvbFu/hzO5z5Mqdk4iHEenWbGltmar2uJh4fHyLYG5hTmJCok7rtrW3wdzCnItHr1Kvcy3cvV0JCQrFJoc1cTHxRr1+pCxrd29XzP47Qx10Pjjdmi8evkKXH9rh26Acx7eewdHVgeotK3P875cHOvquOyQoVOtpvomxvX37VRYWFjRu3JjGjRsTHR3Nxo0bWblyJbVq1SJv3rzcuHHD0CXqhGT3m+nzt5eictMK6WaKsW4v0qr57H+NHK/+Gwxe3Ad37zxMaDeDx/fDqdrcl0lbR9Lzg2+4dz1E+9oqF2P9TM3G2JM7AmkxoJH6c+UmFTi5I5Dv1gyiTI2SAHxU9wP17dtpyejfICVrdL2cKzepwIXDl6nTvjrrQxcTeieM50+jM7W/Mff0VKxsLAm+eJffJ6zn330X1P0MmScZ1aUNC0sLipUvxJofN2l0P7XzLKUq+2RpmrpmijWDZLcxkuzWVPhDb0pW8WHJd6vU3Yz9uFulUmGX01bjexrjMUpm6LNuJ1cHIP2Mtstpa/DsfrVer6Ie1Gn/CfdvhBDzLNak2gpSpJfbhm4rSPF6u0yKOVuHYGVtQfC1h6z6eTtnj1ynUt0yXDt7h9a96lC7ZQVio+M5tvM8y376m/jY5BN69dtVpsM3Dfh11DpuXLhL4VJ5GTDlM+Ki49i1Lv39xvQU/8ibc8du8CL+5eOyTu+/RNcRTXDL58zDO0+4ePKW1tN9E8lu3dC6oXzs2LHZMuNWrVpp/Dcr+vbti5mZGStWrCAuLo7OnTvz3Xffqfv7+vqycmXGV23ExcURF5d8u5etrS0qlYqb54MwU6V+3tTrnP97lmTKlUwpOoxqxfzByzi4Mfm5mSFBoeQvmZdGPetmaUPh7O5IyGtnSCMePgWg8/dtOffPJewdclC6WnHiY18wtsVUHFxy0v+X7uR0tmdat7lvnIc+as7pZA9AwOVZxDyP5caZWxQpV5DIx8+NsuaabavgVcQDACd3RwBy5LIjXzGPNy5nQ64bJT5O3knd8d/0rGytyJHLFu9S+dKs+dSOQBp0q8PhTSe4dvomxcoXon6XWlhaWeDgkpMnIRE6rTvmeSwXDl+h3hc1k/t5OlGqqg9Obg6gkG7db6LP36GTuyPthjfn2ZPnGa7TF49cZXKHnxm5eiBWNpZYWFpw+H8nmNN/scHq1kVDuTGf2X6VnZ0d9erVIzw8nNu3b3PpUtpXNL0LJLvfTJ+/vRQeBd0yzG5j3F6kVfN3a7/hSUgEQRfuJH+vQm7UaleVz/P14vGDcADWTfuLivU+pF6XWiweuQptObk7Ev7a8gt/+FSdz8nzdaVJLz/Wz9jMykkbmHd6Kg271eHysWvpPkvzTf8GoPvl7FHIFY9CyVdlzhu8FCsbS776pQdJiUnp1vXkQQTTe87j2qmbWFpb8mnH6kzZNZrBtcaqr840xPqRmbq04eCSE3MLc8IfRmh0D38YofFvb0xMsWZAstsISXYnWxk8D4c8uTC3MGf5uD/Ud2qA8R93t/qmCTY5rNVX4+q75sweo2SGPuvO4ZR890R6GW1uYY6DS06DZver9dZoXRl7xxzERcdnat0wpraChPgETu86y2/DVqSZ24ZuK4C022Vio+KYNXQ1187dwdLKgjotKzJpdV+GtZmDe/7clKpYiPi4BMb3WISDkz19J7Qip6MdMwYn74O2G1CP38Zv4vC2swA8vPOE/MXcadC+apYayp1dc/HwjuZV6+Fhz5JrzpPc79KpIK2n+0aS3TqhdUN5oUKFOHHiBLlz59boHhERwUcffcTNm+m/LEkXevfuTe/evdPsl5m3bk+aNIlx48YxZ84cGjVqRLVq1bAiF4Up9cZx/TrX5HlEFIc3vfwhObjkwjW/C4MW9mbggl7q7uYWZhq3svx2bjpuBfIkf/jvQoE/I5er+z+8/UjjpQ6K8tov4L+rCzyLuNPPdziDF/VBUWBSh5/Vt/TM/2Yp3639htl9F2V4plhfNd//79bn6T3mkdfHk1aDmqAkJRllzXny5qbPzC5M6jCbKTu/g/+6q1Rkajkbat3Ikzc3nb5PfslOQtwL9SQU0q95xfj1OLk78vORCahUKsIfPmXH0n20HdqMpMQkvdT94xezGb7iKwCm7xvHtdO3ePIg+YDSGNcPtf9+h62/aULBD/Jz61wwPr5F0q3ZvaArfWd1YcX4dZzcHkhuDyd6TOnIgHk9md59rt7r5vXu2UWHgT1p0iQ2bNjA5cuXsbW1pUqVKvz444/4+GT+Kr2UM9q///47u3btIl++fLRr1461a9fqrnADk+zOmN5/e/8xM1OlmymbZm8zyu3F6zX3n9ON2OexOLrmwsrGivjYeIp+VBAzMzMCrvysMSlLawsi/3t2ZJ58Liy6MEOjbnNLC43adv9+gFm9f3s5gddqU6k0u6nMzLh68oZGQ/ypXWdp0qteug3lGf0bzO67CFt7G50vZ5WZGbfO3qZYhcLcvXKfS8eu8fmIFrjky51uXXev3ufu1Zcvx7x09Cp58uam9TdNOffPJYOtH2+qK6tSz1aVuhYjY3I1S3YbHcnuZIOqj8bG3oYSlYrSfVJ77l8PYe/qQ0Z/3F3rs6p0HNOaMc2mEPHf856N9RjlTVeVG8s+R0rdo9cNJj72hUGz+9V6KzUuz/GtZ7CytjS5toK46HiCLtzh+pnkq51fz21DtxWk1y7zPCKKbatePt/98ukg8ng40vLLWsnrDQpTvlpG9LPk55cv+H4TI+d34ZdR67C1s8LVy4mvp7ZjwI+fvazZ3IyoZy+fdz5v13Bc8ya/HyJl1dxweYq6f+jdJ/T6dHKayzp5HM31OX9RN7KdZLdOaN1QHhQUlObbt+Pi4rh79262FKVPI0aM4Ntvv8XCwoKoqCguXrxIc4fOmRq3fivnkNAAAQAASURBVJfa7FpxgIQXL28JUZkl/xhm9JzH5WPXNYZPSkxS///IRhOxsExe/C5ezkzbN45e5Yao+786zSchETi7OWpM68ufkp8lNaHtDMLuPeHxg3DC7j3ReO5V8KV7mJmZkSevc4a3Oeur5pz/nRk+u/8iO5buw++LmtjksDbKmouWL4STmyOTtn6bPJ9/xmNuYa7e+MW+8sKItGo21LpRtHwhHPPkUtcMqOveELaYhjafk5SUlKrmad3mMvPLBTi5OfDkQQQNe35KVGQ0T8Oe4ZAyPR3W/eDmQ37u8xvzTk9lQNVRXDlxneU3fiE+Js4o148Ujq7Jy6ZkZR++rjaKjmNak9vLOd2a2w1vzoVDV1j7058A3DoXTExUHDP/Gc+SUatISlL0WvfrV2dmF13eArZ//3769u1LxYoVSUhIYOTIkfj5+XHx4sVMvVG7Xbt2/PXXX9jZ2dG6dWv27dtn9M9Iyw6S3RnT9zYjRUbZ/cWYVka5vXi15r4/d6VSkwpMaj+LH3eOVm+bVWZmJCYk0qfCMI1aIPkuIoDH959o1FGthS/VWlRicoeXjeuvLpfwkNRX4zq6Omhsx548CCf4kub6/OjuY4p8WJD0vGn/KeW5l7pczk8ehBN6J4xiFQqrv0/Yg/AM8yStDLx87Bp12n8C6H+dzihPXq1LW0/DnpGYkIhzGv/2r9+hYSxMsWaQ7DZGkt3JUu5+DDofjJObAx3HtGHv6kNGfdxdo00VBi3szfg20zUeb2GsxyhveiSavuuO+u+50ukta5VKRUToU4Nm96v1+lQswtiWU6nW/ONMtckYW1tBmeol8O9bX91W8Gpux8fGG7StIL12mZSamxb+Rr1PfPlMELWaV+BqYDCPQ56qG8kB7lx/iJmZGS7ujuqXf/48dDWXA2+nW/PoTvMxt0y+48XF3YEpa7+ib/2XDeWJL15un5+ERuL02n6+Y+7kJyqkXFnepm9dsptkt25kuqH8zz//VP//9u3bcXBwUH9OTExk9+7dFCyY/oGIIXTq1Ik7d+6wZ8+edIextrZW/3/OnDkBMnXr9gc1SuJV1INtizSnHRH6lEd3H+NRyI09K9N/EcCrz6JKTEj+gd2/kXZAXTx6la4T2mFhaUHCiwT6ze6Gb4OPeBISwbmDyVfnXDh8heqtK2OTw4bYqOQfvlcxDxITk3iUxosL9F0zQAW/soTde6Le2YmKjMbRNZdR1nxm9zl6lBlE/a61qP15dYZ+Oo7Bi/uQlJhEobLeWNlapVuzIdeNM7vPsX7GX+qaAcb/NZw8eXPzVZVRJCUlpVlzyrzC7iV/rtW2Ksc2n0ZRFL2vH1dOXMfeMQeObg6Ym5sZ5fqRUnP/Od1JTEzim5qjCQkKfePv0NrOisQEzUajlDBO3uGLMMhvMdvpMLC3bdum8TkgIABXV1dOnTpF9erV3zi+SqVizZo11KtXz2Teuv02JLszR9/bORev5KtTMtpmKArqHf8UxrC9SKl5wNyeVGpcnsG1xpC/ZF6NbfP1M7cwtzDH0TUX5w9eTnNeSYlJGnVEhEYSHxOffm1HrlL+0w/YMHOLulv5umW5ePiK+vOFQ1fIW8xTYzwXT6c0X/ClHucN2+342HidL+cLh65QsnIxjeUc+zwWlUqlVQYW/rAgjx9EAIbbt3tTXdpKeJHA1VM3+ajuBxzadFzd/aNPP+Dwn9rfGq0PplgzINltRCS706dSqbC0Tl4HjPW4u9ZnVflmUR8mfj5T470i+qoZtD9GeRN9ZgpAeGjyScX06k5KSsIhT/rtCPrI7pR6oyNjiImK5diW0zi5Ob5xORtbW8HgxX24c/k+a6ZsUrcVpJXbhmorSK9d5s7l+6xbelhjX7lwqbw8CY3k4smbVGv8ITZ2VsRGJ1/F71UoD4mJSYSFRBAf+4KwBxG4F8jN3k2n0qwBIPRe+Cs1Jy+bB0FhaQ57+XQQnYY2xsLSnIT/GtA/ql6csJAI9SNZrG2t0p1Xlkl260Smq23WrBmQ/GU7deqk0c/S0hJvb2+mTZuW6RknJiYSFhaGSqUid+7c6heBZCdPT0/MzMy0Hi/l1mGArhM/x8XTmSmd52gM06BrHS4dvap+Huerlo/7gz6zuhIdGcPxrWewtLbEp0Ih7J3sWT9jc6rh32TPyoN0HN2aIQF9UZmpqNykPIoCm+dvx+m/M20HNxyj/aiWDFnch2cRUbjmd8GjoCvbA/YQHxtP4bLeANja2+DgkovCZb15EZ+gvvJKlzWvmrSBL8a2oUK9D9kwazPepfNT67OqeBX1IPLxM6Ot2auoB/W71mHF+LUEXbhDbFQcQRfukNvLOd2awXDrRlo1Azy685hcuXPSdkhTlo79g89HNKdS0wrqmr2KelDctwiXj13D3smelgMb4106n8Y6r+u6q7euTOtvmrBh1hY++vQDek7pyO0Ld3FydzDa9aPn1I6UrFyMv+ZuJ/pZLE5ujpzedY7IJ8nrdFrL+ujmUwxc8CWNe/mpH6XQe0ZnLh27pn6Orz7WkXYjWrBivO5ud9L2zParz6xMYW1trXFAlZ6nT5N3pJ2dnTM1rzc9P/NdI9n9cjtm6G1GwTL5aT+yJVt+20mrQU1xL+jKpaPXeB4RleZ27sKhK0a5vdiz8iBfTvuC+l1qMa3HPAqUyseXP33B3tUvD47uXXvArhUHGLq0PwsGL+X6mSByueSkXO3S3DoXzPGtZ7SubePPW5i+/3vaDvXn8P9OUMW/Ih99WoaBn7x8Ru76mZuZdegH+v7chVM7kp85Wd7vQ5aP+4M8+Vx4dCcs1bqxZ+VB9f7T0rF/4OCSk55TOmrkuq6X8/XAW9RqV5UTW8/gWdgdH98ilKzsw7P/1o208qT5gIY8DHrE7Qt3sLCyoE6H6lRvVYlxLaeq52OI9SMzdWlr/YzNDFvWn6snb3DpyFUa9vwU1/wubJ63I8vT1DVTrFmy23hIdidvn5v2qUdocBh3Lt8DoHS14rT+pimb5mxVj29sx91Vm1Vk6NJ+/Pp1AJeOXlOPExcTr77K2BiPUcCw+0kbZm6mdLUStB/ZEgD3gq4ULuvNuQOXiHz8jF+OT+bu1fusm/4XPad0ZOey/ZSrU8ag2Z2SgYmJiexctp+kxCSNfQpTaSuwd8pBDkc7XsS9oEDJvAz6rRclK/uoc9sY2grSapfJkz83nt4uvIhLoFXv2pT4yBvv4p6M77GI0wcu025APQZN+5wV07eSy9mebiP92bHmqPplniumb6XX9y2JfhbHyb0XsbS2oOgH+bF3sGXjb/u0rnnvplN8/nV9Bk1vz5o5O/EqmIe2/eqyctZ29TDHdp2nWsOyWk87I5LduqFStHxYXsGCBTlx4gQuLi5ZmuHGjRv56aefOHnyJAkJyWfiLCwsqFChAkOGDFHvGBjS1C6/sGPpPgCGLO6Lm3ceBtceq+5vl8uONfcX8OvXAWxduDvNadRqV402g5uSv2Te5AbWc8FsmLVF48qSFG4F8rDi1q/UNWudbk3epfPTf043PqheMt2aLx29St+fu/FhrVIkJiTx56/bCBi1mvjYeHYmpW4UCwkKpWOhvjqvubhvEZKSFBLiE7CytSLqaTS3zt5mzZT/8ehOmNHW/Cw8is3zd7Di+3UA/LRnLDf+DWLzvB3p1mzIdSOtmlPqDg1+hLOHM6Wq+qAoCs+fPKezzwDiY+PJX9yLEb8PIK+PJ4kvEgnce56Fw3/XeMaoruuOi4kHBaxzWPPsyXMObjjG4pGryO3haLTrh5VN2meEF434nQ9rl0lzWQP496tP4y/9cC/oSlREFGf2JC/vx/dfXs2h73UkrWX5Nsr1mfHmgV7h7/qUcePGaXQbM2bMG19ipSgK/v7+hIeH888//2R6flFRUezfv5/g4GDi4zWfyfjVV19lejqmRLI77fVcn9uMmKg4HHLnTDXMwY3HsLW3TXM7Z4zbC0h/m/Hqv4G5hTntR7Xk0441cPFyJvLxMy4ducrSsX8QdD441bh+nWri16mmxr/Z6z5pWYnO4z/Do5AbD26EEDBqlfrFUSk+G9aMbpPapxp3x5J9TO36S5rrRj4fT/r+3I1SVX2IfPyMA2uPqP8NUuh6OQfuPUehMt54FXUn5FYo62Zs5vw/l9R1vZ4nbYY0pWGPurh4ORMXE8/tC3dYPXljqpMQ+l4/MluXtpr09qPNEH+cPZwIOn+HeYOWvNUzz/VB1zVLdr8k2Z02U89u/371adSzLu4FXUlKSL4L6e+Fu9kyf6fGs4CN6bh74t/fUrZm6meup2SQrmt+m2MUQ+4nlahUFEsry1T9dyzZx+ofNzJl9xic3RwJu/9EndFuBVwMnt2nd/1L3Y416ezzFfeuPQBe7lOYSlvB0muzyZU7J5bWlsTFxJP4IoHwh0/58sPBAEbRVpBWu4yZhRm587qQ290BMzMV8bEJ/NhvGSf2XgQgb2FXen/fipIVC/IsPIoDmwNZNnWLuqEcoGaz8rT6sjb5i7oTGxNH0OUHbFq0X/2Cz1e55nVm6ZExNMg3IP2ai3vQ54dW+JQtwPOn0WxZcZiVMzWvyt56Z1Y6Y2eNZLduaN1Q/jbmz5/PV199RdeuXalXrx5ubm4oikJoaCjbt28nICCA2bNn06NHj0xP8+7du8ydO5fDhw8TEhKCSqXCzc2NKlWq0Lt3b/Lmzat1nRn9YIUQ4l2T3QfbH/XSLrCPzOqTpTPbffv2ZcuWLRw8eDDT2/ozZ87QsGFDoqOjiYqKwtnZmbCwMOzs7HB1ddX7i7FMgWS3EEIYH8luye6MSHYLId51Fl6ebx7IyGR3Q7lkt25o3VD+1VdfUaRIkVSt/3PmzOH69evMnDkz3XGLFCnCiBEj6NatW5r9Fy9ezIQJE7hx40amajl48CANGjQgX758+Pn5aewA7Ny5kzt37rB161aqVq2a6e8HEthCiPdLth9sf6ldYJ+eP1DrefTv359NmzZx4MABrZ7TWbNmTYoVK8bcuXNxdHTk33//xdLSkg4dOjBgwABatGihdS2mQLJbCCHeLZLdkt2S3UKI95k0lEt264rWDeVeXl78+eeflC9fXqP76dOnadq0aYZv4La1tSUwMBAfH580+1++fJly5coRExOTqVoqVqxItWrVmDEj7ZVj4MCBHDx4kBMntHtxjgS2EOJ9kt0H2+V7ahfYpxZkPrAVRaF///5s3LiRffv2UbRoUa3m5ejoyLFjx/Dx8cHR0ZEjR45QokQJjh07RqdOnbh8Oe0XD5o6yW4hhHi3SHZLdkt2CyHeZ9JQLtmtK1q/cePx48cab95OkStXLsLC0n4DbIpSpUqxYMGCdPv/9ttvlCqV+ple6Tl//jy9evVKt/+XX37J+fPnMz09IYQQ2UDR8k8Lffv2ZcWKFaxcuZKcOXMSEhJCSEhIpg/0LC0tUalUALi5uREcnPysZAcHB/X/v4sku4UQQmRIstvoSHYLIYTIkGS3TlhoO0KRIkXYtm0b/fr10+i+detWChUqlOG406ZNo1GjRmzbtk19y5ZKpSIkJISdO3dy+/Zt/v7770zX4uHhweHDh9M9U37kyBE8PDwyPT0hhBBvT6XDV1/MnTsXSL6V61UBAQF07tz5jeOXK1eOkydPUqxYMWrVqsXo0aMJCwtj+fLllClTRgcVGwfJbiGEEBmR7DY+kt1CCCEyItmtG1o3lA8aNIh+/frx6NEjateuDcDu3buZNm1ahs9JA6hRowbnz59n7ty5HD16lJCQEADc3d1p3LgxvXr1wtvbO9O1DB48mF69enHq1Cnq1q2bagdg4cKFb6xJCCFENtPhK6Lf9v3TEydO5NmzZwCMHz+eTp060bt3b4oUKUJAQEB2lGiUJLuFEEJkSLLb6Eh2CyGEyJBkt05o/YxySD6zMGHCBO7fvw+At7c3Y8eO5Ysvvsj2At9kzZo1zJgxg1OnTpGYmAiAubk55cuXZ9CgQbRp00bracqz0oQQ75Psfs5pxa7TtRr+xOJB2Tp/kTbJbiGEeHdIdr8fJLuFECJt8oxyyW5dyVJDeYpHjx5ha2uLvb291uPevn2bkJAQVCoVbm5uFChQIKtlAPDixQv1s9pcXFywtLTM8rQksIUQ75NsP9juomVgB+gvsGNiYlAUBTs7OyA5izZu3EjJkiXx8/PTWx2GJNkthBCmT7JbsjuzJLuFEO8iaSiX7NYVrV/mCZCQkMCuXbvYsGGD+nL8+/fv8/z58zeOO2PGDPLly0ehQoWoXLkylSpVolChQuTLl++tbteytLTEw8MDDw+PtwprIYQQb0elaPenT/7+/ixbtgyAiIgIfH19mTZtGv7+/urnsL2rJLuFEEKkR7LbOEl2CyGESI9kt25o3VB++/ZtypQpg7+/P3379uXRo0cATJkyhcGDB2c47vjx4xk7diz9+vXj1KlT3Lt3j7t373Lq1Cn69evH2LFj+eGHH7L2TYQQQhgHHb59+22dPn2aTz75BIB169bh7u7O7du3WbZsGT///LN+i9EjyW4hhBAZkuw2OpLdQgghMiTZrRNav8xzwIABVKhQgX///ZfcuXOruzdv3pzu3btnOO6CBQtYunQpzZo10+ju6enJhx9+SLFixejXrx+jRo3StiwhhBBGQt9nq7URHR1Nzpw5AdixYwctWrTAzMyMSpUqcfv2bQNXpzuS3UIIITIi2W18JLuFEEJkRLJbN7RuKD948CCHDh3CyspKo3uBAgW4d+9ehuM+fvwYHx+fdPsXK1aM8PBwbUsSQghhTIw4sIsUKcKmTZto3rw527dvZ+DAgQCEhoaSK1cuA1enO+9Ddmf383r1RZ7PKoQwCpLdRud9yG4hhMiqhHv3DV2C4Ul264TWj15JSkpSv+X6VXfv3lWfLUiPr68vEyZMICEhIVW/hIQEJk6ciK+vr7YlCSGEMCKqJEWrP30aPXo0gwcPxtvbm48//pjKlSsDyWe5y5Urp9da9EmyWwghREYku42PZLcQQoiMSHbrhtZXlNetW5eZM2eyYMECAFQqFc+fP2fMmDE0bNgww3Fnz56Nn58frq6u1KhRAzc3N1QqFSEhIRw4cABra2t27tyZtW8ihBDCKBjzLWCtWrWiWrVqPHjwgLJly6q716lTh+bNm6s/3717F09PT8zMsvTOa6Mj2S2EECIjkt3GR7JbCCFERiS7dUOlpLw+O5Pu379PrVq1MDc359q1a1SoUIFr167h4uLCgQMHcHV1zXD8Z8+esWLFCo4ePUpISAgA7u7uVK5cmc8//9woLsGX26CFEO+T7H5kReV207Qa/siqb7J1/tkhV65cBAYGUqhQIUOXki3eh+w2VbLPIYTICsnu1CS7NZlCdksGCiHeJ5LdqRljdmt9RbmnpyeBgYGsWrWK06dPk5SURLdu3Wjfvj22trZvHD9nzpz07t2b3r17Z6lgIYQQxk2VZOgK3p6W55CNnmS3EEKIjEh2Gx/JbiGEEBmR7NYNrRvKAWxtbenatStdu3bVetzExESCg4MpUKAAZmZmxMXF8b///Y+kpCRq1aqFm5tbVkoSQghhLIwv6wSS3UIIITIg2W2UJLuFEEKkS7JbJzLVUP7nn39meoJNmzZNt9+///5L/fr1CQ0NpXTp0mzZsoUGDRpw69YtVCoVlpaWbN++nYoVK2Z6fkIIIYyLMT8r7X0i2S2EECKzJLuNg2S3EEKIzJLs1o1MNZQ3a9YsUxNTqVRpvpk7xdChQ6lWrRpjxoxh4cKF1KtXj1KlSnH69GlUKhVdunTh22+/lReLCCGEKTPC26feR5LdQgghMk2y2yhIdgshhMg0yW6dyFRDeVJS9jz45sSJExw6dIgSJUowadIk5syZQ0BAAJaWlgAMHz6cGjVqZMu8hBBCGMa7cGZbpVIZuoS3JtkthBAisyS7jYNktxBCiMyS7NaNLD2jPKsURcHCInmWr/8XwNzcPFt2Dh4+fIiiKLi7u7/1tIQQQmjpHQhsY3ypiKFIdgshxHvgHYg9ye6XJLuFEOI98A7EnjFmt1lmB2zYsCFPnz5Vf54wYQIRERHqz48fP6ZkyZIZTqN8+fL8+OOP3Lt3j0mTJlGwYEHmzJmj7j979mxKly6d6eKfPHlCy5YtKVCgAH379iUxMZHu3bvj4eGBl5cXVapU4cGDB5menhBCiLenUrT7M0YXL16kQIEChi7jrUl2CyGEyAzJbuMh2S2EECIzJLt1Q6Vksvne3NycBw8e4OrqCkCuXLkIDAykUKFCQPLZZE9PzwyflXbixAnq169PREQELi4u7N27l65du3L79m3MzMwIDw/nr7/+ok6dOpkqvmvXrpw4cYIvv/ySdevW4eTkxM2bN/n1118xMzNjwIABlChRgqVLl2ZqeinqmrXWanghhDBlO5PWZuv0Pmk2Vavh/9k0JFvnn5HY2Fhmz57N3r17CQ0NTXU11enTp/VWiz68T9ltqmSfQwiRFZLdL0l2p2Yq2S0ZKIR4n0h2v2TM2Z3pR6+83p6elcvjK1asyO3bt7ly5Qo+Pj7Y29uzb98+fv/9d2JiYqhbty4+Pj6Znt62bdtYt24dVapUoXXr1nh4eLB9+3aqVq0KwIwZM2jbtq3WdabngxolmbZ3XKruXUsM4M6V+9k2n9d5l85P/9nd8PEtwou4F8THvsDazgqA2xfusmL8WgL3nKfD6NbUaf8JTu6OhN19zMqJGzix9Qxf/tSJouUL4VXUnU2ztzJ34BKd1ZpWzc+ePGfLgp2sGL9OYxhLKwsmbh1JqSo+WFhZkJSUxM2zt5nYbhZ3r+pueQJUa/Exnb//DI/Cbjy48ZCAUas4tOm4xjC5PZ3pO6sLHzcuj6WVBYqicO9aCJPaz+La6ZvpTrtpn3r4962Pm7crocFhrJy4nl3LD+j0+6Qs7xKVi6FSQVKiwov4F+r148S2QCytLNJcR17EvaDNEH+8inoQ9TSak9sCmT9kGc+ePNd5vW9aP37cOZoyn5TQ6P4kJIK2nj10Vltm143uk9vj26AcVrZWREVEk9vTiQ2ztqT7+3J2dzTa32J2M9az1ZB8oLdz505atWqFr6+vUT4TLTtJdpsuY9jniHkey7Mnz7DLaUtuT2fGNJ/C4f+dSDdPtgfszbCfsdZc+/NqBs/Bk9sDcciTi2LlC6nrPrH1TKaWZakqPkzbN46g83fo9ZFuD4BS6i5ZxQcLS3ONfin5nNayPrEtkLzFPCn8oTeW1hbcvnCX5eP+4OSOf/VSb3oZqMvfWZPefrQe7E9uD0eCLtxl7sAAzh+8/FbT1CXJbuMh2Z1syOK++HWumap70IU79CgzKFvn9aqsHlf975dt+FQoYvB9/azkiSGPX318i5AQn0DM81jsctkSFxPPxcNXWDj8dx4GhaZbd6mqxekxuT35inthbWfNw9uP2LJgJxtmbtFb3drucxh720x277+ZWg6C6dUs2a0ben1GOYC9vT3ly5dXf7axsaFbt25ZmtbTp0/x8vICwM3NDQsLCzw8PNT9PT09NW5Ty6wCJfNy++LddPt39vmK6MiYl3U8itR6HincCuRhxa1f0z2bbpfTlh93fMe/e8/Tz3c4tT+vRvMBDdn081a2BezFr1NNxm0axvmDl7Cxs2Za97ncvx6Co6sD5hZmWFpb8jQskpUT19Py68ZZrvNtas5bzIPBAX2JjYpl3fTN6uFGrRlEkXIF2fDz35zeeRZH11w07V2PydtH0b3UQGKj47JUn1+nmvh1qsng2mPT7F+iUjFGrR7IktGrObTxOFWb+zJqzUAGfvIdl49fB8DeMQezDv9ALid7Tu/8l78X7sY2hzUqMzOeR0SlO+/GvfzoOvFzZvScz5UT1ynuW4SBC3rxPDyKo5tPZen7aLO85w1agrOHI80HNOKvX7eTlKQwbtMwen80hK4TPsfJzUFjHSn6UUEGLujFvEFLOPrXKXJ7OTNgbg8G/dabcS21OzuZlXrftH64F3Ql5FYo49tMJ5dLTswtzLh87HqW6oLsWzdmHhzPv3sv8G3DiTi7O/L1vJ4EX0p/mwEY9W8xu6my5z1UOrFlyxb+/vtv9YGdyBxTyO53lSH3OWq2rULrIf7sW3UQv8611MONWjMoVZ6YW5i9sZ8x1lyqanGGLu1v8Bwctrw/Fw9fZU7/RYxZPyTDmjWmlcuOoUv7cWb3OZzcHLNUb1bq/vu3XVRq/BH2TjlYN/0vNs/bRVJiUrp1t/qmMad3/cvikSuJioiiXpdafP/ncPpXGsGNwCCd1/umDMzO3xlAjTZV6D2jC7P7/saFQ1do9GVdJv49km6lBvLoTthbTVtXJLvfPaaQ3TZ21uke8/3ydQALR/yu/mxuYcb8wJ84sO6I1vNJocvjqjx5nXH3djX4vr62eWLo49d+vsMZtqw/+Yp78r8529j9+z90+aEdk7eP4ta5YBxccqZZd2xULP/7ZRs3z94mNiqO0tWKM2BeT2Kj4vj7t116qVvbfQ5jPh7M7v03U8xBU6xZsls3Mt1QrlKpUp0B0OaMQHBwMPnz58/08Pfu3VOHcXqKFi3K5s2b6du3L1u3bsXGxoYdO3aon7e2fft2ChYsmOl5pihRqViGDeURoU+Jehqdbv96nWvSZoh/ciNf0CM2zf6bv+bu0LoOgNrtP8HKxpKpXX7hRXwCi0euIioyhmb9GrDo25UEjFpFs/4NKFGpGJ/n68Wz8OSrnx7efqSexq9fBwBQv0ttg9QcdOEOXsU8aTmwiXpjXKHeh3xQoyRfFO6nrhng1I6zrAtdRNHyhTj3zyUALCwt6PzDZ9T5/BNyONoRdP4OC4ev4Oz+i1mqr8WARpzaeZbVkzcBsHryJj6oXooWAxoxsf0sANoOa4ZKpeJ6YBDfNf0x09P+tEN1tizYxf4/DgMQciuUEpWK0XZoM40dDV0ub4CY53E069eAdvm+pHEvPxp0q5NqeT+8/Ygy1UvwMCiUTbO3JtcbFMqWBTtpM8RfYx6GWj+2zN9JhXofcvXUjTSnZah149Gdx/zU7VdsctgwfHl/Jn8xm/YjW2Y47Ye3HxntbzHbJRnvqW0vLy9y5sxp6DL05n3K7neVIfc5loxeQ0xUcp6kSCu/U/Y5MupnrDW3+qaJceTg+PU069eAgxuT72AqUq5gppbl1/N6smfVQZISk6jq75uqv67q/mxEc549ieLPuTto1q8By8clX5mW3rKe8NlMjWktHrmKyk0rUrlJBY2Gcn1nYIo3/c601XJgY7Yt3sPWRXsAmDtwCRX8ytKktx+Lv12ZbfPJVpLdRuN9yu5Xj/leFx0ZTXTky99lFf+K2DvlSHWFq7EcV105gXobbtB9fS3zxBiOX3uXH0rbYc1o1q8Bvw1bwU9df2Vd6CJyOtvTwbtPmnXfCAzSyI+Htx9RrfnHlKlWQqOh3Jj2OcB02mbS2ufQhinmoCnWLNmtG1o9eqVz585YW1sDyc+b6dWrFzly5AAgLi7jq38rVqxI06ZN6dGjB76+qXfkIflM9R9//MGsWbP48ssv6d+/f4bTHDJkCJ06dWLmzJncvXuXFStW8NVXX3Hs2DHMzMzYsGED06dPz+xXVLt45GqG/eeenoqVjSXBF+/y+4T1/Lvvgrpfg+516DS2DXP6L+L6mSCKlPNm4IJexEbFsXPZfq1rKVmpGGf3X1QHNcDJ7YF0n9Qej0Ju+FQsjLWdNVeOX6PNUH8+7VCd2KhYjvx1kiXfrSE+Nv6N89Bnze7eroQEhVK5aQWunryRqubtAfsANG53Hry4D+7eeZjQbgaP74dTtbkvk7aOpOcH33Dveoj29VUuxvqZmgdIJ3cE0mJAI/Xnyk0qYGNnjZObA1uiV2JmbsaTB+Gs+GEdWxfuTnfaltaWqZZ5XEw8Pr5FMLcwJzEhUa/Lu1m/BtjksMbJwzHN5X1s82lc8ubGt0E5jm89g6OrA9VbVub43y+fF2XI9aNU1eIU+qAA2+JXExsVy8kdZ1k4fAUht0IBw60bJ3cE8t2aQXzcuDwxz2JwL+iq9bzSYqhlne2MN6+ZNm0aw4YNY968eUb30hBdeJ+y+11lLPscKdLL7yXfrcmwX0o2GlvNFw9focsP7YwqBwF8KhZ547Ks17kmnoXdmNzxZ9qPSn2yVtd1exZ1p9WgxjjmcWD8/4bxy9cBmVoHILnRzy6nrcb+niEyMEVGvzNtWVhaUKx8Idb8uEmj+6mdZylVOfOPutA7yW6j8T5ltzaPuKrftTZndp0jNPjllZ3GdFyVmWNvY8wTYzt+dfd2xcw8+UrmoPPBmV7OhT/0pmQVH5Z8t0rdzdj2OUytbSazNb/OFHPQFGsGJLt1JNMN5Z06ddL43KFDh1TDfPHFF+mOf+nSJSZOnEj9+vWxtLSkQoUKeHp6YmNjQ3h4OBcvXuTChQtUqFCBqVOn0qBBg3SnlaJ9+/YUKFCAY8eOUaVKFSpXrkyJEiWYPHky0dHRLFiwIFXdr4uPj8fS0lL9OSYmhqCLtzFTmaca9smDCKb3nMe1UzextLbk047VmbJrNINrjVWfCe8wqhXzBy9Tn8ENCQolf8m8NOpZN0sbNmd3R0JeO5uX08kegIDLs4h5HsuNM7coUq4gkY+fM7bFVBxcctL/l+7kdLZnWre5b5yHPmqOeJj85nYnd0dCgkLxKOhG6WrFiY99oVFzjdaVOffPJYIu3AHAo5AbtdpV5fN8vXj8IByAddP+omK9D6nXpRaLR65CW07ujoQ/fKrRLfzhU5zcHdWfPQq5YmltSQ4HO3Ys28eTB+G0GdKM/nO68yLuRbrPbDu1I5AG3epweNMJrp2+SbHyhajfpRaWVhY4uOTkSUiEzpe3d+n8zPxnPABdJrRjXIupNOvfMM3lndPZnskdfmbk6oFY2VhiYWnB4f+dYE7/xerpGXL9uPnvbRZ9+zvRkTF0GN2KMtWKM+vQBLqXHoi9Yw6DrRtNevlxYlsgYXcfs2HWFvrO6srDVw64s8pQyzq7GfOz0ipUqEBsbCyFChXCzs5OY/sP8OTJEwNVphvvanbHxcWlaiiwtrZWNyq8C4xlnyPitW1ievmd09me3B7O6fZL2R8xtpqndZtrdDkI4OTmSIGSXunW7FXEnW6T2jOw+mj1I09ep8u6Lx+7xpROc3geHsXU3WPI7eXMrEMTCLpwh9JVfTJcByD5Sn6bHNbqKxh1XW+K1zMwM78zbTm45MTcwpzwhxEa3cMfRmjsTxgbyW7j8T5kt62tLSqVipvng9I87n6ds7sjvg3Kqe/wTGFsx1VvOvY2xjwxhuPX1+tuN7w5z548z1Qbx8rgeTjkyYW5hTnLx/2hvhoYjHOf402MqW0mszW/zhRz0BRrBsluXcl0Q3lAQMBbzcjZ2ZmffvqJH374gb///pt//vmHoKAgYmJicHFxoX379tSrV099+1ZmVatWjWrVqqk/lyxZkmXLlmV6/B9//JGlS5fi6OhIy5Yt6d69O+YlXqBcTh3Yd6/e13jJ5KWjV8mTNzetv2nKuX8u4eCSC9f8Lgxa2JuBC3qphzO3MNO4nfO3c9NxK5An+cN/d9H9Gblc3f/h7UcaLyh5/QUu928+BGB6j3nk9fGk1aAmKElJTOrws/r2tPnfLOW7td8wu++iDM8C6qtmUm4X/K+7mZkKRUGj5juX7lGh/ocMrvO9erSiHxXEzMyMgCs/a0zO0tqCyMfJVyDkyefCogszNGo3t7TQqG/37weY1fu3lxN4rT6VSrObyswMRYHLx68zvfs8IPk5oNVbVaZJr3rpNpSvGL8eJ3dHfj4yAZVKRfjDp+xYuo+2Q5uRlJikl+V998p9htX7gVkHf+DQxmMMWdKPe1fvp1reKetIxfrlWDF+HSe3B5Lbw4keUzoyYF5Ppnefa/D1Y1i9H9T1hj+M4Lu13/D0USR+nWry6E6YwdaNm2dvU7JyMYbX+4GbZ2+T18cTvy9q8jYMuayzXRZeOqUv7dq14969e0ycOBE3NzeTeqlIVryr2T1p0iTGjdN8Ad+YMWMYO3asVnUYM2PZ5+C130ha+Z2SJ4F7LqTbb3bfRdja2xhdzZtmb6PvrC5Gl4MqFenW/Ev/xYz4fQDLxv7BvWsPSIuu6z6xLRBIfrl1Sm3frhpInrzOGa4D8bHx1PqsKh3HtGZMsylE/PcscEMt5zf9zt5G6lmrsvRSRr0x4toku7Vj7Nk9Z84cGjVqRLVq1bAiF4Up9cZx/TrX5HlEFIc3nVB3M8bjqoyOvY0xT2b3XWQUx6+v1t36myYU/CA/t84F4+Nb5I3LeVD10djY21CiUlG6T2rP/esh7F19yCj3k0ypbSazNWfE5HIQE6zZiGsz5ezW+8s8bWxsaNGiBS1atND3rNM0dOhQBgwYoP5sZ2fHVwP6azacZeDysWvUaf8JAKr/Gpxm9JyX6oWDr17tM7LRRCwskxe9i5cz0/aNo1e5Ier+CS9e3hbzJCQC59dezpTTKfm2u7P7L7Jj6T78vqiJTQ5rjWe4BV+6h5mZGXnyOmf4CAp91ezomgtAfbXu4wfhhN17oq65789dKfyhNyqVilfb7VRmZiQmJNKnwrBUV0zFPI9Nntb9Jxq1VGvhS7UWlZjc4WUD6qvLJjwk9VlBR1cHjSuJnzwIJ1due40XNAZfuoe1rRWu+V1IT3xsPNO6zWXmlwtwcnPgyYMIGvb8lKjIaJ6GPcMhT/Jy0OXyTniRQNx/L8VZNnYtuT2dyZPPRWN5p3wfMzMzbgYGsfanPwG4dS6YmKg4Zv4zniWjVpH03zOvDL1+vFrvvesheBX1IOzeE4OtG88jnuNToTC/nkx+fr1KpcLM3Ixm/Rvg37c+DW0+JylJuzdrGPK3mN2M+cz24cOHOXLkCGXLljV0KSbF2LJ7xIgRDBo0SKPbu3Q1eXoMsc+Rss1IkdH2OfpZdLr98uR1Juq/lyUaU81fjGnFhUNXjC4Hn4VHpVtzPh9PfCoWoUi5gvSbnfxiPpWZCjMzM7bFr2Z4vR/Ud+bpq+6Ht8O4dS4Y1/y5M1wHinxUiEELezO+zXTO7D6nHsZQGZiWV39nWfE07BmJCYk4p7E/8fqVh8ZEsvvdY4zZ/e2332JhYUFUVBQXL16kuUPnTI1bv0ttdq04oPEb18d2Q9vjqoyOvQ21ncsoT1LqNfTx66t1l6zsw9fVRtFxTGtyezm/cTmnPEYr6HwwTm4OdBzThr2rDxnlfpKptM1oU3NaTDEHTbFmkOzWFb03lOtTp06duHPnDnv27El3mLRu1baytsr0PAp/WJDHDyKA5BcBPbr7GI9CbuxZeTDdcV59rlpiQiIA92+kvfG5ePQqXSe0w8LSQr3Bq+BXlrB7T9ShEBUZjaNrLmxy2BAbldxA6FXMg8TEJB7dzfh2BkPVfOHwFaq3roxNDhu6T25P1Wa+LPt+Lf3ndNeo+fqZW5hbmOPomovzBy+nOb+kxCSNWiJCI4mPiU+/viNXKf/pB2yYuUXdrXzdslw8fEX9+cKhK3z0aRnyFvNUd8tbzIO46LhMvdgiMSGRsHvJ36NW26oc23waRVEMsrxVKhWRj59R+EPvVOuIoijERGk+viAlhFUqFRGhEQZfP15fp929XTm141+Drhtu3nk0ztK3GepPtea+HNp4gjVTNmndSJ5cm+F+i36dampdb4aMOLCLFy9OTEyMocsQGchqdr8PDLnP4eKVfOVwRtvnM7vPUaHeh+nuj8THxhtdzYqCujE8hTHk4J3L9yhRqWiaNQdfvq+RQQBN+tTjw1qlGd96GiG3QomNjtNr3Y/vPyF/CS+unb7JR59+kGbdJSv7MGBeTyZ+PlPjGfBguAxMy6u/s6xIeJHA1VM3+ajuBxzadFzd/aNPP+DwnycyGNPAJLvFW8hsdqdIecFbZh678kGNkngV9WDbIs1pG9tx1ZuOvQ21ncsoT16t19DHr/3ndCcxMYlvao4mJCg0w+xObzmrVCosrZObuIxxP8kU2ma0rTktppiDplgzINmtI+90Q7mnpydmZmZaj7d75T8AdJ34OS6ezkzpPAeA5gMa8jDoEbcv3MHCyoI6HapTvVUlxrWcqh53+bg/6DOrK9GRMRzfegZLa0t8KhTC3sme9TM2pzm/jOxZeZCOo1szJKAvqyZt4IuxbahQ70M2zNqMd+n81PqsKl5FPYh8/Iwhi/vwLCIK1/wueBR0ZXvAHuJj4ylc1hsAW3sbHFxyUbisNy/iE9RXS+u6Zq+iHrQb0YIV49dqDNN+VEvmn5mKo6sDAaNW0WZwU/auPkgOBzsg+erse9cesGvFAYYu7c+CwUu5fiaIXC45KVe7NLfOBXN86xmt69v48xam7/+etkP9Ofy/E1Txr8hHn5Zh4CffqYdZP3Mz1dtUolQVH3pO/YKwe49p0ssPULFg6Mvbml5fR7yKelDctwiXj13D3smelgMb4106n7o/6HZ5x0bFEhIUymfDmrNlwQ66/NCOD2qWYmzzqfT/pRu/HJ/M3av3WTf9L3pO6cjZAxep4l+Bxr381Lec957RmUvHrqmvNDbk+vHryR9ZOXEDL2Lj6Tm1I2H3HmPvmIMdS/cRGhxmsHVj1qEfqNy0Avv/OIKPbxGqtfiY0OAwIp88U1/F9/q6ARjtb3Hg/C+1nnZGVEZ8C9jkyZP55ptvmDBhAmXKlEn1rLRcuXKlM6bQl6xmt6kzxn2OgmXy035kS7b8tpNWg5riXtCVS0ev8TwiKs19jh1L99N2WDOGLO7D0rF/4OCSk55TOqr3R4yx5guHrjBwwZdGkYNbF+1S50RocBjRkdGMWvU1C4at4PMRzanUtALbA/YQFxOnzpoUEaFPeRH7QqO7Lut+Ef+C+9dDaDu0GduX7OG7td9gl8uWhcN/Z/L2gqn3N/ZfYNDCXvz6dQCXjl7D6b+r2+Ji4tVXsBkiAzPzO8uK9TM2M2xZf66evMGlI1dp2PNTXPO7sHnejreari5Jdou3kdXstrKxUudDWvvOAA261uHS0auptntgXMdV2wP2kM8n+SIrQ+/rZzZP4mPjDX78umrSBnpO7UjJysX4a+52op/F4uTmyOld54h88ky9T/F63U371CM0OIw7l+8BULpacVp/05RNc7bqrW5t9zmMvW0mo/03bZliDppizZLduqFSjPqBO4ZR16w1AEMW98XNOw+Da48FoM2QpjTsURcXL2fiYuK5feEOqydvTNUgV6tdNdoMbkr+knmJjYoj6FwwG2Zt0TgzlcKtQB5W3PpVPc+0eJfOT/853SjuW4SkJIWE+ASsbK2IehrNrbO3WTPlfzy6E0bfn7vxYa1SJCYk8eev2wgYtZr42Hh2Jq1NNc2QoFA6Fuqrl5qfhUexef4OVny/TmOYfD6eLL40K83xp3b5hR1L9wFgbmFO+1Et+bRjDVy8nIl8/IxLR66ydOwfBJ0PTjWuX6ea+HWqqf53S8snLSvRefxneBRy48GNEAJGrVK/MCPFx40+ot/sbrjmd0GFiicPI1g6Zg1bF+5WD/P6OpK/uBcjfh9AXh9PEl8kErj3PAuH/67x/EvQ3fIuVeXlG5kjnzxXrx+nd50ln48nU3aPwdnNkbD7Tziw9ggBo1bToHttGn/ph3tBV6IiojizJ7nmx/dfnj021Prx095xOLk6gApio2I5vesci0euUu9IGHLd6DaxPV5F3Qm5Fcq6GZup8/kn3Pg3iLkDlwCp1w3AaH+LadX1NmrXmazV8Ht2D8/W+Wck5SDu9WekKYqCSqUiMTFRb7UIAca9zxETFYdD7pyphjm48Ri29rZp7nPk8/Gk78/dKFXVh8jHz9RZ8+qBlrHV7N+vvsFz8MT2M9TvXDvVcGH3n2DvmANFUXj+5DmdfQakedDacUxrqvr70uujIRrddba/UdUHFSoUFMJDnnLp6FWWjF5D8KW7ae5vFKtQmA+ql0w1vR1L9jG16y86rze9DMzs7ywrmvT2o80Qf5w9nAg6f4d5g5a89XPPXyXZLdn9Lnj1mC+tfWe7XHasub+AX78O0DgGe5UxHVdtif491fT0va+vbZ4Y+vi1uG8RrGzSvqN/0Yjf+bB2GUpV9UlVt3+/+jTqWRf3gq4kJSTfRfz3wt1smb9T45nSxrbPYazHg5nZf9OWrnNQFyS7s48pZ7fJN5TfvXuXuXPncvjwYUJCQlCpVLi5uVGlShV69+5N3rx5tZ5mRhsZIYR412R3YNepPUmr4XfvGZGt88/I/v0Zvy2+Ro0aeqrk/aaL7DZVss8hhMgKye6XJLv1Q467hRDi7Uh2v2TM2W3Sj145ePAgDRo0IF++fPj5+eHn54eiKISGhrJp0yZmz57N1q1bqVq1qqFLFUKI94cRn3415kB+X0h2CyGEEZLsFhmQ7BZCCCMk2a0TJt1QPnDgQLp3786MGTPS7f/1119z4oQRP3xfCCHeNTq8UenAgQNMnTqVU6dO8eDBAzZu3EizZs20msY///zD/PnzuXnzJmvXrsXLy4vly5dTsGBBqlWrppvChZpktxBCGCHJbpEByW4hhDBCkt06YdJvyzp//jy9evVKt/+XX37J+fPn9ViREEIIVZKi1Z82oqKiKFu2LHPmzHnzwGlYv3499erVw9bWltOnTxMXFwfAs2fPmDhxYpamKbQj2S2EEMZHsltkRLJbCCGMj2S3bph0Q7mHhweHDx9Ot/+RI0fw8PDQY0VCCCFUSdr9aaNBgwb88MMPtGjRIku1/fDDD8ybN4/ffvtN483bVapU4fTp01maptCOZLcQQhgfyW6REcluIYQwPpLdumHSj14ZPHgwvXr14tSpU9StWxc3NzdUKhUhISHs3LmThQsXMnPmTEOXKYQQ7xctbwGLi4tTn2FOYW1tjbW1dXZWBcCVK1eoXr16qu65cuUiIiIi2+cnUpPsFkIIIyTZLTIg2S2EEEZIslsnTPqK8j59+rBs2TJOnjxJq1atqFKlCpUrV6ZVq1acPHmSZcuWZXiLmBBCCB1QtPubNGkSDg4OGn+TJmn3Bu/M8vDw4Pr166m6Hzx4kEKFCulknkKTZLcQQhghyW6RAcluIYQwQpLdOmHSV5QDtG3blrZt2/LixQvCwsIAcHFx0bi0XwghhP6otDyzPWLECAYNGqTRTRdntSH5GZoDBgxg8eLFqFQq7t+/z5EjRxg8eDCjR4/WyTxFapLdQghhXCS7xZtIdgshhHGR7NYNk28oT2FpaSnPRRNCCGOgZWDr6navtAwdOpSnT59Sq1YtYmNjqV69OtbW1gwePJh+/frppQbxkmS3EEIYCclukUmS3UIIYSQku3XinWkoF0IIYSS0fFGIvk2YMIGRI0dy8eJFkpKSKFmyJPb29oYuSwghhDAcyW4hhBDCtEh264RJP6NcCCGE8VEpilZ/2nj+/DmBgYEEBgYCcOvWLQIDAwkODs7U+F27duXZs2fY2dlRoUIFfH19sbe3Jyoqiq5du2r7VYUQQoh3gmS3EEIIYVoku3VDGsqFEEJkL0XR7k8LJ0+epFy5cpQrVw6AQYMGUa5cuUw/52zp0qXExMSk6h4TE8OyZcu0qkUIIYR4Z0h2CyGEEKZFslsn5NErQgghspeWIayNmjVromRh+pGRkSiKgqIoPHv2DBsbG3W/xMRE/v77b1xdXbOzVKFndc1aG7oEIYQwXZLdQgghhGmR7NYJaSgXQgiRvYzwWWmOjo6oVCpUKhXFihVL1V+lUjFu3DgDVCaEEEIYAcluIYQQwrRIduuENJQLIYTIVto+/0wf9u7di6Io1K5dm/Xr1+Ps7KzuZ2VlRYECBfD09DRghUIIIYThSHYLIYQQpkWyWzekoVwIIUT2SjK+U9s1atQAkl9Ckj9/flQqlYErEkIIIYyIZLcQQghhWiS7dUJe5imEECJ76fClIm/r0qVLHDp0SP35l19+4cMPP+Tzzz8nPDxcr7UIIYQQRkOyWwghhDAtkt06IQ3lQgghsleSln96NGTIECIjIwE4d+4cgwYNomHDhty8eZNBgwbptxghhBDCWEh2CyGEEKZFslsn5NErQgghspUxPistxa1btyhZsiQA69evp0mTJkycOJHTp0/TsGFDA1cnhBBCGIZktxBCCGFaJLt1Q64oF0IIkb2M+BYwKysroqOjAdi1axd+fn4AODs7q894CyGEEO8dyW4hhBDCtEh264RcUS6EECJ7JRnvme1q1aoxaNAgqlatyvHjx1mzZg0AV69eJW/evAauTgghhDAQyW4hhBDCtEh264RcUS6EECJ7GfGZ7Tlz5mBhYcG6deuYO3cuXl5eAGzdupX69evrtRYhhBDCaEh2CyGEEKZFslsnTPqK8jJlytCmTRs6d+5Mvnz5DF2OEEII0HsIayN//vxs3rw5VfcZM2YYoJr3k2S3EEIYIclukQHJbiGEMEKS3Tph0leUX7hwgVmzZlGwYEHq16/P+vXrSUhIMHRZQgjxfjPiM9s1a9Zk2bJlxMTE6HW+4iXJbiGEMEKS3SIDkt1CCGGEJLt1wqSvKAc4e/Ysx48fZ/HixXz22Wc4OTnxxRdf0K1bN0qUKJHt86v9eTXaDPHHq6gHUU+jObktkPlDlvHsyfNsn1cK79L56T+7Gz6+RXgR94L42BdY21kBcPvCXVaMX0vgnvN0GN2aOu0/wcndkbC7j1k5cQPbA/aqp1Oqig/T9o0j6Pwden00RGf1vl7zsyfPuX7mJq758+DmnUdd9+pJGyheqViaNTu7O/LlT50oWr4QXkXd2TR7K3MHLtFpza/XnRCfQMzzWOxy2RIXE8/Fw1dYOPx3HgaFprusS1UtTo/J7clX3AtrO2se3n7ElgU72TBzi97qjnkey7Mnz7DLaUtuT2fGNJ/C4f+dwNLKIt26m/aph3/f+rh5uxIaHMbKievZtfyA3mp+9uQ5WxbsZMX4dRrD+PetT/vvWuHgkhOVSsWLuBf8NXcH875ZqrO6qrX4mM7ff4ZHYTce3HhIwKhVHNp0XGOY3J7OdJ/cHt8G5bCytSIqIprcnk5smLUl3fXUGNaN9JZztjPiZ6WVL1+eoUOH0r9/f9q0aUO3bt2oVKmSoct67+g7uw29jctKdhu6ZlPNblPNwJPbA3HIk4ti5Qup6z6x9cwb9+3AcPt32i7rqIgoGveqR+EPvbG0tuD2hbssH/cHJ3f8q7eaE18kYpfLVqP/k5AIOnj3Nur14/Xs/qBGyeyfqWS3eAN9Zrcx7Ddn5VgQyDBvjLXuD2qUZNrecamm27XEAO5cua/zuotXKgpJCgn/baNT8gTSX57WtlYG3zZnJbsNvX5om913rz4wyd+ioddpvR17S3brhMk3lFtYWNCsWTOaNWtGSEgIAQEBBAQEMGPGDD7++GO6d+9O165dtZpmgZJ5uX3xbqrupaoWZ+jS/swbtISjf50it5czA+b2YNBvvRnXcmqW6ncrkIcVt36lrlnrNPvb5bTlxx3f8e/e8/TzHU7tz6vRfEBDNv28lW0Be/HrVJNxm4Zx/uAlbOysmdZ9Lvevh+Do6oC5xcsbBuxy2TF0aT/O7D6Hk5tjlmrNas15i3kwbPlX7Fn5D9+3ngaAX6eajN00lFvngtOs2dLakqdhkaycuJ6WXzd+q3qzWvewZf3JV9yT/83Zxu7f/6HLD+2YvH0Ut84F4+CSM826Y6Ni+d8v27h59jaxUXGUrlacAfN6EhsVx9+/7dJL3TXbVqH1EH/2rTqIX+da6uFGrRmEk5tDqrob9/Kj68TPmdFzPldOXKe4bxEGLujF8/Aojm4+pZea8xbzYHBAX2KjYlk3/eXtOXXaf8KzJ8/5behyQoPDqNuxBv796rN10e40f6Nv4tepJn6dajK49tg0+5eoVIxRqweyZPRqDm08TtXmvoxaM5CBn3zH5ePXAbB3zMHMg+P5d+8Fvm04EWd3R76e15PgSxnXYwzrRnrLOdspSbqb9luaNm0aU6ZMYfPmzQQEBFC9enWKFClC165d6dixI25uboYu8b2gz+w2hm2cttltDDWbanabagYOW96fi4evMqf/IsasH5JhzRrTMuD+nbbLukabKpze9S+LR64kKiKKel1q8f2fw+lfaQQ3AoP0UnP7US2p3qoyK35Yy+Z5ydmblJhk9OuHZLdktzHQZ3Ybw35zVo4FIXPbbmOsG6Czz1dER768+vPpo0i91D336wDK1SmDb8OPUg2X1vKs3qoSjb6sa/Btc1ay29Drh7bZHRcTb7K/RTDcOq23/Jbs1gmTbihXqVQan93d3RkxYgQjRoxg3759LFq0iK+++krrwC5RqViagV2iUlEeBoWyafZWAEKCQtmyYCdthvhrDFevc03aDPHHvaArIUGP2DT7b/6au0PLb5esdvtPsLKxZGqXX3gRn8DikauIioyhWb8GLPp2JQGjVtGsfwNKVCrG5/l68Sw8+cr2h7cfaUzn63k92bPqIEmJSVT19001H13WHHThDl7j19GsXwNm9JwPwLl/LtFueHO2LdrDmd3nUtX88PYjfv06AID6XWqnOy9d1t27/FDaDmtGs34N+G3YCn7q+ivrQheR09meDt590lzWNwKDNA72Ht5+RLXmH1OmWgmNINFl3UtGryEmKo5m/Rqoh6lQ70M+qFGSLwr3S1V3z6lfsGXBLvb/cRiAkFuhlKhUjLZDm2nsaOh8HSnmScuBTdQhUqHeh+Qr7qVR87/7LlDZv6L6N2phaUHnHz6jzuefkMPRjqDzd1g4fAVn91/MUl0tBjTi1M6zrJ68CYDVkzfxQfVStBjQiIntZwHQdlgzHt15zE/dfsUmhw3Dl/dn8hezaT+yZYbTNoZ1I73lnO0SjTewAczNzfH398ff359Hjx4xf/58vvvuO7799lsaNmzIV199Re3a6W93xNvRd3Z/2qG6wbdx2ma30WyXTTC7TTYDx6+nWb8GHNyYfAdTkXIF0635VYbcv9N2WV88clVjeotHrqJy04pUblJBIx91WXPw5XuEP4ygYfe6LB+37o01G8368Vp264Rkt8iAvrPbGPabs3IsmNH25FXGVneKiNCnRD2NTndeuqx78/ydtB3WjO6T2quHSW959p7R2Ti2zVpmtzGsH9pmN2CSv8UUhlyn9ZLfkt06YdIN5UoGz9ipWbMmNWvWJDJS+zNGr+/Iq7sfvkKXH9rh26Acx7eeST6b2bIyx/8+rR6mQfc6dBrbhjn9F3H9TBBFynkzcEEvYqPi2Llsv9a1lKxUjLP7L/Ii/uUz4E5uD6T7pPZ4FHLDp2JhrO2suXL8Gm2G+vNph+rERsVy5K+TLPluDfGx8dTrXBPPwm5M7vgz7UelbszTZ83u/90a1XJQYxQUCn5QgFV35qeqOTP0XbeZefLZyaDzweku69cV/tCbklV8WPLdKoPUnaJy0wpcPXkjzbotrS1T1R4XE4+PbxHMLcxJTEjU+7IOCQpNs+a7V+9jm8Na/RsdvLgP7t55mNBuBo/vh1O1uS+Tto6k5wffcO96iPZ1VS7G+pmaIXZyRyAtBjRSf67cpAIndwTy3ZpBfNy4PDHPYnAv6Kr1vAy9bry6nLOdEb9U5FXHjx8nICCAVatW4erqSufOnXnw4AFNmjShd+/e/PTTT4Yu8Z2k7+w2tm1cZrLb2Go21exOYWoZCOBTsUi6NafUa0z7dykyWtavL2eVSoVdTluNxxfqo2Z7J3usba1YeXsu5w9dITEh0aTWj5CgUK2nmSmS3SID+s7u1xnDfnNmjgUzsw00xrpTzD09FSsbS4Iv3uX3Cev5d98FdT991u3k6gCknynWtlZGt22GN2e3sa0fKbTJblP5LaYwlnVaZ/kt2a0TJt1Q3qlTJ2xtbTMcJleuXBn2j4+Px9LSUv05JiaGoIu3MVOZpxr24pGrTO7wMyNXD8TKxhILSwsO/+8Ec/ovVg/TYVQr5g9epj6rGBIUSv6SeWnUs26WfmzO7o6EvHZmLKeTPQABl2cR8zyWG2duUaRcQSIfP2dsi6k4uOSk/y/dyelsz+pJG+k2qT0Dq48mKZ2zTfqoOeLhUwAWnp+OhZUFigKJCYk4uzumqnlat7mZmo8+63Zyd6Td8OY8e/I83WX9at0rg+fhkCcX5hbmLB/3B1sX7TFI3Sk8CrpRulpx4mNfpKr71I5AGnSrw+FNJ7h2+ibFyheifpdaWFpZ4OCSM/nZnXpe1iFBoeqazS3NyemUAyd3RzyLuHN69zmCL93Fo5AbtdpV5fN8vXj8IByAddP+omK9D6nXpRaLR65KNd83cXJ3JPy1ZRf+8ClO7o7qzx6FXGnSy48T2wIJu/uYDbO20HdWVx5mMviMZd14dTlnOyMO7NDQUJYvX05AQADXrl2jSZMmrF69mnr16qmvlmrTpg3NmjUzusB+V+g7u41lG6dNdhtLzaae3SlMLQMBnNwcKVDSK82ap3Wbi1cRd6Pav0uR0bJ+fR1p9U0TbHJYq68I1EfNl49d45evFjPot16smfonn7T4mJKVi6EoismsHyFBoTx5EKH1dN9IsltkQN/ZncKY9pszcyyYmW2gMdb95EEE03vO49qpm1haW/Jpx+pM2TWawbXGcu6fS3qvO4dTDiD9TIl6Gm1022Z4c3Yb2/qRIjN1mdpv0djW6ZT8znaS3Tph0g3lAQEBbz2NH3/8kaVLl+Lo6EjLli3p3r075iVeoFxOHdj5S+Sl76wurBi/jpPbA8nt4USPKR0ZMK8n07vPxcElF675XRi0sDcDF/RSj2duYaZxu8dv56bjViD5xVj8dxfbn5HL1f0f3n5EjzKD1J9fP4N//+ZDAKb3mEdeH09aDWqCkpTEpA4/Ex2ZPJ/53yzlu7XfUOiDAiwb+wf3rj1I8/vrq2b++yH82Gk2D4MeMWrNINwLurJi/DqunLiuUfPsvoveeGWavutu/U0TCn6Qn1vngvHxLZLmsn617kHVR2Njb0OJSkXpPqk996+HsHf1Ib3XncLMTIWikGbdLV264uTuyM9HJqBSqQh/+JQdS/fRdmgzkhKT9F/zf91Tav6+1TTsHXNg72hHuxHNqdr8Ywp/WBCvIm6YmZkRcOVnjclYWlsQ+Tj56rQ8+VxYdGGGRs3mlhYade3+/QCzev/2cgKv1aVSaXZTmZlx8+xtSlYuxvB6P3Dz7G3y+nji90VNMsNo1o1XlnO2M+LAzps3L4ULF6Zr16507tyZPHnypBrG19eXihUrGqC694O+s3vF+PVGsY3TJruNbbtsqtmdwhQzUKUi3Zp/6b+YEb8PMKr9uxQZLetX15Fan1Wl45jWjGk2hYj/nheqj5pPbAskt6czAFdPXGf74j1seByAmbmZSa0fd6/q4EVkkt0iA/rO7hTGst+c2WPBN20Dbe1tjLLuu1fva2xXLh29Sp68uWn9TVPO/XPJ4MeDadW9a8UBo9s2Z5Tdxrh+pMhMdpvab9FY1+lsJ9mtEybdUJ4dhg4dyoABA9Sf7ezs+GpAf82Gs/+0G96cC4eusPanPwG4dS6YmKg4Zv4zniWjVpH03xtnZ/Scx+Vj1zXGffVqn5GNJmJhmbzoXbycmbZvHL3KDVH3T3jx8laNJyEROL/2cqac/51hPbv/IjuW7sPvi5rY5LBWbyAAgi/dw8zMjGLlC1O4rDf9ZncDQGWmwszMjG3xqxle7weCLtzRS82OrslXGFw7dYuQoFDO/XMJJ3dH6nerrT7YTqk5T17nNz42Q/Vf456+6i5Z2Yevq42i45jW5PZyTnNZv1p3ytnCoPPBOLk50HFMG/auPqT3ulM8fhBO2L0nadbt4JKTad3mMvPLBTi5OfDkQQQNe35KVGQ0T8Oe4ZAnl15rTrmiO6XmyMfPiHz8DICAUaup1qISbYc25dCmEyQmJNKnwrBUV9PFPI9Nnsb9Jxo1VGvhS7UWlZjc4WXj+qvLJDwkQuPq8eS6HDSuMn/yIJznEc/xqVCYX0/+CCTfPm5mbkaz/g3w71ufhjafk5SU9hV+xrJuvLqcs106390Y7Nq1i/Lly5MjR/J29Pbt22zcuJESJUpQr149IPmKqL17dffmefH2tMnu+Nh4o9jGaZPdxrZdNtXsTmGKGfgsPCrdmvP5eOJTsQhFyhU0mv27FBkt65R1pEabKgxa2Jvxbaarn3Wf8h30WXP4w6fERscR+fgZ1jlsTGr90AnJbqFj2mR3CmPZb87sseCbtoFR/71U0NjqTiu/Lx+7Rp32nwD63z5HRSTXmdHyXPnDeqZ3n2dU2+aMstsY148UmcluU/stGts6rbP8luzWiXe6obxTp07cuXOHPXv2pDuMtbU11tbWGt2srK3SHtbOisQEzRUx5UekUqmICI3g0d3HeBRyY8/Kg+nOMzQ4TP3/iQmJANy/kfbB5cWjV+k6oR0WlhbqH2EFv7KE3Xui3lhFRUbj6JoLmxw2xEYlNxB6FfMgMTGJ/h+P4EXcC/X0mvSpx4e1SjO+9TRCboUSGx1nkJovHL5CnQ7Vsc1hox4vpeZHd5+kW0eKiNCneqm7/5zuJCYm8U3N0YQEhXLh8BWqt66c5rJOr26VSoWltYVe605Z3i5eyVdNZabuxIREwu4l/3+ttlU5tvk0iqLoveZX15G0alYUhcQXSVw/cwtzC3McXXNx/uDlNOeTlJikUUNEaCTxMfHp13XkKuU//YANM7eou5WvW5aLh6+oP184dAU37zwaZ47bDPWnWnNfDm08wZopm9JtJH+dIdeNV5ezX6eamao304z4zPYPP/xAixYt6NWrFxEREfj6+mJlZUVYWBjTp0+nd+/ehi7xvZfd2Z3C2LZxGWW3MW+XTSG734UMvHP5HiUqFU2z5uDL9zUyCAy/f5fZZV3rs6p8s6gPEz+fqfGOHzBMDlpaWWBla4W1rZVJrR86Idkt3oKusvtVhthv1vZY8E3942PjjbLutBT+sCCP/3vMkz63dQDhocmNim+q29i2zRlltzGtH1nZT3qVKfwW02KodVqn+S3ZrRPvdEO5p6cnZmZmWo+3e+U/AHSd+Dkuns5M6TwHgKObTzFwwZc07uWnfvRK7xmduXTsmvqqzOXj/qDPrK5ER8ZwfOsZLK0t8alQCHsne9bP0P5Nt3tWHqTj6NYMCejLqkkb+GJsGyrU+5ANszbjXTo/tT6rildRDyIfP2PI4j48i4jCNb8LHgVd2R6wh2unb2pMLyL0KS9iX6ivNNJHzV5FPfhibFu2LtqFW4E82Oa0xauIO2ZmKvLkzU3+Enn5fERzKjWtwPaAPerbcguX9QbA1t4GB5dcFC7rzYv4BIIv3dVL3T2ndqRk5WL8NXc70c9icXJz5PSuc0Q+SV7WS8f+karupn3qERocxp3L9wAoXa04rb9pyqY5W/W2vAuWyU/7kS3Z8ttOWg1qintBVy4dvcbziKg015E8+XJT3LcIl49dw97JnpYDG+NdOp96vddHzV5FPWg3ogUrxq/VGKbn1I6M/3MYKyduIE9eZ778qRMosHP5fu5de8CuFQcYurQ/CwYv5fqZIHK55KRc7dLcOhfM8a1ntK5r489bmL7/e9oO9efw/05Qxb8iH31ahoGffKceZv3Mzcw69AOVm1Zg/x9H8PEtQrUWHxMaHEbkk2fq39br2w9jWDfSW84D53+p9bQzZMSBffr0aWbMSH4cz7p163B3d+fMmTOsX7+e0aNHG3Vgvy+yO7u9inoYfBunbXYby3bZFLPblDNw66Jd6uUXGhxGdGQ0o1Z9zYJhKzSWdVxMnMZ+HBhm/07bZV21WUWGLu3Hr18HcOnoNZz+u+oqLiZefUWYrmvu8kM7ytUpw8aft1Dctwifj2yJubk5T8MijX79eDW7mw9oqPV030iyW7yF7M5uY9hvzsqx4J6VB2k/qqW6v4NLTnpO6aiRk8ZYd/MBDXkY9IjbF+5gYWVBnQ7Vqd6qEuNaTtXL8t4wczOlq5Wg/cjkF1O7F3SlcFlvzh24ROTjZ/xyfDJ3r95n3fS/6DmlIwfXH+WTlh8bxbY5s9ltLOuHttldv2stk/wtGnqdTi+/s51kt06olIxeYf2eqmvWGoAhi/vi5p2HwbXHqvv596tP4y/9cC/oSlREFGf2nGfh8N95fP/lWata7arRZnBT8pfMS2xUHEHngtkwawuHNh1PNS+3AnlYcetX9TzT4l06P/3ndKO4bxGSkhQS4hOwsrUi6mk0t87eZs2U//HoThh9f+7Gh7VKkZiQxJ+/biNg1OpUzwvtOKY1Vf196fXREI3uuqz5WXgUTx6Ek9PZHmcPJ3Xde1YdpNZn1ShV1QdFUXj+5DmdfQaoa96ZlHqDEhIUSsdCffVSt5VN2lc4LBrxOx/WLpNm3f796tOoZ13cC7qSlJB8NfPfC3ezZf5OjedV6bLumKg4HHLnTDXMwY3HsLW3TbWOuHvnYcTvA8jr40nii0QC9yav068//1LX68jm+TtY8f06jWFGr/0G34YfYWVjiZKk8OjuY37uu1B9FZq5hTntR7Xk0441cPFyJvLxMy4ducrSsX8QdD441Tz9OtXEr1NNjd/06z5pWYnO4z/Do5AbD26EEDBqlfoFHyk+bvQR3Sa2x6uoOyG3Qlk3YzN1Pv+EG/8GMXfgEiD19sMY1o30lnNav7W30SBPrzcP9Iqtj+Zl6/wzYmdnx+XLl8mfPz9t2rShVKlSjBkzhjt37uDj40N0dPSbJyKMUnrZnb+4l8G3cdpmt7Fsl00xu001A09sP0P9zrVTDRd2/wn2jjnSXNavMsT+nbbLeuLf31K2ZqlUw+9Yso+pXX/RS80pL6S1tLbk6aNILh29ypLRa1CSkoz6t/h6drcZ0pQeP3ZMd/yskOwWhpBedhvDfnNWjgUB8vl40vfnbpSq6kPk42ccWHsk1XG5sdXdZkhTGvaoi4uXM3Ex8dy+cIfVkzemuvBIV3WXqFQUSyvLVP13LNnH6h83MmX3GJzdHAm7/4QDa4+wa/kBBi/uY/Btc1ay29Drh7bZ3aB7bZP8LRp6nU4vv+W42zSy2+Qbyu/evcvcuXM5fPgwISEhqFQq3NzcqFKlCr179yZv3rxaTzOjFV8IId412R3Y9V16ajX8trAF2Tr/jHzwwQd0796d5s2bU7p0abZt20blypU5deoUjRo1IiQk42csi+wh2S2EEG9HsluyW98ku4UQ4u1IdptGdmt/f5QROXjwICVKlGDjxo2ULVuWL774gg4dOlC2bFk2bdpEyZIlOXTokKHLFEKI90uSot2fHo0ePZrBgwfj7e3Nxx9/TOXKlQHYsWMH5cqV02st7yvJbiGEMEKS3SIDkt1CCGGEJLt1wqSvKK9YsSLVqlVTP/fmdQMHDuTgwYOcOHFCq+nKmW0hxPsk289sO3XXavht4Quzdf5vEhISwoMHDyhbtqz6eZrHjx8nV65cFC9eXK+1vI8ku4UQ4u1Jdkt265NktxBCvD3JbtPIbpNuKLe1tSUwMBAfH580+1++fJly5coRExOj1XQlsIUQ75NsD2yHrloNv+3p4mydvzBukt1CCPH2JLuFPkl2CyHE25PsNg0m/egVDw8PDh8+nG7/I0eO4OHhoceKhBBCKImJWv2J94tktxBCGB/JbpERyW4hhDA+kt26YWHoAt7G4MGD6dWrF6dOnaJu3bq4ubmhUqkICQlh586dLFy4kJkzZxq6TCGEeL+Y7o1KQg8ku4UQwghJdosMSHYLIYQRkuzWCZNuKO/Tpw+5c+dmxowZzJ8/n8T/zpCYm5tTvnx5li1bRps2bQxcpRBCvGf0/KIQYVoku4UQwghJdosMSHYLIYQRkuzWCZNuKAdo27Ytbdu25cWLF4SFhQHg4uKCpaWlgSsTQoj3lJJk6AqEkZPsFkIIIyPZLd5AslsIIYyMZLdOmPQzyl9laWmJh4cHHh4eEtZCCGFASpKi1Z+2fv31VwoWLIiNjQ3ly5fnn3/+0cG3EPog2S2EEMZBsltklmS3EEIYB8lu3XhnGsqFEEIYCSVJuz8trFmzhq+//pqRI0dy5swZPvnkExo0aEBwcLCOvowQQgjxHpDsFkIIIUyLZLdOSEO5EEKIbKXLM9vTp0+nW7dudO/enRIlSjBz5kzy5cvH3LlzdfRthBBCiHefZLcQQghhWiS7dcPkn1EuhBDCyGh5tjouLo64uDiNbtbW1lhbW2t0i4+P59SpUwwfPlyju5+fH4cPH85arUIIIYSQ7BZCCCFMjWS3bihCb2JjY5UxY8YosbGxhi4l00yxZkUxzbqlZv0wxZoVxXTrzowxY8YogMbfmDFjUg137949BVAOHTqk0X3ChAlKsWLF9FSteN+Y4m/PFGtWFNOsW2rWD1OsWVFMt+7MkOwWxswUf3umWLOimGbdUrN+mGLNimK6dWeGZHfmqBRF0f6J7iJLIiMjcXBw4OnTp+TKlcvQ5WSKKdYMplm31KwfplgzmG7dmZHZM9v379/Hy8uLw4cPU7lyZXX3CRMmsHz5ci5fvqyXesX7xRR/e6ZYM5hm3VKzfphizWC6dWeGZLcwZqb42zPFmsE065aa9cMUawbTrTszJLszRx69IoQQwqDSCue0uLi4YG5uTkhIiEb30NBQ3NzcdFWeEEIIIV4j2S2EEEKYFsnuzJGXeQohhDAJVlZWlC9fnp07d2p037lzJ1WqVDFQVUIIIYRIj2S3EEIIYVre9+yWK8qFEEKYjEGDBtGxY0cqVKhA5cqVWbBgAcHBwfTq1cvQpQkhhBAiDZLdQgghhGl5n7NbGsr1yNramjFjxmTqVgdjYYo1g2nWLTXrhynWDKZbd3Zr27Ytjx8/5vvvv+fBgweULl2av//+mwIFChi6NPGOMsXfninWDKZZt9SsH6ZYM5hu3dlNslvomyn+9kyxZjDNuqVm/TDFmsF0685u73N2y8s8hRBCCCGEEEIIIYQQQrzX5BnlQgghhBBCCCGEEEIIId5r0lAuhBBCCCGEEEIIIYQQ4r0mDeVCCCGEEEIIIYQQQggh3mvSUC6EEEIIIYQQQgghhBDivSYN5UIIIYQQQgghhBBCCCHea9JQnkXPnj3j66+/pkCBAtja2lKlShVOnDih7q8oCmPHjsXT0xNbW1tq1qzJhQsX3jjd9evXU7JkSaytrSlZsiQbN27MtpoTEhIYNWoUBQsWxNbWlkKFCvH999+TlJSkHkalUqX5N3Xq1HSnu2TJkjTHiY2N1UvNnTt3TjXvSpUqvXHaulrWb6r5xYsXDBs2jDJlypAjRw48PT354osvuH//fobT1eVyzkzdYHzrtbe3d5rLpG/fvoDxrc+ZqdnY1mch3iWS3S9JdmtXs2S3ZLdktxCGIdn9kmS3djVLdkt2S3aLLFFElrRp00YpWbKksn//fuXatWvKmDFjlFy5cil3795VFEVRJk+erOTMmVNZv369cu7cOaVt27aKh4eHEhkZme40Dx8+rJibmysTJ05ULl26pEycOFGxsLBQjh49mi01//DDD0ru3LmVzZs3K7du3VLWrl2r2NvbKzNnzlQP8+DBA42/xYsXKyqVSrlx40a60w0ICFBy5cqValx91dypUyelfv36GvN+/PhxhtPV5bJ+U80RERHKp59+qqxZs0a5fPmycuTIEeXjjz9Wypcvn+F0dbmcM1O3ohjfeh0aGqqxLHbu3KkAyt69exVFMb71OTM1G9v6LMS7RLL7Jclu7WqW7JbsluwWwjAku1+S7NauZsluyW7JbpEV0lCeBdHR0Yq5ubmyefNmje5ly5ZVRo4cqSQlJSnu7u7K5MmT1f1iY2MVBwcHZd68eelOt02bNkr9+vU1utWrV0/57LPPsqXuRo0aKV27dtXo1qJFC6VDhw7pjuPv76/Url07w+kGBAQoDg4O2VFiKpmpuVOnToq/v79W09Xlss7Kcj5+/LgCKLdv3053GF0uZ0V5c93Gul6/asCAAUrhwoWVpKSkNPsben1Oy+s1G9v6LMS7QrJbk2S3JsluTZLdGZPsFkI/JLs1SXZrkuzWJNmdMclukVny6JUsSEhIIDExERsbG43utra2HDx4kFu3bhESEoKfn5+6n7W1NTVq1ODw4cPpTvfIkSMa4wDUq1cvw3G0Ua1aNXbv3s3Vq1cB+Pfffzl48CANGzZMc/iHDx+yZcsWunXr9sZpP3/+nAIFCpA3b14aN27MmTNn9Frzvn37cHV1pVixYvTo0YPQ0NAMp6vLZa3tcgZ4+vQpKpUKR0fHDKetq+WcmbqNdb1OER8fz4oVK+jatSsqlSpVf2NYn1+XXs3GtD4L8a6Q7E5Nslv7ml8l2f32JLslu4XIiGR3apLd2tf8KsnutyfZLdn9zjN0S72pqly5slKjRg3l3r17SkJCgrJ8+XJFpVIpxYoVUw4dOqQAyr179zTG6dGjh+Ln55fuNC0tLZXff/9do9vvv/+uWFlZZUvNSUlJyvDhwxWVSqVYWFgoKpVKmThxYrrD//jjj4qTk5MSExOT4XSPHDmiLF++XAkMDFQOHDigtGzZUrG1tVWuXr2ql5pXr16tbN68WTl37pzy559/KmXLllVKlSqlxMbGpjtdXS5rbZdzTEyMUr58eaV9+/YZTleXyzkzdRvrep1izZo1irm5ear6UhjD+pyZmo1tfRbiXSLZ/ZJkt/Y1v0qyO3tIdkt2C/Emkt0vSXZrX/OrJLuzh2S3ZPe7ThrKs+j69etK9erVFUAxNzdXKlasqLRv314pUaKEesN2//59jXG6d++u1KtXL91pWlpaKitXrtTotmLFCsXa2jpbal61apWSN29eZdWqVcrZs2eVZcuWKc7OzsqSJUvSHN7Hx0fp16+f1vNJTExUypYtq/Tv3/9tS9a6ZkVRlPv37yuWlpbK+vXr0x1Gl8tam5rj4+MVf39/pVy5csrTp0+1mk92LufM1G2s63UKPz8/pXHjxun2N4b1+XVvqllRDL8+C/EukexOn2S3ZPerJLvTJ9kthH5JdqdPsluy+1WS3emT7BbasDDARezvhMKFC7N//36ioqKIjIzEw8ODtm3bUrBgQdzd3QEICQnBw8NDPU5oaChubm7pTtPd3Z2QkBCNbm8aRxtDhgxh+PDhfPbZZwCUKVOG27dvM2nSJDp16qQx7D///MOVK1dYs2aN1vMxMzOjYsWKXLt2Ta81p/Dw8KBAgQIZzl+XyzqzNb948YI2bdpw69Yt9uzZQ65cubSaT3Yu58zUbazrNcDt27fZtWsXGzZsSLO/sazPr3pTzSkMvT4L8S6R7E6fZLdk96sku9Mm2S2E/kl2p0+yW7L7VZLdaZPsFtqSZ5S/pRw5cuDh4UF4eDjbt2/H399fHdo7d+5UDxcfH8/+/fupUqVKutOqXLmyxjgAO3bsyHAcbURHR2NmpvlPbm5uTlJSUqphFy1aRPny5SlbtqzW81EUhcDAQI2NelZpU3OKx48fc+fOnQznr8tlnZmaU8L62rVr7Nq1i9y5c2s9n+xczvDmuo11vQYICAjA1dWVRo0apdnfWNbnV72p5hSGXp+FeBdJdqcm2S3Z/SrJ7rRJdgthOJLdqUl2S3a/SrI7bZLdQmsGu5bdxG3btk3ZunWrcvPmTWXHjh1K2bJlFV9fXyU+Pl5RFEWZPHmy4uDgoGzYsEE5d+6c0q5dO8XDw0OJjIxUT6Njx47K8OHD1Z8PHTqkmJubK5MnT1YuXbqkTJ48WbGwsFCOHj2aLTV36tRJ8fLyUjZv3qzcunVL2bBhg+Li4qIMHTpUY7inT58qdnZ2yty5c9Oczut1jx07Vtm2bZty48YN5cyZM0qXLl0UCwsL5dixYzqv+dmzZ8o333yjHD58WLl165ayd+9epXLlyoqXl5fBlvWban7x4oXStGlTJW/evEpgYKDy4MED9V9cXFy6NetyOWembkUxzvU6MTFRyZ8/vzJs2LA0+xvT+vymmo1xfRbiXSLZLdmd1ZoluyW7JbuFMAzJbsnurNYs2S3ZLdktskIayrNozZo1SqFChRQrKyvF3d1d6du3rxIREaHun5SUpIwZM0Zxd3dXrK2tlerVqyvnzp3TmEaNGjWUTp06aXRbu3at4uPjo1haWirFixfP8PlI2oqMjFQGDBig5M+fX7GxsVEKFSqkjBw5UiMkFEVR5s+fr9ja2mp8n4zq/vrrr5X8+fMrVlZWSp48eRQ/Pz/l8OHDeqk5Ojpa8fPzU/LkyaNYWloq+fPnVzp16qQEBwdnWLOi6G5Zv6nmW7duKUCaf3v37k23Zl0u58zUrSjGuV5v375dAZQrV66k2d+Y1uc31WyM67MQ7xLJ7pd1S3ZrV7Nkt2S3ZLcQhiHZ/bJuyW7tapbsluyW7BZZoVIURdHf9etCCCGEEEIIIYQQQgghhHGRZ5QLIYQQQgghhBBCCCGEeK9JQ7kQQgghhBBCCCGEEEKI95o0lAshhBBCCCGEEEIIIYR4r0lDuRBCCCGEEEIIIYQQQoj3mjSUCyGEEEIIIYQQQgghhHivSUO5EEIIIYQQQgghhBBCiPeaNJQLIYQQQgghhBBCCCGEeK9JQ7l4J6lUKjZt2pTp4Tt37kyzZs3eap5BQUGoVCoCAwPfajpZtW/fPlQqFREREQaZvxBCCPE2JLuFEEII0yLZLYR410hDuTApISEhDBgwgCJFimBjY4ObmxvVqlVj3rx5REdHG7q8N6pZsyZff/11qu5LlizB0dFR7/UIIYQQuibZLYQQQpgWyW4hxPvKwtAFCJFZN2/epGrVqjg6OjJx4kTKlClDQkICV69eZfHixXh6etK0aVNDl2m0EhMTUalUmJnJ+TEhhBD6Idn9diS7hRBC6Jtk99uR7BbCtMkvV5iMPn36YGFhwcmTJ2nTpg0lSpSgTJkytGzZki1bttCkSZN0xz137hy1a9fG1taW3Llz07NnT54/f55quHHjxuHq6kquXLn48ssviY+PV/fbtm0b1apVw9HRkdy5c9O4cWNu3LiR7d8zKCgIMzMzTp48qdF99uzZFChQAEVRAPj7778pVqwYtra21KpVi6CgII3hU86Wb968mZIlS2Jtbc3t27cJDw/niy++wMnJCTs7Oxo0aMC1a9c0xv3tt9/Ily8fdnZ2NG/enOnTp6c68/7XX39Rvnx5bGxsKFSoEOPGjSMhIUHdX6VSsXDhQpo3b46dnR1Fixblzz//zL4FJYQQwuhJdkt2CyGEMC2S3ZLdQrzPpKFcmITHjx+zY8cO+vbtS44cOdIcRqVSpdk9Ojqa+vXr4+TkxIkTJ1i7di27du2iX79+GsPt3r2bS5cusXfvXlatWsXGjRsZN26cun9UVBSDBg3ixIkT7N69GzMzM5o3b05SUlL2fVHA29ubTz/9lICAAI3uAQEBdO7cGZVKxZ07d2jRogUNGzYkMDCQ7t27M3z48DS/+6RJk1i4cCEXLlzA1dWVzp07c/LkSf7880+OHDmCoig0bNiQFy9eAHDo0CF69erFgAEDCAwMpG7dukyYMEFjutu3b6dDhw589dVXXLx4kfnz57NkyZJUw40bN442bdpw9uxZGjZsSPv27Xny5Em2Li8hhBDGSbJbslsIIYRpkeyW7BbivacIYQKOHj2qAMqGDRs0uufOnVvJkSOHkiNHDmXo0KHq7oCyceNGRVEUZcGCBYqTk5Py/Plzdf8tW7YoZmZmSkhIiKIoitKpUyfF2dlZiYqKUg8zd+5cxd7eXklMTEyzptDQUAVQzp07pyiKoty6dUsBlDNnzqT7PWrUqKFYWlqqa075s7a2VhwcHNTDrVmzRnFyclJiY2MVRVGUwMBARaVSKbdu3VIURVFGjBihlChRQklKSlKPM2zYMAVQwsPDFUVRlICAAAVQAgMD1cNcvXpVAZRDhw6pu4WFhSm2trbKH3/8oSiKorRt21Zp1KiRRt3t27fXqO+TTz5RJk6cqDHM8uXLFQ8PD/VnQBk1apT68/PnzxWVSqVs3bo13eUjhBDi3SHZLdkthBDCtEh2S3YL8b6TK8qFSXn97PXx48cJDAykVKlSxMXFpTnOpUuXKFu2rMYZ8apVq5KUlMSVK1fU3cqWLYudnZ36c+XKlXn+/Dl37twB4MaNG3z++ecUKlSIXLlyUbBgQQCCg4O1+g7t27cnMDBQ4+/777/XGKZZs2ZYWFiwceNGABYvXkytWrXw9vZWf6dKlSppLI/KlSunmpeVlRUffPCBxrKwsLDg448/VnfLnTs3Pj4+XLp0CYArV67g6+urMZ3XP586dYrvv/8ee3t79V+PHj148OCBxstdXp13jhw5yJkzJ6GhoZlaTkIIId4Nkt3e6u8k2S2EEMIUSHZ7q7+TZLcQ7xd5macwCUWKFEGlUnH58mWN7oUKFQLA1tY23XEVRUn39rD0uqc1TJMmTciXLx+//fYbnp6eJCUlUbp0aY3nqWWGg4MDRYoU0ejm6uqq8dnKyoqOHTsSEBBAixYtWLlyJTNnztT4Tplha2ur8R3TG+/VZZTW8np9vKSkJMaNG0eLFi1STcvGxkb9/5aWlhr9VCpVtt8yJ4QQwjhJdkt2CyGEMC2S3ZLdQrzv5IpyYRJy585N3bp1mTNnDlFRUVqNW7JkSQIDAzXGO3ToEGZmZhQrVkzd7d9//yUmJkb9+ejRo9jb25M3b14eP37MpUuXGDVqFHXq1KFEiRKEh4e//RfLQPfu3dm1axe//vorL1680AjHkiVLcvToUY3hX/+clpIlS5KQkMCxY8fU3R4/fszVq1cpUaIEAMWLF+f48eMa473+gpOPPvqIK1euUKRIkVR/8nZvIYQQINkt2S2EEMLUSHZLdgvxvpNfljAZv/76KwkJCVSoUIE1a9Zw6dIlrly5wooVK7h8+TLm5uZpjte+fXtsbGzo1KkT58+fZ+/evfTv35+OHTvi5uamHi4+Pp5u3bpx8eJFtm7dypgxY+jXrx9mZmY4OTmRO3duFixYwPXr19mzZw+DBg3S6fctUaIElSpVYtiwYbRr107j7H2vXr24ceMGgwYN4sqVK6xcuZIlS5a8cZpFixbF39+fHj16cPDgQf799186dOiAl5cX/v7+APTv35+///6b6dOnc+3aNebPn8/WrVs1znaPHj2aZcuWMXbsWC5cuMClS5dYs2YNo0aNyvblIIQQwnRJdkt2CyGEMC2S3ZLdQrzPpKFcmIzChQtz5swZPv30U0aMGEHZsmWpUKECs2fPZvDgwYwfPz7N8ezs7Ni+fTtPnjyhYsWKtGrVijp16jBnzhyN4erUqUPRokWpXr06bdq0oUmTJowdOxYAMzMzVq9ezalTpyhdujQDBw5k6tSpuv7KdOvWjfj4eLp27arRPX/+/Kxfv56//vqLsmXLMm/ePCZOnJipaQYEBFC+fHkaN25M5cqVURSFv//+W327VtWqVZk3bx7Tp0+nbNmybNu2jYEDB2rc2lWvXj02b97Mzp07qVixIpUqVWL69OkUKFAg+768EEIIkyfZ/ZJktxBCCFMg2f2SZLcQ7x+VktmHLgkh9G7ChAmsXr2ac+fOGbSOHj16cPnyZf755x+D1iGEEEIYO8luIYQQwrRIdgshUsjLPIUwQs+fP+fSpUvMnj073TP2uvTTTz9Rt25dcuTIwdatW1m6dCm//vqr3usQQgghTIVktxBCCGFaJLuFEK+TK8qFMEKdO3dm1apVNGvWjJUrV6b7HDhdadOmDfv27ePZs2cUKlSI/v3706tXL73WIIQQQpgSyW4hhBDCtEh2CyFeJw3lQgghhBBCCCGEEEIIId5r8jJPIYQQQgghhBBCCCGEEO81aSgXQgghhBBCCCGEEEII8V6ThnLxTlmyZAmOjo6GLiNd+qpvz549FC9enKSkJJ3P621lZpkMHjyYr776Sj8FCSGE0CvJ7mSS3UIIIUyFZHcyyW4h3j3SUC70onPnzqhUqjRfTNGnTx9UKhWdO3fWf2Gv2bdvHyqVioiIiEwNl/KXJ08eGjRowL///pvheG3btuXq1avZWHHahg4dysiRIzEze/kTj4uLY9KkSZQoUYIcOXJQpkwZfvvtt1Sh3rlzZ4YPHw6g/n5Hjx7VGCYuLo7cuXOjUqnYt28fAJUqVaJ3794aw82dOxeVSsWiRYs0unfr1o0qVapo9X0CAgK4detWpscRQgjxdiS7k0l2J5PsFkII4yfZnUyyO5lktxDak4ZyoTf58uVj9erVxMTEqLvFxsayatUq8ufP/9bTf/HixVtPQ1tXrlzhwYMHbNmyhfDwcOrXr8/Tp0/THPbFixfY2tri6uqq05oOHz7MtWvXaN26tUb3L774gkWLFjFp0iTOnz/P7Nmz2bt3L3fu3FEPk5SUxJYtW/D391d3y5cvHwEBARrT2rhxI/b29hrdatWqxd69ezW67du3j3z58qXZvVatWpn+Tq6urvj5+TFv3rxMjyOEEOLtSXZLdr/aXbJbCCGMn2S3ZPer3SW7hdCONJQLvfnoo4/Inz8/GzZsUHfbsGED+fLlo1y5chrDbtu2jWrVquHo6Eju3Llp3LgxN27cUPcPCgpCpVLxxx9/ULNmTWxsbFixYkWqeT5+/BhfX1+aNm1KbGwsiqIwZcoUChUqhK2tLWXLlmXdunXqaaaEiJOTU6bOtru6uuLu7o6vry/Tpk0jJCSEo0ePpltfWrc7/fnnn1SoUAEbGxtcXFxo0aKFul98fDxDhw7Fy8uLHDly8PHHH6vPJKdn9erV+Pn5YWNjo+527tw5/vjjD9avX0+zZs0oWLAgNWvWZOXKlRo7S4cOHcLMzIyPP/5Y3a1Tp06pdrQWL15Mp06dNOZbq1Yt9Q5Miv379zNixAiNmu/cucPNmzdTBfb27dspUaIE9vb21K9fX2M6AE2bNmXVqlUZfnchhBDZS7Jbshsku4UQwpRIdkt2g2S3EFklDeVCr7p06aJxlnTx4sV07do11XBRUVEMGjSIEydOsHv3bszMzGjevHmq25WGDRvGV199xaVLl6hXr55Gv7t37/LJJ59QvHhxNmzYgI2NDaNGjSIgIIC5c+dy4cIFBg4cSIcOHdi/fz/58uVj/fr1wMsz1rNmzcr0d7O1tQU0z7BnVB/Ali1baNGiBY0aNeLMmTPs3r2bChUqaCyvQ4cOsXr1as6ePUvr1q2pX78+165dS7eOAwcOaEzjq6++omLFigBUrVoVe3t77O3tadCgAZB8m1eKP//8kyZNmmjcOla+fHkKFiyoXjZ37tzhwIEDdOzYUWO+VatWxdLSUh3OFy9eJCYmhq5duxIZGamuee/evVhZWWncAhYdHc1PP/3E8uXLOXDgAMHBwQwePFhj+r6+vty5c4fbt2+n+92FEEJkP8luTZLdySS7hRDCeEl2a5LsTibZLUQmKELoQadOnRR/f3/l0aNHirW1tXLr1i0lKChIsbGxUR49eqT4+/srnTp1Snf80NBQBVDOnTunKIqi3Lp1SwGUmTNnagwXEBCgODg4KFeuXFHy58+v9O/fX0lKSlIURVGeP3+u2NjYKIcPH9YYp1u3bkq7du0URVGUvXv3KoASHh6e4fd5fbiwsDCladOmSs6cOZWHDx++sb4UlStXVtq3b5/mPK5fv66oVCrl3r17Gt3r1KmjjBgxIt3aHBwclGXLlqk/37lzR+nfv7/i4+OjXLt2Tf0XFhaWatxixYopf/75p/ozoGzcuFGZOXOmUqtWLUVRFGXcuHFK8+bNlfDwcAVQ9u7dqx6+SpUqSs+ePRVFUZRffvlFadiwoaIoilK/fn1lwYIFiqIoSpcuXZRPPvlEY5kAyvXr19XdfvnlF8XNzU2jtqdPnyqAsm/fvnS/uxBCiOwj2a1ZXwrJbsluIYQwVpLdmvWlkOyW7BYisyz01B4vBAAuLi40atSIpUuXoigKjRo1wsXFJdVwN27c4LvvvuPo0aOEhYWpz2gHBwdTunRp9XCvnsFNERMTQ7Vq1WjXrp3GmemLFy8SGxtL3bp1NYaPj49PdQtaZuXNmxdIPhNftGhR1q5di6urK0FBQenW96rAwEB69OiRZr/Tp0+jKArFihXT6J7yQo/0xMTEaNz+NWXKFObNm0dCQgIffvghkHy71l9//aUx3qVLl7h79y6ffvppqml26NCB4cOHc/PmTZYsWcLPP/+c5rxr1arF2rVrgeTnodWsWROAGjVqsG/fPnr06MG+ffv44osvNMazs7OjcOHC6s8eHh6EhoZqDJNy5UB0dHS6310IIUT2k+zWJNmdTLJbCCGMl2S3JsnuZJLdQryZNJQLvevatSv9+vUD4JdffklzmCZNmpAvXz5+++03PD09SUpKonTp0sTHx2sMlyNHjlTjWltb8+mnn7JlyxaGDBmiDtWU0N+yZQteXl6pxsmKf/75h1y5cpEnTx5y5cqVqn9a9b0qJYTSkpSUhLm5OadOncLc3Fyj3+sv9HiVi4sL4eHh6s9Dhw7l448/pkOHDuzduxcnJyecnJxSjffnn39St27dNGtKeV5dt27diI2NpUGDBjx79izVcLVq1WLChAncu3eP/fv3q2/jqlGjBrNnzyY4OJhbt26lek6apaWlxmeVSoWiKBrdnjx5AkCePHnS/e5CCCF0Q7L7JcnuZJLdQghh3CS7X5LsTibZLcSbyTPKhd7Vr1+f+Ph44uPj03x+2OPHj7l06RKjRo2iTp06lChRQiOA3sTMzIzly5dTvnx5ateuzf379wEoWbIk1tbWBAcHU6RIEY2/fPnyAWBlZQVAYmJipuZVsOD/2bvvuCbOPw7gn8tk770RRRmiuK0DcbTuqrXuaqut1tlax6/bUUfd1lpXraPLOqqttnVVwT1Q3AqCgqCCbAgr835/INFIgCSMS+r3/XrlpTx3uXxySe6bPHf3nD8CAgK0FmtdhIWF4dixY1qnhYeHQ6lUIiMjo0JeNze3SpcZHh6O27dvq//28vLC4MGDYW1tjfPnz6Nhw4bqPeP5+fnqwvvnn3+if//+lS537Nix6r3SL36BKPfKK69ALBZj3bp1KCkpQcuWLQGU7eHPz8/Hxo0bYWZmhnbt2lW9YrS4efMmhEIhQkJC9L4vIYSQmqHa/QzVbt1R7SaEEO5Q7X6GarfuqHaTlx0dUU7qHZ/Px507d9T/f5G9vT0cHR2xadMmuLu7IyUlBR9//LHej/HLL79g+PDh6Nq1K6Kjo+Hm5oaZM2di+vTpUKlU6NixIwoKCnD27FlYWVlhzJgx8PX1BcMw+Ouvv9C7d2+Ym5tXuRe5pubMmYNu3bohICAAw4YNg0KhwMGDBzF79mwEBgZi5MiRGD16NFasWIHw8HBkZWXh+PHjaNq0KXr37q11ma+99hq2b9+u0SYWi7Fs2TLMmDEDQqEQPXr0QFJSEmbMmIE///wTJSUliImJwR9//FFp1p49eyIzM7PKLyfm5uZo27Ytvv32W3To0EH9+gqFQrRv3x7ffvutuqjr69SpU+jUqVOVRwMQQgipG1S7n6HarTuq3YQQwh2q3c9Q7dYd1W7ysqMjygknbGxsKt3w83g8/Pbbb7h8+TJCQ0Mxffp0LFu2TO/HEAgE2LFjB0JCQtC1a1dkZGTgq6++wpdffonFixcjKCgIr732Gg4cOAB/f38AgKenJ+bNm4ePP/4Yrq6u6lPV6kqXLl2we/du7N+/H82bN0fXrl1x4cIF9fStW7di9OjRmDFjBho3boz+/fvjwoUL6j3x2owaNQq3b99GfHy8RvuECROwevVqfPPNNwgJCcH06dMxdepU+Pr64sCBA2jbti1cXFwqXS7DMHByclLv/a9MZGQkJBKJepy0chEREZBIJBVO/9LVjh07Kh1XjhBCSN2j2l2GarfuqHYTQgi3qHaXodqtO6rd5GXHsC8OSEQIMXmzZ89Wn3Kli/79+6Njx46YPXt2HSczTPm4d9evX4dAQCfCEEII+e+h2k0IIYSYFqrdhPz30BHlhPwHffbZZ/D19dV5zLfyq5Ubq6KiImzdupWKNSGEkP8sqt2EEEKIaaHaTch/Dx1RTgghhBBCCCGEEEIIIeSlRkeUE0IIIYQQQgghhBBCCHmpUUc5IYQQQgghhBBCCCGEkJcadZQTQgghhBBCCCGEEEIIealRRzkhhBBCCCGEEEIIIYSQlxp1lBNCCCGEEEIIIYQQQgh5qVFHOSGEEEIIIYQQQgghhJCXGnWUE0IIIYQQQgghhBBCCHmpUUc5IYQQQgghhBBCCCGEkJcadZQTQgghhBBCCCGEEEIIealRRzkhhBBCCCGEEEIIIYSQlxp1lBNCCCGEEEIIIYQQQgh5qVFHOSGEEEIIIYQQQgghhJCXGnWUE0IIIYQQQgghhBBCCHmpUUc5IYQQQgghhBBCCCGEkJcadZQTQgghhBBCCCGEEEIIealRR7mJ2LZtGxiG0bg5OzujS5cu+OuvvyrMzzAMpkyZwkFSIDo6GgzDIDo6mpPHry3G8Dy6dOlS4XUvv/n5+annK39/XLp0Sety+vbtqzE/gArLs7GxwSuvvIIdO3bU4TOqP35+fmAYBl26dNE6/ccff1Q/9/LXePny5WAYBhcuXNCYV6VSwcHBAQzDID4+XmOaTCaDhYUFBg0aBABITk4GwzBYvnx5rT8nQohxe7FWm5mZwc3NDZGRkVi8eDEyMjIq3Gfu3LmVbucZhkFycnK9P4/y7di2bdvq/bFrkzE8j7fffrvK17dc+XeOPXv2aF3OlClTNOYHntW58pulpSVatGiBtWvXgmXZOn1e9aH8O1CDBg20Pp+TJ0+qn3v5a7xnzx4wDIOdO3dWmL9Zs2ZgGAaHDx+uMC0gIAAtWrRQ/83l92hCSP27fv06xo0bh4CAAJibm8Pc3ByNGjXChAkTKvy+Kq/bWVlZWpcVGhpa6e+PumYMda82GMPzoPptOKrfxNQJuA5A9LN161Y0adIELMsiPT0da9euRb9+/bB//37069eP63j/KS1atMC5c+cQHBzMaY4GDRrgl19+qdAuFotrvOzBgwdjxowZYFkWSUlJWLRoEUaMGAGWZTFixIgaL59r1tbWOHnyJO7du4eAgACNaVu2bIGNjQ0KCgrUbZGRkQCAqKgotG3bVt1+7do15ObmwtLSElFRUWjcuLF62oULF1BSUqK+LyGElNdquVyOjIwMnD59GkuWLMHy5cuxc+dOdO/evcJ9Dh06BFtb2wrt7u7u9RH5P8nd3R3nzp2rsP2vb+bm5jh+/HidLLtDhw7qHbOPHz/GypUrMXXqVBQUFODTTz+tk8esT9bW1khKSsLx48fRrVs3jWna6nj5j/OoqCgMHTpU3Z6Tk4MbN26o6/hrr72mnvbw4UPcv38fH330Ud0/IUKI0dm4cSOmTJmCxo0b44MPPkBISAgYhsGdO3ewY8cOtG7dGomJiZzXkpcJ1W+q3+WofhMuUEe5iQkNDUWrVq3Uf/fs2RP29vbYsWMHdZTXErlcrj7Cul27dlzHgbm5eZ3lcHV1VS+7ffv26NChA/z8/LBx40aj7Cgvf20EAt02XR07dsSNGzewZcsWLFy4UN1+7949nDx5Eu+++y6+//57dXt4eDjs7OwQHR2Njz/+WN0eHR0NDw8PREREICoqCu+//77GNADUUU4IUXuxVr/xxhuYPn06OnbsiEGDBiEhIQGurq4a92nZsiWcnJzqO+p/klKphEKhgFgsNoo6zuPx6iyHnZ2dxrK7d+8OHx8fbNy40Sh/aD//2ujCx8cH1tbW2LJli8YPbYlEgt27d2PkyJEaddzJyQmhoaEVzgY8ceIEBAIBxo0bh6ioKI1p5X9THSfk5XPmzBlMmjQJffr0wZ49eyASidTTunbtismTJ2P37t0wNzfnMOXLg+o31W+q38QY0NArJs7MzAwikQhCobBeHu/SpUvo378/HBwcYGZmhvDwcOzatatW7/vo0SOMHz8e3t7eEIlE8PDwwODBg/HkyROdc/r5+aFv377Yt28fwsLCYGZmhgYNGmDNmjUa85WfKvXTTz9hxowZ8PT0hFgsRmJiYqVDr1y4cAH9+vWDo6MjzMzMEBAQgA8//FBjnoSEBIwYMQIuLi4Qi8UICgrCd999p3N+rvj6+sLZ2VmvdQ08Oz1u6dKlWLhwIXx8fGBmZoZWrVrh2LFjFebXZf1U9droisfjYfTo0di+fTtUKpW6fcuWLfD29q5wVCePx0Pnzp1x5swZKBQKjSxdunRBREREhfdDdHQ0nJ2dERISUuHxV65cCX9/f1hZWaF9+/Y4f/68ztkJIf8tPj4+WLFiBSQSCTZu3MhZjprUJ13vm5eXhxkzZqBBgwYQi8VwcXFB7969ERcXp3POLl26IDQ0FKdOnUK7du1gbm4OT09PfPHFF1Aqler5nq8/CxYsgL+/P8RiMaKioio9dTsuLg7Dhw+Hq6srxGIxfHx8MHr0aEilUvU86enpmDBhAry8vCASieDv74958+Zp1AZjZGNjg8DAQL3rOPDsdOWNGzciMDAQYrEYwcHB+O233yrMq8v6qeq10cfYsWOxd+9e5OXlqdvKMw0bNqzC/JGRkYiPj0daWpq6LTo6Gq1bt0bv3r1x+fJlSCQSjWl8Ph+dOnWqsKyffvoJQUFBsLCwQLNmzbQOd0gIMV2LFi0Cn8/Hxo0bNTrJn/fmm2/Cw8OjnpNVRPWb6ndlqH5T/Sa1i44oNzHle/JYlsWTJ0+wbNkyFBUV1cvRv1FRUejZsyfatm2LDRs2wNbWFr/99huGDh2K4uJivP322zW+76NHj9C6dWvI5XJ8+umnCAsLQ3Z2Ng4fPozc3NwKR+BV5erVq/jwww8xd+5cuLm54ZdffsEHH3wAmUyGmTNnasz7ySefoH379tiwYQN4PB5cXFyQnp5eYZmHDx9Gv379EBQUhJUrV8LHxwfJyck4cuSIep7bt2/jlVdeUXeKuLm54fDhw5g2bRqysrIwZ84cnZ9DOW2Fncfjgcer3X1d+fn5yMnJMXjP+dq1a+Hr64vVq1dDpVJh6dKl6NWrF06cOIH27dsD0H/9aHtt9DF27FgsXrwYhw8fRq9evaBUKrF9+3aMGzdO6/qLjIzE/v37ERMTg/bt20OlUuHkyZNYsmQJOnfujIyMDNy+fRvBwcGQyWQ4d+4c+vbtW2Hsue+++w5NmjTB6tWrAQBffPEFevfujaSkJK3DKxBC/vt69+4NPp+PkydPVphWXt+fxzAM+Hx+rT1+TeqTrveVSCTo2LEjkpOT8b///Q9t27ZFYWEhTp48ibS0NDRp0kTnvOnp6Rg2bBg+/vhjzJ8/H3///TcWLFiA3NxcrF27VmPeNWvWIDAwEMuXL4eNjQ0aNWqkdZnXrl1Dx44d4eTkhPnz56NRo0ZIS0vD/v37IZPJIBaLkZ6ejjZt2oDH4+HLL79EQEAAzp07hwULFiA5ORlbt27V+TmUq686rlAokJqaisDAQIPuv3//fkRFRWH+/PmwtLTEunXrMHz4cAgEAgwePBgA9F4/ur42lRk2bBimT5+OHTt2YOLEiQCAH374AYMHD4aNjU2F+SMjI7FmzRpER0dj+PDhAMq+h/bt2xcdOnQAwzA4deoUevfurZ7WokWLCrX577//RkxMDObPnw8rKyssXboUAwcORHx8PBo0aKDXcyCEGB+lUomoqCi0atXKoGHOtNXtukL1m+p3dah+P0P1m9QYS0zC1q1bWQAVbmKxmF23bl2F+QGwkydPrtUMTZo0YcPDw1m5XK7R3rdvX9bd3Z1VKpUsy7JsVFQUC4CNiorS+75jx45lhUIhe/v27Rpl9fX1ZRmGYa9evarR3qNHD9bGxoYtKirSyNq5c+cKy9D2PAICAtiAgAC2pKSk0sd+7bXXWC8vLzY/P1+jfcqUKayZmRmbk5Oj8/OIiIjQ+roDYMeNG6eer/z9ERMTo3U5ffr0YX19fTXaALCTJk1i5XI5K5PJ2Lt377L9+/dnra2t2UuXLumckWVZNikpiQXAenh4aKybgoIC1sHBge3evbu6Tdf1U9VrowtfX1+2T58+LMuWrcfBgwezLMuyf//9N8swDJuUlMTu3r27wmt89epVFgC7aNEilmVZ9vLlyywANi4ujmVZlnV1dWXXrl3LsizLnjhxggWg8RksXxdNmzZlFQqFuv3ixYssAHbHjh0GPR9CiPGrblvMsmXbkKCgIPXfc+bMqXQ7HxAQUKv5dN3+lm/Htm7dqvd958+fzwJgjx49WqOs5fXvzz//1Gh/7733WB6Pxz548EAja0BAACuTyTTm1fY8unbtytrZ2bEZGRmVPvaECRNYKysr9WOUW758OQuAvXXrls7PY8yYMZW+vt26dVPPV17zdu/erXU5kydPZl/82u7r68v27t2blcvlrFwuZx88eMC+9957rFAoZP/66y+dM5YDwJqbm7Pp6enqNoVCwTZp0oRt2LChuk3X9VPVa6OLiIgINiQkhGXZsvXYqlUrlmVZ9tatWywANjo6mo2JianwGufk5LA8Ho8dP348y7Ism5WVxTIMwx46dIhlWZZt06YNO3PmTJZlWTYlJYUFwM6ePbvCunB1dWULCgrUbenp6SyPx2MXL16s93MhhBif9PR0FgA7bNiwCtMUCoV62yqXy1mVSqWeVlXdLr9FRETUalaq31S/q0L1W3NdUP0mNUVDr5iYH3/8ETExMYiJicHBgwcxZswYTJ48ucKeWV2oVCooFAr17flToV6UmJiIuLg4jBw5EgA07te7d2+kpaUhPj6+xvc9ePAgIiMjERQUpPfzeVFISAiaNWum0TZixAgUFBQgNjZWo/2NN96odnl3797FvXv3MG7cOJiZmWmdp7S0FMeOHcPAgQNhYWFR4bmWlpbqPfxGQECA+jV//vbFF1/otRxt1q1bB6FQCJFIhMDAQBw8eBA7duxAy5YtDVreoEGDNNaNtbU1+vXrh5MnT0KpVBq0fnR5baozduxY7N+/H9nZ2fjhhx8QGRkJPz8/rfOGhYXB0dFRPcRKdHQ03Nzc1Bfw7Ny5s/q0s6rGJ+/Tp4/GkaBhYWEAgAcPHtT4+RBCTBfLslrb//333wrb+T/++KPKZelTx2tSn/S578GDBxEYGKj1gqX6sra2Rv/+/TXaRowYoT7T53n9+/evdhi64uJinDhxAkOGDIGzs3Ol8/3111+IjIyEh4eHxnPt1asXgLLxMvVhbm6utY6vW7dOr+Vo888//0AoFEIoFMLX1xfff/89vv32W/Tp08eg5XXr1k3j7D0+n4+hQ4ciMTERDx8+BKD/+tHltanO2LFjcenSJdy4cQM//PADAgIC0LlzZ63z2tvbo1mzZuoafeLECfD5fHTo0AEA1NcbAaoe3zQyMhLW1tbqv11dXeHi4kJ1nJCXQMuWLdXbVqFQiBUrVlSYR1vdjomJ0ekClFS/n6H6TfW7HNVvYixo6BUTExQUVOFing8ePMDs2bMxatQo2NnZ6byssWPHYvv27eq/tY2/XK58rKyZM2dWGLakXFZWVo3vm5mZCS8vL53yV8fNza3StuzsbI12XU63y8zMBIAq82VnZ0OhUODbb7/Ft99+q3WeytZTZcrH+q5K+cUtK/uSpVAotBa5IUOGYNasWZDL5bhx4wY++eQTDBs2DLGxsXqfWgVUvs5lMhkKCwtRWFio9/ox5FTIFw0ePBhTp07FqlWrcODAgQrj3T2PYRhERETg8OHDkMvliIqKQkREhHp6REQE5s6dC5ZlERUVBTc3N62nIjo6Omr8XX7hk5KSkho/H0KIaSoqKkJ2djaaNm1aYVqzZs30vpjn/PnzMW/ePPXfvr6+SE5O1jpvTeqTPvfNzMyEj4+PHs+ictqGW6tJHc/NzYVSqaz2e8aTJ09w4MCBSn8c6lvHeTxerdRxbRey7tixI1atWgWlUomEhAR88cUXmDJlCkJCQtCxY0e9cgLVf3fy8vLSe/3URh3v3LkzGjVqhI0bN2LXrl348MMPKwx59rzIyEisXLkSjx8/RlRUFFq2bAkrKysAZXV8xYoVyM/PR1RUFAQCgdZ19WIdB8pqOdVxQv4bnJycYG5urrXz7Ndff0VxcTHS0tIqdPiWq6xuV3ZA1fOofj9D9Zvq9/OofhNjQB3l/wFhYWE4fPgw7t69izZt2uh8v7lz52LKlCnqv5/f6/ai8i8Bn3zyCQYNGqR1nvIjbmtyX2dnZ/Uez5rSNsZ4eduLG8+qNtblyvdeV5XP3t4efD4fb731FiZPnqx1Hn9//2ofS1/lX0YePXqkdfqjR4+0fmFxdnZWF//27dsjKCgIERERmD59ukEXvKhsnYtEIlhZWUEoFOq9fnR5bapjYWGBYcOGYfHixbCxsan0fVguMjISe/fuxYULF3Dq1CksXrxYPS0iIgJZWVm4fPkyzp8/j4EDB9Y4HyHk5fD3339DqVSiS5cutbK88ePHo2/fvuq/y3fIaVOT+qTPfWuzjmu7oFVN6riDgwP4fH61+ZycnBAWFoaFCxdqnV4XF3UztI7b2tqq63jbtm3Rtm1bNGvWDJMmTcLVq1f1HkNVl+9O+q6f2qjjAPDOO+/g888/B8MwGDNmTJXzlv/Qjo6ORnR0tHo8UwDqH9UnT55UXySs/Ec4IeTlwefz0bVrVxw5cgRpaWkanYLBwcEAUGnndU1R/X6G6jfV7+dR/SbGgDrK/wOuXr0KAFWehqSNn59fpcNPvKhx48Zo1KgRrl27hkWLFun1OPrct1evXvjpp58QHx9face7rm7duoVr165pDL/y66+/wtraGi1atNB7eYGBgQgICMCWLVvw0Ucfaf1CY2FhgcjISFy5cgVhYWGVXj29trVr1w5WVlbYuXNnhU7g27dv49atW/jyyy+rXU6nTp0wevRobN++HefOnVNfgFNXe/fuxbJly9RHUkgkEhw4cACdOnUCn8/nbP0AwMSJE/HkyRNERERUe6RH+Slcq1atQn5+vkanVkhICBwdHbF48WKUlpZqPd2LEEJelJKSgpkzZ8LW1hYTJkyolWV6eHjo/KOvJttffe7bq1cvfPnllzh+/Di6du2q82NoI5FIsH//fo2j+X799VfweLxKT9utirm5OSIiIrB7924sXLiw0iP4+/bti3/++QcBAQGwt7c3OL8+GjVqBF9fX+zevRvTp0/X+HGamZmJqKgo9cW4qlvO7NmzMW/ePOzcuVN9MSxdHTt2DE+ePFH/qFcqldi5cycCAgLUR/JxsX4AYMyYMbhw4QKCgoLg6elZ5bydO3cGn8/Hnj17cOvWLSxdulQ9zdbWFs2bN8f27duRnJyMESNG1HV0QoiR+uSTT3Dw4EG8//772LNnT42HmdAV1W/9UP2uHtVvQmoPdZSbmJs3b6qvvJydnY29e/fi6NGjGDhwYJ0cqfy8jRs3olevXnjttdfw9ttvw9PTEzk5Obhz5w5iY2Oxe/fuGt93/vz5OHjwIDp37oxPP/0UTZs2RV5eHg4dOoSPPvpIr6tte3h4oH///pg7dy7c3d3x888/4+jRo1iyZAksLCwMWgffffcd+vXrh3bt2mH69Onw8fFBSkoKDh8+jF9++QUA8M0336Bjx47o1KkTJk6cCD8/P0gkEiQmJuLAgQM4fvy4Xo9ZUlJS6bhz7dq1A1B2NsC8efMwY8YMqFQqDB06FPb29rhx4wYWLVoEX19fTJs2TafH++qrr7Bz50588cUX+Pfff/XKyufz0aNHD3z00UdQqVRYsmQJCgoKNE4trO31o6vmzZtXO95vuZCQELi4uGDfvn1wdnbWGDOfYRh07twZ+/btA6B9XDRCyMutvFYrFApkZGTg1KlT2Lp1K/h8vnq78qLLly/D1ta2QntwcDBsbGxqJVdNtr+63vfDDz/Ezp078frrr+Pjjz9GmzZtUFJSghMnTqBv3756bTMdHR0xceJEpKSkIDAwEP/88w++//57TJw40eDTw1euXImOHTuibdu2+Pjjj9GwYUM8efIE+/fvx8aNG2FtbY358+fj6NGjeOWVVzBt2jQ0btwYpaWlSE5Oxj///IMNGzboNUycSqWqtI6Hh4erd7wvX74cQ4YMQbdu3fDee+/Bzc0NCQkJ+PrrryESiXS+NsnMmTOxYcMGzJs3D0OGDNG4XkZ1nJyc0LVrV3zxxRewtLTEunXrEBcXh99++009T22vH115eHjoXMdtbGzQokUL/PHHH+DxeOrxTctFRERg9erVAKiOE/Iy69ChA7777jtMnToVLVq0wPjx4xESEgIej4e0tDT8/vvvAFBrddhQVL+pfleH6jchtYjrq4kS3WzdurXC1ZZtbW3Z5s2bsytXrmRLS0s15gfATp48udZzXLt2jR0yZAjr4uLCCoVC1s3Nje3atSu7YcMG9TzlV36OiorS+74sy7Kpqans2LFjWTc3N1YoFLIeHh7skCFD2CdPnuic09fXl+3Tpw+7Z88eNiQkhBWJRKyfnx+7cuVKjfmqukp1Zc/j3LlzbK9evVhbW1tWLBazAQEB7PTp0zXmSUpKYseOHct6enqyQqGQdXZ2Zl955RV2wYIFOj8Hln121fDKbnK5XGP+Xbt2sR07dmStra1ZgUDA+vj4sBMnTtS4Ana5qt4js2bNYgGwJ06c0Cln+ZWxlyxZws6bN4/18vJiRSIRGx4ezh4+fFjr/NWtn+quIF6d8vdAVXbv3q31NWZZlh0yZAgLgB08eHCFaatXr2YBsJ6enhWmla+LZcuWVZgGgJ0zZ47Oz4EQYlperNUikYh1cXFhIyIi2EWLFrEZGRkV7jNnzpwqt/NHjx6t1Yy6bH/Lt2Nbt27V+74sy7K5ubnsBx98wPr4+LBCoZB1cXFh+/Tpw8bFxemcMyIigg0JCWGjo6PZVq1asWKxmHV3d2c//fRTjdpX1Ta3sudx+/Zt9s0332QdHR1ZkUjE+vj4sG+//bbGd6nMzEx22rRprL+/PysUClkHBwe2ZcuW7GeffcYWFhbq/DzGjBlT5eubkJCgMf+///7Lvvrqq6ydnR0rEAhYd3d3dtSoURXmY9mq69x3333HAmC3b9+uc9by7wXr1q1jAwICWKFQyDZp0oT95ZdfKsyry/qp6rXRRfl7oCoxMTFaX2OWZdnZs2ezANhWrVpVmPbHH3+oP6NFRUUVplf2HcnX15cdM2aMzs+BEGIarl69yr7zzjusv78/KxaLWTMzM7Zhw4bs6NGj2WPHjmnMW163MzMztS4rJCSEjYiIqPWMVL+pfleG6vczVL9JbWBYlmVr1NNOiBHy8/NDaGioQeNsE/0lJyfD398fy5Ytq/SCrYQQQoiuunTpgqysLNy8eZPrKC8NhmEwefJkrF27lusohBBCTBTV7/pH9ZuQ2qXfFQIIIYQQQgghhBBCCCGEkP8YGqOcmBSlUomqToJgGEavsby4YkrPo3xM/Mroe0XumtIlT31nIoQQohtTqn9VMaXnYWx105TWHSGEkDL/lW23KT0Pqt+EcIN6k4hJCQgIgFAorPTWrVs3AGVDgRjzsCu6Pg+uJScnV5lTKBRi/vz58PPzA8uy9TLsSnV5xo4dW+cZCCGEGKZbt25VbsMDAgIAANHR0UZ92rauz8MY6Fo3WZatl9O2TeU7ECGEkGeoftc/qt+EcIOOKCcm5cCBA5BKpZVOt7a2rsc0hjOV5+Hh4YGYmJhq56lP1eVxcnKqpySEEEL0tXHjRkgkkkqni8XiekxjOFN6HsZWN03lOxAhhJBnTKnuVcWUngfVb0K4QRfzJIQQQgghhBBCCCGEEPJSo6FXCCGEEEIIIYQQQgghhLzUaOgVLfx++prrCAYxs5RxHUFv1ualXEfQm1hY9UU1jBGPMc0TR/iMiusIehPwTC/z0S6ranV5qvRAvebnud2t1ccnL6em++dwHcEgthYlXEfQm73Y9DI7mRVyHUFvfBOt3aR+bG61rVaXR7WbcGH2tTe5jmAQe2ER1xH05ioo4DqC3qz5pvd9gw/T+y0IAEo6hrZevBlwuVaXR7W7blBHOSGEkFql0vMLIn0tI4QQQrhFtZsQQggxLVS76wZ1lBNCCKlVclap1/xUiAghhBBuUe0mhBBCTAvV7rpB64kQQkit0nfPNiGEEEK4RbWbEEIIMS1Uu+sGdZQTQgipVUqWxtUlhBBCTAnVbkIIIcS0UO2uG9RRTgghpFapQAWbEEIIMSVUuwkhhBDTQrW7blBHOSGEkFqlpIJNCCGEmBSq3YQQQohpodpdN6ijnBBCSK2iPduEEEKIaaHaTQghhJgWqt11gzrKCSGE1CoaK40QQggxLVS7CSGEENNCtbtuUEc5IYSQWkXX3iaEEEJMC9VuQgghxLRQ7a4b1FFOCCGkVtFYaYQQQohpodpNCCGEmBaq3XWDx3WAmtq8eTPGjBmDrVu3AgB27tyJoKAgNGjQAHPmzOE4HSGEvHyUrH438vKh2k0IIcaFajepDtVuQggxLlS764ZJH1G+evVqfP7553jttdfw2Wef4fHjx1i1ahWmT58OlUqFFStWwNPTE+PHj6+3TKMCwzEyMBxelrYAgIT8LKy5fgbRj+8DAJzMLPBxi0h0cveDjcgMF5+kYk7MUSRLcustY3XGB3bAR6HdsD3xPBZfPwIA6OHRBEP9WyLEzh32YgsMOLYRcflPOE76zNsNIjC58WvYkXwGK+/8DT7Dw8TAHujg3Bie5g4oVJTiYnYi1sYfRpZUwnVctVF+kXi/YS/sSjmFNXcPgM/wMD7gNbRzagIPc0cUKUpxKScB6xMOIltWwHVcAMBI30hMaNgbu1NO4duE/QCAd/x7oKtrc7iY2UGhUiBe8gjf3zuIOwWpHKctM8K3K94L6IM9qSfxXcKfAIAx/q+iq0s4nM1soVApcVfyED/cP4g7BSkcpy0zzKcbxjXoi70PT2B94h8AgLf8XkMXl3A4i+2gUCmRUPgQW+//jTiJcWQuR6eAkaoYY+1+0biGnfBhcHf8dO8clt46BADo5h6EN31bIdjWHfZiSwyOXo/4gnTOMr7IFOtJzj/3kbU3EXbdfeAyrEmF6U9+vI38kw/hPLQx7Hv4cpBQu4f7HyJlVwrcX3OH/1v+AICEjQnIPJWpMZ9VgBXC5oVxEbGC1D8fIXlXCjx6uiHgaeb4DYnIeCGzdYAVms9vykXECihz/aLaTapiCrX77r4M3NmRjga9ndD0bQ91u+RhKW7/koas20VgWcDG2wytpvvAwknEWdZy13/PRezPOQjqa4u245wAANsG3tM6b6vRDggdaF+f8bQ6t7sYJ38sQsv+5uj+nhUAQFbC4sT2Qtw9L0OpRAUbFz5a9TNHeG9zjtM+c2KnDEe3y9D+dSH6TBADAKQlLI5sleHOOQWKJSzsXRm06y9C2z5CjtOWid4px+HtcrzyugD9JpS9XyW5LA5tlSEhVoXSIhZ+oTz0f18EJ0/jOAbWFNezKWYuR7W7bph0R/nGjRuxadMmjBgxAleuXEGbNm2wYcMGjBs3DgDg5eWF7777rl4LdlqxBEtio/Hgacf3GwFNsanLG+jz91Yk5GdhU5c3IFep8F707yiUy/BuUGv83H0YehzYjBKFvN5yVibU3gND/FsgLk/zx785X4jY7FQcenQbC1r04yiddsG2nhjg3Rp3C9LUbWZ8IZrYeOCHxCgkSNJgLTTHR0F9sKLlWxhzdh2HaZ9pYuOF/p5tkSh5rG4z44kQaO2J7fePIaEwDTYCc0xr3A9Lmr+Ndy+u4TBtmSbWXujv2U4jMwCkFmdidfwfeFySDTFfiCHenbAi/D0MP7sE+fIijtKWaWztjb4e7XDvhcwPizPxzd29SHuaebB3BJY2H49R5xZznjnQ2hu93dvjXuEjjfaHxZlYm/A0M0+IN7wj8HWz9zHmwkLOMz9PzjJcRyBGzBhr9/NC7Dww2Lcl4vMr1sGrOSk48vgW5jV/nZNslTHFelKalI+8kw8h8rLSOr3wSgZKk/LBtxPXc7KqSe5J8CTqCSx8LCpMswuzQ8PxDdV/MwLj2BZK7hUiLeoJLLVktg+zQ+CEAPXflNlwppj5eVS7SVWMvXbnJhbjwb/ZsPE102gvSpfi1Jf34NvVAY2HuEFowYPkkRR8IfedilkJpbh7pAD2fpod9kO2aO4YfhRbjDPfZcK3vfZ6WZ/S7spx7VAJnP34Gu3HNhci5YYM/WZYw9aFj6QrMhxZXwgrBx4ateO+jj+8q0TMITnc/DVf9382SZF0XYnBs8Swd+UhMVaJA99JYePAIKg9t11lqXeVuHhIATf/Z9tmlmXx01dS8PnAW1+KYGbB4PQ+BX74VIrpG80gMuN2O26K69kUMz+Panfd4L5C1MCDBw/QsWNHAEB4eDj4fD7atWunnt6pUyfcu6d9j2xdOfYwEdGP7yNJkoskSS6WXz2JYoUM4c4e8Le2RwtnT3x+4TCuZ6fjfkEOPr94BJZCEfr7BdVrTm0s+EIsbzUQX8T+hQJ5qca0/ak3sC7uJM5l3OconXbmfBHmNxuKRTf3QSIvUbcXKaSYErMV/6bfwIOiLNzMS8Xy2wcQbOsFVzNbDhOXMeeLMCdkOJbe2QOJ4rncylJMv7IZxzOuI7U4E7cKUrAq/k80sfGCq9iOu8Aoy/xF6IgKmQHg3ydXcTk3AWmlOUgueoK1CQdgJTBHgJU7R2nLmPFF+CxkJJbH7YZEUawx7diTK4h9LvO6hD+fZvaoZGn1w4wvwidBo7Dq7i4UvrCeozJicSX3LtJLs/GgOB0bEv+ApcAcDSy5zfwiJRi9bvqYO3cuGIbRuLm5uamnsyyLuXPnwsPDA+bm5ujSpQtu3bpV20+R1IAx1u5y5nwRvm7xBuZd248Cuebn76+H17Hh7gmczzS+Omhq9URVqkDa5htwHR0CvkXFI3PkuaXI+PUO3N5tCoZvPD8AlKVKJKxPQMC4AAgsKv5I4gl5ENmJ1DehFfdHHSlLlYhfl4BG7zaAwFJbZoYy1wJTzPwiqt2kKsZcuxWlSlz+NgXNJnhBaKnZgXvnt3S4hlsjZJQ77PzNYekqhlsLG4htue3okpeocHJVBl6Z5AyRpWaXjIW9QOOWcrEI7qHmsHbjdrshK2FxYIUEPadaw8xKM/PjODlCu5rBp6kItq58NO9pDhd/AdISFRylfUZawmL30lIMmCaG2Qv7GlLjVAjvJkSDMAHsXXlo3UsItwY8PEpQchP2KWkJi51LZRg0TQRzq2fb26xHLFLjVBgwRQTvQD6cvXh4fZIQ0lIW16K5z2yK69nUMr+IanfdMOmOcgsLCxQVPTuK0tnZGVZWmu9whYK7jTOPYdDPLwjmAiFiMx9BxC8ryFLls0wqloVcqURrF2+uYqp92bw3otMTcC4ziesoOpsd3B9nMuJwMbv6L2ZWAjOoWBUKFaXVzlvXPmo8AGez43ApJ7Haectzv9g5Xd+mNx6Ic1l3cDk3ocr5BAwf/T3bQSIvwb3Cx1XOW9c+DByE81m3EatD5r4e7VEoL0Eix5mnNhqMC9l3cCX3bpXzCRg+enu0R6GiBPeKuM38oros2AAQEhKCtLQ09e3GjRvqaUuXLsXKlSuxdu1axMTEwM3NDT169IBEYjxDLr3sjLl2fxbWB6eeJOB8lnF1hlfFFOtJxi93YNnUCZbBjhWmsSoW6T/cgP1rfhB7cn/03PPub7sP++b2sAu10zo9/04+Lk66iNiZsUjcnAhZvqx+A2qRuC0J9s3tYV9J5rw7BTg/MQaXZlxBwvf3IMvn/uxGyswNqt2kKsZcu69vfgzXcBu4hFlrtLMqFumxEli5i3F24X0cfPcWTnyagLSL+ZzkfN75TZnwamUBj2YVz0B5XkmeAg8vF6NRd+sq56sPRzdIENBKBL/mFYes8QoWIvGCDJJsJViWxYPrMuQ+VqJBOPfD2xxYJ0XjNgI0DK+4c8Q3mIe4CwoUZKnAsizuX1Mg65EKDVtyuyPlz3UyNGnDR8NwzR0/yqelQ/DcauXxGQgEQPJtbjtwTXE9m2LmF1HtrhvG9SrrqUmTJrh+/TqCgsqOxk5N1RwPOS4uDn5+flUuQyqVQiqVarSxcgUYoeGrprGdM/b2fAtivgDFChkmRO9FYn42BAwPDwvzMTs8Ap9eOIQShRzvBrWBi4UVXMwtDX682tDbKwTBdm4YHLWZ0xz66OEehia2HjoNpSLiCTC58Ws4/PgaihTSauevS91cmyHQxhPvXfy22nlFPAHeb9gbR9OvoljJXe6urs0QaO2J8TGVn67f3jEIc0JHwowvRLZUghlXNiFfXlzp/HUt0qU5Gll74f1Lqyudp51jEL4MeQtivhDZMglmXt2IAg6HMOniEo5GVp6YHLuq0nnaOgbjs+DREPOEyJEV4H/X1nOaWRtVHZ8CJhAINPZml2NZFqtXr8Znn32GQYMGAQC2b98OV1dX/Prrr5gwYUKd5iK6qavarZIrwKtB7e7pEYpgW3cMO7nJ4GXUN1OsJwUX01CaIoHP5221Ts89lASGx4NdN596Tla1rHNZKEouQth87WOO2zezh2MbR4idxJBmSpGyJwW3Ft9Cs6+agcfRKf4Z57JQmFSI8K+0Z3ZoZgfntmWZSzNL8WB3Km4suoXwBWGUWQ+mmFkbqt2kKnVVuxUyJQQifiX3qN7DM3nISypBxOKGFaZJCxRQlqqQ8GcGgoa6IWSkO55cleDiigfoMKcBnIK52Rl7/5QE2fdl6LvMs9p5E6MkEJrz4NOO276C2ydLkX5PgTErtY+R3n28FQ6tlWDd2zng8QGGAXpOtYZXCLdHwV8/IUdaogrvf6N9rPQ+74vxxxoplo4uVuce8IEYfiGGvydr6toJBR4nqjD5G7MK05y9Gdi5MDi8VY6BU0UQmgGn9ykgyQUkOdxdqdEU17MpZtaGanfdMJ5vZwZYsmQJGjduXOn0lJSUal+gxYsXw9bWVuOWfyC6RrnuF2Sj999bMPDgj/j57hWs6NAXDW0doWBVeP/EXjSwccD1odNxZ/hMtHP1QdSje1Cy3G3Y3Mxt8GnYa5h16Q/IVMZ1KkllXM1sMSOoL768tgsyVdVHL/AZHhY2HwYeGCy5vb+eEmrnIrbFB4H98dXN33TKPTd0BBgwWBG3r54SVuQitsW0wNfx1a0dVWa+kpuIcRdXYdKl73AxJx7zmr4FOyE3X+qcxXaYEjgAi27/AnkVma/m3sO7MSsw5fK3iMmOw5zQt2An5OZLs7PYDpMaDsTXd6rOfC03Ee9fWo4Pr6xBTE4cPg8ew1nmyui7Z1sqlaKgoEDj9uIPqeclJCTAw8MD/v7+GDZsGO7fLzv6NykpCenp6Xj11VfV84rFYkRERODs2bN1/ryJbuqqdmfuOW1wJlczG3zctBc+jv292m2zsTDFeiLPKUXmjni4v9sUPGHFHxqlyQXI/TcFbmNDwDDGM+SKNFuKpJ+S0GhiI/BE2r86O7VzgkO4Ayy9LeHQwgHBs4JRmlaK3KvcXKxdmi3F/R+T0XhS5Zmd2zvBIdwelt4WcGzhgNDZQShJK0UOZdaZKWauDNVuUpW6qt0XfogzOFNJlgw3tz1Gy6ne4Gv5/LFPr3Ln1soWAX2dYetnjsABLnBrYY3kI9kGP25NFGUpcPGHbHT+0AWCSrYZz0s4JkGDzlY6zVtXCjKVOPZ9IfrNsIFApL02XzpQgsfxCrzxhQ3GrLJH5DgrHN1QiOSr3J1ZlZepwt8bZRg8SwxhJbnP75fjYZwSo+aYYdIac/R6T4QD66RIvMLNd8G8TBX+2ijD0Eoy8wUMRn0mRtZjFeYPLcGcgSW4f0OJwFY8MBy9RUx1PZta5spQ7a4bDMty2ENrBLTt2W66Z02Njih/0c/dhyFFkotPLxxWt1kLxRDyeMiRluCPXqNxPTsNX148WqPHMbM0rBB1c2+M79oPhUL17Jq5Ah4PKpaFimUR9sdCqFD2NvG0sMWxnh9gwLGNiMt/UqO8AGBtbtgwKBEuQVje8i0onuvYF/D4ULEqqFgWHQ5/CRVY8BkeFjcfDk8LB0y6uBn58pqfbi4WGr5x7OQcgsXNxlSau+vxT9W5v2o6Ch7mDpgWuwkFNTwym8cY/jHv6BSCRc3erjRz96hP1O+P5/3afjb+fhyDXx5EGfzYfMaw6zh3cArFgrB3oHwuM/9pZpZl8Wr0/7Rm/qndxziYdhG/PjhucGYBz7DMrziFYl7oOCjZ5zIzTzODRe8Ts7Rm3tbmUxxKv4DfUo4ZnPlol8qPYDdETIqfXvP/veVtzJs3T6Ntzpw5mDt3boV5Dx48iOLiYgQGBuLJkydYsGAB4uLicOvWLcTHx6NDhw549OgRPDyejds+fvx4PHjwAIcPH66wPGKatNXu9keXGHxEeVe3JvimzfBKt3Mt//pK/fnzMLfD4R7TMTh6PeIL0itbpM5sLQyrS1zVEwCwFxuWufBKBh5/dxXgPfejRMUCDACGgdMbjZC1527ZYTsvTBc4mKHBks4GZ3YyKzT4vtmXshG/Ol7z8BIVnuYG2m9rD4ZX8YdW7IxYuHRxgVc/L4Mel1+D2p11KQd3VlWeueP2dlozx3x0BW6RLvDuV/2RjrWNMutnc6ttBt9XG6rdpK5pq91z4982+IjytIv5uLj8gUYHIfv088cwQJ+fQvH36JtoPNgVjd9wVc9z6+c05MQXodNXFY9C15W90LCzOR9cKELU1+mVZn5rVwPwnl6b48ntEhz87DH6r/SCg3/NL4jpKigw6H53z0mxb1FBpZk/3OmEb4ZnYdCnNgho/SznwTUSSLKVGDLPzuDM1nzDf7vfPqvArwtKwXsut0pVlplhgM/3WGLhkCKM+NwMjds8+/64b3UpCrJZjPlK+5HG1eHDsN+CAHDrrAI/L5BVmvmrP83V74/SIhYKBWBly+C7D0vh1YiH1ycbPtSN0sBjaLlazzXBZeY3Ay7XJHoFVLvrhkkPvVIbxGIxxGLNwlObneRA2Xfl8vHJy0nkZV8S/Kzt0dTBDSuunqzVx9TH+cwk9Pt3vUbbopb9cV+Sjc13z2jtnONaTPY9DDv1jUbbl03fQHJRJn68f1Kjk9zH0gnv11IneU1dyknEW+dWaLR9GjwED4oz8EtytEanhpeFE6Zd3lgrnRo1cTk3EWPOL9do+zh4KFKKMvDrg6gq3h8MRDxuNjGxuQl458Iyjbb/BQ1FSnEGdlSRmQEDIUeZr+Qm4L2YJRptMxsPR2pxBnamHqt8PTPgLHNl9D0F7JNPPsFHH32k0fbidrlcr1691P9v2rQp2rdvj4CAAGzfvl19UakXj0RlWdaojk4lNaetdtdk2JXzmfcxMOo7jbavmg9AUmEWtiSeNso6aIr1xCLIAb7z2mu0pW+9BZGbJRx6+UFgK4ZlqOa45Q9XxcKmnTtsO9Z/J2g5uxA7NFvcTKMtcVMiLDws4NHXQ2tHqFwihzRHCpEdN+Oz2oXYosXXmpnvbkqEhbs5vPp5UuZaYoqZK0O1m9Q1bbW7JsOuODW1QuTyQI22K+tTYeUhRqPXXcAX8mAXYIHCx5qd84VpUpg7cfP58wgzx+urNXeenl6bCVtPIZoOtFN3ggLA3X8lcAwQ10oneU34NhNi7FrNIVf+WS2BoxcfbQdbgFWxUCmAF4c/ZnjPjurnQkBzPqau0+zQ3LtKCicvHjq/KYRKBSgVmvvmAYDhl3WacqFhcz4+WKc55MqeVTI4ezGIeFOo8f4wsyz7f9YjFR4lqtBjNDfD3JjiejbFzJWh2l03jKt3pZaNGTMGqampOH7c8KND9TWreWdEP76PtCIJLIUi9PMLQjtXH4w5vgsA0NunMXKkJXhUlI8mdi6Y07o7jqQm4FRacr1lfFGRQoaEgkyNthKFHHmyYnW7rdAM7ha2cDEru5CIv1XZD9ms0kJkSet/fORipQz3CjWPaC9RypAvL8a9wifgMzwsCR+BJjYemH75R/DBwFFUNjxFvrwECpabIWZKlFIkFWnmLlXJUCAvRlJRWe4FYW8h0NoT/7u6FTyGgcPT3AUc5daaWfkssxlPiLf8u+FM5m1kywpgK7TEAM/2cBbbIirjer3nLc+cXKR5pGd55uSidJjxRBjl1w1nsm4hRyaBjcACr3t1gLPYFicyrhlPZpUMBYoideYRvt1xLvsWsqUFsBFaor9nBziL7XCSo8yV0fdCIdp+OOnK0tISTZs2RUJCAgYMGAAASE9Ph7u7u3qejIwMuLq6VrIEYmy4qN3FShkSJRkabSVKGfJkxep2G6E53M2f1UG/8jooLUS21PCjlQ1livWEZyaA2FPzgmQ8ER98K6G6nW+l2XnB8BkIbMUQuXE3PivfnA9Lb83H54v5EFgJYOltCWWpEql7U+HY2hFCO2HZGOW7UyC0EsKxVcULltYHgTkfAm/Ni8TxxXwIrAWw9LaAslSJB7+nwqmNI0R2QpRmSpG8qzyzA2X+D2euDNVuUhNc1G6hOR9CH82Odr6YB5G1ADY+ZZ2NDfs749KqFDgGZcMp1AoZVyV4crkAHeYG1FvO5wnNebD3fWFngZiB2Jqv0S4rVuHB2UK0epubGvI8sQUPzr6aRxsLzRiY2fDg7FvWneQdKkT01iIIxQxsnPlIvSnHrahSdB3H3fCQYgsGrn6a7w+hGWBh86zdrykPh7bIIBADdi48JN9Q4uoxBXq9x83OCbEFAzc/zW2x6GlmN7+y1+DGKQUsbRnYOTNIT1bhwEY5gtvxEdiCm7GzTXU9m1rmylDtrhv/6Y5yDw8P8Hj1O1iTk7klVnXoB2dzS0jkUsTlZmLM8V04/bQj3MXCCp+36gYnM0tklBRi7/2b+PbGmXrNaIiu7o2xuNXr6r9XtR0MAFh75wTW3jnBVaxKuZjZIMI1GADwa8dpGtMmXPgesTlJXMSqlrPYFp2cQwAA29pN15g29fIGXMm9z0WsKqnAwtfCBT2btoKtyBIF8iLEFTzE1MvrkFxU8+F56oISKnhbuGBe09awFZZlji9IxbTY74w8syt6uLWGjdAKEnkR4iUpmH7lWzworvnwD7VJydbfdlcqleLOnTvo1KkT/P394ebmhqNHjyI8PBwAIJPJcOLECSxZsqSaJRFjwUXt1kWkW2MsCB+o/nt5qyEAgHXxUVgfH81RqsqZYj0xWTygOLUYGaczoCxSQmgnhG2wLQKnBIJvblwXfVLjAUWpxcg4nQlFkRKip5mDpgZCQJlrjwllptpNasJYa7dHG1s0e88TCX9k4MbWx7DyEKP1DF84NuH24pjVSTpdCJYFGnQyrusQVab/bBuc2F6IA8slKC1UwcaZj05vWaJ5r4oXpDQmQ/9nhiPbZNi9TIoSCQs7FwY9RovQprfxdpMV5LD4+3s5CvNYWNszCO/GR9fh3F40tTqmuJ5NJTPV7rrx0o9Rro3fT19zHcEgho5RziVDxyjnUk3GKOdKTcYo55KhY5RzydAxyrlU22OUn0gOrH6m50T43dV53pkzZ6Jfv37w8fFBRkYGFixYgBMnTuDGjRvw9fXFkiVLsHjxYmzduhWNGjXCokWLEB0djfj4eFhbW1f/AMRkNd0/h+sIBjF0jHIuGTpGOZdqMkY5V2oyRjn576vtMcqpdhMuzL72JtcRDGLoGOVcMnSMci7VZIxyrtRkjHIuGTpGOdFPbY9RTrW7bhjX7pBalpqaijlz5mDLli1cRyGEkJeGvqeA6ePhw4cYPnw4srKy4OzsjHbt2uH8+fPw9fUFAMyePRslJSWYNGkScnNz0bZtWxw5csTki/XLhGo3IYTUP6rdpCaodhNCSP2j2l03/tNHlF+7dg0tWrSAUqnfOJx0RHn9oSPK6wcdUV5/6Ihy4GhSkF7z9/C/U6uPT0ybobWbjiivP3REef2gI8pJVWr7iHKq3aQmDK3ddER5/aEjyusHHVFOqlLbR5RT7a4bJn1E+f79+6ucfv8+jb9JCCH1TQ7jGneVGBeq3YQQYnyodpOqUO0mhBDjQ7W7bph0R/mAAQPAMAyqOiieYeruVARCCCEV1edFRYjpodpNCCHGh2o3qQrVbkIIMT5Uu+uGSa9Vd3d3/P7771CpVFpvsbGxXEckhJCXjgo8vW7k5UK1mxBCjA/VblIVqt2EEGJ8qHbXDZNeUy1btqyyKFe315sQQkjtU7KMXjfycqHaTQghxodqN6kK1W5CCDE+VLvrhkkPvTJr1iwUFVV+IY2GDRsiKiqqHhMRQgihi8GQqlDtJoQQ40O1m1SFajchhBgfqt11w6Q7yjt16lTldEtLS0RERNRTGkIIIQCgorHSSBWodhNCiPGh2k2qQrWbEEKMD9XuumHSHeWEEEKMD+3ZJoQQQkwL1W5CCCHEtFDtrhvUUU4IIaRW/RfGP8vLy8PFixeRkZEBlUqlMW306NEcpSKEEELqBtVuQgghxLRQ7a4b1FGuxT9dvuU6gkH6nZ3EdQS9FfFEXEfQm9IET28RCxRcRzCIimd6G372P1CsasrUr6h94MABjBw5EkVFRbC2tgbDPHtNGYahH9tGanvzrVxHMMi7N03v/WQukHMdQW9bW5ve++OdmHe4jmAQPkMX9DNFVLsJF/LkFlxHMIitoITrCHorVpne725PYQ7XEfQmY02zi00IJdcR9FbKCrmOwDmq3XXDtNcqIYQQo6NkeXrdjM2MGTMwduxYSCQS5OXlITc3V33LyTG9L+yEEEJIdah2E0IIIaaFanfdMM3dXYQQQoyWCqZ9VP2jR48wbdo0WFiY5lFOhBBCiL6odhNCCCGmhWp33TC+XQqEEEJMmqnv2X7ttddw6dIlrmMQQggh9YZqNyGEEGJaqHbXDTqinBBCSK2Ss3yuI+ht//796v/36dMHs2bNwu3bt9G0aVMIhZrj3/Xv37++4xFCCCF1imo3IYQQYlqodtcN6ignhBBSq5QmeLLSgAEDKrTNnz+/QhvDMFAqTe9iN4QQQkhVqHYTQgghpoVqd92gjnJCCCG1SmWEp3VVR6VScR2BEEII4QzVbkIIIcS0UO2uG6a3VgkhhBg1JRi9bsYiMTGR6wiEEEIIJ6h2E0IIIaaFanfdoCPKCSGE1CpT3LMNAIGBgfD09ERkZKT65ufnx3UsQgghpM5R7SaEEEJMC9XuukEd5YQQQmqVMe2t1seJEydw4sQJREdHY8qUKSgtLYWPjw+6du2qLuCenp5cxySEEEJqHdVuQgghxLRQ7a4b1FFOCCGkVpnqnu1OnTqhU6dO+PzzzyGXy3Hu3DlER0cjOjoaO3bsgFQqRcOGDREfH891VEIIIaRWUe0mhBBCTAvV7rph8h3l165dw4EDB+Dg4IAhQ4bAyclJPa2goAAffvghtmzZwmFCQgh5uShNtGA/TygUonPnzmjdujXat2+Pw4cP4/vvvzf68dRMBdVuQggxLlS7SXWodhNCiHGh2l03TLqj/MiRI+jXrx8aNWoEiUSCOXPmYNeuXYiMjAQAlJSUYPv27fVasH/bLsLOn0QabXb2KmzdXQwAYFlg548iHPlHgCIJg0ZNVBg/TQofP+O58uv7Qa9gVlgktt69iAVXjqrbp4V0wrCAcNgKzXA15zHmXj6EhIIsDpM+816jjpge0h0/3juPr28cAgB0dw/CEL+WCLHzgL3YAoOiNiAuP53jpJreCeiMqY1fxa9JZ7H8zj8QMDxMCuyODi6B8DJ3QKGiFBey7mFN/BFkSSVcxwUAjPbvgomNemLng9NYHf8X+AwPExq+ilecmsDDwgGF8lJcyknEuoSDRpN5lF8k3m/YC7tSTmHN3QMAgLENeqCbazO4mNlBoVIgvuARNt07hNsFqRynLTPCtyvGN+yNPSknsTZhPwDgbf9X0dW1OZyfZr4reYjN9w7hTkEKx2k1qUz0FDAAKC0txdmzZxEVFYXo6GjExMTA398fERERWL9+PSIiIriOaPKMsXbv+VGA338SarTZ2rPYsKsUQFnt/v0nAY79LUBRIdCwiQrvTJXD24+tt4zVMcV6MsynG8Y16Iu9D09gfeIfAIC3/F5DF5dwOIvtoFApkVD4EFvv/404iXFt50zNw/0PkbIrBe6vucP/LX8AQMLGBGSeytSYzyrACmHzwriIWEHqn4+QvCsFHj3dEPA0c/yGRGS8kNk6wArN5zflImIFppi5HNVuUhVjrN0vSvnzEZJ2pcKzpxsavuUHAIjbkIgnpzR/r1oHWKHF/FAOElZ04/ccXPklG0F97NB6nDMA4MdBCVrnbTHaCaED7OsznlaX9khw7qcCNOtnic7v2gEAvn39kdZ5O4yxQYtB1vWYrnJHflPhr20sIgYweOP9ss7FglwW+39gERfLoqQICAgFBk/iwcXTOLaHx3YqcHCbEp1e5+P198u67iS5LP7eosDdWBVKioAGoQwGTBTA2dM4OkxNMfOJnTIc3S5D+9eF6DNBDACQlrA4slWGO+cUKJawsHdl0K6/CG37CKtZWv2i2l03TLqjfO7cuZg5cyYWLlwIlmWxfPly9O/fH7t370bPnj05y+Xtp8S8paXqv3m8Zz+k9+0UYv/vQkydVQoPLxZ7fhFi7v/M8N3WYphbcJFWU1MHdwxrEI47eU802sc3aY+xjdti9oUDSC7MweTgDtjeZQR6/LMBRQoZR2nLhNp54E2/lhU6wc0FQlzJScXhx7fxVXh/jtJVLtjWE4O8W+NuQZq6zYwvRBNbD2xOiMZdSTpshGaYGdQHq1uNwqgz6zlMWybIxguve7VBgkQzc2MbT2y9fwwJkjRYC83xYeN+WNp8DMZeWMth2jJNbLzQ37MtEiWPNdpTizKxKv4PPC7JgZgnxBCfTljZ4l0MO7MUefIijtKWaWztjX6e7SpmLs7EN/H78LgkG2K+EG96d8ay8Pcw8uzXyOc48/NMdc92REQEYmJiEBAQgM6dO2Pq1KmIiIiAq6sr19H+U4y1dnv5qfDZEqn6b95zb+MDOwX453cB3p8pg7sXi32/CrDof2Ks3FpqFLXbFOtJoLU3eru3x71CzR/XD4szsTZhL9JKsiHmCfGGdwS+bvY+xlxYaFTbOVMiuSfBk6gnsPCp+Ga1C7NDw/EN1X8zAuP4wSW5V4i0qCew1JLZPswOgRMC1H9T5tpBtZtUxVhrd7mCe4VIi8qo5PNniyYanz/jeK9nJZQi4Wg+7H01D7J78wd/jb8fxRbh7LoM+Lazqs94Wj1JkOHW4SI4+ml2I43d5qbx94PLpTi2Ng8Br5jXZ7xKPYhncfYgC4/nVi3Lstg8TwW+AHhvDg9mFkDUXhbffaLCp5t4EJtxu51OiVfh/EEl3P2f5WBZFtvmy8ETAG9/KYSZJXByrxIbP5Vj1kYRZTbAw7tKxBySw81fc7vwzyYpkq4rMXiWGPauPCTGKnHgOylsHBgEtTeeblSq3XXDNNfqU7du3cLYsWMBAAzDYNasWdi0aRMGDx6MAwcOcJaLzwfsHVj1zdaurJ1lgb/2CjF4hAztOynh66/CtNlSSEsZnDzO/YfNQiDEqnav49NLfyNfVqox7Z3ANlh3+wyOPIrH3fxMzLpwAOZ8Ifr7hnCUtowFX4Slrd7AnKsHUCDXzHwg9TrWx5/Aucz7HKWrnDlfhIXN38RXN/7QyF2okGLSxW04mn4TD4qycCPvIZbc/gvBtp5wM7PlMHFZ5rlNh+LrW3shkZeo24sUUnxw+Qcce3IDKcVZuJWfipVx+xFk6wVXI8g8J2Q4lt7ZA4miRGPa0SdXcSknEY9LcpBU9ATf3j0AK4E5AqzcOUpbxpwvwuehI7D8zm4UvpD52JMruJybgLTSHCQXPcF3CfuNIvOLVCyj181YnD17Fk5OToiMjES3bt3QtWtXoynW/yVGW7t5gJ3Ds5uNXVk7ywIH9wkwYLgCbTqp4O3PYuIsOWRS4MxxPmd5y5liPTHji/BJ0CisururwnYuKiMWV3LvIr00Gw+K07Eh8Q9YCszRwNKDo7SmTVmqRML6BASMC4DAouJ3TZ6QB5GdSH0TWnF/pJSyVIn4dQlo9G4DCCy1ZWYocx2g2k2qYqy1Gyj7/MWtS0Tguw0gsKxYlytu57j/3S0vUeHU6nS0m+gKkZVmZnN7gcYtNaYIbqHmsHbjdrshK1HhyMocRE62g5mVZjeSpT1f43b/Yim8moph68b9upaWsPhxqQrDP+DB4rl9DZmPgOQ4YMgUHnwbM3D1ZjBkCgNpCXA5itszBqUlLH5dpsCbHwhh/lzmrEcsHsSxeGOKAD6NeXDx4mHQZAFkJcDVaG5HKDDVzLuXlmLANDHMXtgPlRqnQng3IRqECWDvykPrXkK4NeDhUYKSm7CVoNpdN0y6o1wsFiMvL0+jbfjw4fjhhx8wbNgw7Nu3j5NcaY94GDvUAhNGWWDFAjHSH5e9IZ+kMcjN4aF5y2cfLqEICAlTIu4W9z+257XoiajHiTj7JFmj3dvSDi7mVjid/qzDWaZS4kJmClo4etVzSk2fN+uNE+l3jbIzvCofh/TD6Yx4XMy+V+28VgIzqFgVJIrSauetSzODXsfZrHjE5FQ/VpQ6s5zbzB81HoCz2XG4VE1mAcPH655tIZGXILHwcZXz1rUPGg/C+aw7uJyr/bTLcgKGj36e7VAoL8E9jjO/SAmeXjdjkZeXh02bNsHCwgJLliyBp6cnmjZtiilTpmDPnj3IzMysfiGkWsZau9MfM5g41AzT3hJjzUIhnqSV1e6MdAZ5OQyattKs3UFhKty9zf371xTrydRGg3Eh+w6u5N6tcj4Bw0dvj/YoVJTgXpFxbedMxf1t92Hf3B52oXZap+ffycfFSRcROzMWiZsTIcvn9ixBAEjclgT75vawryRz3p0CnJ8Yg0szriDh+3uQ5cvrN6AWppj5RVS7SVWMtXYDQMK2JDg0t4N9qPadwHl3CnB24iVcnHEV8d/fN4rP34XvM+DV0hIezao+La0kT4GHl4vQsJtNPSWr3ImNefBraQaf5mZVzlecp8SDS6UI7m4Ep9wB2P0di5A2DBq30OwkVDx9GwieO6Cfx2cgEAD3b9VjQC32fqdAUGseAsM1t7XqzMJnz4XHZ8AXAEm3uO10NsXMB9ZJ0biNAA3DK+7Q8Q3mIe6CAgVZKrAsi/vXFMh6pELDltzv/Hke1e66YVyvsp6aN2+OqKgotGzZUqN96NChUKlUGDNmTLXLkEqlkEqlGm0yKQuR2LC9LY2ClPhgthIeXizychns/kWETz4wxzebi5GXW7ZMO3vNPZR29iwyn3C7d6evdzBC7N0w4GjFceWczSwBAFmlmqc8Z5cWwcOCu6LdyzMUwbbuGHLie84yGOJV96ZoYuuOt85sqHZeEU+AaU1exaHH11GkkFY7f13p7haGxtaeOg2lIuIJMLFRTxxJu4ZiJXeZu7k2Q6CNJ967+G2l87ziFIS5oSNgxhciWyrB9CvfI19eXI8pNXV1bY5Aa0+8H/NNpfO0dwzCl6GjIH6aecaVTZxm1kbBcr/jzxCWlpbo2bOn+hRiiUSC06dPIyoqCkuXLsXIkSPRqFEj3Lx5k+Okps0Ya3fDJipMnF02rEp+LoN9vwgw5wMxlm0uRX5O2TJt7TRrt609iyyOa7cp1pMuLuFoZOWJybGrKp2nrWMwPgseDTFPiBxZAf53bT0KaNgVvWWdy0JRchHC5msfc9y+mT0c2zhC7CSGNFOKlD0puLX4Fpp91Qw8ITc/pjLOZaEwqRDhX2nP7NDMDs5tyzKXZpbiwe5U3Fh0C+ELwihzDVHtJlWpq9qtlCnBFxn+3iv7/BWhxVfax/wv//yZOYlRkilF8u5UXFt0Gy0XNOXs85d0WoKc+1L0Wepd7bz3ogogNOdxPuzK3ZPFyLwvx5DlLtXOe+d4MYTmDALacz/syuVoFVITWcxcU/G1dvUGHFyAA1tZDJsGiMzKhl4pyAUKcrg7ovxKtBKP7rH44JuKXXUu3gzsXYB/tikweKoAIjPg5D4lJJRZb9dPyJGWqML732h/n/Z5X4w/1kixdHQxeHyAYYABH4jhF2JctZJqd90wnm9nBpg4cSIePdJ+4Yjhw4dj+/bt6Ny5c5XLWLx4MWxtbTVu339n+EWuWrZRon1nJXwbqNCspRKfLyw7pTjq6HOnSr3wu5plyz54XHE3t8YXLXrgowt/Qqaq/FSSFzdjXHYPuJnb4JOmPfG/y3shUyk4TKIfVzNbzArug8+v7qk2t4DhYXHzIWDAYPEt7k5pdBHbYnrjfph7Y2e1mfkMD/PDhoPHMFh254/6CaiFi9gWHwT2x1c3f6syc2xOIt65sBoTY9bhQnY85jcdBTuhZT0mfcZZbIspga9j4a1fq8x8Jfce3r24ElMurcXFnDjMbfoW7ITcj1n4PCXL6HUzVpaWlnBwcICDgwPs7e0hEAhw584drmOZvLqq3VvXFRicqXkbFdp2UsHHn0XTFirMXlB2VO3JI8++8L9Yp1kWnBZCU6wnzmI7TGo4EF/f+QXyKjJfy03E+5eW48MraxCTE4fPg8cY3XbO2EmzpUj6KQmNJjYCT6T9675TOyc4hDvA0tsSDi0cEDwrGKVppci9mlvPactIs6W4/2MyGk+qPLNzeyc4hNvD0tsCji0cEDo7CCVppcihzDVGtZtUpa5q99VtNwzOVJotReKPD9BkUsNKP38u7Z3g+PTz59TCHk1nN0FJWimyr+YZ/Lg1UZQlR8wPmej4gRv4lWR+XuLxAvh3stZp3roiyVTg5OZ89JjuAIGo+s/+7X+L0TjCQqd561JuJou9G1iMns2DUEsWvoDB2C94yHzE4uM3VZj5ugoJ11kEtwZ4HPU95mWy+HOjAiNmCSrNPOZzIbIesfhyiAyfDpDh3nUVmrTigcfjZn2bZmYV/t4ow+BZYq2ZAeD8fjkexikxao4ZJq0xR6/3RDiwTorEK8bV90S1u24wLMtyOwATx7Tt2b6f0cTgo9K0mTvbDG4eLAYMkWHiaEusWF+MBo2enWay6AszWFqx+OB/NTvCq9/ZSQbdr4dnIDZ0fBMK1bNMAh4PKpaFimXR45/1iOo7Gf0Ob8bt5y7yuaHjm5DISjHrouE/usViw0596+beBN+2HVZp5ub7v4Lqade+h4Ud/n31QwyK2lDhgp+GMBMZvnHs4hqElS1HQvHcDgkBjw8Vq4KKZdHu0FyowELA8PB1+DB4WdhjwoUtyJeXVLHU6okFhmfu7ByMJeGjK80c8e/nUIEFn+FhYdhIeFg4YMql71FQC0c583mGnY7VyTkEi5uNqTRz1+Ofqt8fz9vxymz8/TgGPydHGZxZwBiWuaNTCBY0ewfK5zLzn2ZmWRY9oj7Wmvnn9v/DP49j8OuD4wZnju623OD7avPBleF6zf9N+I5afXxDqVQqXLp0CdHR0YiKisKZM2dQVFQET09PREZGqm++vr5cR33paavdt5+E1GrtXvg/Edw8WPQdosCHo82waH0p/Bs++wwu/1IECysWk2bX7BTud2+ONuh+XNUTAHC0MOzo7lecQjEvdByU7HPbOebpdg4sep+YpXU7t63NpziUfgG/pRwzOPPRLpUfwW6s3ol5x+D7Zl/KRvzqeM1DYlQo27nDAO23tQej5Qdq7IxYuHRxgVc/w4fW4zOG/bTIupSDO6sqz9xxezutmWM+ugK3SBd49/M06HFrgsvMm1ttM/i+2lDtJnVNW+2efnOSwUeUZ13Kwa1Vdyv9/HXe3lbr5+/iR1fhFukMnxp8/nzNsw26X8qFQkQvSQPzXGb2aWaGAUbubAge/+mwrbdLcPjzh+i7wgcO/mKDs5az5Rv22+ze+RL8szin0syT9nioMz+6JcXeT7MwbLULnP1rPqZ6I7Hhv92vn2Wxeb5K4+LsKlVZZoYBVh7gqXOXFLFQyAFrOwYrPlDCuxGDIVMM2zkhYw0ftOHmWSW2faWoNPPX+0UamZVywMqOwTcfyuDdiMGgyfU/jj2XmUtZw+57+6wCvy4orTTz53sssXBIEUZ8bobGbZ69nvtWl6Igm8WYrww/W+LNgMsG31cbqt11w6SHXqkNYrEYYrFm4RHl194PbbkMeJjCQ1BTOVzdWdg7qHAtlq/uKJfLgVvX+Rj9HnenQZ99koxehzZptC1p0xf3CrKxKe4cUorykFFSiI5u/uqOciGPh7bOPlh63fDOuZo4l3kf/Y+t02hb2OJ1JBVmYfPdM1p/aBuDi1n38ObJNRptc8MGIbkoC9vundTo1PCxdMT4Cz/USqdGTVzKScTIs5odDJ+FDMaDokz8nHxCo5Pcy9IRU2Jqp5O8Ji7lJOKtcys02j4NHoIHxRn4JTm60vcHg7LhCbhwOTcR75zX7LD+X/BQpBRlYMeDqCoyM5xlroyqnq6+vXjxYnz66af44IMPsHr1agDA22+/je3bt2vM17ZtW5w/f77a5dnZ2aGoqAju7u7o0qULVq5cicjISAQEBNRFfFIDWmt3Xu3W7scpPDQJVcDFjYWdA4sbl/nwb1i201EhB+5c52H4u9yNc2qK9eRKbgLei1mi0Taz8XCkFmdgZ+qxyms3AwiNbDtn7OxC7NBscTONtsRNibDwsIBHXw+tnUdyiRzSHClEdqIK0+qDXYgtWnytmfnupkRYuJvDq58nZa5jVLtJXdNWu2sy7IpdiC1afa055FH8pnswdzeHT7/Kt3OlHH7+3MMs0G+Vj0bb2bVPYOslQsgAe3WHIgAkHsuHY4C4VjrJa8I7TIwRazSHXPl3TS7svQRoOchaI/Ptf4vhEiCslU7ymgpsDny8QXO79usKFVy8GXQfwmjkNrd8el2aRyxSEoDeo7k58rZhcx5mrNdcdztXKuDizSDyTb7WzJmPVHiYwKLnW9x8TzLFzAHN+Zi6TrOze+8qKZy8eOj8phAqFaBUVDyblOGXdagbE6rddeM//atjzJgxSE1NxfHj9deZu22jCK3aKeDswiI/r2yM8uJiBpGvKsAwQN9Bcuz5VQR3TxXcPVn8/qsQYjMWnbtydwpHkUKGu/mag+UXK+TIk5Wo27fevYiJQR2QLMlFcmEOJga9ghKlHPsfcHOli2KFDImSDI22EmVZ5vJ2W6E53C1s4WJmDQDws3IEAGSVFiJLWli/gZ8qVspwr7Bi7nxZMe4VZoDP8LC0xXA0sfHAB5d+Ah88OIrKTjfPl5dAwdb/VZaLlTLcL3yi0VaqlKNAXoz7hU/AZ3hY1GwUGtt4YGbsdvAYBg5PMxdwlLlEKUVS0QuZVTIUyIuRVPQEZjwhRvt3w5nM28iSFcBWaImBXu3hLLZF1JPr9Z73WWbNoyZKlTIUyIuQVJQOM54Io/y74WzmLWTLJLARWmCA5ytwFtsiOuMaJ5kro6yH8ShiYmKwadMmhIVVHBO2Z8+e2Lp1q/pvkUi3H0PLli1DZGQkAgMDay0n0R8XtfvnjQK0aKeCkwuLgjxg369ClBQDnV9VgmGAXgMV+HOHAO6eKrh5svhjhwAiMdCha/1v38qZYj0pUUqR/OJ2TiVDgaIIyU+3cyN8u+Nc9i1kSwtgI7REf88OcBbb4aSRbeeMHd+cD0tvzaHE+GI+BFYCWHpbQlmqROreVDi2doTQTlg2RvnuFAithHBs5chJZoE5HwJvzYu/8cV8CKwFsPS2gLJUiQe/p8KpjSNEdkKUZkqRvKs8swNlriGq3aQmuKjd2j5/PDEPwuc+f8m/P4RTGweIn37+knalQmglhBNHnz+hOQ/2vpod3wIzHsRWfI12WbESD84WouXbTvUdsQKRBQ+OvpqdcUIzBmbWPDj6PusglRWrkHimBB3f0X5R1fpmZsHAw0+zTWQGWNoAHn5l27srJ1lY2QL2LsDjZGDvehXC2gNBLbnpKDezYODup/nYIjPA0pqBu1/Za3DtlBKWtgzsnRmkJavw5wYFQtvz0LglN8PzmGJmsQUDVz/NnXRCM8DC5lm7X1MeDm2RQSAG7Fx4SL6hxNVjCvR6j9sdVy+i2l03dO4o37JlC8aOHVvpdIlEgunTp2Pz5s1VLodlWZw4cQKnTp1CcnIyiouL4ezsjPDwcHTv3h3e3tVf1EJXHh4e4PHq98OXnclg5SIzSPIZ2NiyCAxSYcm3xXBxLTtKauBQOWRSBpvWiFEoYdAoSIU5X5fC3DguCl2pTXHnYMYXYF7LnrAVmeFq9iO8fWIHihQyrqNVKtK9MRa1GKD+e2XrNwEA38VF47u4aG5CVcPFzAZdXIMAADs7TdGY9t75H3A5J4mLWFVyFtuis0swAOCnVz7QmDYpZhOu5N7nIlaVVGDha+mMXu5vwVZkiQJ5Me4UpGLy5fUVOtiNhQoq+Fi44LWmrZ5mLkJcQSqmXl6HZCPLrKrj8c8KCwsxcuRIfP/991iwYEGF6WKxGG5ubnovd8KECbURz6hQ7dZNThaDbxeJICkAbGyBRkEqzF8jhfPT2t1vqAIyGbDlWxGKJEBAExU+/Vpq1LXbFOuJEip4W7iih1tr2AitIJEXIV6SgulXvsWD4poPnUaewwOKU4uRcToDyiIlhHZC2AbbInBKIPjmRnphKB5QlFqMjNOZUBQpIXqaOWhqIASUucaodhsPqt21hMegKLUYT577/NkF2yBoaiOj+/y9KPl0IVgW8O9ozXUUnd09VQKwQGBn7i/iqauCHBb7NrGQ5AE2DkCbbgxeG2G84zgDZZn3b1KgMA+wdgBadeOj+3Djfj+bYuah/zPDkW0y7F4mRYmEhZ0Lgx6jRWjT27iONabaXTd0HqPc1tYWnTp1wubNmyusiMOHD+O9996Dvb09rl3TfsRPSUkJVq1ahXXr1iE7OxvNmjWDp6cnzM3NkZOTg5s3b+Lx48d49dVX8eWXX6Jdu3Y1f3YGup1a/2Mc1gZDxyjnkqFjlHOpJmOUc6UmY5RzydAxyrlk6BjlXKrtMcrHXxqj1/zfNt1UYcxKbafnlhszZgwcHBywatUqdOnSBc2bN9c4BeyPP/6ASCSCnZ0dIiIisHDhQri4uGhd1vOq+lH6vC1btug0nzF4mWp3bIpP9TMZIUPHKOeSoWOUc+llG6OcS4aOUU70U9tjlFPtNh4vU+3W931nLAwdo5xLho5RzqWajFHOlZqMUU70Y+gY5Vyq7THKqXbXDZ13+167dg1FRUUICQnBjh1lA8BLJBKMGzcO/fv3x+jRo3Hp0qVK7x8YGIjY2Fhs2LABBQUFOH/+PH7//Xf8/PPP+Oeff5CSkoJ79+6hU6dOGDp0KL7//vsaP7nU1FSdXwBCCCG1QwVGr9vixYtha2urcVu8eLHWZf/222+IjY2tdHqvXr3wyy+/4Pjx41ixYgViYmLQtWvXCl8ItNm2bRuioqKQl5eH3NzcSm+mhGo3IYQQXVDtNh5UuwkhhOiCanfd0PmI8nKrV6/G559/ji5duuDGjRuwsbHBtm3b0LJlyyrvd/PmTYSGhur0GDKZDA8ePECjRo30iVbBtWvX0KJFCyiV+o3DSUeU1x86orx+0BHl9YeOKNf/KMgNYRt02rOdmpqKVq1a4ciRI2jWrOziaS/u2X5RWloafH198dtvv2HQoEFV5pg0aRJ+++03+Pj4YOzYsRg1ahQcHIxrDFlDvQy1m44orz90RHn9oCPKSVVq+4hyqt3G52Wo3XREef2hI8rrBx1RXn/oiHKq3XVF70/xhAkTcPLkSfzxxx+wtLTE/v371SuuKuXFWqFQYOHChRg7dmyl46KJRCKdivX+/furnH7/vvGNjUwIIf91+l59u6rTvZ53+fJlZGRkaPxAVCqVOHnyJNauXQupVAo+X3O8O3d3d/j6+iIhIaHa5a9btw6rVq3C3r17sWXLFnzyySfo06cPxo0bh1dffRXMi5c+NyFUuwkhhFSFarfxodpNCCGkKlS764ZeHeVnzpzBO++8A6FQiEOHDmHz5s1o3749Fi5ciOnTp+v2gAIBli1bhjFjar73eMCAAWAYBlUdFM/1CiaEkJdNXV1UpFu3brhx44ZG2zvvvIMmTZrgf//7X4ViDQDZ2dlITU2Fu7u7To8hFosxfPhwDB8+HA8ePMC2bdswadIkyOVy3L59G1ZWVrXyXOoT1W5CCCHVodptXKh2E0IIqQ7V7rqh8+6HGTNmoGvXrujXrx9iY2Px6quvYteuXdi6dSsWLVqEzp0767wnuXv37oiOjjY0s5q7uzt+//13qFQqrbfY2NgaPwYhhBD96DtWmq6sra0RGhqqcbO0tISjoyNCQ0NRWFiImTNn4ty5c0hOTkZ0dDT69esHJycnDBw4UO/nwTCM+kehSmV6Q+oAVLsJIYTohmq38aDaTQghRBdUu+uGzkeU//nnn/j333/RqVMnjfahQ4eiS5cumDBhApo1awaJRFLtsnr16oVPPvkEN2/eRMuWLWFpaakxvX///jplatmyJWJjYzFgwACt06vb600IIaT2KVQV9zDXBz6fjxs3buDHH39EXl4e3N3dERkZiZ07d8La2lqnZUilUvUpYKdPn0bfvn2xdu1a9OzZEzyefqe2GQOq3YQQQnRBtdt4UO0mhBCiC6rddUPnjvJr165VKKzlXF1d8ccff+Cnn37SaVkTJ04EAKxcubLCNIZhdL4IyKxZs1BUVPkFpRo2bIioqCidlkUIIaR21NUpYNo8f5SUubk5Dh8+bPCynr+oyDvvvIPffvsNjo6OtZCSO1S7CSGE6IJqt/Gg2k0IIUQXVLvrBsPSrt8Kbqd6ch3BIP3OTuI6gt7EYjnXEfRmJlJwHUFvYoHpZQYAPo/70270JWBML3N0t+W1urw39NwW/f7Kulp9fEPxeDz4+PggPDy8ynE29+7dW4+piK5iU3y4jmCQd2+O5jqC3hwtKu8sMVZHu6ziOoLe3ol5h+sIBuEz9NOiPmxuta1Wl0e1m3Bh/KWaj5/OBV/zbK4j6M2WX8x1BL01EqdzHUFvMlavywCSGihlhVxH0NubAZdrdXlUu+uGzsezBwcHIycnR/33+PHjkZmZqf47IyMDFhYWtZuOEEKIyVGxjF43YzF69GhERkbCzs4Otra2ld5MCdVuQgghuqDabTyodhNCCNEF1e66ofPurri4OCgUz45K/e233/Dxxx/D2dkZAMCyLEpLS3V+4BMnTmD58uW4c+cOGIZBUFAQZs2aVWEsNkIIIabFmIqwPrZt26bX/A8fPoSHhwfnY6hVhWo3IYQQXVDtNh5UuwkhhOiCanfdMPhRtI3YUtUh88/7+eef0b17d1hYWGDatGmYMmUKzM3N0a1bN/z666+GRiKEEGIETHXPtr6Cg4ORnJzMdQy9UO0mhBCiDdVu40W1mxBCiDZUu+sGJwMoLVy4EEuXLsX06dPVbR988AFWrlyJr776CiNGjOAillq/XTM4fXxDKexNbxxqHs/0xrFUqYz3CJTKyAXcXA25phgTHOdUwDe9McprmykXYX28bJf4MPbaPfTCeE4f31ACgW4XUjMm+TxzriPorc/JaVxH0JuL6a1mAIDSBGsAjatOtfu/ythrd1qJDaePbygboe5H9BsLIWN63zdMMXOByjSLNx+m9xvWkiflOgLnqHbXDZ17/BiGqbDnWtc92S+6f/8++vXrV6G9f//+SEpKMmiZhBBCjIMKjF43UneodhNCCNEF1W7jQbWbEEKILqh21w2djyhnWRbdunWDQFB2l5KSEvTr1w8ikQgANMZRq463tzeOHTuGhg0barQfO3YM3t7eOi+HEEKI8XlZ9mybAqrdhBBCdEG123hQ7SaEEKILqt11Q+eO8jlz5mj8/frrr1eY54033tBpWTNmzMC0adNw9epVvPLKK2AYBqdPn8a2bdvwzTff6BqJEEKIEaKCbTyodhNCCNEF1W7jQbWbEEKILqh21w2DO8prYuLEiXBzc8OKFSuwa9cuAEBQUBB27typ9YsAIYQQ0/GyFGxDT4OuT1S7CSGE6IJqt/Gg2k0IIUQXVLvrhl4X87xw4QL2798PuVyO7t2749VXXzX4gQcOHIiBAwcafH9CCCHG6WUp2KZyQTCq3YQQQqpDtdu4UO0mhBBSHarddUPni3nu27cPHTp0wDfffINNmzahV69eWL16tUEP2qBBA2RnZ1doz8vLQ4MGDQxaJiGEEOOgZHl63YyJQqGAQCDAzZs3q5339u3b8PX1rYdUhqPaTQghRBdUu40H1W5CCCG6oNpdN3ReU4sWLcLbb7+NvLw85OXlYd68eViwYIFBD5qcnAylUlmhXSqV4tGjRwYtkxBCiHFQsYxeN2MiEAjg6+urtUa9yNvbG3w+vx5SGY5qNyGEEF1Q7TYeVLsJIYTogmp33dB56JX4+Hj88ssv6qtvz5o1C3PnzkVWVhacnJx0Wsb+/fvV/z98+DBsbW3VfyuVShw7dgx+fn66RiKEEGKEWCMrwvr6/PPP8cknn+Dnn3+Gg4MD13FqhGo3IYQQXVDtNh5UuwkhhOiCanfd0LmjvLCwEHZ2duq/xWIxzM3NUVBQoHPBHjBgAICygdjHjBmjMU0oFMLPzw8rVqzQNRIhhBAjZGx7q/W1Zs0aJCYmwsPDA76+vrC0tNSYHhsby1Ey/VHtJoQQoguq3caDajchhBBdUO2uG3pdzPPFvdEqlQrHjh3TGFOmf//+ld5fpVIBAPz9/RETE6NzoSeEEGI6TH3PdvmPy/8Kqt2EEEKqQ7XbuFDtJoQQUh2q3XVDr47yF/dGA8CECRPU/2cYRqfxZZKSkvR5WIPduXMHffr0wf379+vl8QghhJj+nu05c+ZwHaFWUe0mhBBSHardxoVqNyGEkOpQ7a4bOneUl++Vrg3Tpk1Dw4YNMW3aNI32tWvXIjEx0eCrer9IJpPhwYMHtbIsXY1oFoaRzZrB08YGAJCQnY21587jRHKyep4ABwfM7twJbb28wDAMErKyMfWvv5AmkdRr1ueNatIco5o0h5dV2ZELCXlZ+ObqWUQ/LPtyZSEQ4uNWEXjVtxHsxWZ4WFiArbcv4+e4q5xlft6EJq9gZtOu2Hb3AhZeO6punxrcGUMbhMNWZIZr2Y8x98pBJBZkcZhU0/jADvgotBu2J57H4utHAAA9PJpgqH9LhNi5w15sgQHHNiIu/wnHSZ8Z17ATPgzujp/uncPSW4cAAN3cg/CmbysE27rDXmyJwdHrEV+QznHSZ8Y17IQPgnrg5/vnsPTWQQBAN7cgDPZtjWA7d9iLLPHmiXVGlfmdgM6Y2vhV/Jp0Fsvv/AMBw8OkwO7o4BIIL3MHFCpKcSHrHtbEH0GWlLtthzYsy3WCmsvLy8OePXtw7949zJo1Cw4ODoiNjYWrqys8PT25jqczqt2GMcWa8l5gR3wU0g0/Jp7H4huHAZTVkyF+LRFi5wF7sQUGHt9gVPVkTIMITA58DTuSz2BV3N/gMzxMbNQDrzg3hufT7VxMdiLW3j1sVNu5nH/uI2dfAmy7+cB5WBAAIHt/Igpj0qHIKQUjYCD2tYHjgEYwa2DHbdinHu5/iJRdKXB/zR3+b/kDABI2JiDzVKbGfFYBVgibF8ZFxApMMXPqn4+QvCsFHj3dEPA0c/yGRGS8kNk6wArN5zflImKlqHYbD6rdhsn55z6y9ibCrrsPXIY1qTD9yY+3kX/yIZyHNoZ9D18OElaUsO8J4nakwb+3E0Lf9lK3Sx6W4s4vj5F9uxAsC1h7m6HldD9YOIk4TFvm2u+5uPRzLkL62qDduLIzFX4YqH0HSevRDggbaFeP6Sp36Dfgz61A5ABgyMSytoJcYN8PwJ3LQHER0CgUGDoZcDGSzcWJnTIc3S5D+9eF6DNBDACQlrA4slWGO+cUKJawsHdl0K6/CG37CDlOWyZ6pxyHt8vxyusC9JtQ9n6V5LI4tFWGhFgVSotY+IXy0P99EZw8eRynLfPvb0r8vU2FzgN4GPh+2QUjJbksDvygRHwsi5IiICCUwaBJfDh7GlfHNNXuuqHXEeVVUSqVOHDggE6Hzv/+++8aFxgp98orr+Drr7/WuWB/9NFHVU7PzMyscnpdSJcUYtmp00jOywUAvBEcgg0DXkf/n35GQnY2fGxtsXPYUOy+eRPfnD0LiVSGAAcHyBSKes/6vLQiCZZcOonkgrLcgxuF4vtug9D7z21IyMvGl227or27Dz488RceFuajk6c/FrTvgSfFhTiakshp9qb27hjaoAXu5Gn++B/fuD3GBrbF/2L2I0mSg0lBHbGt80i8dmg9ihQyjtI+E2rvgSH+LRCXp9k5a84XIjY7FYce3caCFv04SqddiJ0HBvu2RHx+xcxXc1Jw5PEtzGv+OkfptAux9cBg31YVMwtEuJqTgqNpNzG32QBuwlUi2NYTg7xb425BmrrNjC9EE1sPbE6Ixl1JOmyEZpgZ1AerW43CqDPrOUxbkQrG9QVCX9evX0f37t1ha2uL5ORkvPfee3BwcMC+ffvw4MED/Pjjj1xHrDVUuysyxZoSaueBIX4tEFdh2yzClexUHH50G1+1qPwUfS4E2XhioFdrJLywnWts44Et96JwV5IGG4E5pgf1wYoWb2HMuXUcpn2mNCkfBScfQuRlpdEucrWA8/AgCJ3NoZKpkP9vMh6vvgzfhZ3At+a2Y0NyT4InUU9g4WNRYZpdmB0ajm+o/psRGMf22zQzFyIt6gkstWS2D7ND4IQA9d/Gkvl5VLtNB9XuikqT8pGnZdtcrvBKBkqT8sG3E9dzssrlJRbjwb/ZsPE102gvSpfizJcJ8OnqiMZD3CCw4KPwUSn4Qu4/o5kJpYg7IoGDn2ZdG77FR+Pvh7ElOPVdJvzaa443zJXkeOD0P4Cn/7M2lgU2zAP4fOD9uYCZBXBsL/DNx8CX3wNis0oXVy8e3lUi5pAcbv6ancn/bJIi6boSg2eJYe/KQ2KsEge+k8LGgUFQ+1rr3jNI6l0lLh5SwM3/2XuVZVn89JUUfD7w1pcimFkwOL1PgR8+lWL6RjOIzLh9X6fEq3DuoAoeGu8NFj/MU4IvAMbN4cPMgkH0XhXWf6LA/zYJIOY48/OodteNGu/CiYuLw+zZs+Hh4YEhQ4bodJ/s7GyNMdfK2djYICtL9yOzvvnmG5w4cQJXrlzReouLi9N5WbXl+P37iE5KQnJuHpJz87DizBkUy+Ro7u4OAJjRsQOik5Kw5OQp3M7IRGp+PqKTkpBdUlLvWZ93LPUeoh7eR1JBLpIKcrHs8ikUK2Ro4ewBAGjh4oHfE27ifHoqHhYWYEf8NdzJyUCYkxunuS34QqxoOwCfX/obBbJSjWljGrXB+junceRRPBIKMvG/mP0w5wvRzyeUo7TPWPCFWN5qIL6I/QsFcs3c+1NvYF3cSZzLMK5TF835Inzd4g3Mu7YfBXLN9+tfD69jw90TOJ9pfJkXtxiMudf+1JL5GjYmRBtl5oXN38RXN/7QeG8UKqSYdHEbjqbfxIOiLNzIe4glt/9CsK0n3Mwqbk+5xLKMXjdj89FHH+Htt99GQkICzMyefUvu1asXTp48yWGy2kO1WztTrCkWfCGWtR6EL68cqJB5f+p1rIs/ibNGuJ37qtlQLLy1DwWKZ9vmIoUUUy9txb/pN5BSlIWb+alYfvsAgmy94GoE2zlVqQJPNl+Hy+gQ8Cw0j9yybusBi2BHCJ0tIPa0gtOQJlCVKCB9yO2R8MpSJRLWJyBgXAAEFhV/QPOEPIjsROqb0Ir7I9JMNXP8ugQ0ercBBJbaMjNGl/lFVLuNH9Vu7VSlCqRtvgHX0SHgW1T8bMlzS5Hx6x24vdsUDN843ruKUiViv32AZhO8IbTka0yL+y0NLuE2CB7lAVt/C1i6iuHawhZiW263G/ISFaJXZaLjJCeILDW7kSzsBRq3BxeL4B5qBhs37rd1pSXA1iXAyA8BC+tn7RmPgKQ7wPCpgF9jwM0bGD4FkJYAMVGcxQVQdtT47qWlGDBNDLMX9v2kxqkQ3k2IBmEC2Lvy0LqXEG4NeHiUUP1QTHVJWsJi51IZBk0Twdzq2ecs6xGL1DgVBkwRwTuQD2cvHl6fJIS0lMW1aO4z/7xUiSEf8DUyZz4CHsSxGDyFD5/GPLh4Mxg8hQdpCXAlyrgO4abaXTcM6igvKirCli1b0KFDB4SEhCA2NhYLFy7E48ePdbp/w4YNcejQoQrtBw8eRIMGDXTO0ahRI0yfPh1RUVFab99//73Oy6oLPIZB38aNYS4U4Mrjx2AAdGnQAMm5udj6xiBcnPg+fh8xHD0aBlS7rPrEYxj0828Cc4EQsZllr2nMk0fo7tMQrhZlW+r2bj7wt3XAiUf1M+5dZea06IXotESczdDM4W1pBxdza5x+8qxzQKZS4mLmA4Q7er24mHr3ZfPeiE5PwLlMbtefPj4L64NTTxJwPsu4Olyq8lnTPjiVcRcXTCjzxyH9cDojHhez71U7r5XADCpWBYmitNp565OKZfS6GZuYmBiNcUDLeXp6Ij3deIbn0RfV7uqZYk35onlvnDCxejI7uD/OZMYhRpftnLBsO1co5347l/nrHViEOcMi2LHK+ViFCvknU8EzF0DsZV3lvHXt/rb7sG9uD7tQO63T8+/k4+Kki4idGYvEzYmQ5XN/xp0pZk7clgT75vawryRz3p0CnJ8Yg0szriDh+3uQ5cvrN6AOqHYbJ6rd1cv45Q4smzrBUsu2mVWxSP/hBuxf84PYU/vR5ly4sfkhXMJt4BymWSNYFYsnsQWwchfj/MJ7OPzuTZz69C7SLuZxE/Q5ZzdlwbuVOTybVTxr5nkleQqkXi5G4+429ZSsar+tBULbAEEtNNsVTzfDwucOjufxAb4QuHer/vJpc2CdFI3bCNAwvOKOV99gHuIuKFCQpQLLsrh/TYGsRyo0bMnt0eR/rpOhSRs+GoZr7vhRPl3PAo31zEAgAJJvc9tRvuc7JYLa8NC4hWa3qPb3BgO+ALh/q/aGxqoNVLvrhl6fpnPnzmHz5s3YtWsXGjVqhJEjR+LChQtYs2YNgoODdV7ORx99hClTpiAzMxNdu3YFABw7dgwrVqzQa5y0li1b4vLlyxg1apTW6QzDgK1m0B6pVAqpVKrRxioUYASGb2gCnZywZ/gwiAUCFMtkmLT/ABJzcuBkYQErkQgT2rTBytNnsPTkKXT298O6/v0xctduXHz40ODHrA2N7Z2wr+8oiPkCFMllmHDsDyTkZQMA5p7/F1936ImLwyZBrlJCxbL43+lDuPTkEWd5+3gHI8TeDYP+/aHCNKenu16zSos02rOkRfC04PaotN5eIQi2c8PgqM2c5tBHT49QBNu6Y9jJTVxH0VlPj1AE2Xpg+KmNXEfR2avuTdHE1h1vndlQ7bwingDTmryKQ4+vo0ghrXb++mTqY6WZmZmhoKCgQnt8fDycnZ05SFQzL03tlivACA2v3aZYU3p7hiDY1h1vRnN7YIA+eriFobGNB97WYSgVEU+AKYGv4XDaNRQpud3OSS6mQZpSAK/P2lU6T9G1DKR/fx2sTAm+rRge01txOuxK1rksFCUXIWy+9vG77ZvZw7GNI8ROYkgzpUjZk4Jbi2+h2VfNwBNyM26oKWbOOJeFwqRChH+lPbNDMzs4ty3LXJpZige7U3Fj0S2ELwjjLLM2VLuNy8tSu5UyJfgifiX3qF7BxTSUpkjg83lbrdNzDyWB4fFg181H63QuPDqTi/ykEnRaHFhhmrRAAWWpCol/ZqDxUDcEjXRHxlUJLq1IRvs5DeEUzE1n/71Thci+L0X/ZdWPF5wQVQihOQ++7aruUK8PMdFAaiLw8bcVp7l5Aw6uwB9bgBEflA21cmwvUJAD5OfUe1S16yfkSEtU4f1vzLVO7/O+GH+skWLp6GLw+ADDAAM+EMMvxPDPUU1dO6HA40QVJn9TcbwaZ28Gdi4MDm+VY+BUEYRmwOl9CkhyAUkOd4UnNlqFR4kspq+puN5cvQF7F+CvrUoMmcaHyAyI3quCJLfs/WFMqHbXDZ1/UQYHB6O4uBgjRozAhQsX1AX6448/1vtBx44dC6lUioULF+Krr74CAPj5+WH9+vUYPXq0zstZsWJFhWL7vGbNmlV7MZTFixdj3rx5Gm12PV6Fw2uv6ZzjRUk5Oej308+wEYvxWqNGWNrzNYzYuQsFT7P+m3gPW2NjAQB3MjPRwsMDI5qFcd5Rfj8/B73+2AYbkRl6+QViRafeGHpwBxLysvFOcEuEu3hg7NHf8aiwAG3dvLDglVeRUVKEM4/r/8ItbuY2+Lz5q3jn5K+QqSrfE/nidoMBU6GtPrmZ2+DTsNcw7swvVeY2Jq5mNvi4aS+MP/cjZCpux9LXlauZDf4X2hsTzm83ocy2mBXcB5Mubqs2s4DhYXHzIWDAYPGtA/WUUHcqlfH88DfE66+/jvnz52PXrl0Ayn78paSk4OOPP8Ybb7zBcTr9vEy1235wJByHdNU5x/NMsaa4mdvgk7CeePfMzyZTT1zMbPFRUF9Mu7Sl2u0cn+FhYbNhYMBg6a2K4+vWJ3lOCbJ+i4PH9JbgCSv/IWrexAHeX7aHSiJH/qmHSN94DV6ftoXApv7HxJVmS5H0UxKC/xcMnkj7NtmpnZP6/5belrDyt8LlDy8j92ouHFtXfdR8XTDVzPd/TEbox0GVZnZu/3xmC1j7W+HiB7HIuZoLJw4yV4Zqt/F4mWp3o7dbo/FY7Z3c1ZHnlCJzRzy8PtK+bS5NLkDuvynw/bIdGMY4jqQsyZLh5rZHaPdZAPjathlPV6FbKxsE9HUBANj6WSA3vggPjmRx0lFemKXA+R+y0XOOGwSVbOeed/eYBA07W+k0b13KyQB2rwemLdI8MrgcXwCM/wL4eSUwczDA4wFNwoGQ1vWftVxepgp/b5Th7QVmEIq0v2fP75fjYZwSo+aYwc6FQfJNJQ6sk8LagdF6BHpdy8tU4a+NMoytJDNfwGDUZ2L8/o0U84eWgMcDAsJ5CGzF3fsjN5PFvg1KvL9IUGnmd74Q4LdVCnz2pgI8HhAYziCotXFsR55Htbtu6PxJSkxMxLBhwxAZGYmgoKAaP/DEiRMxceJEZGZmwtzcHFZW+m/03dxqPj72J598UuHiJM3XV380Z1XkKhUe5OUBAG48eYIwN1e83aIF5h0/DrlSicTsbI3572XnoJWnR40eszbIVSo8kOQBAG5kp6OZsxveCW6JeReOY1bLzphwbB+OPyw77TwuNxPBDq4YH9qak47yUHs3OJlZYV/3d9VtAh4PrZ19MKpha7x2qOzihs5mlsgsLVTP4yi2qHBEYH0KsXOHk5kVfo98T90m4PHQyskXIxu0QdgfC6HitCu/ohA7DziKrbCz87NTYgQ8Plo6+mK4fxu0/Osro8sc/DTzb53eV7eVZx7m1wat/p5vdJmDbMsy/9JhorpNwOOjhYMvhvi2RbtDc6ECCwHDw9fhw+BpYY8JF7YY3dHkAIzytC59LF++HL1794aLiwtKSkoQERGB9PR0tG/fHgsXLuQ6nl5eptrd4q+VBi/PFGtKeT3ZEzle3VZeT0Y0aINmfy4wvu2cTdl2bnv7yeo2AY+PcHs/vOnTDh2PfAkVWPAZHhY3Hw4Pc3tMitnM+dHk0gcFUEpkSF1w/lmjikVpQi7yo1IRsL4HGB4DnlgAkYsAcAHMAuzw4LNTKDj9CA69dR/eoLYUJhVCXiDHtS+uPZcZKIgvQNrRNLTf1h4MT3NbLbIXQewkRkk6N9fNMcXMkqQiyAvkuPL59WeNKiA/rgCPj6Sj4/Z2VWTmfjih51HtNh4vU+0eFqN/53+58m3zg680t80lCbnIO54KpzcaQSmR4f7sUxrTM3fFI/ffB2iwpLPBj22ovPvFkOUrcOrjeHUbqwKy7xQh+VAWev0UBoYPWHlpHplr5WmGnHhuvm9k3ZOiNF+JP2c+O5OcVQHpt0tx+58CvL3LH7ynY7+n3y5B/iM5Ime4cJL1eSmJgCQPWDzlWZtKBSTeAE7sB779C/BtBHy2HigpKhtuw9oOWDIN8Kl4sH+9eJygQlEei/XTntU0lQp4cFOFCwfk+HyPJY5ul2HE52Zo3KasK8/Nn4+0eyqc2SvnpKP8UYIKhXnA2mnPappKBSTfVOH8AQW++tMcno14mLbWHKVFLBQKwMqWwXcflsKrETedvA8TWBTmASunPDtoQ6UC7t9kcXq/CssOCODdiMGsdUKUFLFQygErOwarPlDAu5Fx1Uqq3XVD509SUlIStm3bhokTJ6KkpATDhw/HyJEja7x3lutT4cRiMcRizSN9ajLsijYMGIj4fMhVKtx48gT+DvYa0/3t7fGogNuLPWlTnlvI40HE51f4wa1kVeBxtHf+XEYyeh/WHFLj69b9cF+SjU1xZ5FSlIuMEgk6uDbA7bwnAAAhw0MbZ18su3Gci8gAgPOZSej373qNtkUt++O+JBub754xuk4NADifeR8Do77TaPuq+QAkFWZhS+Jpo8x8IfM+BkWv1Wib33wgkgozsdVIM1/Muoc3T67RaJsbNgjJRVnYdu+kRie5j6Ujxl/4Aflybi8CXBlTPwXMxsYGp0+fxvHjxxEbGwuVSoUWLVqge/fuXEfT20tVu2sw7Iop1pRzmUno/6/m8CULW76OJEmW0daTmOx7GHb6G422L5u+geTCTPyYdFKjk9zbwgkTL242iu2cRZAjvOe+otGWsfUmRO6WsOvpX6EjVI1lwSq4GcvSLsQOzRY302hL3JQICw8LePT10JpZLpFDmiOFyI6b4WJMM7MtWnytmfnupkRYuJvDq5+nUWauDNVu4/Ey1e6aDLtiEeQA33ntNdrSt96CyM0SDr38ILAVwzJU86yNh6tiYdPOHbYdqx9CpC44N7VGxPLGGm1X16fAysMMDV93AV/Ig12ABQofa+4gLkqTwsKJmwtjeoSZY+BqzeuxnFqbCVtPIcIG2qk7yQHg7r8SOAWI4Ohf/2dSvahJc+DzF0bg/GlF2bAarw4pG4+8nLll2b8Zj4AHCUC/MfUWU0NAcz6mrtMccmXvKimcvHjo/KYQKhWgVJQNt/I8hl/W0cuFhs35+GCd5o6dPatkcPZiEPGmUOP9YWZZ9v+sRyo8SlShx2hu3tONmjOYvUHzd8OOFUq4eAPdhvA1Mps/zZz5iEVqAoteo43rCG6q3XVD51+Vnp6e+Oyzz/DZZ5/h+PHj6ouKKBQKbNu2De+++y4CA3Xf9bZnzx7s2rULKSkpkMk0L8IT+3RYkpoaM2YMUlNTcfx4/f2IndGxA04kJSNNIoGlSIR+jRujrbcX3tm7FwDwfcwlfNO3D2IePsL51FR09vND14AGGPH0VAOuzGrZCdEPk5BWVABLoQj9GwShnZs3Rh/ZjUK5DOfSUvBp6y4oVSieDr3ijTcahuCri9xcErpIIUNCQaZGW4lCjjxpsbp9e8JFvN+kA5IlOUguzMHEoA4oUcpxIOUmF5EBVJFb9iy3rdAM7ha2cDEru7iLv1XZF7ys0kJkSev/SIJipQyJkgyNthKlDHmyYnW7jdAc7ubPMvuVZ5YWIltaiPqmNbNChnxZSYXMzurMZadGc5n5XuGL61mOfFkx7hVmgM/wsLTFcDSx8cAHl34CHzw4isqOCMqXl0DBGs/QC8Z4RW1DdO3aVT2ep6mi2q0bU6wpxQoZEiTa6kmJur1iPXm6neOwntwvfKLRVqKUIV9ejPuFT8BnePi6+Qg0sfHAR7E/gs8wRrGd45kJIPbUvOAaI+aDZymE2NMaKqkCuX/fh2UzF/DtxFAWylEQnQJFrhRWLWt+FKYh+OZ8WHpbaraJ+RBYCWDpbQllqRKpe1Ph2NoRQjth2Xjfu1MgtBLCsRU3w4GYYmaBOR8Cb81xePliPgTWAlh6W0BZqsSD31Ph1MYRIjshSjOlSN5VntmBk8yVodptPKh260bbtpkn4oNvJVS38600d0gxfAYCWzFEbprbmvoiMOfDxkezI1Qg5kFk/aw9oL8LLq96AMcgKziFWiHjagGeXM5H+7kNuYgMkTkPDr6a61EgZmBmrdkuK1Yh6WwR2rxtHENKmVkAnn6abSIzwNL6Wfvlk4C1bdl41I+TgF0bgGbtgeCW9Z22jNiCgauf5s4joRlgYfOs3a8pD4e2yCAQA3YuPCTfUOLqMQV6vcfNzgmxBQM3vxfOnHqa2c2vrFP5xikFLG0Z2DkzSE9W4cBGOYLb8RHYgptx1c0sGLj7abaJzABLGwbuT5/L1ZMqWNkCdi4M0pJZ7FuvRNP2DJq0NLaOcqrddcGgw6/Kn0R+fj5++eUXbNmyBcuXL0doaCiuX79e7f3XrFmDzz77DGPGjMGff/6Jd955B/fu3UNMTAwmT55c7f115eHhAR6vft/IThaWWNGrJ5wtLVEokyEuMxPv7N2LMw9SAABHEhPxxb//YmKbNvgyMhL3c3Mwef8BXH6k25XL64qzuSVWde4DFwtLSGRSxOVmYvSR3Tj9dFiVqdEHMLtlZ3wT0Rd2YjM8LCzAssun8HPcVU5zV2VT/DmI+ULMbdETtiJzXMt5hHdO/ooihaz6O3Ooq3tjLG71uvrvVW0HAwDW3jmBtXdOcBWrSpFujbEgfKD67+WthgAA1sVHYX18NEepqtbFtTEWhA9S/72sZVnm9fFRWH+Xmx1AVXExs0EX17LTb3d2mqIx7b3zP+ByThIXsbT6LxTsY8eOYdWqVbhz5w4YhkGTJk3w4Ycfcr53uyaodteMKdaUSPfGWNxygPrvlW3K60k0voszvnriYmaDCNeysXh/6TBNY9r7F79HrBFt5zTwGMjSi1Bw7iqUhTLwLUUw87OB5+w2EHtyc+G1avGA4tRiZJzOgLJICaGdELbBtgicEgi+OXcXBKuSiWYuSi1GxulMKIqUED3NHDQ1EAIjy0y12zhR7X75uLexQ9h7SiT+8QQ3tz6ElYcYrWb4w7GJkdaTp+6fLgTLAgGdjDvn8/JzgN83AgV5gK0D0LY70HsE16mqNvR/ZjiyTYbdy6QokbCwc2HQY7QIbXrX/7AruirIYfH393IU5rGwtmcQ3o2PrsO5OZpcVwU5LP7cpIIkD7BxAFp14+HVEca3jaPaXTcYtrrLU+vo6tWr2LJlC9asWVPtvE2aNMGcOXMwfPhwWFtb49q1a2jQoAG+/PJL5OTkYO3atdUuoy4FrDB8nFMuKexN46KFzxNZG28HQ2X4fI7Oa6oBocB4jjbWB8OY3rlEAhN8f8T2XlCry2u8d75e88cP+rJWH7+m1q5di+nTp2Pw4MFo377slN7z589jz549WLlyJaZMmVLNEkzHf6l2N9pdu+/j+iIwwe2ztbnxXRuhOs4W9X+mUE25mBvfsHz/VXwT/L6xudW2Wl0e1W7T8V+q3f1OTeX08Q3V2Caj+pmMjIuwgOsIemtlcZ/rCHrLVprOjoLn8WF6v2HNeHKuI+itt3/tnolKtbtu6LxLpKSkBPv374dEUvFLe0FBAVJSUrBs2TKdlpWSkoJXXikb69Hc3Fy9zLfeegs7duzQNVK1UlNTMXbs2FpbHiGEkOqxLKPXzVCLFy8GwzD48MMPn3tsFnPnzoWHhwfMzc3RpUsX3Lp1S+/lrlq1Cjt27MC0adMwbdo0/Prrr1i1ahUWLVpkcF4uUO0mhBCiC6rdxoNqNyGEEF1Q7a4bOneUb9q0Cd988w2sra0rTLOxscGaNWuwefNmnZbl5uaG7OxsAICvry/Ony+7UnVSUhJq6QB3AEBOTg62b99ea8sjhBCiA1bPmwFiYmKwadMmhIWFabQsVdsgAAEAAElEQVQvXboUK1euxNq1axETEwM3Nzf06NFD64/NyhQUFKBnz54V2l999VUUFJjW0ThUuwkhhOiEarfRoNpNCCFEJ1S764TOAxn98ssv+OKLLyqd/uGHH2L+/Pk6jXXWtWtXHDhwAC1atMC4ceMwffp07NmzB5cuXcKgQYOqvX+5/fv3Vzn9/n3TO1WHEEJMnb57q6VSKaRSzaEcxGIxxGLtF6UpLCzEyJEj8f3332PBgmfDbbAsi9WrV+Ozzz5T15Lt27fD1dUVv/76KyZMmKBTnv79+2Pfvn2YNWuWRvuff/6Jfv366fPUOEe1mxBCiC6odhsPqt2EEEJ0QbW7bujcUZ6QkIBmzZpVOj0sLAwJCQk6LWvTpk1QqcrGQHr//ffh4OCA06dPo1+/fnj//fd1jYQBAwaAYZgq94YzjOkPbk8IIaZE3wOUFi9ejHnz5mm0zZkzB3PnztU6/+TJk9GnTx90795do2AnJSUhPT0dr776qrpNLBYjIiICZ8+e1blgBwUFYeHChYiOjtYYK+3MmTOYMWOGxpig06ZNq2wxRoFqNyGEEF1Q7TYeVLsJIYTogmp33dC5o1yhUCAzMxM+Pj5ap2dmZkKhqPxikoMGDcK2/7N33+FRVH0bx79b0yvpJCShBRI6hF6kNymCAqJIsQAWRB5B8VWBBwFREDvFAiqPYgNFkSYQeofQS0J6771uef9YDCwpZAPJbOR8rmsv2TOzs7/Ezdw7Z86c2bABe3t7Nm7cyPjx41EqDW8/btw4xo0bZ2Lp4OnpyWeffcbo0aMrXB4aGkrHjh1N3q4gCIJQc6ae2Z4/fz5z5swxaqvsrPamTZs4c+YMJ0+eLLcsKSkJAHd3d6N2d3d3oqOjq13PV199hZOTE5cvX+by5ctl7Y6Ojnz11Vdlz2UymdkfbIvsFgRBEKpDZLf5ENktCIIgVIfI7tpR7Y7yoKAg/v7770oDcPfu3QQFBVX6+j///JP8/Hzs7e2ZOnUqQ4YMwc3NzfSKb9OxY0fOnDlTaWDf7ay3IAiCUAtMDOyqLve6XWxsLC+//DK7du3C0tKy0vXuHNGk1+tNGuUUGRlZ7XXNnchuQRAEoVpEdpsNkd2CIAhCtYjsrhXV7iifNm0ac+bMISgoiIcfftho2R9//ME777zDBx98UOnrW7Rowfz58+nbty96vZ6ffvoJe3v7Ctd96qmnqlXT3Llzyc/Pr3R506ZN2bdvX7W2JQiCINwfel3tbPf06dOkpKQYHThqtVoOHDjAp59+yrVr1wDDGW5PT8+ydVJSUsqd7b4f7O3tCQ0NpXHjxvd92/eLyG5BEAShOkR2mw+R3YIgCEJ1iOyuHdXuKH/uuec4cOAAI0eOpEWLFgQEBCCTybhy5QrXr19n3LhxPPfcc5W+fs2aNcyZM4dt27Yhk8l48803KzzTIJPJqh3YvXr1qnK5jY0Nffr0qda2BEEQhPvD1EvAqqt///5cuHDBqG3q1Km0aNGC1157jcaNG+Ph4cHu3btp3749ACUlJezfv5/ly5ff93rqw8gpkd2CIAhCdYjsNh8iuwVBEITqENldO6rdUQ6wceNGRo4cyffff8/169fR6/UEBASwaNGiu8511r17d44dOwaAXC7n+vXr93wJmCAIgmCGainH7OzsaNWqlVGbjY0NDRo0KGufPXs2S5cupVmzZjRr1oylS5dibW3NxIkTa6eoekBktyAIgnBXIrvNishuQRAE4a5EdtcKkzrKoeY3ALldZGQkrq6u97QNQRAEwTzV1pnt6pg3bx6FhYU8//zzZGZm0qVLF3bt2oWdnZ1kNZkDkd2CIAhCVUR2mx+R3YIgCEJVRHbXDpM7yu8HX19fKd5WEARBqAt1eGVUSEiI0XOZTMbChQtZuHBh3RXxgBDZLQiC8C8msvtfSWS3IAjCv5jI7lohSUe5uVNnS3dW5l7IdPXvf2eJ1AXUgMJKI3UJJtNo5FKXUCNqdf37Xctk5j/3Ze2rn/tQU5lyR2+h9pUW1b8MBKDyG8mbrbwitdQlmEylsJK6BJNZK0ulLqFGbFVFUpdgMq2EI7LMx4PxOxDZbV6updTPKWEKNCqpSzBZd5f6d+R9rrD+neixlhdLXUKNeKiypS7BZKX6evrd/756MDKtrrNbfLIEQRCE++sBOVdQH24IJgiCIAjV8oBEmshuQRAE4V/jAYm0us7u+jnMVBAEQTBfehMf9cjJkyfL/r19+3YaNmwoYTWCIAiCcJ+I7BYEQRCE+kVkd60wqaNco9GgVCq5ePFijd9w27ZtXL9+HYCwsDC2bdtW420JgiAIZkgvM+1hZvLy8igsLDRqCw0NZcSIEXTt2rWsrWfPnlhYWNR1eSYT2S0IgiDclchusyKyWxAEQbgrkd21wqSOcqVSia+vL1qttsZv6OXlxSuvvALAyy+/LM7oC4Ig/Mvo9aY9zEVcXBw9evTAwcEBBwcH5syZQ0FBAU899RTBwcFYWFhw6NAhqcs0mchuQRAE4W5EdpsXkd2CIAjC3Yjsrh0mT73y5ptvMn/+fDIyMmr0hu3btyc4OJhJkybRuXNn2rVrV6PtCIIgCGaqnl4C9vrrr5OXl8dHH31Ejx49+Oijj+jVqxdKpZLr16/zyy+/0K1bN6nLrBGR3YIgCEKVRHabHZHdgiAIQpVEdtcKk2/m+fHHHxMeHo6Xlxe+vr7Y2NgYLT9z5kylr+3bty8ymYzMzEzOnTtHu3bt2L9/PzKZjL1795pevSAIgmB+zPCyrurYt28fP/30Ez169ODRRx/Fy8uLxx57jNdff13q0u6ZyG5BEAShSiK7zY7IbkEQBKFKIrtrhckd5aNHj67xm+3btw+A8ePH8/zzz7Nnzx42bdpU4+0JgiAI5kemk7qCmklKSqJJkyYAeHh4YGVlxahRoySu6v4Q2S0IgiBURWS3+RHZLQiCIFRFZHftMLmjfMGCBff0hj/++CPOzs48++yzhIaG8uOPPzJ+/Ph72qYgCIJgRurpmW0AhUJR9m+5XI6lpaWE1dw/IrsFQRCEKonsNjsiuwVBEIQqieyuFSZ3lANkZWXxyy+/cOPGDebOnYuzszNnzpzB3d39rjcJ6dChA4MGDQJgyZIlpKSk1KQEQRAEwVyZ0fxnptDr9fTv3x+l0hCNhYWFjBgxArVabbReVZc6mzOR3YIgCEKlRHabJZHdgiAIQqVEdtcKkzvKz58/z4ABA3BwcCAqKopnn30WZ2dntmzZQnR0NN9++22Vr2/WrFnZvx0dHXF0dDS56IpotVrS0tKQyWQ0aNDA6OyEIAiCUIfqaWDfOXLLnC7/ulciuwVBEIQqiew2OyK7BUEQhCqJ7K4VJneUz5kzhylTpvDee+9hZ2dX1j506FAmTpx4X4urji1btrBixQpOnTqFRqMBQKlU0qlTJ+bOnXtPc7sJgiAINfAvCex/E5HdgiAIQpVEdpsdkd2CIAhClUR21wqTO8pPnjzJ2rVry7U3bNiQpKSk+1JUda1du5ZZs2Yxbdo05s6di7u7O3q9npSUFHbu3MmECRP45JNPePbZZ+uspgnBbZgQ3IaGjvYAhKem83nIcQ6GRZVbd+GI/owPbsOy7SF8e/RsndVYkYnt2jCxXVu87Q11h6Wn88mRYxyIjCpbp4mzM/P69KKzjzcymYzwtHRe2vonibm5ktT8ZIt2PNmiHd62Doaas9L4KPQIIXGRAFgrVbzeqQ+DfJvhZGFJXF4O6y+fZuPVUEnqrcjMwG7MbduX9ddOsPjM32XtL7fqxYQm7XBQWxKansCCUzsJy0mTsNJbZrTozqtt+rH++nGWhO4ua58V1JvxjdvjoLLkXEYCC89sN5uan23Wk1eCBvDtjWO8e2EHAAM8WzLOryNBjl44WVgzZt8armbX7T6sKtOa9ObllgPZGHGE9y9vB6C/RyCPNupES0cvnNQ2jDvwGddyzKfmMvV4rrR/K5HdVXuyeXueaN4eb5ubeZKdxsfnDxOSEAGAi6U1r3foSy9PP+zVlpxIjmXByd1E5WbWWY13M71Fd15t3Y8N14+z5NytffNLgTf3zWpLzqUnsPDsdsLFvvmeTPJ7iBnNhvJT9CE+uv4HCpmc55oMpptLAF7WDcjXFHEyPYw14dtJK5bmO9KdUv6MIunXCFwGeuM1sXm55XEbrpKxPwHPx5vhOshHggrLi9saR8xPMXgO9sR/kj8AYWvDSD2YarSebRNb2ixqI0WJ5dTHmsuI7DY7IrtNMz2gB/9p1Y8NYcdZen5XWftLLXszzr+DIQcz4ll0dgfhualVbKnuPN6oP880Gc6vsQf4PPw3AJ7yG0xft3a4Wjqi0Wm5nhvH15F/cTUnRtpib7qyOY0L36fQbLgz7ad6lLXnxBVzfmMyqZcL0OvA3seCbnO8sXFVSVjtLWd+yebExixaP2xHj2ecAVgzOrrCdbtOdqTdIw51WV6FTvycx6Hv8mg/wpq+zxr6aUoKdRz8Jo8bx4sozNXh4Kag/cM2tB1mLXG1Bnt/LGXHBg09RykYOcMwjUZupp6/vi7l+hktRfng30rOqJkqXBvKJa7WoD7WXEZkd60wuaPc0tKSnJyccu3Xrl3D1dX1vhRVXe+//z6ff/45Tz/9dLllo0ePJjg4mCVLltRpYCfl5PHB7kPEZGQBMKpdIJ8+PpKxq/9HeGp62Xr9WzShjbcHyTl5dVZbVZJy83h//yGiswwH/WOCgljzyChGfbORsPR0Gjk6sGnieH6+cJGPDh8ht7iEJg2cKdZqJKs5MT+X5acOEJVjqPnRZq34ov8Yhv2+gbCsdN7u0o9uno2Yvf9P4vKy6dXQn3e6DSS5II/dMeGS1f2PNs6eTGjSniuZyUbt01t2ZVqLzsw79ieRuRm8ENSDb/s+zoBta8nXlEhUrUFrJ0/GN+7AlSzjmp9r0Y1pzbsw78RWQ82BPdnQ5wkGbV8tec2tHL14zK9juY4WK6WKsxmx7Ey4zOL2IyWqrmJBDg151LdTuU5wK4WK0MwYdiVeYmHb0dIUVw2yenpm29/fH5ms/JcNBwcHAgICePXVV+nUqZMEld07kd1VSyzIZfmZEKJvdnyPbdKadQ+NZfi29YRlp7HuobGU6nQ8G/IreaUlPNMymI0DJjDwjy8p1JTWWZ2VqXTfHGDYN7920rBvfr5lTzb0foLBO8S+uaZa2Hsz0rsLYbkJZW2WCjUB9g3ZELmX8NwE7FTWvNx8BMvbTeHp459IWK1BQUQO6fsTsPSxrXB59plUCiJyUDqqK1wuhdwbuSTvS8a6UfkDf8c2jjR9rmnZc5nSPA4S62PNtxPZbX5EdldfaydPxvm35+odOfhs8+5MbdaV109tJTIvnedb9GJ9rycYsutzyXMwwM6H4V5duZGXYNQeV5DKJ2GbSSxMRy1X8ahPH5a3nc5Tx5aSXZovUbUGGeGFRPydiYOvhVF7XlIJe9+Mwr+/I0HjXFHZKMiJK0ahNo99XUpYMVd25dLAz7jT/qn13kbPY84UEvJpOo27Sd/pnBRWyvmdhbj4GXfZhXyVS+z5EobOccDeTUH02RL2rMnBxllO067S3gwx9pqO49u1ePrf+v+u1+v55r/FKJQyprxtgYUNHNys4Ys3Snh1rQVqS2k/I/Wx5tuJ7K4dJp8OGTVqFP/9738pLTUcGMpkMmJiYnj99dcZO3Zsla8ND7+/nZPx8fH07Nmz0uXdu3cnISGh0uW1IeRaBAfCoohKzyIqPYuP9hyhoKSUtj63zra62dnw5vC+zPtlBxqttk7rq8zeGxHsj4wkKjOLqMwsPjh0mIKSUtp5eQIwp2cP9kdE8t7+g1xOSSU2O5uQiEgyCgolq3lP7A32xUUQmZNJZE4m758+SIGmhA6uXgB0cPPi17CLHEuKJS4vhx+uneNKRgptXDzusuXaZ61UsarbSN448RfZJUVGy6YGdObzS4fZGXeN69mpzD32B1ZKFSN9gySq1sBaqeKDrqP5v1PbyLmj5inNOvP5lUPsir9GWE4q805sxUqhYkSjVhJVa2CtUPNep7EsCP2DnFLjmv+IPc/qa/s5mhohUXUVs1KoWdb+URad/42cUuO/rz/jz7E2LITjaTckqq6a9CY+zMTs2bN5+eWXyz1Gjx5NXl4e3bp1Y9++fVKXWSMiu6u2Jy6ckIQIInMziczNZEXoAQo0JbR39cLfzokOrg158/hOzqcnEZGTwZsndmGjUjPSr2Wd1lkRa4WKlV1G82YF++bJzTqz+rZ982snxb75Xlgp1CxoNYHll38l97b9c76miNlnvmRv8nliCtK4lB3DB9d+p4W9N+6WjtIVDGiLNMSsu4T3lBYorMuPjynNLCZh43UaTQ9EpjCPUVLaIi1hq8No8nQTlBXULFfJUTuqyx4qW+lHK9bHmssR2W12RHZXj7VCxYrgR3jrzDay7/juPLlpZ1ZfPcSuhKuGY5RTv2OlUPGwj7Q5aKlQ80bgE3xw7SdySwuMlu1NOcOZzDASizKILkhmdfjv2CqtaGzrJVG1BqWFOo59FE+nGZ6obYznpb/wfQqeHWxpO8kdp8ZW2Lqr8epoh6WDyeMy77vSQh17VqXR54UGqG2Mc87aSWH0iDpeQMNWlth7SLuPLinU8dfKLAa+aI+lrXFnYuLVUoL6WeHT2gIHdyVthljj6q8kOVzagRvFhXp+eL+ER19WYXVbzWnxemKu6nnkRRU+AXLcvOU88oKKkkI9Z0Ok7QurjzWXI7K7Vpi851qxYgXDhg3Dzc2NwsJC+vTpQ1JSEt26dWPJkiVVvrZ58+Y0bNiQvn37lj38/PxqWjtBQUGsW7eOlStXVrj8iy++IChIus5FuUzGkKBmWKuVhMYmAiCTwfKxQ/j68GmjEebmRC6TMTSgOdYqJWcTEpABDzVpzBcnTrL+0TEEurkRm53NmuMn+DvcPDrs5DIZw/0CsFKqOJNq+JJ2MjmeAY2a8mPYBZIL8ujm0Qh/B2cWHt8jcbWwqNNg9iXc4HByFC8E9Shr97FxxM3KloNJkWVtJTotx1Ni6ODakB9uSDdFz8IOQwlJDOdISiQvBN76omyo2Y5DSbc6NUp0Wk6kRtPBxZtNEdLcqRjgzbbD2J90naOpEUwP6C1ZHaZ4o9XDHEi5zvG0CJ5t9pDU5TxQXn755SqXL168mIULF9K3b986quj+EdldfXKZjOG+LW7mSTxqheGr0u1XUOn0ekq1WoLdfPgx/LxUpQKw4LZ98/MtK9g3J5ffN7dvIPbNNfGfFqM5mnaVUxnhTPbvV+W6tkpLdHqdUYe6FBK+u459WxfsgpxJ+SPKaJlepydm3SVchzTCsmHFo82lELEhAqd2Tji2ciTut7hyy7OvZHPi+RMorZXYt7Cn0WONUDtIOxq+Ptb8byGyu2IPUnYvaD+UkKQwjqREMrNF1TlYqtNyIi2aDg28+TFSuhx8udlYjqVf4UxmGE/4Dqx0PaVMwXCvbuSVFpYbeV7XznyZiGcHW9zb2HL5l1tTuOl1ehLP5BEwqgH7F0eTFVmEjZuKlmNcaNjZXsKKDQ6uy6BRRyu821px+qfsStcryNISc7qQvrNc6rC6iu1dk0PjThb4trPg+E/GMxA0DFRx40QRQQOtsHWWE3uhhMwELX2ftahka3Xjt89KaREsp1l7BXt+uPWd+Z8LL1W3nXuQK2QolBB1SUeXIXVc6G3qY83/Fuae3SZ3lNvb23Po0CH27t3LmTNn0Ol0dOjQgQEDBtz1tfv372f//v2EhITw4osvUlRURKNGjejXr19ZgDds2LDataxcuZLhw4ezY8cOBg0ahLu7OzKZjKSkJHbv3k10dDR//fVXldsoLi6muLjYqE2n0SBX1vzsZzO3Bvzw7AQslEoKSkp46Yc/uJGaAcAzPYPR6vR8d0zaOckr0tzFhZ+fuFX3zN/+IDw9Axcba2zVaqZ37syqQ4d578BBevv58fnokTy56WdOxJU/IKgrAU4ubHn4SSwUSvJLS5i+5zfCsgwnIBYe+5t3ewzhxITnKdVp0en1vHZoB6eS4yWrF+DhRoG0cvJg1M715Za5WtkAkFZkfFldWlE+DW2kmydtuE8gQY4ePPL3V+WWuVgaDq7NreahDVsR6ODJuP1fSFaDqYZ4taalgxcTD62RupR7Ul8vAbubRx99lI8++kjqMmrkQchufakGmarm2R3g6MrmIZOwUCgp0JQwPWQz4dnpKGVy4vKymde+D28c30GhppRnWnbGzdoWt5v7bKkM9wkkyMmDMabsm4vzaWgt9s2m6u/eluZ2Xjxz4tO7rquWK5nZbCi7k0Ip0Bbfdf3aknU8mcLoXJouqPjS1dS/opEpZDQY6F3hcimkHU0jPyqfNv+teP5up7ZONOjcAAsXC4pTi4n5JYZLyy7RdnFb5CppRsTXx5orIrLb/DwI2a0r1SC/h+we7h1EoKMnY/d+WW6Zi4UhB9OLjTsa04vz8ZIwB/u6taOpnTfPn15V6TpdGwTyZuAkLBQqMkpymXduDTkSTrsScyibrMgiBrzrX25ZUbYWTZGOq7+l0WqCG22edCcpNI/D78fx0EJf3IKk+64UfjCftBsljFnhedd1r+3NQ2Ulx1/iaVeuHigkOULDEysbVLi877P27P40my+mpiJXGAZiDnzJgYaB0p18DQ3REH9Dx0sfle+sd/OR4eQmY/sGDWNeUqG2hINbNORmQm6GdMFTH2uuiMju2mFyKsXExODu7k6/fv3o1+/WaBq9Xk9sbCyNGjWq9LW9evWiV69evPnmm5SWlnL06FFCQkIICQnhhx9+oLi4mKZNm3Lt2rVq1dKnTx8uXrzI6tWrOXbsWNlNTTw8PHj44YeZMWPGXc+cL1u2jEWLFhm1Neg9CNc+NT9NFJWeyZjVG7GztGRQYFOWjRnMU1//jIVSyaSu7Rm75n813nZtiszIYOQ3G7GzsGBI82a8P2wwEzf9RE6R4QvN3+E3WH/acOb9SkoqHRp68Xi7NpJ2lEdkZzD0tw3Yqy0Z6teclb2GMX77D4RlpTM1sCPt3byYtvtX4vNy6OLhzTvdB5FSmM/hhIpv3FHbPK3teLvjQJ7a9wMlusov29Hrjfd4MkAv0bUynlb2vNV+EFP2f191zXc8l8lk6CXacXtY2TO/9RCePfIdJTrp5tE3hbulPfOChjHj2Df1puZKiZuKmJ0HIbsdRvfHcczdOw8qE5GTzrBtX2OvsmSobwArezzM+F3/Izw7nRn7N/Net2GcH/8KGp2Ow4lR7IuX9ooqDyt73mw3iKkHTNw3I5Psysv6uG8GcLNwYHbACF4589Vd61bI5CxqPREZMlZc+a1uCqxASXoRCd9fx/8/7ZCrFOWWF0TlkLY7jmYLgyucI1IKxenFRH4XSeBrgcjVFXcgu3S9NdLPxscGW39bTs8+TWZoJg2CK+5UqE31seZKiew2Ow9Cdjs/9hANxld9hU5lPKzs+b+2g5h2yNQcLH+sVVdcLRx5odkjzAtdS2kVeRKaGc5zp1bioLJhuGdX3gp6ihdPf0RWad3f36wgrZSz65Po85Yvior2czd/lw2D7QgYYdinOflbkn6tgBu7MiXrKM9L1XD4ywyGL3RHWY250q/tyaNZb5tqrVtbclO1hHyRy9j/OlVax9k/C0i8XsqoNx2xd1UQd+nmHOVOcnzb1f2o8qxUHVvXlvLMEgtUFdSsUMqY9Kaanz8sYeG4IuRyaNpeTkAn6U4U18eaKyWyu1aY3FHu5+dHy5Yt2bp1K02aNClrT0lJwd/fH20159xWqVT07t2b4OBgunXrxs6dO/niiy9Mnk/Nz8+P5cuXm/Sa282fP585c+YYtQW/W/7u4qYo1eqIycgGsrmUkEzrhh5M6tqeiLQMGthYs3fOM2XrKhVy5g3uzVNd2zNg1df39L73qlSnIzorC4CLycm09nRncscO/PfvvZRqtYSnG08VE56eQSdviedK0+mIzs0C4EJ6Em1dPZga2JFFx/cyt2Nvpu/Zwt44w+V2VzNTCXR257lWwZJ1lLdy8sTF0oatg6eVtSnlcjq7NWJSs04M2GYYSexqZUvqbaMAG1jalBsVWFeCnDxwsbTlt4G3fW7lcoJdGzGpaTCDtq8GwNXShtSiW1/eGlhYk1YsUc2OXrhY2vLzQ9PL2pRyOZ0a+DLRvzPtti5GZ06TdAGBDg1pYGHLD71mlLUp5Qo6Ovsywa8LwX8tMruaK1VPyjTVL7/8QqtW0s5pWVMPQna3/uXjGm8P7siTjCTaNPBkWotOvHF8Jxczkhm2bT12KgtUcjkZxYX8NvQpzqcn3tN73otWN/fNWwaU3zc/2TSYwTuq2DdLlSf1cN8MEGDfEGcLO77q8lJZm1KuoJ2TP2N8utF3z/+hQ49CJmdxmyfwtHJi1ukvJB1NXhidiyanlLBFp2416vTkX88ibU88no81QZNbwpVXjxgtT9wURtquWFqu6F7nNedF5lGaU8q5t87dVhPkXMshcXci3TZ0QyY3PiBUO6mxcLGgMEmaKW7qY82VMr8/vftCZLd5Z3eHvyqeyqU6DMdVtmzud0cOuvjyZJNgBu/6HDCMLL89B50tbEiX6BiluZ03Tmo71nR6paxNIVfQxrExoxv2YMj+eejQU6QrIaEwjYTCNK7kRPNNl/kM9ezCDzF1P4VoZkQhxdlads+7NYWNXgepVwoI357BmP+1QKYAe2/jTlq7hhakXS24c3N1JvVGCYXZOn79z63vanodJF4u5uJfuTz7cyPkCsP+OfFSEVnxGga8Ku00ZMk3SinI1rHxlVv9LnodxF0qJXRbAS9ucuPQd7mMnO9I42DDjTtd/VWkRmo4tSVfko7yuDA9eVnw8Uu3vvPodBB5EY78UcjSrZZ4N5PzymeWFObr0ZaCraOMT2YX4d1Mmo7n+lhzpUR214oaXefUsmVLOnfuzE8//UT//v3L2qtzZraoqIgjR46wb98+QkJCOHnyJP7+/vTp04fVq1fTp0+fmpRUYxYWFlhYGO9Q7mXalQrJQK1UsDX0CkdvxBgt+uKpMWw9d4XNZy7d3/e8D2TIUCsUlOp0XEhKprGzk9Fyf2cn4rNzJaquYv/UrJLLUSsU5Q64tXodcglHTh1JjmLIX8aXm7/XZTg3ctJZe+UYMXlZpBTm0dPDn8uZhru2q+Ryurg1YnmoNDczOJoSxdAdxiePlnceQUROOmuvHiEmP5OUwlx6uDfmctatmju7+vLe+b1SlMzR1AhG7vncqG1Jh1FE5qXx5fXDZtkRczztBmP3f2LUtqjtI0TlpbH+xkGzrLkyMp3UFdTMxx9X3NGanZ3NyZMn2b59Ozt37qzjqu6ff3t238u0KxWRQdn85P/ILTV8ofazc6K1swcrQw/c1/c0xdGUKIbtNN43vxs8gojcdNZVtm+WGfbN718Q+2ZTnM4I58kjHxi1/V/QY0Tnp7IxKsSok9zH2oWXTq0jp1S6zgEA25ZONF/c2agt9qsrWHha4zbMF6WjBXatnI2WR6wMxam7B049736Jem1wDHKk7bK2Rm3h68Kx9rLG62Gvch3OAKW5pRRnFKN2lOaS8/pYc2VEdpunf3t238u0K0dTIhm+23i6wnc7jiQiN411148QW5aD/lzJNoyAV8nkdHbx5f2L0tyz6kxmGE+feM+obW6LCcQWpLApZm+lOShDhkouzY0x3VrbMPiDxkZtJz5LwL6hBS1GN0ChkuPcxIrchBKjdfISS7Bxle6mmA3bWjLuI+M82/dJOo4NVbQfY1/WSQ5w5e88XJuocfGXdr/cqI2apz4xvtJo50fZOHsrCR5rg04HOg3lskUmR7IO06bt5MxZbfx3/dMHJbj5yHnoMaXR79nKxvDv1HgdcWF6Bk8qf8VbXaiPNVdGZHftMHlvK5PJ+Pzzz/nf//7H8OHDee+995g1a1bZsqr06dOHkydP0qRJE3r37s1LL71Enz59cHd3r1n1dzF58mRiY2PZu7fuDghnD+jBwbAoErNzsVGrGNY6gM5+3jz33RayCovIKiwyWl+j1ZKWl09Uemad1ViR//Tqwf6IKBJzc7FRq3m4RQBdfLyZ9stmAL44eYqPRgznZFw8x2Ji6e3vR78mjXli00+S1Ty3Yy9C4iJJzM/BRqVmZOOWdPXw4aldP5NXWsLRxBjeCH6IIo3m5tQrPoxtGsTiE9LdPTdfU8L17FSjtgJNKVklhWXt66+d4PnA7kTlZhCVm8nzgd0p1JSyNVqakyn5mhLCcoxrLtSUkllSUNa+IewEM1v2ICovg6jcDGa27EGhtpQ/Yi5KUTIFmhLCc1OM2gq1ht/zP+0OKis8rR1ws7QDwM/W8KUkrSiPtGIJLmvUVlZzQVm7vcoKTysHXP+p2cZwOXdacV65+RclZZ59XXe1alXFc0Xa29vTokULDh06RJcuXeq4qvtDZHfV5rbrTUhCBIn5udio1Izwa0lX90ZM3mvIuGGNAsgoLiQ+P5sWjm4sCB7ArtgwDiZG1VmNd6ps35xVfGvf/E3YCWa06GHIkzyxb66pAm0JkfnJRm2F2hJySguIzE9GIZOzpM2TNLdvyLyzG5DLZDirDaPSckoL0eirN+rzflJYKVF4G4+Mk1soUNqqsLzZrrQ17sCQKeQoHSyw9JTmMnmFlQIbH+P3VlgoUNoqsfGxQVukJXZzLA2CG6ByVBnm+/45BpWtigadpJnCpD7WXCmR3WZHZHfVKsrBAm0JmSWFt3Iw/AQzAnoSnWfIwRkBPSnUlvJnrDQ5WKgtJio/yait6GaeROUnYSlX84TfAI6kXSK9OAcHlTUjG/bA1cKB/SmhktSsslLg0Mi4c1BpIUdtp8ChkWFUc8CoBhxbFYdLS2vcWtmQFJpHwqlcHlrkJ0HFBmorOc6+xh3fSgsZlnbG7SUFOiKOFNBtqtOdm6hzams5Lr7GI5ZVloaaXXwNme3dSsWB9bko1ZRNvXJ5XyEPTZPmxqmW1jI8/O64cspShrUdePgZfpbzB7XYOICjq4ykKD1b15QS1E1O847SdDrXx5orJbK7VpjcUf7P2etXXnmFFi1a8Pjjj3P+/Hnefvvtu772yJEjeHp60rdvXx566CF69+6Ni0vt3VXYy8sLubxuL41wsbFm+ZjBuNrZkFtUwvXkNJ77bgtH7hhJbm5crG1YMXwIbjY25BaXcDUtlWm/bOZwtKHu3WHhvL3rb2Z07cxb/foSkZnBi7//wel46e6+7Wplw6rew3GztiG3pJirmak8tetnDt2cVuWlkD+Y17E3H/V5GEcLS+Lycnj/9EE2Xg2VrObqWHvlGJYKFf/tNAQHtSWh6QlMDtlEvqbk7i+WyLqrR7FUqFjUYQgOaivOpcczZf/3Zl1zX88AlnYYXfb8g+DHAPjsagifXQ2Rpqi7eMi9BYvbjSl7/l7H8QCsvr6XNdelOwFUTj0N7MjISKlLqDUiu6vmYmXDqh4jcLWyIbfUkCeT9/7EoZsd4W7WtrzZqT8uljakFOaxOeIin1w4XKc11sS6a0exUKhY+M++OSOeqQfEvvl+c7VwoJdbEADfdJtttOzFU2s5mxlRwasEk8mhILaAlEMpaPO1qBxVOAQ60PzF5iiszOzA9R/1qWaR3WZHZPe9++L6ESwVSha0G1qWg9MO/c9sc1CLDh9rNxa2CsZeZUNOaT7XcmKZffZToguS774BiXh3safDs55c3ZJO6Pok7LzUdH/VB9eW0t4YszrCD+aDHpr2kvYG7dU1fK4jh77N46+V2RTl6bB3VdDzSTvaDLWSurRK5WTo+WOdhrwsPXbOMjr2V9D/cWmukKiuelOzyO5aIdObeCcLuVxOUlISbm5uAFy+fJmRI0dibW3NpUuXqpwrLT8/n4MHDxISEsK+ffsIDQ2lefPm9OnTh4ceeog+ffrg6up6bz/RfdDy7crvQG3OSu3q319JaYP6czOvfyis6l/NckX9vCZHra5/v2uVsu5HDt6rcw8vvq/ba/r+B3df6Tbhc+fcfSXhnjwI2e333btSl1AjKst6uJ9T1b+anWzMbD7oavCyyZG6hBqxVRXdfSXhnq0PXn9ftyey2/w8CNnd/Nf7+x20rvg4S3s1eE10dzHvjqmKOCulmUv+XljLpbs/yb3wUGVLXcIDYVTj0Pu6PZHdtcPk0759+vRBrb51qUpgYCAnTpzAycnprnOl2djYMGTIEN59912OHz9OWloa7733HtbW1rz33nt4e3vf1wnbY2NjmTZt2t1XFARBEO4fvcy0h5kIDAwkIyOj7Plzzz1HauqtS3pTUlKwtjb/kTEVEdktCIIgVElkt9kR2S0IgiBUSWR3rTC5o3zfvn04OjoatTk7O7N//350OtNGrdrY2ODs7IyzszNOTk4olUquXLliakmVysjI4Jtvvrlv2xMEQRCqQW/iw0xcvXoVjebWSNlNmzaRm3vrhsV6vZ6iovo5UlJktyAIglAlkd1mR2S3IAiCUCWR3bXC5El2HnroIaZNm8Zjjz2GlZVp8yDpdDpOnTpVdgnY4cOHyc/Pp2HDhvTt25fPPvuMvn37Vnt7W7durXJ5RISYE1IQBKGuycwohO9FRaO17nbzLHMlslsQBEGoishu8yOyWxAEQaiKyO7aYXJHeceOHZk3bx4vvfQS48aN4+mnn6Zr167Veq2joyP5+fl4enry0EMP8cEHH9C3b1+aNGlicuEAo0ePRiaTVXnpWX39YiQIglBv1WJgr169mtWrVxMVFQVAUFAQb7/9NkOHDgVgypQp5UY0denShWPHjtVeUfWAyG5BEAShSiK7zY7IbkEQBKFKIrtrhclTr6xcuZL4+Hi+/fZbUlNT6d27N4GBgaxYsYLk5KrvxPz+++9z5coV4uLi2LhxI88880yNwxrA09OTX3/9FZ1OV+HjzJkzNd62IAiCUDMyvWkPU3h7e/Puu+9y6tQpTp06Rb9+/Rg1ahSXLl0qW2fIkCEkJiaWPf7666/q1S2TlTvI+7cc9InsFgRBEKoistv8iOwWBEEQqiKyu3aY3FEOoFAoGDVqFL/99hvx8fFMnDiRt956Cx8fH0aPHs3evXsrfN306dNp3rw5e/bsqXTbn376abXr6NixY5WhfLez3oIgCEItqMW50kaMGMGwYcNo3rw5zZs3Z8mSJdja2hqdubawsMDDw6Ps4ezsXL2y9Xr69+9Phw4d6NChA4WFhYwYMaLs+cCBA00r1syI7BYEQRAqJbLbLInsFgRBEColsrtWmDz1yu1OnDjB+vXr+eGHH3Bzc2PKlCkkJiYyYsQIZs6cyYoVKyp83dixY9m9ezfBwcFG7R9++CFvv/02L774YrXef+7cueTn51e6vGnTpuzbt6/6P5AgCIJw70wM4eLiYoqLi43aLCwssLCwqPJ1Wq2Wn3/+mfz8fLp161bWHhISgpubG46OjvTp04clS5bg5uZ21zoWLFhg9HzUqFHl1hk7duxdt2PuRHYLgiAI5YjsNmsiuwVBEIRyRHbXCpnexFO/KSkpfPfdd6xfv56wsDBGjBjBM888w+DBg8uGyv/999+MHj2avLy8Crexfv165s2bx/79+wkMDARgxYoVLF68mD///JNevXrd4491b1q+vUrS96+pUrv6dxa/tIHm7iuZGYVV/atZrtBJXUKNqNX173etUmqlLsFk5x5efF+3F7DYtH3o49psFi1aZNS2YMECFi5cWOH6Fy5coFu3bhQVFWFra8v333/PsGHDAPjxxx+xtbXF19eXyMhI3nrrLTQaDadPn77rFwBTHT58mE6dOt337daGByG7/b57V9L3rymVZT3cz6nqX81ONoVSl2AyL5scqUuoEVtVkdQlPBDWB6+/r9sT2W1+HoTsbv7r/f0OWld8nDOlLsFk3V0ipS7BZM7Kyk/OmCtrefHdVzJDHqpsqUt4IIxqHHpftyeyu3aY3FGuVqtp0qQJ06ZNY8qUKbi6upZbJycnh1GjRlV5VnnFihV8+OGHHDp0iB9//JGlS5eyfft2unfvbvpPcZ+JjvK6IzrK64boKK87oqMcAv5r2j70/GvPm3Rmu6SkhJiYGLKysvj111/58ssvjQ4Ab5eYmIivry+bNm1izJgxJtV1N/b29oSGhtK4ceP7ut3a8CBkt+gorzuio7xuiI5yoSr3vaNcZLfZeRCyW3SU1x3RUV43REe5UJX73lEusrtWmDz1yp49e+565tne3v6ul169+uqrpKen06lTJ7RaLbt27aJLly6mliMIgiCYGVNvFFKdy71up1aradq0KQCdOnXi5MmTfPTRR6xdu7bcup6envj6+hIWFmZaUdVQn+biFNktCIIgVEVkt/kR2S0IgiBURWR37TC5o7yml2d9/PHH5do8PT2xtramd+/eHD9+nOPHjwMwa9asGr2HIAiCYAbq+BhUr9eXOzP+j/T0dGJjY/H09KzbosyMyG5BEAShSiK7zY7IbkEQBKFKIrtrRbU6ytu3b182D9rdVHY37FWrKr4kQKFQcPjwYQ4fPgwY7pgtdWDbR9WfkQa3K3Ct3v8jcyIvVUldgslKvOrf50NmVf9qBljQapvUJZjsncvDpC5BerX4cXvjjTcYOnQoPj4+5ObmsmnTJkJCQtixYwd5eXksXLiQsWPH4unpSVRUFG+88QYuLi488sgjtVeUmXrQslsdbf7zzVakpKFc6hJMpreRugLT5cgtpS7BZJbKUqlLqBG5qcObzIClon7+ru8rkd1m4UHLbuUZW0nfv6ai2tS/7C7VKaQuwWS9XG9IXYLJ3NT1c8pTS1mJ1CWYrERv8rjffx+R3bWiWp+s0aNH3/MbRUbWvzmxBEEQBNPVZh9JcnIykyZNIjExEQcHB9q0acOOHTsYOHAghYWFXLhwgW+//ZasrCw8PT3p27cvP/74I3Z2drVXlJkS2S0IgiBUl8hu8yCyWxAEQagukd21o1od5QsWLLgvb9a9e3dGjx7NyJEjadGixX3ZpiAIgmBmajGwv/rqq0qXWVlZsXPnztp78ztUd8SXVER2C4IgCNUmstssiOwWBEEQqk1kd62o8TVDp0+fZuPGjfzvf//j7Nmz1XrNc889x/HjxwkODqZ58+bMnTuXgwcP1qubqgiCIAhVk+lNe9RX9TG7RHYLgiAIFRHZbb5EdguCIAgVEdldO0ye1CclJYUJEyYQEhKCo6Mjer2e7Oxs+vbty6ZNm3B1da30tVOmTGHKlCkUFxezZ88efv/9d8aPH09paSnDhw9n1KhRDB48GGtr63v6oQRBEAQJ1eMQ/odGoyEkJIQbN24wceJE7OzsSEhIwN7eHltbw3yaubm5EldZfSK7BUEQhCqJ7DY7IrsFQRCEKonsrhUmjyh/6aWXyMnJ4dKlS2RkZJCZmcnFixfJycmp9s1ALCwsGDZsGGvXriUhIYE///yThg0b8vbbb+Pi4sLDDz9cdpMRQRAEoZ7Rm/gwM9HR0bRu3ZpRo0bxwgsvkJqaCsB7773Hq6++KnF1NSOyWxAEQaiSyG6zI7JbEARBqJLI7lphckf5jh07WL16NS1btixrCwwM5LPPPmP79u01KqJLly4sWbKECxcucOHCBfr3709iYmKNtiUIgiBIq75fAvbyyy/TqVMnMjMzsbKyKmt/5JFH2LNnj4SV1ZzIbkEQBKEqIrvNj8huQRAEoSoiu2uHyVOv6HQ6VCpVuXaVSoVOp6vytfn5+fz555+MHz++3LKEhAT+/vtvHn30UV555RVTyxIEQRDMhRmGsCkOHTrE4cOHUavVRu2+vr7Ex8dLVNW9EdktCIIgVElkt9kR2S0IgiBUSWR3rTB5RHm/fv14+eWXSUhIKGuLj4/nlVdeoX///lW+dvHixVy9ehWAoqIio2VeXl78+eefLFmyxNSSANBqtSQnJ5OWllaj1wuCIAj3h0xn2sPc6HQ6tFptufa4uDjs7OwkqOjeiewWBEEQqiKy2/yI7BYEQRCqIrK7dpjcUf7pp5+Sm5uLn58fTZo0oWnTpvj7+5Obm8snn3xS5Wt/+uknHn74YQD8/f1JSEigpKSkbPn8+fP54YcfTKpn27Zt9O7dGxsbG7y8vHB3d8fR0ZFJkyYRExNj6o8nCIIg3Kt6PlfawIED+fDDD8uey2Qy8vLyWLBgAcOGDZOusHsgslsQBEGokshusyOyWxAEQaiSyO5aYfLUKz4+Ppw5c4bdu3dz9epV9Ho9gYGBDBgw4K6vTU9Px9HREYC8vDwKCwvx9/fn5MmTeHl5YWlpSXJycrVr+e6773jhhRd4+umn6dGjB+vXr2fq1Kn4+vqyadMmOnbsyJEjR2jWrJmpP6YgCIJQQ+Y4/5kpVq1aRd++fQkMDKSoqIiJEycSFhaGi4uLyQeV5kJktyAIglAVkd3mR2S3IAiCUBWR3bXDpI5yjUaDpaUloaGhDBw4kIEDB5r0ZoGBgfz99980adIEmUwGQE5OTtnlYF9++SXBwcHV3t7SpUv54osvyuZeGzt2LI888ggxMTHMmDGDCRMm8Nprr7F582aT6rwXY/q1YUy/tni52gMQEZ/OV78d4+j5qLJ1nnmkG6Mfao2djSWXbiTy/rd7iYxPr7MaKzKuWxvGd2+Dl7Oh7htJ6azZfZxDV6MAmDmoK0PbB+DuYIdGq+VyXAofbz/MhZgkyWp+vEMbHu/QBm8HQ81hqel8dug4ByIMNb/78CDGtAkyek1ofCLjvtlU16WWeTKgHU8EtMfb1gGAsKw0Pj53hJD4CABcLK15vdND9PLyw15tyYnkWBYc+5uo3EzJar7TjJbdmdumL+uvn+Cds7vL2mcF9WJCk/Y4qCwJzUhg4ekdhOWYxyWZB34q5u9viuk6Ss2w5ywBKC7Us3tDEVePaijI1ePoJqfrSDWdh6vvsrW68XTTXswOHMB3N47y3qUdAPT3bMljvp0IdPDEycKGR0NWcy1Hur/BStXzwPby8iI0NJRNmzZx+vRpdDodTz/9NE888YTRTUbqC5Hdd/d4hzY83rEN3o635cnB4xy4EQXAuyMGMabtHXkSl8i4DdLlCdzMlBbtjDMl9Agh8ZEAWCtVvNapD4MaNcPJwpK4vBw2XD7NxmuhElZ9y4wW3Xm1TT/WXz/OktDb86Q34xsb8uRcRgILz2w3mzyB+rl/frxRf55pMpxfYw/wefhvADzlN5i+bu1wtXREo9NyPTeOryP/4mqOeYwMTf4zmsRfInAZ6I33E+U732I3XCM9JAGvx5viNthHggrLi98aS+zP0XgM9sLvycYAhK+9TtqhFKP1bJvY0WphWylKrJzIbrMisvvuxnduw4QubWh4M7vDU9JZve84B69HlVt34aj+jOvchmXbQvjuyNk6q/Fu6uNx1RO+fZnedBg/xxzkk7CtAEz1H0g/93a4WTqi0Wm4lhvPFze2cyUnVuJqb7m6JZWL36fQdJgz7aZ6lrXnxBVzYWMyqZfzQQ/2PhZ0fcUba1fpjwlP/5LD8e+yaTPClp7POAHw+aiKf6fdJjvQfox9XZZXoV2bdPy5QU+f0TLGzjBMYJGTqWfrV3quntFTmA9NWsGjz8txayiTuFqDPT9q2L5BS69RCkbNMHSR5mbq2fa1hutndBTmQ+NWMkbPVOLa0ORJOWqXyO5aYVJHuVKpxNfXt8I5ZKpjzpw5TJ06ldLSUnQ6HTk5Oej1enbu3MnevXvZtm0bu3fvvvuGboqOjqZLly5lzzt16kRSUhKJiYl4eXkxZ84cBg8eXKNaayolI4/PfzpEbIqhY3N4zyDenz2KSW9tJDI+nUnDg5k4pAP//WInMYmZTBvVhU/mjWXca+spKCqt01pvl5ydx4fbDhGTlgXAyOBAPp46ksc++B83ktOJTs1k6eZ9xKVnY6FSMqlPe9Y+N4bhy9aTmV8oSc1JOXms3HeI6ExDzY+0DuTzx0Yy+qv/EZ5mOPFw4EYkr/+5q+w1pTX87N4vifm5LD+9n+ibHd9jm7RiXb8xDP9jA2FZaazrN4ZSnY5n92wmr7SEZ4KC2Th4PAN/+4pCjXSfj3+0dvZkQuP2XMkyHoHyXItuTAvowrzjfxCVl8ELgT345qGJDPxrDfmakkq2Vjfir2s5taMEd3/jUNvxRRGR5zWMfdUKR3c5N85o+PPzIuycZbTsVv7GSXUpyNGLR307ci3buJPFSqEiNCOGXQmXWNRulETVVUM9D2wAKysrpk6dytSpU6Uu5Z6J7L67pNw8Vu69LU/aBPL5uJGM/uK2PAmP5PU/zCdPABILcll++gDROTczpWkr1vUfw/CtGwjLSuetzv3o5tmIVw78SVxeNr28/FncbSDJhXnsjgmXtPbWTp6Mb9yh4jxp3oV5J7YSmZvBC4E92dDnCQZtXy15nkD93D8H2Pkw3KsrN/ISjNrjClL5JGwziYXpqOUqHvXpw/K203nq2FKyS/MlqtagICKH9JAELH1sKlyedTqV/Bs5qByl78j4R15ELin7krD2sS63zKGNE02evdXZL1eaR+eAEZHdZkVk990l5+SxauchotOzABjdIZBPnxjJ2M/+R3jKrUFo/Vs2oY2PB8k5eXVa393Ux+OqFnbejGzYlfBc4zyJLUjlw2u/kVCYjoVCxTifXqxs/yyPH1kueZ4AZIQXErE7EwdfC6P2vKQSQt6KxK+fI4HjXVFZK8iNK0aulr4zNDmsmMs782jgZ3xcOmWDl9Hz6NOF7Ps0k8bdy2dPXYu+pufIdj1e/rfa9Ho9Xy7SoVDCswvkWFrDvs16Ppuv4411ciwspc3DmGs6jm3X4ul/qw69Xs+G/5YiV8KUt1VY2sCBzVrWvlHK3LVqyWs2IrK7Vpi8B3jzzTeZP38+GRkZJr/ZY489xvvvv88777xDYWEhnTp1orCwkFdeeYWcnByOHz9Ojx49qr09Pz8/Tp06Vfb8zJkzyOVy3N3dAXB2dqa0tG47Fw+FRnDkfCSxSVnEJmWx5pfDFBSV0qqJ4azlhMHtWb/1BCGnwomIT2fRup1YqpUM7taiTuu80/7LERy8GkV0WhbRaVl8sv0IBSWltPH1AOCvs9c4FhZDXEY2N5LTef/3A9hZWdDcy0WymveFR7D/RhRRGVlEZWSxar+h5nYNPcrWKdFoScsvKHtkFxVLVi/AnrgbhMRHEJmTSWROJivOHqRAU0J7Vy/87Z3o4NaQN4/t4nx6EhE5Gbx5bBc2SjUj/VtKWjcYRiau6jqKN05tI7vE+KZAU5t35vPLh9kVf43r2anMPf4HVgoVI32DKtla3Sgu1PPL+4WMeskKK1vjQIu9qqVdfzX+bZQ4ucvpNFSNu7+chHBpO7+sFGre7TCWRee2klNqfBLqz7jzrLm+n2OpERJVVz0yEx/mZtmyZXz99dfl2r/++muWL18uQUX3TmR31faF3ZEnITfzxPu2PNGaV54A7Im9QUjcbZly5lamAHRw8+LX8IscS4olLi+HH66f40pGCq0beNxly7XLWqnig66j+b9T28i5I0+mNOvM51cOsSv+GmE5qcw7sRUrhYoRjVpJVO0t9XH/bKlQ80bgE3xw7SdySwuMlu1NOcOZzDASizKILkhmdfjv2CqtaGzrVcnW6oa2SEP02sv4TA1AYV3+xHVJZjHxG8PwnREICuk7MwC0RVrCV1+j8dPNUNiUH4ckV8pQO6rLHkpbaU/IV0Rkt/kR2V21kKsRHLgeRXR6FtHpWXy0++bxq8+tjHOzt+H/RvRl3k870JjBCe5/1MfjKiuFmrdaTeS9K7+QqzHOwL+TQzl9M0+i8pP5NOwPbJVWNLH1rGRrdUdTqOXEx3F0nOGFykZhtOziD8l4tLelzSQPnPytsHVX49nRDksHk2covq9KC3X8/UEGD73gjIWtcc5ZOymMHlEnimjY2gIHD2lrLi7U8+17Oh5/WY617a321HiIugrjXpTjGyDD3UfGuBdlFBfC6X3S9vIWF+r5/n0Nj72swuq2mtPi9URf1TP2RSWNAuS4ecsZ84KSkkIIDTGvO2KK7K4dJn+7/Pjjjzl48CBeXl4EBATQoUMHo8fdzJw5k7i4OKysrPjuu++wsLDg7Nmz7Ny5k9atW5tUywsvvMAzzzzDa6+9xoIFCxgxYgSTJk1CoTDsAI8fP07z5s1N/RHvG7lMxsAuAVhZKLkYnoCXqwMujrYcvxhVtk6pRsvZa3G0bibtQcnt5DIZQ9o1x0qt5Fx0YrnlSoWcR7u1JqewiGsJqRJUWJ5cJmN4YHOsVUrOxt+qubOvN0dfns7O6VN4Z+gAnK3N59JLuUzGCP+WWClVnEmJRy03fG6LtZqydXR6PaU6LcHu3lKVWWZRhyHsSwjnSHKUUbuPjSNuVrYcSrrVOVCi03I8NYYODaSte9vqIpoHK2nSvvwXh0aBCq4eLyUnTYderyfinIb0BB1NO0j7JeP/2gznYHIYx9LMq7PFJPX8piJr166lRYvyJy+DgoJYs2aNBBXdO5Hd1WeUJ3F35Mkr09k5cwrvDDevPIF/MqXFzUwxjPQ6lRzPAJ+muN88Yunm0Qh/B2cO3JyaRSoLOwwlJDGcIynGdRjyxK5cnpxIjaaDi/Q5WB/3zy83G8ux9CucyQyrcj2lTMFwr27klRaWG3le1+K+C8O+bQPsgpzLLdPr9MSsu4zbUB+sGlY82lwKkd/cwLGtMw6tHCtcnnM1m1PPHyd07ikivgqjNFv6qyPKEdltdkR2V59cJmNo65vHrzGG7JbJ4N1Hh/D1wdNGI8zNQX08rnol4BGOpl3hdDXyZGTDruSaQZ4AnP0qEY8Otri3sTVq1+v0JJ3Jw9ZLzcF3ovjj6avsmR9B/IkciSq95cDaTHw7WuLTzrLK9QqytESfKqTlAOnz8OfP9AR1lhHQwbg79p+L4pW3XQAmV8hQKiHiUh0WWIHNn2loGSyneXvjbtGymlW3fha5QoZCCZGXzKujXGR37TC5R2jUqFFl85zV+E2VSjZs2EC/fv349ttv8fCo2cimF154AblczsaNGykuLmbKlCm89dZbZcs7d+7M999/X+U2iouLKS42HhWm02qQK2reWdbE24Uv356AWqWksKiE1z76g8iEDFo3NZxRzcg2HtGTkV2Ah4v080k182jAxlkTUCuVFJSUMHv9H0Qk3xrB0LulP+9PGoalSkVqbj7Prd1MVn5RFVusfc1dG/Dj5AlY3Kz5hV//4EaaoeYDN6LYcSWM+JwcvB0cmN2nG98+8SiPfP29pJfMBzi6sHn4JCwUSgo0JUzfu4Xw7HSUMjlxednM69CHN47uoFBTyjNBwbhZ2+JmZXv3Ddeih30CCXLyYPTu8mf7XC0NwZxWZHxZXXpRPl7W0n2uL+wvJSFcy/QPK/7iMGy6JVs/KWLF5DzkCsOX6VEvW+IbJF1H+RCvVgQ6eDLhwDrJargf6vtNRZKSkvD0LD8CxtXVlcTE8icP64MHIrs1GuTKmv/9NndtwI9Tb8uTnyvIk+wcvB1v5smTj/LIV9LmCUCAkwubhz9pyJTSEqbv/Y3wbEOHwMLjf/NujyEcH/88pTotOr2e1w/v4FRKvGT1DvcJJMjRg0f+/qrcMhdLQ9bdmSdpRfk0tHGok/oqUx/3z33d2tHUzpvnT6+qdJ2uDQJ5M3ASFgoVGSW5zDu3hhwJL5PPPJZMYXQuzd/uWOHylL9ikMlluAyU/sTJP9KOppIflUfrRe0qXO7Y1okGXVywaGBBcWoRsb/GcHnZRVovbodcZR4j4kFktzkS2X13zdwb8MP0W8evs/73BzdSDdn9TK9gtDo9G4+az5zkUD+Pq/q5t6W5XUOeO/lxpet0a9CSBa2ewFKhIr04l/+cXUf2HVcy1bXYw9lkRhTR/93G5ZYVZ2vQFOm49lsaQRPcaP2EO0mheRxdEUufBX64BknT+Rx2oIDUiFIeXeF+13Wv7c1HZSWncTdpp105HaIjNlzPqx+XzzR3H3B2gz/W65kwC9SWhqlXcjIhJ0O64DkboiX+hp6XPyq//3HzkeHkBn9t0PDoS0rUlnBgi5ZciWuuiMju2mFyKi1cuPC+vPGjjz5q9N+amjlzJjNnzqxwWXXuur1s2TIWLVpk1ObVZhDebWs+x1p0YgaT3tyIrY0F/To14+3nBjNz6U9ly/V3fphlsvJtEohMzeTRlRuxs7JkYJumvPP4YKZ+/nNZZ/nJG7E8unIjTjZWjO3amhWThvPExz+QkSfNHOUAkemZjPpqI/YWlgxu0ZTlIwbzxMafuZGWwV9XrpetF5aazsXEZPa9+DR9m/qz65p0c7NG5GQwbOt67NWWDPVtzspewxm//XvCs9OZsW8L7/UYyvmJs9HodBxOjGJf3A3JagXwtLLjrQ4Dmbz/B0p0lXcIlftY125ZVcpO1fHXuiImL7ZGpa64kmNbS4i9qmXi21Y4usmJvqg1zFHuJK9wBHptc7e05/XWQ3nu6LeU6DR3f4E5M4P92b3w8fHh8OHD+Pv7G7UfPnwYLy/zufrHFA9Cdjv3HUSDfkNqXFNkeiajvtiIveXNPBk5mCe+u5knlyvIk5ekzxOAiOwMhv2+wZApfs1Z2WsY4//6gfDsdKYEdqSdqxdP//0r8Xk5dPbwZnG3QaQU5HM4MbrOa/W0suet9oOYsv970/JE4u9J9XH/7GrhyAvNHmFe6FpKq6g5NDOc506txEFlw3DPrrwV9BQvnv6IrNK6n8u3JL2I+O/DaPJqO+RqRbnlBVG5pO6KI2BRp3vuPLxfitOLid4YQYt5QZXOaevS1bXs39Y+Ntg0tuPs7JNkhWbgHCzdFIbliOw2Ow9Cdrv0HIRr75pnd1RaJmM+NRy/DgpqytJHBzP5i58N99Tq3p6xn/2vxtuuDfXxuMrNwoFZzUfxn7NfVJmBZzPDefrEKhxUNoxo2IVFrScx/eTHZEl08rUgrZTQ9Yn0etMPRQX753++V3h1sqf5w4Z9saO/FenXConYnSFJR3luqoZDX2YyYpErykqOYW935e98mvexrta6tSUzVc/mNXqeXyqv8LhboZQx7S05P6zS8fpjeuRyaN4eAqt/L+H7LitVz+9rNTy3RFVpzZPfVPHThxreHleCXA7N2sto0cl8Tm6XEdldK0zuDWrcuDEnT56kQYMGRu1ZWVl06NCBiIj6czkqwPz585kzZ45RW/+Z9zbEX6PVEZeSBcDVyGRaNnZn/KAOfLvtJAANHK1Jz74VGM72VmTkSH+TC41WR2x6NpDN5bhkWvl48GSv9vz3lz0AFJZoiE3PJjY9m/MxSfz5+hQe6dyKr/aelKzmUp2OmExDzReTkmnt6cHk4Pa8vX1PuXVT8/NJyM7B18mxzuu8XalOR3RuFgAX0pNo4+LJtMBOvHF0JxfTkxm2dQN2KjUquYKM4kJ+Gz6J82lJVW+0FrVy9sTF0pbfBz5d1qaUy+ns2ohJTTsx8K/VgGEERGrRrQNrZ0ubcqMh6kpCuJb8LD1rXr71/jodRF/UcuKPEt742Y493xYz4f+sCOhsmCfUw19BYoSWw5uLJekoD3L0ooGFLT/2nl7WppQr6NjAl8f9O9Pxz8Xo6ksS1pMyK/PMM88we/ZsSktL6devHwB79uxh3rx5/Oc//5G4upp5ELK7wwdr72mbRnmSmExrLw8md27P239VkCd5N/PE2fGe3vN+KJ8pHkwL6sii43uZ26E30/duYV+c4f/v1cxUAp3dea5VsCQd5UFOHrhY2vLbwGfK2pRyOcGujZjUNJhB2yvOkwYW1qQVS/c9qT7un5vbeeOktmNNp1fK2hRyBW0cGzO6YQ+G7J+HDj1FuhISCtNIKEzjSk4033SZz1DPLvwQU/5zX9sKonLR5JRybeGteZDR6cm/nkXanni8HmuMJreES/85arQ8YVM4qbviCFrZrc5rzo/MozSnlAtvh95WE+ReyyFpdwJd1vdAJjc+CFc7qrFwsaAwWdqrMssxr4+wyUR2m7+KsrvzknvMbq2OmAxDdl+KT6ZVQw8mdW/PjdQMnG2s2TP3trxRyJk3tDdPdW/PwBXlR3PXhfp4XNXczhtntR1fBL9c1qaUK2jr6M8j3t0ZsG/+zTwpJb4wnfjCdC7nxPB9t3kM9+rM/6L3SVJ3ZkQhxdla9rx2a9CZXgdpVwq4sSOD0RtbIlOAvY/xDT7tvNWkX5VmJHzqjRIKs3X8POfWDV71Oki4VMyFbXlM/8UbucKQKQmXismK1zBorrTTrsSGQW4WvP/irSlJdDq4cVHPwa1aPvhDTqNmMl77XEFhvh5NKdg5ylj5shafZtJ08MeF6cjLgg9funVfBZ0OIi9qOfyHlne3qvFuJmfOZ2oK8/VoS8HWUcZHs0skq7lSIrtrhcm9QVFRURXefbu4uJi4uLj7UtT9MnnyZGJjY9m7d2+l61hYWGBhYbxzvJdpVyoiQ4ZKpSAhNZu0rDw6B/lyPdowt7dSIad9gDef/XTwvr7nfSEDtbL8iJ6yxTJZlculIJOBWlFxTY5Wlnja25GaJ/1JidvJKF9zbqlh7ko/OydaN/Bg5VnpPh9HkqMYusP4UvPlnR/mRk46664eJSY/i5TCPHp6+HP55l3bVXI5XVwb8d75yv/2alPjtkpe+Mz4S8OWDwtx9VbQ81E1Oh1oNSC746SwXF7BFR915FhqBI/s+8yobXG70UTmpfF1+CGz64SpSn2/BGzevHlkZGTw/PPPU1Ji+Fu0tLTktddeY/78+RJXVzMPRHbfw6XbFalo3/wPc80TMHznUMsVqORy1AoF+jt2ajq9TrLRuEdTohi6w7hTZHnnEUTkpLP26hFi8jNJKcylh3tjozzp7OorWZ5A/dw/n8kM4+kT7xm1zW0xgdiCFDbF7K20ZhkyVHJppiCzC3Qi4B3jIWYxX13F0sMat+GNUDlaYNfaeN7yiBXncOrugXMvaW4Y5xDkQJul7Y3abnwRhpWXFV7Dvct1kgOU5pZSnFGM2tG8bugpstv8iOw2nUwGKqWCrWevcDQ8xmjZF1PHsPXsFbackW5i5Pp4XHU6M5zJx1YYtb0eOJ6Y/BS+j95XRQbKUEuUJwBurW0YuLKJUdupz+Ox87IgYLQLCpUcpyZW5MYbTweUl1CCtYsaKXi3sWT8x8ZTruz9OAMnbxXtx9iVdZIDXPk7D9cmKlz8pan1H83bwetrjA+qv1+pw81HxoBxMqOarWwM/06J1xMTBsOekub7aNN2cv6z2jiDf/xAg5uPjL6PKSqsOTVeR1yYniGTpL2f2Z1EdteOav9f3rp1a9m/d+7ciYPDrbkitVote/bsKTdcXmpeXl7I5XV7ecTMR3tw9HwUyRm5WFuqGdg1gA4tvZn9/mYANu08y5QRnYlNziI2KZMpI7tQVKJh59GrdVrnnWYN7cGhq1EkZeViY6FiSPsAgpt4M/OLLViplTzbvwshl26QmpuPo7UV43u0wd3Bll3nqr6ZR22a06cHByKiSMzJxUatYnhgAJ0befP0pi1Yq1S81KsrO6+Fk5qXT0MHe+Y81IPMgkJ2X5fuMvm5HXoTEhdBYkEONko1I/xb0tWjEZN3/wzAMN8AMooLiM/LoYWTKwu6DGBXTBgHE6IkqzlfU8L1bOObthZoSskqKSxrX3/9BDNb9iAqN5OovAxmtuxOobaUrdHSfBG1sJbh7mfcwaW2lGFlf6vdr7WCXV8Xo1LLcHSTE3VBQ+jeUoY8U/VNU2pLgbaE8NwUo7ZCbQlZJQVl7fYqKzytHHCztAPAz9YwwiitOI/04rq/TL5S9TywZTIZy5cv56233uLKlStYWVnRrFmzcgd39YHI7uqZ07cHB8Jvy5OgADr7evP0DzfzpHdXdl69mSeOt+WJxNOuzO3Qi5D4SBLzc7BR/ZMpPkze/TN5pSUcS4xhfvBDFGk1xOXl0NXDhzFNgnjnhDSju/I1JYTlGOdJoaaUzJKCsvYNYTfzJC+DqNwMZrbsQaG2lD9iLkpRMlA/98+F2mKi8o2vRivSlpBTWkBUfhKWcjVP+A3gSNol0otzcFBZM7JhD1wtHNifElrn9QIorJRYeRvfk0WuVqCwVZW1K23v6FxWyFE6qLH0lGZ+VoWVEmsf48MpuYUcpa0Kax8btEVa4jbH4BzcAJWjmuK0ImJ/ikZlq8K5Y4NKtioRkd1mQ2R39cwe2IOD16NIzDYcvw5rE0CwvzfPbdhCdmER2YXGV21otFrS8vKJSsus0zpvVx+Pqwq1xUTmJxu1/ZMnkfnJWMpVTPLvz+HUy6SX5OCgsmF0w264WjiwL+W8JDUDqKwUODQyPh5UWMhR2ylwaGQ43gsY6cKxVXG4BGbgFmRDUmgeiadz6bPQT4KKQW0tp4Gvcce3ylKOpZ1xe0mBjhuHC+k+1bGOKyzP0lqGl59xm9oSbOzBy8/QyXz2gB5bB3Byg4Qo2LxaR5tu0LKjNB3lltYyPP3uuNrLEmzsZHj6GfZj5w5qsXGQ4eQqIzFKx+9rNLTqJiego5lNvyKyu1ZUu6N89OjRgOEHmTx5stEylUqFn58fK1eurPYba7Va0tLSkMlkNGjQoOyO2ffTsmXL7vs278bZwYYF04fg4mhDXmEJ4bGpzH5/MycuGc5of7ftJBZqJfMm98PO2pJLEUnMeu9XCopK77Ll2tXAzpqlEwfjam9DbmEJYYlpzPxiC0evx6BWKvB3c2Jk8AicbCzJyi/iUmwykz/7iRvJ0t1BvIGNNe+NGIybrQ25xSVcS0nj6U1bOBIVg4VSQXM3F0a3DsTO0oLUvHyOR8cye8s28kuk+127WNqwqvfDuFrZkFtSzNXMVCbv/plDiVEAuFnb8mbnfrhY2pBSmMfmG5f45NxhyeqtrnVXj2KpULKo4xAc1JaEpsczZf8P5GtKpC6tUo/Ns+Lvb4r5ZUUhhbl6HN3k9H/KguBh5jXC63Z9PQJ4p/0jZc9XdBoHwOfX9rH6WohEVZUnM7ObgdeUra0twcESTqB3H4jsrp4GNta8N+qOPPlhC0cib8uTNrflSZT0eQLgYmXDql7DcbW+I1MSDNOqvLT/D+Z17M2HvR/G0cKS+Lwc3j9zkI3XQiWtuyqGPFGxqMMQHNRWnEuPZ8r+7806T6D+7J//oUWHj7UbC1sFY6+yIac0n2s5scw++ynRBcl334BQLTI5FMTlk3ooBW2BBpWjGvuWDjR7sQUKKzMblSay22yI7K6eBrbWvPvYYFztbMgtKuF6UhrPbdjC0Rsxd3+xGatvx1U69PhauzGkdScc1IY8uZoTx0unPycq37zzpGEXezo858m1LWmEfp2EnZcF3V71waWltNOZ3E3YwQLQQ7Pe0t7Es7pyMvRsWacnNwvsnaFzfxmDJ5rZFCZ3yMnQs3WdhrwssHOGTv0VDHjcvGZTAJHdtUWmv/Oa3Lvw9/fn5MmTuLjU7OYzW7ZsYcWKFZw6dQqNxnAzCKVSSadOnZg7d27ZF4PqiouLY/Xq1Rw5coSkpCRkMhnu7u50796dmTNn4u3tbXKNXZ76wOTXmIMCV/Pe2VSk2MwG01RHiZd5fkmpisKqftx87E5LO/4mdQkme+fyMKlLMNmFkYvuvpIJOsxcZdL6Z1a/cveVatmYMWPYsGED9vb2jBkzpsp1N2/eXEdV3T8PQnY3f8e0z525KGkobWd7TSht6l8OWlnWv9+zm12u1CXUiIulNHO73gtLRf37fHzT+av7uj2R3ebnQcjuwP+rn9ld3Kb+7ecaumRJXYLJerneuPtKZsZNnSN1CTXSwiJB6hJMVqI3rxPO1TGi8f29ykJkd+0w+ZMVGRlZ4zdbu3Yts2bNYtq0acydOxd3d3f0ej0pKSns3LmTCRMm8Mknn/Dss89Wa3uHDh1i6NCh+Pj4MGjQIAYNGlS2vd9++41PPvmE7du306NHjxrXLAiCIJioHl4C5uDgUDZv8+2XOP9biOwWBEEQqiSy2+yI7BYEQRCqJLK7Vpg8onzWrFk0bdqUWbNmGbV/+umnhIeH8+GHH1b62qZNmzJ//nyefvrpCpd//fXXLFmyhBs3qnfmMDg4mJ49e7JqVcVnUV555RUOHTrEyZMnq7W9f4gR5XVHjCivG2JEed0RI8qhw3QTz2yvlf7M9j/0ej0xMTG4urpibV0/Lmesjgchu8WI8rojRpTXDTGivO6IEeUiu83Rg5DdYkR53REjyuuGGFFed8SIcpHdtcXkmeh//fXXCs8Ud+/enV9++aXK18bHx9OzZ89Kl3fv3p2EhOr/gV68eJEZM2ZUunz69OlcvCjdzZ8EQRAeRDK9aQ9zotfradasGfHx8VKXcl+J7BYEQRCqIrLb/IjsFgRBEKoisrt2mNxRnp6eXuHweHt7e9LS0qp8bVBQEOvWrat0+RdffEFQUFC1a/H09OTIkSOVLj969Cienp7V3p4gCIJwH+hNfJgRuVxOs2bNSE+X7kbFtUFktyAIglAlkd1mR2S3IAiCUCWR3bXC5GsVmjZtyo4dO3jxxReN2rdv307jxo2rfO3KlSsZPnw4O3bsYNCgQbi7uyOTyUhKSmL37t1ER0fz119/VbuWV199lRkzZnD69GkGDhxYbntffvlllZekCYIgCPefzLQZvczOe++9x9y5c1m9ejWtWrWSupz7QmS3IAiCUBWR3eZHZLcgCIJQFZHdtcPkjvI5c+bw4osvkpqaSr9+/QDYs2cPK1euvGs49unTh4sXL7J69WqOHTtGUlISAB4eHjz88MPMmDEDPz+/atfy/PPP06BBA1atWsXatWvRarUAKBQKOnbsyLfffsu4ceNM/REFQRCEe1G/85onn3ySgoIC2rZti1qtxsrKymh5RkaGRJXVnMhuQRAEoUoiu82OyG5BEAShSiK7a4XJHeXTpk2juLiYJUuWsHjxYgD8/PxYvXo1Tz311F1f7+fnx/Lly02vtBLjx49n/PjxlJaWll2C5uLigkqlum/vIQiCIFSfuc1/Zqp/44gokd2CIAhCVUR2mx+R3YIgCEJVRHbXjhrdJnbmzJnMnDmT1NRUrKyssLW1NXkb0dHRJCUlIZPJcHd3x9fXtyallFGpVGJeNEEQBHNQzwN78uTJUpdQK0R2C4IgCJUS2W2WRHYLgiAIlRLZXStMvpkngEaj4e+//2bz5s3ob86Jk5CQQF5e3l1fu2rVKnx8fGjcuDHdunWja9euNG7cGB8fH7M9myAIgiBUX23efXv16tW0adMGe3t77O3t6datG9u3by9brtfrWbhwIV5eXlhZWfHQQw9x6dIlk38GrVbLL7/8wuLFi3nnnXf49ddf0Wg0Jm/HnIjsFgRBECojsts8iewWBEEQKiOyu3aYPKI8OjqaIUOGEBMTQ3FxMQMHDsTOzo733nuPoqIi1qxZU+lrFy9ezIoVK3jjjTcYPHgw7u7u6PV6UlJS2LlzJwsXLiQvL48333zznn4oQRAEQUK1eGbb29ubd999l6ZNmwLwzTffMGrUKM6ePUtQUBDvvfceH3zwARs2bKB58+a88847DBw4kGvXrmFnZ1et97h48SKjRo0iKSmJgIAAAK5fv46rqytbt26ldevWtfbz1RaR3YIgCEKVRHabHZHdgiAIQpVEdtcKmV5v2m1SR48ejZ2dHV999RUNGjTg3LlzNG7cmP379/PMM88QFhZW6Wt9fHz45JNPGD16dIXLt2zZwosvvkh8fLxJP8T91uWpDyR9/5oqcJVJXYLJihtIXYHpSrxKpC7BZAqr+jmaZmnH36QuwWTvXB4mdQkmuzBy0X3dXpdJpu1Dj383557ez9nZmffff59p06bh5eXF7Nmzee211wAoLi7G3d2d5cuXM3369Gptr2vXrri5ufHNN9/g5OQEQGZmJlOmTCElJYWjR4/eU71SeBCyu/k7qyR9/5oqaVgqdQkmU9rUvxy0sqx/v2c3u1ypS6gRF8sCqUswmaWi/n0+vun81X3dnshu8/MgZHfg/9XP7C5uU//2cw1dsqQuwWS9XG9IXYLJ3NQ5UpdQIy0sEqQuwWQl+hrNJC2pEY3P39ftieyuHSZ/sg4dOsThw4dRq9VG7b6+vncN2vT09LKzBBVp3rw5mZmZppZ03zmE5UtdQo3IS62lLsFkMn2NZv+R1JqJX0tdgsmm7XxW6hJqZP7JR6QuwWRKtVbqEiRn6mVdxcXFFBcXG7VZWFhgYWFR5eu0Wi0///wz+fn5dOvWjcjISJKSkhg0aJDRdvr06cORI0eqHdjnzp3j1KlTZWEN4OTkxJIlSwgODjbhJzMfD0J2X3/zFalLqJGWb9e/ToJCr/qX3QVO9W8wQQrVG41jbpRyndQlmMxRffd1/u1EdpufByG7G1yun9+b97/0jdQlmMz/z/p3PPhu01+lLsFk27LbSV1CjdjIi+++kplxVtx9Cqp/O5HdtcPkIx2dTodWWz7Q4uLi7jq8vnPnzixZsqTC+WY0Gg1Lly6lc+fOppYkCIIgmBO93qTHsmXLcHBwMHosW7as0s1fuHABW1tbLCwsmDFjBlu2bCEwMJCkpCQA3N3djdZ3d3cvW1YdAQEBJCcnl2tPSUkpu/SsvhHZLQiCIFRJZLfZEdktCIIgVElkd60weUT5wIED+fDDD1m3bh0AMpmMvLw8FixYwLBhVU858MknnzBo0CDc3Nzo06cP7u7uyGQykpKSOHDgABYWFuzevbtmP4kgCIJgFkw9sz1//nzmzDG+DKyqs9oBAQGEhoaSlZXFr7/+yuTJk9m/f/+t95cZjxzV6/Xl2qqydOlSZs2axcKFC+natSsAx44d47///S/Lly8nJ+fWJZX29vbV3q6URHYLgiAIVRHZbX5EdguCIAhVEdldO0zuKF+1ahV9+/YlMDCQoqIiJk6cSFhYGC4uLvzwww9VvrZ169Zcv36djRs3cuzYMSIjIwHw8PBgyZIlTJw4sd58cREEQRAqYWJgV+dyr9up1eqyM8ydOnXi5MmTfPTRR2XzoyUlJeHp6Vm2fkpKSrmz3VV5+OGHARg3blxZ0P9zO48RI0aUPZfJZBWO9DJHIrsFQRCEKonsNjsiuwVBEIQqieyuFSZ3lHt5eREaGsoPP/zAmTNn0Ol0PP300zzxxBNYWVnd9fV2dnbMnDmTmTNn1qhgQRAEwbzJ6nh6Wr1eT3FxMf7+/nh4eLB7927at28PQElJCfv372f58uXV3t6+fftqq1TJiOwWBEEQqiKy2/yI7BYEQRCqIrK7dtToNrFWVlZMmzaNadOmmfxarVZLTEwMvr6+yOVyiouL+f3339HpdPTt29eksw+CIAiCGTLxzLYp3njjDYYOHYqPjw+5ubls2rSJkJAQduzYgUwmY/bs2SxdupRmzZrRrFkzli5dirW1NRMnTqz2e/Tp06da6z3//PMEBQXh4uJS0x+nTonsFgRBEColstssiewWBEEQKiWyu1ZUq6N869at1d7gyJEjK1127tw5hgwZQkpKCq1atWLbtm0MHTqUyMhIZDIZKpWKnTt31ts7kwuCIAimz5VmiuTkZCZNmkRiYiIODg60adOGHTt2MHDgQADmzZtHYWEhzz//PJmZmXTp0oVdu3bd9aZXNbFx40ZeffVVsz3YFtktCIIgVJfIbvMgslsQBEGoLpHdtaNaHeWjR4+u1sbuNm/MvHnz6NmzJwsWLODLL79k8ODBBAUFcebMGWQyGVOnTuWNN94QNxYRBEGoz/S1l9hfffVVlctlMhkLFy5k4cKFtVbDP/S1+HPeDyK7BUEQhGoT2W0WRHYLgiAI1Sayu1ZUq6Ncp7s/E9+cPHmSw4cP07JlS5YtW8ann37K+vXrUalUALz++uvVHnovCIIgmKfaPLMtVJ/IbkEQBKG6RHabB5HdgiAIQnWJ7K4dNZqjvKb0ej1KpeEt7/wvgEKhuC9fDpKTk9Hr9Xh4eNzztgRBEAQTicD+VxHZLQiC8AAQ2f2vIrJbEAThASCyu1bIq7visGHDyM7OLnu+ZMkSsrKyyp6np6cTGBhY5TY6duzI8uXLiY+PZ9myZfj7+/Ppp5+WLf/kk09o1apVtYvPyMhg7Nix+Pr68sILL6DVannmmWfw9PSkYcOGdO/encTExGpvTxAEQbh3Mr1pD6H2iOwWBEEQqkNkt/kQ2S0IgiBUh8ju2lHtjvKdO3dSXFxc9nz58uVkZGSUPddoNFy7dq3KbSxbtowtW7bQqFEjPvvsM37//XcuX75cFrDr169nwYIF1S7+1Vdf5fr168ydO5dLly7x6KOPcvLkSQ4ePMihQ4fQaDS8/vrr1d6eIAiCcO9kOr1JD6H2iOwWBEEQqkNkt/kQ2S0IgiBUh8ju2lHtqVfunDy9JpOpBwcHEx0dzbVr1wgICMDW1paQkBD+97//UVhYyMCBAwkICKj29nbs2MEvv/xC9+7deeyxx/D09GTnzp306NEDgFWrVjF+/HiT67wXE57qQY8+LfDxbUBJsYbLF+L48vM9xMWkG63n4+vCMy/0p037RshkMqIjU3nnzV9JTc6p03r/8ciAtowZ2BZPF3sAIuLS+XrzUY6diypb5+mx3RjVvw32NhZcCk9ixfo9RMalV7LF2jeuexvGdW+Dl7Oh5htJ6azddZxDV6MAmDm4K0PaBeDhaEepVsvluBQ++eswF2KSJKv5Tjs2we/roe9oGDfT0JaTCVu+giunoSAfmrWC8S+AW0NpanwysC1PBLbD287wew7LTOfj00cJiY0EwFqp4rUuvRnk1xQnS0vicnPYcPEMGy+fk6bgCswM7Mbctn1Zf+0Ei8/8Xdb+cqteTGjSDge1JaHpCSw4tZOwnDQJK71lekAP/tOqHxvCjrP0/K6y9pda9macfwcc1Jacy4hn0dkdhOemSlhpBR6QDH7yySext7eXuowqiez+d5sQ3IYJwW1o6Gj4HIanpvN5yHEOhkWVW3fhiP6MD27Dsu0hfHv0bB1XesuTgW15Iui2TMmoIFO63pEpF8wrU2a07M7cNn1Zf/0E75y9dSO8WUG9mNCkPQ4qS0IzElh4eofZZMrTTXsxO3AA3904ynuXdgDQ37Mlj/l2ItDBEycLGx4NWc21HPP5jjTeZwDTGj/Mlrj9rLmxBYAnfYfwkFt7XC0cKdVpCc+LZX3kX1zLjZa4WoPkP6NJ/CUCl4HeeD/RrNzy2A3XSA9JwOvxprgN9pGgwiqI7DYbIrur58kxnendtTm+3s4Ul2i4eDWe1d8eIDYhs2wdJwdrZj7Vm+B2ftjaWHDuUhwffrmHuMSsOq31dp+uh882yIzaXJz1HNwCpRr46Es4cAziEsHWBrp1hP9MBzcXiQoGnmzZjidbtsPb9tbx4EdnjxASdyu7Xw/uzSC/ZjhZWBKXl8P6S2fYeCVUspp/+1bO7xsVRm32Tno++lEDGO6B+Pt3cvb/JSc/Dxq30DPpRS0N/SQothJXt6Ry8fsUmg5zpt1Uz7L2nLhiLmxMJvVyPujB3seCrq94Y+2qlrBag2M/53Pw23w6jrSi37N2AJQU6jjwTT5hx4opytVh76agwwgr2g+zlrhag5AfS9n5TSndRykZMd3wO8zN1LNjfQlhZ3QU5evxayVn5Aw1Lg2rPda4bojsrhV1Okc5gK2tLR07dix7bmlpydNPP12jbWVnZ9OwoaH30N3dHaVSiafnrR2Il5eX0WVqdaF1+0Zs/fUk168kolDImTLjIZZ9OJFnJ66hqKgUAM+GTqxaO5kdf4Ty7Zf7yc8ropGfC6Ulmjqt9XapGbl8/sNB4pKyABjWO5D3Xh3N5PnfERmXzpMjgnl8WEcWr9lBbGImUx7pykdvPMqEOV9TcPPnqmvJWXl8uO0QsWmGmkd2CuSjaSMZt/J/3EhOJzo1k6Wb9xGXno2lSsmkPu1ZM30MDy9dT2Z+oSQ13y7qGhz6Cxr632rT62HNIlAoYMZCsLSGPZvho9fh7S/AwrLu60zMz2X58QNE52QBMLZ5EOsGj2b4r98SlpnOW9370s3Lh1f2/kVcbja9fPxY3HMAyfl57I6+UfcF36GNsycTmrTnSmayUfv0ll2Z1qIz8479SWRuBi8E9eDbvo8zYNta8jUlElVr0NrJk3H+7bmaZVzzs827M7VZV14/tZXIvHSeb9GL9b2eYMiuzyWv+Xb1/bKu9evXY2try2OPPWbU/vPPP1NQUMDkyZMBWL16tRTlSeLfnt31VVJOHh/sPkRMRhYAo9oF8unjIxm7+n+Ep946kd2/RRPaeHuQnJMnUaW3lGVKdhYAYwOCWDdkNMN/uZkpPe7IFG8/FvcaQHJBHrujpM+U1s6eTGjcnit37J+fa9GNaQFdmHf8D6LyMnghsAffPDSRgX+tkXz/HOToxaO+HbmWbdwJbqVQEZoRw66ESyxqN0qi6irW3M6HYZ7diMiLN2qPL0zhs7BfSSxKx0Ku4hHvPixrM4OpJ94huzRfomoNCiJySA9JwNLHpsLlWadTyb+Rg8pR+o6Miojs/vf5t2d3uyAftmw/y5XwJBQKOc890ZMPFjzGpFnrKSo2HJ8unT8ajUbL/GW/kV9QzPiRnVi1cJzROlJo6q/n65W3nitu9ucWFcHl6zDzKWjRFLJzYdmn8Pwb8Ms6aWqFm9l9Yj9RN48HH20exBcDH2HYlm8Iy0rn7a596ebZiNkh2wzZ3dCPd3oMNBwPxoRLVndDXz1zl9/qY5Hd1sf5109ydm6W8/SrWjwa6vnjewUrXley9GsNVmbQf5sRXkjE7kwcfC2M2vOSSgh5KxK/fo4EjndFZa0gN64YuVr6DtzE66Wc31GIq59xN+O+L/OIuVDK8P/Y4+CmIOpsCbtX52LrrKBZV4tKtlY3Yq9rObFDg4f/rZNXer2e7xYXo1DApLfVWFrLOLRFw1dvFPPKWkvUlrIqtli3RHbXjmr/NclkMmQyWbm26oqJial+VUB8fPxd12nWrBl//vknANu3b8fS0pJdu26NvNy5cyf+/v6VvbxW/N8rP7D7r/NER6YSEZ7Mynf+wN3TkWYtbn2RmDq9LyeOhPPlZ3u4cT2JpIQsThwJJyuzoE5rvd2hMxEcDY0kNimT2KRM1v50mMKiElo1NdQ9fmgHNvx2nP0nw4mIS2fx6h1YqpUM6tFSspr3X47g0JUoolOziE7N4pPtRygoKaWNn+FmMn+ducbxsBjiM7K5kZzO+78fwM7KguZeEp6Ov6moENYvhydmg7XdrfaUeIi8Ao+/BH4B4OEDj78IxYVwcp80te6JjiAkNpLI7EwiszNZcfIQBaUltHczfDY6uHvx6/VLHEuMJS4vhx+unOdKegqtXaW/qY+1UsWqbiN548RfZJcUGS2bGtCZzy8dZmfcNa5npzL32B9YKVWM9A2SqFoDa4WKFcGP8NaZbWSXGp/Qmdy0M6uvHmJXwlXCclKZd+p3rBQqHvap/hyTdUKnN+1hZt59911cXMrvJ9zc3Fi6dKkEFdWcyO5/t5BrERwIiyIqPYuo9Cw+2mPIwbY+t/a/bnY2vDm8L/N+2YFGq5WwWoM90RGExNyWKSduZor7bZly7RLHEmKJyzXDTOk6ijdObSufKc078/nlw+yKv5kpx//ASiF9plgp1LzbYSyLzm0l545M+TPuPGuu7+dYaoRE1VXMUq7mtRaT+PD6j+RqjGvel3KGs1nXSSpKJ7ogiXU3fsNGaYW/jZdE1RpoizREr72Mz9QAFNaqcstLMouJ3xiG74xAUEjfmVEhkd1mQ2R39by6+Fe277tEVGw6N6JSWfbJDjzc7Alo4g6Aj5cTrQK8WLn2b66GJxGbkMkH6/7GykrFgF4t6rTWOykV4Nrg1sPZ0dBuZwtffwBD+4F/I2gXBG/OgkvXZCQkV7nJWrUn5gb74iKJzMkkMieT908ZsruDm2Hf28HNi1/DbjsevHaeKxkptHF1l65oQK4AB+dbD3tHQ7teD7u3yHn4cR2deurx9odn5mopLoZje6XfR2sKtZz4OI6OM7xQ2RiPir/4QzIe7W1pM8kDJ38rbN3VeHa0w9KhzsfAGikp1LFtZQ6DXrLH0tZ4f5VwtZSgfpY0aq3GwV1B2yFWuPkrSQ6X7mQVQHGhnh/fK2HMLDVWt9WcFq8n9qqO0S+q8WmuwNVbzqjnVRQX6TkXIv13aSMiu2tFtfcCer2eKVOmMGbMGMaMGUNRUREzZswoez5t2rQqXx8cHMyzzz7LiRMnKl0nOzubL774glatWrF58+a71jR37lxefvllmjVrxpgxY1i/fj0rV65k/PjxPP7447z88svMmDGjuj9irbCxNZwhy80xfNGXyaBz96bEx2awdNVEfto2h4+/nEb33tW/9K22yWUyBnQLwNJCxYWwBLzcHHBxsuXEhVuXtZZqtJy9Ekfr5tIemPxDLpMxpF1zrNRKzkWVv5GMUiHn0W6tySks4lqC9NNUbPoUWnWGlh2M2zU3s0J122AjuQIUKrhxqe7qq4xcJmNEkwCsVCrOJBt+z6eS4hjg2xR3a1sAunn54O/gzIG4KAkrNVjUaTD7Em5wONm4Fh8bR9ysbDmYFFnWVqLTcjwlhg6uEs1xc9OC9kMJSQrjSEqkUbuhZjsOJd/q0CjVaTmRFk2HBt51XWbV9CY+zEx0dHSFB3u+vr4mH3xKTWT3g0MukzGsVXOs1UpCYw37Z5kMlo8dwteHTxuNMDcXFWZKYhwD/JribnNHpsRGSVipwaIOQ9iXEM6RSjLlUNKt/XOJTsvx1BjJ98//12Y4B5PDOJZmXp3hVXmx2aOcyLjM2azrVa6nlCkY5tmdPE0hEXkJdVRdxeK+C8O+bQPsgpzLLdPr9MSsu4zbUB+sGlY82twsiOw2GyK7a8bG2nDcnZNnOJGpUho6GEtKb40o1un0aEq1tGkp7ff96DjoPQYGjIc5iyC2il1Ybj7IZHrsbeuuvqrIZTJGNG5hyO4UQ+Enk+MZ4Nvk1vGgpw/+9s7sl/h4MDkeXpmgZO4kJauXKEi52U2QmgTZGTJaddSVratSQ0AbPeGXpR8tfParRDw62OLexvh/ul6nJ+lMHrZeag6+E8UfT19lz/wI4k9IM33v7f5ek0fjTmr82pW/aqphoIobx4vJTdei1+uJOV9CRoIWv/bSXmH1++cltOisoGl745MR2pt9MkqjPhkZSiVEXTazjnKR3bWi2qed/hny/o8nn3yy3DpPPfVUpa+/cuUKS5cuZciQIahUKjp16oSXlxeWlpZkZmZy+fJlLl26RKdOnXj//fcZOnToXWt64okn8PX15fjx43Tv3p1u3brRsmVL3n33XQoKCli3bl25uu9UXFxsdLMUAJ1Og1x+f87ITZ81iAuhMURFGDpnHZ1ssLaxYPyk7mxYF8KXn+8huGsT3l72GHNf/JYLZ6X7MDTxcWHdfx9HrVJSWFTC6x9sJSo+g9bNDJ3hGdnGl7RmZBfg4SLtHH/NPBvw3awJqJVKCkpKmL3+DyKSb93spnegP+9NGoalSkVqbj7T12wmK7+oii3WvpMhEBsOr39SfpmHDzi7w29fw8SXDVOt7NkMORmQnVF+/boS4OzC5tETsVAoKSgtYfrO3wnPMnS6LDy8l3d7D+b4pBmUarXo0PP6/l2cSrr76JTa9HCjQFo5eTBq5/pyy1ytDAeqaUXGn+m0onwa2jjUSX0VGe4dRKCjJ2P3fllumYuF4YtSerHx1Anpxfl4WUtXc0Xq+yVgbm5unD9/Hj8/P6P2c+fO0aBBA2mKqqEHKbstLCywsJD28k0pNHNrwA/PTsDiZg6+9MMf3Eg1BMYzPYPR6vR8d0y6OckrEuDswuZH7siUzNsypc8dmRJiBpniE0iQkwejd39dbpmrZcWZkl6Uj5e1dN+Thni1ItDBkwkHJLxe30R9XNvT1Nabl858UOk6XZwDmR84GQu5ioySHOaf/5wcjXTTrmQeS6YwOpfmb3escHnKXzHI5DJcBprZSe07iOw2Hw9Sduu0GuSK+3Pc/eLUhzh3OY7IGMO9IaLjM0hMyWb6k715f/UuiopLGT+yEw2cbWngJN1JqzYt4d03wM8b0jJhzXcw8QXYugGc7vhKX1wMH6yDhwcY5iuXUoCTC1tGPoGFQkl+aQnTd/9G2D/Hg0f38G7PwZyYOJNSnRadXs9rB3dyKlm67G7cQs+z87S4e+vJyZTxx/dylsxWsuQLDdkZhs5weyfj1zg4QlpK3dd6u9jD2WRGFNH/3cbllhVna9AU6bj2WxpBE9xo/YQ7SaF5HF0RS58FfrgGSfMhuXKgiOQbpUz6oPzJYoD+z9mx89Nc1kxJR64wDOQY/JId3kHSdZSf268hIVzHCx+Vn9vW1UeGo5uMnetLeeQlNSpLOLRFQ24m5GaYV1iK7K4d1U6l9evLdzaZwtnZmRUrVvDOO+/w119/cfDgQaKioigsLMTFxYUnnniCwYMH06qVaVMI9OzZk549e5Y9DwwM5Ntvv63265ctW8aiRYuM2ho3fIgmPv1MqqMiL746BP+mbsyZvqGsTSY37JSPHLzO5k3HAYgISyawtQ8Pj+4oaUd5dEIGk1//DlsbC/p2bsZbM4fw/H9/LFt+531kDFcASvuXGZmSyWMrN2JnacmAtk155/HBTPvs57LO8pPhsTy2ciNONlaM6dqaFU8N54mPfiAjT5o5yjNS4OfVMGup8ajxfyiU8NxbsPEDePVRkMuhRXsICq77Wm8XkZXBsF++xV5twdDGzVnZdyjjt/5IeFY6U1p1oJ27J0/v2Ex8bg6dPX1Y3HMAKQV5HI6X5vPsaW3H2x0H8tS+HyjRVX7W986bI8kAvUSfaQ8re/6v7SCmHfq+6prveC6jZjd5qlXmVo+JJkyYwKxZs7Czs6N3794A7N+/n5dffpkJEyZIXJ1pHqTsXrBgAQsXLjSpjn+DqPRMxqw25OCgwKYsGzOYp77+GQulkkld2zN2zf+kLrGciKwMhv38LfYWFgz1vy1TMtOZ0vpmpmy/LVN6SZwpVna81WEgk/ffJVPueC7lmDR3S3tebz2U545+S4lOunvgmMLVwpGZTcfwxvnVlOorrzk0K5znT72PvcqGoZ7d+L+WU5h1dhXZpXU/B39JehHx34fR5NV2yNWKcssLonJJ3RVHwKJOJk2dIQmR3WbjQcpun4CB+LYcZFIdFXnluf408XPlhTd+KGvTanW8uXwrr784mO0bX0Kj1XH6XDRHT0t7hU3vrrf+3RzD9CqDJ8LvO2DKbfdDLdXAf/4LOh28/Uqdl1lORHYGQ7d8Yzge9GvOyj7DGL9tE2FZ6UwN6kh7Ny+m7dpMfF4OXTy8eaf7QFIK8jmcIM3Nltt0vm2f5q+naUst86YoObxLTuOWhmV37pX1/NPHIY2CtFJC1yfS600/FBXMOf7Pbtqrkz3NHzZMV+Hob0X6tUIidmdI0lGek6pl7xe5PPZfR5Tqin95p/8oJOFaKY+85YC9q4K4SyXsXpOHjbOiwhHotS0rVcefa0uY9o4lqgpqVihlPPl/Fvz6UTH/HV+IXA5N2stp3kn6aXnKEdldK+p8IiNLS8uyy8bMwfz585kzZ45R25iBKytZu/qenzOYbj2b85+Z35KWmlvWnpNVgEajJSbSePqPmKg0WrX1uef3vRcarY645CwArkYk07KxB+OHdOC7P04C0MDRhvSsWyN2nOytyciWbl51MNQcm5YNZHM5LplWPh480bs9i3/eA0BhiYbYtGxi07I5H53EH/On8EiXVny156Qk9caEQ24WLHvxVptOB+EXYP9W+ORP8G0G/7caCvMNU7HYOcLyWdCouSQlA1Cq05XdzPNCWjJtXD2Y1roDi47sY27nXkzf9Tv7YgxfOq9mpBHYwJXn2gZL1qnRyskTF0sbtg6+dWmqUi6ns1sjJjXrxIBtawBwtbIl9bYRgA0sbcqNCKwrhppt2dzvmbI2pVxOsIsvTzYJZvCuzwHDyPLUoludAc4WNqQXS3sDszvV9zPb77zzDtHR0fTv3x+l0hCTOp2Op556qt7Nc3q/1IfsfhBHkwOUanXEZBhy8FJCMq0bejCpa3si0jJoYGPN3jm37VMUcuYN7s1TXdszYFX5kdF1VvPtmZKaTBu3m5ly+Gam7LwjU1wkzhRnw/7594G3boKnlMvp7NqISU07MfAvww2GXC1tjPfPEmZKkKMXDSxs+bH39LI2pVxBxwa+PO7fmY5/LkZnZtfgNrX1wUltx6cd/1PWppApaO3QmJENe/LwgVfRoadYV0JCURoJRWlczY3m6+D/Y4hHV36M/bvOay6IykWTU8q1haduNer05F/PIm1PPF6PNUaTW8Kl/xw1Wp6wKZzUXXEErexW5zVXRmT3v099yO6hT35+z9ud/Uw/egQ34aX/+5HUdOMTZtcjkpk251tsrNWolAqycgpZu/wJrt5IqmRrdc/aCpr5Q1TcrbZSDbyyAOISYf0q6UeTQ/njwbaunkwN6siiY3uZ26kX0//+jb2x/2R3KoEN3HiudbBkHeV3srACbz89yQnQvodhh5edCY63DVrNybo1j7kUMiMKKc7Wsue1Wzcv1+sg7UoBN3ZkMHpjS2QKsPcx/s5r560m/ao0/TLJ4RoKsvR8OzuzrE2vg9hLpZz5s5BZP7py8Ls8Rr/hQJNgQ91u/kpSIjSc3FIgSUd5fJiOvCz4dNatmQZ0Ooi6qOPYHxoW/25Fw2ZyZn1qRVG+Ho0GbB1kfDa7CO9m5tVZLrK7dkg7438tmzx5MrGxsezdu7fSdSq6VPtep1154T9D6NEngFef/46kxCyjZRqNjmtXEvBuZHwZgXcjZ5KTsu/pfe83mQxUKgUJKdmkZeYR3NqX61GGa5GUCjntW3rz+Q8HJa7SmAxQK8qP6ClbLpOhVla+vLa1aAdvrjVu+24luPvAoHGG+cj/cXN2EFLiIToMRlR9NWOdkskMv2eVXI5aoSg3olmn1yOTcCzdkeQohvz1hVHbe12GcyMnnbVXjhGTl0VKYR49Pfy5nGm4M45KLqeLWyOWh0pz19SjKZEM373GqO3djiOJyE1j3fUjxOZnklKYSw93f65kG77cq2RyOrv48v7FPVKUXLl6HthqtZoff/yRxYsXc+7cOaysrGjdujW+vr5Sl/ZAqGl2CzfJQK1UsDX0CkdvGHcsf/HUGLaeu8LmM2Zw04vb/JPdVWaKhEO8jiRHMXSH8fQlyzs/zI2cdNZdPUpM/m2ZknVbprg24r3zlX+Oa9Ox1Age2feZUdvidqOJzEvj6/BDZtdJDhCadZ3nTr5r1PafgInEFibzU8yeSmuWyUB1n6ZMNJVdoBMB7xhf9hfz1VUsPaxxG94IlaMFdq2NL0WPWHEOp+4eOPfyrMtS7878PhImEdktrRofd9/jtCuzn+1P7y5NmfXWjySmVH4snV9QAoC3pyMBTdz58vtD9/S+91NJCUTEQMc2huf/dJJHx8M3H5afjsVc3JndujuyW6vTIzejK2lKSyAxVkbz1npcPcDBWc+lM3J8mxrmKdeUwrXzMh57WneXLdUet9Y2DFzZxKjt1Ofx2HlZEDDaBYVKjlMTK3LjjacwyksowdpFmmlMfNuqmPKpcc7t+DAHZ28FnR+1Qa/To9OUH6kvkxvmXJdC03YKXv7ceMqVX1aV4Ooto89jKuSKW8Va2hj+nRavIz5cx8Cnyt+wW1Iiu2vFv7qj3MvLC7m8bs/4vPTqUPoOasWC136ksKAYJ2dDb2d+fjElxYbLSH/531HeWDyWC6ExnDsTRaeuTejaozmvvlD9S9futxnje3I0NJLk9FxsrNQM6BZA+0AfXnnXcHOXH7efYfKozsQlZhKblMnk0V0oKtGw6/AVyWqeNawHh65EkZSVi42liiHtAujU1JuZ67ZgpVby7IAuhFy6QWpOPo7WVozv0QZ3B1t2hYZJVrOlNTT0M25TW4KN3a320wfAzgGc3CAhEn5aA227QWDFU1/WurmdexISE0liXi42ajUjmrSgq6cPk//6lbzSEo4lxDK/ax+KNBri8nLo6unNmOaBvHM0RJqCgXxNCdezja/aKNCUklVSWNa+/toJng/sTlRuBlG5mTwf2J1CTSlbo6XpQMrXlBCWc0fN2hIySwrL2r8JP8GMgJ5E52UQlZfBjICeFGpL+TP2ohQlV0pWzy8B+4efnx96vZ4mTZqUneEWap8U2V1fzR7Qg4NhUSRm52KjVjGsdQCd/bx57rstZBUWkVVofE8OjVZLWl4+UemZlWyx9pVlSn4uNio1I5q2oKvXHZnSrQ9FWg1xuTl09bqZKUdCJKu5Wply/QQzW/YgKjeTqLwMZrbsTqFWukwp0JYQnms80WqhtoSskoKydnuVFZ5WDrhZ2gHgZ2sYxJFWnFfufhh1oVBbTHSB8SjPIl0JuaUFRBckYSFXM9F3IEfTLpJRkoO9yoaHvXrgYuHIwdTQOq8XQGGlxMrb+GZrcrUCha2qrF1pe8dBtUKO0kGNpad1XZVZLSK7hXshRXbPeW4AA3q34I1lv1FQWIKzo+FvKq+ghJISw3H3Q92bk5VdSHJaDk18XZj1dD8Ongjn5DnpRjm/9zk81B283CE9E9Z8C3n5MHoIaDQw+224fB1WvwtaLfxzL24He1BL1Ec3t1MvQmIjyrJ75M3jwad2/kJeaQlHE2N4o7Mhu+Nzc+ji6c3YZoEsPh4iTcHApnVy2nXV08BVT06WYY7ywgLoMVCHTAYDH9Hx5w9y3L30uDfU8+cmBRYW0LWfdB3lKisFDo2MB/UpLOSo7RQ4NDJ07AaMdOHYqjhcAjNwC7IhKTSPxNO59FnoJ0HFoLaW4+pr/LevspRhZS/H1dewD/ZppWL/+jyUFjLD1CsXS7i8r4iHnpbmDrUW1jI8/Ix77tWWYG0vw8PP8LNcOKjBxkGGo6uMpCgdf6wtJbCrguYdpBt0WRGR3bVD+gpq0bJly+r8PUeM7QTAys+Nh/++v/h3dv91HoDD+6/x8XvbmPBUD56fM5i46HT++8bPXDofW+f1/sPZwZoFLwylgaMNeQUl3IhJ5ZV3N3PyguFLxMY/TmKhVvLqtP7Y2Vhy+UYis5f+QkFRqXQ121mz5InBuNrbkFdYwvXENGau28Kx6zGolQr83JxYGTwCJxtLsvKLuBSbzJRPf+JGcrpkNVdHdgb8utZw6ZeDM3QZAMMmSlePi5UNq/oNw9XahtySEq6mpzL5r185FG/4bLz09x/M69KbD/sPw9HCkvjcHN4/cYiNl89JV3Q1rL1yDEuFiv92GoKD2pLQ9AQmh2wiX1MidWmV+uL6ESwVSha0G4qD2opzGfFMO/Q/86tZuu+X90VBQQEvvfQS33zzDQDXr1+ncePGzJo1Cy8vL15//XWJK/x3kyK76ysXG2uWjxmMq50NuUUlXE9O47nvtnDkhjRTlFSHi5UNq/pXkClxNzNld/3MlHVXj2KpULKo4z+ZEs+U/T+Y3/75Nn09Anin/SNlz1d0GgfA59f2sfpaiERVVU6n1+Ft5cZbQVOxV9mSW5rP9dwY/hP6cbkOdqEGRHYL90CK7H5kaDsAPnnHeB7bpR9vZ/s+w0nKBk42vDj1IZwdbEjPzGdHyCW++fkoUkpKhVf/C1nZ4OQIbQNh02po6AHxibD3sKED75GnjV/3zYd6Orev+3oBXK2sWfXQcNysbcgtKeZqRhpP7fzl1vHg3j+ZF9yLjx4ajqOFJXF5Obx/6hAbr4RKUzCQmSpj7VI5uTmGQWhNWup58yMNLu6G5cPG6Sgthu8+VZCfC01a6PnPMg1W5nUOs5yGXezp8Jwn17akEfp1EnZeFnR71QeXlmYwP08lHp5nz8Fv8tm2IoeiPB32rgp6TrKl3VArqUurVE6Gnm1flJKXpcfOSUb7/gr6PW5mo8lBZHctkenN7i5wpomLi2P16tUcOXKEpKQkZDIZ7u7udO/enZkzZ+Ltbfod5gd1W1wLlda+XD8z36tXIN+z/o0a/HDWmruvZGam7XxW6hJqRG5vvh0MlVGqK7/Rm7m6Pvat+7q9/v1MO1jas3f+fX3/e/Xyyy9z+PBhPvzwQ4YMGcL58+dp3LgxW7duZcGCBZw9e1bqEuu92sju+qrl26ukLsFkhV71bz+ncCq++0pmxtqq/mUggJeDeU0lWB2O6qK7r2Rmfux2f7+PiuwW7qY2srvXIytqodLat3/1uruvZGb8/6x/x4M/DFwtdQkm25bdTuoSasTfMvXuK5kZZ0XdX/12r8Y0ub9ZJLK7dtTrEeWHDh1i6NCh+Pj4MGjQIAYNGoReryclJYXffvuNTz75hO3bt9OjRw+pSxUEQXhwSDTf3P3y22+/8eOPP9K1a1ejeZEDAwO5ceNGFa8UqkNktyAIghkS2S1UQWS3IAiCGRLZXSvqdUf5K6+8wjPPPMOqVRWPxnrllVeYPXs2J0+erOPKBEEQHlz1/e7bqampuLm5lWvPz8+X9IaC/xYiuwVBEMyPyG6hKiK7BUEQzI/I7tpR/+a9uM3FixeZMWNGpcunT5/OxYvmdZM7QRCEfz293rSHmQkODmbbtm1lz/8J6S+++IJu3bpJVda/hshuQRAEMySyW6iCyG5BEAQzJLK7VtTrEeWenp4cOXKEgICACpcfPXoUT0/POq5KEAThwSar5zcVWbZsGUOGDOHy5ctoNBo++ugjLl26xNGjR9m/f7/U5dV7IrsFQRDMj8huoSoiuwVBEMyPyO7aUa87yl999VVmzJjB6dOnGThwIO7u7shkMpKSkti9ezdffvklH374odRlCoIgPFjM8Gy1Kbp3787hw4dZsWIFTZo0YdeuXXTo0IGjR4/SunVrqcur90R2C4IgmCGR3UIVRHYLgiCYIZHdtaJed5Q///zzNGjQgFWrVrF27Vq0Wi0ACoWCjh078u233zJu3DiJqxQEQXjA1O+8BqB169Z88803UpfxrySyWxAEwQyJ7BaqILJbEATBDInsrhX1uqMcYPz48YwfP57S0lLS0tIAcHFxQaVSSVyZIPw/e3cdF0X6xwH8syxLS7cIIooCFhYoKmArKnYrdree7Xnq2XrqmZyBdXb97AY7MDAAKSnp7t7n9weysrCUAsue3/frta/XMfvMzHfnxv3sPDPzDCG/Jo4EntlOTk4ud1tlZeUqrOTXQNlNCCE1C2U3KQtlNyGE1CyU3VVD4jvKC/B4PBoXjRBCagIJDGxVVdUyn6zNGAOHwxFcRUV+HmU3IYTUEJTdpJwouwkhpIag7K4S/5mOckIIITWEBD5UxNXVVdwlEEIIIeJD2U0IIYRIFsruKkEd5YQQQiqVJN4CZmtrK/T348eP4ezsjICAAJw/fx61a9fG8ePHYWxsLKYKCSGEkKpD2U0IIYRIFsruqiEltjUTQgj5b2KsYq8a5sKFC+jevTvk5eXx7t07ZGVlAQBSUlKwfv16MVdHCCGEVAHKbkIIIUSyUHZXCbqiXAT28oO4S/ghKmkNxV1ChckmSt6DdRZumiruEipMxkDcFfyYbCYj7hIqLFclW9wliF9ezQvhivjzzz+xf/9+jBkzBqdPnxZMb9euHdasWSPGykhpepotFXcJP0TDXEPcJVRYYgZX3CVUWLq+vLhLqLA0ndLHb6ypQvLUxF1CxakniLsC8aPsJmKg5BMv7hJ+SPeBY8RdQoXpG0neNZJOMbPEXUKFSTcq/4MKa5JW+qHiLqHCbNV8xF2C+FF2VwnJ+7YkhBBSo3EYq9CrIjZs2IDWrVujVq1a0NbWRr9+/eDjI/wjaezYseBwOEIva2vrcq/Dx8cHHTt2LDZdWVkZiYmJFaqXEEIIkQSU3YQQQohkoeyuGtRRTgghpHJV4S1gDx8+xIwZM/DixQvcvXsXubm56NatG9LS0oTa9ejRAxEREYLXjRs3yr0OPT09+Pv7F5v+5MkT1KtXr0L1EkIIIRKBspsQQgiRLJTdVYKGXiGEEFK5KhjCWVlZgvHICsjKykJWVrZY21u3bgn97eLiAm1tbbx580bobLSsrCx0dXUrVEeBKVOmYM6cOTh8+DA4HA7Cw8Px/PlzLFy4EL///vsPLZMQQgip0Si7CSGEEMlC2V0l6IpyQgghlauCZ7Y3bNgAFRUVodeGDRvKtaqkpCQAgLq6utB0Nzc3aGtrw9TUFJMmTUJ0dHS5y1+0aBH69esHe3t7pKamomPHjpg4cSKmTJmCmTNnln87EEIIIZKCspsQQgiRLJTdVYLDWA189KmYdZUaLO4Sfgi3seQ9zDOztuQ9zDO5Lk/cJVRYqqQ+zFMjT9wlVJiUBD7M88vwZZW6vB4WyyvU/n9vfy/3me3CGGNwdHREQkICHj9+LJh+5swZKCkpwcjICIGBgVi5ciVyc3Px5s2bMpdZWHp6Ory8vMDn82Fubg4lJaUKfS5SvST1YZ4pkvgwz3qS+DBPCfy5q5Mp7gp+iKx8jrhLqDBDCXyY523bHZW6PMpuIg49zSv3N2h1yVVTEHcJFZZqJHkPtY5tInnXddLDPKuPJD7Mc6Lp47IbVQBld9WgoVcIIYRUqoo+KKQ84SzKzJkz8eHDBzx58kRo+tChQwX/3bhxY7Rq1QpGRka4fv06BgwYUO7lKygooFWrVhWuixBCCJE0lN2EEEKIZKHsrhrUUU4IIaRyVcONSrNmzcKVK1fw6NEjGBiUfsuEnp4ejIyM4OfnV+V1EUIIIRKJspsQQgiRLJTdVYI6ygkhhFQuftUFNmMMs2bNwqVLl+Dm5gZjY+My54mLi0NoaCj09PSqrC5CCCFEolF2E0IIIZKFsrtKSN6gT4QQQmq2Cj5UpCJmzJiBEydO4OTJk6hVqxYiIyMRGRmJjIwMAEBqaioWLlyI58+fIygoCG5ubujTpw80NTXRv3//qvi0hBBCiOSj7CaEEEIkC2V3lZDojvImTZpg7dq1CA2VvAcPEELIf1YVBva+ffuQlJQEOzs76OnpCV5nzpwBAHC5XHz8+BGOjo4wNTWFk5MTTE1N8fz5c9SqVasqPi2pIMpuQgipgSi7SSkouwkhpAai7K4SEj30iqenJ3bu3InVq1ejS5cumDRpEhwdHSEtLdEfixBCJFsVjpXGyli2vLw8bt++XWXrJz+PspsQQmogym5SCspuQgipgSi7q4TEJ9uHDx/w6tUrHD58GMOGDYOamhrGjBmDCRMmwMzMrNrrGbakH9r3t0KdRrWRlZENr2c+OLjkX3z1DRe0ad+/DRwmd0WDlvWgoqmMqZa/IeB9ULXXWmDohI6w6WwOA2MtZGflwMsjBId33MHXoFhBmwVrB6CrYwuh+bw/hGLeKOfqLldgxBArdLQxhaGBBrKyc+DpFQ7nww8RGhYvaCMvx8PkcbZo364BlGvJITIqGReuvMGV6x5iqXlQx6YY3KEp9DSUAQBfIuLwz42XeOYZBGkpKUzv2w42jY1hoKmC1IwsvPwcgr8vP0FsUppY6gWA4S2aYniLpjBQza/ZLyYOe568xKOAIADAxt7dMKCZhdA8HmERGHLkdHWXKmSUeTOMtGgOg1rf6o6Pw99vnsMtNBAAoCDNw2LrjuhWtz7U5OTwNSUZRz6+xQmv9+IsW2CaeVv81sweLj6vsPbtPcH0OY07YJhJc6jIyMEjLhyrXt+GX3JsKUsSg7w8cVdAarialt1DJtnCpmtjGNTTQnZmDrzeBePwtlsIK5SD89cPQtf+LYXm+/w+BPOG7avucgEAo/q3ga21KYxqqyMrOxcffcKw7/gjhIYnCNqoqShg2uiOaNOsLpQUZfHe6yu2H7qPrxGJYqkZAIa2bYqhbZtCXy3/u9k/Kg77777EE58gAMD0rtbo0bwhdFVrISc3D15h0fj75lN8DI0UW80jmzbFyKbNUFv5W57ExWHXyxd4GBQkaGOiro7F7TvAysAAHA4HfnFxmHX9GsJTUsRTc/0WGNmgBWorqeTXnBSDXR+f4GHEFwCAppwiFjW3RwddYyjLyOFVdAhWv7mDoJSE0hZbrSaZtsd8i8445v8CGz7mH4h11W+EIXVbwkJVH2qyCuj/YD8+J0WJudLvhtbpgvH1euPS14fYH3AJADDKqAfstC2hJauKHH4e/FND4RJ4Az4pwWKutgjKblKGGpndXSy+Z7dHSPHsXjdQdHYP31/d5QIAho1uh/a2jVDHSANZWbnw+vgVB/fdx9eQeKF2hkYamDi9M5o2NwRHioPgwBisXXkRMVHJYqm7f5dmGNClGfQ0vx3DhsXh8MXneFGoD2PCwLZw7NQUyoqy8PSPxFaX+wgMixNLvQAwwvLbMazKt+yOjcPuJy/x6EsQAGCTQzcMaFr8GHbwMfEewxYmiTkYfjUUX88FQaebPoxGmRR7P9DFDzGukTAcUQ+6PWqLocLiXpxLw+NjaWjZVx6dJuVfCZ2dwcejo2nwe5GFzBQ+lLW5aNFHHpa9FMRcbRGU3VVC4jvKpaWl0a9fP/Tr1w+RkZFwcXGBi4sLtm/fDisrK0ycOBHjx4+vtnqadrTAlb234ePuD640F+P+HI6Nt1dgosU8ZKZnAQDkFOXg+cwHj84/x/wD06qttpI0aVUXV0+/hK9nGKS4Uhg7qwvW7R+Lyf13IisjR9DO/Ykv/lp5UfB3To54/1E2b1IHl6++w2ffCHC5Upjo1BFb1g3G2CmHkZmVX/eMyZ1g2cwQ6zZfQ2RUElq1NMa8GV0RF5eKpy/8q73m6IRU/H35CUJjEgEAfazNsX1qXwxf/y+iE1LQyFAbB2+8hG9YDJQVZLFwsB12THPEqI0nq73WApEpqdjm+gTBCfk1929qjr2D+6LfwX/hH5v/4+dRQCCWXL0jmCenBnxhR6SlYNPLRwhOSgQADGxogX969IPD+WPwS4jDSht7tNWvg3kPbuBrShI6GNTF2g5dEJWeirtBAWKtvam6HoaZWMI7QfhHzxQza4xv1AaLXlxDYEo8ZljY4Jj9cHS57oy03GwxVStCNTx9m0i2mpbdTVrXw9WTz+H76Su4XCk4ze2OdYfGY0rv7cI5+MgH25efF/wtzhy0tKiDi7fe4bN/JLhSUpg0oj22/z4Yo+a4CDJww+J+yM3Lw5KNl5GWkYVhfVphx6ohQm2qW2RiKrbfeIKQ2EQAgGMrc+wa2xeDdvyLgKg4BMUkYP1lV3yNS4IsTxpjOljin0kD0GuTCxLSMsRSc0RqKjY/eYLgxPxO5AHmFnDu64g+/56AX1wcDFVUcHbIUJz1/IQdz58hJTsb9dXVkZWbK5Z6ASAiIxmb37si+FvH9wDjJnDuOBh9bh2CX1Is9ncciFw+H1MenUdKThYmNLLC8U4j0O3aP8jIE8++UVhjVX0MqdsCn5OET5DIc2XwLi4Ut8O8sLZFXzFVJ5pprTropdcWX1LDhKaHZURjj98FRGTGQVaKh/4GttjQdCrGvfoTSTniuxCiGMpuUoYal92tjHH11Ivv2T2nG9YdHIcpfXYIZ/djH2xffkHwtzizu2lzI1y5+Bo+3uHgcqUwbrI9Nm4fiYkj9yMzM79mvdpq2L7PCTeveeDowYdIS8uCoZEmcrLElykx8SnYe/oxvkYmAgB6dTTH5gX94LT0OALD4jCqT2sM79kSa51vITQiAWP7W2PnskEYtuAw0jPF9HsjJRVb3QodwzY2x75BfeF4+Psx7MOAQCy5XrOOYQtIYg6mfklBtGsE5Osoinw/4U0s0gJSwFOTqebKShbhm4MPtzKgVVe4a9T1YCpCPubAYYEyVLS5CHqXjbv7UqCkzkUDa1kxVSsCZXeVkOgxyjkcjtDfurq6WLp0KXx9fXH//n2YmJhg9uzZ1VrTsl7rcOeoG4K9vuLLh2BsHb8XOkZaaNCynqDNvROPcGLteby997FaayvJimnHcPfKOwQHRCPQNxJ//X4ROvqqaGAufIYvJzsXCXGpgldqsngOWAssWnket+59QlBIHAICY7Bx+w3o6qjAtIGOoI2FmT5u3fsEj4+hiIxOxrWb7+H/JRoNG+iKpeZHH7/gqWcQQqITERKdiD1XniE9KwdNjHWRmpmN6X9fxN23vgiOSsDHwEhsOuMKcyMd6KqJb4wnV78veBgQhKD4RATFJ2K72zOkZ+egee3v2zA7Nw+xaemCV1JmltjqLXA/+AvcQgIRmJSAwKQEbH31BOk52bDUyX8CcwsdfVzw8cSL8FB8TUnGKe8P8I6LRhMt8ewbBRSkedjeti+WvbqBpOxMoffGNWyDvZ5PcfurD3yTYvDbi6uQl+ahr5FFCUsTEz6r2Iv8Umpidq+c7IJ7l98ixD8agT6R2L7sPHT01dDAQkQOxqYKXqlJ4svBBX9ewE1XTwSGxsE/OAYb9tyCrpYyGprkZ2AdPTU0bqiPbf/cw+eASISGJ2DbgXuQl+OhS/tGYqv7ofcXPP4chODYRATHJuLvW/mZ0sww/7v3hocPXviF4Gt8EgKi4rD56iPUkpeFqZ6m2Gp+8OUL3IICEZiYiMDERGx79hTpOTmw1M3PkwU2NnALCsSmx4/hFROD0KQkuAYGIi5DfPvHgzB/uIUHIDAlHoEp8dj24SHSc7NhqVEbxrXU0ULTACvdb+FDfAQCU+Lx++tbUJDmoU9dc7HVXECBy8OW1gPw+7urSC6Sg1dCP2CvzyM8i/kipupEk5OSweJGo7HD9wxScoX/v7tGv8W7RF9EZsYhOD0S/wRchqK0PIwV9cVUbQkou0kpamR2TzkinN3LL+Rnd7Fj2Lwak93LFpzCnRsfEBwYiy/+0di6/ip0dFXQoKGeoM24yXZ49TwAB/c+QIBfFCLDE/HquT8SE9PFVveTt1/w3CMQoZEJCI1MgPPZp8jIzEbjBvl1D+3RAkf+9xIP3f3x5Wsc1u67BTkZaXRrV/13GhR44F/kGPbRt2NY/ULHsHk17xgWkMwczMvMQ8A+HxiPbwBpxeLX42bHZyHoWADqTW0IDpcjYgnVLzuDj+vbktFtljLklIRrCv+cA4tOcjBsIgMVHS6a9ZCHtrE0ovzFfzGBEMruKiHRHeWljZljZ2eH48ePIzw8vMQ21UFRJf/WjJT4VLHWUREKSnIAgJQk4TBu2soYp92W4OCVuZizqh9U1EWfKRQXJYX8M3spKd/D5KNnGGys60NTQwkA0LypIerUVof720Cx1FiYFIeDbq1MIS8jjQ9fIkS2UZKXBZ/PkJJRM0JbisOBg7kpFHjSeBf2veY2RgZ4PncKbk8diz97dYG6grwYqyxOisNBH5OGkOfx8DYqv+7XEV/RpW596Cjm7xtt9evAWEUdj0KDxFgpsLpVd7iGB+BplHAddRRVoS2vhMeR3/fdbH4eXkaHoIVWzbhtTaAKHypCJJ8kZLdCrYIcFD6YbtqmHk49WY4DNxdg9pr+NSoHFb9lYPK3DOTxuACArOzvV6Dx+Qw5uXloalYzvjOkOBz0bJafgx7BxXNQmiuFwdZNkJyRCZ/wGDFUWJwUh4Pepg0hLy2NtxHh4ACwN66HwIQEHOk/AK+mTMXFYcPR1aT47cbiIsXhoLeROeSleXgbGwYZqW/7Rl6hfYMx5PD5aKVVR1xlCqxs3gsPI/3wPEb8v9XKa2aDQXgV74V3ib6ltpPmcNFLrx1SczPwJVW833PFUHaTUkhGdn87Fiya3a2NcerxMhy4MR+zV9ew7Fb8VvO3C9A4HMCqXX18DY3Dhr+G4+y1efj7n3Fo18FUnGUKkeJw0KVtQ8jJ8vDRLxz62irQVFPCqw/fh5PKyc3DO++vaGJaM04ISnE4cDDLP4b1KHQMa2VogBezp+DOlLH4s2fNOYaVxBwMOuoP1eZqUGmsVuw9xmcIcPaBXi8DKBjUnH9/9/anol4rGdRtXvwK99rmPAS8zEJKXB4YYwj5kI348DzUtaw5V8MDoOyuIhI99IqTkxPk5Uv/MlP+Np5kSbKyspCVJdwJyWd5kOJwf7o+AJi6zQkfH3sjyFNynhA+5bee+PQ2CMH+0YJp7k988fjOJ0RFJEK3thrGzOiCTQfHY9bQvWIfgqXA9Mmd8OFTKAKDv49L9/f+e1g4pwfOn5iO3Nw88BnDlh238NEzrJQlVa36+ho48tswyPCkkZGVjQXOVxEYGV+snYw0F7P7tcct989IyxTvsBqmWho4M3YYZKWlkZ6djRnnryIgNr/mRwFBuPXZD2FJyTBQVcFc27Y4NnIQ+h8+Kfbb1xqqa+Ji/xGQ5UojPScbU27/D/4J+bfa/fH0ATbadsfL0VORk5cHPhiWuN3B60jx7Ru9Dc3RWE0Xjrddir2nJZ//oyI2U/g27djMNNRWVKmW+sqNQpiUosqym58LKanK+VkzeXEvfHodiGC/78MfvX7sg8e3PyI6PD8HR8/uio1HJmL2wN01IgdnjbXDe6+vCAzNz8DgsHhERCdh6qiO2LL/DjKycjCsTytoqilBQ028BykNdDXw78xhkPmWKXOOXsWX6O85aGtmjC0je0GOx0NMShom/3MRiemZpSyx6jXU0MT5Yd9zcNrVq/CPj4emggKUZGQwtXUb/PX0KTY9eQzbunWxr09fjDh3Dq/CvoqvZhUtnO/mlJ+BudmY9vgC/JNjIc2RwtfURPzWzB7LX91ERl42JjSygra8ErTllcRWLwD0qm0BcxU9DHY7INY6KsJWyxL1lQww6+1fJbaxUjfHUnMnyErxEJ+djKUf9iI5twYNuwJQdpNSSUR2L3LApzdBCPYvnN2+eHz7U352G6hh9Owu2OgyEbMH1Yzsnjq7Kz6+D0FQYP7JYFU1RSgoyGLoqHY4csANB/c9QCsrE6xaPxi/zTqODx4hYqvVpI4m/lk9PP8YNjMbS7ZfQVBYPJo0yO8Mjy/yTK345HToapa+T1Q1Uy0NnB3zPbunX7wK/7j83xsPvwTh5rdj2DqqKpjbsS2OjxiE/i4nkS3GY1hJzMG4F9FID06FxR+WIt+PuP4VHC4HOt1qxokTAPB+lImogByM/ktd5PudJ9fC7d0p2D82DlLc/JNY3WfVgoFFDewoJ5VOojvKXVyKdyZV1IYNG7B69WqhacYwgwl+fiiDWbsnwLipIeZ1WPnTy6ouM5b1hnEDXSwYK/zF/Oj2J8F/B/tHw88zDEdvL0Sbjg3x9L5XdZdZzJzpXWBirIVZC/8Vmj7QsSXMG+lj6R8XEBWVjGZNDDBvRjfEx6fhjYd4HqIUFJWA4etPQEleDp0t62ONU3dM/OucUGe5tJQUNkzoBQ4H2HD6gVjqLCwwLgGOB09AWU4O3RvWx6Y+3THyxDkExMbjhvf3q6f8YuLwKSIKrjMnwL6+Me74VP848IV9SYxHr3PHoCwri57Gpthm3xNDr5yBf0IcxjZpgeY6ephw8yLCUpLRRq8O1nboguj0VDwNq/4foXoKtfB7y64Y43oK2fySf5wVvaKHA4ChhgUkBTYpRVVlt4mGDRpodfjpZU9f2RfGDfWwcKTwg74e3fw+XFqwXxR8PcNw9N4itLZrhGd3PX96vT9j/sTOMDHSwvTlpwTT8vL4WLHlCpZM746bx2YhN4+PNx+C8fyt+G/VDYxJwMDtJ6AsL4euTepj3dDuGLvvnKCz/JV/KAZuPwE1RXkMsmqCraMdMOLvU4gX0xjlAPAlIR69T5yAspwsetRvgC3du2P4ubNI/tbpcy8gAIffvQUAeMfEoIWePkY2bSrWjvIvKXHoffMQlGVk0aNOI2yx7oPh907APzkW0x9fxEZrB3gMno9cPh9PIwPhFi7ezNaVV8bSpj0w8emJUnOwJtGSVcW0+gOw7MM+5LCSxw/2SPTH9NdboMxTRE+9tlhuNhaz321HUk4NuuOUspuUosqyW7N95WT3ir4wbqiLhaOchaY/ulUou/2j4PspDEfv/4bWto3w7J54s3vW/B4wNtHGvGlHBdOkpPKHf3j+2BcXz7wCAAT4RcGiiQF692sp1o7y4PB4OC09DiUFWdi3aYCVU3tg+tozgveLfoNwALF/rwTGJaDv4RNQls0/ht3cO/8Y1j+uyDFsbBw+RkTBbcYE2JkY446vePJQEnMwKy4LwSe+oNGixpCSKT5gRVpgCqLuhMFijWWxIZzEJTkmDw8OpGDwGlVIy4iu6c3VDIT75KD/ShUoa3Hx1TMbd/enQlGdK/IKdLGh7K4SEt1RXhmWLl2K+fPnC03rrzL2p5c74+/xsO7TCgtsVyE2rPjVwjXRtCUOsLYzw8JxBxFbxhO142NTER2eCH1DjWqqrmSzp3WGjXV9zP7tFGJivx9wyMhIY6JTR6xcewkv3PM7Br4ExaB+PR0MHdhabB3luXl8hMYkAUiCd0gULOrqYkQnS6w7eR9Afif5xkkOqK2pgik7zov9anIAyOHzEZKQX/OniCg00deFU2tL/H7zfrG2MalpCE9KhpG6arXXWVQOn4/g5EQAwMeYKDTV1sX4Ji2w+qkrfmvTAVNu/w+uIfn7xuf4WJhramFys9Zi6ShvrKYHTTlFXOn+/SFI0lJSaKNtiNENWqHL9fxOOy15JcQUuqpcQ06x2FXmYsfni7sC8h8nKrsHt17708udtrwPrO3N8Nvof8rMwYSYFERHJKK2kXhzcO6ETrBpbYKZK88gpsgwbz5fojBu4TEoKsiAJ81FYnIG/tkwEp8DIktYWvXIzeMjNC4/Uzy/RsGiji5GdbDEmgv5mZKRk4vQuCSExiXhQ0gkri8aiwFtGuOgq7vYas7h8/MfDp0EfIyKQlNdHYy1bIHVrg+Qk5cHv7g4ofYB8fFoWVu8V07l8PkITs1/mOfH+Eg01dDD2IatscL9Jj4lRKL3zUOoxZMFT4qL+Kx0XOzmhI/x4ts3LFT1oCmnhPP2kwXTpKWk0ErTCCPqtUGz//0Jfg07MVxfqQ7UZGphd8sFgmlcDhdNVOqhb+326P1oIfhgyOJnIzwzFuGZsficEozDrZejh641zoTeE2P1RVB2kyomMrvb/PnTy83P7kb4bcyBsrM7NgXR4eLP7hnzusO6vSkWzDiG2JgUwfSkxHTk5uYhOChWqH1IUCwaNxXv0Fi5eXx8jUoEAHwOjIKZiS6G9miB41fzs1lDRRFxid+PSdSUFRCfJL5x1YEix7CRUWiil38Mu/KWiGPYtPxj2LpiPIaVxBxMD0pBbnIOPv3+7vtEPpDik4Soe+GoM9QYOck58Jj3Suj9kFNfEHknDM3/alPtNUf55yI9keHY3ATBNMYHQj1z8PZaBmaf0cLj46not0wFJq3zh0fSNpZG9JdcuF9Kr1kd5ZTdVeI/3VHu5OSE0NBQPHhQ8hW5srKykJUVfmrtzw67MnPXBNj0a4OF9qsQGRRd9gw1wPSlvdGukzkWTTiEqLCEMtvXUpGHlq4K4mNTymxbleZM64L27Rpg7uLTiIxKEnpPWloKPB4X/CJn2fL4fHCkasbZTCD/bDtPOn+fK+gkN9RWxeTt55GUJt5bzUvCASDDFf3vRFVeDnrKtRCTWsM6b/G9bp6UFGS43GJXZ/MZE9uZ7mdRQehxQ/hOjs1WDghIjoOz9wuEpCYiOiMV7XWN4ZWQf0spT0oKVtqG2OThKo6SS0ZntslP+OHs/slbt6et6It2Xcyx2OlA+XJQVSE/B2PEl4PzJnZGxzb1MWvVGUREJ5XYLi09/4SrgZ4qGpro4MDpJ9VVYrlwkD/cWInvczilvi8OHHAgw+Uih8/Hh6go1FMXHpOzrpoawpPF+xupqIKaC0vJyb8ivm4tNTRR18NfHx6JozQAwPOYQPS9t1do2rqWjghMicVB36c1rnMAADwSfTHZfaPQtAUNRyA0IwpnQ+6XWDOHA/AqabiJSkPZTX6C2LJ7eZ/87B57sGLHsGLM7pnzu8OmY0MsnHkckRGJQu/l5vLh4x2OOkUuRqtdRx1RkSXnvDgUHMOGRychNiEVrZsYwTc4v+9DmisFSzMD7D31WLxFFsHhlH0MGy3GY1hJzEFlc1U0Xt9CaFrgAV/I6SlAr7cBeCoyUGki/BvJZ8snaLbThmZHneosVcCoGQ9jdwsPuXJrRzLUDbhoM0gRjM/Az83fXwrjSOWPt16jUHZXiRr2C61y6evrQ0qqep9XOmvPRHQa3h6r+m1Gekom1HRUAQBpSenI/nZlcC01JWgbakJDP/8Lw6Dht3G9IhOR8O0sbXWasbwP7Hs2xeo5/yIjLQtq3x58mZaaieysXMjJy2DU9E54etcT8bEp0NFXw9jZXZGUmI5nYhx2Ze6MruhiZ4blay4hIyMb6t/GXE1Ny0J2di7S07Ph8SEE0ybYITsrF5HRyWjepA66d7bAngPi6Vic6WiDp55BiIxPgaIcD91bNURLUwPM3HUJXCkONk/ujUZ1tDFn72VwpTjQUM5/GGxSWiZy88RztnC+nQ0eBQQhIjkFijI8OFg0RBsjA0w4fQkKPB5mdbTG7c/+iElNQ20VZcy3t0FCegbuinnYld/atIdbSCAi0lKgyJNBn/qNYK1fB043LiA1JxsvwkOxtK0tMvNy8TUlGdb6Bhhgao4/n7mJpd603Gz4Jgk/rC49NweJ2RmC6S4+rzDdvB2CUuIRlJKA6ebtkJGbgyvB4r11tBgKbPITxJHdM353hJ1DM6yZeTw/BzW/5WDKtxxUkMGoGZ3x5K4n4qOToVNbDWPndUdyQrrYhl1ZMKkLunRohKUbLyM9Ixvqqvl5kZqejexvD/C0b2uKxOQMRMUmo56hJuaM74TH7v5wfy+eO6oAYE4PGzz2CUJkYgoUZXno2bwhWpsYYOrBS5DnSWNyZyu4egUgJjkNqoryGNa2KXRUlHD7g5/Yal5oY4OHQUEIT0mBEk8GvRs2hJWBAcZduggAOPD6Nf52cMCrr2F4ERqKjnXronO9ehhx7qz4am5mi4fhXxCengwlaRn0NjKHlbYhxrmdBgD0rNMI8VnpCE9LRkNVLfzesivufvXFk0IPjK5u6bnZ8EsRzsGMbzlYMF2FJwc9BRVoy9UCABgraQIAYjNTEZtV/Z0bGXlZCE4Xvgo/k5+NlJx0BKdHQlZKBiOMuuJ57CfEZydDmaeI3vo20JRVxeMYj2qvt1SU3eQniCW7V/b9lt0nSs/uO58QH5OSn91zu+Vnt5iGXZm1oAc6dW2MVUvOIj09G2rfHiyalpolyO5zJ19g+ZoB+OARgvdvg9Da2gRtbUyxYNZxsdQMAFOHtsdzj0BExaVAUV4GXdo2hKV5HczbmJ+DZ269hZNjG3yNTEBoZAKcHK2QmZ2LO8+8xVbzfNtvx7Ap345hzRrCytAAE858O4btYI3bPt+PYRfYfjuGFdOwK4Bk5iBXXhoKBsLdilKyXEgrSQse3MmrxRN6n8PlgKciA3k9hWqrszAZBSloGQl/X/HkOJBXloKWUf5nqdOYh4cuqZCW5eQPvfIpG16umbCbIN5nuRRD2V0l/tMd5Rs2bKj2dfad1h0AsM1NePy1LeP24M5RNwBA276t8JvLDMF7K07PAwAcW30Wx1efq55CC+kz1Cq/RpeJQtO3rbiAu1fegc/nw7i+Drr0aQ7FWnKIj0nFB/cvWP/bGWSki29YkH698x8WsXPzcKHpG7fdwK17+WOqr9l4FZPGdsTyRb2hXEsOUdHJOHj0Ma5c96jucgEA6rUUsHZsd2gqKyI1Mxt+YbGYuesSXn4OgZ66MuyamQAAzqwYLTTfpL/O4Y2feMY51VBUwOa+3aGtpIiUrGz4RMdiwulLeBYYAllpLky1NNGviTlqyckiJjUNL4NCMffidaRl54il3gKa8orY3rkXtBQUkZKdjc9xMXC6cQFPvuZ3EM26exWLrDpiR+deUJWVQ1hKMra8eoITXu/FWndpnL1fQI7Lw5pWPaAiIwePuHA4uZ1GWq74h+cRUtPOtBOJIo7s7j3cGgCw+dhkoenblp7Dvctvwc/jo66pLjo7tsjPwdgUfHj5BRvmnxJbDvbv0RwAsHvtMKHp63bfxE3X/A4ADTVFzBxrB/Vvt0PfcvPEkfPPq7tUIRq1FLBhWHdoKSsiJTMbvhGxmHrwEp77hUBGmgtjbTX0bdUHaopySEzLxKevUXDaexYBUXFlL7yKaCooYlv3HtBSzM8Tn9gYjLt0EU9C8ofpuhPgj5X372Fa6zZYZW+PL/HxmH71Kl6Hh4uvZjlFbGvbB1rySkjJyYJPYjTGuZ3Gk8ggAIC2vBKWt+gCTTlFxGSm4mLgR+z+VLPuNBDFXq8hNrTsJ/j7rzaDAAC7vd2w5/NDMVVVMj7jw0BeGystxkGZp4SUnDT4poRggcffxTrYxY6ym/wE8Wb3JKHp25ad/57dDXTQua8lFJXlEB/zLbsXnBZbdvcd0Cq/xj1jhKZvWXcFd258AAA8feSDnVtuYPhoG8yY1w1fQ+Kwevl5eH4IrfZ6C6grK2DV9J7QUFVEano2AkJjMG/jRbh/yj+uOnHVHbIy0lg4rjNqKcrBKyACczecR3qm+I4HNRUVsKXP92PYz9GxmHDmEp4G5R/DNtTSRP/GhY5hg0Mx57L4j2HLImk5KKl6L1LG46NpuL41GZmpfChrcdF+tBKa9yz9ocbVjrK7SnBY0bEHJMzXr1+xb98+PHv2DJGRkeBwONDR0UG7du0wbdo0GBgYVHiZXaUGV0GlVY/buKG4S6iwzNrifRL2j0iuyyu7UQ2TWvF/BjVCtoZkPMSkMCmVGtZpXQ5fhi+r1OX10JxcdqNCbsX+U6nrJzVfVWR3T7OlVVBp1UsxF/+zPioqsV7NGgalPNL1JfDnrk7NHH6tLLLyNbuTQRRD9bKHbKhpbtvuqNTlUXaTslRJdptX7m/Q6pKrJp4rYX9GqlEN6+Arh9gm1XuXQmWQblT6OPk1VSt98Z2I+VG2aj7iLqHCJppW7nBElN1VQ6KvKH/y5Al69uyJOnXqoFu3bujWrRsYY4iOjsbly5exa9cu3Lx5EzY2NuIulRBCfh10ZpuUgrKbEEJqIMpuUgrKbkIIqYEou6uERHeUz5s3DxMnTsT27dtLfH/u3Llwd3ev5soIIeQXlid5dwKQ6kPZTQghNRBlNykFZTchhNRAlN1VQvLuZSnk06dPmDp1aonvT5kyBZ8+farGigghhICxir3IL4WymxBCaiDKblIKym5CCKmBKLurhER3lOvp6eHZs2clvv/8+XPo6elVY0WEEEIYn1+hF/m1UHYTQkjNQ9lNSkPZTQghNQ9ld9WQ6KFXFi5ciKlTp+LNmzfo2rUrdHR0wOFwEBkZibt37+LgwYPYsWOHuMskhJBfC52tJqWg7CaEkBqIspuUgrKbEEJqIMruKiHRHeXTp0+HhoYGtm/fDmdnZ+R9G5+Hy+WiZcuWOHbsGIYMGSLmKgkh5BdDDxUhpaDsJoSQGoiym5SCspsQQmogyu4qIdEd5QAwdOhQDB06FDk5OYiNjQUAaGpqgsfjibkyQgj5RTG6rYuUjrKbEEJqGMpuUgbKbkIIqWEou6uExHeUF+DxeDQuGiGE1ACMzmyTcqLsJoSQmoGym5QXZTchhNQMlN1V4z/TUU4IIaSGoDPbhBBCiGSh7CaEEEIkC2V3laCOckIIIZWKzmwTQgghkoWymxBCCJEslN1VgzrKCSGEVC46s00IIYRIFspuQgghRLJQdlcNRqpNZmYmW7VqFcvMzBR3KeUmiTUzJpl1U83VQxJrZkxy6yZE0knivz1JrJkxyaybaq4eklgzY5JbNyGSThL/7UlizYxJZt1Uc/WQxJoZk9y6SeXhMMboWv1qkpycDBUVFSQlJUFZWVnc5ZSLJNYMSGbdVHP1kMSaAcmtmxBJJ4n/9iSxZkAy66aaq4ck1gxIbt2ESDpJ/LcniTUDklk31Vw9JLFmQHLrJpVHStwFEEIIIYQQQgghhBBCCCHiRB3lhBBCCCGEEEIIIYQQQn5p1FFOCCGEEEIIIYQQQggh5JdGHeXVSFZWFqtWrYKsrKy4Syk3SawZkMy6qebqIYk1A5JbNyGSThL/7UlizYBk1k01Vw9JrBmQ3LoJkXSS+G9PEmsGJLNuqrl6SGLNgOTWTSoPPcyTEEIIIYQQQgghhBBCyC+NrignhBBCCCGEEEIIIYQQ8kujjnJCCCGEEEIIIYQQQgghvzTqKCeEEEIIIYQQQgghhBDyS6OOckIIIYQQQgghhBBCCCG/NOoo/0EpKSmYO3cujIyMIC8vj3bt2sHd3V3wPmMMf/zxB/T19SEvLw87Ozt4enqWudwLFy7A3NwcsrKyMDc3x6VLlyqt5tzcXKxYsQLGxsaQl5dHvXr1sGbNGvD5fEEbDocj8rVly5YSl3vkyBGR82RmZlZLzWPHji22bmtr6zKXXVXbuqyac3JysHjxYjRp0gSKiorQ19fHmDFjEB4eXupyq3I7l6duoObt13Xr1hW5TWbMmAGg5u3P5am5pu3PhPyXUHZ/R9ldsZopuym7KbsJEQ/K7u8ouytWM2U3ZTdlN/khjPyQIUOGMHNzc/bw4UPm5+fHVq1axZSVldnXr18ZY4xt3LiR1apVi124cIF9/PiRDR06lOnp6bHk5OQSl/ns2TPG5XLZ+vXrmbe3N1u/fj2TlpZmL168qJSa//zzT6ahocGuXbvGAgMD2blz55iSkhLbsWOHoE1ERITQ6/Dhw4zD4bCAgIASl+vi4sKUlZWLzVtdNTs5ObEePXoIrTsuLq7U5Vblti6r5sTERNalSxd25swZ9vnzZ/b8+XNmZWXFWrZsWepyq3I7l6duxmrefh0dHS20Le7evcsAMFdXV8ZYzdufy1NzTdufCfkvoez+jrK7YjVTdlN2U3YTIh6U3d9RdlesZspuym7KbvIjqKP8B6SnpzMul8uuXbsmNL1Zs2Zs+fLljM/nM11dXbZx40bBe5mZmUxFRYXt37+/xOUOGTKE9ejRQ2ha9+7d2bBhwyqlbgcHBzZ+/HihaQMGDGCjRo0qcR5HR0fWqVOnUpfr4uLCVFRUKqPEYspTs5OTE3N0dKzQcqtyW//Idn716hUDwIKDg0tsU5XbmbGy666p+3Vhc+bMYSYmJozP54t8X9z7syhFa65p+zMh/xWU3cIou4VRdguj7C4dZTch1YOyWxhltzDKbmGU3aWj7CblRUOv/IDc3Fzk5eVBTk5OaLq8vDyePHmCwMBAREZGolu3boL3ZGVlYWtri2fPnpW43OfPnwvNAwDdu3cvdZ6KaN++Pe7fvw9fX18AwPv37/HkyRP06tVLZPuoqChcv34dEyZMKHPZqampMDIygoGBAXr37o13795Va81ubm7Q1taGqakpJk2ahOjo6FKXW5XbuqLbGQCSkpLA4XCgqqpa6rKrajuXp+6aul8XyM7OxokTJzB+/HhwOJxi79eE/bmokmquSfszIf8VlN3FUXZXvObCKLt/HmU3ZTchpaHsLo6yu+I1F0bZ/fMouym7//PE3VMvqdq2bctsbW1ZWFgYy83NZcePH2ccDoeZmpqyp0+fMgAsLCxMaJ5Jkyaxbt26lbhMHo/H/v33X6Fp//77L5ORkamUmvl8PluyZAnjcDhMWlqacTgctn79+hLbb9q0iampqbGMjIxSl/v8+XN2/Phx5uHhwR49esQGDhzI5OXlma+vb7XUfPr0aXbt2jX28eNHduXKFdasWTNmYWHBMjMzS1xuVW7rim7njIwM1rJlSzZy5MhSl1uV27k8ddfU/brAmTNnGJfLLVZfgZqwP5en5pq2PxPyX0LZ/R1ld8VrLoyyu3JQdlN2E1IWyu7vKLsrXnNhlN2Vg7Kbsvu/jjrKf5C/vz/r2LEjA8C4XC5r3bo1GzlyJDMzMxN8sYWHhwvNM3HiRNa9e/cSl8nj8djJkyeFpp04cYLJyspWSs2nTp1iBgYG7NSpU+zDhw/s2LFjTF1dnR05ckRk+4YNG7KZM2dWeD15eXmsWbNmbNasWT9bcoVrZoyx8PBwxuPx2IULF0psU5XbuiI1Z2dnM0dHR2ZpacmSkpIqtJ7K3M7lqbum7tcFunXrxnr37l3i+zVhfy6qrJoZE//+TMh/CWV3ySi7KbsLo+wuGWU3IdWLsrtklN2U3YVRdpeMsptUhLQYLmL/TzAxMcHDhw+RlpaG5ORk6OnpYejQoTA2Noauri4AIDIyEnp6eoJ5oqOjoaOjU+IydXV1ERkZKTStrHkq4rfffsOSJUswbNgwAECTJk0QHByMDRs2wMnJSajt48eP4ePjgzNnzlR4PVJSUmjdujX8/PyqteYCenp6MDIyKnX9Vbmty1tzTk4OhgwZgsDAQDx48ADKysoVWk9lbufy1F1T92sACA4Oxr1793Dx4kWR79eU/bmwsmouIO79mZD/EsruklF2U3YXRtktGmU3IdWPsrtklN2U3YVRdotG2U0qisYo/0mKiorQ09NDQkICbt++DUdHR0Fo3717V9AuOzsbDx8+RLt27UpcVtu2bYXmAYA7d+6UOk9FpKenQ0pK+H85l8sFn88v1vbQoUNo2bIlmjVrVuH1MMbg4eEh9KX+oypSc4G4uDiEhoaWuv6q3NblqbkgrP38/HDv3j1oaGhUeD2VuZ2Bsuuuqfs1ALi4uEBbWxsODg4i368p+3NhZdVcQNz7MyH/RZTdxVF2U3YXRtktGmU3IeJD2V0cZTdld2GU3aJRdpMKE9u17BLu1q1b7ObNm+zLly/szp07rFmzZqxNmzYsOzubMcbYxo0bmYqKCrt48SL7+PEjGz58ONPT02PJycmCZYwePZotWbJE8PfTp08Zl8tlGzduZN7e3mzjxo1MWlqavXjxolJqdnJyYrVr12bXrl1jgYGB7OLFi0xTU5MtWrRIqF1SUhJTUFBg+/btE7mconX/8ccf7NatWywgIIC9e/eOjRs3jklLS7OXL19Wec0pKSlswYIF7NmzZywwMJC5urqytm3bstq1a4ttW5dVc05ODuvbty8zMDBgHh4eLCIiQvDKysoqseaq3M7lqZuxmrlf5+XlMUNDQ7Z48WKR79ek/bmsmmvi/kzIfwllN2X3j9ZM2U3ZTdlNiHhQdlN2/2jNlN2U3ZTd5EdQR/kPOnPmDKtXrx6TkZFhurq6bMaMGSwxMVHwPp/PZ6tWrWK6urpMVlaWdezYkX38+FFoGba2tszJyUlo2rlz51jDhg0Zj8djjRo1KnV8pIpKTk5mc+bMYYaGhkxOTo7Vq1ePLV++XCgkGGPM2dmZycvLC32e0uqeO3cuMzQ0ZDIyMkxLS4t169aNPXv2rFpqTk9PZ926dWNaWlqMx+MxQ0ND5uTkxEJCQkqtmbGq29Zl1RwYGMgAiHy5urqWWHNVbufy1M1Yzdyvb9++zQAwHx8fke/XpP25rJpr4v5MyH8JZff3uim7K1YzZTdlN2U3IeJB2f29bsruitVM2U3ZTdlNfgSHMcaq7/p1QgghhBBCCCGEEEIIIaRmoTHKCSGEEEIIIYQQQgghhPzSqKOcEEIIIYQQQgghhBBCyC+NOsoJIYQQQgghhBBCCCGE/NKoo5wQQgghhBBCCCGEEELIL406ygkhhBBCCCGEEEIIIYT80qijnBBCCCGEEEIIIYQQQsgvjTrKCSGEEEIIIYQQQgghhPzSqKOcEEIIIYQQQgghhBBCyC+NOsrJfxKHw8Hly5fL3X7s2LHo16/fT60zKCgIHA4HHh4eP7WcH+Xm5gYOh4PExESxrJ8QQgj5GZTdhBBCiGSh7CaE/NdQRzmRKJGRkZgzZw7q168POTk56OjooH379ti/fz/S09PFXV6Z7OzsMHfu3GLTjxw5AlVV1WqvhxBCCKlqlN2EEEKIZKHsJoT8qqTFXQAh5fXlyxfY2NhAVVUV69evR5MmTZCbmwtfX18cPnwY+vr66Nu3r7jLrLHy8vLA4XAgJUXnxwghhFQPyu6fQ9lNCCGkulF2/xzKbkIkG/3LJRJj+vTpkJaWxuvXrzFkyBCYmZmhSZMmGDhwIK5fv44+ffqUOO/Hjx/RqVMnyMvLQ0NDA5MnT0ZqamqxdqtXr4a2tjaUlZUxZcoUZGdnC967desW2rdvD1VVVWhoaKB3794ICAio9M8ZFBQEKSkpvH79Wmj6rl27YGRkBMYYAODGjRswNTWFvLw87O3tERQUJNS+4Gz5tWvXYG5uDllZWQQHByMhIQFjxoyBmpoaFBQU0LNnT/j5+QnNe+DAAdSpUwcKCgro378//vrrr2Jn3q9evYqWLVtCTk4O9erVw+rVq5Gbmyt4n8Ph4ODBg+jfvz8UFBTQoEEDXLlypfI2FCGEkBqPspuymxBCiGSh7KbsJuRXRh3lRCLExcXhzp07mDFjBhQVFUW24XA4Iqenp6ejR48eUFNTg7u7O86dO4d79+5h5syZQu3u378Pb29vuLq64tSpU7h06RJWr14teD8tLQ3z58+Hu7s77t+/DykpKfTv3x98Pr/yPiiAunXrokuXLnBxcRGa7uLigrFjx4LD4SA0NBQDBgxAr1694OHhgYkTJ2LJkiUiP/uGDRtw8OBBeHp6QltbG2PHjsXr169x5coVPH/+HIwx9OrVCzk5OQCAp0+fYurUqZgzZw48PDzQtWtXrFu3Tmi5t2/fxqhRozB79mx4eXnB2dkZR44cKdZu9erVGDJkCD58+IBevXph5MiRiI+Pr9TtRQghpGai7KbsJoQQIlkouym7CfnlMUIkwIsXLxgAdvHiRaHpGhoaTFFRkSkqKrJFixYJpgNgly5dYowx9s8//zA1NTWWmpoqeP/69etMSkqKRUZGMsYYc3JyYurq6iwtLU3QZt++fUxJSYnl5eWJrCk6OpoBYB8/fmSMMRYYGMgAsHfv3pX4OWxtbRmPxxPUXPCSlZVlKioqgnZnzpxhampqLDMzkzHGmIeHB+NwOCwwMJAxxtjSpUuZmZkZ4/P5gnkWL17MALCEhATGGGMuLi4MAPPw8BC08fX1ZQDY06dPBdNiY2OZvLw8O3v2LGOMsaFDhzIHBwehukeOHClUX4cOHdj69euF2hw/fpzp6ekJ/gbAVqxYIfg7NTWVcTgcdvPmzRK3DyGEkP8Oym7KbkIIIZKFspuym5BfHV1RTiRK0bPXr169goeHBywsLJCVlSVyHm9vbzRr1kzojLiNjQ34fD58fHwE05o1awYFBQXB323btkVqaipCQ0MBAAEBARgxYgTq1asHZWVlGBsbAwBCQkIq9BlGjhwJDw8PodeaNWuE2vTr1w/S0tK4dOkSAODw4cOwt7dH3bp1BZ/J2tpaaHu0bdu22LpkZGTQtGlToW0hLS0NKysrwTQNDQ00bNgQ3t7eAAAfHx+0adNGaDlF/37z5g3WrFkDJSUlwWvSpEmIiIgQerhL4XUrKiqiVq1aiI6OLtd2IoQQ8t9A2V1X8JkouwkhhEgCyu66gs9E2U3Ir4Ue5kkkQv369cHhcPD582eh6fXq1QMAyMvLlzgvY6zE28NKmi6qTZ8+fVCnTh0cOHAA+vr64PP5aNy4sdB4auWhoqKC+vXrC03T1tYW+ltGRgajR4+Gi4sLBgwYgJMnT2LHjh1Cn6k85OXlhT5jSfMV3kaitlfR+fh8PlavXo0BAwYUW5acnJzgv3k8ntB7HA6n0m+ZI4QQUjNRdlN2E0IIkSyU3ZTdhPzq6IpyIhE0NDTQtWtX7N69G2lpaRWa19zcHB4eHkLzPX36FFJSUjA1NRVMe//+PTIyMgR/v3jxAkpKSjAwMEBcXBy8vb2xYsUKdO7cGWZmZkhISPj5D1aKiRMn4t69e9i7dy9ycnKEwtHc3BwvXrwQal/0b1HMzc2Rm5uLly9fCqbFxcXB19cXZmZmAIBGjRrh1atXQvMVfcBJixYt4OPjg/r16xd70dO9CSGEAJTdlN2EEEIkDWU3ZTchvzr6l0Ukxt69e5Gbm4tWrVrhzJkz8Pb2ho+PD06cOIHPnz+Dy+WKnG/kyJGQk5ODk5MTPn36BFdXV8yaNQujR4+Gjo6OoF12djYmTJgALy8v3Lx5E6tWrcLMmTMhJSUFNTU1aGho4J9//oG/vz8ePHiA+fPnV+nnNTMzg7W1NRYvXozhw4cLnb2fOnUqAgICMH/+fPj4+ODkyZM4cuRImcts0KABHB0dMWnSJDx58gTv37/HqFGjULt2bTg6OgIAZs2ahRs3buCvv/6Cn58fnJ2dcfPmTaGz3b///juOHTuGP/74A56envD29saZM2ewYsWKSt8OhBBCJBdlN2U3IYQQyULZTdlNyK+MOsqJxDAxMcG7d+/QpUsXLF26FM2aNUOrVq2wa9cuLFy4EGvXrhU5n4KCAm7fvo34+Hi0bt0agwYNQufOnbF7926hdp07d0aDBg3QsWNHDBkyBH369MEff/wBAJCSksLp06fx5s0bNG7cGPPmzcOWLVuq+iNjwoQJyM7Oxvjx44WmGxoa4sKFC7h69SqaNWuG/fv3Y/369eVapouLC1q2bInevXujbdu2YIzhxo0bgtu1bGxssH//fvz1119o1qwZbt26hXnz5gnd2tW9e3dcu3YNd+/eRevWrWFtbY2//voLRkZGlffhCSGESDzK7u8ouwkhhEgCyu7vKLsJ+fVwWHkHXSKEVLt169bh9OnT+Pjxo1jrmDRpEj5//ozHjx+LtQ5CCCGkpqPsJoQQQiQLZTchpAA9zJOQGig1NRXe3t7YtWtXiWfsq9LWrVvRtWtXKCoq4ubNmzh69Cj27t1b7XUQQgghkoKymxBCCJEslN2EkKLoinJCaqCxY8fi1KlT6NevH06ePFniOHBVZciQIXBzc0NKSgrq1auHWbNmYerUqdVaAyGEECJJKLsJIYQQyULZTQgpijrKCSGEEEIIIYQQQgghhPzS6GGehBBCCCGEEEIIIYQQQn5p1FFOCCGEEEIIIYQQQggh5JdGHeXkP+XIkSNQVVUVdxklqq76Hjx4gEaNGoHP51f5un5WebbJwoULMXv27OopiBBCSLWi7M5H2U0IIURSUHbno+wm5L+HOspJtRg7diw4HI7IB1NMnz4dHA4HY8eOrf7CinBzcwOHw0FiYmK52hW8tLS00LNnT7x//77U+YYOHQpfX99KrFi0RYsWYfny5ZCS+v5PPCsrCxs2bICZmRkUFRXRpEkTHDhwoFiojx07FkuWLAEAwed78eKFUJusrCxoaGiAw+HAzc0NAGBtbY1p06YJtdu3bx84HA4OHTokNH3ChAlo165dhT6Pi4sLAgMDyz0PIYSQn0PZnY+yOx9lNyGE1HyU3fkou/NRdhNScdRRTqpNnTp1cPr0aWRkZAimZWZm4tSpUzA0NPzp5efk5Pz0MirKx8cHERERuH79OhISEtCjRw8kJSWJbJuTkwN5eXloa2tXaU3Pnj2Dn58fBg8eLDR9zJgxOHToEDZs2IBPnz5h165dcHV1RWhoqKANn8/H9evX4ejoKJhWp04duLi4CC3r0qVLUFJSEppmb28PV1dXoWlubm6oU6eOyOn29vbl/kza2tro1q0b9u/fX+55CCGE/DzKbsruwtMpuwkhpOaj7KbsLjydspuQiqGOclJtWrRoAUNDQ1y8eFEw7eLFi6hTpw4sLS2F2t66dQvt27eHqqoqNDQ00Lt3bwQEBAjeDwoKAofDwdmzZ2FnZwc5OTmcOHGi2Drj4uLQpk0b9O3bF5mZmWCMYfPmzahXrx7k5eXRrFkznD9/XrDMghBRU1Mr19l2bW1t6Orqok2bNti2bRsiIyPx4sWLEusTdbvTlStX0KpVK8jJyUFTUxMDBgwQvJednY1Fixahdu3aUFRUhJWVleBMcklOnz6Nbt26QU5OTjDt48ePOHv2LC5cuIB+/frB2NgYdnZ2OHnypNCPpadPn0JKSgpWVlaCaU5OTsV+aB0+fBhOTk5C67W3txf8gCnw8OFDLF26VKjm0NBQfPnypVhg3759G2ZmZlBSUkKPHj2ElgMAffv2xalTp0r97IQQQioXZTdlN0DZTQghkoSym7IboOwm5EdRRzmpVuPGjRM6S3r48GGMHz++WLu0tDTMnz8f7u7uuH//PqSkpNC/f/9itystXrwYs2fPhre3N7p37y703tevX9GhQwc0atQIFy9ehJycHFasWAEXFxfs27cPnp6emDdvHkaNGoWHDx+iTp06uHDhAoDvZ6x37txZ7s8mLy8PQPgMe2n1AcD169cxYMAAODg44N27d7h//z5atWoltL2ePn2K06dP48OHDxg8eDB69OgBPz+/Eut49OiR0DJmz56N1q1bAwBsbGygpKQEJSUl9OzZE0D+bV4Frly5gj59+gjdOtayZUsYGxsLtk1oaCgePXqE0aNHC63XxsYGPB5PEM5eXl7IyMjA+PHjkZycLKjZ1dUVMjIyQreApaenY+vWrTh+/DgePXqEkJAQLFy4UGj5bdq0QWhoKIKDg0v87IQQQiofZbcwyu58lN2EEFJzUXYLo+zOR9lNSDkwQqqBk5MTc3R0ZDExMUxWVpYFBgayoKAgJicnx2JiYpijoyNzcnIqcf7o6GgGgH38+JExxlhgYCADwHbs2CHUzsXFhamoqDAfHx9maGjIZs2axfh8PmOMsdTUVCYnJ8eePXsmNM+ECRPY8OHDGWOMubq6MgAsISGh1M9TtF1sbCzr27cvq1WrFouKiiqzvgJt27ZlI0eOFLkOf39/xuFwWFhYmND0zp07s6VLl5ZYm4qKCjt27Jjg79DQUDZr1izWsGFD5ufnJ3jFxsYWm9fU1JRduXJF8DcAdunSJbZjxw5mb2/PGGNs9erVrH///iwhIYEBYK6uroL27dq1Y5MnT2aMMbZnzx7Wq1cvxhhjPXr0YP/88w9jjLFx48axDh06CG0TAMzf318wbc+ePUxHR0eotqSkJAaAubm5lfjZCSGEVB7KbuH6ClB2U3YTQkhNRdktXF8Bym7KbkLKS7qa+uMJAQBoamrCwcEBR48eBWMMDg4O0NTULNYuICAAK1euxIsXLxAbGys4ox0SEoLGjRsL2hU+g1sgIyMD7du3x/Dhw4XOTHt5eSEzMxNdu3YVap+dnV3sFrTyMjAwAJB/Jr5BgwY4d+4ctLW1ERQUVGJ9hXl4eGDSpEki33v79i0YYzA1NRWaXvBAj5JkZGQI3f61efNm7N+/H7m5uWjevDmA/Nu1rl69KjSft7c3vn79ii5duhRb5qhRo7BkyRJ8+fIFR44cwd9//y1y3fb29jh37hyA/PHQ7OzsAAC2trZwc3PDpEmT4ObmhjFjxgjNp6CgABMTE8Hfenp6iI6OFmpTcOVAenp6iZ+dEEJI5aPsFkbZnY+ymxBCai7KbmGU3fkouwkpG3WUk2o3fvx4zJw5EwCwZ88ekW369OmDOnXq4MCBA9DX1wefz0fjxo2RnZ0t1E5RUbHYvLKysujSpQuuX7+O3377TRCqBaF//fp11K5du9g8P+Lx48dQVlaGlpYWlJWVi70vqr7CCkJIFD6fDy6Xizdv3oDL5Qq9V/SBHoVpamoiISFB8PeiRYtgZWWFUaNGwdXVFWpqalBTUys235UrV9C1a1eRNRWMVzdhwgRkZmaiZ8+eSElJKdbO3t4e69atQ1hYGB4+fCi4jcvW1ha7du1CSEgIAgMDi42TxuPxhP7mcDhgjAlNi4+PBwBoaWmV+NkJIYRUDcru7yi781F2E0JIzUbZ/R1ldz7KbkLKRmOUk2rXo0cPZGdnIzs7W+T4YXFxcfD29saKFSvQuXNnmJmZCQVQWaSkpHD8+HG0bNkSnTp1Qnh4OADA3NwcsrKyCAkJQf369YVederUAQDIyMgAAPLy8sq1LmNjY5iYmIgM6/Jo2rQp7t+/L/I9S0tL5OXlITo6uli9urq6JS7T0tISXl5egr8NDAwwaNAg1KpVCy9evED9+vUFZ8aTkpIEwfu///0Pffv2LXG548ePF5yVLvoDokC7du0gKyuLvXv3IiMjAy1btgSQf4Y/KSkJzs7OkJOTg7W1dekbRoRPnz6Bx+PBwsKiwvMSQgj5OZTd31F2lx9lNyGEiA9l93eU3eVH2U1+dXRFOal2XC4X3t7egv8uSk1NDRoaGvjnn3+gp6eHkJAQLFmypMLr+PfffzF8+HB06tQJbm5u0NXVxcKFCzFv3jzw+Xy0b98eycnJePbsGZSUlODk5AQjIyNwOBxcu3YNvXr1gry8fKlnkX/WqlWr0LlzZ5iYmGDYsGHIzc3FzZs3sWjRIpiammLkyJEYM2YMtm3bBktLS8TGxuLBgwdo0qQJevXqJXKZ3bt3x9GjR4WmycrKYsuWLViwYAF4PB66du2KwMBALFiwAP/73/+QkZEBd3d3XL58ucRae/TogZiYmFJ/nMjLy8PKygq7du2CjY2N4P8vj8dD27ZtsWvXLkGoV9Tjx4/RoUOHUq8GIIQQUjUou7+j7C4/ym5CCBEfyu7vKLvLj7Kb/OroinIiFsrKyiV+8UtJSeH06dN48+YNGjdujHnz5mHLli0VXoe0tDROnToFCwsLdOrUCdHR0Vi7di1+//13bNiwAWZmZujevTuuXr0KY2NjAEDt2rWxevVqLFmyBDo6OoJb1aqKnZ0dzp07hytXrqB58+bo1KkTXr58KXjfxcUFY8aMwYIFC9CwYUP07dsXL1++FJyJF2XUqFHw8vKCj4+P0PQpU6Zgx44d2LlzJywsLDBv3jzMmjULRkZGuHr1KqysrKCtrV3icjkcDjQ1NQVn/0tib2+PlJQUwThpBWxtbZGSklLs9q/yOnXqVInjyhFCCKl6lN35KLvLj7KbEELEi7I7H2V3+VF2k18dhxUdkIgQIvEWLVokuOWqPPr27Yv27dtj0aJFVVzZjykY9+7Dhw+QlqYbYQghhPz3UHYTQgghkoWym5D/HrqinJD/oOXLl8PIyKjcY74VPK28pkpLS4OLiwuFNSGEkP8sym5CCCFEslB2E/LfQ1eUE0IIIYQQQgghhBBCCPml0RXlhBBCCCGEEEIIIYQQQn5p1FFOCCGEEEIIIYQQQggh5JdGHeWEEEIIIYQQQgghhBBCfmnUUU4IIYQQQgghhBBCCCHkl0Yd5YQQQgghhBBCCCGEEEJ+adRRTgghhBBCCCGEEEIIIeSXRh3lhBBCCCGEEEIIIYQQQn5p1FFOCCGEEEIIIYQQQggh5JdGHeWEEEIIIYQQQgghhBBCfmnUUU4IIYQQQgghhBBCCCHkl0Yd5YQQQgghhBBCCCGEEEJ+adRRTgghhBBCCCGEEEIIIeSXRh3lhBBCCCGEEEIIIYQQQn5p1FFOCCGEEEIIIYQQQggh5JdGHeW/sCNHjoDD4Qi9tLS0YGdnh2vXrhVrz+FwMHPmTDFUCri5uYHD4cDNzU0s6xeXunXrYuzYseIuo0xBQUHgcDjYunVrpS63bt26xfbRgpednZ2g3R9//AEOh4PY2FiRy2ncuLFQ+4J6C15SUlJQU1ND586dcefOnUr9DIQQ8rOK5rWcnBx0dXVhb2+PDRs2IDo6utg8Bd+LJb2CgoKq/XMUfPceOXKk2tctTnZ2dkIZVJNVxW89Ozu7EvfDunXrCtoV7OevX78WuZzevXsLtS+ot/BLWVkZ7dq1w6lTpyr1MxBCyI/48OEDJkyYABMTE8jLy0NeXh4NGjTAlClTin3XVfR4pjpRftd8lN+EVB5pcRdAxM/FxQWNGjUCYwyRkZHYvXs3+vTpgytXrqBPnz7iLu+XdunSJSgrK4u7DLGysbER2QFfGdtl1qxZGDFiBPLy8vD582esXr0avXr1woMHD9CxY8efXj4hhFSmgrzOyclBdHQ0njx5gk2bNmHr1q04c+YMunTpUmyeW7duQUVFpdh0PT296iiZANi7d6+4SxC7evXq4d9//y02XVZW9qeXPWjQICxYsACMMQQGBmL9+vUYMWIEGGMYMWLETy+fEEJ+hLOzM2bOnImGDRtizpw5sLCwAIfDgbe3N06dOoXWrVvD398fJiYm4i6VlIDym/Kb/Jqoo5ygcePGaNWqleDvHj16QE1NDadOnaKOcjGztLQUdwlip6qqCmtr6ypZtqGhoWDZNjY2aNCgAWxtbXHo0CHqKCeE1DhF83rgwIGYN28e2rdvjwEDBsDPzw86OjpC87Rs2RKamprVXSopxNzcXNwliJ28vHyVZbmOjo5g2W3btoWNjQ3q1q0LZ2dnOtAmhIjF06dPMX36dDg4OOD8+fOQkZERvNepUyfMmDED586dg7y8vBirJGWh/Kb8Jr8mGnqFFCMnJwcZGRnweLxqWd/r16/Rt29fqKurQ05ODpaWljh79mylzhsWFobJkyejTp06kJGRgb6+PgYNGoSoqKhy1/ngwQPY2dlBQ0MD8vLyMDQ0xMCBA5Geni5os3r1alhZWUFdXR3Kyspo0aIFDh06BMaYoE2/fv1gZGQEPp9fbB1WVlZo0aKF4O+iQ68UDEFz6tQpLF++HPr6+lBWVkaXLl3g4+MjtCzGGNavXw8jIyPIycmhVatWuHv3brFbyPh8Pv788080bNgQ8vLyUFVVRdOmTbFz585yb5vCy1q3bh0MDQ0F67x//75Qm4LbCj09PTF8+HCoqKhAR0cH48ePR1JSUoXXWZkKOqAqsl8QQog4GRoaYtu2bUhJSYGzs7PY6vDz88OIESOgra0NWVlZmJmZYc+ePZU6b2JiIhYsWIB69epBVlYW2tra6NWrFz5//lzuOt+9e4fevXsL1qWvrw8HBwd8/fpV0GbPnj3o2LEjtLW1oaioiCZNmmDz5s3IyckRtJk7dy4UFRWRnJxcbB1Dhw6Fjo6OoH3R3C08XNlff/0FY2NjKCkpoW3btnjx4kWx5R04cACmpqaQlZWFubk5Tp48ibFjxxa7jXnfvn1o1qwZlJSUUKtWLTRq1AjLli0r97YpzNnZWWidp0+fFnq/4DZrV1dXTJs2DZqamtDQ0MCAAQMQHh7+Q+usLEZGRtDS0qIsJ4SIzfr168HlcuHs7CzUSV7Y4MGDoa+vX82VFUf5/R3lN+U3IQBdUU4A5OXlITc3F4wxREVFYcuWLUhLS6uWs3iurq7o0aMHrKyssH//fqioqOD06dMYOnQo0tPTSx2fu7zzhoWFoXXr1sjJycGyZcvQtGlTxMXF4fbt20hISCh29Z0oQUFBcHBwQIcOHXD48GGoqqoiLCwMt27dQnZ2NhQUFATtpkyZAkNDQwDAixcvMGvWLISFheH3338HAIwfPx6Ojo548OCB0G3ynz9/xqtXr/D333+XWc+yZctgY2ODgwcPIjk5GYsXL0afPn3g7e0NLpcLAFi+fDk2bNiAyZMnY8CAAQgNDcXEiRORk5MDU1NTwbI2b96MP/74AytWrEDHjh2Rk5ODz58/IzExscw6itq9ezeMjIywY8cO8Pl8bN68GT179sTDhw/Rtm1bobYDBw7E0KFDMWHCBHz8+BFLly4FABw+fFioHWMMubm5xdbF5XLB4XAqXGNpAgMDAUBo+xBCSE3Xq1cvcLlcPHr0qNh7BRlfGIfDEWRFZfDy8kK7du0Enfa6urq4ffs2Zs+ejdjYWKxateqn501JSUH79u0RFBSExYsXw8rKCqmpqXj06BEiIiLQqFGjMutMS0tD165dYWxsjD179kBHRweRkZFwdXVFSkqKoF1AQABGjBgBY2NjyMjI4P3791i3bh0+f/4syKjx48dj586dOHv2LCZOnCiYNzExEf/73/8wY8aMMi842LNnDxo1aoQdO3YAAFauXIlevXohMDBQMFzOP//8gylTpmDgwIHYvn07kpKSsHr1amRlZQkt6/Tp05g+fTpmzZqFrVu3QkpKCv7+/vDy8ipzuxR15coVuLq6Ys2aNVBUVMTevXsxfPhwSEtLY9CgQUJtJ06cCAcHB5w8eRKhoaH47bffMGrUKDx48KDYckVluZSUFKSkKve6naSkJMTHx1fZFXCEEFKavLw8uLq6olWrVj80zJmo3K4qlN+U35TfhIjAyC/LxcWFASj2kpWVZXv37i3WHgCbMWNGpdbQqFEjZmlpyXJycoSm9+7dm+np6bG8vDzGGGOurq4MAHN1da3wvOPHj2c8Ho95eXn9cJ3nz59nAJiHh0e558nLy2M5OTlszZo1TENDg/H5fMYYYzk5OUxHR4eNGDFCqP2iRYuYjIwMi42NFUwzMjJiTk5Ogr8LtkOvXr2E5j179iwDwJ4/f84YYyw+Pp7JysqyoUOHCrV7/vw5A8BsbW0F03r37s2aN29e7s8lSmBgIAPA9PX1WUZGhmB6cnIyU1dXZ126dBFMW7VqFQPANm/eLLSM6dOnMzk5OcF2Yiz/84vaRwGwtWvXFltmTEyMyPosLCyEPnNBvZs2bWI5OTksMzOTeXh4sLZt2zI9PT0WGBj4U9uDEEIqU0Feu7u7l9hGR0eHmZmZCf4u+F4U9TIxManU+rp3784MDAxYUlKS0PSZM2cyOTk5Fh8fzxj7/t3r4uJS4XnXrFnDALC7d+/+cJ2vX79mANjly5fLPU9Blh87doxxuVxBPYwx1qJFC9auXTuh9nv37mUA2MePHwXTbG1tRWZQkyZNWG5urmD6q1evGAB26tQpwbp1dXWZlZWV0DqCg4MZj8djRkZGgmkzZ85kqqqq5f5cJQHA5OXlWWRkpGBabm4ua9SoEatfv75gWsE+OX36dKH5N2/ezACwiIgIwTRbW9sS98UJEyYUW2ZJ+7mDg4PQZy6od/r06SwnJ4dlZ2czX19f1rdvX1arVi32+vXrn9kUhBDyQyIjIxkANmzYsGLv5ebmspycHMGr8HFPabld8CqcJZWB8vs7ym/Kb0IK0NArBMeOHYO7uzvc3d1x8+ZNODk5YcaMGdi9e3eFl8Xn85Gbmyt45eXlldjW398fnz9/xsiRIwFAaL5evXohIiKi2HAiPzLvzZs3YW9vDzMzswp/ngLNmzeHjIwMJk+ejKNHj+LLly8i2xVcJa6iogIulwsej4fff/8dcXFxiI6OBgBIS0tj1KhRuHjxomCokby8PBw/fhyOjo7Q0NAos56+ffsK/d20aVMAQHBwMID8K9mzsrIwZMgQoXbW1tbFbvVq06YN3r9/j+nTp+P27dsib0MrrwEDBkBOTk7wd61atdCnTx88evSo2L4g6jNkZmYKtlOB9u3bC/bPwq8JEyb8cJ0FFi9eDB6PBzk5OTRv3hyfPn3C1atXi20jQgip6VihIb4Ku3fvXrHvz8uXL5e6rIpkeWZmJu7fv4/+/ftDQUGhWB5nZmaKvB25ovPevHkTpqamIh9YWl7169eHmpoaFi9ejP3795d4tda7d+/Qt29faGhoCLJ8zJgxyMvLg6+vr6DduHHj8OzZM6HfKi4uLmjdujUaN25cZj0ODg5CV/YXzXIfHx9ERkYWy3JDQ0PY2NgITWvTpg0SExMxfPhw/O9//0NsbGyZ6y9J586dhe6243K5GDp0KPz9/YVucQfK/j1SwMTERGSWr1y58ofrLLB3717weDzIyMjA1NQUN2/exKlTp9CyZcufXjYhhFSmli1bgsfjCV7btm0r1kZUbru7u5froZ+U35TflN+E/DzqKCcwMzNDq1at0KpVK/To0QPOzs7o1q0bFi1aVOHhN8aPHy8U/p07dy6xbcHYUwsXLhSah8fjYfr06QBQYlBUZN6YmBgYGBhU6HMUZWJignv37kFbWxszZsyAiYkJTExMhMbxfvXqFbp16wYgfzyyp0+fwt3dHcuXLwcAZGRkCNqOHz8emZmZgjHDbt++jYiICIwbN65c9RTtTC946nTBOuLi4gBA5LAyRactXboUW7duxYsXL9CzZ09oaGigc+fOeP36dblqKUxXV1fktOzsbKSmplboMxRQUVER7J+FX4VvZZSWzh9FqqQfg7m5uSJvoZszZw7c3d3x5MkTbN26FTk5OXB0dBRsP0IIkQRpaWmIi4sTOdZps2bNin1/lnUQuGbNGqFcLe3gPC4uDrm5udi1a1exPO7VqxeAkrO8IvNWRparqKjg4cOHaN68OZYtWwYLCwvo6+tj1apVgvFIQ0JC0KFDB4SFhWHnzp14/Pgx3N3dBWOuFs6okSNHQlZWFkeOHAGQfxu6u7u7WLJ89OjROHz4MIKDgzFw4EBoa2vDysoKd+/eLVcthZWU5YVrKu9nKFDw3JKiLyMjI0GbH83yIUOGwN3dHc+ePYOzszNq1aqFYcOGwc/Pr6yPSgghlU5TUxPy8vLFOhwB4OTJk3B3d8eVK1dKnF9Ubrdq1UroYqSSUH5Tfpc0jfKbkPKjMcqJSE2bNsXt27fh6+uLNm3alHu+P/74AzNnzhT8XatWrRLbampqAsjvqB0wYIDINg0bNvzpebW0tIqdQf0RHTp0QIcOHZCXl4fXr19j165dmDt3LnR0dDBs2DCcPn0aPB4P165dE/ohI+rKPXNzc7Rp0wYuLi6YMmUKXFxcoK+vL+ho/1kFwSfqQRiRkZFCV0xLS0tj/vz5mD9/PhITE3Hv3j0sW7YM3bt3R2hoqGD89fKIjIwUOU1GRgZKSkoV/yDlVPCDIywsrNiPD8YYIiIiBA/qLMzAwEAw3cbGBrq6uhg1ahRWrVr1Q3dUEEKIOFy/fh15eXlCD5z6GZMnT0bv3r0FfxccPImipqYGLpeL0aNHY8aMGSLbGBsb//S8lZXlTZo0wenTp8EYw4cPH3DkyBGsWbMG8vLyWLJkCS5fvoy0tDRcvHhR6CDQw8NDZP2Ojo44duwY/vzzT7i4uEBOTg7Dhw//6TqBsrO8qHHjxmHcuHFIS0vDo0ePsGrVKvTu3Ru+vr5Cn6UsJWV54ZqqQuEsF0VUxgP5+0ZBlrdt2xZmZmawtbXFvHnzcO3atSqrlxBCROFyuejUqRPu3LmDiIgIoYt7zM3NAeQ/16oqUH5Tfpc0jfKbkPKjK8qJSAWBoqWlVaH56tatK3SmsaSObiC/I7tBgwZ4//69yLOUrVq1KrGjvSLz9uzZE66uriUO41JRXC4XVlZWgrPTb9++BZD/cDRpaWmh27AyMjJw/PhxkcsZN24cXr58iSdPnuDq1atwcnKqtIerWVlZQVZWFmfOnBGa/uLFC5FXNxRQVVXFoEGDMGPGDMTHx1f4R9zFixeRmZkp+DslJQVXr15Fhw4dKvXBcUV16tQJHA6n2OcFgFu3biE5Oblct/uNHDkSdnZ2OHDgQKnbiRBCaoqQkBAsXLgQKioqmDJlSqUsU19fXyhPmzRpUmJbBQUF2Nvb4927d2jatKnIPC7p4Kwi8/bs2RO+vr4iHzL1IzgcDpo1a4bt27dDVVVVKMsB4c4FxhgOHDggcjnjxo1DeHg4bty4gRMnTqB///5QVVWtlBobNmwIXV1dnD17Vmh6SEgInj17VuJ8ioqK6NmzJ5YvX47s7Gx4enpWaL33798XOrjPy8vDmTNnYGJi8tNXBZbG2toaSkpKIrPcy8sLnp6e5cryDh06YMyYMbh+/TqeP39eFaUSQkipli5diry8PEydOlVwxXN1oPym/Kb8JuTn0RXlBJ8+fRI8yTguLg4XL17E3bt30b9//xLPIlcWZ2dn9OzZE927d8fYsWNRu3ZtxMfHw9vbG2/fvsW5c+d+et41a9bg5s2b6NixI5YtW4YmTZogMTERt27dwvz588v1pO39+/fjwYMHcHBwgKGhITIzMwVPzi740ndwcMBff/2FESNGYPLkyYiLi8PWrVtLPJM/fPhwzJ8/H8OHD0dWVhbGjh1bwa1XMnV1dcyfPx8bNmyAmpoa+vfvj69fv2L16tXQ09MTekJ1nz590LhxY7Rq1QpaWloIDg7Gjh07YGRkhAYNGlRovVwuF127dsX8+fPB5/OxadMmJCcnY/Xq1T/8WRITE0WOjycrKwtLS0sA+UPjzJw5E1u2bEFiYiJ69eoFeXl5uLu7Y+PGjWjVqhVGjBhRrvVt2rQJVlZWWLt2LQ4ePPjDdRNCSGUryOvc3FxER0fj8ePHcHFxAZfLxaVLl0Se3H7z5g1UVFSKTTc3N4eysnKl1LVz5060b98eHTp0wLRp01C3bl2kpKTA398fV69eLfXguLzzzp07F2fOnIGjoyOWLFmCNm3aICMjAw8fPkTv3r1hb29fZp3Xrl3D3r170a9fP9SrVw+MMVy8eBGJiYno2rUrAKBr166QkZHB8OHDsWjRImRmZmLfvn1ISEgQucxu3brBwMAA06dPR2RkZLlv2y4PKSkprF69GlOmTMGgQYMwfvx4JCYmiszySZMmQV5eHjY2NtDT00NkZCQ2bNgAFRUVtG7dukLr1dTURKdOnbBy5UooKipi7969+Pz5s2C4uB+RkZFR4li31tbWAPLvQly9ejUWLFgAPp+PoUOHQk1NDR8/fsT69ethZGSE2bNnl2t9a9euxZkzZ7By5Urcu3fvh+smhJAfYWNjgz179mDWrFlo0aIFJk+eDAsLC0hJSSEiIgIXLlwAgErL4R9F+U35XRbKb/JLEt9zRIm4FTyduPBLRUWFNW/enP31118sMzNTqD0ANmPGjEqv4/3792zIkCFMW1ub8Xg8pquryzp16sT2798vaOPq6soAMFdX1wrPyxhjoaGhbPz48UxXV5fxeDymr6/PhgwZwqKiospV4/Pnz1n//v2ZkZERk5WVZRoaGszW1pZduXJFqN3hw4dZw4YNmaysLKtXrx7bsGEDO3ToEAPAAgMDiy13xIgRDACzsbERuV4jIyPm5ORUbDucO3dOqJ2oJ5Hz+Xz2559/MgMDAyYjI8OaNm3Krl27xpo1a8b69+8vaLdt2zbWrl07pqmpyWRkZJihoSGbMGECCwoKKte2Kbz+TZs2sdWrVwvWaWlpyW7fvi3UtuCJ7jExMULTC/bHwtvJyMioxCdt165dW2h+Pp/P9u3bx1q1asUUFBSYjIwMa9CgAVu8eDFLSUkRWe+WLVtEfp7BgwczaWlp5u/vX+5tQAghVaVoXsvIyDBtbW1ma2vL1q9fz6Kjo4vNU/BdW9Lr7t27lVpjYGAgGz9+PKtduzbj8XhMS0uLtWvXjv35559CbYpmVXnnZYyxhIQENmfOHGZoaMh4PB7T1tZmDg4O7PPnz+Wq8fPnz2z48OHMxMSEycvLMxUVFdamTRt25MgRoXZXr15lzZo1Y3Jycqx27drst99+Yzdv3hT5O4QxxpYtW8YAsDp16rC8vLxi79va2jJbW9ti20FUBgFgq1atEpr2zz//sPr16zMZGRlmamrKDh8+zBwdHZmlpaWgzdGjR5m9vT3T0dFhMjIygt85Hz58KNe2Kbz+GTNmsL179zITExPG4/FYo0aN2L///ivUrmCfdHd3F5ou6veara1tqftiTk6O0DLOnj3L2rdvz2rVqsWkpaWZoaEhmzZtGouMjCyxXlF+++03BoA9fPiwQtuAEEIqi4eHBxs3bhwzNjZmsrKyTE5OjtWvX5+NGTOG3b9/X6htScdIBSwsLISypLJQflN+M0b5TUhhHMYY++nedkKIRAgMDESjRo2watUqLFu2TNzlEEIIIaSCEhMTYWpqin79+uGff/4RdzmEEEIIKQfKb0IkA3WUE/If9f79e5w6dQrt2rWDsrIyfHx8sHnzZiQnJ+PTp08iH6hBCCGEkJojMjIS69atg729PTQ0NBAcHIzt27fj8+fPeP36NSwsLMRdIiGEEEKKoPwmRHLRGOXkl5eXl4fSzhdxOJwqfRBlVVFUVMTr169x6NAhJCYmQkVFBXZ2dli3bl2FOskLxq8viZSUlNA4a4QQQkh1+69muaysLIKCgjB9+nTEx8dDQUEB1tbW2L9/f4UOsinLCSGE1ESU36Wj/Cak+tEV5eSXV7duXQQHB5f4vq2tLdzc3KqvoBokKCiozAe6rlq1Cn/88Uf1FEQIIYSIYGdnh4cPH5b4vpGREYKCgqqvoBqGw+GU+r6TkxOOHDlSPcUQQggh31B+l47ym5DqR1eUk1/e1atXkZWVVeL7tWrVqsZqahZ9fX24u7uX2YYQQggRJ2dnZ6SkpJT4vqysbDVWU/OUleWamprVVAkhhBDyHeV36Si/Cal+dEU5IYQQQgghhBBCCCGEkF8aDWZECCGEEEIIIYQQQggh5JdGHeWEEEIIIYQQQgghhBBCfmk0RrkInTpvFHcJP4QXnyHuEipMKrHk8chqrMySxzOvsfh8cVfwQ1henrhLqLic0p9MXhPdSjpcqcvLjaxfofbSuv6Vun7ya+psv0HcJfwQXmyquEuoME5sorhLqLDc6Fhxl1BxTDKzm1SPu/xzlbo8ym4iDj0bLhF3CT8mXfKOu1my5B1389PTxV0CIZXqTs7pSl0eZXfVoI5yQgghlSqvgp07FESEEEKIeFF2E0IIIZKFsrtq0HYihBBSqfigZ0QTQgghkoSymxBCCJEslN1VgzrKCSGEVCo+aLgAQgghRJJQdhNCCCGShbK7alBHOSGEkEqVx+jMNiGEECJJKLsJIYQQyULZXTWoo5wQQkilolvACCGEEMlC2U0IIYRIFsruqkEd5YQQQipVHgU2IYQQIlEouwkhhBDJQtldNaTEXQAhhJD/Fj5YhV4V8ejRI/Tp0wf6+vrgcDi4fPlyqe3Hjh0LDodT7GVhYSFoc+TIEZFtMjMzf+TjE0IIIRKHspsQQgiRLJTdVYM6ygkhhFSqPMYq9KqItLQ0NGvWDLt37y5X+507dyIiIkLwCg0Nhbq6OgYPHizUTllZWahdREQE5OTkKlQbIYQQIqkouwkhhBDJQtldNWjoFUIIIZWqKp+93bNnT/Ts2bPc7VVUVKCioiL4+/Lly0hISMC4ceOE2nE4HOjq6lZanYQQQogkoewmhBBCJAtld9WQ+CvKDx48CCcnJ7i4uAAAzpw5AzMzM9SrVw+rVq0Sc3WEEPLryQOr0CsrKwvJyclCr6ysrCqp7dChQ+jSpQuMjIyEpqempsLIyAgGBgbo3bs33r17VyXrJ/kouwkhpGah7CZloewmhJCahbK7akj0FeU7duzAihUr0L17dyxfvhzh4eHYvn075s2bBz6fj23btqF27dqYPHlylay/b19LDB1iBQ0NJQQFxWLP3nv4+PGryLaNGxtg8iQ71DHUgJysNKKiknHtmgfOX3AXaqeoKIsJEzqiQ/uGqFVLDhERidi//wFevvpSaXX3Htwag51soK6phOCAGOzfehOf3oWIbGvTyQy9B7dGvYa64PG4CP4SgxP7XfHmeYCgTdc+zbFwTf/i67Fai5zs3Eqp2WFUOwyabA91bWUE+0bCee1leLoHimyrplULk5Y7okETA+jX1cSVI0/gvPZysXaKteTg9Fsv2HRvCiUVeUSGxuPguitwd/OunJqdOmDQ9C5Q11ZBsG8EnH8/D8+XASLbqmkrY9KqAWjQ1BD69bRw5ZAbnH+/INSmx8h26DzYCkYN9QEA/h9CcGTDFfh6BFdKvQDgMLYjBs3oml+zTwScV56D50v/kmtePeh7zQfd4LzynFAbw4Z6GL2oDxo0NYSOoQacV57D5X8e/FSNvcfZYtDM7lDXUUGwTzj2Lz8DzxeiawSAJu1MMXntYBg11EdcZCLO7b6NG0ceCd7nSnMxdG4PdBnaDpp6qvjqH4lDay7izQPP79tlnC16j7WFtqEGACDkczj+3Xodr+9/Kn/dE+0xaHYPqOuoIvhzGPYvOQXP534l121jisnrh8GoUe38unfexI3DbkJtFFXkMXblQNj0aQElVUVEBsfgwPIzcL/7EQAgrySHMcv7o11vS6hqKSPgQwj2LzkJ37dB5a77R+RU8JkiGzZswOrVq4WmrVq1Cn/88UflFQUgIiICN2/exMmTJ4WmN2rUCEeOHEGTJk2QnJyMnTt3wsbGBu/fv0eDBg0qtQZSA7LbsQWGDC3I7hjs3V16dk+aYg/DOhqQlfuW3Vff4cL579ndvXsTLFrSu9i8PbptRk5OXqXV3XuoFQaNbQ91rVoIDojG/k3X4flW9Pe/TWdzOAy1Qr2GeuDJcBESEI0Te+/jzbPv35U9BrZClz6WMGqgAwDw9wqDy8678P0kelv8CEnIwT5Tu2Hwwj7Q0FNFkOdX7Jt/FJ+efC6xfdOOZpiydQzqWhggLjwBZ7dewTXne4L3jcwN4LR6CBq0MIZuXW3snXcUl/6+IbSMJh3MMHhhH5i2MIaGvjpWDdiCZ/97XXKN07ph8ELH7zXOcymjRnNM2eb0vcYt/8M157tCbdoPsMLYNcOgZ6KDiIAouKw4haeXXwneH7akH9r3t0KdRrWRlZENr2c+OLjkX3z1DRe0+e3wDHQbaye0XO8XvpjdbjnVXIk1j141GHZDbaBVRwO52bnwe/MFLitOlVjXj6LsJqURd3aL4jDCGoMmdMzPRb8oOK+/Bs83QSLbtutqAYfh1jAx0wNPRhrBflE4sfse3j4p+bd4pdQ4pj0GTen0/Rh29UV4lnBcr6atjEkr++Ufwxpr4crhR3BefanEZdv2tcSSPWPx7PYHrJ146IdrFMcxihRXCqOXOsJ+iDXUtFUQH5WEu/8+wakt18DKMTxEn6ldMXh+H6jrqSLY6yv2zT+GT09L/r5u0sEMU7eOhpH5t+/rbVdx/R/h7B6zajAatKgH3bpa2LfgKC79fVNoGVJcKYz5fRA6DW8PNV1VxEck4M6xhzi5/lKNrXn0ykEY/fsgoWnxkYkYVmdqmfWKq2YA0NBXw8QNI9C6e3PIyMsgzC8Cf012ht9b0f0/NaHuY367oFtXq9iyr+y7jd2zXcpV94+g7K4aEt1R7uzsjH/++QcjRozAu3fv0KZNG+zfvx8TJkwAABgYGGDPnj1VEth2do0wY3oX7Pz7Nj59CkOf3s2xccMQjBt/ENHRycXaZ2bm4PLlN/jyJQYZmTlo0sQA8+Z2R0ZmNq5ffw8AkJaWwpbNw5CYmIY/Vl9CbEwKtLSVkZ6eXWl123azwNTfemD3huvw9AiBw8BW+HP3KEwauAcxkUnF2jdpYYS3LwLgsuseUlMz0b2vJVbvHIE5ow8gwCdS0C4tJRMT+u8SmreyOsk7OjTHlJX9sOf3C/B6HYheI9phrctkTOm2CTHhicXa82SkkRSfitN77qH/+I4ilynN42L98alIjEvFuulHEBuZBC09VaSnVc7ZtI59W2DKmkHYs/QMvNwD0Gt0e6z9dwam2K5FTFhCyTX/fQv9J3USucym7Uzhduk1vF8HIjsrB4Ond8W60zMx1e5PxIn4f1fhmh1bYsrawdiz5DS8XgWg15gOWHtqBqZ0WCO6ZllpJMWl4PSOm+g/pbPIZcrJyyAyOBZPrr7F5DWDRLapUI39WmHKuqHYs+gkPF/6o5dTR/x5ejYm2/yBmLD4Yu11DDWw9tQs3Dz+GJunHoKFVX3M2DwCSbGpeHrtLQDAaZkjOg22ws55xxHqF4mWnSzw+9FpmN9rEwI+hgIAYsMTcHjtRYQHRgMAugxth1XHp2Om/VoE+0SUXfeA1piyYTj2LDgOzxf+6DXODn+en4fJVisQ81VE3UaaWHtuHm4efYTNkw7Awro+ZmwbjaTYFDy98gZA/j684fJCJMYk488xexEbngCt2upIT/3+IIy5u8airlltbJlyEHGRieg8pC02XF6IyVYrEBeRWNHNX2554FSo/dKlSzF//nyhabKyspVZEoD8h4eoqqqiX79+QtOtra1hbW0t+NvGxgYtWrTArl278Pfff1d6Hb86sWa3vRmmz+iCv3fcxqdPX9G7jyU2bBqK8WMPlJzdl97gy5doZGbkZ/fc+T2QmZmD69c8BO1SUzMxdsw/QvNWZid5x+5NMGVxL+z58yo83wWj1+DW+HOfEyY77hSZ3Y1b1sXb5/44svMOUlMy0a1fC/yxezTmjtiPgM/531lNWxvD7eYHeG0IQXZ2DgaP64j1zmMxpf/fiBOxLSpcswTkoO2Qtpi23Qm7Zh6C51MfOEzugvXXl2JC4/mICY0r1l63rhb+vLYENw8+wKYxu2Fh0xCzdk9AYkwynlzM7/yUVZBFxJcoPDr/AlO3jRG5XjlFWXx5H4w7R9yw6vyCMmpsh2nbx2HXjAP5NU7pivU3lmOCxTzEhMaKqFEbf15fipsH72PT6L/za9wz6VuNLwEAZtamWHF6Ho78fhpPL72CTf82WHFmHuZ1WInPr/JPpjTtaIEre2/Dx90fXGkuxv05HBtvr8BEi3nITP/+W+nVzXfYOn6v4O/c7FyquZJr/uobgd2zDiHiSxRk5WUwcF5vbLy9stT95kdQdpPSiDO7RenYsymmLO2NPav/B6+3Qeg1zAprD4zDFIe/EBMh4pi2tTHePfPD0e23kZqcga4DWuGPfU6YN2QvArzDRayhEmrsY4kpq/pjz/Jz+cewI9th7bGpmNJpA2LCS8jBuFSc3nUX/Sfalbps7dpqmLiiHz6WcEFTuWsU0zHKkHm90Gu8HbZNPYTgz2FoYFkX8/dMQFpyBv63/16x9RZmO7gtpm5zwq5Zh+D5zAcOk7pg3bUlmNh0QYnZve7qYtw49AAbnXbDol1DzNo1AUkxyXhyqSC7ZRAZGI3HF15gylbR2T30t75wmNwFW8bvQ7DXV5i2rIcFB6ciLTkDl3cV7+ytCTUDQNCnUCzu8afgb35e+QbrEFfNSqqK2P5wDd4/9MTyPhuRGJ0MvXo6SE1Mr9F1z2q7DFLc7wN21LWog023V+DR+ZflqvtHUXZXDYkeeiU4OBjt27cHAFhaWoLL5Qpt9A4dOiAgQPSVSz9r8KA2uHnzPW7c+ICQkDjs2Xsf0dHJ6NvHUmR7f/8oPHD1RlBwLKKiknDvnidevw5E0yZ1BG169mgKZWU5rPz9Ijw9wxAVnYxPn77iy5foSqt7wKh2uH35HW5deovQwFjs33oLMZHJ6D24tcj2+7fewrmjT+HrFY7wkHi47L6P8JB4WNs2FGrHwJAQlyr0qiz9J9riztmXuH3mJUIDouG89jJiIhLhMNJGZPvosAQ4r7mM+xdfIy1F9NNzuw1ug1qqClgz5TC83gQhOiwBnq8DEVhJP5T6T+mMO6ee4/bJZwj1i4Lz7xcQE54AB6cOomv+Gg/nledx/9wrpKVkiGyzecYRXD/6GF88v+KrfxR2LvwXUlIcNO/QUGT7Ctc8tTPunHyG2/8+RahfJJxXnkNMWAIcxoo+2RAdGg/nFedw/9xLpCWLrtnXIxiH1lzEw8uvkZP18ydOBkzritv/PsGtE0/ya1xxFjHhCeg9zlZke4extogOi4fzirMI9YvErRNPcOfkUwya0VXQpvMQa5zZfhPu9z4hMjgW110e4o2rFwZO/97m5e0PcL/3CWEB0QgLiMbR9ZeRmZaFRq3qla/uGd1x+/hj3Dr2GKG+EXBeegoxYfHoPcFedN3j7RD9NQ7OS08h1DcCt449xp0TjzFoVndBm26jO0BJTRGrR+yG10t/RIfGwfOFHwI/5Xfuy8jx0L5vSxz6/Rw+PfNFxJdonNj4P0QGx5a43srCZxV7ycrKQllZWehV2YHNGMPhw4cxevRoyMjIlNpWSkoKrVu3hp9f1V5l9KsSZ3YPGtwGN2+8x40b7xESEoe9e+4hOjoZffqWnN2uD7wQHFQou90D0aRQdhdISEgTelWmAWNscPviG9y6+BqhgTFw3nwDMZFJ6D3USmR75803cN7lMXw9wxAeEocjf99FeHAcrOwaCdpsXnIO1868xBefCHwNjMXOPy6BI8VBmIzvwQABAABJREFUc6vyfa+VRRJycOBcB9w6/AA3Dz1AyOcw7Jt/FDGhcegztZvI9r2ndEVMSBz2zT+KkM9huHnoAW67uGLw/D6CNr6vA3Bg8b9wO/MMOVk5IpfjfssDR34/IzgAK7XGeb2Fa5x3BDGhsegzrYQap3ZFTEgs9s07UqjGBxi8oK+gzYA5Dnhz9wNOb7yMUJ9wnN54Ge/uf8KAOQ6CNst6rcOdo24I9vqKLx+CsXX8XugYaaFBS+H9IycrBwlRiYJXSkIq1VzJNbueeoJ39z8iMjAawV5fsX/+USiqKIis62dQdpPSiDO7Rek/rj3uXHiN2+fdEfolBs7rryEmMgkOw61Ftndefw3nDz6C78evCA+Ow9Htt/NzsZNZ1dU4yQ53zrzA7dMvEOofBefVl/JzcHQJx7Bf4+H8x0Xcv+BeYg4CgJQUB4v+HoPj224iMqR4x19FiOMYBQDMWpvgxQ0PvLrzAVEhcXjyvzd46/oJppZ1y6x54FwH3HJxxa3Drgj9HI79C47lZ/eUriLbO0zuiuiQOOxfcAyhn8Nx67Arbh9xxaD53+8G9H39BQeW/Au3s89LPGY1szbF86tv8OrmO0QFx+DxxZd4c/cDTFuW/btJXDUDQF5eHhKikgSvpNiUMusVZ81DfuuLmK9x2DZxP3zcAxAVHAMP10+I+BJVo+tOik0R2s5WDi0Q5h+JD4+8ylX3j6LsrhoS3VGuoKCAtLTvB6NaWlpQUlISapObWzlXNRcmLS0FU1NdvH4dJDT99ZsgWFjULtcy6tfXgYVFbbz/8H3Ik3btGsDTKwxzZnfD+fOzcOjgBIwY0RZSUhU7S1Ry3Vw0MNPDm+fCZ57fvAiAebPiB/2icDgcyCvIICVJOLzl5WVw7MY8nLg1H2t2joBJw8oZnF+ax0WDxgZ4+9hXaPrbxz4wb1n3h5dr3aUxvN8FY8aagTjpvhr7bv2GodM7V8q2luZx0aBpHbx9KDyEy9uH3jAvZ8dqecjKy4ArzUVKQvnOrpYmv2ZDvHUT/iKv7Jp/hjSPiwbNDPHWtUiNrl4wa2Mich6z1vWKtX/zwBMNmtcFV5oLIP/qjewinRnZmdmwsKovcplSUhzY9m8NWQUZeLuXPSSSNI+LBs2N8LbQUC4A8PaBJ8zaiF6HWWuTYu3f3PdEA8vvdVv3bI7PrwIwY9sonPLbjv3P12DoAgfBPsyV5oIrzRX92ayr9ramPHAq9KoODx8+hL+/v+DKp9IwxuDh4QE9Pb1qqOzXI/7sFr5t883rQFg0NijXMurX14FF49r48F54uDJ5eRmcPDUdp8/OwLr1g1G/vk4l1s1FA3N9vH0mnN1vn/nDrLlhuZbB4XAgryhbLLsLk5XjQVqaW2qb8pKEHJTmcWHash7e3P0gNP3N3fewaGsqch4za1O8ufteaNrrO+9h2qqe4Lu5MknzpPNrvCO8zjd3P8CireiTA/k1Cn+m17eFazRvK+pzeMC8XcknHAo6ZlPihS+EaGZngbORB+HyeSfm/TMFmvpqVHMV1FxAmieNXpO7IDWxck/GAZTdpHTiym5RpHlcNLCoXWzYlLdP/WBuaVTCXMIEuVjOq1QrSprHRYMmdfD2kY/Q9LePfGDeyvinlj1ibg8kxafizpkXP7UccR2jAIDnCz8072iG2ib5v5eMG9eBhXUDuN/5WHbNLYzxtmh23/sA8xKy29y6Ad7cK9L+Tn4Hd0Wy2/PpZzS3b4zaDfK/Y+o1NURjm4Z4dbP08ZXFWTMA1K6vi1PBe3HM928sOzEbusbaZc4jzprb9m4JvzdfsOLUXJwNc8Ze9w3oOUH0nYY1qe6idXQe0R63j7j90PwVQdldNSR66JVGjRrhw4cPMDPLPxMcGhoq9P7nz59Rt27dUpeRlZVVbPB6Pj8XUlIlbxoVFQVwuVLFrhhLSEiDurpiqes7c3q6YP6jx57gxo3v/yj19FRhaWmEe/c9sXTpWRgYqGP27G7gcqVw/PjTUpdbHspqCuBKc5EYL1x3Ylwq1DSUSphL2MDR7SAnL4OHd74HZGhQLLauuowg/ygoKMqi3whr/OUyAdOG7UN4SPFbtipWsyK40lwkFDnzmRibAjWtWj+8XF1DdTQzqA/Xy2/x+7gDqF1XE9PXDASXy8XJXXd+rmZ1pfyaY4RvXU+MSYGalvJPLbuwccsdEReZhHePSx5vq7y+11xkO8ekQE1bpYS5qpeyhujtmhCTDHVt0dtVTVsFCTGexdpL87hQ0VBCfFQS3rh6YsC0rvj43A8RgTFo3rERrHs0hxRXOEjqmtXG9puLISPHQ0ZaFtY67UOIb9nDrihr1MqvO1r4NtCEmGSo64jetmo6KsU/Z3QSpHnSgrr16mpBp6MZXM+9wMrBO1DbRAczto4ClyuFk5uvIiM1E14v/THitz4I8YlAYnQS7AZZoWGreggPqLy7VESpyhBOTU2Fv//3DsPAwEB4eHhAXV0dhoaGWLp0KcLCwnDs2DGh+Q4dOgQrKys0bty42DJXr14Na2trNGjQAMnJyfj777/h4eGBPXv2VNnn+JXVyOxWKz27T5+dIZj/2NEnuHHje+dXSEgcNm+8hi+BMVBUkMGAga2xc9doTJ54CGEihhipqILsLnqnVkJcKtTLm91ONpCTl8Gj2yUfgI6f1x1x0cl49+LnrwiUhBxU0VTOrzGqyHdzVBLUdFVFzqOuq4LXItpL86SholkL8ZGJFa6j9Bq/5UeU8HITohJLqVEVr0W0L1yjmq5qhT43AEzd5oSPj70R5Pn93+urW+/w8PxzRAfHQNdYG2PXDMOme6uo5kquGQCsHFpg+al5kFWQQXxEIhZ3W4s9rzaWuJwfQdlNSiOu7Bbley6KOj4U3RlW1IDxHSAnz8Ojmx/KbvwDlNUVRefgTx7DmrcyRvdh1pjRffPPlii2YxQAOLv9BhSV5XHg9Trw8/iQ4krh6NqLcLtQ+jAVygXZXbTmqCSo6aiWULOI7+Loimf3mS1XoKiigEOftglqPrLyDNzOPKuxNX9+5Y/N4/biq18E1LRVMGLZAOx4tAaTmi0s8YSsuGvWq6eN3lO64MKOGzi16TIatTbB9O1jkZOVg3snHpc6rzjrLqydY2soqSrizrGHFZ63oii7q4ZEd5Rv2rQJioolH9yGhIRgypQppS5D1GD2det2hnG9LmWun0F45HwOgLKe4zBn7r+Ql5eBuZk+Jk6yQ3hYAh645l9xxZHiICEhDX/9dQt8PoOfXxQ0NJQwdIhVpXSUC+ouUiSHwym7cAB2PRpj9FQ7/DHvFJIKdTR8/vgVnws9CM3TIxR7Tk2B4zAr7Ntc+nhdP1NzeR6aURKOFAeJsan4e9lZ8PkM/p++Ql1HBYMm2/90R3mBouVxOMX3mR81aHoX2PVrhUUDd1TKkCYFiu3TnOLbXuyKbVdO6buvqP0d3z/X/mVnMGf7GBx4vgZgDBFBMbh76im6Dhe+LfKrfySm26+FkooC2vdugQW7x2FR363l6iwvue5SCi+jbo4UB4kxydg5+0j+PuwRDA1dVQya3UPwI3TLlAOYt3s8Tvr8hbzcPPi/D4bbuZcwaVa+q21+FJ9VXWC/fv0a9vbfbwctGGPNyckJR44cQUREBEJChK/2TUpKwoULF7Bz506Ry0xMTMTkyZMRGRkJFRUVWFpa4tGjR2jTpk2VfY5fWZVlt1En1DMuO7uLfw1zyvxmnjv7BOTlZWBmro9Jk+wRFpYA1wf5d6t4e4fDu9CwXZ8+fcX+f8aj34BW2LPrbkmL/AEicrAcc9n1bIpR0zpj9ZwTSIoXfRXqoHEdYNezKRaNP1hpzxcBJCMHK/r7ovhnEv5urgqi1ll6jSXlR8kL5ZTyI3bW7gkwbmqIeR2Ex8V+ePZ750CQZyh8XwfgRNA+qrmSawaA966emGr5G1Q0a6HnpC5YcWa+iCX8HMpuUpqqym4TdRs00Gz/QzVV9N9sAVuHZhg1swtWTz9WYi5WFpE5+INxIa8oi992jsbORaeRXJlDvInhGMV2YBt0GtIWmyb+g2DvMJg0McSUjcMRF5GIe6dK73guvK7vNRSvq7SaC/oWK5LddkPaovOIDtg4eheCvL7CpFldTNs2BnERCbh7/FGNrNn9tofgv4MQCu8XfjjisxPdxnTEhR03Sp5RUEL118yRkoLvmy9wWXkaABDgEQQjcwP0ntK1zI7y72VUf92F9RhnD/dbHoiP+PkLZspC2V01JLqj3MZG9PheBaZPn17mMkQNZt/XsfRB5JOS0pGXx4e6mvCVXKpqimWOSxr57WFTgYExUFNThJNTe0FHeXxcKnJz+eDzv/+DDAmJg4aGEqSlpZCbW74HL5QkOSEdebl5xa4eV1FXREIZPxJsu1lg3u+OWLfoLN69LH24CcYYfD3DUdtQ46fqza85DXm5eVAvcgWaioYSEmN/fBz0hOgU5ObkCW3rUP8oqGsrQ5rHRe5PPIQtOT41v+YiVzmraNZCYpErtn/EwKmdMXR2dywbugtBlTSmuqDmottZsxYSi1w1IC7Jcfk1qhXZrqqatYpd2VAgITqp2BXxqpq1kJuTh+Rv+3xSXCrWjNkLnqw0lNWUEBeZiPG/D0BUiPDDu3Jz8hARGAMA8PMIhqllXfSb0hl/LzhRRt0p+XXrFK8joYQH5iVEiahbSxm5ObmCuuMjk5CXK7wPh/hEQF1XVbAPRwTGYJHDJsgqyECxljzio5Kw1GUqooJjSq35Z1XlmW07O7tSf7QcOXKk2DQVFRWkp5d8a+327duxffv2yiiPlENVZbdjH9E/yAoUZLdakTu/1NQUfii7CzrKi2IM8PkcAYPaamV9jHL5nt3CV6CpqiuW+TyQjt2bYO7q/li/4HSJV4oPdGqPYRNtsXSSCwJ9yzf+Y5k1S0AOJsUm59dY5OpeVW1lJBa5sqhAfGQS1HVVirXPzclFciU+m+V7jSkl1KhSSo2JUNdVK9Y+v8b8bZ8QWfxKaVVtlWJXVAHAjL/Hw7pPKyywXYVYEQ/NLrru6OAY6NXToZoruebM9CyEB0QiPCAS3i/9cMSn8h94RdlNSlNV2T245ZoK11KQi+qawrlYnuPDjj2bYu66gVg/5194FBmOtDIlx6eJzkGNWkgs5xjRRekZaULXUAN/uEwSTON8G87kWuBfmGS3DhHB5R+zXJzHKBPXDMHZ7Tfw8EL+szqCvMKgXUcDQ+c7lNpRnlyQ3UWuDlbVVil2FfH3mot/F6tpqVQ4uydtHIXTW/4Ht7PP82v+FAodQ00MW+RYake5OGsuKjM9C0GfQqBfv/RhLsRZc3xEAkK8vwpNC/kcjvb9RT+Xp6bUXUDbUBOWnZtgzeBtFZ73R1B2Vw2JHqO8MogazL6s279yc/nw9Y1EyyJjZLdsWReenmHlXzkH4PG+r+uT51fUrq0GTqF93cBAHbGxKT/dSQ4Aubl58POOQAtr4fGcW1jXg9f70BLmyr+SfMHq/ti47AJePSnfIPv1GuoivhIOhnNz8uD36Sss2wvfRteivSm83gT98HI9XwdCv66m4Aw4ANQ21kJcVNJPdZID32r+EArLjo2Eprfo2Aher8se07o0A6d1wfB5PbFyxB74FRkj92fk1xwCS1vhB9q06Gj20zVXltycPPi9D4GlnbnQdEs7M3i/Et0B5O3+BZZ2RT6TvTn8PIKQlyv8/zknKxdxkYngSnPRvncLPL/pUXpBnPzxzctVt0cwLO2L1G1vAe9Xon+ge7sHwNLeQrjuThbwe/e9bq+XftA31hbeh+vrIC4isdg+nJWejfioJCipKqBlp8Z4fqOMz/aT8iBVoRchFfVT2V1kbNCWLY3h+elrCXMVx+FwwJMpfcxCk/o6iCvlltaKyM3Ng59XOCzbCo8Xatm2Prw9Ss4Bu55NseDPgdi05CxePfYR2WbQ2PYYMcUeK6YdhZ9XBX6/lFWzBORgbk4efN98QYsuTYVr7NIUns99Rc7j/cK3WPuWXZvC9/WXYplSGXJzcvNr7CqqRtH/T0XW2K2ZUI1ez33RstjnaAavZ8LLnLlrAtr3t8KizqsRGVT2kF211JWgVUcDkUHRVHMV1gwAQgcLlYSym1S1H8luUXJz8uDnGQZLG+FcbNGuPrzeBZc4n61DM8zfOBibF5yG+0PR/7YrS25OHvw+hsKyyMOmW3RoCK8iz0opr9CAKEztshEzemwRvF7c/YQPz/wxo8cWxIQnVrxGMR2jyCrIgM+E+zf4fL6g47/Umt8GokWXJsI1dG4CrxKy2+uFH1p0LtK+a1P4vqlYdssqyIDxhTsN+Xl8cKRK/z4UZ81F8WSkUadR7TKvdBZnzZ7PfGFgqi80zaCBXrGL2Gpa3QW6O9khMToJL2+UPnZ9ZaHsrhr/6S3l5OSETp3KN/B/RZ07/wq9ejVDjx5NYWiogenTOkNHWxlXr+b/g5g4wRZLFn9/Uq6jYwu0bVsftWuroXZtNfTo3uT/7J11WFTZH4ffIQSVHBrEQDFQUcBuDLATuzGwFbu7u2tdRdddu2vtWDuwCwssEEVQbInfH8MODAwwA4PAb8/7PPM8zLnfe+7nXu7czznnnqBVy3IcO3ZHHrN373WMjPTp17cOefKYUr58Qdq1q8iePf4a071z43nqNnPFo4kL9gXM8RlSF0trYw5svwJA1/61GTalmTy+Rt0SDJvcnNXzD/Pg9ktMzQwwNTMgl0H8yrjte9bArWJBrO1McShszeAJTShY2JoD269qRPOuNafxbF0ej5blsC9oSc+xTbCwNeXgX7K3zV2GNWDIvLYK+zgUs8WhmC36ufQwlubGoZgteRMsrnbgz/MYmuSi14Sm2BWwoKx7MVr3rc1+DU1xs2vVcTzbVcKjTUXsHa3oOakFFnZSDm44K9M8ujFDFndS1Fw8Dw7F86CfWw9jM0Mciuchb+H4RVG9+tSm84iGLBi8kTcv3mNqYYSphRH6uTSzSvGulcfxbF8Zj7YVsXe0pudkLyzymHJwvWyIU5cxTRiypHMKmg2SaNbR1ZbH6OTQxszaBIfiebDJb5EmjTtXHKVuhyp4tKss0zi1FZZ2Ug74yeb/6jq2GUOXdZXHH/A7jVUeM3pOaYm9ozUe7Srj2b4K25fFT4dQxLUAlRu4YJ3PnOIVCjF16wAkWhK2LTksj+kypinFKxTCyt6M/MXs6Dy6Kc6Vi3Bie8rz6Ml1LztM3U7V8OhQBfvCNvSc3gbLPFIOrD0l0z2hBUNXdo/XvfYUVvZm9JzWGvvCNnh0qIJnx6psT6Bp/+8nMZQa0GtWW+wKWlHOw5k2Qxqwb80JeYxbreK41SqBVT5zXNydmLVvOC8fh3Bk41n1LryaxMRK1PoIBAnJSO/evi3Ou+vJvLt3n1pYWsV7d7fu1RkxKoF3N1X0bs+6JWnZqhzHjsavfdCxUxXKlC2AjY0JBQtaMnR4fQoVsmTfXs0VkHduOEfdFm54NHXDvoAFPYfXx9LGmANbZT2xug70YOg0L3l8jXrODJ3mxW9zD/Hg5gul3u3VtSqd+tdh/vidvHkVLo/Rz5ny6vSqkh18cMfCA9TrVhPPrjXIW9SOXvM6YZnXnP2rZB7hPa0tw/36yuP3rzqKZT5zfOZ2JG9ROzy71qCud022zd8nj9HR1aZgqXwULJUP3Rw6mNuZUrBUPmwLxpdB9HPryWMArPNbUrBUPizsk47E27FgP/W61cKzq7tM4/zOMo0rZdPEeU9vx3C/fvEaV8ZpnNc5TqO7TOO8vfKYXYsP4OZRitbDm2BfxJbWw5vgWrskOxcdkMf0X9adWu2rMqP9Ir5EfsPUygRTKxNy6OeIOwd9es7pSLEKhbHKZ4FzdSem7B3Jh3eRbJyyXWjWlOZcenhPa0ux8o5Y5jWnkEsBBv/WC4s80iT3SnoR3i1IDxnp3crYte4snl5l8WhRBnsHC3qOaoiFjQkHN8vK5l0GezJkVit5fPUGpRg6qxW/zTrAg5vPMTU3wNRc0Rc1rvG3U3i2qYBH6/LYF7Ki54RmWNiZcnCjrL7ZZURDhixor7CPg5MdDk528XUrJzvyOsr84+f3KIIeBit8Pn/8ypfP3wh6GJymzl6ZVUe5dOgGbYY0pJyHM1Z5zajU0JVmfT05vz/1do8dCw9Q17smnl1qYF/Ull5z47x79TEAvKe2Ydi6+BEOB1YfxSqfOT5zOmJf1BbPLjWo29Wd7fP3y2N0dLVxKJUPh1L50M2hjbmtFIdE3n3xgD9tRzalXD0XrPJZULlJWZoPasC5PVeyrOYeszpQsmoxrPNbULRcIcZt8SWXUU6VporJLM07Fx+gWPlCtBnRFNuCVri3qUz97jXZtyL+HsuKukHWmcajc3WO/nGGmOj0d3RVBeHdGUO2nnolNWxtbdFK5Q1fWjl16gFGRjnp1LEyUmluAgPfMWrUNt7EDVOSmhlgmWColZZEQvdu1bG2NiY6Oobg4AjWrDnNvv3xFem3byMZPmILfXrXYs1v3Xj3LpKdO6+yeXP6VrROyOkjdzE0zkX7ntWRmhsS9DiUsf3/JDRYNhRFam6ARYJhxfVblEFHV5v+oxvSf3R848GRvdeZN2E3AAaG+gwc1xhTMwO+fPrG4wchDO2+lofq9K5PgTMHbmBomot2AzyQWhgRGBDMeO/fCI1bJE1qaYilreLw12UHh8r/Luxsj3tTN968fE+XqlMBeBccwZhOq/AZ15Tlh4YSFvKBPevOsG3lCTTBmb3+GJrmpt3gekgtjQh8GMz4DssJffk+TrMxlomG5S87Nipec6l8uDcvy5sXYXQpNx6Ahl2qoauny9g1PRT22zj3AH/OS32OsVQ177kWp7kBUisjAh8EM77dskSaFStmy06MiddcOh/uLcrx5nkYXcqOle1jbawQ49W3Dl5963DrXAAjmqs/5ObM7qsYmeam/dAGmFoZE/TgNePaLonXaGWMZYLK45vnYYxruwSfqa1o6F2D9yEfWDF6M+cSFMJy6OvSaXQTbPJZ8PXzd64cu82cPmv5/PGrPMbUwojhy70xtTLmy8evPLv3irGtFnH99H3VdO+8gpHUgPbDG2NqbUzQ/VeMa7mQ0BdhynUHvWNcywX4zGhLwx41eR8SwYoRf3Fu7zV5zLtX4YxpNo+eM9qw4vxk3gWHs3vlMbYtiL8XchnlouuEFpjbmvIp/DNn917Db8rODOn5mJBftaK24P+TDPXuk/cxMspJx06VkUoNCAx8y6iRWwl9I/Nus0TeLZFI6NajRrx3v45gzW+n2L8v3rsNDPQYPLgeptLcfP78nceP3+A78E8ePlBx/QIVOHP4NkYmuWjfyx1TC0OCHr9hXJ8NhAZHACC1MMTSJoF3tyyLjq42/cY2pt/YxvL0o3v8mTd2BwCNWpcnRw4dxi1op3CsjcuPs3FF+r0wO/jg6a0XMJIa0mFsC6Q2pgTeecGYhjMJjeu1ZGZjgmWCxuuQwLeMbTiTXvM607iPJ2Gvw1k+aB1nd16Wx5jZSlnpH7/IWquhjWk1tDE3T91laC3ZFAOFyxRk3okJ8pje82UvoY+sP8Uc7xWJNJ7HyMyADuO84jU2mB6v0doUy7zmCTSGMrbBDHrNT6Bx4FrO7ox/sXvvQgDT2i6ky5Q2dJ7chuAnIUxrs4AHCXoQNu7tCcC8U4rzCc/puowj608REx1DgRJ5qd2xOgYmuXkfHM7Nk3eZ1mYBb1+GoZ9bT2jWgObo6Bjsi9hRZ3sNjMwNiQyL5OGVJ/hWG5+tFvMU/P+Tkd6tjDOHbsnqh31qIbU0JDAghPE9/QiN61UttTDC0sZEHl+/dXmZL05oSr8JTeXpR3deY/6obRmjcd91mQ8O9ERqaSzzwc6r4uuwVkZJffDwcPnfhZ3z4t6sjMwHK6k/RY1KGjOpjrJ8+F90GtOMvvM6YGJhRFhIBIfWneLPWfEvG5Pj9LYLGJkZ0H5MC6Q2JgTdfcHYRvHeLbUxxdI+4fP6LWMazaLXvE406u3B+9fhLPf14+yuRN59dZb8e8shjWg5pBE3T99jWG3ZtV82cB2dJ7Wi/xJvTCyNCXsdzsHfjrFx6o4sq9nCTsrojf0xMjfiw9uP3L/0iIFVxsmPmxU1B1x9yiSv+XhPa0OHsc0JefaWFUM2cGKTah0aM0s3yHquW+Wz4LDfKZW0agLh3RmDJDbLrdSX+dSspdmC569C9/3X1IOyGFoR6Z+e5Zfz7XvqMVmNmF/zRlPTxEZnbINuhvBTcwvh/Sr+/rBWo/n9E1go9aAEVM2fcXNECv471HKfkdkS0oRuOtbbyCwk7yIyW4LaRIWmXinMcsRmT+8W/BqOxmi2cU94tyAzqFdkZGZLSBtfsl+9O/Zj9qt3x6Qw17FAkB058nOzRvMT3p0x/F9PvfLixQu8vb0zW4ZAIBD8p4hBS62PQJAQ4d0CgUDw6xHeLUgPwrsFAoHg1yO8O2P4v75S79+/Z/369ZktQyAQCP5T/IjVVusjECREeLdAIBD8eoR3C9KD8G6BQCD49Qjvzhiy9Rzle/emPIfV06dPf5ESgUAgEPxLjJgrTZACwrsFAoEg6yG8W5ASwrsFAoEg6yG8O2PI1g3lTZs2RSKRkNI06xKJuHEEAoHgVxL9/z1YSZBOhHcLBAJB1kN4tyAlhHcLBAJB1kN4d8aQra+qjY0NO3bsICYmRunH398/syUKBALBf47oWC21PoL/FsK7BQKBIOshvFuQEsK7BQKBIOshvDtjyNZXys3NLUVTTu2tt0AgEAg0j1hURJASwrsFAoEg6yG8W5ASwrsFAoEg6yG8O2PI1lOvDBs2jM+fPye7vVChQpw8efIXKhIIBAJBdKwYeitIHuHdAoFAkPUQ3i1ICeHdAoFAkPUQ3p0xZOuG8qpVq6a4PXfu3FSvXv0XqREIBAIBiLnSBCkjvFsgEAiyHsK7BSkhvFsgEAiyHsK7M4Zs3VAuEAgEgqxHjJj/TCAQCASCbIXwboFAIBAIshfCuzMG0VAuEAgEAo0i3mwLBAKBQJC9EN4tEAgEAkH2Qnh3xiAaygUCgUCgUcRcaQKBQCAQZC+EdwsEAoFAkL0Q3p0xiIZyJWifvJbZEtKGi1NmK1AfXd3MVqA+P6MyW4HaxH7/kdkS0kZUNrzW0dGZLSHTEStqCzIDrdP+mS0hTcSUd85sCWqj/UkvsyWozdHoLZktQW3qaLfObAlpIzYmsxUI0oDwbkFmEGOQ/fwEQOv798yWoDYS/ex3rWMjIzNbgiALI9HWzmwJmY7w7oxBNJQLBAKBQKNEi7nSBAKBQCDIVgjvFggEAoEgeyG8O2MQDeUCgUAg0Cg/Y8XbfYFAIBAIshPCuwUCgUAgyF4I784YREO5QCAQCDSKWFREIBAIBILshfBugUAgEAiyF8K7MwbRUC4QCAQCjRIjFhURCAQCgSBbIbxbIBAIBILshfDujEE0lAsEAoFAo4g32wKBQCAQZC+EdwsEAoFAkL0Q3p0xiKsqEAgEAo0SE6ul1kcdzpw5Q6NGjbC1tUUikbB79+4U40+dOoVEIknyefDggULcjh07cHJyQk9PDycnJ3bt2qXuaQsEAoFAkG0R3i0QCAQCQfZCeHfGIBrKBQKBQKBRopGo9VGHz58/U6pUKZYuXarWfg8fPiQ4OFj+cXR0lG+7cOECrVu3pmPHjty8eZOOHTvSqlUrLl26pNYxBAKBQCDIrgjvFggEAoEgeyG8O2MQU68IBAKBQKOo+7ZaHerVq0e9evXU3s/S0hITExOl2xYuXEidOnUYNWoUAKNGjeL06dMsXLiQTZs2pUeuQCAQCATZAuHdAoFAIBBkL4R3ZwyiR7lAIBAINIq6b7a/f//Ox48fFT7fv3/XqCYXFxdsbGyoVasWJ0+eVNh24cIFPDw8FNI8PT05f/68RjUIBAKBQJBVEd4tEAgEAkH2Qnh3xiAaygUCgUCgUdSdK23GjBkYGxsrfGbMmKERLTY2NqxevZodO3awc+dOihQpQq1atThz5ow8JiQkBCsrK4X9rKysCAkJ0YgGgUAgEAiyOsK7BQKBQCDIXgjvzhiy/dQrN2/eZN++fUilUlq1aoW5ubl828ePHxk0aBBr167NRIUCgUDw3yJazSFgo0aNYvDgwQppenp6GtFSpEgRihQpIv9esWJFXrx4wdy5c6lWrZo8XSJRnLMtNjY2SZpAcwjvFggEgqyF8G5BagjvFggEgqyF8O6MIVs3lB85coRGjRrh6OhIZGQkEyZMYOvWrbi7uwPw9etX1q9fn2UMu1FvD1oObYKZjQmBd1+ywncdd84+SH1HDdOwZVladqyM1NyAoKdvWTn3EHduPFcaW9m9GA29yuJQxBpdXW2Cnr5l4+qTXLvwRCEut4E+XfrWonLNYhga6hPyOoLVCw5z5dwjjWhu0K4CXt2qI7U0JOjRG1ZN38fdq4FKY00tDOkxsgGOxfNgm9+MvRvOs2r6PoUYbR0tWvu4U7uZG2ZWRrx89pa1cw5x7Z8AjegFaNCpCl69aiG1NCIoIIRVE3dw9/JT5ZotjegxvimOJe2xLWDB3rVnWDVxp0JMpXrOtO7ngW1+c3R0tXn17C07V5/kxI4radbY0LsGXv09kVoZE/TgNStHb+HuxeT/ZyUrFabn1FbkK2pLWEgE2xYf5qDfaYWYpr1q0bBrDSzySPn4/hP/7L3Gusk7+fk9CoDWg+pRuaEreRyt+fHtB/cuP2HtpB28fPxGNc3d3fEaUA+ptQlB91+xcuRf3L2QgubKReg5vQ35itkRFhzOtkWHOLj2lEJMbuOcdBnfgsqN3DAwyU1I0Ft+G7OFK0duyTQPbkDlxm5xmn9y79Jj1o7fxsvHqr/5bNijFi0H1UdqbSzTPfxP7pxP/n4rWaUIPjPbxemOYNuCAxz4/aTS2Ope5Rm9vi/n911jUptFSmNaD22I96RW7Fp2mJXD/1RZd1qIUXOhED09PY0ZtCpUqFCBjRs3yr9bW1sneYsdGhqa5G23QDMI79aQruZutGxfEamZIUHP3rJi4WHu3HyhNLa4sz3d+9bCPp8Zevq6hIZ84MBuf3ZuztiFcxp0qIRXT/d4H5yym7tXnimNNbUwpMeYJjiWzINtfnP2+p1l1ZTdSeJyG+rTeVh9Kns6Y2Cck5AX71kzbS9XTt3P0HPJTBr18qDl0Ebx9+Dg9Sneg87ViuEztxP5i+ch7HU4W+fuZf+qYwoxVZqXo8uk1tgUtCL4yRvWjdvMud3x5Yk/nizBOr9lkrz3Lj/Mkv6y3+awtb3x6FxDYfv9i48YUGm02r8b52pO+MzrHK95zh72rzqaSHN5ukxuE6957CbO7b4s395mZFOqNCuPfVE7vn/9wb3zD1kz8k9eBryWx3Sc0JIarStjYW9G1I8oHl17yrqxm3hw+XGW1ZyQgSt70rBnHZb7rktWV1oR3i1Iicz27uxYfwVo0KEyXj4JfHDybu5eSaY+aGFEj7GNcSxhj20Bc/b6/cOqybsVYmp7lWXI3HZJ9m1cZJi8rqVpGnSphlffOkgtjQl6GMyqcdu4e+mx0lhTSyN6TPLC0Tkvtg4W7F1zilXjtmWIrrSSVct1qZERuktWLUbLoY0p7OaAma2UCc1mc35Pym0Lujl06DC+JbXaV8XU2oR3L8P4a/pODq9TXk9VFQt7c/ov7UbpmiX48fUHJzadZfXQP4j6qXhfew1pRIMetbHMZ8GH0I/sW3WUzbN2K8Q06lWHloMbIbUxIejeS1YM3sCdc8lfq5JVi9FrbkfyOcX5+bx9HFgdX26q160mtTtUI3/xPAA88n/GunGbeXgl/plSskpRWg5phKNrAcxspUxsMZfze6+m65qogvDujCFbT70yceJEhg4dyp07dwgMDGT48OE0btyYv//+O7OlJaF6q0r0XtCVTdN30Nt1OHfO3mf6wTFY2JunvrMmddQpTq8hddm09gx92q3kzvUgpi7pgIW1sdL4kq758L/0hHEDNtKvwypuXX3GpAXtKFjEWh6jo6PNjOWdsLI1YerwLXRrvoSFU/cSFvpRI5qr1XfGZ3QjNq88Qb+mi7l7NZApv3ljYWOiNF43hw4f3n9m88oTPHsQrDSm8yBP6rUpz4ope/CpP5+Dmy4xblknChaz1YzmRi74TGzO5iVH6Fd3NncvP2HKH72xsDVNXnPYJzYvPsKze8orR5ERX9iy5AiDmyygT51ZHN16icHz2uFavWjaNDYrg8/01myef4C+NSZz5+Ijpm4dgIWdVGm8VV5zpmwZwJ2Lj+hbYzJbFhyk98w2VG7kKo9x9yqP9/gWbJy9j54VxrNgwHqqNy1L1/HN5TElKxdm3+8n8fWcwajmC9DW0WbaDl/0cuVIXXPzcvjMbMfmufvpW2UCdy4EMHXHYCzyJKM5nzlTtvty50IAfatMYMu8A/Se3Z7Kjd3kMTq62szYMwyrvOZM7biM7m6jWNTfj3evw+M1VynCvtXH8a01lVFN5qKto8W03UNU0gxQvUV5es1uz6bZe+lTaTx3zgcwdddQLPKYJat76s6h3DkfQJ9K49k8Zx+953akSpMySWIt7c3oMb0tt1MoKBV2LUD9ru48va28QqFpomO11Pr8aq5fv46NjY38e8WKFTl6VLFx48iRI1SqVOlXS/tPILxbA7pqOdFrkCd/+Z2ld+ffuH3zOdPmt8PCykhp/LdvP9mz/QpDem+ge5sV/LXuLF161qB+E5cM01itQWl8xjVl87Jj9Gswj7tXnjFlXU8sbE2Uxsu8+xOblx3j2X3lPqijq830P3phZSdlWh8/etSayeJRW3n35kOGnUdmU71VRXov6MymGbvo7TaSO2cfMP3AKCzslfuHdX4Lpu6XxfV2G8mmmbvps7ArVZqXk8cUq+DI2E2DOLbxH3q5DOfYxn8Yu3kQRcsVksf0Kz+aVrY95Z/hHlMBOL39osLxLv99XSFuTMMZav9urPNbMvXAKO6cvU9v1+FsmrGTPou8qdK8fALNhRm72ZdjG0/Tq/RQjm08zdgtvgqanasVZ+/ywwyoOJqRHlPQ1tFm5uGx6OeKrxC+DAhmaf/f6ek8BN+q43gT9JaZh8dRr1utLKv5Xyo1KUuxco68e/Veqab0IrxbkBKZ6d3Zsf4KUK1haXzGN2Xz0qP0qz+Xu1eeMsUvBR/U05bVYZcdTdYHAT5//Eq7suMVPhnVSF6tiRs+U1qyeeHf9Ks9nbuXHjNlU18s7JKp0+rp8CEsks0LD/Hs7qsM0ZQesmq5LjUySrd+bj2e3gpiaf/fVd5n7JbBuNQswbzuK/AuOpDp7Rbx4kH6/tdaWlpM2z8K/dz6+FYdx7S2C6navAI+8zopxPVZ1JV63WqxetgfdCs2iHHNZvPwiuJLm+otK9JrXmf+mrmL3mVHcvvsA6btH5liuWnavhHcPvuA3mVHsmnWbvos6EKVZvHlplLVnTi15RzD6kxhUNXxhL54x4yDozFL0Lajn1tfdi0Hav5FdkoI784YsnWP8rt37/LHH38Asu77w4YNI0+ePHh5ebFp0ybKlSuXSg6/jha+Dfl77QkO/X4CgBW+fpTxKEWj3h6sHf3XL9PRvEMlDu+5zt+7/QFYOe9v3CoWoqFXWdYtPZYkfuU8xcLPumXHqVi9KBWqFeHJQ9mbIM8mLhga58TXew3RUTEAhIZortLarGtVjmy/wuFtsrebq6bvw7VqYRq0q4DfvKSFs9BX4ayaJutB7tEiacMiQM0mrmxeeYIrpx8CcGDTRVyrFqa5d1XmDNuSfs093Tmy+SKHN12QaZ64E9fqRWnQqQp+M/cliQ99+Z5VE2Q9yD3aVFCa5+0Liiaw5/fT1PYqR/GyDvifVv9tcvM+dTi88Sx//3FWpnH0FtxqFqehd3XWTdmVJL5B1+qEvnrPqtGy6/MiIATH0vnx6ufBuX2y+6lYWQfuXnrMqR2y3lJvXoRxaudlirgWkOcztqVij+f5/dax5dECHEvl404KPcMBmvfz4PCGM/y9QTbP1aqRm3CrVYKG3WqybtL2pJq93Ql9GcaqkZviNAfj6JIfrwF1Obf3GgAeHatiYJob39rTiI6KBiD0RZhCPmObz1fU3HstW54txrF0/hR7hct196/L4fWn+Xu9rPf9yuF/4larJA171GTdhKS9LBp2r0noizB5z+8XD19T2LUALQbW5+ye+DfTWloSRqztzR9Td1KichEMjHMlyUs/tx4j1vZmYb+1tB3eOFWtmuBnrHaG5f3p0yceP47/LTx79owbN24glUrJmzcvo0aN4tWrV2zYsAGQraydP39+ihcvzo8fP9i4cSM7duxgx44d8jwGDhxItWrVmDVrFk2aNGHPnj0cO3aMs2fPZth5/JcR3q0BXW0r8Pe+6/y97wYAKxceoUz5gjRqXoa1K04kiX8SEMKTgPjeG29CblO5RlFKlMrLwT3XM0Rjs+7VObL1Eoe3yHqtr5qyG9dqRWjQvjJ+cw4kiQ99FS7vOefRUvk94NGyHIYmuRjstTi+vPEqXGns/wstBjVQvAcHr5fdg708WDtmU5L4hj51ePs8jBWD1wPw/MErCrs50HJwI87ulHlz84H1uXbslrwH1uZZu3GuXozmA+szvf1iAD68i1TIt80IV149DuHW6XsK6T+/RxGe6EWFur+bhr3q8Pb5O1b4+sVrLlOQlkMac3bnpTjNDbh29BabZ8Zpnrkb52rFaT6wAdPby8oVo+tPU8h3rvdytof+jqObA7f/kY04OLlJ8bm+cvB66nWrhdfgrKsZwMxWSr8l3RhVdypT949KokcTCO8WpERmend2rL8CNOteQ9EHJ+/GtVpRGnSojN9sJT74MpxVk2R1MI9W5ZNs/5dYIPxtZLLbNUmzXrU48td5Dv95DoBV47bhWqMYDbpUw2/aniTxoS/es2qsrG7j0TZrNXxB1i3XpUZG6b7y9w2u/H1D5fgynqVxru5Ep4L9iAz/BMCboLdJ4jy71KDVsCZYF7AkJPAtu5ccZN+KI8nm6+bhTF6nPIzK24uwYFm5btXQ9Qxb15d1YzbxJfIreYva0aiXBz1KDpGPupIkqrNDXLlp3Un+Xivr4b5yyAbK1ClFI586rB27OUl8g551CH0exsohMv958eA1hd0c8BrckLO7ZOWmmZ2WKuyz0Gc1VZuXx6VmCY5t/AeAK4dvcOXwjRSvX0YgvDtjyNY9yvX09IiIiFBIa9u2Lb///jtt2rRh166kjX2ZgY6uDoXdHLh25KZC+rWjtyhesUgye2WADh1tHIvacO2iYoPrtYtPcHK2VykPiURCztw5iPzwVZ5WoVoR7t96Qb8RDdh8ZBirtvShTdeqaGmlf54hHV1tHIvb4Z9oCJz/2QCcXPKlOV/dHNr8SPTm/ce3nxR3y5/mPP9FR1cbx5L2+J9RbLz2P/MApzIFktlLfUpXLkyegpbcufQk9eBE6Ohq41gqH/4nFSu8/ifvUqxcQaX7FCvrgP/Juwpp107cxbF0PrR1ZA/ou5ce41g6H4Vd8wNgnc+csnVKcjluChNl5DLKCUBkxOfUNZfOj/8JRQ3+J+5SrHwymssVTBJ/7fgdHF3yyzVXqO/Cg8tP6DuvA5seL2TlxSm0HtIgxfs3l3Gc5vCUNct1u+Tn2vE7ijpO3MapvGMyugtx7cRthbSrx25T2DVeN0D7UU358O4jhzecSZyFnH4LOnP58A2uJ/rfZSQxsRK1Pupw9epVXFxccHGR9YQdPHgwLi4ujB8/HoDg4GCeP4/vOf/jxw+GDh2Ks7MzVatW5ezZsxw4cIDmzeNHOVSqVInNmzezbt06nJ2d8fPzY8uWLZQvn3wlRZB2hHenDx0dLRyL2OCfaCqva5ee4FQyj0p5FCxsjVPJPNy6HpQREmXPvRJ58E80nZn/Pw9xSofPVqhdgvvXg+g7uQV/XZnEir+H0bpPLY2UN7IiOrrasnvwqKKHXjt6k+IVCyvdp1iFwlw7qnjPXj1yk8JlHOT+4VShMNcS+fLVwzdxSiZPHV1tarWvonRYdanqTmwNXs26+wvwXdUTc1tTtX83Ms1J9ShorqjsvG7gVCn532LuuJfHke8/JXNeOtTvWZtPEZ+xc7TJspolEgkjNvRn29y9BN17mey+6UV4tyAlMsu7s2P9FRL64EOF9PT6IEDOXDnwOzuOPy5MYOLv3SlY3C5d+SWHjq42js558T+VqL54+j5OZRwy5JgZSVYt16VGVtJdsXEZAq4+odXwJmx6sYp1DxbRc05HcujHj7Ku170WXae2Zd3YTXRz8mXdmL/oMrkNdTpVTzZfp4pFCLzzXN5IDjJPzaGfA0c32b1WoZEbwU9DqdDQlQ1PlvHH02X4ruqJoWlu+T46uto4uhbAP3G56ditZMs4ThUcuXYsUfyRWxR2c1CodydEL5ceOro6RL5PvS0goxHenTFk6x7lpUuX5uTJk7i5uSmkt27dmpiYGDp37pxqHt+/f+f79+8KaTGx0WhJNPdmxtjcEG0dbcLfRCikh7+JwNTaRGPHSQ0jk1xo62gTEab4g44I+4SpmYFKebToUAl9/RycPhrf6GaTx5TSNgU4ceg2YwdsxC6vGf1GNEBbR4s/fzudQm4qaDaVaQ5/p1jJiQj7hKm5YZrzvXY2gOZdq3LnylOCn7+ndMVCVKjlhLZ2+t8dGUlzyzQnetMf8TYSU4u0awbIZajPxqtT0M2hQ0x0DMvGbON6ogKYShrNDOI0Kg4vDA+NRGqpfBijqaUx4aGK5xT+9iM6ujoYmxnw/s0HTu+8grGZIfMOjkAikRn7vt9PsnVR8sMyfaa24s6FRwSlMMRQpjnudxSaWPMHpFYllGu2MiY89EOieEXNNvktsKpWjJNbLzDOawF2Ba3oO68j2jra/DVrr3LN09tw53wAQfdTH2b2r+6IRDoi3nzEtHYy19rKhIg3ig3lEaEfZLrNDXgf8gGnCo54dq5On4pjkz12da/yFCqdj/5VJ6aqU5PEZOA72Bo1ahAbG5vsdj8/P4Xvw4cPZ/jw4anm6+XlhZeXV3rlCVRAeHf6kHm5FuGJCufh4Z8xlabs5X/uGYixSS60tbXY+PsZeY90jWs0jfPBRL2SI96lzwet80oplacQJ3f7M77rb9jlN6fP5BZoa2vz15LkeyplV4zNjeLuwUQ+9uZDsveg1NqYq0riZf5hyPsQ2f2b1BuTz7NS07IYmOTmyHrFMt3lv29wevtFQoPeYV3Agi6TWjPr6Di1fzdSaxOuKolPolmN6wDQa15nbv9zn8C7inP3l2/gyphNsinf3gdHML3dQqYfHJNlNbce0YSYqGh2LT6Y7H6aQHi3ICUyzLtjotDSSr5JIjvWXyGBDyqrD5ornyZNFV4+CWXe0E0EPgwml4E+TbtWY+72AfStN4fXge/SK1sBI6lB8ueQTH0xK5NVy3WpkZV02xSwokSVovz49pOJzedgbG5I/2XdMZQaMK/bCgA6jPVi1dAN8t7YIYGh5HXKQ4OedTi6Qflvy9TahIhEfvkp4jM/vv9EGneONg5WWOUzp5pXRWZ3XoKWtha9F3Rh3BZf+fRwRv+WmxKXcd58wNTKRPmxrZR4dahiuSkx3aa35d2r9/gfv51k269GeHfGkK0bynv37s2ZM8p7UrZt2xaA1atXp5jHjBkzmDRpkkJaAYpRkOKaEZmAxPeYRCJJ8cbLKBIfU7bCbOo6aniWoKNPDSYO3sSHBD1pJRIJEeGfWTRtLzExsTx+EIyZhSFenSprpKChVDMQq4Lm5Fg1dR8DprVg9d9DITaW4OfvObrzKnWaK5+qJS0ou87p/Xd//fSdvp6zyJlLj9JVCtNjfFOCn79LMi2LGiITaUyqO7V4WbIs3blyYdoMrs+yYX/y4OozbB0s6TWjNeFvPvDX3KRDDPvObkeB4nkYUn+2OqITaUjluib53SlqlmhJiHj7kUUD/GT3740gzKxN8BpYT2lDed95HShQ3J4hntPV0Kzs968kUUG2cuGxsZDTQJ8Rv/diYb+1fAxT3lPOwk5K7zkdGN14Nj+//1RLa3qJVvNt9f8zO3fuZOLEidy6lfyoiv8awrs1Q1JfTN3Lh/Raj36uHBQrbke3PjV59fI9p45m3GgT5T6Y9msn0ZIQ8e4Ti0dvlT2v77xEamWMV0/3/8uG8n9R9zoqu2eT5KOsLJhMnvW8a3L57xsKPb0ATm+9IP878O4LAq4+ZeOzZclqSFmzsrJponyUlUGSybP/0m4UcM6Lb9VxSbbdPHmXXi7DMDY3pF6P2gxc6ZNlNTu6OtBsQAP6uKVe8UwvwrvjEd6dlIzybgfrahSyrZHq8bNj/RWSluclkvTVYR9cD+JBgtFg964+Y8mBITTuXJWVkzKmV7/Sc8gC5aC0klXLdamRFXRracnq3TM6LObLxy8ArBqynnHbhrCk7+/kNNDHMq85g9f0xnd1L/l+2jpafP4gi592YDQlqxYDZNO29Cg5GFB+TyU8R4mWFjn0czCr81JePZKtQze/5yqWX55JnsI2vAyIX5su6fOCFOvdSS+u8nwAWg5pRI3WlRlWe/Ivr2MrQ3h3PJr07mzdUN6sWTOaNWuW7Pa2bdvKjTs5Ro0axeDBgxXzNe6iCXlyPryLJDoqWv427F9MLI2TvDnLSD5GfCE6KhpTc8W378bS3ISHpTxspHqd4viOb8K0EVu5nmi49/t3n4iOiiYmJv5B8vzZW8zMDdHR0SYqbt7nNGkOl2mWJuqBZmxmQMQ75Q2EqvAh/DNT+mxAN4cORqa5CHvzEe+h9XjzMv1znX58/1mm2VKxt4CxuQER79I3n1xsbCzBcb0Fnt57hb2jNa371lG7ofxjmOx/lrg3gImFYZJe5v8SHvoB00QLxZmYGxH1M4qPcT0bO41uyomtF+Xzngfef4V+rhwMWNCRTfMOKphN75ltqVCvFEMbzFFYODN5zZHJaDZK8tZYrvnNB0ytksYn1Pw+JILon4nu34BgpNYm6OhqE/Uz/v7tPac9Feq5MLTeDJU0K+hOpMPY0ihJ7/h43RHJ6w77RD4nO6zzWzB5m698uyRuqOjBD+voVnoE+YvnwdTSmKVnJ8tjtHW0KVmlCI19atPQ1FvhnDWJusO6sju//fYbR44cQVdXl4EDB1K+fHlOnDjBkCFDePjwIR07dsxsiVkK4d3pQ+blMUgT9aQzMc2VpJd5YkKCIwAIfBKKqTQ3HbtVz5CG8o/hcT5okcgH0+nd4aGRRCV6Xr94/AappVGS5/X/Ax/efUzmHjRK9h58H/IBaaIF7kws4/0DIDwkIknPKhMLoyQ9qgAs85rjUqskk7zmpar3fUgEoUFvsXGwUut38z4kAqm1aZJ4mebIeM1K8lSmue9ibyo0KsOQ6hOULnz57ct3Xj8J4fWTEO5feoTfw8XERMdkSc0lqhbFxNKIP4NWyNO0dbTxmZt67111Ed4tvDslMsq7W1SfleI+2bH+Cin4oLlhuuuDCYmNjSXg5nNsC1hoLM9/+fj+U/LnkEx9MSuTVct1qZGVdIcFh/Pu1Xt5IznA8/uv0NLSwiKPlM8fZdMbLei5kgeXFNsnYqJlawHM77ESvZyyqVqifsqmwg0PiVBY6BrAwCQ3ujl05J75PjicqJ9R8kbyf48NYGlvzsuAYD7+W25KXMaxTDrK/F+U9cw3tTBWKDf9i5dvQ9qObMqIutN4dvs5WQHh3Rnj3dl6jnJNoKenh5GRkcJHk0O3QfYACLj2FNc6zgrprrWduXtB/Wkz0qwjKppHD4JxTTSfs2t5B+7depHMXrI38UMmNmPmmB1cPpt0scV7N59jYy+V96QByJPPnLC3H9NdyIj6Gc2ju69wqaQ4l7NrZUfuaWBu1Z8/ogh78xFtHS0qe5bgwvH0NxhE/Yzm0e0XuFRVnDPMtWpR7l19lu78EyKRyFYXV5eon9E8uhmES41iCukuNZy4f1n5nOf3rzzFpYaTQpqruxOPbgTJF8HUy5kjSeNrTHQsEomEBLcHfWa1pXJDF0Y0mceb56oNE4z6Gc2jG4G41FTsMeri7sT9ZOZpv3/5CS7uiTTXLM6j64FyzfcuPsbWwUrh/rUrZE1YcLhCo0ufuR2o3MiNEY1m8yZI9aGNUT+jeXQ9ENeaitPDuLqX4N4l5YuX3r/8GFd3xXi3WiUI8JfpfvEwmJ5lR9G74lj55+KB69w8c5/eFcfy9mUYN07dSxLz8NpTTmy5QO+KYzOskRwgJlZLrU92Zu7cufTt25dnz56xZ88eatasyfTp02nVqhVNmzbl+fPnrFq1KrNl/t/xX/LuxERFxfDoYTCuZRXnB3Ut58C926rPXyyRSNDNkTELAEX9jObRnZe4VFGcD9K1SmHuXQtMc753rz7DNr+54vO6gAVhbz783zWSg+w6Blx7imttZfeg8oWk718MSBLvVseZgKtPE/heAG6J7ms3D2fuKcnTs0sNIkI/cOmAf6p6DaUGWNibERIYqtbvRqlmj1KKmi8E4JbkvEpx77xinv2WdKNKs/IMrzWJkMDQVDUDIJEQFhyeJTUf++MMPqWG0stlmPzz7tV7ts1VPjVcehDeLbw7o1Hq3SlMuwLZs/4KGeeDyijoZJds55v0EPUzmke3nuNSXbG+6FqtGPeuPk1mr6xLVi3XpUZW0n33/EPMbE3Rz60vT7MrbEN0dAxvX74nIvQDb1+GYeNgJX8h/e/nX38Le/1enhYa1w5w78JD8pfIq/AywM2jFD++/eDRNdm9dvfcA3R0dbBxsJLH5ClsAyBvT4j6Gc0j/2e41i6poNu1VkmlZRyAexcf4VorUXwdZwKuxfs5QMvBDWk/pjmjG86Qa8oKCO/OGO/+5T3KY2NjOX36NP/88w+BgYF8+fIFCwsLXFxcqF27Nvb2qi3KoQqdO3fmxYsXnDhxQmN5ppUdC/YzYkN/Aq4+4f6FAOr3rI1lXnP2r/y1Q4V3bjzPsCnNCbj3mvu3XlC/eRksrY05sP0KAF371cbcwpA5E2RDt2p4lmDY5OasmHuIB7dfyueC+/79J18+yeaY27/9Co1bl6f30Hrs2XIJu7xS2nStyp7NlzSiede6fxg6uzWP7rzk/o3n1GtVDgsbEw5uughAlyF1MbMyYt7wrfJ9HIrJHpr6ufQwlubGoZgNUT+ief5E9oAu4myPmbURT+8HY2ZlRIf+dZBoSdiuoaF2u1afZOiijjy69YL7155Rr30lLOxMORjX07rLyEaYWRszb9DGeM1OdvGazQxwcLIj6mc0zx/JVmdv1bcOj249JzjoHTq62pStWZxaLcqxdPTWpAJUYOfyowxb0Y1HN4K4f+UJ9TpXw9JOyoF1smvQdVwzzGxMmdtnLQAH1p2mcXd3ek5txaENZyhWtiCeHaows8dv8jwvHb5Jsz51eHL7edzUKxZ0Gt2Ei3/flDfM9p3TDnev8kxqv4yvn75hGtfz/vPHr/z4lvLwpZ1LjzBsdQ8e+Qdy//Jj6nWtjmUeMw7ErWrddYIXZrYmzPVZI9O89iSNe9ai5/Q2HPI7TbFyhfDsVI2Z3ivlee7//SSNfWrRa3Y79q46hl1BK9oMacCelcfkMX3nd8TdqwKT2i7ma+RXtTQD7FzyN8PW+BBw/Rn3Lz2mvncNLO3NOLBG9mzqOqkl5ramzOkhG7K6f80JGvvUoefMdhxad4pi5Qvh2bk6M7ssB+Dn958E3VOcH/1T3HC2f9OjfkYnifn2+TuR7z8lSdc00fx33mz//vvvrFy5Em9vb06dOkXNmjU5ceIEjx8/xsTEJLPlaQzh3Znr3Ul0bbrI8AlNCXjwmnu3X9GgqQuWVsbs33UNAO/eNTGzMGTO5D0ANGpRhrdvPvA8MAyAEqXs8WpXgT3brmSYxl1rTjN0fjse3X7Bff9A6rWtiIWtKQf/Og9Al2ENMLM2Yt6QTfJ9HIrZAgm921bmg4/fAHDgz/M07lyFXhOasnf9WWzzm9O6b232+v2TYeeR2exYeIAR6/sRcO0J9y88on6PWrJ7cNVRALyntcXcTsrsLrIpT/avOkrjvp74zO3IoTUnKFbRkbreNZnefpE8z12LDzH/1ERaD2vM+b1XqdS4DK61SuJbbYLCsSUSCZ5danB0w2l5T7B/0c+tR6cJLfln5yXeB0dgld8C76lt+PAuko1TtuO7uleyvxvv6e0wt5Uyu8tSmeaVR2ncty4+8zpz6LdjFKtYWKa53cIEmg8w//RkWg9vwvk9V6jUpCyutUsqTFPSf1l3aratwoSms/kS+U3ea/7zhy/8+PYD/Vx6tBvTnAt7rxIWHI6RmSGN+3hikUfKurGb8J7ePstpjnz/KclipFE/o3gfkv4RkIkR3i28Oz1kpHdnx/orwK41pxg6v72sPugfSL12lWQ++GecDw5vgJmVMfOG/CXfx8EpoQ8a4OBkK6vDxvlgu4GePLgeyOtn78hlqEeTLtVwcLJj2fgdGtOtcA4rjzN0aRce3Qzi/tVn1OtYBYs8phxcL/PdLmOaYGZtwrz+6+PPobhsYXH93HF12uJ5iPoZxfOAkAzRqA5ZtVyXGhmlWz+3PnaFrOXfrQtYUrBUfj6+/8TbF++SeN+Jv87SfmwLhq3tw/qJWzE2N6Tn7I4cXneCH99+APDHpK30WeTNl49fuXzoOrp6uhQp44CBqQE7FuxXquPakVs8v/eSERv6s3r4HxhJDeg5pyMH1xznS6Ssl7r/sdsEXHvK0N/7sNx3HVpaWvRf1p1rR28p9DLfsfAAw/36EnDtKfcuBtCge9y1Wi2r23tPbYOZnZQ5XWX16gOrj9Kkjwc+czpy8PfjOFUoTN2u7szosFieZ8shjeg8qRUzOy7hTeBb+cjvr5++8e3z97hrqYdtomvpUCofke8/8fZFWLr+TykhvDtjvFvlhvK1a9fi7e2d7PbIyEh8fX1Zs2aN0u1fv35lwYIFLF++nLCwMEqVKoWdnR05c+bk8ePH7N69mx49euDh4cH48eOpUKGC+meTCFtbW7S0ssZbk9Nbz2NkZkCHcV5IbUwJvPOCMQ2my9+i/TIdR+9iaJKL9j2qIzU3JOhJKGMH/EloiGwoitTcAIsEQ3brNy+Djo42/Uc2pP/IhvL0I/uuM2/ibgDevvnI6L4b8BlSl5Wbe/PubSS7N11k6/qzGtF85uAtDE1y0a5vLaSWRgQGhDC+xzpCX0fINFsYYmljorDPsj2D5H8XLpkH98YuvHn5ni41ZcP7cujp0HmQJ9b2Ur5++cGV0w+YM2wznyO/aUbzvusYmuam3SBPpJbGBD4MZnynlYS+klVspJZGWNopDtlddmREvOZSeXFvVoY3L8LoUlE2l59+rhz0nd4ScxsTfnz7yYvHocwZsIEz+66nTeOuqxiZGtB+WENMrYwJuv+aca0XE/pSNuRXamWCZR6pPP7N83eMa70Yn2mtaNitBu9DPrBi5GbO7YvvZfbX3APExkLn0U0xszHhQ1gkl/6+hd/U+DnzGnVzB2DO/mEKeub1XcfRTedT1rzzMkbS3LQf0RhTa2OC7r1inNcCQuPMR2ptjGUes3jNQe8Y57UAnxltadijJu+DI1gx/E/O7b0mj3n36j1jms2j54y2rDg/hXfB4execZRtC+IXzWrUvaZM86GRipp7reHoX+dS1AxwesclDKUGtB/ZBKm1CUH3XjK2+bwEuk2wSKR7bPO5+MxqT6OetWS6h/7B2T1XUz1WVuC/NAQsKCiI2rVrA7IFT3R1dZk2bVqWqWgL704fWcW7k+g6fg8j45y0966G1MyAoKdvGTtkU7yXmxlgmWCqLC2JBO9eNbG2NSE6OobXr8L5ffkJDuy+ltwh0s2ZAzcwNM1FuwEeSC2MCAwIZrz3bwl80BBL20Q+eHCo/O/Czva4N3WTeXdV2SJN74IjGNNpFT7jmrL80FDCQj6wZ90Ztq3M/JcqGcXprRcwkhrSYWyL+Huw4Uz5PWhmY4Klfbx/hAS+ZWzDmfSa15nGfTwJex3O8kHrOLvzsjzm3oUAprVbRJfJrek8uTXBT94wre0iHlxWHCbtWrskVvks+HvdqSS6YqJjKFAyL7U7VsPAJDfvg8O5eeou09ou4u2Lt+jn1kv2d2NmbYplXvMEmkMZ22AGveYn0DxwLWd3xjdY3bsQwLS2C+kypQ2dJ7ch+EkI09osUNDcuLcnAPNOKc6BPKfrMo6sP0V0dAz2Reyos70GRuaGRIZF8vDKE3yrjSfg6hO+f/2R5TT/SoR3C+9ODxnp3dmx/gpwZv8NDE1y026gZ7wPdl2dcn3wYHz9SMEHq0wBwMAoJwOmt0JqYcTnyK88ufeKYa2XEHAzY6aBOLPnmqxOO7gBUisjAh8EM77dsvj6oqUxlnZShX2WnRgTfw6l8+HeohxvnofRpezYDNGoDlm1XJcaGaW7cBkH5p2M95/e87sAcMTvFHO8lyXxvm+fvzHSYwp9F3dj2ZWZfAyL5My2C6wbu1kec+j3E3z78oNWQxvTfVYHvn3+TuDt5+xclHS9sn+JiYlhTMMZDFjWnYVnp/Lj6w9ObDrL6qEb5DGxsbGMbzyTvou9mX96Mt8+f+fK4RusHvaH4rXadgEjMwPaj2mB1MaEoLsvGNsovtwktTHF0j6hn79lTKNZ9JrXiUa9PXj/Opzlvn7yxUgBGvXyIIeeLuO3Kk4d9cfk7fwxZbvsWroVZO7x8fJtveZ2kl3LDaeZ220FGYXw7ozxbkmsiisAGBsbU7VqVdasWYO1tbXCtsOHD9OjRw9MTU25efOm0v3t7e0pX748Xbp0wdPTE11d3SQxQUFB/PXXX6xcuZKxY8fSo0ePNJxS+qmj1TJTjptetFycUg/KYmhpqGH6l/Lla2YrUJvYbKgZgKiozFagNrHR2W/4/+HPG1IPUoOeV9WbO3V1mfWpB2VRtLS0CAkJwdLSEgBDQ0Nu3ryJg4NDKnv+GoR3Z30k5Z1TD8piaGdAb9aM5tCz+ZktQW3qaLfObAlpIzYm9RhBujkas02j+QnvFt6dGXi6TUg9KAuiFZb95ujma/ard0e9zdoN2ILMRaKdMVMIZiRHfm5OPUgNhHdnjHer3KP85s2bdO3aleLFi7N06VLatm1LZGQkgwYNYuPGjQwbNowJE5I3ukOHDlGiRIlktwPky5ePUaNGMWTIEIKC0j//9IsXL5gwYQJr165Nd14CgUAgUI2Y/9AQMIA1a9ZgYCAb1hsVFYWfnx/m5uYKMQMGDMgMacK7BQKBQKASwruFd6cH4d0CgUDw6xHenTHerXKP8n9ZuHAhY8eOpUaNGty+fRsjIyP8/Pxwc3NTaf+oqCimTZuGt7e3RudFU8bNmzdxdXUlWs0entm1V5roUf6LyIa9s0WP8l+H6FEOXa90VSt+Xdl1Gj3+ryR//vwKC0EpQyKR8PRp5i76Irw76yJ6lP8aRI/yX4joUf5L0HSPcuHdigjvVo+0erfoUf4LET3KBf9niB7lwrsToynvVnsxTx8fH86cOcPu3bvJnTs3e/fupVSpUqofUEeHOXPm0LmzekMElLF3b8orvmd24UYgEAj+i2T3FbXVITAwMLMlqITwboFAIBCkhPDurIfwboFAIBCkhPDujEGthvJz587RtWtXdHV1+fvvv1mzZg0VK1Zk2rRp+Pr6qpxP7dq1OXXqFF26dFFXrwJNmzZFIpGQUqf41N44CAQCgUCzRP2HDDs7ILxbIBAIBKkhvDtrIbxbIBAIBKkhvDtjULmhfMiQISxdupR+/foxffp09PT08PDwYMuWLfTr149du3bh5+en0kTq9erVY9SoUdy5cwc3Nzdy586tsL1x48YqabKxsWHZsmU0bdpU6fYbN26oPDRNIBAIBJrhv7T69uTJk5WmGxsbU6RIETw8PNDSyrwCjPBugUAgEKiC8G7h3SkhvFsgEAiyHsK7M8a7VW4o37NnD8eOHaNq1aoK6a1bt6ZGjRr4+PhQqlQpIiMjU82rd+/eAMyfn3S+SIlEovLcZm5ubvj7+ydr2Km99RYIBAKB5vkvDQHbtWuX0vSIiAhevXpF8eLFOXz4sHx17l+N8G6BQCAQqILwbuHdKSG8WyAQCLIewrszxrtVbii/efNmkjfQ/2JlZcXu3bv5448/VMorJkYzi/wMGzaMz58/J7u9UKFCnDx5UiPHEggEAoFq/JfebF+/fj3ZbcHBwbRr147Ro0ezZs2aX6gqHuHdAoFAIFAF4d0yhHcrR3i3QCAQZD2Ed8vQtHer3FCenFknpGPHjukSoy6J37InJnfu3FSvXv0XqREIBAIBQAz/HcNOCRsbG6ZOnfrLvTEhwrsFAoFAoArCu2UI71aO8G6BQCDIegjvlqFp71a5n76TkxPv37+Xf+/Zsydv376Vfw8NDSVXrlwqH/j06dM0atSIQoUK4ejoSOPGjfnnn39U3l8gEAgEWZOYWIlan/9n7OzsCA0NzbTjC+8WCAQCgSoI745HeLdAIBAIsgPCu+PRpHer3FD+4MEDoqKi5N83b96sMC9abGws3759UymvjRs3Urt2bXLlysWAAQPo168fOXPmpFatWvz1119qyBcIBAJBVkMYdjw3b94kf/78mXZ84d0CgUAgUAXh3fEI7xYIBAJBdkB4dzya9G6Vp15JjLLFOiQS1S78tGnTmD17Nr6+vvK0gQMHMn/+fKZMmUK7du3SKksgEAgEmcz/uwkn5OPHj0rTP3z4wJUrVxgyZAjdu3f/xaqSR3i3QCAQCJQhvFt4t0AgEAiyF8K7M8a709xQnh6ePn1Ko0aNkqQ3btyY0aNHZ4IiRT61qZDZEtJE7lffM1uC2mh9+ZHZEtQnR47MVqA22fbxqaRikNWRJOgB9F/lv2TYJiYmyVZWJRIJPj4+DB8+/Beryhiyund/b1gusyWkCe3vmllo7Vci+WmU2RLUpl6eAZktQW0kWtnzWRobo/KA1axDbPb7HWoa4d0yhHf/Wn6YqT6FTFZC70f2K+9LosVz7leglQ3bCgBio6MzW4LaZEfNmkZ4twxNe7fKDeUSiSSJKFXfZCfG3t6e48ePU6hQIYX048ePY29vn6Y8BQKBQJA1+C8tKnLy5Eml6UZGRjg6OmJgYPCLFSkivFsgEAgEqiC8W3i3QCAQCLIXwrszxrtVbiiPjY2lVq1a6OjIdvn69SuNGjUiR9wbsyg1elEOGTKEAQMGcOPGDSpVqoREIuHs2bP4+fmxaNEiNU9BIBAIBFmJ/9Kb7erVq2e2hBQR3i0QCAQCVRDenXUQ3i0QCAQCVRDenTGo3FA+YcIEhe9NmjRJEtOiRQuV8urduzfW1tbMmzePrVu3AlCsWDG2bNmiNF+BQCAQZB+isuOw+zQye/Zs+vfvT86cOQE4c+YM5cuXR09PD4DIyEhGjBjB8uXLM0Wf8G6BQCAQqILwbuHdAoFAIMheCO/OGO+WxCpbHeQ/TsV28zJbQprIjnOU64ZGph6U1fj+M7MVqM+PbDgXPGTLOcrJhnOUH3qzQqP5uZ8Yolb8yZqqP3PPnDnDnDlzuHbtGsHBwezatYumTZsmG79z505WrFjBjRs3+P79O8WLF2fixIl4enrKY/z8/OjatWuSfb9+/Yq+vn6KerS1tQkODsbS0hKQDf26ceMGDg4OALx58wZbW1uixRx6GU61xnMyW0KayI5zlOcI+5rZEtRGK+R9ZktQm+g3oZktIU3ExmRD786Gc5Qfjdmm0fyEdwvvzgzcPWZltoQ0oResfFG5rIwk4lNmS1CbqFevM1uC2og5yn8d2VGz8O7s4d1qvX64dOkSY8aMYfjw4Rw5ciTNB3VwcCAsLCxJekREhPwkBQKBQJA9iY2VqPVRh8+fP1OqVCmWLl2qUvyZM2eoU6cOBw8e5Nq1a7i7u9OoUSOuX7+uEGdkZERwcLDCJzWzlp1rbIrfswLCuwUCgUCQGsK7sxbCuwUCgUCQGsK7MwaVp17ZtWsXLVu2RF9fHx0dHebNm8e8efMYNGiQ2gcNDAxU2sr//ft3Xr16pXZ+AoFAIMg6ZOSiIvXq1aNevXoqxy9cuFDh+/Tp09mzZw/79u3DxcVFni6RSLC2ttaUzCyD8G6BQCAQqILw7qyD8G6BQCAQqILw7oxB5Yby6dOn06VLF1auXImOjg5Tp05l6tSpahn23r175X8fPnwYY2Nj+ffo6GiOHz9O/vz5Vc5PIBAIBFkPdRcV+f79O9+/K04dpaenJ59vTJPExMQQGRmJVCpVSP/06RP58uUjOjqa0qVLM2XKFAVDz64I7xYIBAKBKgjvzjoI7xYIBAKBKgjvzhhUbih/+PAhf/75p3z17WHDhjFx4kTevXuHubm5Snn8O5+NRCKhc+fOCtt0dXXJnz8/8+Zlz/nBBQKBQCBD3WFdM2bMYNKkSQppEyZMYOLEiRpUJWPevHl8/vyZVq1aydOKFi2Kn58fJUuW5OPHjyxatIjKlStz8+ZNHB0dU81zzZo1GBgYABAVFYWfn5/cFyMjM3cdBuHdAoFAIFAF4d3CuwUCgUCQvRDenTHerfJinlpaWoSEhMgnTgcwNDTk5s2bas9vVqBAAa5cuaKy0f9qxGKevw6xmOcvQizm+esQi3lS8chIteJPVZ+UpjfbEokk1UVFErJp0ya6d+/Onj17qF27drJxMTExuLq6Uq1aNRYvXpxinvnz50ciSb2A8uzZM5U0apr/kneLxTx/HWIxz1+DWMzzFyIW8xTerQTh3RmPWMzz1yEW8/w1iMU8fx3ZUbPwbkWyqner3KMckg7biomJ4fjx49y5c0ee1rhx41TzyaxCh0AgEAgyHnXfbGfUcK+EbNmyhW7durFt27YUzRpkFdSyZcvy6NGjVPMNDAzUkMKMQ3i3QCAQCFJDeHfWQni3QCAQCFJDeHfGoFZDeeJhWwA+Pj7yvyUSidLFQhIzYMAAChUqxIABAxTSly5dyuPHj5NMAp9W7t+/T4MGDXj69KlG8hMIBAJB6qg7V1pGs2nTJry9vdm0aRMNGjRINT42NpYbN25QsmTJX6Au4xHeLRAIBILUEN6dtRDeLRAIBILUEN6dMajcUB4To7khiTt27FBYYORfKlWqxMyZMzVm2D9+/CAoKEgjealK89qlaN+wLGYmuXn2KoyFG05y86HyFcVdiuVh+bjWSdLbDF1H0OuMGyLcuKkrLdtUwExqQGDgW5YvPcadWy+UxpYomYfuPu7kzWuGnr4ub0I+cmCfPzu2XZHHVKlahLYdKmFnZ4q2jhavXoazfesljh25ozRPTdCgbQW8vKsitTAk6HEoq2bs5+61QKWxleoUp0Gb8hQsaoNuDh2CHoeycekx/M+l/tYqXRo7VMKrRw2kloYEBbxh1dQ93L2ivFeHqYUhPcY0wrFEHmzzm7N3/VlWTVH8jcz6qzfOFQom2ffyyftM6Pa7ZjR3qoJXr1pILY0ICghh1cQd3L2svMBramlEj/FNcSxpj20BC/auPcOqiTuTzbt6Y1dGLu/C+b9vMaX7Go3olevuXDWB7mBWTdjJ3ctPUtDdDEfnf3WfZtUERd2V6pWidX8PbPObo6Orzatnb9m56gQndlxRmqdGzqFLNbz61kFqaUzQw2BWjdvG3UuPkz+HSV44OufF1sGCvWtOsWqcZodxpYeMnDHn06dPPH4cf12ePXvGjRs3kEql5M2bl1GjRvHq1Ss2bNgAyMy6U6dOLFq0iAoVKhASEgJAzpw55T21Jk2aRIUKFXB0dOTjx48sXryYGzdusGzZMrW0HT9+nOPHjxMaGprEM9euXZue004zwruT0rReado2L4vU1IDA5+9YsuYEt+4p9+mElChmx+LpbXgW9I5ug9bL06tVdKSDVwXsbEzQ0dHi5esItuy+wpFT9zSqu0lDF1q3LCfz7qB3LF15nNt3XirXWtwOn241sLc3Q19PhzehH9l34Abbd11ViGvRrAyNG5TGytKIDx+/cvqfh/y29jQ/f2pmKGtDr7K07FgJqbkhQU9DWTnvb+7ceK40trJ7MRp6lcGhsDW6ujoEPQ1l4+pTXLsY/yyfvaoLpdzyJ9n30tkAxg/6SyOaNe2Dleo507pfIj9ZfTJdftKoVx1aDm6E1MaEoHsvWTF4A3fOPUg2vmTVYvSa25F8TnkIex3O1nn7OLD6mHx7Pqc8dJrQEkdXB6zzW7BiyHp2LT6kkEfHcV50HO+lkPY+JII29r2S0ehBy6GNMLMxIfDuS1YMXs+ds8lrdK5WDJ+5nchfPE7j3L3sX3VMIaZK83J0mdQam4JWBD95w7pxmzm3O/46amlr0WlCS2q2q4LU2oT3weEcWX+aP6ftJOFMk3mL2tF9Zjucqzkh0ZIQdPclU1rPp0JDV1oObRKv2XddKpqd8JnXOV7znD3sX3U0kebydJncJl7z2E2c231Zvr3NyKZUaVYe+6J2fP/6g3vnH7Jm5J+8DIifbkA/tz7dZ7anUpOyGJkZ8iYwlF1LFP8/mkB4t/Du9JDR3t2kUSIPXJGKB3ZX4oE7lXhgw0Qe+LvmPBCgYevyeHWpIquzPgll5awD3PVXfp0q13KiQevyOBSxQTeHNs+fhLJx+XGunY//7dRtUYbajVzI52gFwON7r1i36CgByVyLtNCgUxW8fGrG++CknSn74LimOJbME++Dk3Ylm3f1xi6MXNaF84dvMaW7Zuqv6tKot4daz3pN0bBnbVoOboDU2oSge69YOewP7px7mGx8yapF8ZnVgXxOdoQFR7Bt3n4OrDku3165SRnaDG+CbUErWfni8Rt2LDrI8b/OKs2v9bDGeE9pza4lh1g5bKNKmjOjvJHTQJ/Ok1pRuUlZTCyNeXwjkBWD/Qi4+mtewmXW/ZFWhHdnjHer1aM8JaKjo9m3b59Kc9aEhYUpDCX7FyMjI969e6fyMQcPHpzi9rdv36qclyaoVaEIgzq5M2ftcW4FvKJZLWfmj2hOu2F+vAlLfi7uVoPX8vlr/DxBER8zbu7PGu7F6N2vDosX/M3dOy9p0MiFGbNa063zakJDk8619u3bT/bsusbTJ6F8+/aTEiXzMGhIPb59+8mBfTcAiIz8yl8bz/HieRg/f0ZToaIjw0Y0JCL8M1eTaRhOD9XqlcRnZAOWTdnDPf8g6rcuz5RVXfBptIC3wR+SxJcsU4Dr5x+zfsERPkV+pU4zNyYu74Rvm+U8uR+scX0A1RqUwmdsY5aN38m9a4HUb1eBKWu74+M5h7evI5LE6+bQ4UPYZzYvO04z72pK85zS2w9d3fifrKFpLpYfGMw/B29qRnMjF3wmNmfZmG3cu/KU+h0qM+WP3vi4T+ft6/BkNH9i8+IjNOvhnmLelnamdB/XlNsXlTf8pkt3Y1eZ7tFbZbo7VmbKxt741Jimgu4aSvOMjPjMlsWHefH4DVE/oylXuziD57cn4l0k/qc1b5TVmrjhM6Uly0Zu5t7lJ9TvVJUpm/riU3Uyb18pOQc9HT6ERbJ54SGa+dTSuJ70EkPGvdm+evUq7u7x99u/PtC5c2f8/PwIDg7m+fP4hrhVq1YRFRVF37596du3rzz933iAiIgIevbsSUhICMbGxri4uHDmzBnKlSunsq5JkyYxefJkypQpg42NjUrzp2UF/mveXbNKEfp3r8n8lUe5c/8VjeuWYvYELzr1XUvou+R9OneuHIwZVB//m0GYmuRW2PYx8ht/bLvI85dh/IyKoVJZB0YOrEf4hy9cuR6oEd3u1YvSt1ctFi49wp27r2jUoDSzprakS481hL5Nqvvbt5/s2uvP02dv+frtByWL52HwQE++ffvJ/kMyz6jt7kRP7+rMnn+QO/deYW8nZcTQ+gAsX3Ui3Zqr1ylOryF1WTrzAHdvPqdB8zJMXdyBHi2X8faNEq92yYf/paesW3acT5Hf8GzkwqQF7RjY5TeePJQVtKcM24KOrrZ8HyPjnKz4qzf/HNPMS4mM8MHIiC9sWXJE0U/mtUuzn1RvWZFe8zqzpP/v3D3/kAY9ajNt/0i6Ow/h7YuwJPHW+S2Ytm8EB38/wczOSyleqQj9l3Tjw9uPnN0la7DVy5WDkGeh/LPjIj5zOyV77MA7LxhRd6r8e0y08sa86q0q0ntBZ5b0+5275x7SoGdtph8YRbcSg5PVOHX/SA6tOcGsTkspXrkI/Zd2I+LtR87ulGksVsGRsZsG4Td+K+d2X6Zy03KM3TwI32oTeHBZVrZoM7wJDX1qM7vrcoLuvqRwGQeG/t6bzx++yBuWbRysWHBmEofWnmT9xG18/vCFvMXsKOtZit4LurKk728yzT51mH5wDN2K+/L2RdLnm3V+S6YeGMWhNceZ1XGxTPOyHnGaL8VpLszYzb74jd/MuV2XqdysHGO3+OJbdZxcs3O14uxdfpiHVx6jraNN16ltmXl4LN2L+/Lti6xu0HtBZ0rVKMHMjot5E/gWN49SDFjWPdn/U1oR3i28OyUy07vlHrgkgQdOa0mX7il44J4EHlgigQfG1Ztq13SiZ7fqzJ4X54F5EnjgyvR7IEA1z5L4jKjPsqn7uHs9iPotyzJ1RWd6NlnE25CkPljCLT/+Fx7jt+gInyK/4dHUlYlLOzKo3UqePJDVWZ3LFuDUoVvcm/GcHz9+0rJrNaav6oJPs8WEKanLq625kQs+E5rJfPDqM+q3r8SUDb3wqTkjZR9ccpRm3WukmLelnSndxzbldjIdgX4F1VtVUutZr7HjelWg19yOLB24jrvnA2jQvSZT9wynh8twpb5old+CqbuHcWjtSWZ1XU7xSoXpt6grH9595GzcC+LI8M9smrWHFw9fE/UzivL1XBiyuicRoR+4duy2Qn6F3Ryo382dp7dUf5mVWeUN31U+5C+eh9ldlhEWHE6tdlWZ9fdYujsPIUzJPahJMuv+SA/CuzPGu1VezDM5Hjx4wNq1a1m/fj3h4eH8UGHRwBIlStCrVy/69eunkL5kyRJWrFjBvXuqVXi0tbUpXbo0RkZGSrd/+vQJf39/lYalJSSti3mumdyOh4FvmLM2/k3fpjldOHP1MSu2JH2z92+P8jrdl/LpS/oX4lRlMc8lKzrz+NEbFs3/W572+4aenP8ngN9/O6XScSZMacG3bz+YNW1fsjErfvPm0oXH+K09k2JeaVnMc8HmPjy5/4qlk/bI01bt9+XC8Xv4LTisUh4r9w3izKFb/LU8DQUhFRbzXLBzAE/uvmTpuPieZauODOPC0Tv4zUm5F9Csv3rz9P6rJD3KE9O0a1U6DvKkXYXJfP+ayu9Ohd/lgn2DeXL7JUtHb43XfHI0Fw7fxm9m8v9rgFnb+vP07iulPcq1tCTM3j6AI1svUaJcQXIb5VS9R7kKj6cF+4bw5M4Llo5KoPvUGC78fUsF3QN4eu9lkh7lyljy93AuH7/LH3MOpByYhsU8FxwazpNbL1g6YpM8bdU/47nw9038pu1JYU+YtdOXp3dfpqtHuaYX83Q9OFateP/6U1MPyuLY2Ngwe/ZsOnbsmNlSVOL/0btVWcxz5Zz2BDwNZf6K+F6ffyzz5p9Lj1i94Z9k95swtCEvg8OJiYmlSnlHhR7lylizoBMXrj7h9z/PpapJlcU8ly/qSMDjNyxcckSe5vdbd86eD2DNupR99l8mjWvKt28/mRH3DBvQtzb57M0YMnKLPKZ3T3eKFrFh4JCUe2erspjnIr/uPH4QzJKZ8c/M37b15fypB6xbdjyFPeNZvaUPp4/e5c81p5Vub9a2Ah193Glbdy7fv6Xszaos5plRPpiYJYeGyfxk7sEU45Qt5rn43FQeXX/Gkn7xPfHW3JrH+b1XWDt2c5L4btPbUbGhG92dh8jTBizrhoNzPgZVHZ8kfsOjJexaclBpj/JKTcrQu0zqi0YtOjuFx9efsbhvvMbf78zn3J4rrB2zKUl89xntqNioDN1KxDfEDVzeHQfnfAysMg6AMZsGkssoJ2MazJTHTD84ik/hn5neXrb405S9wwl/84H5PVbJY8ZvG8z3L9+Z1VnWU2n0XwOJ/hkl//4vi89PlWnu81u85rsLZJpHJ/09dJ/ZXqa5uG+85hU9cHDOz8DKY+I0+8Zpnp5A8xg+hX9ievtFSq+dsbkR20N/Z3D18dz+5z4Aq2/N4/TW8/w5dYc8btmVWRR2U29Rx9QQ3p31+X/0blUW81y+uCMBjxJ54Jo4D0ylrvkvk8bHeeDsBB6Y14whI9T3QFBtMc+Ff/bi8f3XLJ0aX6dbvWcgF07cZ92iIynsGc+qXQM4ffg2f608qXS7lpaEbefGsnz6Po7HdWJLDlUW81yw15cnd16ydHR8vWLViVEyH5y1P8V9Z23tJ/NBJT3KtbQkzN4WVx8s7xBXH0y9R7mmF/NcfGG6Ws/6tKBsMc9FZybx+EYgSwask6f9dmM25/ddY924LUniu01tQ4WGrvQoPVyeNmCJNwVK5sW3xsRkj730wlQu/32DDZO2y9P0c+ux7OI0lg5cR9uRTXl6M0hpj/LEC2NmRnkjh74ue8L9mNB8LpcPXZenr7g6k0sH/PGbsFUhD00v5vkr7g9NL+YpvDtj0ErLTp8/f2bt2rVUrlyZ4sWL4+/vz7Rp03j9WrUH2eDBgxk+fDgTJkzg9OnTnD59mvHjxzNy5Eh8fX1TzyAOR0dHfH19OXnypNLPb7/9lnomGkJHW4siBay4nOgt3aXbQZQsbJvivuund2TfMh+WjPbC1ck+4zTqaFG4sA1XrygOW7l25RlOJfKolEchRyuKF7fjVjJDpwFcXPOTx17KrVvJx6QVHV1tHIvbJpk2xf/cI5xc8qqUh0QiIWcuPSIjMqbnvo6uNo4l7PD/J0Ah3f+fAJxc82vsOB6tynF6/43UG8lVQEdXG8eS9vifUezd5n/mAU5lCqQr73a+dfnw/hNHNl9MVz7K0NHVxtHZPkmvPP/T6dedkNJVCpOnoCV3MqBHvOwc8uKfaJoG/9P3cSqj2UrwryI6RqLW5/+BHz9+UKlSpcyWkSL/de/W0dGicCHrJL28r1wPpERRu2T3q1erBLY2JvhtOq/ScVyd82JvZ8rNu5oZBq2jo0VhR2uuXlMcoXX12jNKOCWvOyGFClpSwsmOm7fjp1m7fecVhR2tKVrEBgAba2PKly3IxUvKp61ST7M2jkVtFaZNAbh28QlOzqqVcyQSCTlz6xGZwig7zyYunD5yJ9VGclXISB9MSOnKcX6Shuuso6uNo2sB/I/eUki/duwWThULK93HqYIj144lij9yi8JuDmjraCvdJznsClmzKWg5GwIWM3rjAKwLWCrVWNjNgWuJNR69SfFkNBarUJhrRxVHx109cpPCZeI1OlUozLUjinlePXxT4bzvnH2IS80S2DnK7mkH53yUqFxEXtmWSCSUr+/Cy4BgZhwazdbg1Sw+P5WqLcrJNB9R1HDt6C2KVyySguakehQ0V1R2XjdwqqQ8T4DcxrkAiHwf36B199wDKjYqg5mtFIBSNYqTp7BNsnmkFeHdWRPh3XEe6K8BD0ww1ejtu0o8sFxBLiYzdaP6urVxdLLF/7xi3cH//GOKlVajzppbj8gPyfugnr4uOjraKcaoSrwPKk4H4n/mYfrrg4Pi6oNbNF8fVBUdXR21n/WaOa7MuxP38r527DZOFRyV7lOsgmOS+KtHb1HYrUCy3l3avTj2hW2STBPSb1EXLh+6wfUTd9XW/KvLG9o62mjraPMjUbnu+9cfFK9cVGX9aSGz7o/0Irw7Y1Br6pULFy6wZs0atm7diqOjI+3bt+fSpUssXrwYJycnlfPx9vbm+/fvTJs2jSlTpgCQP39+VqxYQadOyQ/5TIybmxvXrl2jQ4cOSrdLJBJS6zD//ft3vn9X7IkdEx2FlrZ6s9KYGOZER1uL9x++KKSHf/iM1Di/0n3CIj4z47cjPHj2hhy62tSt4sSS0S3pO3ULNx6kPl+quhgb50JbR4vw958VNYZ/RirNncxeMjZt64exSS60tbXY4PcPhw4oPkBy59Zj8/b+6ObQJiY6lsUL/8b/aqCmTwEjk1xo62gT/k7xjXhE2CdMzQ1VyqN51yro58rBmb9vpR6cBoxMc8dpVOwtHxEWiamFahpTo7CzPQWK2LBwxNbUg1XASBqnOdHwxYi36dPsVKYAnm0q0leF3iJpQa478bV+F4mppfIeL6qSy1CfjdemoptDh5joGJaN3sr1f5KfRy6tGEkNkr/2lkmHymYH1F19+/+B7t2789dffzFu3LjMlpIE4d0yjI1kPh0eoeiB7z98Rmqi3APz2Jjg07ka/UZuIjomeU25c+Vgx7re5NDVJjomlgUrj3L1hmbmajU2knlveESi8kXEZ0xNU/burRv7YGycE21tLdZvPMfBBL538vR9TIxzsnheeyQSWaV+zz5/Nm29lG7NMq/WIiJReSPi/WdMzQ1UyqNFh4ro6+ty+qjyil2R4nYUKGTFglRGX6lKRvkgxPnJ1SnxfjJmW5r8xMjcSKYxVHHIfvibD5hamSjdx9TKhPBEU92Eh35AR1cHY3ND3odEqHTsB5cfM7vrcl4+CsbU0ph2o5uz8MxkepQaqtCoK9eY+JhvPmBqrVyj1NqYq0riE2o0tTZJet6hinlumb2H3Ma5WHtvPjHRMWhpa7Fu7BZObpa95DKxNCKXYU5aj2iC37gtrBn5J2U8SzN2sy9aWlqEv1G8FuFvIlLQbMJVJfFJNKtxHQB6zevM7X/uE3g3vkFv2YB1+K72YfPLVUT9jCImJpYFPVYyYkP/ZPNJC8K7sxb/Ge+OiUJLKyXvjvPA8EQeGK6CB/6ZggeeivPA+Yk8cEv6PRDAyDSuzhqmWGcND/uE1ExFH+xcGf2cOThz+HayMd6+noSFfuT6xfQ38Mf7oGJv+Yh3mqgPVqCv5+z0SkwXxuaGcf4UoZCe0rNeExjFHTcikYdFhH7A1Ep5Xc/UylhpfGLvzmWUk7+eLkVXT1a+WDLQD//j8evEVW9ZgUKlC9C/snrPuMwqb3z99I27FwJoP6Y5zx+8IuJNBO5tKlO0XCFePQpR6xzUJbPuj/QivDtjULk12MnJiS9fvtCuXTsuXbokN+iRI1MfgqmM3r1707t3b96+fUvOnDkxMFDNMBIyb968JGabkFKlSqW6GMqMGTOYNGmSQppdiTrYl/RUWw9ALIkLCMnfuM+Dw3keHD/P0p1HwViZGdKuQdkMaSj/F2UKU5vhwrf/H+TMlYNiTnZ071mD16/COXk8vgfsly/f8en+Ozlz6uLimp9efWoT/DqCmyn0PE8PSc5BQqqFM4Dq9UvRoW9tJvXbwIdEFXhNk1iOBInGFlvwbFWOZw+DCUhmEda0kvgaygq9acsrZ249hi3uxKLhm/gYntHXOrHu9C9s8fXTd/p6zCRnbj1KVylCjwnNCH7+jtsXMmZevcTPDlXv6azIf9Gwv337xurVqzl27BjOzs7o6uoqbJ8/f36m6PoveXfewrXJV8Qj1eMrfTYncRXZMOFxQxuy9q9zvExlTsQvX3/QbdB6curnwK1UXvp6u/M65AM37mjuGZ3keaDCfHwDhvxJzpy6OBWzo4d3dV69DufEKdl0DqWc7enQtiILlx7h/oPX2Nma0q93bTq+/8wff6nWe15dzRIJSQ1cCTU8S9CxZw0mDtnMh2T8w7OJC88ev+HhXc2WlzTpg//y9dN3+nrOImcuPUpXKUyP8U3T5SfKr2sKIpPe9ErzSYkrh2/I/w7kBfcvPsLv4SI8OlVjx8KkU8gov47JHy/p7S1Jmo+SPBOm1WhdiVrtqzCjwxIC776gUOn89J7fmbDg9xzdcAYtLdlA2gt7r7JzkUzzk5tBlHYvThmPUko1pKxZiZ7EMtX4X/Vf2o0CznnxrapY8Ws6oB7FKhRmXOOZvAl6i3M1J/pnwBzlwruFd6dERnl3PodaFChYJ9Xjp9kD9eM8sFt1Xr1S4oFL4jzQLoEH/qkZD4xTnki2RBUbpEY9Zzr0rsWkgRuTrbN6da1KjXrODPdew88f6k/9mBzKLnW66oOLOrJo+OYMrw+qirrPes0dV5mHpRSfKEGJL36N/EafcqPRN9DHxb04PrPaE/IslFtn7mORR0rvuZ0Y3XAmP1WYOlY1zcqEpSA6DeWN2V2WMeQ3HzY/X0F0VDSPrj/j5OZzFCqtudF9KZFZ90daEd6dMd6tckP548ePadOmDe7u7hQrVizdB/4XCwuLNO9rbW2d7uOPGjUqyeIkdXqoP19vRORXoqJjMDNWfLNtapyL9x9UN4U7j4KpW0Vz1zchHz58IToqJknvcRPT3ISnYlwhcQuOPHv6FlPT3HTqUlWhoTw2Fl7HLTr45HEoefOZ07Z9JY03lH+M+EJ0VDTSRD3SjKUGRISlPO9atXolGTS1OdN9/+LGBc0Mq1OqMfyzTGOiN+/GZgZEpLBYnKro6etSvVFp/lBxPnZV+Pg+TnOiXtjG5mnXbJPPHOu8Zkxc11OeJtGSPcj3By6gR/VpBAelb1EMuW6LRLrNDIl4m/rcgSkRGxtLcKBM39O7r7AvZEXrfh4abyj/+P6T8nMwT/85ZBYx/0HDvnXrFqVLlwbgzp07Ctsyc3Gw/5J312+b8mrpHz7KfFpqmtSnE/fWBsiVMwfFHG1wdLBikE9tALQkErS0JJzYNYShE7bhHzfFWGwsvAqOAODxs1Dy5TGjg1d5jTSUf/j4hejkdKfm3XE9e54FvsPUJBedO1SWNxJ4d67KkeN35T3sngW+Q19flyED67Jx0/l0NQ7LvDoG00S95oxNcyfpXZeY6nWK4zuuCdNGbOX65adKY/T0dKnhUYINyczZmibNGeCD/6LgJ/deYe9oTeu+ddT2k4/vPso0JurNZWJpnKTX178o6wllamFM1M8oPqbyv0iJb1++E3jnObaFFKcAkWtMdEwTSyMilCziCvA+5ANSa+Mk8Qk1hodEJOnFZmJhpNB7rces9myZtYdTW2SNXIF3XmCZ14I2I5pydMMZPrz7SNTPKILuKb5ceXYrCLc6zko0G6egOQKptWmSeJnmyHjNSvJM3OMOoO9ibyo0KsOQ6hN49yp+Pv0c+jnwntaOic3ncPmgv0zv7ecULJ2fet00u5i38G7h3SmRUd7dqPmSFPeRe2Ci+qupiQoeGJLAA01z0bmjih74V/o8EOBjuKzOamqmWB80kabug9U8SzJoUjOmD9mcbE/xFp2r0KZ7dUb1WMezgDfpE/uv5uR80MxQA/XBHvI0eX3w2Xx61JhGcFDShSEzgg/vIpPxp+Sf9ZrgY9xxE3uYsYVRCt6dtLe5iYVREu+OjY3l9VPZ///prSDsi9rSelhjbp25TyGXAphaGbP0Qvyc1No62pSsUpTGvT1oaNSZmGRGS2ZmeSP46RuG1pqMfi49chnl5H1IBKP/HEhIYNJ1WzRJZt0f6UV4d8Z4t8oN5c+ePcPPz4/evXvz9etX2rZtS/v27dMsZPv27WzdupXnz58nWYjE398/TXmmBT09PfT09BTS1J12BSAqOoaHz95QtmQ+Tl+Nr/iUK5GPf66pXhEqnN+SdxEZ87Y1KiqGgIBg3MoU4FyC+bPdyhTg/NmAFPZMhAR0dVOeZ0qiQkxaiPoZzaO7r3Gp5Mj5Y/EN9a6VCnHhxP1k96tevxS+01owa+hmrpzW/PQZSTTeeYVLlcKcPxL/w3WtUpgLx+6ksKdqVG1QCt0cOpzYrbnfSdTPaB7dfoFL1SKcTzAs0bVqUS4cSX64X0q8ePKGXrVmKKR1GtaAXAZ6rJywU+nK6eoS9TOaR7de4FKtqKLuakW4kMIwxbQgkUjQzaH+syE1ZOfwHJfqxTh/KH5KI9dqxbhw+GYKe2ZdsvBL9wzj5EnNNdhpEuHd8URFxRDwOIQypfPxz8X4dS7KlM7H2ctJffrzl+907rdOIa1p/dK4Oudl/My9BKdQaNakB0ZFxRDwKIQyrvk5ez5et5trfs5deJTCnok1ScihG3+N9PV0k/SQiYmJRSJJf++ZqKhoHj14jWv5gpw/FT9Xpmv5glxItKZEQmp4lmDwuCbMGLODy+eSP7dqdYqjq6vD8UOam0ItI3wwOSQS0NVLQ1nzZzSP/J/hWrsk5/Zckae71irJhX1Xle5z7+IjKjRwVUhzreNMwLWnREelfREs3Rw62Be143aiuVCjfkYTcO0prrWdObc7gcbazpzfq1zj/YsBVGjoppDmVseZgKvxGu9dDMCtjrO8JziAm4cz9y7El1/1c+kRk/iejo5BK65RJupnNA+vPMG+iGLjvk0haz6GfcK1jjPndl9OpPkKypBpLqOo2aOUouYLAbjVdmbnwvgFbd3qlOLeecVyaL8l3ajctBxD3SckaQjQ0dVGN4cOsYl66kZHp74IsLoI7846/Ke8O4VpVyCRB57ToAfq6xIbk/h5oRkPlOmO5tG917hULMT5E/F1VpeKhbh4Mvk6a416zvhObs7MEVu4nMwUXV5dqtC2pztjevnx6J7mRlUl74NF0lcfrD1TIa3TsPrkyq3Pyok7efs6Ij2S1SLqZ5TMn9R41mvmuHHeXauEgg+61irJhf3XlO5z/+IjyifybrfaJQm49ixF75ZIJPLyxY2Td+npOkJh+5DVPXkREMzWufuSbSRX0JyJ5Y1vX77z7ct3DExyU8bDmTWjNLOYZnJk1v2RXoR3ZwwqL+ZpZ2fHmDFjePz4MX/88QchISFUrlyZqKgo/Pz8CAhQvaF18eLFdO3aFUtLS65fv065cuUwMzPj6dOn1KtXL00noozOnTtTs2ZNjeWXGpsOXqOxe0kaVi9BPlspAzvUwMrckF3HZY1dvVtXYXzvuvL41nVdqVamEHmsTShgZ0bv1lWoWb4w249cT+4Q6WbH1svUa1CauvWdyZvPjN59a2NpacS+vbJCUrceNRgxupE8vnFTNypUKoSdnSl2dqZ41nOmVevyHE8wZ2jb9hVxLZMfGxsT7POa0aJVOep4luTY0fQ3Citj1/p/8GxRBo/mbtg7WNBzZAMsbEw4GDenXBdfT4bMbCmPr16/FENntuS32Qd5cPM5puYGmJobkMtAL7lDpF/j76fxbFUOj5ZlsS9oSc+xjbGwNeHgn7IFTLoMq8eQuW0U9nEoZotDMVv0c+fAWGqAQzFb8haySpK3Z6tyXDhyh0glPSDTpXn1STzbVsSjdQXsC1nRc0IzLOxMOfjHWZnmkY0YslBxXkIHJzscnOzQz6WHsZkBDk525HWU9Tj5+T2KoIfBCp/PH7/y5dN3gh4GE/VTM6tU7/otke6JzbGwkyrqXqS4IrJDcTscituhn1tPdq2Lx+sGaNWvDi5Vi2Cd14w8Ba1o1tOdWl7lOLEzY0xy18rjeLavjEfbitg7WtNzshcWeUw5uP4f2TmMacKQJZ0TnUMeHIrnkZ2DmQEOxfOQt3D6e/togthYiVqf/zdevHjBy5eaWcgxvQjvVmTrnqs0rONM/dolyJdHSr9u7lhaGLEn7iVVz05VGT2oPiAreD57/k7hE/HhCz9+RPPs+Tu+xQ1jbe9VnjKl82FjZUxeOymtmpTB0704RxIt0Jsetu28Qv26pajnUZK89mb08amJlaUR+w7cAKB712qMGtZAHt+0kQsVyxfEztYUO1tT6nqUpJVXOY4mWMjp/MXHNG7ggnv1YlhbGePmmh/vzlU5f/FxipUnVdn55wXqNnXFo7EL9vnN8RnsiaW1MQd2yCpYXfvWYtikZvL4Gp4lGDapGasXHuHBnZeYmhlgamZArtxJvbpuExfOn36gkcXLEqJpHwRo1Tehn1jSrIc7tVqU48RO5RXN1Nix8AB1vWvi2aUG9kVt6TW3E5Z5zdm/+hgA3lPbMGxdH3n8gdVHscpnjs+cjtgXtcWzSw3qdnVn+/z98hgdXW0cSuXDoVQ+dHNoY24rxaFUPmwLxpdBeszqQMmqxbDOb0HRcoUYt8WXXEY5OfrHGaUa63WriWfXGuQtakeveXEaVx2VaZzWluF+feXx+1cdxTKfOT5zO5K3qB2eXWtQ17sm2+bvk8fsWnwItzrOtB7WGPsish5zrrVKKjScX9x/jXajmlGuvgtW+Syo3LQsLXwbKDTYb5u3j+qtKlGve01sC1rRpI8nFRu6sXvJQep1q4VnV3eZ5vmdZZpXHpFpnt6O4X794jWvjNM8r3OcZneZ5nl7E2g+gJtHKVoPbyLTPLwJrrVLsnNRfMN5/2XdqdW+KjPaL+JL5DdMrUwwtTIhh34OAL5EfuXmqbv0mN0R5+pOWOe3xKNzDep0rJ7KnaI+wruFd6eHjPTubTviPNAzzgN7xXng/hsAdPdW4oEVVPDAhi641yiGtXUCD7ygGQ8E2LnhHHVbuOHR1A37Ahb0HF4fSxtjDmyVNcJ1HejB0Gle8vga9ZwZOs2L3+Ye4sHNF/E+mKDO6tW1Kp3612H++J28eRUuj9HPmUMjmnf9dgrPNhXwaF1e0Qc3ngOgy4iGDFnQXmEfuQ/mTuiDMv9Itj74+ZtG64OqsmPB/hSf9RnFzsWHqNvVHY/O1bEvYovP7A5Y2ptx4LfjAHSd0pphv/eSx+9fcxyrvGb0nNUe+yK2eHSujmeXGuxI8OJV5oMlsC5ggX1hG5oPqEft9lU4sUn2v/r66RtB914qfL59+U5kWCRB91J/1mVWecOtjjNlPEphnd8C11olmXNsHC8DgjnsdyptF18NMuv+SA/CuzPGu9PUPbJmzZrUrFmTDx8+8Oeff7J27Vrmzp1LiRIluHUr9d49y5cvZ/Xq1bRt25b169czfPhwHBwcGD9+PO/fv091f1WxtbWVz0f4Kzh+8SHGBvp4N6+AmUlunr4MY8jsnYTEDVUyM8mNlVn8UCYdHW36t6uGhdSA7z+iePoyjMGzd3LhxrPkDpFuTp28j5FxTjp0qoLUzIDAZ28ZPWILoW9kUzxIzQywTDDcSktLQrce7ljbGBMTHcPr1xGsWX2K/Xvjex/o6+dggG9dLCwM+f49ihfPw5g5dS+nUnhbnh7OHLqNoUlu2vWphdTCkMBHbxjfy4/QuDfSUgtDLG1M5PH1W5dDR1ebfuOb0G98E3n60V3XmD96e8ZoPHATQ9PctOtfB6mFEYEBIYz3/p3QuF7UUgsjLG0Vh+wuOxA/FLFwSXvcm7jy5uV7ulSbLk+3K2BOibIOjO60SvOa912XaR7kidTSmMCHwYzvtJLQuCl1pJZGWNol0nwk/i114VJ5cW9WhjcvwuhSUXH+wYzkzF5/mW7fukgtjWS6O66I121lnPRaH4mf47Fwqby4Ny8r011hIgD6uXLQd0YrzK1N+PHtJy+evGHOgA2c2ZsxvW7O7LkmO4fBDZBaGRH4IJjx7ZYR+lL2PJRaGmNpJ1U8hxNj4s+hdD7cW5TjzfMwupQdmyEa1eH/0YRTIyoqikmTJrF48WI+fZINLzQwMKB///5MmDAhydxpmYHwbjhx9iFGhjnp3LoSZtLcPAt6x4jJO3gTN82RmakBVmouWJVTT5fBvepgYSbz8ucv3zN1/gFOnNXc6KWTpx9gZJiTTu0rI5XmJjDoHSPHbuNNaJxuqQGWCaZvkkgk9PCujrW1MdHRsbx+Hc5va0/JG9YB/ogbWt6tS1XMzQyI+PCVCxcfs8YvacNnWjh99C6Gxrlo3706UnMDgp6EMnbgn4TGDYWXmhtikWC6jfrNy8jKRSMb0H9kfIPHkX03mDdpt/y7XV4zSrjkY1TfDRrRmZCM8EH9XDnoO70l5jZxfvI4VOYn+9LWKeL0tgsYmRnQfkwLpDYmBN19wdhGMwl9LpvaRWpjiqW9uTw+JPAtYxrNote8TjTq7cH71+Es9/Xj7K743lJmtlJWXo1fdLvlkEa0HNKIm6fvMaz2ZAAs7KSM3tgfI3MjPrz9yP1LjxhYZZz8uAoat17ASGpIh7EtkNqYEnjnBWMaxms0szHB0t5MQePYhjPpNa8zjft4EvY6nOWD1nF2Z7zGexcCmNZuEV0mt6bz5NYEP3nDtLaLeJBgNMjSAevoMrk1A5Z2w8TSmLDX7zmw+hgbp8SX9c7tvsKiPr/RdkRT+i7sysuHr5nUcj4X9lzmw7uPdBjnFa+5wfR4zdamWOZNeF1DGdtgBr3mJ9A8cC1nd15S1Nx2IV2mtKHz5DYEPwlhWpsFCpob95atiTTvlGK5aU7XZRxZfwqAaW0X0m16O0ZtHIih1IA3QW9ZN3YTveYpvkBPL8K7hXenh4z07pOnH2BklIoHJqi/SrSUeODviTzwzzgP7FwVc/MEHrhOMx4IcObwbYxMctG+lzumFoYEPX7DuD4bCI2bqk1WZ03ggy3LyuqsYxvTb2xjefrRPf7MG7sDgEaty5Mjhw7jFrRTONbG5cfZuOJE+jX/64MDE/hg51UJ6lVKfPDwcPnfhZ0T+GClyenWo2lObz2PkZlBss/6DDvu9osYSg1oP7oZUmsTgu6+ZGzTOfHebW2CRQJffBP4lrFN5+AzuwONetXhfXA4KwZv4GyCF7/6ufXot6gr5nZSfnz9wYuHr5nddQWnt1/UjOZMKm/kNs6F99S2mOeREvn+E2d3XWbduM3pGgWn8jln0v2RHoR3Z4x3S2I1NDP9jRs3WLt2LYsXL041NleuXNy/f598+fJhaWnJ0aNHKVWqFI8ePaJChQqEhf2aeaqSo2K7eZl6/LSS+1XyC6xkVXRD0z9n9y8njYthZCqJhllmG7LjWKIozS2m86s49Eb9dRlSoshO9QrGD5uP1+jxM4NevXqxa9cuJk+eTMWKFQG4cOECEydOpEmTJqxcuTKTFSrn/8m7qzWek6nHTyva3zU/hUJGkyNMsz25fwVaIZprEPpVRL/J2Pk4M4rE0xlkC2Kz3+/waMw2jeYnvFt4d2bg7jEr9aAsiF5w9ltHSBKR9nUpMouoV68zW4LaaOXQTO/+X01s9K/t3a8JsqNm4d3p51d4t8qvfb9+/crevXuJjEzasPnx40eeP3/OnDmqVVKtra3lppwvXz4uXpS99Xr27JlGV5R98eIF3t7eGstPIBAIBKnzXxwCtmnTJvz8/PDx8cHZ2RlnZ2d8fHxYu3YtmzZtyjRdwrsFAoFAoArCu4V3pwfh3QKBQPDrEd6dMd6tckP56tWrWbRoEYaGSYckGxkZsXjxYtasWaNSXjVr1mTfPtm8g926dcPX15c6derQunVrmjVrlsreqvP+/XvWr1+vsfwEAoFAoAKxan7+D9DX1yd//vxJ0vPnz0+OTOxZIrxbIBAIBCohvFuO8G71Ed4tEAgEmYDwbjma9G6V5yj/888/GTduXLLbBw0axOTJk+nbt2+yMf+yevVqYuJWb+/VqxdSqZSzZ8/SqFEjevXqlcre8ezduzfF7U+fPlU5L4FAIBBohv+Xt9Xq0LdvX6ZMmcK6devQ05MtuvT9+3emTZtGv379Utk74xDeLRAIBAJVEN4tvDslhHcLBAJB1kN4d8Z4t8oN5Y8ePaJUqVLJbnd2dubRo0fJbm/evDl+fn4YGRmxceNGWrdujY6O7PCtWrWiVatWasiW0bRpUyQSSYrDxiSS/96NIxAIBJlJdpxaPi00b95c4fuxY8fIkyeP3Ctv3rzJjx8/qFWrVmbIA4R3CwQCgUA1hHcL704J4d0CgUCQ9RDenTHerXJDeVRUFG/fviVv3rxKt799+5aoFBax279/P58/f8bIyIiuXbtSt25dLC0t1VecABsbG5YtW0bTpk2Vbr9x4wZubm7pOoZAIBAI1CM2RuVZvbI1xsbGCt9btGih8N3e3v5XylGK8G6BQCAQqILwbhnCu5UjvFsgEAiyHsK7ZWjau1VuKC9evDjHjh1L1gCPHj1K8eLFk92/aNGijBo1Cnd3d2JjY9m6dStGRkZKYzt16qSSJjc3N/z9/ZM17NTeegsEAoFA8/xXHrvr1q1Te59z585RpkwZ+TCxjEZ4t0AgEAhU4b/y2BXerYjwboFAIMi+/Fceu7/au1VuKPf29mbw4MEUL16chg0bKmzbt28fU6dOZf78+cnuv3LlSgYPHsyBAweQSCSMHTtW6fAsiUSismEPGzaMz58/J7u9UKFCnDx5UqW8BAKBQKAh/iOGnRbq1avHjRs3cHBw+CXHE94tEAgEApUQ3p0swruFdwsEAkGWRHh3sqTHu1VuKO/ZsydnzpyhcePGFC1alCJFiiCRSLh//z4BAQG0atWKnj17Jrt/pUqVuHjxIgBaWloEBASkewhY1apVU9yeO3duqlevnq5jCAQCgUA9/ouLiqjKr+5tJbxbIBAIBKogvDt5hHcL7xYIBIKsiPDu5EmPd6s1oc3GjRvZvHkzhQsXJiAggAcPHlCkSBE2bdrEpk2bVM7n2bNnWFhYqC1WIBAIBNmAWDU/ggxFeLdAIBAIUkV4d5ZCeLdAIBAIUkV4d4agco/yf0nrStkJyZcvX7r2FwgEAkHWRbzZznoI7xYIBAJBSgjvznoI7xYIBAJBSgjvzhjUbigXCAQCgSBFxNtqgUAgEAiyF8K7BQKBQCDIXgjvzhBEQ7kSvkrVmpEmC/FrVmLXJLmz4TK9Oh++ZbYEtZH8zJHZEtLGpy+ZrUB9oqMzW0EWQLzZTg5li2kJNMMPw+zp3Tmy4S3x01g/syWoTY4fRpktQW20PmdDDwSiP0ZmtgT1kWTP54dmyYYPo1+E8O6M42P+7FlHMdAzyWwJapPr/o/MlqA2OjbWmS1BbWK/Zr+2AoCYDx8zW4L6CO9GeHfypMe7RUO5QCAQCDRL9nv/9cv41QuCCQQCgUCgEsKekkV4t0AgEAiyJMKekuWXLeapCQ4cOEBAQAAAjx494sCBA79agkAgEAgykv/goiJfv37ly5f43p9BQUEsXLiQI0eOKMRFRkbi4ODwq+WlG+HdAoFA8H+O8G7h3QKBQCDIXgjvzhDvVquhPCoqCh0dHe7cuZOmgwHY2tri6+sLwMCBA7Gzs0tzXgKBQCDIgsRK1PuowZkzZ2jUqBG2trZIJBJ2796d6j6nT5/Gzc0NfX19HBwcWLlyZZKYHTt24OTkhJ6eHk5OTuzatUstXU2aNGHDhg0AREREUL58eebNm0eTJk1YsWKFWnlpGuHdAoFAIEgV4d3CuwUCgUCQvRDenSHerVZDuY6ODvny5SM6HXPwuri4ULZsWTp27Ei5cuUoXbp0mvMSCAQCQdYjNla9jzp8/vyZUqVKsXTpUpXinz17Rv369alatSrXr19n9OjRDBgwgB07dshjLly4QOvWrenYsSM3b96kY8eOtGrVikuXLqmsy9/fn6pVqwKwfft2rKysCAoKYsOGDSxevFi9k9QwwrsFAoFAkBrCu4V3CwQCgSB7Ibw7Y7xbEqvmxC3r1q1j27ZtbNy4EalUqtbB3N3dkUgkhIeHc/PmTUqXLo2xsTESiYQTJ06olVdGUrrfgsyWkCZyvo/JbAlqk/tl9lvsInsu5plNF5jMjot5/sh+C+UcClmu0fzyrZmjVnxAxwF8//5dIU1PTw89vZQXKJZIJOzatYumTZsmGzNixAj27t3L/fv35Wm9evXi5s2bXLhwAYDWrVvz8eNHDh06JI+pW7cupqambNq0SaVzyJUrFw8ePCBv3ry0atWK4sWLM2HCBF68eEGRIkUUhodlBv8F767Qfl5mS0gTOT5lP+/W+ZT9PCXH20+ZLUF9XoRktoI0kS0X88yGHI3eotH8hHcL784M3Hpmz3q3QXBUZktQm1z3QzNbgvpkw4Uxs+tintHZcTHPbIjw7uzh3WrPUb548WL++ecfbG1tKVKkCK6urgqflDh58iQnTpygcOHCrFq1isKFC8vTBAKBQPD/gSRWvc+MGTMwNjZW+MyYMUMjWi5cuICHh4dCmqenJ1evXuXnz58pxpw/f17l4xQqVIjdu3fz4sULDh8+LM8vNDQUIyOjdJ5F+hHeLRAIBIKUEN4tvFsgEAgE2Qvh3Rnj3Trq7pDSGwRV2LJlC1KplB49enDjxg22bNlC69at05WnQCAQCLIQag7rGjVqFIMHD1ZIS+2ttqqEhIRgZWWlkGZlZUVUVBTv3r3DxsYm2ZiQENV7c44fP5527drh6+tLrVq1qFixIgBHjhzBxcUl/SeSToR3CwQCgSBFhHcL7xYIBAJB9kJ4d4Z4t9oN5RMmTEjXAV1dXeUt/tOmTSM0NBsOARIIBAJB8qi5UIgqw73Sg0SiqOffGccSpiuLSZyWEl5eXlSpUoXg4GBKlSolT69VqxbNmjVLi2yNIrxbIBAIBCkivFueLrxbIBAIBNkC4d3ydE16t9oN5SBbWXT79u08efKEYcOGIZVK8ff3x8rKKtXVtB0dHeV/m5iYYGJikhYJAoFAIMiqqPlmOyOxtrZO8oY6NDQUHR0dzMzMUoxJ/LZblWNZW1srpJUrVy4NqjMG4d0CgUAgSBbh3XKEdwsEAoEgWyC8W44mvVvthvJbt25Ru3ZtjI2NCQwMpEePHkilUnbt2iVfaTQziI6O5t27d0gkEszMzNDW1s4UHQKBQPCfJwsZdsWKFdm3b59C2pEjRyhTpgy6urrymKNHj+Lr66sQU6lSJZWP06xZM6VvwiUSCfr6+hQqVIh27dpRpEiRNJ5J+hDeLRAIBIIUEd4tR3h3ygjvFggEgiyC8G45mvRutRfzHDx4MF26dOHRo0fo6+vL0+vVq8eZM2fSLCSt7Nq1i8qVK5MrVy5sbW2xsbEhV65cVK5cmd27d/9yPQKBQPCfJ1bNjxp8+vSJGzducOPGDQCePXvGjRs3eP78OSCbd61Tp07y+F69ehEUFMTgwYO5f/8+a9eu5ffff2fo0KHymIEDB3LkyBFmzZrFgwcPmDVrFseOHWPQoEEq6zI2NubEiRP4+/vLjfv69eucOHGCqKgotmzZQqlSpTh37px6J6whhHcLBAKBIEWEdwPCu1NCeLdAIBBkMYR3A5r3brV7lF+5coVVq1YlSbezs1NrAnZNsGrVKgYMGIC3tzfDhg3DysqK2NhYQkNDOXz4MG3atGHJkiX06NEjQ47fqqoznWuVwdw4N0+Cw5iz4zTXn7xKNl5XRxufeuWpX7YY5oa5eBPxiTWHL7Pn4t0ksZ5uhZnVtQEnbz7G97d9SnJLO81rl6J9w7KYmeTm2aswFm44yc2HynW7FMvD8nFJF31pM3QdQa/fA1DAzoweLStRtIAVNhbGLNxwki1/+2tUc+OmbrRsWwEzqQGBgW9ZvuQod269UBpbomQeuveqSd68Zujp6/Im5AMH9l5nx7bL8pgq1YrQtkNl7OxM0dbR4tXLcLZvucixI3c0prlhq3J4damC1NyAoCehrJx9iLvXg5TGVq7lRIOWZXEoYoNuDm2ePwll48qTXDv/WGl89bolGTWrFedP3Gey718a09ygTXm8vKsitTAk6HEoq2Ye4O61QKWxlWoXp0GbchQsaotuDm2CHoeycdlx/M89ksfkLWRJx361cSxuh5WdKatm7Gf3H6qvaKyy7o6V8fKpidTSiKBHIayatIu7l58qjTW1NKLH2CY4lrTHtoA5e9f9w6pJuxRianuVY8j8dkn2bew4lJ/fozSjuUs1vPrURmppTNDDYFaN38bdS0+S1zyxBY7OebF1sGDvmlOsGr9dISZvERs6DmuIY6m8WNmbsWrcNnb/dlIjWtVGzbnS1OHq1au4u7vLv/+7GEnnzp3x8/MjODhYbt4ABQoU4ODBg/j6+rJs2TJsbW1ZvHgxLVq0kMdUqlSJzZs3M3bsWMaNG0fBggXZsmUL5cuXV1mXtbU17dq1Y+nSpWhpyd5Bx8TEMHDgQAwNDdm8eTO9evVixIgRnD17Nr2XQW2Ed8fTonYp2jeI98AFfyTvga7F8rB8bFIPbD10HUHBMg9s4l6SelWccLA3B+Dhszes2HKWe081e12b1itN22ZlkZoaEPj8HUt+P8Gte8mXOf6lRFE7Fk9vw7Ogd3TzXS9Pr1bBkQ4tK2BnbYKOjhYvX0ewZc8Vjpy6pzHNjRu70LpVeczMDAgMfMey5ce4ffulcp0l8tCzRw3s85qhr6fDmzcf2b//Btt3XFGIy51bj27dqlG1ShEMDfUJDo5g5coTXErmma8uDVuXw6tL1QTefZC7/il4d6tyit694oSCd1eu5UTr7tWxtZeio6vNq6Awdm44x/H9N9KusVsNvPp7IrUyIejBa1aO3szdC4+SjS9ZqTA9p7UmX1FbwkIi2Lb4bw6uOy3fPnvfMJyrJO11c/nILca3XgxAhxGN6TCyscL2928+0K7oEJU0N+rlQcuhjTCzMSHw7ktWDF7PnbMPko13rlYMn7mdyF88D2Gvw9k6dy/7Vx2Tb8/nlIfOk1rh6FoA6/yWLPddz67FB5PNr82IpnSb3padiw6yYvD6ZOOygu6SVYvRcmgjCrsWwMxWyoTmczi/56rKmtOM8G5AeHdyZLZ3t6zuTEdPWb376esw5m45zY3Hyj3QrXAeVg9tmSS9xXg/AkPCAdDR1qJr3bI0rOSEhYkBQSHhLN75DxfuKn/ep5Wm9UvTpnm8dy/9TUXvLmbHohky7+4+MP6Z1dDDGc+axSmQL67M8fgNv204w4NHmrsfGrSviFf3GkgtDQl69IZVU/dy9+ozpbGmFob0GNUIxxJ22OY3Z+/6c6yatjdJXNMuVWjQriIWtqZ8DP/M2b9vsW7OIX7+0FC9qnNVvHrVktUFA4JZNWEndy+nUK8a3wxHZ3tsC1iwd+1pVk3YqRBTt10lanmVI18RGwAe336B38x9BNxI+/3R0Ptf7zaO8+4t3L2YindPbZXAuw9z0O+0QkzTXrVo2LUGFnmkfHz/iX/2XmPd5J3y+mqDrtVp6F0Dy7yyaS+eP3jNn3P2c/WYam0emeGBDXvVoZFPHazyWwAQdPclG6fu4MrfN1TSnJ11pwnh3YDmvVvthnJ9fX0+fvyYJP3hw4dYWFikuO/jx48pVKiQuodMljlz5rB8+XK6deuWZFvTpk0pW7Ys06ZNyxDD9nAtzLAWNZi+5QQ3nr7Gq0pJlvVpSvOpGwgJj1S6z2zvBpgZ5mLSn0d58TYCqWFOtLWSduq3MTVkcNNqXHusvDKZHmpVKMKgTu7MWXucWwGvaFbLmfkjmtNumB9vwpTrBmg1eC2fv36Xf4/4+FX+t76eDq9DP3DiUgADO9TQuOYaNYvRu38dFs//m7t3XtCgsSszZrehW6dVhIYmvRe/ffvJnp1XefoklG/fflKipD2Dhtbj27efHNh3HYDIj1/5649zvHj+jp8/o6lQyZFhIxsREf6Fq1fSX9mu5lkCn+H1WDZtP3dvPKe+VxmmLu9Iz2ZLeBvyIUl8Cdd8+F98gt+SY3yK/IpHE1cmLm7PoA6refIgWCHW0saY7oM9uZ1MA3aaNdctic+oBiybvJd714Oo36ocU1Z1xqfRQt4GJ9Vcskx+rp9/zPqFR/gU+Y06zdyYuLwjvm1W8OS+TLO+vi4hL99z9vAdeo6sr1G9ct2NXPCZ0IxlY7dz7+oz6revxJT1PvjUmsHb1xFJ4nVz6PDh/Sc2Lz1Ks27Vk83388ev9HCfrpCmqUbyak3c8JnsxbKRm7l35Sn1O1Zhyl998ak2hbevwpNq1tPhQ9gnNi/6m2Y9ayrNUz9nDkKev+PsPn96TvbSiM60IsnAIWA1atSQLwqiDD8/vyRp1atXx98/5Zd3Xl5eeHml/br9/vvvnDt3Tm7WAFpaWvTv359KlSoxffp0+vXrR9WqVdN8jPQgvFtG7QpFGNTRnTnrZB7YtKYzC4Y3p+3wlD2w5ZDkPdC1mD1HLzzg1obX/PgRTYeGZVk0sgXtRqznbfgnjeiuWaUI/bvVZP6qo9y5/4rGnqWYPd6LTv3WEvoued25c+VgzKD6+N8KwtQ4t8K2j5++8ce2izx/GcbPqBgqlXFg5IB6hH/4wpXrgenWXKNGUfr2qc2ixYe5c+cVjRqWZuaMVnT1XpOsd+/efY2nT9/y9dtPSpbMg+8gT75++8GBAzcB0NHRYs7sNkREfGbipF28exuJhaURX778SLde+Ne767Ns2j7uXn9O/ZZlmbq8Ez2bLlbu3W758b/4GL/FR/kU+Q2Ppq5MXNKBQe1Xyb078sNXNv92ihfP3hH1M5py1YsweHIzIt5/SvZleIoam5XFZ3oblg39k7uXHlO/SzWmbh1Iz4rjefvyfZJ4q7zmTNk6kEMbzjDbZw3Fyxei79z2fHgXybl9sufi5I7L0c0RP3WCkdSA5f9M4J/dio2zgfdfMarpPPn3mOgYlTRXb1WR3gs6s6Tf79w995AGPWsz/cAoupUYzNsXYUnirfNbMHX/SA6tOcGsTkspXrkI/Zd2I+LtR87ulHV60MulR/DTN5zZfpFe8zolySMhhcsUpH6PWjy5qV4DR2bp1s+tx9ObQRzxO8WE7aq9iNAEwrtlCO9WTmZ6d50yhRnSugYz/zrBjcevaVGtJEsGNKXlxA2EvE/eA5uNXcfnb/H+EB4Z7929m1SifvliTP3jKIEh4VQsno+5vRvjPWszD1+81Yhu9ypF6Ne9JgtWHuXOvVc0qluKWRO96Nx3LaFvU/bu0b718b8ZhKmJoneXLmnP8TP3uXP/NT9+RtG2eTnmTm5Jl77rePc+/WWOavVL4TOmMcsm7uLetUDqt6nAlN+74VN3Lm+DI5LEy+tVy0/QzFv578S9sQtdh9Vnwcit3PMPIk8BCwbPagXA6mnp7xBYrbErPhObs2z01rh6VWWmbOyNT41pvH2tpF6VI65etfgIzXrUUJqnc8VCnNpzjftXn/LjWxQt+9Ri2l996FVzOmFKygOpamxWBp/prVk27F/vrs7UrQPoWXECb18l491bBnDoj3+Y3SvOu+e050NYvHe7e5XHe3wL5vf34/7lJ9gVsmLI0q4ArB6zFYB3r8NZO2kHr5/J7unabSoyYWNf+tWYQtD/2DvL8KiONgzfcXcjuEuCBkLw4O7urqWlhUILtNAWp4UCxUpLsdIixYoHd0+wCCQh7i6EEGLfjw0bNtkku8mGwNe5r2svyOzMnGfPynPeOTPvPAsrVHNZeWBMSCx/LPybUN9IALqObccPR+cxo+nXBHoWPT72seouLsK7Jajau5VOvdKvXz+WLFlCeno6IMkDExQUxPz582XuFMijdu3aVKpUibFjx7Jz504CAgKKJfotoaGhtGnTpsDnW7VqRVhY4T8AxWVMRweO3nbn6G13/CPj+OnwVSLikxnStqF8LfWq0KxmBT7depS7z4MIi0vCPTCSx/6yg6DqamqsGN+DradvExqj/I9wUYzo2ZQTV55y4spTAsPiWP/nFaJikxnYuVGh7eKTXhGXmPvIeucL4+UXyaa/r3Hh9nPSMzJVrnnQUCfOnnrEmVOPCAqMZevG80RFJ9Gnv4Pc+r4+kVy+6ElgQAyREYlcPO/Og/t+1G9YSVrn8aMgbl5/TlBgLOFhCRw9dB8/vyiZOiVh4JhWuBx14+xRV4L9o9n20xmiI5LoPVT+BgPbfjrDoV038PYIJSwojl0bLxAWFIeTs+wML3V1Nb5eOYS9Wy8RIScgLgkDxrfh3GFXXA4/INgvmm2rThEdnkiv4fLv7m1bdYpDO67j7R5KWGAsu9efIywwFqf29aR1vN1D+WPNWa6eeUL6G9V/NgAGTG7PuQN3cdl/h2DfSLb9cJTosAR6jZH/2xAVEse2749y8fB9UpJfF9hvdjbERyfLPFSmeVpHzu27hcvftwj2iWDb4kNEhybQa1w7+ZqD49i26B8u/nOXlHcu8t/F+1Egfyw5ytV/XVU2O6PYlOISsA+VjIwMnj3LP1Ph2bNnZGZKPvu6urpK7eitSoR3SxjRQ+KBx688JSAsjvV7S+6B3205zeELj/EJjCYwPI6V28+hrq5GM/vKKtM9tF8zTl14yqnzTwkMiWPjH5eJjkmmf4/Ghbab+0lXLlzzxENOMPTIPZjrd3wIDIkjLCKBQyfd8AuIpmG9wjeHU5Qhg5tz5sxjTp9+QlBQLJu3XCQqKom+fZrIre/rG8mly14EBMYQGZnIhQsePHjgT8MGub7co3tDjI11WbT4CB4eoURGJeHuHoKfX5RKNA8c2xqXo66cPZLj3T+eJjoisWDv/vE0h3a+9e5Ydv1yXuKDznWldZ488OfWJS+C/aMJD4nj379u4+8TiX2TKsXT+EkXXPbe4Oyf1wn2DmfbwgNEh8bTe2J7ufV7TXSW+N7CAwR7h3P2z+uc++sGgz/tJq3zMiGF+Kgk6aNJeztev3rDtTyzmDMzMmXqJcYqNigz6ItenN1xiTN/XCLoWShb5+wmOjiWPtO7yq3fe1oXooNi2TpnN0HPQjnzxyVcdl5myJw+0jreD17w+9d/ceXALdLT0gs8tq6BDgv+/JR1037jpZI3rspK9/2zj9i1+AA3jt6T+3ypIbxbivDu/JSld4/u4sC/N9w5dsOdgIg41h68SmR8MoOd5cfdb4lLTiU26ZX08a5392pRjx1n7nHTPYDQmEQOXX3CHc8ARndpqjLdQ/s34/T5p5w6J/HuTdsl3t2vCO/+cmZXLlyV793L1p7i2OlH+PpHERQSx0+bXFBXV6Npo+J5Sl4GTGzHuX/u43LwHsEvoti2/DjR4Qn0GtVSbv2o0Hi2LTvOxWOuBcZVdZtUwdM1gCsnHhEVGo/bDW+unHxErfoVVaN5SgfO7b+Ny77bkljwuyNEh8XTa2whseB3h7l46B4pSfI1//jZHk7tvo6fRyghLyLZMG8f6upqNJaz+koRcr37BsHeERLvDoun90T5k7Z6TXAmKvStd0dw9s8bnPvrJoM/zfWfeo7V8bjry5XD94gMjsXtsidXjtyjduOq0jp3XZ5w/4I7oS8iCX0Rye7lx3idkkbdZtWL1FxWHnjnpBv3zjwi1CecUJ9wdi46QOrL19RrUUtu/f8X3cVGeLcUVXq30gPla9asITo6Gmtra1JTU3F2dqZmzZoYGRmxfPnyQttevXqVadOmERYWxqeffkqNGjWoVq0akyZNYu/evYSGFr0M6V3s7e357bffCnz+999/x97eXqk+FUFTQ516lWy47SU7M+WOVxCNqpWX26Z9gxp4BEUxvrMj55ZN4d/F45k9oC06WrKbn0zr0YL4l6kcu50/HYsqdNepZsO9J7K67z4NpEFt+brfsnvFGE5snsbGhYNxsFPNYLIiaGqqU7u2LQ/uyy73cr3vh52C5lqzlg329hV58iiowDpNHKpSsZI5Tx4XXEdRNDU1qFWvPG63ZWeKud32pV4jxc6dmpoaevraJCfKDoqOnNaBhPgUXI6qNrWNppYGtezKy6RNAXC75YtdY8UuvNTU1NAz0CE58ZVKtRWGppYGtRpUxO2a7A+l2/Vn2DWtWqK+9Qy02XVrMX/e/Z7vd06hhr1qBo80tTSo1bAyble8ZMrdrnph51j0RYvgw2TMmDFMmjSJdevWcePGDW7evMm6deuYNGmSNHfb1atXS8WTFEF4d64H3n0qxwNrFe6Be5aP4eSmaWxcULQH6upooqGhTlJKwTfilEFTU53aNcpx/1GATPn9RwHUr1vw71KPTvUpX86UXfsVS3fl0LAylSqY8dij5LNeJN5djgcPAmTKH7gGYK/gb2nNmjbY21fg8ZNcX27VqhYenqF8Pqsrhw59xh/bJzFyZEvU1Us+iCX17ltyvLuxYjc9FPHBxk7VqVjVslirwjS1NKjVuApul2SvEd0ue1CveQ25beo51sDtsmx914se1GpSBQ1N+RvwdRvThqtH7pGWZ6Z+heo2/OW5hl2PVjL/j6mUy1n6X5Tm2k2r43r+iayG84+xb1lbvuYWtXE9/1im7MG5x9RuVr1AzQXx2aZJ3D39kIcXnyrVrqx1C94PwrsVpyy9u25lG+545om7PYNoWKNw7/570ShcfprK1tmDaFZHNm7U0tTgTbrsxJLXbzJoXLPwPhXWralO7Zrl8q3Quv8wgPqF3JDu0ak+FWxN2b1PMe/W0dFEU0OdpJfyJ9Iog6aWBrXqV8DthrdMudsNb+wcij8Q7/nAn5r1K1I7Z0JauUrmODrX5d6VglNhKIokrqqE29U8seDVZ9g1q1bi/t+io6eNhqYGyQkpSrfV1NKgVqMquF2WTW1XuHdXz+/dlzyo1TjXuz3u+lKrcRVqO1QFoFwVSxy7NODeuSd5uwMkE+6cBzqio6+N1335aWne1fwheKC6uhrth7VC10AHz9veRdb/WHULlON9eLfSqVeMjY25ceOGNHl6VlYWDg4OdO7cuci2bdu2pW3btnz77bekp6dz+/Ztrly5wpUrV9i3bx9paWnUrFmT58+fK6Rl7dq19OrVi7Nnz9K1a1dsbGxQU1MjIiKC8+fPExgYyOnTBecrBEhLSyMtLU2mLCszA3WNgk+NmaEemhrqxCXLBkKxySlYGss3kQqWJjSpUZ43GRnM+f04pgZ6LBzWERN9Xb7/6zwAjauXp39Le4at2qvIy1caU6Mc3XkCuPjEFMxNqsptE5uQwsrfz/HMPxJtLQ26t7Fj48IhzFx2gEfPlLvAKg4mJvpoaKoTn2cWUHxcCubmhoW23XfoM0xM9dHQUGfPzuucOfVI5nkDAx32H56FlrYGWZnZ/LLuLG4F5F9TBmMzfTQ0NYjPM9MqPvYl5pZGCvUxaGwrdPW0ufZOznS7xpXpNsCBmUO3lFhjXoxN5WtOiE3GzFKxu6ADJ7SRaD6rXDBaEozNDSS686QeSIhOxszKuNj9hryIZO2XfxPwLBx9I136T2zHmiOfM7Pbj4QFxJRQs6FEc3RezUkl0vwhUZpLwD5U1q1bh42NDT/++CORkZIldzY2NsyePZuvv/4agK5du9K9e/cy0Se8u2APjEtMwaIAD4xJSGHldokHamlq0KONHZsWDOGT5QV74CfD2xEd95L77qrJc2piLNEdnyc4i0tIwdzMQG6biramTBvbjk8X7CMzq+AvpIG+Nod3zEBbS4PMrGzW/XqeB0qmp5Cr2UTivfHxsprj41MwN5ev+S0H9n8ibb97zw1On84NdmxtTWnSpAoXLnqwYMFBKlY0Z9asrmhoqPPnnyXbbK9g707B3LLw6423DBrXOp93A+gb6vDXha/Q0tIkKyuLTctP8PBO4UGqXI0Wb/1DNhVDfHQS5tYmctuYWRvLra+ppYmJhSFxkbKrF2s7VKOaXUXWfSabx/uZqx8/zfiD0BeRmFkZM2Jub352WcC0lotJji944MDE0liiOc9x4iMTMStnKreNeTkTHsipr6mliYmlEXERCQUe713aD2tFrSbVmOm0UKH6H4ruskJ4t/Duwigz786Ju2OT8sTdSSlYFBB3xySmsGzPebyCotDS1KBXi3psnT2YqWv/4aGPxLvveAQyqktT3HxCCYlOoHndyrRvXAN1Fa0eeOvdcXm8Oz4hBXNT+T5YwdaUqePa8dn8wr37XaaNcyY69iWuJcid/RZjswLiqtiXmCkYw8rj6qnHmJgbsmb/J6ipqaGppcHJv27xz7aS76VUYCwYk4yZteriqgkL+xIbkcjD64p9X96lQO+OSi7Eu02Ij5J9TXm9++qR+5hYGLH29NeoqYGmliYn/rjMwQ1nZdpVrVeBdS7z0dbVIjUljaVjthD0XDarQV7K2gOr1q/ELzeXSTS/fM0Pg9YQ5FX02NPHqrskCO8uHe9WeqA8KCgIGxsbOnbsSMeOublys7OzCQ4OpnJlxWbdaGlp0a5dOxwdHWnZsiUuLi78/vvv+Poqnq/R2dkZd3d3tm7dyp07d6SbmpQrV47evXszffp0qlatWmgfK1eu5IcffpAps3HsSrnmRZ/UvJ9JNTU1Ckrho57z3MJdZ3iZkyttzZFrrJnUm5UHL6Ghrs7ysd1Zsu8CCSqahVaw7nzKC6wbFB5PUHhubi93n3BsLIwY2cvxvQyUvyXveZWc68J/FWZ/tgc9PW3q2VVg8rQOhIXGcfli7p3cV6/SmDZpO3p62jRpWpXpMzsTHhbP40JmnisnWnnNAO27N2D0jI788PlfJMZJLq709LX5asVgNvzwL0kJpTdjO6++wj7T7+LcsyGjP+nED5/9KdX8PinO56Mwnj0M5Nk7G6963vdn4+m59J3Qjl/zbPZSXOSf6/8Tp8sqmyXKZYmGhgbffPMN33zzjTSfqLGx7AW6ov5YGvwXvLtC/S5UbNitgBa5yP3uFVA3nwf6SjxwVE/5Hji6tyNdWtZh5rKDvElXbbopRX/n1NXVWPRlb3bsu0mInNyc7/Iq9Q2TvtiNnp42TRtWZubEDoRFJvLIXf5m2UprznNm1cj/OvLy+Rd/oaenjV298kye0p6w0HguXZaswFFTVyM+PoWffz5LVlY2Pj6RWFgYMmyoU4kHyt8RLatZrWjNAO17NJR496y/8vlgasobPhmyGT19bRo71WDq3B5EhMTzpLg355X1Dzn1JcX523Qf0wZ/zxC83WS1vbvxVwCheN5/wU63lXQZ0YojW84rIFk5zfI+7wVplodVRQs+WTeO+d1XFJqapSjet+4yRXg3ILy7IErLu8s5dKV80+LF3QURGBlPYGSu/z31C8fGzIgxXZtKB8p/OnCFRWM7c3jJOLKzISQ6geM3PejbWsWz4vMLlxOLS7x78bze7Py7aO9+y4iBzenUri6fLzyg0msOeSMFJfkJa+BUnWGfdGLz90d5/iiI8lUsmbaoL3FRyezbfKHoDhQg/291yTS/y+AZnWjfrylfDfmlZPtVydWojHe/LZaUN2xdm+FzerJ53l88e+BP+erWTF85jPjIRP5ec0raLsQ3gk+cl2Book+bPg58uWUiX/X5qcjB8nePlavh/XhgyPMwpjt8haGpAW0GOjFv50y+7PC9woPOH6vuYiG8G1C9dys9UF61alXq1avH8ePHqVEjd6lIVFQU1apVk+aEKYjXr19z69YtLl++zJUrV7h//z7VqlXD2dmZrVu34uwsP09TYXpWr16t7MuQsmDBAunurW9p83X+3cXfJf5lKhmZWVgY6cuUmxvqE5ssfxAzJimFqMSX0kFyAP+IONTV1bAxNUJPW4sKliZsmNZP+vzbO9oPNnxO/6W7CClhzvKE5BzdeTb0MjPRJy5R8cFNd59wurepV3RFFZCY+IrMjKx8s8dNzfTzzVTLS0TOBpT+ftGYmRswdkI7mYHy7GwIy9k48YVvJJWrWDJidKsSD5Qnxb8iMyMTszwz0EzNDfLNVMtLu271+eL7/qyYd4CHd3M3FbWtZE65Cmb88MsoaZlazlLzU67fM7nfBsJDFLuokqs5QaI574x3E3NDEorS3L0BXywdyIrZ+3h0W/kZciUhKS5Fotsqj25LQxIK2eBOWbKzs/F+EkT5qoVvnKQISXEvJZrzzHIwsTRSqeYy5SMYDyhN8hr1h8B/wbs7T91aaBupB+aZyWVmrKQH+obTvXV+DxzZsxnj+jbns5WH8A0u2cqTd0lMkujOO3vczESfeDk3TvX1tKlXy5Za1W34Yqpk1qG6mhrq6mpcOvIlc7/7B7enEp/LzobQnJkyvv5RVKlkwejBTiUeKE9MfEVmZhbmZnm926Bo787ZJMvfPxozMwPGjWsjHSiPi31JRkYWWe/MtAsKisXCwhBNTXUyMhTbXFIeKvHuuft5eDe/D2ZnZxMeLNlXxO95BJWrWzFsUjulB8qTYiX+YZZnBpqppVG+mWpviY9Kkls/Iz2DpDwD+jp62jgPdGTPin+L1JL26g0BnqGUr2FTaL3EmCSJ5+WZyWVqbUxCpPzr2riIRMzLmeSrn5GeQZKCedFrNa2GmY0pW+6vlJZpaGrQoF09+s3sRk+9UTKfow9Fd5kivLusJeTjv+DdzrMLj7sTcuJuS+M8cbeRfr5Z5oXx1D+cnk65+0ckvEzlyy0n0NbUwMRQl+iEFD4b2IbQGPm/pcpSHO+uW8uWmtVt+Hy6rHdfPPYlcxf/w8N3UpENG+DIqCFOfLnoIH4Bqtl8NCk+RX48aGFIQiEbnhfF2C+6cemYKy4HJfsuBHhHoKOvzaxlg9i/5WKJbiTmxoJ54ioLIxIK8EVlGDStI8M+68rC4ZsI8CpeDv4CvduqMO9OxMxG9jWZWhrLePfYhf25dPAOZ/+8AUg23NbV12bWujHsW3tael4z0jMJz9nM0+dRILWbVKX/tE78MqfgLAZl7YEZ6ZmEvZDMFPZ29aNOsxoMmNWTDTN+L7Tdx6q7RAjvLpV+lR4oB6hXrx7Nmzfn4MGDdOrUSVpe1I+cs7Mz9+/fp0aNGrRr147PPvsMZ2dnbGwKv8guTXR0dNDR0ZEpK2z5F0BGZhZewZG0rFuFy09yAyKnupW58lT+QOEjvzA6N6mFnrYWqW8kM1uqWJuSmZVFZEIy2dkwaPkemTaf9m6Fvq42Px66QkR8yQfQMjKzeO4fiWODKlx9kDuDoHn9Klx3VXxGQe2q1sQUIz9XccjIyMLbO5ymzapx852lTk2bVePWDWXyPamhpVV4jik1NdDSKtZXQoaMjEx8vMJo0qIGty7l5qFu0qIGdwrJxda+ewNm/zCAVfP/4d512dcW7B/DtEEbZcrGzeyMnoE2v/54muiIkl0IZKRn4uMZRpNWNbn1zs0Eh1Y1uX3Js8B2zj0bMnvZIFbP28/9a8ovRSspGemZ+DwNoUnbOtxyyU354tC2DrfzLH0vKTXsKhDwrOg770WRkZ6Jz5MgmjjX49aZ3HxoDs51uX1Wfk65j43/4hKwyMhI5s6dy8WLF4mKisrnh0UFs+8D4d0SD2xeP48HNqjCtRJ64KhezZjQvwWfrz7MM/9IhftShIyMLLxfRNCsURWu38ndR6JZ4yrcuJtfd8qrNMZ9tlOmrH+Pxjg0rMzi1ccJLyBQAMmsMS0V5FKWeHcETZtW5cbNXD9r2rQqt/LshVEoeXzZ3SOETh3tZWaKVaxoTkxMcokGySWac7y7Zc083l2TO5e9CmzXvkdDiXd/fTCfdxeEGmpoaSt/vZGRnonPo0CadLDj1qmHuRrb23HnzCO5bbzuv8CpWyOZMoeO9vg8DCQzzwbs7fo3Q0tbi0sH7xSpRUtbk0q1y+FeRO7NjPRMvF39cOjckJvH7udq6NyQW8cfyG3jdcebFr1lN9Rr2qUh3g/88mkuiIcX3ZnScK5M2dw/ZhD8PJQDPx4vdJC8LHWXJcK7hXeXNsX17mdBkTjZVeHyo3fi7nqVufpY8Qk6dSpZEyPnpvibjEyiE1LQ1FCnk0Mtzj9QTT7hjIwsvH0jaNZEce8ePzOPd/dqTJOGlflupax3Dx/gyJhhLZn33T8891XdNUdGeiY+7qE0aVOLW+dz4yiHNrW5faH4+6fp6GmTnec3NyszCzU1tRLP/JbEVcE0aVeXW+/EUQ7t6nD7ndiwOAya3okRn3fj21Fb8HlS/AkEGemZ+DwOpEn7evm9+/QjuW287vvh1F12s1qHDnb4PMr1bh097XxelpWZXfR5VVNDS1urSM0fkgeqqYG2TtHXTR+r7hIdQ3h3qXi30u+ampoaW7Zs4a+//qJXr178+OOPzJo1S/pcYdy6dQtbW1s6dOhA+/btadeuHZaWRW8EVFzGjRtHcHAwly5dUnnff15yY/nY7ngERfLEP5xBrRtga27EoeuSH+jP+rbG2sSQRX+6AHD6/jOmdHdiyeiubD19G1MDPWYPaMe/tz1Iy1kq9SI8VuYYyalpcstLwr7Trnz3SQ+e+UXy1CeM/h0bYmNpxNGLkgG7GcPaYGVuyJKtktxWw7o7EB6ThF9IDFoaGnRvU4+OTrWZvy53tpGmhjrVKlpI/q+pgZW5IbWqWJH6Op2QyIQSaz588C5ff9MP7+fheHqE0KtPE6ytTTjxr2RDy0lT22NpacTqFScA6DugKVGRSQQHSWb01W9QiaHDnTh2JPfHccSoVjx/Hk54aDyaWho0b1GDLt0asGHt2fwCisGRP28xb/kgfDzD8HocTI9BzbC2NeHUP5I76RNmdcHC2pg13x4GJIPkc5cN4tcfT/PsSTBmFpIZbWlp6bx6mUb6mwwCfaNkjpGSLNm0JW95cTm66wZzVw/BxyMUr0dB9BjiiJWtCacPSDSPn90VC2tj1i44BEgGyeeuHMKvK0/y7HGwdBZe2muJZpBsqFG5hrX0/xY2xlSva0vqqzTCg+JUo3v7FeauG4XPk2C83ALoMbIlVuXNOL1Xsgx//Ne9sShnwtrZf0nbVLeTbKKja6CNibkB1e0qkJGeQZCP5GJz5BfdeOYWSFhANPqGuvSb0I7qdhXY/O0h1Wjedom5G8fh8zgQrwf+9BjdGqsKZpzec12ieWE/LGxNWftOjtjq9hVzNOtgYmFIdfuKEs3ekqWvmloaVK5tK/2/ha0p1e0rkpqSRriKZpoozH/QsMePH09QUBCLFi3C1ta2RLtslwbCuyXsO+PKdzN64OUfibtPGP06NsTGIo8Hmhmy5Nd3PDA6Cf+QGDQ1czywuawHju7tyNTBrfhu82nCoxMxN5HMekt9nU5qCVI+vMvBfx/wzRe9eO4bgcfzMPp0a4S1pTH/npXonjqmLZYWRqxYf5rsbPAPkp3RnpD4ijdvMmXKRw1y4rlvBKERCWhpatCiaXW6dbBn7a9Fp9FQhH8O3WPB/D48947A0zOU3r0aY2NtzIkTkiBx8iRnLC2NWLX6JAD9+jkQFZVEUJDkmqdB/YoMHdKcY8dcpX0eP/6QAf2b8unMLhw99oAKFcwZObIlR4/ID36U5ciem8xbMVjig4+D6TH4rXdLgq0Js7pgYWPMmm9yvLtHwxzvPiXXuwGGTWqHt0co4cFxkuuNtrXp1Kcxm5YfL57GLeeZ9+skfB4G4HXfjx7j2mFd0ZxTO69INC4eiIWtKWtm7ADg1I6r9J3ckanLhnJmz3XqOVan2+g2rJqcf1O+bmPacOv0Q7k5xycvGcLds4+JConD1MqIEXN7o2+kxwUFNos9vP4UX+/+FG/XF3jd9qHnlE5YV7bk5DbJZ23i8hFYVjDnx/GbATi57Tx9Z3Zj2poxnNl+iXota9F9YkdWjNog7VNTS4MqdhJf1NLWxLKCGTUaVSH15WvCXkSS+vI1AR6yAxuvU16TFPsyX/mHpBskPl+hZjlpm3JVranRqApJcS+JDlZdTJAP4d3Cu0tAaXr33vNuLJ3YHc/ASJ68CGdguwaUMzfi0FVJ3P3pgNZYmRry3U5J3D2iUxPCY5N4ERaLloYGPVvUpXPTWszdekLaZ/1q5bAyNcQ7OBorU0Om9WmBmpoau11U4ycAB4894Js5vXjuE4HHszB6d2+EtZUxx3MmykwZ2xYrCyNWrJPv3fEJ+b17xMDmTBzdmqVrThERmSTNd576+g2pr0t+zXF0xzXmrhmOz9MQvB4G0mO4E1a2ppz++zYA4+f2wMLGhLXz9kvbVK8n2QBVVz8nrqpXXhKj5MSody95MnBiO154hvLssST1ytjZ3bhz0aPIm5YKaf79MnM3jMHncRBerm/jKnNO58y0Hj+/jySu+vzPXM32b2NBHUzMDaluX4GMN5kE+UjiqsEzOjF2Xi9Wf7qbyOBYzHJWL6empPE6z0bXinBky3nmbZ2Ez6NAvO6/kHh3BXNO7bwKwIRFA7CwNWPNJznevfMqfSd3yPHua9RzrCHx7im5M5PvujxmwCddePE0KCf1ihVjF/bjztnH0vM6/tsB3L/gTkxoHHqGujgPdKRhmzp8O2R9kZrLygMnLhvOvbOPiA6ORc9Ilw7DWtGwvT0Le65Q6Fx/rLqLjfDuUvFupQfK347Wz549m7p16zJixAiePHnC4sWLi2ybkJDA9evXuXLlCqtXr2bEiBHUrl0bZ2dn2rdvj7OzM1ZWJU9t8Jby5cujrq6usv7e5ZybN6YGukzr4YSlsQG+4bF8uuUY4Tkzv62MDbA1z122lPomnembDjN/SAf++mokiSmvOefmzeaTKsqpqSAX7zzHxFCXiQNbYGFqgF9ILF/+eISInJQPFqYG2FjkLl/Q1NTgs5HtsDI3JO1NBn4hscz58Qi3H+UuF7Y0M2TPyrHSv0f1dmRUb0fcPIOZuexgiTVfueSFsbE+o8e1wdzCkAD/aBZ+vZ+oSMksanMLQ6xtcpfLqKupMWlqe8rZmpKVmUVYWALbt13m5HE3aR1dPS1mzemOlZURaWkZBAfFsmrZv1y5VPCsMWW45uKOsYk+o6a2x8zKiEDfSBbN/JOonHQw5paGWL+zxKfnYEc0tTT49Js+fPpNH2n5+X/dWLv4qEo0Fan57FOMTPUZOaMj5lZGBPhEsnjabqLCEnI0G2Fta5qreWhziebF/fh0cW7KoPNHXfk5ZxDB3MqIzUc+kz43eGI7Bk9sx5N7fnw9frtqdJ94KNH9eTfMrY0J8A5n8bhtROWk1TG3Nsa6vJlMm81n50n/X7thZToMaEZkcBzjWy8BwNBYj1mrhmJuZUxKciovPEKZN2Qj3o9Vk7/+2r+uGJkZMHJOT4nmZ+EsHrWFqBDJzQNzG2OsK+TRfDF3M7LajarQYVBzIoNjGe+4SNKmnIlMncGfdGHwJ114csubrweuV4luhfkPGvaNGze4fv06jRs3LmspchHeLeFCjgdOGpDrgXN+yvVAS1MDyr3jgVp5PNA/JJbZPx7h9uNcDxzUuRHaWpqs/KKvzLG2H77F9iO3VaL70o3nGBvpMW5YKyzMDfAPjOHrJYeJzFmya2FmiI2SG23p6WoxZ3oXrCwkry0oNI5l605x6YZqVgddufIMY2M9xo5pjbm5AQEBMSxY8A+RUe949zspqNTV1Jg8yZly5UzIzMwiPDyB7duvcuJk7uyr6Ohkvvr6AJ/M6MT23ycRE5PMkSMP2L+/6BnQinDNxR1jU31GTeuQx7sTJJqtjLB+Zzlvrnf35dNvct//8/+6sXaRZD8LXT1tPv2mD5Y2JrxJSyfYP4YfF/7DNZfirXq6dvQ+xuYGjPqqD2Y2JgR6hbFo2Aaigt/6hwnWOZMXACKDYlg0dAPTVgyj9+QOxEUksHX+Pm6ecJPpt0ING+q3rM2CAT/LPa5lBTPmb5+KsYUhiTHJPHvgx+yuK6THLYyrB29jbG7E6G8HYW5rRoB7MN/0XkVUzuCPha0p1pVyNUcERPNt71VMXzuOvp90IzYsni1f7OTGkXvSOhblzfnV7Ufp30Pn9mXo3L48vuLB3E5LFDiTRVNWums3q8HaS99J68z4eRwA53Zf4aeJhaeYKhHCuz84hHdLOP9AEndP6eWEpYkBL8JimbXxGBFxOd5tYkC5d+JuLU0NvhjcDitTQ9LSM/ALi2XWL0e56R4graOtpcEn/VpRwcqE1LR0bjz1Z9GOs7xMTct7+GJz+cZzTIz1GDv8He/+4R3vNjfE2ko57+7XszHaWposXdBPpnzn3zfZta/oG5dFce30Y4zM9Bn5aeecuCqCxZP/yI0HrYyxLm8q02bzidnS/9duUIkO/RyIDIljfHtJ6qt9my+SnQ1j53THwsaExLiX3L3kxe61Z0qsF+DacTdJXDW7u0Tz83AWj9maGwvamOSPBc/Nz9XcqDIdBjpK4qoW3wPQe1xbtHS0+Pb3yTLt9q49zV8/K6/72tEHGJsZMmpe73e8+5d3Yj9TrCuaS+tHBsWwaNgvTFs+lN6T2hMXkcjW+ftlvPvvNafIzoZxC/tjYWtKYmwyd88+Ydey3LEDM2tjvvp1ImY2JrxKSsXfI4Rvh6zn4ZWixzzKygNNbUz4evdMzG3NSEl8hf+TIBb2XIHbBcVWCHysuouN8O5SQS1byaRQ6urqREREYG0tmSXq6elJ37590dfXx8PDQ6lp7snJydy4cUOaN+3x48fUqlULd3fVpkxQlsafrivT4xcXvbiSLTsuCwxCSnfj0tJAM/Hj06ym4k3l3hsvS2/j0lLjjfKzDMqaMxFbVNpfzZ/kD7QUhO+8OUVX+sCxs7Pjr7/+okmTJmUtRS7/Be9uMWptmR6/uGi//Pi8W/Plx+cp2tEfQY7ovARHlLWCYpGZ9H+y38YHzvnMAyrtT3j3h8d/wbubTv04427D8BJs6lhG6HupZhXyeyX144u7sz9CzQCZiarJzy8oHOHdJed9eLfSt32dnZ3R1taW/m1nZ8e9e/cwMzNTeiMGAwMDzM3NMTc3x8zMDE1NTby8VDOjFyA4OJiJEyeqrD+BQCAQKEC2mnKP/wPWr1/P/PnzCQgIKGspchHeLRAIBIJCEd79wSG8WyAQCASFIry7VFA69crly5fzlZmbm3P16tUi22ZlZfHgwQOuXLnC5cuXuXnzJikpKVSoUIEOHTqwefNmOnTooKykAomLi2P37t3s2LFDZX0KBAKBoAj+g0vAhg0bxqtXr6hRowb6+vpoaclukhMXp5qc/MVFeLdAIBAICkV4t/DuEiC8WyAQCMoA4d2l4t1KD5S3b9+eiRMnMmTIEPT09JRqa2pqSkpKCra2trRv356ff/6ZDh06UKNGDWVlAHD8eOEbIfn5+RWrX4FAIBAUn//i7tvr168vawmFIrxbIBAIBIUhvPvDQ3i3QCAQCApDeHfpoPRAedOmTfnqq6/47LPPGDp0KJMmTaJFixYKtf3pp5/o0KEDtWvXVlqoPPr374+amlqhS88+tN3LBQKB4P+e/6Bhjxs3rqwlFIrwboFAIBAUivDuDw7h3QKBQCAoFOHdpYLSOcrXrl1LaGgoe/bsITo6mnbt2mFnZ8eaNWuIjIwstO20adOoXbs2Fy9eLLDOpk2bFNZia2vL4cOHycrKkvtwc3MruhOBQCAQqBS1bOUeHytJSUky/y/sUdYI7xYIBAJBYQjvFt5dGMK7BQKB4MNDeHfpeLfSA+UAGhoa9OvXj2PHjhEaGsrIkSNZtGgRlSpVon///ly6dKnQ9oMGDeL+/fv5ytevX8/ChQsV1tG0adNCTbmou94CgUAgKAWylHx8pJiZmREVFQVIljibmZnle7wt/xAQ3i0QCASCAhHeLby7EIR3CwQCwQeI8O5S8W6lU6+8y71799i5cyf79u3D2tqa8ePHEx4eTp8+fZgxYwZr1qyR227dunX07NmTq1evYmdnB8CaNWtYunQpp06dUvj48+bNIyUlpcDna9asKXcTFIFAIBCUHh/z3WpluHTpEubm5tL/fyxLjoV3CwQCgSAvwrs/bIR3CwQCgSAvwrtLB6UHyqOiovjzzz/ZuXMnPj4+9OnTh/3799OtWzep2KFDh9K/f/8CDXvChAnExsbStWtXbty4wYEDB1ixYgVnzpyhVatWCmtp27Ztoc8bGBjg7Oys+IsTCAQCgUBB3vWX9u3bl50QBRDeLRAIBAKB8G7h3QKBQCD42Hjf3q30QHnFihWpUaMGEydOZPz48VhZWeWr07x5cxwdHQvtZ+7cucTGxtKsWTMyMzM5d+4cTk5OysoRCAQCwYfGf+TO9rtUr16dUaNGMXr0aOrUqVPWcvIhvFsgEAgEhSK8u6zl5EN4t0AgEAgKRXh3qRxD6YHyixcvFnlH2djYON/Sq19++SVfPVtbW/T19WnXrh13797l7t27AMyaNUtZWQKBQCD4QPivLAF7l08//ZR9+/axfPlymjRpwpgxYxg2bBi2trZlLQ0Q3i0QCASCwhHeLbxbIBAIBB8XwrtLx7vVst/TrhvVqlVTqJ6amhp+fn6lrKZwqm1cW6bHLy76ocXam7VM0Y/8+L7Zpt6vylqC0mgkpJa1hGKR6eVd1hKURtO2XFlLUJozoRtV2l/d79cpVf/Z97NVevyyxNvbm7/++ov9+/fj5+dHhw4dGD16NGPHji1racXiY/LuGmt/LtPjFxczr7JWoDx6MZllLUFptBMzylqC0mgHx5W1hGKRHR1b1hKUJuvVx3dtdy59v0r7E94tvLssqLpnVZkev7iY3dUpawlKYxj68fmgodfH5yckJZe1gmKRERlV1hL+E5zP+kel/QnvLh3vVmigvEmTJgonSy9sN+yPBTFQ/v4QA+XvBzFQ/v4QA+VQ9zslDfuH/x/Dfpc7d+4wY8YMnjx5Qmbm+x9Y/K95txgof3+IgfL3gxgof3+IgXLh3W8R3v1+EQPl7w8xUP6eEAPlgkJQ+UC58G5A9d6tUOqV/v37l/hAAK1ataJ///707duXunXrqqRPgUAgEHxYlPYSsC1btvDTTz8RHh6Ovb0969evL3Bp8vjx49m9e3e+cjs7Ozw8PADYtWsXEyZMyFcnNTUVXV1dpfXdu3ePv//+mwMHDpCYmMjgwYOV7kMVCO8WCAQCgaII7xbeLRAIBIKPC+HdpePdCg2Uf/fddyo52NSpUzlx4gRLly7F1taWfv360bdvX9q0aaPwnXOBQCAQfOCUomEfOHCAL774gi1bttC6dWu2bdtGjx498PT0pHLlyvnqb9iwgVWrcmcrZWRk0KhRI4YMGSJTz9jYmOfPn8uUKWPWb5d+/f333wQEBNChQwdWrVrFwIEDMTIyUvJVqgbh3QKBQCBQGOHdwrsFAoFA8HEhvLtUvFvpzTzf4urqipeXF2pqatjZ2dGkSZMi24wfP57x48eTlpbGxYsX+ffffxk2bBjp6en06tWLfv360a1bN/T19YsrSyAQCARljLJ3ttPS0khLS5Mp09HRQUcn/7LWn3/+mUmTJjF58mQA1q9fj4uLC1u3bmXlypX56puYmGBiYiL9+9ixY8THx+e7k62mpka5csVPm1O3bl2aNWvGzJkzGT58eIn6Kk2EdwsEAoFAHsK7hXcLBAKB4ONCeHfpeLfSSa2joqLo2LEjjo6OzJo1i08//ZSmTZvSqVMnoqOjFepDR0eHnj17sm3bNsLCwjh58iQVKlRg8eLFWFpa0rt3b27evKn0ixEIBALBB0C2co+VK1dKjfXtQ575vnnzBldXV7p27SpT3rVrV27duqWQtD/++IPOnTtTpUoVmfKXL19SpUoVKlasSO/evXn48KFSL/nZs2fcu3ePL7744oMMtIV3CwQCgaBQhHcr1fZ9ILxbIBAIBIUivFuptoqi9ED5Z599RlJSEh4eHsTFxREfH4+7uztJSUnMmjWrWCKcnJxYvnw5T58+5enTp3Tq1Inw8PBi9SUQCASCMkZJw16wYAGJiYkyjwULFuTrNiYmhszMTGxsbGTKbWxsiIiIKFJWeHg4Z86ckd4Vf0vdunXZtWsXx48fZ9++fejq6tK6dWt8fHwUfsm1a9dWuG5ZILxbIBAIBIUivPuDQ3i3QCAQCApFeHepoHTqlbNnz3LhwgXq1asnLbOzs2Pz5s357jbkJSUlhZMnTzJs2LB8z4WFhXHhwgUGDx7M7Nn/nzuxCgQCwX8BtSzl6he03KvA/vPk1szOzlYo3+auXbswNTXNt1FWixYtaNGihfTv1q1b4+DgwMaNG/nll18U0pSZmcm6des4ePAgQUFBvHnzRub5uLg4hfopLYR3CwQCgaAwhHcL7xYIBALBx4Xw7tLxbqVnlGdlZaGlpZWvXEtLi6yswt+lpUuX8uzZMwBev34t81z58uU5efIky5cvV1aSQCAQCD4klLyzrSiWlpZoaGjku4sdFRWV7253PknZ2ezYsYMxY8agra1daF11dXUcHR2VurP9ww8/8PPPPzN06FASExOZM2cOAwcORF1dne+//17hfkoL4d0CgUAgKBTh3cK7BQKBQPBxIby7VLxb6YHyjh078vnnnxMWFiYtCw0NZfbs2XTq1KnQtgcPHqR3794AVKtWjbCwMJnR/wULFrBv3z5lJQGSuwqRkZHExMQUq71AIBAIVINatnIPRdHW1qZp06acP39epvz8+fO0atWq0LZXr17F19eXSZMmFXmc7OxsHj16hK2trcLa/vrrL37//Xfmzp2LpqYmI0aMYPv27SxevJg7d+4o3E9pIbxbIBAIBIUhvFt4t6II7xYIBIIPA+HdpePdSg+Ub9q0ieTkZKpWrUqNGjWoWbMm1apVIzk5mY0bNxbaNjY2FlNTU0CSwD01NVVq3AC6urpERkYqpefUqVO0a9cOAwMDypcvj42NDaampowZM4agoCBlX55AIBAISkop3dkGmDNnDtu3b2fHjh14eXkxe/ZsgoKCmD59OiAJ/MaOHZuv3R9//IGTkxP169fP99wPP/yAi4sLfn5+PHr0iEmTJvHo0SNpn4oQERFBgwYNADA0NCQxMRGA3r17c+rUKeVeZCkgvFsgEAgEhSK8W3h3EQjvFggEgg8M4d2l4t1K5yivVKkSbm5unD9/nmfPnpGdnY2dnR2dO3cusq2dnR0XLlygRo0a0rw2SUlJ0uVg27dvx9HRUWEtf/75JzNnzmTSpEm0bt2anTt3MmHCBKpUqcL+/ftp2rQpt27dolatWsq+TIFAIBAUE2XuVivLsGHDiI2NZcmSJYSHh1O/fn1Onz4t3U07PDw8X7CWmJjI4cOH2bBhg9w+ExISmDp1KhEREZiYmNCkSROuXbtG8+bNFdZVsWJFwsPDqVy5MjVr1uTcuXM4ODhw//59pfLAlRbCuwUCgUBQGMK7hXcXhvBugUAg+PAQ3l063q2WnZ2t8KnNyMhAV1eXR48eyb07UBT//PMPEyZMYNWqVcyfP5/r16/Ttm1bfvrpJy5dusSpU6c4f/48rVu3Vqi/evXq8f3330s3KXnw4AEDBgwgKCgINTU1hg8fzps3bzhy5IhSOqttXKtQvdENGjG1iSPWBgZ4x8Wy9Ppl7oeFFlh/TIPGjG3YmIrGxoQlJ7P5wV2OPPOUPt+tRk0+aepEVVNTNNU1CEiIZ/vDBxx97qWQHv1QxRYIDG/RkAntmmFlZIBvZCyrTl7FLUC+7uVDutK/qX2+ct/IWPqt2wNAZ/uaTOnQnMoWJmhqaBAUE8+u626ceFi0bv1IxT5+gzs0YnSPZliaGuAXGsvPf1/hkY98zQ51KrJt/tD8fSzYSWBEPAC9W9vx3eTu+eq0nrKBNxmZhWox9X6lkOY+A5oyZGRLLCwMCfCPZusv53B/HCy3rn3DSkyZ0ZFKVSzQ0dUiMiKRU/+6ceTAPWmdKtUsGTfZmVp1bClna8qWDec4evCe3P7yopGQqlC93sOdGDyhDeZWRgT6RvHrqlN4uAXKrdu6sx29hjlRva4tWtoaBPlGsXfLRVxv+krrdB/cjM59m1ClpiSPla9nKDs3nMf7aYhCejK9vBWqpwx9ZnRlyNx+WNiaEuARwtbZO3G/8Uxl/WvallOoXq9xbRk8vRPm1sYEeoez7bsjeNx7IbeumbUxUxYPoFbDSpSvZsXxHVfZ9p3s71r3ka3oNLg5VepIli35Pg1m16oTeD+S//69y5nQwmclKUuDL9cpVf/p2o9/I6n58+djbGzMwoULOXToECNGjKBq1aoEBQUxe/ZsVq1aVWba/iveXWPtzwrVG9WoEVMcm2FtYIBPbCxLL1/hQWjB3t23bl2mOjpS1cyU5LQ0rgUEsPLqNRLeyfk63qEJoxo1oryRMfGvUznj7c1P12/wJrNwPwEwU8ziGdy+EWO65fhgWCxr9xfsg03rVGTbvPw+OOjbXB8EGNG5CYPbN8LG3JiEl6lccvVm0+EbRfqgXkzRrwugf4/GjOjviIWZIQHBMfzyxyWeeBZ8rt/SoG4Fflk+HP+gGCbO3i23Tqc2dfl+bh+u3/Vh4cpjRfapnZihkOa+/RwYOsxJ4t0B0WzZdIGnBXhW/foVmTKtA5UrWaCjq0lkZBInTzzk8KH7cut36FCPbxf35+YNbxYvOly05mDFNiPqNaolgye3x9zaiECfSLYtO47HA3+5dc2sjJiyoA+16legfFVLju++ybblx2XqrP5rOg2dauRre++yF99N2VGknuzo2HxlvSd3YPCs7pjbmBL4LJRf5+/D43bB+SgbtK7N1BXDqVK3ArERCfyz4Qynd1yRqWNgosf4RYNo3ccBQ1MDIgKj+f2bA9w//xQAPUNdxn4zgFa9m2BqZcyLJ0H8Ov9vvN0C8h0v65WC13bTuzBkTh/MbU0J9Axh65w9uN8s+BqiQdt6TF8zhip2FYkNi+fg2hOc+u2C9PkekzrSeXQ7qtpXBMDHzZ+di/bz/L7864F3OZe+XyHNiiK8W3h3YZSWd1fdU7xz3Ny6ElPtnWhgYYONvhFTLx/mXHDBvylWegZ826wj9c3LUc3YnF1eD1jy4GKxjg1gdlexwZghbRsyrnMzLE0MeBEey5pDV3n4omAf1NLUYGoPJ3o1r4eFkT6RCS/5w+Ue/972AKBjo5pM6tacSlY5cXd0PH9edOPUvaIvJgxDFfPBD8m7Db3y+4mi9BrZgsGT2kniWp9Itq04iYdrgNy6rbrY02tEC2rUs0VLW5NAn0j2brqA2w3F8yZLSUpWTN+4tgz+pDPm1iaSWHDxITzuFhILfjeQWg0rU766Fcf/uMK2xbLXEd1HtaLTECeq1CkPgO+TIHatPK5QLAiQERmlUD1lKO24uzQobc3ns/5RWV8gvLu0vFupGeWamppUqVKFTAUCP3kMGTKEmJgYfvjhB1JTU2nWrBkAs2fPxtnZmbt370qn0CtCYGAgTk5O0r+bNWtGREQE4eHhlC9fnjlz5tCtW7diaS2KXrXqsKhtBxZfuciD8FBG1m/Izj4D6frXLsJe5v9xHFW/EfNatWHBpfM8iYygkU05VnbsSuLr11wM8AMg4fVrNj+4y4v4ONIzM+lYrTo/du5ObOorrgUp9gNXFN0b1mZ+7/Ys/fcSDwPCGOrUgG0T+tP35z2EJ+bXvfL4FdaduSH9W0NdnSOfj8blae4AZmLqa367fBf/qHjSMzNxrledZYO7EvfyFTd9Sq67S/PazBnZntV/XuSxTxgD2zdkw5wBDP1mN5FxBRvRoPk7SEnNzcUXnyw7WPzyVRqDF+yUKStqcEBRnDvZMePzrmxcewaPJ8H06u/AijUjmDT6V6Ijk/LVf536hn8PP8DvRSSvU9Op37ASn3/Vk9ep6Zw+/hAAHR0twsMSuHbJi+mzuqhE57u0696AafN7snnpCTweBtJzqCPLto1jat8NRIcn5qtfv1lV3G77smvDOV4mvabrAAe+3zyGL4b/yotn4QA0dKzGldNP8HwUxJu0dIZMbMeK38Yzrd8vxEblPw+ljfPQVsxYN4GNM3/H4+Zzek3rworT3zDJfjbRwe8vz2K7vg5M+34gmxcexPO+Hz3HtGbp3hlMa7+c6LD4fPW1tDVJjH3J/l/OMWBKe7l9NmxZkyv/uuL1wI83rzMY8kknlv/9CdM7riA2Iv/7V6qU4p3tD5V3DXnw4MFUrFiRW7duUbNmTfr27VuGyoR3v0uvOrX5tkN7vrt4EdfQMEY0bMiOgQPotms34cn5/aRphfKs6dGd5VeucvHFC2yMDFnWuTMru3ZlxnHJ4GLfunX5qm1bvnY5h1tYGNXMzPixu0T/8itXVaK7i2NtvhzenlV/XeSxbxgD2zXkl88HMGRx4T448JuCfbC7U10+HdSWJTvP8eRFGJVtzPh+okT3zwdKrrtj6zrMmtiRn7ed5+mzUPp2a8RPiwYz5rMdRMUUrNlAX5tvvuiJ25NAzEwN5NaxsTLmk/HteeQh/+ZzcWnfoR6fzOzML+tdcHcPoXefJqxcPYyJ438nSo5nvX6dzrGjrvj5RfE6NZ0GDSryxZzuvH6dzqmTj2TqWtsYM21GR548Vm16gnY9GzHtm75s/v4onq4B9BzegqV/TGJa9zVEhyfkq6+lrUli3Ev2b7nEgIlt5fa59JPdaGnlhghGZvpsOTGb62eeFE/jQEemrRzB5i//xOOOLz0ntGfZodlMdfqW6JD8NwNsqliy9J/ZnNl9jR+n/I59i5rMXDuGxJhkbh53BUBTS4OVx+aSEJ3EsrFbiAmLx6qCOa9e5t7A+mLjeKrWq8BP07YTG5FAp6EtWXlsLlOdviVWzrkpCuchLZm+dhwbP/sDj1vP6TWlM8tPzmdywy+JDs4/mFOuqhXLT3zN6T8usWrcJuxb1eGzjZNIjE7ixlHJRIdGznZcOXATj9vepL9OZ8jcPqw8vZApjeYSK+d6oFQR3i28uxDK0rvloa+phVd8JP+8eMK29gOLrK+jrknc61Q2P73NJDvFZ9KXhK4OtZk3uD0rD1zi0YswBrVpwKaZ/Rm0dA8R8fJ98MdJvTA30ueHvecJik7A3EgPTfXcyXCJr16z3eUuARGSuLtt/ep8P7orccmvuO1V8rj7Y/RuebTr0ZBpC3qz+Yd/8XQLoOdwJ5b+PoFpvX6WG9c2cKzGw1s+7F7nwsukVLoMbMb3W8cxe+gWXniFyTlCCfX1dWDaksFsXnAAz/sv6DmmDUv/msk056VEhxYQC8a9ZP8vZxkwpaPcPhu2qs2Vow/weuAvibs/6cLy/Z8yvf2y9x8L8uHE3crwMWoW3l063q10jvJvv/2WBQsWEBen2CyXvMyYMYOQkBD09PT4888/0dHR4eHDh7i4uChl1gBVq1blwYMH0r/d3NxQV1eX7sJqbm5Oenp6sXQWxeTGTTno+ZQDnk95ER/H0utXCH+ZzKgGjeTWH1DXjn3uTzjl85zgpERO+jznoOdTpjXNXWJwNzSEc36+vIiPIygpkV2PH/IsJppmthVUpntcGwcOP3Dn8H13/KLjWHXyKuGJyQxr0VBu/Zdpb4h5+Ur6sK9og7GeLkcfeEjr3PcL4aLHC/yi4wiOS2TvzYd4R0TjULW8SjSP7NqUf6+58+81dwLC4/h53xUi45IZ3FH+uX5LXFIqsUmvpI+sPIsnssmWeT42SbHZRIowaJgTZ08+4syJRwQFxrJ1w3mio5LoM6Cp3PovfCK5fMGDQP8YIiMSuXjOHdd7fjRoVFlax/tZOL9vvsiVi56kp6tmQP9dBo5rjcthV84efkCwXzTbVp0mOjyR3sOc5Nbftuo0h3Zcx9s9lLCgWHZtOE9YYCxOHepK6/z49T+c3H8Xv2fhhPjHsOG7o6ipq9G4RXWV61eEQbN7c3bHJc78cYmgZ6Fsnb2L6OAY+szo+l51DJjSgXP7b+Oy7zbBvpFs++4I0WHx9BrbRm79qJA4tn13mIuH7pGS9FpunR8/28Op3dfx8wgl5EUkG+btQ11djcZt6pTmS5GLmpKP/0datGjBnDlzyjzQfovwbgkTmzbln6fuHHzqzou4OJZduUJ4cjKjGsn3kya2toQkJbH74UNCkpJwDQ1j35MnNCiXu9t7k/LlcQ0N48SzZ4QmJXEjMJATz57RoIgd4ZVhVJem/HvDnX+v5/jggStExiczuH3xfbBhjfI89g3D5d4zwmOTuOsZiMu9Z9Srohrdw/o149SFp5y88JTAkDg2/nGZqJhkBnRvXGi7eTO6cv6aJ+7P5Qem6upqLJ7dix37bxIeqdrAb/CQ5pw5/ZjTpx8TFBTLls0XiIpKok/fJnLr+/pGcvmSJ4EBMURGJnLhggcP7vvToEGlfJoXftOX3buuE16MAdrCGDCxHef+uY/LwXsEv4hi2/LjRIcn0GtUS7n1o0Lj2bbsOBePuZKSLN9PXiamEh+TLH04tK5F2ut0rp95XCyNA2d2w+XP65zdc51g73C2LdhHdGgcvSd1kFu/18T2RIXEsm3BPoK9wzm75zrn9l5n8Ge5g3Bdx7TF0MyAH0ZuwvOuL1HBsXjc8cHfXTIAo62rRZu+Tflj8T+43/Im3C+Kvav+JSIwpsDjFsWgL3pxdudlzu64TPCzMH79cg/RwbH0mSZ/8kKvqV2ICorl1y/3EPwsjLM7LuOy6zKD5/SW1lk1dhMnfj2P3+NAgp+HsX7ab6ipq9Gko/IziEuK8G7h3YVRlt4tjythfqx9dB2XIMVWn4akJPLD/Qsc8XMn+U1aKauTMLqTA8duu3P0ljv+kXGsOXyViPhkhrSVH3e3sqtC05oV+GzLUe4+DyI8LgmPwEge+4dL67j6hHD58Qv8I+MIiUlk35WH+IRG06SGauLuj9G75TFgQhvOHX6Ay6H7krh2xUmiIxLpNaKF3PrbVpzk0PZreD8NISwwlt3rXCRxbcd6paNvWifO7buNy9+3CPaJZNviw5JYcJz8G9hRIXFsW3SIi//cIyVZ/krxH2fuyokFQwjxjWTD3L8ksWDb9x8LwocTdyvDx6hZeHfpeLfSA+W//PIL169fp3z58tSpUwcHBweZhyJoamqya9cuunfvzp49eyhXTrFUBXmZOXMmkydP5uuvv+a7776jT58+jBkzBg0NDQDu3r1L7dq1i9V3YWipq1Pf2obreWZ5Xw8KpKmtfJPS1tAgLUN2udPrjAwa2ZSTuUv8Lq0qVqa6mTn3CknnopRuDXXsKthwK88s71s+QTSuopi5DnKsz23fIMITCr6j7FSjElWtzHngX3Ldmhrq1K1qw10PWc13PQJpWMQFwd4fRnNm3VS2zBtM07qV8j2vp6PN8Z8mc3LtFH7+vD+1K1uVWC+ApqY6tevY4nrPT6bc9Z4f9vUrKtRHjVo22NWvyBMFl0qVFE0tDWrZlcftlq9MudstX+o1rlxAK1nU1NTQM9AhObHgNC86ulpoamoUWqe00NTSpHbT6riekw30Xc8/wb7l+7uA0NTSoFbDSrhdlV3C5Xb1GXbNqqnsODp62mhoapCckKKyPhWmFDcV+VDZvXu3zOYhX331FaamprRq1YrAwPfzPS4M4d053m1jw40878eNwEAcysv3E7ewMMoZGtK+muS7aaGvT/datbnsl/v77hoaSn0baxrmnI9KJia0r1aNy/7yU18oi6aGOnWr2HAnjw/eUcAH/1o8mrNrprLly8E0rSPrg498QqlXxRr7ahLdFSxNaN2gGjeelly3pqY6tWuU496jAJny+48CqF+34Jv/PTvWp3w5U3btv1VgnfFDW5GQlMqpC09LrPNdNDXVqV27HA/ypCxxfeCvsHfXrGmDff0K+WaNjxnbhsSEV5w5XbwZ2QWhqaVBrfoVcLshO1DkdsMbO4cqKjtO1yHNuXryEWmpyg+CaWppUKtxFdwueciUu13yoF7zmnLb1HOska++60UPajWpioam5HeiRY/GPLv3gplrR7PPZx2/3l7CsC97oa4uCQM1NDXQ0NTgTZqs5jev32DfQvkcyppaGtRyqIbbedn30PXCE+xayv+9smtRC9cLeeqfe0LtptWlryMvOvo6aGppkhwnvPt9ILxbccrKuz9WNDXUqVfJJt8s7zteQTSqLt+7nRvUwDMoivFdHHFZPoVji8cze0BbdLTk/14ANK9Tiao25rj6qiDu/gi9Wx6aWhrUsq+QL22K200f7Joo5o3SuDZBdRPpZPQ1rITbVdl0OW5XvbBrprrJZNJYMF71r6EoPpS4Wxk+Rs2A8G5Kx7uV3syzX79+0g1BSsLgwYNl/i0OM2fORF1dnb1795KWlsb48eNZtGiR9PnmzZvz999/F9pHWloaaWmyd5Wz0zNQ0yr41JjpSZZAxeTJZxiTmoKVflW5ba4FBTDMvgHn/Hxxj46igbUNQ+3qo62hgZmuHtGvJBfERtra3J4wDW0NDbKys1l05SI3glXzZpvq66GpoU5ssqzu2OQULGsXbRqWRga0qV2Vr/afyfecoY42lxdOQUtTg6ysbJb+e4nbviVfXmxqJNEclyQbMMQmvsKivr7cNrGJKSzfeR6vwEi0NTXo2aoeW+YNZvrqgzz0llxEBITHs+QPF3xDojHQ1WF4lyb8sXA4I7/7k+DIhBJpNjHVR0NTnfg8QU58fApmFoaFtv376CxJew11/txxjTMnHpVIi6IYm+qjoalBfOxLmfL42JeYWxau+S2DxrdGV0+ba2cLvgCaOKcbsVFJPLxddO5NVWNiaSR5jXne3/jIBMzKmb43HcbmBhIdeZYvJsQkY2ZtrLLjTFjYl9iIRB5ef66yPhWlNDcV+VBZsWIFW7duBeD27dts2rSJ9evXc/LkSWbPnq10zk5V85/w7owM1DQV8W7Z3+aYlFdYVZXvJ25h4cw5fYYNvXuho6GBloYG5319+eHSZWmdk8+fY66vx4Hhw1ADtDQ02PvoEdvuyc9TrSymhvJ9MC7pFZYm8nXHJKSwbPc7PtiyHlu/HMy0nw7yMCev+bn7zzEz0mP71xLdmpoa/HP5EbvPlFy3SY53x+e5URefmIK5mfwl2RVtTZk2th2fLtxHZpb8H5EGdSvQq3ODAnOflkizicR74+Pze3dBmt+y/+BMafs9u29w+nRukGVfvwI9ejZk6uSic3sri7FZAX4S+xIzSyOVHKN2w0pUq2PL+gXFy6lpbJHjvVGyMwjjo5MwtzGR28bMxoT4aNlUN/FRiWhqaWJiYUhcZCK2Va2waVePy//cYdGQ9VSoYcPMNaPR0FDn7x9PkPryNZ53fRk5rw9Bz8NJiEqk/WAn6jSrTtgL5fOwGlsay38dkYmY2ZgW8DpMic8zc1L6OiyNiItIyNdm0ooRxITG4Xax9AeT8iK8W3h3YZRV3P2xYib17vxxt4Wx/Li7gqUJjWuUJy09gzm/HcfMUI8FwzpibKDLD3vPS+sZ6mrjsiI37l554BJ3n5U87v4YvVsexmZv41o5sZaVYjdzBk5si66eFteKmXKsUH3mhhJ9eXwuIToZMysVxoLf9MuJBd9/TvAPJe5Who9RMwjvLi3vVtqVvv/++xIfVJXMmDGDGTNmyH1OkV23V65cyQ8//CBTZtK9C2Y9i86xlp3nlowaagXepNl47w5W+gYcGTISNTU1Yl6lcMjLg+lNm5OVnSWt9/LNG3rt/xN9LS1aV6rMt22dCUpK4G6oYpsfKkJejWpqaiiypWv/pnYkv07jkqdvvudS3rxh0C970dfWxqlmJb7q1Y6QuETu+6lGd159amoF3xALjIiX2azs6YtwbMyNGN29mXSg3N0vHHe/3GVsj31D2fv9aIZ2asLavy/n67N4mvN+PvKX5WXOJ3vQ1dOinn1FJs/oQFhIPJcveBTaRqXk1azgZ6N9z4aM/qQTP3y2l8QCZkENntiW9j0b8tX47aS/UWwzmdIg/2dJrcj3pXR05D3X+bUVl8EzOtG+X1O+GvIL6WllcK7/g4YdHBxMzZqS2ZHHjh1j8ODBTJ06ldatW9O+ffuyFcd/w7tNu3TFXIH8qMr4SU1zcxZ37MCm23e4FhCAtYEB853bsbRzZxacOweAU8WKfOLkxHcXL/IoPIKqpqYs6tCe6JQUNt25W6QeRZGruwDhgZHxBEa+44N+Eh8c062ZdKC8aZ2KTOjlxKq/LuLuF0Ela1PmDm9PTGIKf5xUje788uT/3qqrq7F4Tm927LtJcAF5mfV0tfh2dk9+3OJCYgHLjlVCPnkFX9u95YtZe9HT06aeXXmmTOlAaGg8ly95oqenzYKFffl5zRmSkkpPc77rOlTnJ92GNMf/eTjeT0qYU1ZZ75VzPSIplpSrqauREJ3Ehlm7yMrKxvdRIBblTBk8qzt//3gCgJ+m/c7sTRP5+/nPZGZk4vs4kCv/3KVGo+LPtpfn3YWe7HxfXPn9AAz5sg/th7VmXuclpKe9vxQWUoR3C+8uglKJu/t3wnRAZ5Xo+xDJ//tccGylnhN3fbPrDC9fS/YXWXv4Gj9N7s2qA5dIy0m9mZL2huEr96Kno41TnUp8ObAdITGJuPqoKO7OV/IReLccihvzOfdqxOhPO/PDJ3sKjGtVgfzrUdX8EA/+pDPt+zfjq0HryyYWzOFDibuV4aPT/AFLKy3eh3crPVBevXp17t+/j4WFhUx5QkICDg4O+Pn5FdDyw2TBggXMmTNHpqzh9q2FtolPTSUjKwsrfdk7qxZ6+vlmqr0lLTODry+68M3l81jq6RP1KoUR9g1JfpNGXGquaWQDgYkJAHjFRFPTzIJPmjqpZKA84VUqGZlZWBrJzkAzN9Qn9mXRS3IGNrPnxEMv0jOz8j2XnQ1BsZJZM8/Co6lubc6U9o4lHihPSJZotjCRPdfmxvrEJSq+jOjpi3B6tCw4x1h2Nnj6R1K5gFlBypCY8IrMjCzM88weNzUzIKEIs43IyV0a4BeNmbkBYya1ey8D5UkJr8jMyMw3A83U3CDfLPO8tOvegC+WDGDFnP08vCN/pvig8W0YPsWZBZN34u8dqTLdypAYk0xmRibmee4Im1qbkPAecuW9JSkuRaIjz4wBEwsjEqJLvsHpoGkdGfZZVxYO30RAKWw+oxD/QcM2NDQkNjaWypUrc+7cOWbPluworqurS2rq+081lJf/gnc33vproW2k3m2Qx7v19YlJke8n052a4xoaxu85eVmfx8Tw6uJFDg4fzs83bxKdksLs1q045unFwafuAHjHxKCnpcXyLp3ZfOduib8OCS/l+6CZkb5Se2u4+4XTo0WuD07v14rTt73497pE94vQGPR0tPhmTGd2nLpbooHWxBzvNs+zoZeZiT7xcpYx6+tpU6+WLbWq2/DFVMmAibqaGurqalw+/CVffv8PSS9fU97GlFXf5G7app4zeHr58JeMmvkHYXJm6CqsOfEVmZlZmJnn0Wymn2+WeV4icjbJ8vePxszMgHHj2nD5kifly5tia2vKshVDpHXfDvieu/A148ZuIzys+JqT4nP8JI93m1gYkhBbcIo8RdHR1cK5dyP+XH+u2H0kxUq81yzP7HFTSyPiC9jUOz4yETPrPPWtjMlIzyAp5zoqLiKRzIxMst6ZwRj0PBzzcqZoammQkZ5JuH80X/VajY6+NgZGesRFJrJg53QiA6OVfx0xSZJznec60dTaJN8s89zXkX8WmpmVieR15Lm2Gjy7NyPm9+fr7svxf6raDV8VRni38O5SRp53N/jnlzJSU7rEv/Vu4zxxt5E+ccnyvTsmMYWoxJfSQXIA/4g41NXVsDE1Iig6AZDErcHRkt8d75BoqtmYM7GrY4kHyj9G75ZHUvyrgr0xpoi4tkdDvlg+iBWf/8Wj2/knB6pEX9xLib48K4lNLI1IiC65dw+a3olhs7qxcNjGMosFP5S4Wxk+Rs2A8O5S8m6lB8oDAgLk7r6dlpZGSIjqZj2rgnHjxhEcHMylS5cKrKOjo4OOjo5MWVHLv9KzsnCPiqRNpSqc88v9AW1TuQrn/Qr/Qc3IyiIiRfID3ad2HS75+xX52dbWKDgvmTKkZ2bhGRpJq5pVuOiRO6DZqmZlLnkWngrDsXpFqliacfj+CYWOpYYaWgXkX1SGjMwsngVE4mRfmStuuee2uV0Vrj1SPH1HncrWxCQWHujWrmyFb0jJdzPOyMjC+3k4Do7VuHktN+2Fg2M1bt1QbMMZkNxV1iokJ50qyUjPxMczjCatanLroqe0vEmrmty55FVgu/Y9GzJ76UBWzTvAvWvyU3wMntCGEdM68M3UXfh4qCbffnHISM/A29UPhy4NuXnsnrTcoXNDbh1XTYoExXRk4vMkmCbt6nLrbO5yPod2dbjtUrKl1oOmd2LE5934dtQWfEo6+68EqOW/l/Z/T5cuXZg8eTJNmjTB29ubXr16AeDh4UHVqlXLVhz/Ee8uJO0K5Hh3ZCStq1TmnG+un7SuUoULvvL9RE9Ti8xs2Q/024G5t4vh9bS08m0WnZWdhRpqKpmFkpGZxbPASJzsKnPlYa5uJ7sqXFXGBytZE/POcmpdHa182rKyskBNLWeFXPF1Z2Rk4f0iAsfGVbh+NzdHqGPjKty4K2dV2qs0xs7aKVM2oEdjHBpUZtGPxwmPTCQrKytfnSmj2qCvp82G7ZeIiinZjcaMjCy8vSNo2qwaN9/x6qZNq3HzpjLerYaWtsS7g4JimTThd5nnJ05yRk9fm80bJZt8l0hzeiY+7qE0aVOLW+fdpeUObWpzWwU32dv2bISWtiaX/nUrmcZHgTTpYMetk7n9NOlgz53TD+W28br/Aqc8G8c5dLTH52EAmRmS3zHPuz50GNxC5jtWoaYNseEJZOTZ8Dzt1RvSXr3B0FSfph3r88d3yqeRyUjPxMfNH4fODbj5b+41g0OnBtw+8UBuG887PrToJZtH2qFLQ7xd/aSvA2DInN6MXDiQBb1W4ONadgOfwruFd5eE0oq7P1YyMrPwCo6kRd0qXH6c69Ut6lbmyhP53v3IL4zODrXQ09EiNWdVSRUbUzKzsogsZH8wNTU1tFURd3+E3i33daRn4uMRSpPWNbn1jhc6tKrJ7Xfi3Lw492rE7BWDWT1nH/evll7qSplY8J1Nsh3a1eW2S8lSvQya0ZkRX3Tn2xGb8HlcRjdd+XDibmX4GDWD8O7S8m6Fnen48ePS/7u4uGBikjvTIzMzk4sXL1KtmuIb0WVmZhITE4OamhoWFhbSjUBUSfny5VEvYKPMkrL9kSs/d+nB06hI3CLCGGHfkPKGRvztLvmxm9eyDeUMDfny/FkAqpma0cimHI8iwjHR1WVS46bUNreUPg8wo2lznkZFEpiYgJaGBh2qVGNgXTsWXbmoMt27b7ixamh33EMjeRwYzhCnBtiaGnHgruRH+YturbE2MWThQReZdgOb1edxUDi+kbH5+pzc3hGPkEiC4xLR0lCnXZ1q9HWox9JjBV8oKcPf51z5YUoPPAMieeobzgDnBpSzMOLwZcm5njm4DVamhny/XXIuR3RpQlhMEn5hsWhpaNCjVT06Odbmq025n+HJ/Vrg/iKc4MgEDHS1GdalCbUrWbH6T9VoPnzgLl8v6of3s3C83EPo2c8BaxsTTh6VBIkTp3fA0tKIH5dJNPUd2JSoyCSCAyUD9fUbVmbIiBYcO5QbfGlqqlOlmmTDUS0tDSytjKhRy4bUV28IC5W/3E0Zjuy+ybxVg/FxD8XrcRA9hjhibWvCqQMSo5jwRVcsrI1Zs/AQIBkkn7tiML+uOsWzJ8GY5eQyT3udzquXkvyDgye2ZexnnVn91UEiw+KldVJfveH1qzdyVJQuh9ed5Os9n+H94AVet73pObUz1pUtOflr8WfLFYejv19m7oYx+DwOwsvVnx6jW2NVwZzTf94AYPz8PljYmrL28z+lbarbSzbR0TXQwcTckOr2Fch4k0mQTwQgSbcydl4vVn+6m8jgWMysJLMoUlPS3vu5/i/mStu8eTPffvstwcHBHD58WDr7y9XVlREjRpSZLuHdsuxwdWVNjx48jYzkYVg4wxs2oLyREX8/lvjJ3DYS7557VuInl/xesLxLF0Y2asj1gECsDQz4tkN7HoWHE5UiGXS++MKPiU0d8IyK4lF4OFXMTJndqjUX/V7kG0AvLn+dd2XJpB54BUTyxC+cge0aUM7ciMNXcnxwYBusTQ35bkeOD3Z+xwc1NejRoh6dmtVm3pbcz8P1x36M7OLA86Ao3P3DqWRtyvT+rbn2WDW6D/z7gG+/6MUz3wg8nofRt2sjrC2NOeYi0TxtdFssLYxYvuE02dngHyR7ozo+8RVv0jNlyvPWeZmSJre8uBz65x7zF/TB+3k4nh6h9OrdGGsbY06ckAzoTprsjKWVEatXngSgX38HoiKTCAqSXBvVb1CRIUObc+yoKwDp6ZkEBOTR/PI1QL7y4nJ0xzXmrhmOz9MQvB4G0mO4E1a2ppz++zYA4+f2wMLGhLXz9kvbVK8n2UhOV18bE3MDqtcrT0Z6BkG+srm7uw1x5PZ5jxJvZnZkswvztk3B52EAXvde0GO8M9YVzTm14woAE74bhIWtGWumbwfg1I4r9J3SianLh3Fm9zXqNa9BtzFtWTVpm7TPk39cpu/UzkxfPYLj2y5SoYYNw7/sxb/bcq+Zm3ayB9QI8Y2gfHVrJi8ZSohvBOf23ijW6zi8/hRf7ZqJt6sfnne86TU55xritwsATFw2HIsK5vw0YYvkdfx2nn6fdGXaT2M4/cdF7FrUpvuEDqwcnTuDdsiXfRj3w1BWjdlIZEC0dOZ96svXvE5Jyy+iFBHeLby7JJSmd8tDX1OLqkZm0r8rGZpiZ2ZNwpvXhKUk8VUTZ2z0jfjy5klpHTsza2lbc1197MyseZOViW9i/vhWFey96Maycd3xDMrx7jYS7z50QxJ3f9a3NdamhizaI4m7zzx4xpQeTvwwuiu/nrqNqaEeX/Rvx7+3PaRpVyZ2dcQjKJKQ6ES0NNVpY1+NXk71WLlfNTHsx+jd8ji68wZzfxwqiWsfBtJjWI437peklhs/p5vEG78+CEgGyeeuHsqvK07w7HGQ3LhWpfq2XWTuxnE5saAfPUa3kcSCe3JiwYV9sShnytpZe6RtqttLNhbXNdDBxMKI6vYVJd7tnRMLftKZsV/1ZvXMXUQGx0nznUtiwffrJ/DhxN3K8DFqFt5dOt6t8EB5//79Ackdy3Hjxsk8p6WlRdWqVVm7dm2R/Rw9epQ1a9bw4MEDMjIk+ZI0NTVp1qwZ8+bNkx5HFaxcuVJlfeXllM9zzHR1mdW8BVYGBnjHxjLxxBFCkyV3e60NDChvmLucRl1NjclNmlHd1Iz0rCzuhAYz+NA+QpNz76Lqa2mxpH0nbA0NeZ2RwYv4eGafP8MpH9Xd0Tz7xBtTfV1mdHLCysgAn4hYpu86RnjOXWorYwNsTWWXKRnqaNOlfk1Wnbgit099bS0W9e+IjYkRaekZ+EXHMf/AWc4+UXwGVmGcv+eNiYEek/u2wNLEgBehsXyx7igROcuKLU0MKGeRq1lTU4PPhzljZWZI2psM/MJi+HzdUW498ZfWMdLTYeG4LliY6PMy9Q3Pg6KYuuognv4RKtF89aInxsZ6jJ7QFnMLQwL8ovlm7n6icpbtWFgYYv3OMmQ1dTUmTu9AOVtTsjKzCAuNZ/vWS5x6ZxaXhaURv+6aIv176MiWDB3Zksdugcz9LHdAtbhcO/sUY1N9Rs3ogJmVEYE+kSyavoeonHQw5lZGWNvmau45xBFNLQ0+XdSXTxf1lZafP+bG2m8OA9BnuBPa2posWj9S5lh7N19k7xbVXNApw9WDtzC2MGT0osGY25oR4B7MN71WEFWKF2ryuHbcDSMzA0bO7o65tTEBz8NZPGYrUTk3PMxtTLAubybTZvO5+dL/125UmQ4DHYkMjmV8i+8B6D2uLVo6Wnz7+2SZdnvXnuavn/NvwFuq/AcN29TUlE2bNuUrz5uL85NPPmHJkiVYWlq+F13Cu2U59dwbU109Pmsh8W6f2FgmHTlK2DvebWuc6yeHPTwx0NZmTOPGLHR2JiktjdtBwfx4/bq0zuY7d8gmmzmtW2NjaEhc6isu+vmx9sZNlek+fz/HB/vk+GBYLJ9vOEpEnHwf1NLU4IuhzliZGkp8OTSGzzcc5ebTXB/84+QdsrOzmTGgNVamhiQkv+LaYz+2HFWN7ks3n2NsrMf4Ya2wMDPAPyiGr5YeJjInxZSFuSE2VqrZcFJVXLnshbGxHmPGtsbc3JCAgGgWzD9IVGSOZgtDrN9ZKq2mpsakKe0pV86EzMwswsMS2P77FU6ekD9TujS4dvoxRmb6jPy0s8RPvCNYPPkPonJSuphbGWNd3lSmzeYTs6X/r92gEh36ORAZEsf49rnfvQpVLanvWJ2F434rucYj9zE2N2TUV30xK2dCoFcoi4asJypYMjhlbmOCdUVzaf3IwBgWDVnHtJUj6D2lI3ERCWz9+m9uHneV1okJjeebAWuZunI4W0LDsgAAAJYVSURBVG8tISY8nmO/XuCfdaeldfSN9Znw3SAsy5vxMj6FG8dd2bX0iMxsbmW4+s9tjC0MGfXNIMxtTQn0CObbPquk1xDmtmZYV8r9bY8IiOabPquZvnYsfWZ0JS4sni2zd3HjaO5MtT7Tu6Kto8Xig7LpKP5ccog/lx4qls5iI7xbivBu5SlN75ZHQwtb9nfLjS8WOXYC4JDvU+beOoW1niEVDGRTW5zuMzG3vaUt/avbE/IykTZHCk+7WlzOuXljYqDL1B5OWBob4Bsey2dbjhH+rneb5fpgalo6MzYe5ushHdj79UgSU15z3s2bzSdyfVlXW4uFwzpibSqJuwMi4/h211nOuakm7v4YvVse1848kXjjJ50wtzaSeOPUXbLeaGsqrd9zmJMkrv2uP59+119afv6IKz8XczPrQvW9jQXn9MiNBUdvISokTqLP2gTrCnliwQsLpP+v3ahKbizYfDEAvce3k8SC26fItNu75hR/rT3N++ZDibuV4WPULLw7F1V6t1q2kmuCq1Wrxv3794t1sG3btjFr1iwmTpxIt27dsLGxITs7m6ioKFxcXNi5cycbN25kypQpRXeWQ0hICFu3buXWrVtERESgpqaGjY0NrVq1YsaMGVSsWFFpndU2Fn3h8SGiH/r+7uKrCv3Ij++bbepdsplVZYFGQtnnWSwOmV6queh7n2jalitrCUpzJnSjSvtzmLFOqfpuW2cXXen/BGNjYx49ekT16tXf63H/C95dY+3PSrf5EDArOLvVB4teTPEGGssS7cSy28yquGgHx5W1hGKRHV06szNLk6xXH9+13bn0/UVXUgLh3QUjvFtCaXh31T2rlG7zIWB2V6foSh8YhqEfnw8aen18fkJSyfOMlwUZkVFFVxKUmPNZqr3xIry7YEri3UonBfP39y+6UgH89NNPbNmyhUmTJuV7rn///jg6OrJ8+XKFDfvGjRv06NGDSpUq0bVrV7p27Sq9ADh27BgbN27kzJkztG7dutiaBQKBQKAkH9/9r/dGWe2aLrxbIBAIBIUivLtAhHcL7xYIBIIPEuHdBVIS71Z6oHzWrFnUrFmTWbNmyZRv2rQJX19f1q9fX2Db0NBQ2rRpU+DzrVq1IixM8Z15Z8+ezeTJk1m3Tv5dlNmzZ/PFF19w//6Hm3xfIBAI/u8Qhv3BIbxbIBAIBIUivPuDQ3i3QCAQCApFeHepoHSujsOHD8u9U9yqVSsOHSo8l569vT2//VZwrsPff/8de3t7hbW4u7szffr0Ap+fNm0a7u7uCvcnEAgEgpKjlq3cQ1D6CO8WCAQCQWEI7/7wEN4tEAgEgsIQ3l06KD2jPDY2Vmbn7bcYGxsTE1N4kvu1a9fSq1cvzp49S9euXbGxsUFNTY2IiAjOnz9PYGAgp08rvtGAra0tt27dok6dOnKfv337Nra2tgr3JxAIBAIVIEz4g0N4t0AgEAgKRXj3B4fwboFAIBAUivDuUkHpgfKaNWty9uxZPv30U5nyM2fOFJkk3dnZGXd3d7Zu3cqdO3eIiIgAoFy5cvTu3Zvp06dTtWpVhbXMnTuX6dOn4+rqSpcuXfJdAGzfvr3QJWkCgUAgUD1qZZTLU1AwwrsFAoFAUBjCuz88hHcLBAKBoDCEd5cOSg+Uz5kzh08//ZTo6Gg6duwIwMWLF1m7dq1C5li1alVWr16ttFB5fPLJJ1hYWLBu3Tq2bdtGZmYmABoaGjRt2pQ9e/YwdOhQlRxLIBAIBAoi/LpARo8ejbGx8Xs/rvBugUAgEBSK8O4CEd4tvFsgEAg+SIR3F0hJvFvpgfKJEyeSlpbG8uXLWbp0KSAx4a1btzJ27FiF+wkMDCQiIgI1NTVsbGyoUqWKslIAGDZsGMOGDSM9PV26BM3S0hItLa1i9ScQCASCkvFfzH+2c+dODA0NGTJkiEz5P//8w6tXrxg3bhwAW7duLQt5wrsFAoFAUCjCu3MR3i0f4d0CgUDwYSG8OxdVerfSm3kCzJgxg5CQECIjI0lKSsLPz09hs163bh2VKlWievXqtGzZkhYtWlC9enUqVapUouVaWlpa2NraYmtrK8xaIBAIypJsJR//B6xatQpLS8t85dbW1qxYsaIMFOVHeLdAIBAICkR4txTh3YUjvFsgEAg+EIR3S1Gldys9oxwgIyODK1eu8OLFC0aOHAlAWFgYxsbGGBoaFthu6dKlrFmzhoULF9KtWzdsbGzIzs4mKioKFxcXvv/+e16+fMm3335bvFcjEAgEgjJHLausFbx/AgMDqVatWr7yKlWqEBQUVAaK8iO8WyAQCAQFIbw7F+HdAoFAIPgYEN6diyq9W+mB8sDAQLp3705QUBBpaWl06dIFIyMjfvzxR16/fs2vv/5aYNvffvuN3bt3079/f5ny8uXL07hxY2rXrs2nn34qDFsgEAg+Yv6LS8Csra158uRJvo2xHj9+jIWFRdmIegfh3QKBQCAoDOHduQjvFggEAsHHgPDuXFTp3UqnXvn8889p1qwZ8fHx6OnpScsHDBjAxYsXC20bGxtLnTp1Cny+du3axMfHKytJIBAIBB8S/8ElYMOHD2fWrFlcvnyZzMxMMjMzuXTpEp9//jnDhw8va3nCuwUCgUBQOMK7hXcLBAKB4ONCeHepeLfSM8pv3LjBzZs30dbWlimvUqUKoaGhhbZt3rw5y5cvZ9euXWhqyh46IyODFStW0Lx5c2UlqRzLmrFlLaFYRGuYl7UE5VHTKGsFSmO6+3FZS1Ca9PYOZS2hWGhRu6wlKE9qWlkrKHNK+872li1b+OmnnwgPD8fe3p7169fTtm1buXWvXLlChw4d8pV7eXlRt25d6d+HDx9m0aJFvHjxgho1arB8+XIGDBigsKZly5YRGBhIp06dpP6WlZXF2LFjP4g8p/8F737x5ZyyllAsqm5dU9YSlMbkWbEy95UpRsFqZS2hGHyE13WAdkZGWUtQmmJt2vR/hvBu4d1lQXd7j7KWUCxejH9d1hKUJnRBq7KWoDS6x1+UtQSl0axZvawlFAuN1x9fDJuZlFzWEsoc4d2l491KRzpZWVlkZmbmKw8JCcHIyKjQths3bqRr165YW1vj7OyMjY0NampqREREcO3aNXR0dDh//ryykgQCgUDwIZFdeo594MABvvjiC7Zs2ULr1q3Ztm0bPXr0wNPTk8qVKxfY7vnz5xgbG0v/trKykv7/9u3bDBs2jKVLlzJgwACOHj3K0KFDuXHjBk5OTgrp0tbW5sCBAyxdupTHjx+jp6dHgwYNqFKlSvFfrAoR3i0QCASCQhHeLbxbIBAIBB8XwrtLxbvVsrOVO7PDhg3DxMSE3377DSMjI548eYKVlRX9+vWjcuXK7Ny5s9D2ycnJ7N27lzt37hAREQFAuXLlaNmyJSNHjpQ5oWWF45mFZS2hWET7f3wzjwyCP74Z5eVX3yprCUqT9bHOKI98WdYSlEbtI5xRfsZPtTNaW45cq1T9Kzs/JS1N9rzp6Oigo6OTr66TkxMODg5s3bpVWlavXj369+/PypUr8/edc2c7Pj4eU1NTuccfNmwYSUlJnDlzRlrWvXt3zMzM2Ldvn1Kv5c2bN/j7+1OjRo18M7jKkv+Cd3+sfJwzyj8+7zYKzj/Y9KGjE59e1hKKhbZ/VFlLUJrs+MSylqA0ZxN3qLQ/4d3Cu8uC6a5jylpCsXjhKGaUvw8qrPz44u6PdUZ5dvTHl1XhY5xRfj7zgEr7E95dOt6t9ErDdevWcfXqVezs7Hj9+jUjR46katWqhIaGsnr16iLbGxkZMWPGDHbv3o2LiwsuLi7s3r2b6dOnfxBmLRAIBIISomSutJUrV2JiYiLzkGe+b968wdXVla5du8qUd+3alVu3Cr+QbtKkCba2tnTq1InLly/LPHf79u18fXbr1q3IPt/l1atXTJo0CX19fezt7aU7bs+aNYtVq1Yp3E9pIbxbIBAIBIUivFt4t0AgEAg+LoR3l4p3Kz1QXr58eR49esTcuXOZNm0aTZo0YdWqVTx8+BBra+si22dmZuLv709WVhYAaWlpHDx4kP379xMZGan8KxAIBALBB4ValnKPBQsWkJiYKPNYsGBBvn5jYmLIzMzExsZGptzGxkY6Uyovtra2/Pbbbxw+fJgjR45Qp04dOnXqxLVr16R1IiIilOpTHgsWLODx48dcuXIFXV1daXnnzp05cEC1MweKg/BugUAgEBSG8G7h3QKBQCD4uBDeXTreXaz56Xp6ekycOJGJEycq1e7x48d0796dqKgo6tevz6lTp+jRowf+/v6oqamhpaWFi4sLjo6OxZElEAgEgg8BJVOlFbTcqyDU1GQ35cvOzs5X9pY6depQp04d6d8tW7YkODiYNWvW0K5du2L1KY9jx45x4MABWrRoIdPOzs6OFy8+jI2IhHcLBAKBoECEd0vLhXcLBAKB4KNAeLe0XJXerdBA+fHjxxXusG/fvgU+99VXX9GmTRu+++47tm/fTrdu3bC3t8fNzQ01NTUmTJjAwoULxcYiAoFA8BFTWrtvW1paoqGhke+Oc1RUVL4704XRokUL9u7dK/27XLlyJe4zOjpa7uyulJQUpYxflQjvFggEAoGiCO/ORXi3QCAQCD4GhHfnokrvVmigvH///gp1pqamJndn7rfcv3+fmzdvUq9ePVauXMmmTZvYuXMnWlpaAMyfPx9nZ2eFjiUQCASCD5RS2n1bW1ubpk2bcv78eQYMGCAtP3/+PP369VO4n4cPH2Jrayv9u2XLlpw/f57Zs2dLy86dO0erVopveuTo6MipU6f47LPPgNw75b///jstW7ZUuB9VIrxbIBAIBAojvFt4t0AgEAg+LoR3l4p3KzRQ/javWUnJzs6W7kaa918ADQ0NlR1LIBAIBGVDad3ZBpgzZw5jxoyhWbNmtGzZkt9++42goCCmT58OSHKWhYaGsmfPHgDWr19P1apVsbe3582bN+zdu5fDhw9z+PBhaZ+ff/457dq1Y/Xq1fTr149///2XCxcucOPGDYV1rVy5ku7du+Pp6UlGRgYbNmzAw8OD27dvc/XqVdWeBAUR3i0QCAQCRRHeLbxbIBAIBB8XwrtLx7uV3syzJDRt2pTVq1cTGhrKypUrqVatGps2bZI+v3HjRurXr1/i40RGRiqVDF4gEAgEqkPZTUWUYdiwYaxfv54lS5bQuHFjrl27xunTp6lSpQoA4eHh0p2vQbJj99y5c2nYsCFt27blxo0bnDp1ioEDB0rrtGrViv3797Nz504aNmzIrl27OHDgAE5OTgrratWqFTdv3uTVq1fUqFGDc+fOYWNjw+3bt2natKlyL/IDQ3i3QCAQ/P8jvFt4d3EQ3i0QCARlh/Du0vFutexsxebq9+zZk3379mFiYgLA8uXLmTlzJqampgDExsbStm1bPD09C+zj/v37dO/enYSEBCwtLbl8+TITJ04kMDAQdXV14uPjOXHiBJ06dVJIfFxcHFOmTOHBgwf07t2bX375hWnTprFjxw7U1NRwcnLi8OHDMlP9FcHxzEKl6n8oRPubl7UEpTEI1ihrCUpTfvWtspagNFntHcpaQrHQinxZ1hKURi01rawlKM0ZvzUq7a9t/5+Uqn/92DyVHl+Qy3/Juz9Wqm5V7ffvfWDy7OPzbqPgglMUfKjoxKeXtYRioe0fVdYSlCY7PrGsJSjN2cQdKu1PePeHw3/Ju6e7jlGq/ofCC8fXZS1BaUIXKJ7a4EOhwsqPL+7WrFm9rCUUi+zo2LKWoDSZScllLUFpzmceUGl/wrtLB4VSrwC4uLiQlpY7ALR69WpGjBghNeyMjAyeP39eaB+Ojo4EBgby/Plz6tSpg6GhIVeuXOGvv/4iNTWVLl26yOySWhRz587F29ubefPmcejQIQYPHoyfnx/Xr19HXV2dzz//nPnz57N7926F+xQIBAJBySjNJWAfEklJSQrXNTY2LkUlBSO8WyAQCASKILw7P8K7cxHeLRAIBB8ewrvzowrvVnigPO/EcwUnoufD0NBQZjq8rq4ukyZNKlZfZ8+e5dChQ7Rq1YohQ4Zga2uLi4sLrVu3BmDdunUMGzasWH0XhyZmVRlTvS11jStgpWvMXNc/uRrlVWD9Djb2DKrcnNrG5dFS18AvOYrffS9yJ8anVHWOtm/MtCaOWOsb4B0Xw5Kbl7kfHlpg/TH1GzOuQRMqGhkTmpzMZrc7HHkuO4PBWFuHuU5t6F69FiY6ugQnJ7Ls5hWuBPmrRPPwFg2Z0LYZVkYG+EbFsurkVdwC5GtePrgr/Zva5yv3jYyl33pJ/qTO9jWZ0r45lS1M0NTQICgmnl033DjxsOD3qzTpM6MrQ+b2w8LWlACPELbO3on7jWfvXUffvg4MHeaEhYUhAQHRbNl8gadPQ+TWrV+/IlOmdqByJQt0dDWJjEzi5MmHHD50X1qnW7cGfPV173xtu3f7kfR01c3u6z3cicET2mBuZUSgbxS/rjqFh1ug3LqtO9vRa5gT1evaoqWtQZBvFHu3XMT1pm+uvsHN6Ny3CVVqSnZf9vUMZeeG83gXcC6KQ6/RrRg8pT3m1kYEekeybdm/eNyX/30xszJiyjd9qFW/IuWrWnJ89w22LT0uU2f13zNo2KJGvrb3Lnvx3aQ/VKZbIf4jhm1qalrkztrZ2dlFbrhVmgjv/v9htH1jpjXO8e54Bbzb/h3vfpnMZtc7HPHO9e79fYfRokKlfO0uBfox8fQRlWge2qYh4zs2w9LYgBcRsfx45CoP/QrWrKWhwbTuTvRqVg9LY30iE16y/dw9jt31kNYx0tPh016t6NSwFsb6OoTGJrL232vc8AxQieYB3Rszop8jFmYGBATHsGHHZZ54Faz5LQ3qlmfj0uH4B8Uw4cs90vIeHez55rMe+ep3HLaONyrywb798nj3piK8e1oe7z4hx7vny/Hurqr17l6jWzN4WgfMrY0J9I5g25JjeNz3k1vXzMqYKd/2pVb9SpSvZsnxXdfZtuSYTJ3Ogx35cs3IfG371plHelpGsTT2ntyBwbO6Y25jSuCzUH6dvw+P2wVfpzdoXZupK4ZTpW4FYiMS+GfDGU7vuCJTx8BEj/GLBtG6jwOGpgZEBEbz+zcHuH/+KQCj5/dj9ALZjbLiIhMZWXs2pYrwbinCu/PzoXl3glcSQScjSPZP4U1COvVn18LK0Uyxts+TebTUC4NK+jiuLHn6GVXxocSDw50aMrHNO3H3qau4BhYQdw/qygAH+XF3318kXti/iR0rBnfLV6fxd7/wJuP9f8c+lPPca2QLBk9ylsSCPpFsW3ECjwcBcuuaWRkxZX4vatlXpHxVC47vucW2FSdk6mhoqjNsWgc6D2iKhY0xIf7R7PjpDK7XvYutsfek9gz+rFuOB4bx68L9hXtgq9pMXT6MKnXLSzzwl7Oc3pmbM/rHE/No2Cb/Dbp7556weNgvAAyb3YPWvR2oWMuWN6/f4HnvBTu+P0SIb6TCuvtM78qQuX1y3+M5uwt9jxu2q8e0NWOpal+R2LB4Dq45zsltF6TPV7GryLgfhlLLoRrlqlqzZfZujv5yWvZcTe9Cn2ldsKlqBUCgRwh7lx3m/tlHCusuFsK7pajSuxUeKC8pQUFBVK5cWeH6oaGhVKhQodA6iYmJ0jo2NjZoamrKLPcqX748CQkJxdJbHPQ0tPFOiuBEiBs/Oowqsn4T86rcjfFli/c5ktNf06diU35uOobxt7finRReKhp716zD4jYdWHTtAg8iQhll14hdvQfRZd9Owl7mX7oy2r4RX7Voy4Ir53gcFUFj63KsbN+NxNevuRgoCWa01NX5s+8QYlNfMcPlOBEvX2JraERK+huVaO7eoDbze7Vn6b+XeBgYxlCnBmwb35++6/YQnphf88oTV1h3NnczAA11dY58PhqXp7kmkfjqNb9dvot/dDzpmZk4163OskFdiXv5ips+8gdYSwvnoa2YsW4CG2f+jsfN5/Sa1oUVp79hkv1sooNj3puO9u3r8cnMzvyywQV39xB692nCylXDmDjhd6Ki8t/Be/06nWPHXPHzi+J1ajoNGlTki9ndeZ2azqlTj6T1Xr58zfhxv8m0VWWg3a57A6bN78nmpSfweBhIz6GOLNs2jql9NxAdnn8pdf1mVXG77cuuDed4mfSargMc+H7zGL4Y/isvnkm+dw0dq3Hl9BM8HwXxJi2dIRPbseK38Uzr9wuxcs6F0pp7NWLat33ZvPgInq4B9BzZgqU7JjOt209EhyXkq6+lrUlibAr7N19kwMR2cvtcOmMXWlq5P+lGZvpsOTWH66cfl1ivsvxX7mxfvny5rCWUOv8F7/4Y6F2jDotbd2DR9Qs8CA9llH0jdvUaRJf9Cnq3TTlWOncjMS3Xu6e5/Iu2eu5WNaa6epwZOo7TLwqfpago3ZrU5qsB7Vn+zyUe+YcxuFUDtkzvz4CVe4iIl79U9qcJvbAw0uf7fecJjknA3FAPjXc0amqo8+snA4lLfsXcnSeJTEimnJkRKa9Vc73RsXUdZk3owNrfL/DUK5R+3Rqx5ttBjPl8J5ExBS/vNdDX5ttZPXF9Eoi5qUG+51+mpDHyM9kblqoaJG/fIce717/j3auHMXF8Id59NI93z+nO69fpnDr5KFfzy9eMH1uK3t27MdMW92fzokN4PvCn56hWLN01lWldVsn3QR0NEuNS2L/5PAMmORfYb0pSKlM6rZTVXcxB8nYDHZm2cgSbv/wTjzu+9JzQnmWHZjPV6VuiQ+Ly1bepYsnSf2ZzZvc1fpzyO/YtajJz7RgSY5K5edwVAE0tDVYem0tCdBLLxm4hJiweqwrmvHopm8YhwDOEBf1y0zJlZZa+sQrv/v/hv+DdmWlZGFbRx9bZEvf1vkU3yCHjVQZeW/0wtTcmPal4vw2lwYcSD3ZvUJsFPduz5ERO3O3YgG3j+tNnQwFx98krrHORjbuPfjYaF3fZwdnk12n0WrdLpqwsBsk/lPPcrmdDpi3sw+YfjuHpFkjPYU4s/X0i03r+THR4Qr76WtqaEg/89RIDxreR2+e4L7rRoV8Tfvn2MMF+0TRtU5tFm8fy5bAtvPAKU17jAEemrRjO5rl/4XHXl57j27Hs4OdMbblYvgdWtmTpwc85s+caP07bjr1TTWauGSXxwBNuACwZswUt7dz0fcbmhmy5/h3Xjz2QljVoVYcT2y/j/TAAdU11xn87gOVH5jC1xSLSXhV9vec8tCUz1o1j46d/SN7jqZ1ZcWoBk+rPITo4f3qZclWtWHZyPme2X2L12E3Yt67DZ5smkRCdxI0j9wDQ0dch3C+Sa4fuMH3tWLnHjQmJ5Y+FfxOaM6DfdWw7fjg6jxlNvybQU3WT7fIivLt0UHgzTzU1tXwj+EWN6L+Lo6MjU6ZM4d69ewXWSUxM5Pfff6d+/focOVL0bKZatWpx8uRJAM6cOYOuri7nzp2TPu/i4kK1atUU1lhSbsV486vPeS5HehRdGfjZ6xR/+l/HMzGU4FexbPE+R3BKLO2s65WaxsmNmnHQ6ykHvJ7yIj6OJTcvE/4ymdH1G8utP6COHX97POGk73OCkxI54fucg15Pme7QXFpnaL0GmOroMvXMMVwjwgh9mcSDiFC8YqNVonlcWwcOP3Dn8AN3/KLjWHXyKuGJyQxr0VBu/Zdpb4h5+Ur6sK9og7GuLkddc9+X+/4hXPR8gV90HMFxiey99RDviGgcqpZXiWZlGDS7N2d3XOLMH5cIehbK1tm7iA6Ooc+Mru9Vx+AhzTlz5jGnTz8mKCiWLZsvEBWVRJ++TeTW9/WN5PIlTwIDYoiMTOTCBQ8ePPCnQcP8MxTj41NkHqpk4LjWuBx25ezhBwT7RbNt1WmiwxPpPUz+hhDbVp3m0I7reLuHEhYUy64N5wkLjMWpQ11pnR+//oeT++/i9yycEP8YNnx3FDV1NRq3UE3OuQGTnDn3zz1cDt4j+EUU25YeJzo8gV6jWsqtHxUaz7al/3LxqCspyfJzIr5MTCU+Jln6cGhTm7TUdK6ffqISzUqRla3c4yPF2dlZ5qGurs7vv//O/PnzqVmzJs7OzgQFBaGhUXb5nIV3/38wuVEzDj7L8e6Ed7zbvrHc+gNq2/G35xNOvnhOcHKOdz97yvQmud6dmPaa6NRX0kfbSlVIzUjn1Ivizzx6lzHtHTh6x52jd9zxj4zjp6NXiYhPZmhr+d7dqm4VmtaowMxtR7nrHURYXBLuQZE8DsidODCgRX1M9HWZvf0Ej/zDCI9P5qFfGN5hqgluh/dpxsmLTzl54SmBoXH8suMyUbHJ9O/WuNB286Z35fx1Lzy85U9yyCabuIRXMg9VMXhIc86cLqF33/enQYP3690DJrfn3MG7uBy4K/HBJcckPji6tdz6USHxbPvhKBePPCjQB0EysSo+OlnmUVwGzuyGy5/XObvnOsHe4WxbsI/o0Dh6T+ogt36vie2JColl24J9BHuHc3bPdc7tvc7gz3JnUnYd0xZDMwN+GLkJz7u+RAXH4nHHB3/3YJm+MjOyiI9Kkj4SY99DHlbh3cK7C+FD826LxqZUH1oRq+bK7dH1fHsANq0sMKllWErKiseHEg+Ob+3AYdd34u7Tkrh7uJNicXf9Cjlxt5vseEh2drZMvZiXqvNBZfhQzvOACW05d+g+Lv/cl3jgihNERyTSa2QLufWjQuPZtvwEF4+5FeiBHfs5cODXy9y/+pyI4DhO7buD6w1vBk5sWyyNAz/pgsveG5z9M8cDFx4gOjSe3hPby63fa6IzUSFxbFt4QOKBf17n3F83GPxprge+TEiR8bYm7e14/eoN1/7NHSj/dsh6zu+7ReCzMPzdQ/h55k5sKllQq3EVhXQP+qKX7Hs8ZzfRwbH0mS7/Pe49rQvRQbFsnbOboGehnPnjEi47LzNkTh9pHe8HL/j967+4cuAW6Wny94+5c9KNe2ceEeoTTqhPODsXHSD15WvqtailkO5iI7y7VLxbqdQr48ePR0dHB4DXr18zffp0DAwkM2fezaMmDy8vL1asWEH37t3R0tKiWbNmlC9fHl1dXeLj4/H09MTDw4NmzZrx008/0aNH/mWqeZk3bx7jxo1j/fr1hISEsHfvXmbNmsXdu3dRV1fnyJEj/Pzzz4q+xDJHDTX0NXVIfFM6xqGlrk59Kxu2ut2VKb8eHEBTG/kDxNrqGqRlyt5tf52ZQSNrWzTV1cnIyqJz1Rq4RYaxpG0nulSrSVxqKv/6ePHrw3tkFXOpoFSzhjp25W3YfuW+TPktnyAaV1ZsUHtQs/rcfhFEeELBQYZTjUpUtTLn53dmor8PNLU0qd20OgdWH5Mpdz3/BPuWiucNLLEOTXVq1y7Hvn23ZXU88MfevqJCfdSsaYO9fQV27rgmU66np83f+z5BXV2NF75R7Nx5DV8llk4VqltLg1p25Tm4XfaYbrd8qddYsZk0ampq6BnokJyYWmAdHV0tNDU1Cq2jKJpaGtSqX4F/fr0kU+523Rs7h6ol7v8tXYc25+rJR6SlqmampVJ8vB5cbA4fPsyYMWMYNWoUDx8+lHpicnIyK1as4PTp00X0UDoI7/74kXr3QzneXa4A79bQIC0jj3dnyHp3XobWbcAJ32ekZpR8A0lNDXXqVbJhx0VZ7779PIhG1eRrbt+gBp7BUUzo5EjvZvVIfZPOFfcXbD59i7ScmczO9avzJCCcBUM60qFBdeJfpnLa9Rk7Lzwo8fWGpqY6tWvYsPeo7Hm+/yiA+nULvt7o2bE+FcqZsnT9KcYNkX+zU09Xm0PbpqKuroaPfxTb993ERwUbXkq9+2853l1fCe+uX4GdfxTg3Ro53r1Dxd5dvyL/bL0oU+52/Tl2TauWqG89fW123ViEhoY6LzxD+fPnM7zwKDp1jlyNjatwcJ3sb7fbJQ/qNa8pt009xxq4XZIdHHK96EG3MW3R0NQgMyOTFj0a8+zeC2auHU3Lno1JjEnm8qG7/LPuNFnvBLAVatjw17OfSX+TzrMHfuxacoSIANVMQCkQ4d3Cuwvh/8G7w69EkxqVRr2ZNQg8qvzvQmnxocSDb+Pu36/libt9FY+7B+bE3WF54m59bW0uzJ2Euroaz8Kj2XjhFl7hpfyblocP5TxramlQy74C//x2Rabc7YY3dk0UGwyWh5a2Bm/yrKB68zod+2L4qtQD15+R1XjZg3rN86f6hBwPvCzHA0e3kXpgXrqNacPVI/cKnSmub6wPQLICN+w1tTQk7/GP/8rqOP8Y+5a15etuURvX87IrsB+ce0z3iR0K1F0U6upqtBvSEl0DHTxvq2YCSoEI7y4V71Z4oHzcuHEyf48ePTpfnbFj5S9DADA3N2fNmjUsW7aM06dPc/36dQICAkhNTcXS0pJRo0bRrVs36tdXPE/YqFGjqFKlCnfv3qVVq1a0bNmSevXqsWrVKl69esVvv/2WT3de0tLS8l1sZKVnoK713rLSSBlVrQ26GtpciHhaKv2b6eqhqa5OdKrsQHz0q1dYVsq/VBjgWnAAw+s14Jy/L+7RkTSwsmFI3fpoa2hgpqtH9KsUKhub0MqoMsd8vJhw6gjVTExZ0q4zmurq/PLgttx+FcVUXw9NDXVi89x1jn2ZgqVR0UZiaWRAm9pV+erAmXzPGepoc3nBFLQ0NcjKymbpv5e47RtUIr3KYmJphIamBvGRCTLl8ZEJmJUzfX86TPTR0FDPN2MsPj4Fc3P5n4237D8wU9p+z+4bnH4n1UdQUCw/rj6Jn180BgbaDBzoyIZfxjB1yh+EhsaXWLexqb7k/MW+lNUd+xJzS8Vmigwa3xpdPW2unS34ezdxTjdio5J4ePtFifQCGJsZSDTnWcafEJuMmZVRifsHqN2wEtXq2LL+64Mq6U9Z/itLwN5l2bJl/Prrr4wdO5b9+/dLy1u1asWSJUvKTNd/ybt1dHSkgwr/T0i9+1Ue7059haW+At4dI9+736WRdTnqWljx9RUX1Wg2yPHupDzenVywd1e0MKFJ9fK8ychg9h/HMTXUY+Hgjpjo6/LdvvPSOuVrVeK06zNm/nqMKlamLBjSEU11dba53JXbr6KYGEk0553tHZf4Cgs56VQAKtqaMn10W2Z+s5/MAmbpBIXGsWLjGfyCYtDX02ZI76ZsXTGC8XN2EyJnebVSmgvzbrMivPtgEd696iR+/tEY6GszcJAjGzaOYepkFXn3Wx/MM9s7IToZM8vib8AU8iKKtXP3EfA8HH1DXfpPaMeaQ7OY2eMnwgKUW3VgbJFzfRYlm8ItPjoJcxsTuW3MbEyIj5ZNdxMflYimliYmFobERSZiW9UKm3b1uPzPHRYNWU+FGjbMXDMaDQ11/v5Rkm/22QM/fpq+nVDfCMysTRgxtzc/n1vINKdvFRooKC7Cu4V3F0ZpeXfmm0w0tEt/9v6r8Ne82B+Mw3f1UNdQfHb+++BDiQcLjbsNFYu729aqylcHZeNuv5g4vjnsgndkDIY6Ooxu1YS9U4cxcNNeAmMTVPkSCuVDOc/GZjnxa4xs/JoQ+xIzy+LHgq43vBk4oS3u9/0ID4qjccuatOhkh4aGwkkkcjVaGOb4dB5Pi07C3LoAD7Q2llv/XQ98l9oO1ahmV5F1nxW+AfC05UNxv+1NoALpY0wsjXPe4zzeHZlY4HtsXs6EB3Lqa2ppYmJpRFxEQpHHfUvV+pX45eYytHW1SH35mh8GrSFIgX1uSoLw7tLxboVHg3fu3KmSA+rq6jJw4EAGDhyokv7atGlDmza5eZrs7OzYs2dPIS1kWblyJT/88INMme3INlQYXbwlKsWlq21DptbsxFy3P4l/U3oXwQDkmXUlWckn/xv2y4M7WOkbcHTgSNTU1Ih5lcLhZx5Md2gunb2lpqZGTOorFlw5R1Z2Nu7RkVgbGDKtsWOJB8qlkvP8rYZa3pchl/4OdiS/TuOSZ/7cdSlv3jBo4170tbVxqlGJr3q1IyQukfv+pZdDqiDyvhY1NbVib9xTMiF5/lYr+jx/8fle9PS0qWdXnimTOxAaFs/lS5IN47y8wvB6x9Tc3UP4ddtE+g9oxuZN51WoO+9nWrHPR/ueDRn9SSd++GwviXHyv3eDJ7alfc+GfDV+O+lvVJfLMN97ruBnWhG6DW2O//NwvJ8EF125NCiLz24Z8/z5c9q1y58/3tjYuEzzbf+XvPu7777j+++/V4m+D5M8v3NQ4Hftlwd3sNLL493PPZjepLncmdfD6jbgWWw0j6MiSlFxzu9cAXXVc363F+w5w8ucnONrj11jzYTerDh0ibT0TNTV1Ih7+Yol+y+QlZ2NV0gUViaGjOvYrMQD5VLNef1EThlIZgt9N7s3f+y/RXB4wYPHHt7hMilZnj4LZceasQzq6cCGPy4V2E450XkLCj7Pb/li1jvePaUDoaFFePdvE+k/sBmbN6rOu7PzfqbV8pcpw7OHgTx7mLvPjOcDfzae+pK+49ry6w9Hiysyj8Yirs/kXI9IinOumdXVSIhOYsOsXWRlZeP7KBCLcqYMntVdOlD+4ELujfsAz1A87/my89FquoxszZHN5yg1hHdLEd4tn9Lw7qZTGtBsWiOV6CuI7KxsPDe/oNrgiujb6pXqsUrChxIPytWhQLsBTSRx90Uv2bj7SXAET4Jzry/cgkI5PHMUo1o0ZsWpKyUXrCQfznmWc71RAg/ctuwEs5YP4rezcyE7m/CgOM4feUCXgc1KIlJWYwk98F26j2mDv2cI3m7+BXY386eRVLOvyJc9VishWs65LUK3vM+EvH6KIuR5GNMdvsLQ1IA2A52Yt3MmX3b4vnQHy4V3S1Gld7//adMfGAsWLGDOnDkyZR2uLHuvGrqUa8CiBgOZ/3Af92JLPmO1IOJfp5KRlYVVnhlolnr6xLySn+4lLTODry67sPDqeSz19Il6lcJIu4Ykv0kjLmdmenRKCulZWTLB94v4OKwNDNFSVyddzhJvRUl4lUpGZhaWhvoy5eaG+vnudstjYDN7Tjz0Ij0zv4bsbAiKldw9fBYeTXVrc6a0d3yvA+WJMclkZmRinucOp6m1CQl57myWqo7EV2RmZmGWZ/a4mal+kXlJIyIkOv39ozEzM2DcuDbSYDsv2dnw/Hk4FSsotit9USQlvCIzIzPf3XdTc4N8s8zz0q57A75YMoAVc/bz8I78792g8W0YPsWZBZN34u+tmiXnSfEpkvc8z+xxEwtDEgrZLE5RdHS1cO7TmD/XqWZmaHH4L97ZtrW1xdfXl6pVq8qU37hxg+rVVZPbXpCLPO/+f5xNDkV4d2oh3n3FhYXXCvbut+hqatK7Zl3W3b+pOs0pOd5tnMe7jfSJTZavOTophajEl9JBcgC/yDjU1dWwMTUiKDqB6KSU/7V332FNXW8cwL8Bwt4bBHGiIGgBFbfiwD3rXlj3qHtX6+hQO7S2/lytFUddddaFW3DgRFEQZC/Ze++c3x/RQCCMQAJE3s/z5HnMzbk3b66BL/fce89BUbHw3xuh8Skw0FKDgrwcikRkfXWlZ/Jr1itzJbaOlipS0svXrKqsCKtWxmjd3BDL5/QDwO/sl5PjwP3sCqzYehavfMufrGQM8A+Og7lJ7XOwwuzWkUJ2v5dgdgtyUPjqcS19DYnk4CeMMQS+iYRpcwOx181I5v99plPm6nFtfQ2kVjCpd2p8OnTKXGmnbaCJosIiZHw8GZ8Sl47iomKhYVYiA2Kha6wNBa48ikRMmJqfU4Bwvw8wbWkk9ucQB2V3Ccpu6RCV3SvfzZf6+xblFiMzNBtZ4dkIOhIO4GPfEgPcpz5Hh/VtodOu5nez1FZDOR4UHHdrlMlutWoedzu0w2Vv0cfdpTEG+HyIh4W+dm3KFVtD2c8ZqTmVHAtWfvxamfTUbHy/8Bi4igrQ1FFFcnwGZq4ajPgP4t8JlpGcxc/Aspmmr1HuqvFPUhMyRLYvnYGfKKkooveYTji2TXiIlNIW/DQJXQZ/gVVDfkZSTPU+Q3pSRgX/x5oV/h+nxKVD11irXPuiwiJkVNGfUFZRYTFiQvh9BoFeoWjTsSVGLxmC3xf8JdZ2xEHZXUKS2S3+fRgyxMXFBX379q20jZKSEjQ1NYUedTnsirNJe2xqPxYbvc/gcWKAVN+rkMeDb2I8epg3E1rew6wZvOIrv5WliMdDXHYWeIxheKu2uBceKjjf+TIuGs20tFH6Jrbm2jqIz86qVSc5ABQW8+AXE49urYVv9+rWqim8IyuvuVNzM1jo6+D8S99qvRcHHHAV6nbinqLCIgR6hcJ+gPAEKfb92+PdE+l+H4TqKOIhMDAODg7Ck/A4ODTHu3fVP3HAAQdcbuX7sGVLIySn1PyPgNKKCosR5BcDu27C44XadWsFf++Kh9HpM6Q9Vv74JX5a8y+ePxC9n8d+1QOT5zth47yjCKrB+KaV1uwbDbsewuOk2fewhN+r8Fpvv+fQDuAqKuDepVe13laNMTEfn4F58+Zh6dKlePbsGTgcDmJiYnDixAmsWrUKCxcurO/yZEpNs/tz7SgXZLdZM6HlPcyawStOzOyOCC33IzesZRsoycvjYqDoTtKaKCrmwT8qHl3aCGd3lzZN8SZMdM3eoTEw0FKDiiJXsMzCQBvFPB7iP4516h0WA3N9LZSe087CUAcJ6Vm16iQHPuZgSDw6dWgmtLxjh2bwfV++5uzcfExbdgRfrTwmePx36w0iPiTjq5XH4BdU8dX5rZsbIjm19jkoyO6OIrLbV4zs5nDArWLog5atJJzdvh9E56BXuETe45OW1k0q7NiuTFFhMYK8I2DnZC203M6pHfyfl79LEQD8X4TAzqmd0DL7vu0Q9DpcMMap37MgmDY3FJqYsUkrIyTHponsJAcArqICzC1NxLr9u0Youym7a6Gm2V0Xw64oqMij00826Li95GHazxCqJsrouN0Gmi0rH6pK2hrK8aDguLuV9I+725oYIDFTynfRl9FQ9nNRYTGC3kXDrpvwJI/23VvDr9RdUTVVWFCE5PgMyCvIoftAGzy5+67qlUTVKCoD+1jD/7noC8z8X4TAro9we34GRpQb57vXqI7gKnJx79+nIre18OfJ6D7MHmtH/Ir4yOoPnVZUWMz/P+4v6v9Y9Fjh/k8Dy7V3GNAegS9DazQ+eWkcDqCoJOW+RcpuqWT3Z31FuampKeTk6u5cgIq8IsxV9UreX1UXlhomSC/MQXxeOhZZOsNAWRNb3p4DwO8k39p+HHb6X4VvWhT0FPljKufxCpFdVPkkLTV16M1L7Oo3BG8T4vAqPgaTrdvDVEMDJ3z5Y1Ou6dITRmrqWHmXP7ZYcy0ddDAyhnd8LLSUlDG7Q0dY6ulj5b2Sscf+efcGLrb22NyjL476vEYzbR0stHfEER/JdNQdffgKO8YPgu+HeLyJjMW4zrYw0dbAmWdvAQDLBnaHoaY6vjkrfAXtmE42eBMZi+D45HLbnN27E95FxyMqOR1cBTn0atMcI+yt8P0lCd0GLYbzv13F2mOLEfgyBP5PAjFkbn8YNtXH1QNSvL1WhHNnn2Pd+uEIDIiFn180hg77AoZGmrhy5TUAYNbs3tDX18BPO/gz3o8caY+EhAxERvL3r42tGcaN74xLl7wE25w2vQf8/aIRHZ0KVVVFjB7TEa1aGeKPPyR3tfOFo4+xesdYBPlGw/9NJAaP6wRDEy1cO/McAPDVMmfoGWri12/4P3d9hrTHqm1jcWDHNbx/GwWdj2OZ5+cVIieL/3M3dmZPTF/cHz+t+RfxMamCNrk5BcirZLKR6rr4twdW7ZyEIJ8o+L+KwOBJXWBgqo3rJ/h/LMxYPRh6RlrYuapkzK0WVvxJdJTVFKGlq44WVqYoKixGZJnJ1QaO74wnt3yRmVb1lR/SwmmEt4CtWbMG6enpcHJyQl5eHnr16gUlJSWsWrUKX3/9dX2XJ1PqOrtlgSC7E+PwKq5Udr/7mN2OH7P7XqnsNjSGd8LH7G7fEZa6wtn9yfiPY5mn5edJtObj7q/w49RB8IuMx5vwWHzZzRYmOho4+5if3UuGdYehljo2nuDnwXWv95g70BHfTXbGfrcn0FZXwYqRvXDp6TvBZJ7/PnqDST2/wNoxfXDqgTeaGuhg9oBOOOnhLZGaT195iW+XDMH74Dj4BsRghHN7GOlr4NIt/n6eN6UnDPTU8cMfbmAMCCtz8JaanoOCwmKh5V+N74p3gbH4EJvKH6N8qD1aNzPArj/vSKRmoex+V0F2G2jgp+0fs3uUPRLiRWT3xTLZ7R+N6A8fs/vLj9n9u+Sy++Ihd6zaNQVBb6Pg/yocgyd3g4GpDq6f8AQAzFgzlJ+DK08K1mlh/TEHVZX4OWhtiqKCkhycvHQg3r8OR0xYElQ1lDByRi+0sG6CvZvO16jGC3tvYvXBOQh6HQ7/5yEYPKM3DM10ce2wOwDgq81fQs9EB7/OPwQAuHbYHSPm9MPcHyfA7egDWHVuiYHTemLHrIOCbV79+z5GzO2P+T9NwuWDd9GkpREmrhyK/w6WTGw6+4fxeObmjYQPKdDW18Sk1cOgqqGCO6c8a/Q5qouym7K7Nuo6u4vyipEbV5JbeYn5yAzPBlddAcr6Sgg5HYX8lAJYL2wJjhwH6ubCV0kraipATlGu3PL60lCOB488foWfxg7Cu+h4eEfGYlwnW5hoaeDMc352L3fmH3evPyecB186fDzuTih/3L2wbxe8iYxFRHIa1JUVMbXrF2hrYoAfrjTe4+6Lrg+x6ucJCPL9AH/vSAwe3xkGJtq4furjseDKQdAz0sTONSXzTbWwMgHwKQPV0MLKhJ+BIfzJwdu0N4eesSZC/WOhZ6SJqYsHgCPHwbm/PGpU44V9t7H6wCx+Br4IxWCXXvwMdHUHAHy1aQz0TLTx64LDAIBrhz0wYnZfzP1hPNyOPYRVpxYYOLUHdsz+s9y2B07rAc/rr0XOu7Ho1ylwGuuIrZP/h9ysPOgY8u/2yM7IRUFe1RPOn999DWuPfo1ArxD4PwnCkDn9+P/HB/lDx838cRL0m+ji5xl7AQBXD97GiEUDMe/XaXA7dA9WXVtj0My+2Dbld8E2FbjysLDmT5LOVVSAfhMdtOxggdysPMEV5DN/mIjnN7yRGJUMFQ1lOE3ohvZ92uGbIduqu8trhLJbOtn9WXeUb9++vU7fz0qrCQ46zhE8X2E1FABw9YMXtvqch76SBoyVtQWvjzHvDAU5eaxtNxJr240ULP/UXhquBgdAW0kFSzt2hYGaGgKTk/DV1QuIzuJfbWOoqoYm6iW3nsnJcTCnQ0e00NZFIY+Hp9GR+PLCSXzILLk6JzYrE9OvnMW33Z1wY4IL4rKz4Pr2FQ68fi6Rmm/4BEJbTRkL+jnCQEMNQfHJmH/kEmI/XmFmoKEGE23hW5fUlRQxoF0r7LjqLnKbqopcfDuyL4y0NJBfWITQxBSsO3MDN3ykPCuxCB7/ekJTTx1Tvx0LXRMdhPtGYcPQbUgQ4+ypJLi7+0NTUwXTpneHrq46wsMTsX79v0iI5/9f6+mqw9Cw5LvBkeNg1uw+MDbWQnExD7GxaTh0yB1XPx6cA4C6uhJWrBwMHR01ZGfnIzg4HsuXnUDA+9hy719TD274QFNbFVMWOEHHQAMRQfH4dv4xJHycJE3XQAOGJiW3Uw0Z1wkKXHl8/e0IfP3tCMHy25deYecG/s/d8ImOUFRUwLe7Jwu91z977+KffbX/o+7BtTfQ0FHD5MUDoGugifDAOGya+TcSPt5WpmugCUNT4Vvc914ruVXV0tYcTiPtEf8hBTN6lYRvk+b6sOnUAt9MP4j6xClufIENAD/++CM2bNgAPz8/8Hg8WFtbQ129epPKkhJ1nd2y4GpIALSVVbDU4WN2pyThq2uVZDenTHbHROLLi8LZDfA71DubmGHqlbMSr/nm60BoqSlj7kBHGGipITg2GYsOXkJsKj+79TXVYKxTkt25BYWYt+881o11wslVk5GenYdb3oH437WSIWHi07Iwf/8FrB7dG2fXTkNCehZOeLyG652XEqn53uMAaGmoYMb4rtDTUUNYZBJW/3gB8R9vM9bTUYORmJNNqqspYc0CZ+hqqyI7pwCBofFYtPE0/IMlMx68+30R2b2uVHbrlcluDgez5pTK7pg0HPpLRHavGAwd3VLZvVTC2X3VGxraapi8dODHHIzFpq/+RMLHyUJ1DTVhWGaol73XVwv+bdneHE6jHPg52ON7ft2aKliybTx0DTSRnZmLEL9orJ6wB4FvajZR+4MLL6Cpq44pa0ZAx1gLEf7R+HbcbiRE8TuCdI20YGimK2gfH5GEb8f9hnnbJ2HYnL5IiUvD/rUn8fhyyUmIpOhUbBi9E3O3T8R+z++QFJuKSwfu4Oxv1wVt9E11sO7v+dDUU0d6UibevwzB8v4/Ct5XWii7Kbtro66zOzM0G94/vBc8D/6H/3Nu3EsfVvNboCCtEPnJtb+4pa40lOPBGz6B0FZVxgKnkuPueccuIebjcbe+hhpMtEQfd2+vYLxxDWUlbB3VH/oaqsjMK4B/bAKm/3UWPh8kM6ylOBrKfn5w/S00tFUxeVE/6Bp+PBac44qEmDQAn45ftYXW2fvfMsG/LW3N4DTCjp+BffnjdysqKcBl2UAYm+siN6cALzze45fVp5GdWbMLIR5cfAFNXTVMWTMcOkZaiPCPwbcTfkdCVAq/RiMtGJqVXCQaH5mEb8f/jnnbJmDYbCd+Bq47hcdXhC+ebNLSCDZdLbF+9C6R7zt8lhMA4Jdra4SW71x4GLerccLY498n0NTVwNSNX5b8Hw/bIfg/1jPRhqF5Sd1x4YnYOGwH5u90wYiFA5Eck4p9y1zx6EJJX5aeqS4OvPpZ8Hz8qhEYv2oE3ri/w6p+/MkjtY20sPboIuia6CA7PQdhbyPxzZBteFVq3hFpoOyWTnZzWL3MGCg5Hz58wP79++Hp6Ym4uDhwOBwYGRmhW7duWLBgAczMzMTeZie3b6RQqfQlhulW3aiBUYuq26FOJMH0J+le0SMNvD729V1CjXDjJXObd13i5ErnbhBpcgv9VaLb6+ck3sHS3fvrJfr+pOGTRnbLqmb7JfvzVxe03stedmtE1e722fqglFr1lVMNkWJYQn2XIDaWWnfj00rKjfTDEt0eZTepijSye77XNClUKn0hnSR7F1ZdiF7frb5LEFuT7bJ33K3QSjbnN2CJ0j0ZKw3FGZKb16Su3C4+I9HtUXZLh0xfUf7o0SMMHjwY5ubmcHZ2hrOzMxhjSEhIwKVLl7Bnzx64ubmhe/fu9V0qIYQ0HrJ9/pVIGWU3IYQ0QJTdpBKU3YQQ0gBRdkuFTHeUL1++HLNnz8Zvv/1W4evLli3Dixcv6rgyQghpvBrj7Nuk+ii7CSGk4aHsJpWh7CaEkIaHsls6ZHq2LF9fX8yfP7/C1+fNmwdf3+rNvEwIIURCGBPvQRoVym5CCGmAKLtJJSi7CSGkAaLslgqZ7ig3MTGBp2fF41Y9efIEJiYmdVgRIYQQDk+8B2lcKLsJIaThoewmlaHsJoSQhoeyWzpkeuiVVatWYf78+fDy8sKAAQNgZGQEDoeDuLg43L59G4cOHcLu3bvru0xCCGlc6Gw1qQRlNyGENECU3aQSlN2EENIAUXZLhUx3lC9cuBB6enr47bffcPDgQRQXFwMA5OXl4eDggGPHjmH8+PH1XCUhhDQylNekEpTdhBDSAFF2k0pQdhNCSANE2S0VMt1RDgATJkzAhAkTUFhYiKSkJACAvr4+uFxuPVdGCCGNE4fObJMqUHYTQkjDQtlNqkLZTQghDQtlt3TIfEf5J1wul8ZFI4SQhoACm1QTZTchhDQQlN2kmii7CSGkgaDslorPpqOcEEJIA0EThRBCCCGyhbKbEEIIkS2U3VIhV98FEEII+bxweDyxHuLat28fmjdvDmVlZTg4OODhw4cVtr1w4QIGDBgAAwMDaGpqomvXrrh586ZQmyNHjoDD4ZR75OXliV0bIYQQIosouwkhhBDZQtktHdRRTgghRLIYE+8hhjNnzmDZsmXYsGEDXr9+jZ49e2Lw4MGIjIwU2f7BgwcYMGAArl+/Di8vLzg5OWH48OF4/fq1UDtNTU3ExsYKPZSVlWu8CwghhBCZQtlNCCGEyBbKbqngMEaD2pR1JrhTfZdQI4eju9d3CWILijGs7xLExg1Wqe8SxKYVIps/5upRBfVdgtiUYjPquwSxufltk+j2BtptFqv95affID8/X2iZkpISlJSUyrV1dHSEvb099u/fL1hmZWWFUaNGYfv27dV6v3bt2mHChAnYtGkTAP6Z7WXLliEtLU2suknDwouzrO8SamRNvF19lyC2c29lr2aVwPK/Txo6nUDZvJ9WOaWwvksQm1JQfH2XIDa38N8kuj3KblIfPMJlM7t98szquwSxuSXY1HcJYvP3albfJYjN4HXVbRoibT/ZO4bFu5D6rkBsN3OPS3R7lN3SQVeUE0IIkSgOY2I9tm/fDi0tLaGHqPAtKCiAl5cXnJ2dhZY7OzvD09OzWrXxeDxkZmZCV1dXaHlWVhYsLCxgZmaGYcOGlTvzTQghhHzOKLsJIYQQ2ULZLR00mSchhBDJEvNGpfXr12PFihVCy0Sd1U5KSkJxcTGMjIyElhsZGSEuLq5a77Vz505kZ2dj/PjxgmVt27bFkSNHYGtri4yMDPz+++/o3r073rx5g9atW4v1WQghhBCZRNlNCCGEyBbKbqmgjnJCCCGSJWZgV3S7V0U4HE6Zt2Plloly6tQpbNmyBf/99x8MDUuGferSpQu6dOkieN69e3fY29tjz549+OOPP6pdFyGEECKzKLsJIYQQ2ULZLRXUUU4IIUSypDT1hb6+PuTl5cudxU5ISCh3trusM2fOYNasWTh79iz69+9faVs5OTl06tQJQUFBta6ZEEIIkQmU3YQQQohsoeyWChqjnBBCiGTxxHxUk6KiIhwcHHD79m2h5bdv30a3bt0qXO/UqVOYMWMGTp48iaFDh1b5PowxeHt7w8TEpPrFEUIIIbKMspsQQgiRLZTdUkFXlBNCCJEojpTObAPAihUrMG3aNHTs2BFdu3bFn3/+icjISMyfPx8Af9y16OhoHDt2DAA/rKdPn47ff/8dXbp0EZwVV1FRgZaWFgBg69at6NKlC1q3bo2MjAz88ccf8Pb2xt69e6X2OQghhJCGhLKbEEIIkS2U3dJBHeWEEEIkS4qBPWHCBCQnJ+O7775DbGwsbGxscP36dVhYWAAAYmNjERkZKWh/8OBBFBUVYdGiRVi0aJFguYuLC44cOQIASEtLw9y5cxEXFwctLS3Y2dnhwYMH6Ny5s9Q+ByGEENKgUHYTQgghsoWyWyo4jElxz8qoM8Gd6ruEGjkc3b2+SxBbUIxh1Y0aGG6wSn2XIDatENn8MVePKqjvEsSmFJtR3yWIzc1vm0S3N7jNOvHeP2CHRN+fNE68OMv6LqFG1sTb1XcJYjv3VvZqVgms/sRFDYVOoBj3yDYgyimF9V2C2JSC4uu7BLG5hf8m0e1RdpP64BEum9ntk2dW3yWIzS3Bpr5LEJu/V7P6LkFsBq/ru4Ka0faTvWNYvAup7wrEdjP3uES3R9ktHXRFOSGEEMmi86+EEEKIbKHsJoQQQmQLZbdUyPRknra2tvj+++8RFRVV36UQQgj5hMcT70EaFcpuQghpgCi7SSUouwkhpAGi7JYKme4of/fuHX7//Xc0b94cgwYNwvnz51FUVFTfZRFCSOPGY+I9SKNC2U0IIQ0QZTepBGU3IYQ0QJTdUiHzQ6+8ffsWz58/x+HDhzFx4kTo6Ohg+vTpmDVrFqysrOq0lnDfIjw6X4DY4GJkpjBM2qgCq67cStcpKmRwP5mPN/cLkZXKoKnPQe8JSrB3VqyTmm20WmCceV+0VjeHnpIWtvj+jSfJPhW2b6fZHLNaDIe5qhGU5LhIyE/FtRhPXIz2qJN6AaCTgTnmWnWBjY4xjFQ1MO/BOdyODqywvYGyGjbY9YeNrjGaaejiaOALfP/qjtTrnOzQHrO6doSBhhqCEpOx7aYHvKKiK2w/3KYtZnfrCAtdbWTmFeBhSDh+vvMAabl5AIBxdjYY1d4arQ30AADvYhOw6/4j+MRIblzNL/t2wLTBHaGnrYbQ6GT8dtId3oGia7Zva4YD68aXWz5uvSsiYlMBAEN7WGPz7EHl2vSY8zsKCoslVveIEXaYMN4RenrqCA9Pwt59d+Dj80FkWxsbM8yd0wfmTfWgrKSA+PgMXL3qjXPnXwi1U1NTwqxZvdCzRxtoaCgjNjYNBw7cw7PnoRKpeehER4yd2RO6BhqICE7AwR3X8M4rXGTbbv3bYejEzmjZ1hRcRXlEBCfgn7138epxkKBN01aGmPZ1f7Ru1wRGTXRwcPtVXDruKZFaxcbobDWpXEPK7hdvgMOngHeBQGIyB3t+YOjfs/J1rtwG/j4FRHwA1NWAnp2B1QsBHa26qTnZLwshlxOQFpaD/NQidFzVDCadtau1bsr7LHhuCYaGuTJ6/9JWuoWW0tnQHHPbOcJW1whGqhqY634et6KCKmxvoKKGjQ59YaNrjOaaujjy/iW+e3lX6nVO6tweM3t0hIG6GoITkrHdzQNeEaJzcNtoZ4y2b1dueXBCMobvOSZ4rqGshGX9u2GAdWtoKivhQ1o6fnZ7gAdB4RKpeYxzB0we3gl62moI+5CM34/ex5v3Ff+98YltG1Ps3TwBoVFJmLG2ZMxMeXk5TB/VGUN6tYO+rjoiY1Ow78RDPHsjmXo/GTHcDhPGlcru/Xfg41tBdrf7mN3mpbL7mjfOXSjJ7l2/TsYXHZqWW/fps2B8s/GcRGoeOrU7xs5zgq6hJiIC43Dwu0t490L03wU6BpqYs3EEWtuYw7S5Pi4feYiD310SatN/bCes/HVyuXVHtFmNwvw67oSk7CZVaEjZHegD3DoLRAQB6SkcLNjMYNet4vauvwJPbnPKLTdpyrD1LykWWkr0u3y8upiFxOACZKfyMGS9Llp2qXjuqw8++bi4Manc8il7DaFrVnkfg6TkBqYg9WY48iMyUJyeD+OFX0Ddzqji9kGpSD4fiIK4bLCCYijoqUCrlxm0BzSrk3pLm9q+A+Z07AhDNTUEJifjBw93vIiuOBundeiAaR2+gJmWFmIyMrD3+TNc9PeXWn1f9uuAqUM6Qk9LDWHRyfjtROXH3fu/KX/cPX5tyXF3aQMc2+CHRUPh4RWMNb9flmjdw8Z2wrhp3aCrr4GI0AQc2HkDvt6RItt2d7LCsLEd0cLSGFyuAiJCE/DPn+7weloytvjPB2egg0Ozcus+exSITctO1qzGuf0wbvlQ6BprIcIvGgfW/APfxxX3F9n2aIt5P02GhXUTJMem4eyua7h26J7Itr3HdcE3xxbB84oXto7fLVhu070Nxi0fitb2zaBnooMt43fjyRWvGtUvFspuqZD5jnIFBQWMGjUKo0aNQlxcHFxdXeHq6orffvsNjo6OmD17NmbOnFkntRTkMRg3l4N9fy5Ob8ut1jr/bs9FVhrDqKUq0DWVQ3YaA6+47s70KMsrITQrBrfinmNTu6r3Ux6vAJejHyEsOwZ5xQVop9UcSy3HI49XALfYJ3VQMaCqwIV/agLOhb7F/p5fVtleUV4Byfk52PvuMWa2rZvZdAdbW2L9wD7Yev0eXn2IwUR7W/w1eRSG7j+G2IzMcu0dzE3x08iB2H7LA/eDQmGkoY4tQ/rhh2ED8PXZKwAARwszXPN9j1cfYlFQVITZ3Tri8JQxGHrgGBIys2tdc//OllgxuQ9+PnYXb4JiMNqpPXavGI0J3xxFfEr5mj8Zu/YwsvNKJt1MzRD+7mfl5GPcelehZZLsJO/Tpy0WLeyP3/+4CV/faAwf9gV2bB+Pr2YeQkJC+UlJ8vIKcemSF0JDE5GbVwhbWzMsXzYQuXkFuHbtDQBAQUEOv/w8EWlp2diy9SKSEjNhYKiJnBzJTC7aa5At5q0fir3fXYbf6wgMGd8Z3x90wbzhu5EYm16uvW3HZnjtGYyju28hKzMPA0Y7YMu+aVg+cT9C/GMBAMrKXMR9SMGjm76Yu26IROqsMRorjVShIWV3bi7QphUwegiw9Nuq23u9BdZtA9YtApy6A/GJwJZdwLc/A//7Ufr1AkBRPg+azVRg7qSLlzvDq71eYU4xXu+NhL6tBvLT6nbCRX52x+Ns8Fsc7DOmyvZKcgpIycvFXt8nmGVVN5OsD7axxLrBffD91Xt4FRmDCR1tcXDaKAzfcwyx6eVzcNt1d+y6/UjwXF5ODpcWTcUN35KDMa68HP52GYOU7BwsPX0V8emZMNbSQHaBZPKkX9c2WOrihF//vou3AdEY1b89dq4fgykrjiA+ueLsVlNRxKaFg+HlGwkdLVWh1+ZN6I6BPa2w4+BtRMSkwLFDM+xYNQLzvj2NwPAEidTdp3dbLFrQH7/vuQnfd9EYPvQL7Ng2Hl/NOoSExAqy+79S2W1jhuVLP2b3dX52b956AQoK8oJ1tDRV8NfBmfB4ECCRmnsN+wLzNo3C3m/Pwe9lGIZM6Ybvj8zFvAE7kBiTVq49V0ke6SnZOL33NkbP6l3hdrMzcjGn33ahZXXeSQ5QdpMqNaTszs8DzFoA3ZyBA99X3X7CAmDMzJLvOK8Y+G4B4NBLikWWUZjHoN+MC6t+qnDbkVLt9abuM4SiaslAACqadTcoAC+/GEpmGtDs3gRx+72rbC+nJA8tp6ZQNNOAnJI88oJTkXDcDxwleWj1Mpd+wR8NtbTExj59sOneXXjFxGCybXscHjUaA48dRUxm+Wyc0r49VnXvgW/u3Mbb+Hh0MDLGtgEDkJ6fj3uhkrlIqrT+jpZYPqUPfj56F28/Hnf/tmo0Jq4/Wml2j11zGNm5JX8/pGWU73My1tPAkkm98Pq96BPPtdF7QDvMXzkI/9txDe/eRGLomI744Y+pmDNuLxLjRRzD2lng1bNQuO69i6zMPAwcboetv03G0hl/ISQgDgDw/eozUOCWZLemlgr2n1yAh3f8albjWEfM/2Uq/rf0CN49CcLQ2U744dJqzLFfh8So5HLtjSwM8MOlVXBzvY+fZh5Au66t8fXvM5CelIFHl14KtTVsqoc52yfB59H7cttRVlNCqE8kbh1/gE2nl9ao9hqh7JYKmR56hcMRPitsbGyM9evXIzAwEHfv3kXLli2xZMmSOqvHsiMX/acrw7p79c7wBr0sQrhvEaZuVUVLOwXoGMnBrI08mlrX3fmLlyn+OBp+HY+T3larfUhWNNwTXyEiJw7x+Sm4l+CFlynvYaPVQsqVlvCIDcUuHw/c/FC9A5/o7HR8/+o2Lob7IrMgX8rV8X3VxR7nX/vinLcvQpNSsO2WB+IyMjGpY3uR7Ts0MUF0WgaOv/DGh7QMeEXF4MwrH9iYlJyxX3XpBk56vcX7+ESEJqdi49U7kONw0LV5+aunamLyQAdcfuCL/x74Ijw2Bb+ddEd8Sia+7Nuh0vVSMnORnJ4jePDK/LJmYEKvJ6fnSKTeT8aN7Qw3tze4fv0tIiOTsXffXSQkZGDEcDuR7YOD43Hvvj/CI5IQH5+OO3fe4eXLMLS3LfnjbfCg9tDUVMa3my7g3btoxCdkwNf3A0JDJdNBMHpGD9w674Wb518iKjQRB3dcQ2JsOoZOdBTZ/uCOazh3+CECfaMRE5GMo7tvISYiGY59Sq7eCfSNxt+/3oCH21sUFkjuRESN0C1gpBINLbt7dQGWzQacq3mw/MYPaGIMTBsLmJkADu2BCcOBd5Lpi6sWIztNtJ1oAhNHbbHWe/tnFJp014FOa9WqG0uYe0wodno/xM2oiq/oKe1Ddjq2vryDC6F1l90u3exx4ZUvznn5IjQxBdvd+Nk9sbPo7M7KL0BSVo7gYdPECJrKyrj46p2gzRh7G2ipKuPrk1fwOjIGMemZeBUZg4C48lcJ1sTEoQ64cs8HV+75ICI6Bb8fdUdCciZGO1ee3WvnDsCtx/7wDYwp99rAntY4evE5nniHISYhHRdvv8GzNxGYNMxBIjUDwLgvO8Ptxhtcd/uY3fvvIiGxkuwOKZPdd9/hpZdwdmdm5iE1NVvwcLBvhry8Qng8KH9AWxOjZ/fBrX+f4eaZZ4gKScDB7y4hMTYNQ6d2F9k+4UMqDm69iLsXXiI7M6/C7TIAqYmZQo96QdlNKtHQstu2EzBqBmDfo3rtVdUALd2SR3gQkJMFdHeWaplCmjkoo+tUTbTqWvFV5KKoaslDTafkISdf/sp4aVGzNYDe6NZQt6/4KvLSlJpqQsPRBEpN1MHVV4FGF1OottNDXlD5q56laZa9A876+uJfX1+EpKTgew93xGZmYkp70dk4ysoap3x8cC0wEFHp6bgaGICzvr6Y31E6J+onDXLAZQ9fXPbwRXhMCn47Ub3j7tSMXKSk5wgeZY+75TgcfLdgCP688ATRieU7rmtrzJSuuPnfK9z47xWiwpNwYNcNJManY9jYjiLbH9h1A2ePPUagXwxiolLguu8uYiKT0aVnG0GbzIxcpCZnCR72ji2Rl1eIB3feidxmlTUuGYybRzxw44gHogJicGD1CSR+SMawOf1Eth82py8SopJwYPUJRAXE4MYRD9w66oEvlwlfeCYnx8Fa1wU4/v0FxIYlltvOy1tvcXTrOTz+72W516SKslsqZLqjnFVy9qRPnz44fvw4YmLKHwA0FO+fFcK0lTwencvHL9Mz8fucLNw4lIfCfNn5ArdUbwJrrebwSQupunEjwZWTQzsTIzwKjRBa/jgkEnZmpiLXef0hBsaa6ujVqhkAQE9NFQOtWsMjOKzC91HhKkBBTh7puRUffFWXgrwc2jYzwjNf4Zqf+UagfSvRNX/yz9apuL57LvauGQuHtuWvFFBRUsR/v87GlV1zsGvZKFg2Nah1vYK6FeRgaWmMly/DhZa/9ApHu3ZNqrWNVq2M0K5dE7x5W3LLWLdurfHOLxpLlzjj3LnF+PvQLEye3BVycrX/w1SBK4/W1qZCw6YAwCvPYFh/YVGtbXA4HKioKSFTwicdJIYx8R6kUZH17LazAeISAY+n/K9vUgpw0wPo3bW+K6tc5P1kZMfnw3KccX2X0iBx5eXQztQIj4PLZHdwJOzMK8/BT760t8GT0EjElLr6vG/bFvCOisW3w/ri4dq5uPz1NMzt1QlyHAnkibwc2rQwwvO3wjU/fxMBW8uKax7apx2aGGnj8DnRdwIqcuVRUCh8RXN+QRHat6lerlZFkN1lhhsTK7tbGqGdtXB2lzV4cHvcd/dHXl7t755Q4MqjtY0ZXj0UPiP26mEArEXcMi4OFVVFHHn0LY4/2Ywtf89Gy2ruA4mj7CaVkPXsLuvxDaCtHaBXvf7fenV6eQL+nhGLi98m4cPbujlxLCn5kRnIC0mDsqVunb0nV04ONkZGeBghnI0PIyNgbyo6GxXl5ZFfZsz9vKIitDc2hoKcZLvMKjrufu4TAdvWlf+9cfz7qbj2x1z8b+1YOFiVP+6eNaoLUjNyceWBr0RrBgAFBXm0bmsqNGwKAHg9DYF1++rdLSA4hhVxJfwnA0faweOWL/JrkN0KXHm0tmsGr7vCQwl73fWFdZfWItexcmwFr7vC++vlHR9Y2jeHfKm71KZ8MxrpSZm4ebTuhhyuFspuqZDpoVdcXFygolL5GVlNTc1KX8/Pz0d+vnDgFObzwFWS/jmE1DgeIv2KoaDIwaQNqsjJ4OHqvjzkZjGMXibemea69k+XLdDiqkOeI4d/wm/gRtzT+i6pwdBRVYGCnBySs4U7MZOys2GgLroj9PWHWKy6dAO7xwyFooI8uPLyuBsQgu9v3K/wfVb27YH4zCx4hlZ8kFhd2hoqUJCXQ3KG8BAuKRk50NMSfeVhUlo2fnS9jffh8VBUkMfgblbYu2YsFuz4F68/jq8WEZuK7w7dRMiHRKipKGHCADsc2jARUzYdR1R8Wq3r1tJShby8HFJThetOTc2Grq5apeueOb1QsP7RY49w/XrJXRUmJtqws7PAnbvvsH79vzAz08WSJc6Ql5fD8eOPa1WzprYq5BXkkZqcJbQ8LTkTOvqiA7ysMV/1gLKKIh7cqHg+gXpFIUwqIa3s5ubzoFQH2W1nA/yyEVixBSgoAIqKOejbnWFDHd5lKa6s2Hz4n4xF962t6vRKNFmircrPwaQs4exOzsqGvkbVJzEN1NXQs3UzrD7nJrTcTEcLjs3NcfXte8w7fgnN9LTx7bC+UJCTwz73Z7WrWZNfc0qZk6Yp6dnQ1W4mch0zY20smNQTC7acQXEFVxY9exOOiUMd4O3/AdHxaehoY4GeHVtK5GQxUEV261SR3SdLZffxR7juJvqOyLZtTNCiuSF+3ekm8nVxaeqo8bO7zNXeaYmZ0NGv/PdVZT6EJGDnqlMID4iFqroyRn3VC7+eW4JFg39BTLhk7jqoNspuUglpZXdBPg+KdZDdpaUlA74vgNnr6vRtxaamIwenRdowbMlFcSFDgHsuLm5Kwpgf9dGknVJ9l1epsNXuKM4qAIoZdEe0glZPszp7bx0V/rF4Uo5wxiRn58DAQvRx7cOIcEywtcHtkGD4JiTA1sgI49q1g6K8PHRUVJCYXfthTj/5dNydkl6mvowcdKnkuHvb4dt4HxYPLlceg7tb4X9rx2LB9n/hHcA/7m7f2hQjettg6sbjIrdRW/xjWDmkpQjXnZaSDR199Wpt48upXaGszIXHbdFXi7dp1wTNWxnht+9rNq66pr4G5BXkkVZm+NW0+HToGImeSEjHSAtpZYaNSUvIgAJXAVr66kiJS4d119YYOKM3FjpuqFFdUkXZLRUy3VHu6upadaMqbN++HVu3bhVa9uViE4xbIv2rORgDwAHGrlaBshoHgDwGzQbObM/FsAXK4Co13IPZld5/QEVeCVYaFpjZYjhicpPgnviqvstqUMr+zuJwOBX+Hmupr4uNA/tg78OneBQSAQN1Nazp3xNbh/TDhqu3y7Wf3bUjhtq0xfRjZ1FQLMFhNsrVXG6RQGRcKiLjSm6j8wmJhZGeBqYM7ijoKPcNiYVvSKygzZugaBzfOhXj+9th54mKTwKIX7ZwlRxUnRlLl52AiooirK1MMXtOH8REp+Leff6ELRw5DlJTs7Fr1w3weAxBQfHQ01PHhPGOte4oF9RcpsDKvh+l9R7SHlMX9sPWxceRniK5P9okigKbVEJa2b1ppS42r9Kr9barEhwO/PgHsNAF6NEZSExm+GU/sGUn8ONaqb+92BiP4dUf4Wgzzhjqpsr1XY7Mqe7v5lH21sjMy8dd/2Ch5XIcDpKzc7DpvzvgMQa/mAQYaKhjVo+Ote4oFxCRJ6LCW47DwdYlQ3HorCeiREz+9cnuI/exbp4zTv32FRgDouPTcM39HYb2KT9xae3KLlt3NbJ7xQmoKH/M7tl9EBNTkt2lDR7UHqFhCXgfECtiKzVX7u8NTvll4nj/OgLvX5dcVej3Mgx7rq3ECJeeOLD1Yo23WyOU3aQS0spul6W6+GqZ9LO7tCe3ARV14ItKJv9sCHTMuNApNWmnSVslZCYV4/XFrAbfUW62pjN4+cXIC01D8oUgcA1UoeFoUqc1lPuNVslx7Z6nz2CgqobzEyeBw+EgKScH5/38MK9TJ/B40pkssWwtlR2/lj3u9g2OhZEu/7jbOyAaqspcbJ0/GNsO30Z6Vu3vNq+MqOyuTgz2GWiDaXP7YMvK00hPFX0MO3CkHcKC4xHwruoJycWrsfI/MMq9xClZrqKujLWHF2D3wr+RUeZCtwaBslsqZLqjXBLWr1+PFStWCC27HOVUJ++toSsHTT3ex05yPgNzOTAGZCTxoNdEvpK161d8Hn8CkvDsWGgramBqs0HUUf5Rak4uing86KsLnxHWU1VFUrbooTLmde+MV1Ex+PsJf2bkgIQk5LoV4uSMCdjt7onErJIwmdnFAfN6dMJX/1xAQIJkrjZKy8xFUTEPelrCV3LpaKiWu1KtMr4hsRjUteJZ7xkD/MLiYW6kXdNShaSn56C4mAddHeGz2No6auWuVCsrLo5/5jgsLBE6OmpwcekhONhOSc5CUREPvFJX20VGJkNPTx0KCnIoKqr5H0wZaTkoLiqGrr6G0HItXXWkVRG+vQbZYtn3Y7Bt+Sl4P2nAwx1J6Q9KQj4Rld3cVPs6ee8//wHsbYBZk/jP27QEVJSBqYs5WDqbwbBuj/erVJRbjPSQXPiGfYDvYf7ETowBYMDVid7osrEl9G00Kt9II5CWw8/Bstmtq6aK5Kyqc/BL+3a4/MYfhcXCv/8SM7NRxOMJjSMampgCAw01cOXlyrUXq+YMfs262mWyW1O13JVqAKCqogirlsZo3cwQK2byx+qU43AgJ8fBg5PLsfzHc/B6F4W0zFys+/U/KHLloamugqTULCyc3BMxCZIZ71SQ3bplsltbDalp1czu8I/ZPa1HuY5yJSUFODlZ4cjRR6I2USMZqdn87DYQvmJWS18DaUmSG1OcMYbAN5EwbS65YeqqjbKbSJmo7H4WWzfZ/QljwOObQJd+gEL1phVrUIwtFRHg0UCHXiyFa8DPUiUzDRRnFCDlSnCddZSn5vKPxQ1UhbNRT1UVSTmi911+cRHW3r6FDXfvQF9VFQnZ2Zhka4vM/Hyk5FY8TEhNVHTcraupipQMMY67g2MxqDv/uLuJoTZMDbTw6/JRgtc/DfH22HUZxq91RXQtM5x/DMuDjp5wdmvpqJW7U7qs3gPaYfm3I/Hj2n/x+rnoyVGVlLjo42yDYwdqfjFdRlImiouKy109rmWoidSE8hOFA0BqfDp0jIXbaxtooqiwCBnJWbCwbgLjZgb47nzJ7y7Oxzvsrmcewaz2axAbJpl5zGqEslsqPuuOchcXF0RFReHevXsVtlFSUoKSkvAZ2boYdgUAmlrJ492jQuTnMiip8H/YkqJ54MgBmvqyM3w8Bxxw5T7rr5JYCnk8vIuNR/cWFrgTUNKZ2a1FU9wNFN25qcxVQHGZX3KfbokufV/BrK4OWNDDEbNOXoBvbLzEai4q5uF9eDw6t2sK91clV8N1bmeBB6+r3yFr2dQQyVUc5FqaGyD4g2Q6+IuKeAgMjIODQzM8elwyQZyDQzN4lhkDvFIcgMst+Q77vvuAfn3bCV3dZmami6SkzFp1kgNAUWExgvxiYNetFTzvlszmbd+tFZ7cq3h2795D2mP5D1/ip9Wn8eJBHc4aWBN0ZpvUQk2zm5dTN7mZlw/IlzmPLRi+sgF+9RVU5NH71zZCy8JvJSHJNwsdVzSDqqFiPVXWsBQW8/AuJh7dWlrgjn+p7G7ZFPfeV56DnZqZwUJPB+e9rpR77VVkDIa1byOUJ830dJCQkVWrTnKAn90BofHo3N4CD16UZHen9hZ4+DK4XPvs3HxMXXVEaNkY5y/g0K4pNvx2uVxHeEFhMZJSsyAvL4c+jq1x90n1JmKtsu5P2W1fJrvtm8HTs+bZ/Umf3lZQ5Crgzh3JjdFaVFiMIN8PsOthCc+bJcOe2fewxJPbkh0LtqV1E4RL+Er4aqHsJrVQ0+xWTKnbY97At0BCDAc9Bsnm9z0xtABqOrLTT/AJq+XxkzgKeTz4xsejh0VT3AopycIeTS1wJ6TyPC/i8RCXxe/0HdamLe6HhUn8TzvBcbdNU3h4lTrutrHAg1fVP+5uY1Fy3B0Rm4JJ648KvT5/bHeoKiti1z/3EZ9c+xO6RUXFCHofA3vHlvB0L5kk296xJZ54VDxpdp+BNljx7Uhs33Aezys5Pu81oB24XAXcrWBItWrVWFiMoNfhsO9rA8/LXiU19rXBk6uiL+r0fxYMxyHCE4k79LNF4KswFBcVIyogFnMd1gu9PmPLWKioK2P/qn+Q+CG5xvVKBGW3VHzWvZumpqaQk/DkC5XJz2VIiSkJgdQ4HmJDiqGiwYG2oRxuH8lDRjLDlyv547vZ9uHC/XQ+Lv2WC6epSsjJYLh1OB/2A7h1NuyKspwiTFVKrloxVtZFC7UmyCzKRmJ+Gr5qPgz6ilr4JeAEAGC4aQ8k5KciKoffSWuj2QJjzZ3wX/TDOqkXAFQVuLBQ1xE8N1fXgpW2IdIL8hCTk4HVHfrASEUDq56WHLBaaRsCANQUFKGrpAorbUMU8ngIzpDO+I+uT1/h51GD4BsTj9fRsZhgZwsTLQ2c9uL/4l/RtzuMNNSx9r+bAID7gaH4flh/THJoj4chETBUV8M3A3vjTXQsEj5eTT67a0cs7dMVKy+6ITotA/pq/DP1OQWFyCms/URVJ296YevcwfAPj4dPcCxG97GFsZ4GLtx/AwBYOLYHDHXUseWvGwCAic52iE3KQGh0Mrjy8hjUzQr9OllizZ6SMcVmj+wC35BYRManQU1FERP628GyqQF+Pl7xH9HiOnvuOdavG46AwDj4+UVj2NAvYGSoiStXXvNrmNUb+voa2PHTVQDAyJH2SEjIQGQkP9RsbcwwflxnXLpUEqaXL7/G6FEO+HrRAFy89BJNmuhi8uSuuHhBMrNYXzzyCKt+Goegd9Hw947E4HGdYGCihetnngMAZix3hp6hJnauPweA30m+avs4HNh+Fe/fRAnGgcvPK0ROFn+sRwWuPJq2NBT8W89IEy3amiA3Jx+xkSkSqbvaKLBJLdR1dmfnAJGl7vD8EAv4BwFamoCpEbDrTyA+Efjp47CETt2ATb8Apy59GnoF2L4HaG/FYKhfNzUX5RUjO65knNechAKkh+eAq64AVX1F+J+MQV5KIey+tgBHjgPNpsLjyippKkCeW365NKkqcNFMo3R2a8NaxxBp+fzsXmPXG0YqGljpeVXQxlqH/ztNlcuFrrIqrHUMUcArRnC6dA5Kjnq+wo4v+dntHRWL8R352X3mOT+7lw/oDiNNdaw7f1NovbEONngTFYughPJ1nX7+BlO7fIFvhvTBiafesNDTwdzenfDPU2+J1Hz6mhc2fT0Y/iHx8A2Kwch+7WGkr4FLt/nZPX9SDxjoquP7vTfAGBAaJVxjanoO8guLhJZbtzKGga46gsITYaCrjllju4LD4eDE5RcSqRkAzp5/jvVrP2a3fzSGDfmY3Vc/ZvfMj9n988fsHvExu6Mqzu5PBg9qj0ePA5GRKdnbzy8ecseqXVMQ9DYK/q/CMXhyNxiY6uD6CU8AwIw1Q6FnpIWdK08K1mlhzZ+YTVlVCVq66mhhbYqigmJEBvP/jp68dCDevw5HTFgSVDWUMHJGL7SwboK9m85LtPZqoewmtVDX2Z2XCySWmjs0KQ6ICgFUNQA9Q+DCYSAtCZi5Rni9RzeB5m0ZmjSrs1IFCnJ5SI8tmTAyI74YiaEFUNaQg4aBAjyPpSMruRjOy/kTX3pfzoKGoTz0mnJRXMQQ4J6DkCd5GLyu7ibG5OUVoTCh5CrnoqRc5EdmQE6NC66eCpIuBKI4NR9Gs2wBAGn3I8HVVQbXmH+1dF5wGtJuhUPLqWmd1QwAf7/yws5Bg+ETH49XsbGYZGsLUw0NnHjLz8bV3XvASF0dq27yj2uba2ujvbEJ3sTFQlNJGbMc7GGppyd4XdJO3fDClnmD8T6Mf9w9qo8tjPQ0cOHex+PucT1goKOOrX9+PO4eaIeYxAyERSdD4ePcYH07W2LtH/zj7oLCYoRGC+d7Zg7/78Syy2vjwoknWP3dGAT6x8D/bRSGjHGAobEWrp3nHyN/tagf9A018ctm/tBhfQbaYPXW0dj/6w289/0guBo9P68QOdnC8xUMGmkHT4/3yEyv3RX8F/5ww+q/5yPwVRj8nwVjyCwnGJrr4dqhu/wavxsPfVMd/DL7IADg6l/3MGL+AMz9aTLcDrvDyrEVBs7ojR0uewEAhfmFiPD7IPQeWWn8n4nSy5XVlGDasmR2YONmBmjRvikyU7ORGCXFznTKbqn4rDvKt2/fXqfvFxNUDNf1JUFy41A+gHx80Y+LMStUkJnCkJ5Y0pGupMKByw+quHYgDweXZUNFgwObnlz0m1Z3Y45ZajTFL198LXg+v9VoAMCtuOfYGXASuoqaMFAuObDlgIOZzYfBWFkXxYyHmNwkHA69imuxnnVWs62uCU71myp4vtF+AADgXOhbrHl2FQbK6jBVFb419trg2SXr65lgZDMbfMhKQ68r+6RSo5tfIHRUlLGwlyMM1dUQmJiMuacuISadfzbXQF0NJpolt7pffOsHNSVFTOn0BdYO6IXMvHw8DY/CL3dLTkBM6tgeigoK2DNuuNB77fF4gv89qP1kqneeB0JLXQWzRnaBvpYaQqKTsXzXRcR9PAOtr60GI72Smrny8lgyoTcMdNSRX1CEsOgkLNt1EZ5vwwRtNFSVsH7GAOhpqSIrtwCBEQmYt/1f+IXF1breT9zd30NTUwXTp3WHrq4awsOTsH79WcR/vL1KV08dhoYl3wc5DgezZ/WGsbEWiot5iI1Nw6FDHoKDcwBITMzEmrVnsHBBPxz6axaSkjJx4cJLnD4tmUlrH9zwgYa2KiYv6AtdAw2EB8Vj07yjSIhJ49esrwFDE21B+yHjO0OBK4+vN43E15tGCpbfvuiFXRv4B9O6BhrYe2Gx4LWxM3th7MxeePs8FGtnHJJI3dVWwQRxhFRHXWf3uwDAZVnJyemf9vL/PWoQw/b1/I7w2FJ3VI4ezO9cP3ER+HkfoKEOdLEHVs6ru5rTQnLwZGvJVUd+x/i9BWa9dWC3yAJ5qYXITSqou4Kqob2eCU47TxY8/7Yjf+iPcyE+WOV5DYYq6miiJpzd14fNFFp/VPN2+JCVjh4X90ulRjffQGirKmNhH0cYaKghKD4Z84+XyW4t4WFq1JUUMcC6FbZfdxe5zbiMLMw+egHrBvfGpUXTEJ+ZheNPXuPQQ8mceL37JABaGsqY+WUX6OmoITQqGat2XEDcx+FA9LTVYKQn3mSTilwFzJ3QA6aGWsjNK8QT71B8t9cNWTn5Va9cTe4eH7N7aqns3lBFds/8mN08HmJjPmb3tddC2zVrooP2tuZYvfa0xGr95MFVb2hoq2Hy0oHQNdBEeGAsNn31JxKi+ePG6hpqwrCJjtA6e6+vFvzbsr05nEY5IP5DCmb0+B4AoK6pgiXbxkPXQBPZmbkI8YvG6gl7EPim9hO1i42ym9RCXWd3RCCwc01Jdp89yP931wEMX60C0lOAlEThdXKygVePgInz67LSEgnBhbi4seQirUeH+XfxtO2rigFLdZCdykNWUsncU8VFDI9d05GVUgwFRQ50m3Ix/Fs9NOtYd/ON5EVkIObXkpOkSf/y72rV6GoKo5m2KE7LR2FKqY5NHkPyhSAUJuWCI88B10AFemNaQ7OXeZ3VDADXAgOho6yCxY5dYKCmhsDkZMy8dBExmR/zXE0NpholeS4nJ4fZDg5ooaODIh4PT6KiMPbMaURniB6uo7buPOMfd88c2QX62moI/ZCM5TtLjrv1yhx3K8jLY8kk4ePu5b8KH3fXBY/b76ChpYops3tDV18dESEJ2Lj0BBI+Doumq68Bg1LDmAwZ0xEKCvJYvG4oFq8bKlh+64o3dm69JHjepKkebOwssH7RsdrXeO4ZNHTVMeWbUdA11kbEuw/YOOpXJHy8SE7XWBsG5iXjJMZHJGLjqF8x7+cpGD6vP1Ji07B/5XE8uiTe32mW9s3xy62SyT7n/zwFAHDr+EPsnPtnrT9XhSi7pYLDyo50L2M+fPiA/fv3w9PTE3FxceBwODAyMkK3bt2wYMECmJmJP8PymeBOUqhU+g5Hd6/vEsQWFGNY3yWIjRtcd1fgSYpWiGz+mKtHNayOnupQipXOH1TS5Oa3TaLbG6Q7R6z2N1L+kuj7k4ZPGtnNi7OUQqXStyberupGDcy5t7JXs0pgw574TBSdQNkcd1I5pfZ3udU1pSDJDWdXV9zCf5Po9ii7SVWkkd0e4bKZ3T554n/W+uaWYFPfJYjN36tZfZcgNoPXVbdpiLT9ZO8YFu8a8JxdFbiZe1yi26Pslg6ZvqL80aNHGDx4MMzNzeHs7AxnZ2cwxpCQkIBLly5hz549cHNzQ/fusteBTAghMku2z78SKaPsJoSQBoiym1SCspsQQhogym6pkOmO8uXLl2P27Nn47TfRV1QsX74cy5Ytw4sXkhtTkRBCSBVo9m1SCcpuQghpgCi7SSUouwkhpAGi7JYK2ZsyuRRfX1/Mn1/xIGPz5s2Dr69kZ6InhBBSBcbEe5BGhbKbEEIaIMpuUgnKbkIIaYAou6VCpjvKTUxM4OlZ8SSST548gYmJSR1WRAghhPF4Yj1I40LZTQghDQ9lN6kMZTchhDQ8lN3SIdNDr6xatQrz58+Hl5cXBgwYACMjI3A4HMTFxeH27ds4dOgQdu/eXd9lEkJI40Jnq0klKLsJIaQBouwmlaDsJoSQBoiyWypkuqN84cKF0NPTw2+//YaDBw+iuLgYACAvLw8HBwccO3YM48ePr+cqCSGkkeFRYJOKUXYTQkgDRNlNKkHZTQghDRBlt1TIdEc5AEyYMAETJkxAYWEhkpKSAAD6+vrgcrn1XBkhhDRSjG7rIpWj7CaEkAaGsptUgbKbEEIaGMpuqZDpMcpL43K5MDExgYmJCYU1IYTUI8ZjYj3EtW/fPjRv3hzKyspwcHDAw4cPK23v4eEBBwcHKCsro0WLFjhw4EC5NufPn4e1tTWUlJRgbW2Nixcvil0XER9lNyGENAyU3aS6KLsJIaRhoOyWjs+mo5wQQkgDwXjiPcRw5swZLFu2DBs2bMDr16/Rs2dPDB48GJGRkSLbh4WFYciQIejZsydev36Nb775BkuWLMH58+cFbZ48eYIJEyZg2rRpePPmDaZNm4bx48fj2bNntdoNhBBCiMyg7CaEEEJkC2W3VHAYo9HfyzoT3Km+S6iRw9Hd67sEsQXFGNZ3CWLjBqvUdwli0wqRzR9z9aiC+i5BbEqxGfVdgtjc/LZJdHsD5CeI1f528Zlqt3V0dIS9vT32798vWGZlZYVRo0Zh+/bt5dqvXbsWly9fhr+/v2DZ/Pnz8ebNGzx58gQA/1bijIwMuLm5CdoMGjQIOjo6OHXqlFifhdQfXpxlfZdQI2vi7eq7BLGdeyt7NasEKtV3CWLTCZTN22mVUwrruwSxKQXF13cJYnML/02i26PsJvXBI1w2s9snz6y+SxCbW4JNfZcgNn+vZvVdgtgMXtd3BTWj7Sd7x7B4F1LfFYjtZu5xiW6Psls66IpyQgghkiXmme38/HxkZGQIPfLz88tttqCgAF5eXnB2dhZa7uzsDE9PT5GlPHnypFz7gQMH4uXLlygsLKy0TUXbJIQQQj47lN2EEEKIbKHslg5G6kxeXh7bvHkzy8vLq+9Sqk0Wa2ZMNuummuuGLNbMmOzWXR2bN29mAIQemzdvLtcuOjqaAWCPHz8WWv7jjz8yS0tLkdtu3bo1+/HHH4WWPX78mAFgMTExjDHGuFwuO3HihFCbEydOMEVFxVp8KvK5kMWfPVmsmTHZrJtqrhuyWDNjslt3dVB2k4ZMFn/2ZLFmxmSzbqq5bshizYzJbt3VQdldPXRFeR3Kz8/H1q1bRZ6xaahksWZANuummuuGLNYMyG7d1bF+/Xqkp6cLPdavX19hew6HI/ScMVZuWVXtyy4Xd5uk8ZDFnz1ZrBmQzbqp5rohizUDslt3dVB2k4ZMFn/2ZLFmQDbrpprrhizWDMhu3dVB2V09CvVdACGEkMZNSUkJSkpVjx+sr68PeXl5xMXFCS1PSEiAkZGRyHWMjY1FtldQUICenl6lbSraJiGEENLYUXYTQgghsoWyu3roinJCCCEyQVFREQ4ODrh9+7bQ8tu3b6Nbt24i1+natWu59rdu3ULHjh3B5XIrbVPRNgkhhBBSPZTdhBBCiGxp7NlNV5QTQgiRGStWrMC0adPQsWNHdO3aFX/++SciIyMxf/58APzbyaKjo3Hs2DEA/Jm2//e//2HFihWYM2cOnjx5gr///ltoVu2lS5eiV69e+OmnnzBy5Ej8999/uHPnDh49elQvn5EQQgj5nFB2E0IIIbKlUWd3vY2O3gjJ4qQAslgzY7JZN9VcN2SxZsZkt25p2Lt3L7OwsGCKiorM3t6eeXh4CF5zcXFhvXv3Fmrv7u7O7OzsmKKiImvWrBnbv39/uW2ePXuWtWnThnG5XNa2bVt2/vx5aX8MIiNk8WdPFmtmTDbrpprrhizWzJjs1i0NlN2kLsniz54s1syYbNZNNdcNWayZMdmtWxoaa3ZzGPs4ujohhBBCCCGEEEIIIYQQ0gjRGOWEEEIIIYQQQgghhBBCGjXqKCeEEEIIIYQQQgghhBDSqFFHOSGEEEIIIYQQQgghhJBGjTrKCSGEEEIIIYQQQgghhDRq1FFeQ5mZmVi2bBksLCygoqKCbt264cWLF4LXGWPYsmULTE1NoaKigj59+uDdu3dVbvf8+fOwtraGkpISrK2tcfHiRYnVXFRUhI0bN6J58+ZQUVFBixYt8N1334HH4wnacDgckY9ffvmlwu0eOXJE5Dp5eXl1UvOMGTPKvXeXLl2q3La09nVVNRcWFmLt2rWwtbWFmpoaTE1NMX36dMTExFS6XWnu5+rUDTS873WzZs1E7pNFixYBaHjf5+rU3NC+z4R8Tii7S1B2i1czZTdlN2U3IfWDsrsEZbd4NVN2U3ZTdpMaYaRGxo8fz6ytrZmHhwcLCgpimzdvZpqamuzDhw+MMcZ27NjBNDQ02Pnz55mPjw+bMGECMzExYRkZGRVu09PTk8nLy7Nt27Yxf39/tm3bNqagoMCePn0qkZp/+OEHpqenx65evcrCwsLY2bNnmbq6Otu9e7egTWxsrNDj8OHDjMPhsJCQkAq36+rqyjQ1NcutW1c1u7i4sEGDBgm9d3JycqXblea+rqrmtLQ01r9/f3bmzBn2/v179uTJE+bo6MgcHBwq3a4093N16mas4X2vExIShPbF7du3GQB2//59xljD+z5Xp+aG9n0m5HNC2V2Cslu8mim7KbspuwmpH5TdJSi7xauZspuym7Kb1AR1lNdATk4Ok5eXZ1evXhVa3qFDB7ZhwwbG4/GYsbEx27Fjh+C1vLw8pqWlxQ4cOFDhdsePH88GDRoktGzgwIFs4sSJEql76NChbObMmULLxowZw6ZOnVrhOiNHjmR9+/atdLuurq5MS0tLEiWWU52aXVxc2MiRI8XarjT3dU328/PnzxkAFhERUWEbae5nxqquu6F+r0tbunQpa9myJePxeCJfr+/vsyhla25o32dCPheU3cIou4VRdguj7K4cZTchdYOyWxhltzDKbmGU3ZWj7CbVRUOv1EBRURGKi4uhrKwstFxFRQWPHj1CWFgY4uLi4OzsLHhNSUkJvXv3hqenZ4XbffLkidA6ADBw4MBK1xFHjx49cPfuXQQGBgIA3rx5g0ePHmHIkCEi28fHx+PatWuYNWtWldvOysqChYUFzMzMMGzYMLx+/bpOa3Z3d4ehoSEsLS0xZ84cJCQkVLpdae5rcfczAKSnp4PD4UBbW7vSbUtrP1en7ob6vf6koKAA//zzD2bOnAkOh1Pu9YbwfS6ropob0veZkM8FZXd5lN3i11waZXftUXZTdhNSGcru8ii7xa+5NMru2qPspuz+7NV3T72s6tq1K+vduzeLjo5mRUVF7Pjx44zD4TBLS0v2+PFjBoBFR0cLrTNnzhzm7Oxc4Ta5XC47ceKE0LITJ04wRUVFidTM4/HYunXrGIfDYQoKCozD4bBt27ZV2P6nn35iOjo6LDc3t9LtPnnyhB0/fpx5e3uzBw8esC+//JKpqKiwwMDAOqn59OnT7OrVq8zHx4ddvnyZdejQgbVr147l5eVVuF1p7mtx93Nubi5zcHBgU6ZMqXS70tzP1am7oX6vPzlz5gyTl5cvV98nDeH7XJ2aG9r3mZDPCWV3Ccpu8WsujbJbMii7KbsJqQpldwnKbvFrLo2yWzIouym7P3fUUV5DwcHBrFevXgwAk5eXZ506dWJTpkxhVlZWgl9sMTExQuvMnj2bDRw4sMJtcrlcdvLkSaFl//zzD1NSUpJIzadOnWJmZmbs1KlT7O3bt+zYsWNMV1eXHTlyRGT7Nm3asK+//lrs9ykuLmYdOnRgixcvrm3JYtfMGGMxMTGMy+Wy8+fPV9hGmvtanJoLCgrYyJEjmZ2dHUtPTxfrfSS5n6tTd0P9Xn/i7OzMhg0bVuHrDeH7XFZVNTNW/99nQj4nlN0Vo+ym7C6NsrtilN2E1C3K7opRdlN2l0bZXTHKbiIOhXq4iP2z0LJlS3h4eCA7OxsZGRkwMTHBhAkT0Lx5cxgbGwMA4uLiYGJiIlgnISEBRkZGFW7T2NgYcXFxQsuqWkccq1evxrp16zBx4kQAgK2tLSIiIrB9+3a4uLgItX348CECAgJw5swZsd9HTk4OnTp1QlBQUJ3W/ImJiQksLCwqfX9p7uvq1lxYWIjx48cjLCwM9+7dg6ampljvI8n9XJ26G+r3GgAiIiJw584dXLhwQeTrDeX7XFpVNX9S399nQj4nlN0Vo+ym7C6Nsls0ym5C6h5ld8Uouym7S6PsFo2ym4iLxiivJTU1NZiYmCA1NRU3b97EyJEjBaF9+/ZtQbuCggJ4eHigW7duFW6ra9euQusAwK1btypdRxw5OTmQkxP+L5eXlwePxyvX9u+//4aDgwM6dOgg9vswxuDt7S30S72mxKn5k+TkZERFRVX6/tLc19Wp+VNYBwUF4c6dO9DT0xP7fSS5n4Gq626o32sAcHV1haGhIYYOHSry9YbyfS6tqpo/qe/vMyGfI8ru8ii7KbtLo+wWjbKbkPpD2V0eZTdld2mU3aJRdhOx1du17DLuxo0bzM3NjYWGhrJbt26xDh06sM6dO7OCggLGGGM7duxgWlpa7MKFC8zHx4dNmjSJmZiYsIyMDME2pk2bxtatWyd4/vjxYyYvL8927NjB/P392Y4dO5iCggJ7+vSpRGp2cXFhTZo0YVevXmVhYWHswoULTF9fn61Zs0aoXXp6OlNVVWX79+8XuZ2ydW/ZsoXduHGDhYSEsNevX7OvvvqKKSgosGfPnkm95szMTLZy5Urm6enJwsLC2P3791nXrl1ZkyZN6m1fV1VzYWEhGzFiBDMzM2Pe3t4sNjZW8MjPz6+wZmnu5+rUzVjD/F4XFxezpk2bsrVr14p8vSF9n6uquSF+nwn5nFB2U3bXtGbKbspuym5C6gdlN2V3TWum7KbspuwmNUEd5TV05swZ1qJFC6aoqMiMjY3ZokWLWFpamuB1Ho/HNm/ezIyNjZmSkhLr1asX8/HxEdpG7969mYuLi9Cys2fPsjZt2jAul8vatm1b6fhI4srIyGBLly5lTZs2ZcrKyqxFixZsw4YNQiHBGGMHDx5kKioqQp+nsrqXLVvGmjZtyhQVFZmBgQFzdnZmnp6edVJzTk4Oc3Z2ZgYGBozL5bKmTZsyFxcXFhkZWWnNjElvX1dVc1hYGAMg8nH//v0Ka5bmfq5O3Yw1zO/1zZs3GQAWEBAg8vWG9H2uquaG+H0m5HNC2V1SN2W3eDVTdlN2U3YTUj8ou0vqpuwWr2bKbspuym5SExzGGKu769cJIYQQQgghhBBCCCGEkIaFxignhBBCCCGEEEIIIYQQ0qhRRzkhhBBCCCGEEEIIIYSQRo06ygkhhBBCCCGEEEIIIYQ0atRRTgghhBBCCCGEEEIIIaRRo45yQgghhBBCCCGEEEIIIY0adZQTQgghhBBCCCGEEEIIadSoo5wQQgghhBBCCCGEEEJIo0Yd5YQQQgghhBBCCCGEEEIaNeooJ58lDoeDS5cuVbv9jBkzMGrUqFq9Z3h4ODgcDry9vWu1nZpyd3cHh8NBWlpavbw/IYQQUhuU3YQQQohsoewmhHxuqKOcyJS4uDgsXboUrVq1grKyMoyMjNCjRw8cOHAAOTk59V1elfr06YNly5aVW37kyBFoa2vXeT2EEEKItFF2E0IIIbKFspsQ0lgp1HcBhFRXaGgounfvDm1tbWzbtg22trYoKipCYGAgDh8+DFNTU4wYMaK+y2ywiouLweFwICdH58cIIYTUDcru2qHsJoQQUtcou2uHspsQ2UY/uURmLFy4EAoKCnj58iXGjx8PKysr2Nra4ssvv8S1a9cwfPjwCtf18fFB3759oaKiAj09PcydOxdZWVnl2m3duhWGhobQ1NTEvHnzUFBQIHjtxo0b6NGjB7S1taGnp4dhw4YhJCRE4p8zPDwccnJyePnypdDyPXv2wMLCAowxAMD169dhaWkJFRUVODk5ITw8XKj9p7PlV69ehbW1NZSUlBAREYHU1FRMnz4dOjo6UFVVxeDBgxEUFCS07l9//QVzc3Ooqqpi9OjR2LVrV7kz71euXIGDgwOUlZXRokULbN26FUVFRYLXORwODh06hNGjR0NVVRWtW7fG5cuXJbejCCGENHiU3ZTdhBBCZAtlN2U3IY0ZdZQTmZCcnIxbt25h0aJFUFNTE9mGw+GIXJ6Tk4NBgwZBR0cHL168wNmzZ3Hnzh18/fXXQu3u3r0Lf39/3L9/H6dOncLFixexdetWwevZ2dlYsWIFXrx4gbt370JOTg6jR48Gj8eT3AcF0KxZM/Tv3x+urq5Cy11dXTFjxgxwOBxERUVhzJgxGDJkCLy9vTF79mysW7dO5Gffvn07Dh06hHfv3sHQ0BAzZszAy5cvcfnyZTx58gSMMQwZMgSFhYUAgMePH2P+/PlYunQpvL29MWDAAPz4449C27158yamTp2KJUuWwM/PDwcPHsSRI0fKtdu6dSvGjx+Pt2/fYsiQIZgyZQpSUlIkur8IIYQ0TJTdlN2EEEJkC2U3ZTchjR4jRAY8ffqUAWAXLlwQWq6np8fU1NSYmpoaW7NmjWA5AHbx4kXGGGN//vkn09HRYVlZWYLXr127xuTk5FhcXBxjjDEXFxemq6vLsrOzBW3279/P1NXVWXFxsciaEhISGADm4+PDGGMsLCyMAWCvX7+u8HP07t2bcblcQc2fHkpKSkxLS0vQ7syZM0xHR4fl5eUxxhjz9vZmHA6HhYWFMcYYW79+PbOysmI8Hk+wztq1axkAlpqayhhjzNXVlQFg3t7egjaBgYEMAHv8+LFgWVJSElNRUWH//vsvY4yxCRMmsKFDhwrVPWXKFKH6evbsybZt2ybU5vjx48zExETwHADbuHGj4HlWVhbjcDjMzc2twv1DCCHk80HZTdlNCCFEtlB2U3YT0tjRFeVEppQ9e/38+XN4e3ujXbt2yM/PF7mOv78/OnToIHRGvHv37uDxeAgICBAs69ChA1RVVQXPu3btiqysLERFRQEAQkJCMHnyZLRo0QKamppo3rw5ACAyMlKszzBlyhR4e3sLPb777juhNqNGjYKCggIuXrwIADh8+DCcnJzQrFkzwWfq0qWL0P7o2rVrufdSVFRE+/bthfaFgoICHB0dBcv09PTQpk0b+Pv7AwACAgLQuXNnoe2Ufe7l5YXvvvsO6urqgsecOXMQGxsrNLlL6fdWU1ODhoYGEhISqrWfCCGEfB4ou5sJPhNlNyGEEFlA2d1M8JkouwlpXGgyTyITWrVqBQ6Hg/fv3wstb9GiBQBARUWlwnUZYxXeHlbRclFthg8fDnNzc/z1118wNTUFj8eDjY2N0Hhq1aGlpYVWrVoJLTM0NBR6rqioiGnTpsHV1RVjxozByZMnsXv3bqHPVB0qKipCn7Gi9UrvI1H7q+x6PB4PW7duxZgxY8ptS1lZWfBvLpcr9BqHw5H4LXOEEEIaJspuym5CCCGyhbKbspuQxo6uKCcyQU9PDwMGDMD//vc/ZGdni7WutbU1vL29hdZ7/Pgx5OTkYGlpKVj25s0b5ObmCp4/ffoU6urqMDMzQ3JyMvz9/bFx40b069cPVlZWSE1Nrf0Hq8Ts2bNx584d7Nu3D4WFhULhaG1tjadPnwq1L/tcFGtraxQVFeHZs2eCZcnJyQgMDISVlRUAoG3btnj+/LnQemUnOLG3t0dAQABatWpV7kGzexNCCAEouym7CSGEyBrKbspuQho7+skiMmPfvn0oKipCx44dcebMGfj7+yMgIAD//PMP3r9/D3l5eZHrTZkyBcrKynBxcYGvry/u37+PxYsXY9q0aTAyMhK0KygowKxZs+Dn5wc3Nzds3rwZX3/9NeTk5KCjowM9PT38+eefCA4Oxr1797BixQqpfl4rKyt06dIFa9euxaRJk4TO3s+fPx8hISFYsWIFAgICcPLkSRw5cqTKbbZu3RojR47EnDlz8OjRI7x58wZTp05FkyZNMHLkSADA4sWLcf36dezatQtBQUE4ePAg3NzchM52b9q0CceOHcOWLVvw7t07+Pv748yZM9i4caPE9wMhhBDZRdlN2U0IIUS2UHZTdhPSmFFHOZEZLVu2xOvXr9G/f3+sX78eHTp0QMeOHbFnzx6sWrUK33//vcj1VFVVcfPmTaSkpKBTp04YO3Ys+vXrh//9739C7fr164fWrVujV69eGD9+PIYPH44tW7YAAOTk5HD69Gl4eXnBxsYGy5cvxy+//CLtj4xZs2ahoKAAM2fOFFretGlTnD9/HleuXEGHDh1w4MABbNu2rVrbdHV1hYODA4YNG4auXbuCMYbr168Lbtfq3r07Dhw4gF27dqFDhw64ceMGli9fLnRr18CBA3H16lXcvn0bnTp1QpcuXbBr1y5YWFhI7sMTQgiReZTdJSi7CSGEyALK7hKU3YQ0PhxW3UGXCCF17scff8Tp06fh4+NTr3XMmTMH79+/x8OHD+u1DkIIIaSho+wmhBBCZAtlNyHkE5rMk5AGKCsrC/7+/tizZ0+FZ+yl6ddff8WAAQOgpqYGNzc3HD16FPv27avzOgghhBBZQdlNCCGEyBbKbkJIWXRFOSEN0IwZM3Dq1CmMGjUKJ0+erHAcOGkZP3483N3dkZmZiRYtWmDx4sWYP39+ndZACCGEyBLKbkIIIUS2UHYTQsqijnJCCCGEEEIIIYQQQgghjRpN5kkIIYQQQgghhBBCCCGkUaOOcvJZOXLkCLS1teu7jArVVX337t1D27ZtwePxpP5etVWdfbJq1SosWbKkbgoihBBSpyi7+Si7CSGEyArKbj7KbkI+P9RRTurEjBkzwOFwRI63tXDhQnA4HMyYMaPuCyvD3d0dHA4HaWlp1Wr36WFgYIDBgwfjzZs3la43YcIEBAYGSrBi0dasWYMNGzZATq7kRzw/Px/bt2+HlZUV1NTUYGtri7/++qtcqM+YMQPr1q0DAMHne/r0qVCb/Px86OnpgcPhwN3dHQDQpUsXLFiwQKjd/v37weFw8PfffwstnzVrFrp16ybW53F1dUVYWFi11yGEEFI7lN18lN18lN2EENLwUXbzUXbzUXYTIj7qKCd1xtzcHKdPn0Zubq5gWV5eHk6dOoWmTZvWevuFhYW13oa4AgICEBsbi2vXriE1NRWDBg1Cenq6yLaFhYVQUVGBoaGhVGvy9PREUFAQxo0bJ7R8+vTp+Pvvv7F9+3b4+vpiz549uH//PqKiogRteDwerl27hpEjRwqWmZubw9XVVWhbFy9ehLq6utAyJycn3L9/X2iZu7s7zM3NRS53cnKq9mcyNDSEs7MzDhw4UO11CCGE1B5lN2V36eWU3YQQ0vBRdlN2l15O2U2IeKijnNQZe3t7NG3aFBcuXBAsu3DhAszNzWFnZyfU9saNG+jRowe0tbWhp6eHYcOGISQkRPB6eHg4OBwO/v33X/Tp0wfKysr4559/yr1ncnIyOnfujBEjRiAvLw+MMfz8889o0aIFVFRU0KFDB5w7d06wzU8hoqOjU62z7YaGhjA2Nkbnzp2xc+dOxMXF4enTpxXWJ+p2p8uXL6Njx45QVlaGvr4+xowZI3itoKAAa9asQZMmTaCmpgZHR0fBmeSKnD59Gs7OzlBWVhYs8/Hxwb///ovz589j1KhRaN68Ofr06YOTJ08K/bH0+PFjyMnJwdHRUbDMxcWl3B9ahw8fhouLi9D7Ojk5Cf6A+cTDwwPr168XqjkqKgqhoaHlAvvmzZuwsrKCuro6Bg0aJLQdABgxYgROnTpV6WcnhBAiWZTdlN0AZTchhMgSym7KboCym5Caoo5yUqe++uorobOkhw8fxsyZM8u1y87OxooVK/DixQvcvXsXcnJyGD16dLnbldauXYslS5bA398fAwcOFHrtw4cP6NmzJ9q2bYsLFy5AWVkZGzduhKurK/bv3493795h+fLlmDp1Kjw8PGBubo7z588DKDlj/fvvv1f7s6moqAAQPsNeWX0AcO3aNYwZMwZDhw7F69evcffuXXTs2FFofz1+/BinT5/G27dvMW7cOAwaNAhBQUEV1vHgwQOhbSxZsgSdOnUCAHTv3h3q6upQV1fH4MGDAfBv8/rk8uXLGD58uNCtYw4ODmjevLlg30RFReHBgweYNm2a0Pt2794dXC5XEM5+fn7Izc3FzJkzkZGRIaj5/v37UFRUFLoFLCcnB7/++iuOHz+OBw8eIDIyEqtWrRLafufOnREVFYWIiIgKPzshhBDJo+wWRtnNR9lNCCENF2W3MMpuPspuQqqBEVIHXFxc2MiRI1liYiJTUlJiYWFhLDw8nCkrK7PExEQ2cuRI5uLiUuH6CQkJDADz8fFhjDEWFhbGALDdu3cLtXN1dWVaWlosICCANW3alC1evJjxeDzGGGNZWVlMWVmZeXp6Cq0za9YsNmnSJMYYY/fv32cAWGpqaqWfp2y7pKQkNmLECKahocHi4+OrrO+Trl27silTpoh8j+DgYMbhcFh0dLTQ8n79+rH169dXWJuWlhY7duyY4HlUVBRbvHgxa9OmDQsKChI8kpKSyq1raWnJLl++LHgOgF28eJHt3r2bOTk5McYY27p1Kxs9ejRLTU1lANj9+/cF7bt168bmzp3LGGNs7969bMiQIYwxxgYNGsT+/PNPxhhjX331FevZs6fQPgHAgoODBcv27t3LjIyMhGpLT09nAJi7u3uFn50QQojkUHYL1/cJZTdlNyGENFSU3cL1fULZTdlNSHUp1FF/PCEAAH19fQwdOhRHjx4FYwxDhw6Fvr5+uXYhISH49ttv8fTpUyQlJQnOaEdGRsLGxkbQrvQZ3E9yc3PRo0cPTJo0SejMtJ+fH/Ly8jBgwACh9gUFBeVuQasuMzMzAPwz8a1bt8bZs2dhaGiI8PDwCusrzdvbG3PmzBH52qtXr8AYg6WlpdDyTxN6VCQ3N1fo9q+ff/4ZBw4cQFFREb744gsA/Nu1rly5IrSev78/Pnz4gP79+5fb5tSpU7Fu3TqEhobiyJEj+OOPP0S+t5OTE86ePQuAPx5anz59AAC9e/eGu7s75syZA3d3d0yfPl1oPVVVVbRs2VLw3MTEBAkJCUJtPl05kJOTU+FnJ4QQInmU3cIou/kouwkhpOGi7BZG2c1H2U1I1aijnNS5mTNn4uuvvwYA7N27V2Sb4cOHw9zcHH/99RdMTU3B4/FgY2ODgoICoXZqamrl1lVSUkL//v1x7do1rF69WhCqn0L/2rVraNKkSbl1auLhw4fQ1NSEgYEBNDU1y70uqr7SPoWQKDweD/Ly8vDy8oK8vLzQa2Un9ChNX18fqampgudr1qyBo6Mjpk6divv370NHRwc6Ojrl1rt8+TIGDBggsqZP49XNmjULeXl5GDx4MDIzM8u1c3Jywo8//ojo6Gh4eHgIbuPq3bs39uzZg8jISISFhZUbJ43L5Qo953A4YIwJLUtJSQEAGBgYVPjZCSGESAdldwnKbj7KbkIIadgou0tQdvNRdhNSNRqjnNS5QYMGoaCgAAUFBSLHD0tOToa/vz82btyIfv36wcrKSiiAqiInJ4fjx4/DwcEBffv2RUxMDADA2toaSkpKiIyMRKtWrYQe5ubmAABFRUUAQHFxcbXeq3nz5mjZsqXIsK6O9u3b4+7duyJfs7OzQ3FxMRISEsrVa2xsXOE27ezs4OfnJ3huZmaGsWPHQkNDA0+fPkWrVq0EZ8bT09MFwfvff/9hxIgRFW535syZgrPSZf+A+KRbt25QUlLCvn37kJubCwcHBwD8M/zp6ek4ePAglJWV0aVLl8p3jAi+vr7gcrlo166d2OsSQgipHcruEpTd1UfZTQgh9YeyuwRld/VRdpPGjq4oJ3VOXl4e/v7+gn+XpaOjAz09Pfz5558wMTFBZGQk1q1bJ/Z7nDhxApMmTULfvn3h7u4OY2NjrFq1CsuXLwePx0OPHj2QkZEBT09PqKurw8XFBRYWFuBwOLh69SqGDBkCFRWVSs8i19bmzZvRr18/tGzZEhMnTkRRURHc3NywZs0aWFpaYsqUKZg+fTp27twJOzs7JCUl4d69e7C1tcWQIUNEbnPgwIE4evSo0DIlJSX88ssvWLlyJbhcLgYMGICwsDCsXLkS//33H3Jzc/HixQtcunSpwloHDRqExMTESv84UVFRgaOjI/bs2YPu3bsL/n+5XC66du2KPXv2CEJdXA8fPkTPnj0rvRqAEEKIdFB2l6Dsrj7KbkIIqT+U3SUou6uPsps0dnRFOakXmpqaFf7il5OTw+nTp+Hl5QUbGxssX74cv/zyi9jvoaCggFOnTqFdu3bo27cvEhIS8P3332PTpk3Yvn07rKysMHDgQFy5cgXNmzcHADRp0gRbt27FunXrYGRkJLhVTVr69OmDs2fP4vLly/jiiy/Qt29fPHv2TPC6q6srpk+fjpUrV6JNmzYYMWIEnj17JjgTL8rUqVPh5+eHgIAAoeXz5s3D7t278fvvv6Ndu3ZYvnw5Fi9eDAsLC1y5cgWOjo4wNDSscLscDgf6+vqCs/8VcXJyQmZmpmCctE969+6NzMzMcrd/VdepU6cqHFeOEEKI9FF281F2Vx9lNyGE1C/Kbj7K7uqj7CaNHYeVHZCIECLz1qxZI7jlqjpGjBiBHj16YM2aNVKurGY+jXv39u1bKCjQjTCEEEI+P5TdhBBCiGyh7Cbk80NXlBPyGdqwYQMsLCyqPebbp9nKG6rs7Gy4urpSWBNCCPlsUXYTQgghsoWym5DPD11RTgghhBBCCCGEEEIIIaRRoyvKCSGEEEIIIYQQQgghhDRq1FFOCCGEEEIIIYQQQgghpFGjjnJCCCGEEEIIIYQQQgghjRp1lBNCCCGEEEIIIYQQQghp1KijnBBCCCGEEEIIIYQQQkijRh3lhBBCCCGEEEIIIYQQQho16ignhBBCCCGEEEIIIYQQ0qhRRzkhhBBCCCGEEEIIIYSQRo06ygkhhBBCCCGEEEIIIYQ0av8HsDE9EsEM6MYAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABMkAAAY1CAYAAAA4n4nfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAADAyklEQVR4nOzdf2zV9b0/8FdpoVXvWiPMWgRZ2XRjI3OXEhhlZJlXa9C4kOxGFm9EvZqs2XYROr2TcaODmDTbzczmFNwmaJagl/gz/tHr6B/3Igq7d/SWZRkkLsK1sLWSYmxRd4vA5/uHX7p9OC1ySj9tOZ/HIzl/nDfvT8+775T3M3meX2VJkiQBAAAAADk2abwXAAAAAADjTUkGAAAAQO4pyQAAAADIPSUZAAAAALmnJAMAAAAg95RkAAAAAOSekgwAAACA3FOSAQAAAJB7SjIAAAAAck9JBgAAAEDuFV2SvfLKK3HTTTfF9OnTo6ysLF588cWPvGb79u3R0NAQVVVVMXv27HjsscdGslYAckDOAJAlOQPAcIouyd577724+uqr45FHHjmr+QcOHIgbbrghlixZEp2dnfG9730vVq5cGc8991zRiwWg9MkZALIkZwAYTlmSJMmILy4rixdeeCGWLVs27Jzvfve78dJLL8W+ffsGx5qbm+O3v/1t7Nq1a6QPDUAOyBkAsiRnAPhrFVk/wK5du6KpqSk1dv3118emTZvigw8+iMmTJxdcMzAwEAMDA4P3T548GW+//XZMnTo1ysrKsl4yQMlLkiSOHj0a06dPj0mTzu+Pp5QzABOPnJEzAFnKKmcyL8l6enqitrY2NVZbWxvHjx+P3t7eqKurK7imtbU11q1bl/XSAHLv4MGDMWPGjPFexjmRMwATl5wBIEujnTOZl2QRUfBsyal3eA73LMqaNWuipaVl8H5fX19cccUVcfDgwaiurs5uoQA50d/fHzNnzoyPfexj472UUSFnACYWOSNnALKUVc5kXpJddtll0dPTkxo7fPhwVFRUxNSpU4e8prKyMiorKwvGq6urhQrAKCqFt3zIGYCJS86kyRmA0TXaOZP5BwQsWrQo2tvbU2Pbtm2L+fPnD/n+fQAohpwBIEtyBiA/ii7J3n333dizZ0/s2bMnIj78SuQ9e/ZEV1dXRHz40uIVK1YMzm9ubo4333wzWlpaYt++fbF58+bYtGlT3HPPPaPzGwBQUuQMAFmSMwAMp+i3W+7evTu+8pWvDN4/9V772267LZ588sno7u4eDJiIiPr6+mhra4vVq1fHo48+GtOnT4+HH344vva1r43C8gEoNXIGgCzJGQCGU5ac+tTJCay/vz9qamqir6/Pe/gBRoFzNc1+AIwu52qa/QAYXVmdq5l/JhkAAAAATHRKMgAAAAByT0kGAAAAQO4pyQAAAADIPSUZAAAAALmnJAMAAAAg95RkAAAAAOSekgwAAACA3FOSAQAAAJB7SjIAAAAAck9JBgAAAEDuKckAAAAAyD0lGQAAAAC5pyQDAAAAIPeUZAAAAADknpIMAAAAgNxTkgEAAACQe0oyAAAAAHJPSQYAAABA7inJAAAAAMg9JRkAAAAAuackAwAAACD3lGQAAAAA5J6SDAAAAIDcU5IBAAAAkHtKMgAAAAByT0kGAAAAQO4pyQAAAADIPSUZAAAAALmnJAMAAAAg95RkAAAAAOSekgwAAACA3FOSAQAAAJB7IyrJNmzYEPX19VFVVRUNDQ2xY8eOM87fsmVLXH311XHhhRdGXV1d3HHHHXHkyJERLRiA0idnAMiSnAFgKEWXZFu3bo1Vq1bF2rVro7OzM5YsWRJLly6Nrq6uIee/+uqrsWLFirjzzjvj97//fTzzzDPxm9/8Ju66665zXjwApUfOAJAlOQPAcIouyR566KG4884746677oo5c+bEj3/845g5c2Zs3LhxyPm//vWv4xOf+ESsXLky6uvr40tf+lJ84xvfiN27d5/z4gEoPXIGgCzJGQCGU1RJduzYsejo6IimpqbUeFNTU+zcuXPIaxobG+PQoUPR1tYWSZLEW2+9Fc8++2zceOONwz7OwMBA9Pf3p24AlD45A0CW5AwAZ1JUSdbb2xsnTpyI2tra1HhtbW309PQMeU1jY2Ns2bIlli9fHlOmTInLLrssLr744vjpT3867OO0trZGTU3N4G3mzJnFLBOA85ScASBLcgaAMxnRB/eXlZWl7idJUjB2yt69e2PlypVx//33R0dHR7z88stx4MCBaG5uHvbnr1mzJvr6+gZvBw8eHMkyAThPyRkAsiRnABhKRTGTp02bFuXl5QXPshw+fLjg2ZhTWltbY/HixXHvvfdGRMTnP//5uOiii2LJkiXx4IMPRl1dXcE1lZWVUVlZWczSACgBcgaALMkZAM6kqFeSTZkyJRoaGqK9vT013t7eHo2NjUNe8/7778ekSemHKS8vj4gPn7EBgFPkDABZkjMAnEnRb7dsaWmJxx9/PDZv3hz79u2L1atXR1dX1+DLjdesWRMrVqwYnH/TTTfF888/Hxs3boz9+/fHa6+9FitXrowFCxbE9OnTR+83AaAkyBkAsiRnABhOUW+3jIhYvnx5HDlyJNavXx/d3d0xd+7caGtri1mzZkVERHd3d3R1dQ3Ov/322+Po0aPxyCOPxHe+8524+OKL45prrokf/OAHo/dbAFAy5AwAWZIzAAynLDkPXiPc398fNTU10dfXF9XV1eO9HIDznnM1zX4AjC7napr9ABhdWZ2rI/p2SwAAAAAoJUoyAAAAAHJPSQYAAABA7inJAAAAAMg9JRkAAAAAuackAwAAACD3lGQAAAAA5J6SDAAAAIDcU5IBAAAAkHtKMgAAAAByT0kGAAAAQO4pyQAAAADIPSUZAAAAALmnJAMAAAAg95RkAAAAAOSekgwAAACA3FOSAQAAAJB7SjIAAAAAck9JBgAAAEDuKckAAAAAyD0lGQAAAAC5pyQDAAAAIPeUZAAAAADknpIMAAAAgNxTkgEAAACQe0oyAAAAAHJPSQYAAABA7inJAAAAAMg9JRkAAAAAuackAwAAACD3lGQAAAAA5J6SDAAAAIDcU5IBAAAAkHsjKsk2bNgQ9fX1UVVVFQ0NDbFjx44zzh8YGIi1a9fGrFmzorKyMj75yU/G5s2bR7RgAEqfnAEgS3IGgKFUFHvB1q1bY9WqVbFhw4ZYvHhx/OxnP4ulS5fG3r1744orrhjymptvvjneeuut2LRpU3zqU5+Kw4cPx/Hjx8958QCUHjkDQJbkDADDKUuSJCnmgoULF8a8efNi48aNg2Nz5syJZcuWRWtra8H8l19+Ob7+9a/H/v3745JLLhnRIvv7+6Ompib6+vqiurp6RD8DgL+YyOeqnAE4/03kc1XOAJz/sjpXi3q75bFjx6KjoyOamppS401NTbFz584hr3nppZdi/vz58cMf/jAuv/zyuOqqq+Kee+6JP//5z8M+zsDAQPT396duAJQ+OQNAluQMAGdS1Nste3t748SJE1FbW5sar62tjZ6eniGv2b9/f7z66qtRVVUVL7zwQvT29sY3v/nNePvtt4d9H39ra2usW7eumKUBUALkDABZkjMAnMmIPri/rKwsdT9JkoKxU06ePBllZWWxZcuWWLBgQdxwww3x0EMPxZNPPjnssy9r1qyJvr6+wdvBgwdHskwAzlNyBoAsyRkAhlLUK8mmTZsW5eXlBc+yHD58uODZmFPq6uri8ssvj5qamsGxOXPmRJIkcejQobjyyisLrqmsrIzKyspilgZACZAzAGRJzgBwJkW9kmzKlCnR0NAQ7e3tqfH29vZobGwc8prFixfHn/70p3j33XcHx15//fWYNGlSzJgxYwRLBqBUyRkAsiRnADiTot9u2dLSEo8//nhs3rw59u3bF6tXr46urq5obm6OiA9fWrxixYrB+bfccktMnTo17rjjjti7d2+88sorce+998Y//uM/xgUXXDB6vwkAJUHOAJAlOQPAcIp6u2VExPLly+PIkSOxfv366O7ujrlz50ZbW1vMmjUrIiK6u7ujq6trcP7f/M3fRHt7e/zTP/1TzJ8/P6ZOnRo333xzPPjgg6P3WwBQMuQMAFmSMwAMpyxJkmS8F/FR+vv7o6amJvr6+qK6unq8lwNw3nOuptkPgNHlXE2zHwCjK6tzdUTfbgkAAAAApURJBgAAAEDuKckAAAAAyD0lGQAAAAC5pyQDAAAAIPeUZAAAAADknpIMAAAAgNxTkgEAAACQe0oyAAAAAHJPSQYAAABA7inJAAAAAMg9JRkAAAAAuackAwAAACD3lGQAAAAA5J6SDAAAAIDcU5IBAAAAkHtKMgAAAAByT0kGAAAAQO4pyQAAAADIPSUZAAAAALmnJAMAAAAg95RkAAAAAOSekgwAAACA3FOSAQAAAJB7SjIAAAAAck9JBgAAAEDuKckAAAAAyD0lGQAAAAC5pyQDAAAAIPeUZAAAAADknpIMAAAAgNxTkgEAAACQe0oyAAAAAHJvRCXZhg0bor6+PqqqqqKhoSF27NhxVte99tprUVFREV/4whdG8rAA5IScASBLcgaAoRRdkm3dujVWrVoVa9eujc7OzliyZEksXbo0urq6znhdX19frFixIv7u7/5uxIsFoPTJGQCyJGcAGE5ZkiRJMRcsXLgw5s2bFxs3bhwcmzNnTixbtixaW1uHve7rX/96XHnllVFeXh4vvvhi7Nmz56wfs7+/P2pqaqKvry+qq6uLWS4AQ5jI56qcATj/TeRzVc4AnP+yOleLeiXZsWPHoqOjI5qamlLjTU1NsXPnzmGve+KJJ+KNN96IBx544KweZ2BgIPr7+1M3AEqfnAEgS3IGgDMpqiTr7e2NEydORG1tbWq8trY2enp6hrzmD3/4Q9x3332xZcuWqKioOKvHaW1tjZqamsHbzJkzi1kmAOcpOQNAluQMAGcyog/uLysrS91PkqRgLCLixIkTccstt8S6deviqquuOuufv2bNmujr6xu8HTx4cCTLBOA8JWcAyJKcAWAoZ/dUyP83bdq0KC8vL3iW5fDhwwXPxkREHD16NHbv3h2dnZ3x7W9/OyIiTp48GUmSREVFRWzbti2uueaagusqKyujsrKymKUBUALkDABZkjMAnElRrySbMmVKNDQ0RHt7e2q8vb09GhsbC+ZXV1fH7373u9izZ8/grbm5OT796U/Hnj17YuHChee2egBKipwBIEtyBoAzKeqVZBERLS0tceutt8b8+fNj0aJF8fOf/zy6urqiubk5Ij58afEf//jH+OUvfxmTJk2KuXPnpq6/9NJLo6qqqmAcACLkDADZkjMADKfokmz58uVx5MiRWL9+fXR3d8fcuXOjra0tZs2aFRER3d3d0dXVNeoLBSAf5AwAWZIzAAynLEmSZLwX8VH6+/ujpqYm+vr6orq6eryXA3Dec66m2Q+A0eVcTbMfAKMrq3N1RN9uCQAAAAClREkGAAAAQO4pyQAAAADIPSUZAAAAALmnJAMAAAAg95RkAAAAAOSekgwAAACA3FOSAQAAAJB7SjIAAAAAck9JBgAAAEDuKckAAAAAyD0lGQAAAAC5pyQDAAAAIPeUZAAAAADknpIMAAAAgNxTkgEAAACQe0oyAAAAAHJPSQYAAABA7inJAAAAAMg9JRkAAAAAuackAwAAACD3lGQAAAAA5J6SDAAAAIDcU5IBAAAAkHtKMgAAAAByT0kGAAAAQO4pyQAAAADIPSUZAAAAALmnJAMAAAAg95RkAAAAAOSekgwAAACA3FOSAQAAAJB7SjIAAAAAcm9EJdmGDRuivr4+qqqqoqGhIXbs2DHs3Oeffz6uu+66+PjHPx7V1dWxaNGi+NWvfjXiBQNQ+uQMAFmSMwAMpeiSbOvWrbFq1apYu3ZtdHZ2xpIlS2Lp0qXR1dU15PxXXnklrrvuumhra4uOjo74yle+EjfddFN0dnae8+IBKD1yBoAsyRkAhlOWJElSzAULFy6MefPmxcaNGwfH5syZE8uWLYvW1taz+hmf+9znYvny5XH//fef1fz+/v6oqamJvr6+qK6uLma5AAxhIp+rcgbg/DeRz1U5A3D+y+pcLeqVZMeOHYuOjo5oampKjTc1NcXOnTvP6mecPHkyjh49GpdccsmwcwYGBqK/vz91A6D0yRkAsiRnADiTokqy3t7eOHHiRNTW1qbGa2tro6en56x+xo9+9KN477334uabbx52Tmtra9TU1AzeZs6cWcwyAThPyRkAsiRnADiTEX1wf1lZWep+kiQFY0N5+umn4/vf/35s3bo1Lr300mHnrVmzJvr6+gZvBw8eHMkyAThPyRkAsiRnABhKRTGTp02bFuXl5QXPshw+fLjg2ZjTbd26Ne6888545pln4tprrz3j3MrKyqisrCxmaQCUADkDQJbkDABnUtQryaZMmRINDQ3R3t6eGm9vb4/GxsZhr3v66afj9ttvj6eeeipuvPHGka0UgJInZwDIkpwB4EyKeiVZRERLS0vceuutMX/+/Fi0aFH8/Oc/j66urmhubo6ID19a/Mc//jF++ctfRsSHgbJixYr4yU9+El/84hcHn7W54IILoqamZhR/FQBKgZwBIEtyBoDhFF2SLV++PI4cORLr16+P7u7umDt3brS1tcWsWbMiIqK7uzu6uroG5//sZz+L48ePx7e+9a341re+NTh+2223xZNPPnnuvwEAJUXOAJAlOQPAcMqSJEnGexEfpb+/P2pqaqKvry+qq6vHezkA5z3napr9ABhdztU0+wEwurI6V0f07ZYAAAAAUEqUZAAAAADknpIMAAAAgNxTkgEAAACQe0oyAAAAAHJPSQYAAABA7inJAAAAAMg9JRkAAAAAuackAwAAACD3lGQAAAAA5J6SDAAAAIDcU5IBAAAAkHtKMgAAAAByT0kGAAAAQO4pyQAAAADIPSUZAAAAALmnJAMAAAAg95RkAAAAAOSekgwAAACA3FOSAQAAAJB7SjIAAAAAck9JBgAAAEDuKckAAAAAyD0lGQAAAAC5pyQDAAAAIPeUZAAAAADknpIMAAAAgNxTkgEAAACQe0oyAAAAAHJPSQYAAABA7inJAAAAAMg9JRkAAAAAuackAwAAACD3RlSSbdiwIerr66OqqioaGhpix44dZ5y/ffv2aGhoiKqqqpg9e3Y89thjI1osAPkgZwDIkpwBYChFl2Rbt26NVatWxdq1a6OzszOWLFkSS5cuja6uriHnHzhwIG644YZYsmRJdHZ2xve+971YuXJlPPfcc+e8eABKj5wBIEtyBoDhlCVJkhRzwcKFC2PevHmxcePGwbE5c+bEsmXLorW1tWD+d7/73XjppZdi3759g2PNzc3x29/+Nnbt2nVWj9nf3x81NTXR19cX1dXVxSwXgCFM5HNVzgCc/ybyuSpnAM5/WZ2rFcVMPnbsWHR0dMR9992XGm9qaoqdO3cOec2uXbuiqakpNXb99dfHpk2b4oMPPojJkycXXDMwMBADAwOD9/v6+iLiw00A4NydOk+LfJ4kc3IGoDTIGTkDkKWscqaokqy3tzdOnDgRtbW1qfHa2tro6ekZ8pqenp4h5x8/fjx6e3ujrq6u4JrW1tZYt25dwfjMmTOLWS4AH+HIkSNRU1Mz3ssYJGcASoucSZMzAKNrtHOmqJLslLKystT9JEkKxj5q/lDjp6xZsyZaWloG77/zzjsxa9as6OrqmlAhO176+/tj5syZcfDgQS/X/v/sSZr9SLMfhfr6+uKKK66ISy65ZLyXMiQ5M/78v0mzH2n2o5A9SZMzcuaj+D+TZj8K2ZM0+5GWVc4UVZJNmzYtysvLC55lOXz4cMGzK6dcdtllQ86vqKiIqVOnDnlNZWVlVFZWFozX1NT4Y/gr1dXV9uM09iTNfqTZj0KTJo3oS44zI2cmHv9v0uxHmv0oZE/S5EyanCnk/0ya/ShkT9LsR9po50xRP23KlCnR0NAQ7e3tqfH29vZobGwc8ppFixYVzN+2bVvMnz9/yPfvA5BfcgaALMkZAM6k6MqtpaUlHn/88di8eXPs27cvVq9eHV1dXdHc3BwRH760eMWKFYPzm5ub480334yWlpbYt29fbN68OTZt2hT33HPP6P0WAJQMOQNAluQMAMMp+jPJli9fHkeOHIn169dHd3d3zJ07N9ra2mLWrFkREdHd3R1dXV2D8+vr66OtrS1Wr14djz76aEyfPj0efvjh+NrXvnbWj1lZWRkPPPDAkC9ZziP7UciepNmPNPtRaCLviZyZGOxJmv1Isx+F7EnaRN4POTMx2JM0+1HInqTZj7Ss9qMsmWjfywwAAAAAY2xifZImAAAAAIwDJRkAAAAAuackAwAAACD3lGQAAAAA5N6EKck2bNgQ9fX1UVVVFQ0NDbFjx44zzt++fXs0NDREVVVVzJ49Ox577LExWunYKGY/nn/++bjuuuvi4x//eFRXV8eiRYviV7/61RiuNnvF/n2c8tprr0VFRUV84QtfyHaB46DYPRkYGIi1a9fGrFmzorKyMj75yU/G5s2bx2i12St2P7Zs2RJXX311XHjhhVFXVxd33HFHHDlyZIxWm61XXnklbrrpppg+fXqUlZXFiy+++JHXlPqZGiFnTidnCsmaNDmTJmfSZE0hOVNI1qTJmTQ5U0jW/MW45UwyAfzbv/1bMnny5OQXv/hFsnfv3uTuu+9OLrroouTNN98ccv7+/fuTCy+8MLn77ruTvXv3Jr/4xS+SyZMnJ88+++wYrzwbxe7H3XffnfzgBz9I/vu//zt5/fXXkzVr1iSTJ09O/ud//meMV56NYvfjlHfeeSeZPXt20tTUlFx99dVjs9gxMpI9+epXv5osXLgwaW9vTw4cOJD813/9V/Laa6+N4aqzU+x+7NixI5k0aVLyk5/8JNm/f3+yY8eO5HOf+1yybNmyMV55Ntra2pK1a9cmzz33XBIRyQsvvHDG+aV+piaJnDmdnCkka9LkTJqcKSRr0uRMIVmTJmfS5EwhWZM2XjkzIUqyBQsWJM3Nzamxz3zmM8l999035Px//ud/Tj7zmc+kxr7xjW8kX/ziFzNb41gqdj+G8tnPfjZZt27daC9tXIx0P5YvX578y7/8S/LAAw+UVKAkSfF78u///u9JTU1NcuTIkbFY3pgrdj/+9V//NZk9e3Zq7OGHH05mzJiR2RrHy9kESqmfqUkiZ04nZwrJmjQ5kyZnzkzWyJmhyJo0OZMmZwrJmuGNZc6M+9stjx07Fh0dHdHU1JQab2pqip07dw55za5duwrmX3/99bF79+744IMPMlvrWBjJfpzu5MmTcfTo0bjkkkuyWOKYGul+PPHEE/HGG2/EAw88kPUSx9xI9uSll16K+fPnxw9/+MO4/PLL46qrrop77rkn/vznP4/FkjM1kv1obGyMQ4cORVtbWyRJEm+99VY8++yzceONN47FkiecUj5TI+TM6eRMIVmTJmfS5MzocK6mlfJ+RMia08mZNDlTSNacu9E6VytGe2HF6u3tjRMnTkRtbW1qvLa2Nnp6eoa8pqenZ8j5x48fj97e3qirq8tsvVkbyX6c7kc/+lG89957cfPNN2exxDE1kv34wx/+EPfdd1/s2LEjKirG/U981I1kT/bv3x+vvvpqVFVVxQsvvBC9vb3xzW9+M95+++3z/n38I9mPxsbG2LJlSyxfvjz+7//+L44fPx5f/epX46c//elYLHnCKeUzNULOnE7OFJI1aXImTc6MDudqWinvR4SsOZ2cSZMzhWTNuRutc3XcX0l2SllZWep+kiQFYx81f6jx81Wx+3HK008/Hd///vdj69atcemll2a1vDF3tvtx4sSJuOWWW2LdunVx1VVXjdXyxkUxfyMnT56MsrKy2LJlSyxYsCBuuOGGeOihh+LJJ58smWdfitmPvXv3xsqVK+P++++Pjo6OePnll+PAgQPR3Nw8FkudkEr9TI2QM6eTM4VkTZqcSZMz5865+tHzhxo/n8maNDmTJmcKyZpzMxrn6rhX0tOmTYvy8vKCdvTw4cMFLeApl1122ZDzKyoqYurUqZmtdSyMZD9O2bp1a9x5553xzDPPxLXXXpvlMsdMsftx9OjR2L17d3R2dsa3v/3tiPjwQE2SJCoqKmLbtm1xzTXXjMnaszKSv5G6urq4/PLLo6amZnBszpw5kSRJHDp0KK688spM15ylkexHa2trLF68OO69996IiPj85z8fF110USxZsiQefPDB8/7Z22KV8pkaIWdOJ2cKyZo0OZMmZ0aHczWtlPcjQtacTs6kyZlCsubcjda5Ou6vJJsyZUo0NDREe3t7ary9vT0aGxuHvGbRokUF87dt2xbz58+PyZMnZ7bWsTCS/Yj48NmW22+/PZ566qmSeg9ysftRXV0dv/vd72LPnj2Dt+bm5vj0pz8de/bsiYULF47V0jMzkr+RxYsXx5/+9Kd49913B8def/31mDRpUsyYMSPT9WZtJPvx/vvvx6RJ6eOvvLw8Iv7ybEOelPKZGiFnTidnCsmaNDmTJmdGh3M1rZT3I0LWnE7OpMmZQrLm3I3auVrUx/xn5NRXnW7atCnZu3dvsmrVquSiiy5K/vd//zdJkiS57777kltvvXVw/qmv9ly9enWyd+/eZNOmTSX1lcnF7sdTTz2VVFRUJI8++mjS3d09eHvnnXfG61cYVcXux+lK7ZtgkqT4PTl69GgyY8aM5O///u+T3//+98n27duTK6+8MrnrrrvG61cYVcXuxxNPPJFUVFQkGzZsSN54443k1VdfTebPn58sWLBgvH6FUXX06NGks7Mz6ezsTCIieeihh5LOzs7Br4/O25maJHLmdHKmkKxJkzNpcqaQrEmTM4VkTZqcSZMzhWRN2njlzIQoyZIkSR599NFk1qxZyZQpU5J58+Yl27dvH/y32267Lfnyl7+cmv+f//mfyd/+7d8mU6ZMST7xiU8kGzduHOMVZ6uY/fjyl7+cRETB7bbbbhv7hWek2L+Pv1ZqgXJKsXuyb9++5Nprr00uuOCCZMaMGUlLS0vy/vvvj/Gqs1Psfjz88MPJZz/72eSCCy5I6urqkn/4h39IDh06NMarzsZ//Md/nPFMyOOZmiRy5nRyppCsSZMzaXImTdYUkjOFZE2anEmTM4VkzV+MV86UJUkOX4cHAAAAAH9l3D+TDAAAAADGm5IMAAAAgNxTkgEAAACQe0oyAAAAAHJPSQYAAABA7inJAAAAAMg9JRkAAAAAuackAwAAACD3lGQAAAAA5J6SDAAAAIDcU5IBAAAAkHtKMgAAAAByT0kGAAAAQO4pyQAAAADIPSUZAAAAALmnJAMAAAAg95RkAAAAAOSekgwAAACA3Cu6JHvllVfipptuiunTp0dZWVm8+OKLH3nN9u3bo6GhIaqqqmL27Nnx2GOPjWStAOSAnAEgS3IGgOEUXZK99957cfXVV8cjjzxyVvMPHDgQN9xwQyxZsiQ6Ozvje9/7XqxcuTKee+65ohcLQOmTMwBkSc4AMJyyJEmSEV9cVhYvvPBCLFu2bNg53/3ud+Oll16Kffv2DY41NzfHb3/729i1a9dIHxqAHJAzAGRJzgDw1yqyfoBdu3ZFU1NTauz666+PTZs2xQcffBCTJ08uuGZgYCAGBgYG7588eTLefvvtmDp1apSVlWW9ZICSlyRJHD16NKZPnx6TJp3fH08pZwAmHjkjZwCylFXOZF6S9fT0RG1tbWqstrY2jh8/Hr29vVFXV1dwTWtra6xbty7rpQHk3sGDB2PGjBnjvYxzImcAJi45A0CWRjtnMi/JIqLg2ZJT7/Ac7lmUNWvWREtLy+D9vr6+uOKKK+LgwYNRXV2d3UIBcqK/vz9mzpwZH/vYx8Z7KaNCzgBMLHJGzgBkKaucybwku+yyy6Knpyc1dvjw4aioqIipU6cOeU1lZWVUVlYWjFdXVwsVgFFUCm/5kDMAE5ecSZMzAKNrtHMm8w8IWLRoUbS3t6fGtm3bFvPnzx/y/fsAUAw5A0CW5AxAfhRdkr377ruxZ8+e2LNnT0R8+JXIe/bsia6uroj48KXFK1asGJzf3Nwcb775ZrS0tMS+ffti8+bNsWnTprjnnntG5zcAoKTIGQCyJGcAGE7Rb7fcvXt3fOUrXxm8f+q99rfddls8+eST0d3dPRgwERH19fXR1tYWq1evjkcffTSmT58eDz/8cHzta18bheUDUGrkDABZkjMADKcsOfWpkxNYf39/1NTURF9fn/fwA4wC52qa/QAYXc7VNPsBMLqyOlcz/0wyAAAAAJjolGQAAAAA5J6SDAAAAIDcU5IBAAAAkHtKMgAAAAByT0kGAAAAQO4pyQAAAADIPSUZAAAAALmnJAMAAAAg95RkAAAAAOSekgwAAACA3FOSAQAAAJB7SjIAAAAAck9JBgAAAEDuKckAAAAAyD0lGQAAAAC5pyQDAAAAIPeUZAAAAADknpIMAAAAgNxTkgEAAACQe0oyAAAAAHJPSQYAAABA7inJAAAAAMg9JRkAAAAAuackAwAAACD3lGQAAAAA5J6SDAAAAIDcU5IBAAAAkHtKMgAAAAByT0kGAAAAQO4pyQAAAADIPSUZAAAAALmnJAMAAAAg90ZUkm3YsCHq6+ujqqoqGhoaYseOHWecv2XLlrj66qvjwgsvjLq6urjjjjviyJEjI1owAKVPzgCQJTkDwFCKLsm2bt0aq1atirVr10ZnZ2csWbIkli5dGl1dXUPOf/XVV2PFihVx5513xu9///t45pln4je/+U3cdddd57x4AEqPnAEgS3IGgOEUXZI99NBDceedd8Zdd90Vc+bMiR//+Mcxc+bM2Lhx45Dzf/3rX8cnPvGJWLlyZdTX18eXvvSl+MY3vhG7d+8+58UDUHrkDABZkjMADKeokuzYsWPR0dERTU1NqfGmpqbYuXPnkNc0NjbGoUOHoq2tLZIkibfeeiueffbZuPHGG4d9nIGBgejv70/dACh9cgaALMkZAM6kqJKst7c3Tpw4EbW1tanx2tra6OnpGfKaxsbG2LJlSyxfvjymTJkSl112WVx88cXx05/+dNjHaW1tjZqamsHbzJkzi1kmAOcpOQNAluQMAGcyog/uLysrS91PkqRg7JS9e/fGypUr4/7774+Ojo54+eWX48CBA9Hc3Dzsz1+zZk309fUN3g4ePDiSZQJwnpIzAGRJzgAwlIpiJk+bNi3Ky8sLnmU5fPhwwbMxp7S2tsbixYvj3nvvjYiIz3/+83HRRRfFkiVL4sEHH4y6urqCayorK6OysrKYpQFQAuQMAFmSMwCcSVGvJJsyZUo0NDREe3t7ary9vT0aGxuHvOb999+PSZPSD1NeXh4RHz5jAwCnyBkAsiRnADiTot9u2dLSEo8//nhs3rw59u3bF6tXr46urq7BlxuvWbMmVqxYMTj/pptuiueffz42btwY+/fvj9deey1WrlwZCxYsiOnTp4/ebwJASZAzAGRJzgAwnKLebhkRsXz58jhy5EisX78+uru7Y+7cudHW1hazZs2KiIju7u7o6uoanH/77bfH0aNH45FHHonvfOc7cfHFF8c111wTP/jBD0bvtwCgZMgZALIkZwAYTllyHrxGuL+/P2pqaqKvry+qq6vHezkA5z3napr9ABhdztU0+wEwurI6V0f07ZYAAAAAUEqUZAAAAADknpIMAAAAgNxTkgEAAACQe0oyAAAAAHJPSQYAAABA7inJAAAAAMg9JRkAAAAAuackAwAAACD3lGQAAAAA5J6SDAAAAIDcU5IBAAAAkHtKMgAAAAByT0kGAAAAQO4pyQAAAADIPSUZAAAAALmnJAMAAAAg95RkAAAAAOSekgwAAACA3FOSAQAAAJB7SjIAAAAAck9JBgAAAEDuKckAAAAAyD0lGQAAAAC5pyQDAAAAIPeUZAAAAADknpIMAAAAgNxTkgEAAACQe0oyAAAAAHJPSQYAAABA7inJAAAAAMg9JRkAAAAAuackAwAAACD3RlSSbdiwIerr66OqqioaGhpix44dZ5w/MDAQa9eujVmzZkVlZWV88pOfjM2bN49owQCUPjkDQJbkDABDqSj2gq1bt8aqVatiw4YNsXjx4vjZz34WS5cujb1798YVV1wx5DU333xzvPXWW7Fp06b41Kc+FYcPH47jx4+f8+IBKD1yBoAsyRkAhlOWJElSzAULFy6MefPmxcaNGwfH5syZE8uWLYvW1taC+S+//HJ8/etfj/3798cll1wyokX29/dHTU1N9PX1RXV19Yh+BgB/MZHPVTkDcP6byOeqnAE4/2V1rhb1dstjx45FR0dHNDU1pcabmppi586dQ17z0ksvxfz58+OHP/xhXH755XHVVVfFPffcE3/+85+HfZyBgYHo7+9P3QAofXIGgCzJGQDOpKi3W/b29saJEyeitrY2NV5bWxs9PT1DXrN///549dVXo6qqKl544YXo7e2Nb37zm/H2228P+z7+1tbWWLduXTFLA6AEyBkAsiRnADiTEX1wf1lZWep+kiQFY6ecPHkyysrKYsuWLbFgwYK44YYb4qGHHoonn3xy2Gdf1qxZE319fYO3gwcPjmSZAJyn5AwAWZIzAAylqFeSTZs2LcrLywueZTl8+HDBszGn1NXVxeWXXx41NTWDY3PmzIkkSeLQoUNx5ZVXFlxTWVkZlZWVxSwNgBIgZwDIkpwB4EyKeiXZlClToqGhIdrb21Pj7e3t0djYOOQ1ixcvjj/96U/x7rvvDo69/vrrMWnSpJgxY8YIlgxAqZIzAGRJzgBwJkW/3bKlpSUef/zx2Lx5c+zbty9Wr14dXV1d0dzcHBEfvrR4xYoVg/NvueWWmDp1atxxxx2xd+/eeOWVV+Lee++Nf/zHf4wLLrhg9H4TAEqCnAEgS3IGgOEU9XbLiIjly5fHkSNHYv369dHd3R1z586Ntra2mDVrVkREdHd3R1dX1+D8v/mbv4n29vb4p3/6p5g/f35MnTo1br755njwwQdH77cAoGTIGQCyJGcAGE5ZkiTJeC/io/T390dNTU309fVFdXX1eC8H4LznXE2zHwCjy7maZj8ARldW5+qIvt0SAAAAAEqJkgwAAACA3FOSAQAAAJB7SjIAAAAAck9JBgAAAEDuKckAAAAAyD0lGQAAAAC5pyQDAAAAIPeUZAAAAADknpIMAAAAgNxTkgEAAACQe0oyAAAAAHJPSQYAAABA7inJAAAAAMg9JRkAAAAAuackAwAAACD3lGQAAAAA5J6SDAAAAIDcU5IBAAAAkHtKMgAAAAByT0kGAAAAQO4pyQAAAADIPSUZAAAAALmnJAMAAAAg95RkAAAAAOSekgwAAACA3FOSAQAAAJB7SjIAAAAAck9JBgAAAEDuKckAAAAAyD0lGQAAAAC5pyQDAAAAIPeUZAAAAADk3ohKsg0bNkR9fX1UVVVFQ0ND7Nix46yue+2116KioiK+8IUvjORhAcgJOQNAluQMAEMpuiTbunVrrFq1KtauXRudnZ2xZMmSWLp0aXR1dZ3xur6+vlixYkX83d/93YgXC0DpkzMAZEnOADCcsiRJkmIuWLhwYcybNy82btw4ODZnzpxYtmxZtLa2Dnvd17/+9bjyyiujvLw8XnzxxdizZ89ZP2Z/f3/U1NREX19fVFdXF7NcAIYwkc9VOQNw/pvI56qcATj/ZXWuFvVKsmPHjkVHR0c0NTWlxpuammLnzp3DXvfEE0/EG2+8EQ888MBZPc7AwED09/enbgCUPjkDQJbkDABnUlRJ1tvbGydOnIja2trUeG1tbfT09Ax5zR/+8Ie47777YsuWLVFRUXFWj9Pa2ho1NTWDt5kzZxazTADOU3IGgCzJGQDOZEQf3F9WVpa6nyRJwVhExIkTJ+KWW26JdevWxVVXXXXWP3/NmjXR19c3eDt48OBIlgnAeUrOAJAlOQPAUM7uqZD/b9q0aVFeXl7wLMvhw4cLno2JiDh69Gjs3r07Ojs749vf/nZERJw8eTKSJImKiorYtm1bXHPNNQXXVVZWRmVlZTFLA6AEyBkAsiRnADiTol5JNmXKlGhoaIj29vbUeHt7ezQ2NhbMr66ujt/97nexZ8+ewVtzc3N8+tOfjj179sTChQvPbfUAlBQ5A0CW5AwAZ1LUK8kiIlpaWuLWW2+N+fPnx6JFi+LnP/95dHV1RXNzc0R8+NLiP/7xj/HLX/4yJk2aFHPnzk1df+mll0ZVVVXBOABEyBkAsiVnABhO0SXZ8uXL48iRI7F+/fro7u6OuXPnRltbW8yaNSsiIrq7u6Orq2vUFwpAPsgZALIkZwAYTlmSJMl4L+Kj9Pf3R01NTfT19UV1dfV4LwfgvOdcTbMfAKPLuZpmPwBGV1bn6oi+3RIAAAAASomSDAAAAIDcU5IBAAAAkHtKMgAAAAByT0kGAAAAQO4pyQAAAADIPSUZAAAAALmnJAMAAAAg95RkAAAAAOSekgwAAACA3FOSAQAAAJB7SjIAAAAAck9JBgAAAEDuKckAAAAAyD0lGQAAAAC5pyQDAAAAIPeUZAAAAADknpIMAAAAgNxTkgEAAACQe0oyAAAAAHJPSQYAAABA7inJAAAAAMg9JRkAAAAAuackAwAAACD3lGQAAAAA5J6SDAAAAIDcU5IBAAAAkHtKMgAAAAByT0kGAAAAQO4pyQAAAADIPSUZAAAAALmnJAMAAAAg95RkAAAAAOTeiEqyDRs2RH19fVRVVUVDQ0Ps2LFj2LnPP/98XHfddfHxj388qqurY9GiRfGrX/1qxAsGoPTJGQCyJGcAGErRJdnWrVtj1apVsXbt2ujs7IwlS5bE0qVLo6ura8j5r7zySlx33XXR1tYWHR0d8ZWvfCVuuumm6OzsPOfFA1B65AwAWZIzAAynLEmSpJgLFi5cGPPmzYuNGzcOjs2ZMyeWLVsWra2tZ/UzPve5z8Xy5cvj/vvvP6v5/f39UVNTE319fVFdXV3McgEYwkQ+V+UMwPlvIp+rcgbg/JfVuVrUK8mOHTsWHR0d0dTUlBpvamqKnTt3ntXPOHnyZBw9ejQuueSSYecMDAxEf39/6gZA6ZMzAGRJzgBwJkWVZL29vXHixImora1NjdfW1kZPT89Z/Ywf/ehH8d5778XNN9887JzW1taoqakZvM2cObOYZQJwnpIzAGRJzgBwJiP64P6ysrLU/SRJCsaG8vTTT8f3v//92Lp1a1x66aXDzluzZk309fUN3g4ePDiSZQJwnpIzAGRJzgAwlIpiJk+bNi3Ky8sLnmU5fPhwwbMxp9u6dWvceeed8cwzz8S11157xrmVlZVRWVlZzNIAKAFyBoAsyRkAzqSoV5JNmTIlGhoaor29PTXe3t4ejY2Nw1739NNPx+233x5PPfVU3HjjjSNbKQAlT84AkCU5A8CZFPVKsoiIlpaWuPXWW2P+/PmxaNGi+PnPfx5dXV3R3NwcER++tPiPf/xj/PKXv4yIDwNlxYoV8ZOf/CS++MUvDj5rc8EFF0RNTc0o/ioAlAI5A0CW5AwAwym6JFu+fHkcOXIk1q9fH93d3TF37txoa2uLWbNmRUREd3d3dHV1Dc7/2c9+FsePH49vfetb8a1vfWtw/Lbbbosnn3zy3H8DAEqKnAEgS3IGgOGUJUmSjPciPkp/f3/U1NREX19fVFdXj/dyAM57ztU0+wEwupyrafYDYHRlda6O6NstAQAAAKCUKMkAAAAAyD0lGQAAAAC5pyQDAAAAIPeUZAAAAADknpIMAAAAgNxTkgEAAACQe0oyAAAAAHJPSQYAAABA7inJAAAAAMg9JRkAAAAAuackAwAAACD3lGQAAAAA5J6SDAAAAIDcU5IBAAAAkHtKMgAAAAByT0kGAAAAQO4pyQAAAADIPSUZAAAAALmnJAMAAAAg95RkAAAAAOSekgwAAACA3FOSAQAAAJB7SjIAAAAAck9JBgAAAEDuKckAAAAAyD0lGQAAAAC5pyQDAAAAIPeUZAAAAADknpIMAAAAgNxTkgEAAACQe0oyAAAAAHJPSQYAAABA7o2oJNuwYUPU19dHVVVVNDQ0xI4dO844f/v27dHQ0BBVVVUxe/bseOyxx0a0WADyQc4AkCU5A8BQii7Jtm7dGqtWrYq1a9dGZ2dnLFmyJJYuXRpdXV1Dzj9w4EDccMMNsWTJkujs7Izvfe97sXLlynjuuefOefEAlB45A0CW5AwAwylLkiQp5oKFCxfGvHnzYuPGjYNjc+bMiWXLlkVra2vB/O9+97vx0ksvxb59+wbHmpub47e//W3s2rXrrB6zv78/ampqoq+vL6qrq4tZLgBDmMjnqpwBOP9N5HNVzgCc/7I6VyuKmXzs2LHo6OiI++67LzXe1NQUO3fuHPKaXbt2RVNTU2rs+uuvj02bNsUHH3wQkydPLrhmYGAgBgYGBu/39fVFxIebAMC5O3WeFvk8SebkDEBpkDNyBiBLWeVMUSVZb29vnDhxImpra1PjtbW10dPTM+Q1PT09Q84/fvx49Pb2Rl1dXcE1ra2tsW7duoLxmTNnFrNcAD7CkSNHoqamZryXMUjOAJQWOZMmZwBG12jnTFEl2SllZWWp+0mSFIx91Pyhxk9Zs2ZNtLS0DN5/5513YtasWdHV1TWhQna89Pf3x8yZM+PgwYNerv3/2ZM0+5FmPwr19fXFFVdcEZdccsl4L2VIcmb8+X+TZj/S7Eche5ImZ+TMR/F/Js1+FLInafYjLaucKaokmzZtWpSXlxc8y3L48OGCZ1dOueyyy4acX1FREVOnTh3ymsrKyqisrCwYr6mp8cfwV6qrq+3HaexJmv1Isx+FJk0a0ZccZ0bOTDz+36TZjzT7UciepMmZNDlTyP+ZNPtRyJ6k2Y+00c6Zon7alClToqGhIdrb21Pj7e3t0djYOOQ1ixYtKpi/bdu2mD9//pDv3wcgv+QMAFmSMwCcSdGVW0tLSzz++OOxefPm2LdvX6xevTq6urqiubk5Ij58afGKFSsG5zc3N8ebb74ZLS0tsW/fvti8eXNs2rQp7rnnntH7LQAoGXIGgCzJGQCGU/Rnki1fvjyOHDkS69evj+7u7pg7d260tbXFrFmzIiKiu7s7urq6BufX19dHW1tbrF69Oh599NGYPn16PPzww/G1r33trB+zsrIyHnjggSFfspxH9qOQPUmzH2n2o9BE3hM5MzHYkzT7kWY/CtmTtIm8H3JmYrAnafajkD1Jsx9pWe1HWTLRvpcZAAAAAMbYxPokTQAAAAAYB0oyAAAAAHJPSQYAAABA7inJAAAAAMi9CVOSbdiwIerr66OqqioaGhpix44dZ5y/ffv2aGhoiKqqqpg9e3Y89thjY7TSsVHMfjz//PNx3XXXxcc//vGorq6ORYsWxa9+9asxXG32iv37OOW1116LioqK+MIXvpDtAsdBsXsyMDAQa9eujVmzZkVlZWV88pOfjM2bN4/RarNX7H5s2bIlrr766rjwwgujrq4u7rjjjjhy5MgYrTZbr7zyStx0000xffr0KCsrixdffPEjryn1MzVCzpxOzhSSNWlyJk3OpMmaQnKmkKxJkzNpcqaQrPmLccuZZAL4t3/7t2Ty5MnJL37xi2Tv3r3J3XffnVx00UXJm2++OeT8/fv3JxdeeGFy9913J3v37k1+8YtfJJMnT06effbZMV55Nordj7vvvjv5wQ9+kPz3f/938vrrrydr1qxJJk+enPzP//zPGK88G8XuxynvvPNOMnv27KSpqSm5+uqrx2axY2Qke/LVr341WbhwYdLe3p4cOHAg+a//+q/ktddeG8NVZ6fY/dixY0cyadKk5Cc/+Umyf//+ZMeOHcnnPve5ZNmyZWO88my0tbUla9euTZ577rkkIpIXXnjhjPNL/UxNEjlzOjlTSNakyZk0OVNI1qTJmUKyJk3OpMmZQrImbbxyZkKUZAsWLEiam5tTY5/5zGeS++67b8j5//zP/5x85jOfSY194xvfSL74xS9mtsaxVOx+DOWzn/1ssm7dutFe2rgY6X4sX748+Zd/+ZfkgQceKKlASZLi9+Tf//3fk5qamuTIkSNjsbwxV+x+/Ou//msye/bs1NjDDz+czJgxI7M1jpezCZRSP1OTRM6cTs4UkjVpciZNzpyZrJEzQ5E1aXImTc4UkjXDG8ucGfe3Wx47diw6OjqiqakpNd7U1BQ7d+4c8ppdu3YVzL/++utj9+7d8cEHH2S21rEwkv043cmTJ+Po0aNxySWXZLHEMTXS/XjiiSfijTfeiAceeCDrJY65kezJSy+9FPPnz48f/vCHcfnll8dVV10V99xzT/z5z38eiyVnaiT70djYGIcOHYq2trZIkiTeeuutePbZZ+PGG28ciyVPOKV8pkbImdPJmUKyJk3OpMmZ0eFcTSvl/YiQNaeTM2lyppCsOXejda5WjPbCitXb2xsnTpyI2tra1HhtbW309PQMeU1PT8+Q848fPx69vb1RV1eX2XqzNpL9ON2PfvSjeO+99+Lmm2/OYoljaiT78Yc//CHuu+++2LFjR1RUjPuf+KgbyZ7s378/Xn311aiqqooXXnghent745vf/Ga8/fbb5/37+EeyH42NjbFly5ZYvnx5/N///V8cP348vvrVr8ZPf/rTsVjyhFPKZ2qEnDmdnCkka9LkTJqcGR3O1bRS3o8IWXM6OZMmZwrJmnM3WufquL+S7JSysrLU/SRJCsY+av5Q4+erYvfjlKeffjq+//3vx9atW+PSSy/Nanlj7mz348SJE3HLLbfEunXr4qqrrhqr5Y2LYv5GTp48GWVlZbFly5ZYsGBB3HDDDfHQQw/Fk08+WTLPvhSzH3v37o2VK1fG/fffHx0dHfHyyy/HgQMHorm5eSyWOiGV+pkaIWdOJ2cKyZo0OZMmZ86dc/Wj5w81fj6TNWlyJk3OFJI152Y0ztVxr6SnTZsW5eXlBe3o4cOHC1rAUy677LIh51dUVMTUqVMzW+tYGMl+nLJ169a4884745lnnolrr702y2WOmWL34+jRo7F79+7o7OyMb3/72xHx4YGaJElUVFTEtm3b4pprrhmTtWdlJH8jdXV1cfnll0dNTc3g2Jw5cyJJkjh06FBceeWVma45SyPZj9bW1li8eHHce++9ERHx+c9/Pi666KJYsmRJPPjgg+f9s7fFKuUzNULOnE7OFJI1aXImTc6MDudqWinvR4SsOZ2cSZMzhWTNuRutc3XcX0k2ZcqUaGhoiPb29tR4e3t7NDY2DnnNokWLCuZv27Yt5s+fH5MnT85srWNhJPsR8eGzLbfffns89dRTJfUe5GL3o7q6On73u9/Fnj17Bm/Nzc3x6U9/Ovbs2RMLFy4cq6VnZiR/I4sXL44//elP8e677w6Ovf766zFp0qSYMWNGpuvN2kj24/33349Jk9LHX3l5eUT85dmGPCnlMzVCzpxOzhSSNWlyJk3OjA7nalop70eErDmdnEmTM4VkzbkbtXO1qI/5z8iprzrdtGlTsnfv3mTVqlXJRRddlPzv//5vkiRJct999yW33nrr4PxTX+25evXqZO/evcmmTZtK6iuTi92Pp556KqmoqEgeffTRpLu7e/D2zjvvjNevMKqK3Y/Tldo3wSRJ8Xty9OjRZMaMGcnf//3fJ7///e+T7du3J1deeWVy1113jdevMKqK3Y8nnngiqaioSDZs2JC88cYbyauvvprMnz8/WbBgwXj9CqPq6NGjSWdnZ9LZ2ZlERPLQQw8lnZ2dg18fnbczNUnkzOnkTCFZkyZn0uRMIVmTJmcKyZo0OZMmZwrJmrTxypkJUZIlSZI8+uijyaxZs5IpU6Yk8+bNS7Zv3z74b7fddlvy5S9/OTX/P//zP5O//du/TaZMmZJ84hOfSDZu3DjGK85WMfvx5S9/OYmIgtttt9029gvPSLF/H3+t1ALllGL3ZN++fcm1116bXHDBBcmMGTOSlpaW5P333x/jVWen2P14+OGHk89+9rPJBRdckNTV1SX/8A//kBw6dGiMV52N//iP/zjjmZDHMzVJ5Mzp5EwhWZMmZ9LkTJqsKSRnCsmaNDmTJmcKyZq/GK+cKUuSHL4ODwAAAAD+yrh/JhkAAAAAjDclGQAAAAC5pyQDAAAAIPeUZAAAAADknpIMAAAAgNxTkgEAAACQe0oyAAAAAHJPSQYAAABA7inJAAAAAMg9JRkAAAAAuackAwAAACD3lGQAAAAA5J6SDAAAAIDcU5IBAAAAkHtKMgAAAAByT0kGAAAAQO4pyQAAAADIPSUZAAAAALlXdEn2yiuvxE033RTTp0+PsrKyePHFFz/ymu3bt0dDQ0NUVVXF7Nmz47HHHhvJWgHIATkDQJbkDADDKboke++99+Lqq6+ORx555KzmHzhwIG644YZYsmRJdHZ2xve+971YuXJlPPfcc0UvFoDSJ2cAyJKcAWA4ZUmSJCO+uKwsXnjhhVi2bNmwc7773e/GSy+9FPv27Rsca25ujt/+9rexa9eukT40ADkgZwDIkpwB4K9VZP0Au3btiqamptTY9ddfH5s2bYoPPvggJk+eXHDNwMBADAwMDN4/efJkvP322zF16tQoKyvLeskAJS9Jkjh69GhMnz49Jk06vz+eUs4ATDxyRs4AZCmrnMm8JOvp6Yna2trUWG1tbRw/fjx6e3ujrq6u4JrW1tZYt25d1ksDyL2DBw/GjBkzxnsZ50TOAExccgaALI12zmRekkVEwbMlp97hOdyzKGvWrImWlpbB+319fXHFFVfEwYMHo7q6OruFAuREf39/zJw5Mz72sY+N91JGhZwBmFjkjJwByFJWOZN5SXbZZZdFT09Pauzw4cNRUVERU6dOHfKaysrKqKysLBivrq4WKgCjqBTe8iFnACYuOZMmZwBG12jnTOYfELBo0aJob29PjW3bti3mz58/5Pv3AaAYcgaALMkZgPwouiR79913Y8+ePbFnz56I+PArkffs2RNdXV0R8eFLi1esWDE4v7m5Od58881oaWmJffv2xebNm2PTpk1xzz33jM5vAEBJkTMAZEnOADCcot9uuXv37vjKV74yeP/Ue+1vu+22ePLJJ6O7u3swYCIi6uvro62tLVavXh2PPvpoTJ8+PR5++OH42te+NgrLB6DUyBkAsiRnABhOWXLqUycnsP7+/qipqYm+vj7v4QcYBc7VNPsBMLqcq2n2A2B0ZXWuZv6ZZAAAAAAw0SnJAAAAAMg9JRkAAAAAuackAwAAACD3lGQAAAAA5J6SDAAAAIDcU5IBAAAAkHtKMgAAAAByT0kGAAAAQO4pyQAAAADIPSUZAAAAALmnJAMAAAAg95RkAAAAAOSekgwAAACA3FOSAQAAAJB7SjIAAAAAck9JBgAAAEDuKckAAAAAyD0lGQAAAAC5pyQDAAAAIPeUZAAAAADknpIMAAAAgNxTkgEAAACQe0oyAAAAAHJPSQYAAABA7inJAAAAAMg9JRkAAAAAuackAwAAACD3lGQAAAAA5J6SDAAAAIDcU5IBAAAAkHtKMgAAAAByT0kGAAAAQO6NqCTbsGFD1NfXR1VVVTQ0NMSOHTvOOH/Lli1x9dVXx4UXXhh1dXVxxx13xJEjR0a0YABKn5wBIEtyBoChFF2Sbd26NVatWhVr166Nzs7OWLJkSSxdujS6urqGnP/qq6/GihUr4s4774zf//738cwzz8RvfvObuOuuu8558QCUHjkDQJbkDADDKboke+ihh+LOO++Mu+66K+bMmRM//vGPY+bMmbFx48Yh5//617+OT3ziE7Fy5cqor6+PL33pS/GNb3wjdu/efc6LB6D0yBkAsiRnABhOUSXZsWPHoqOjI5qamlLjTU1NsXPnziGvaWxsjEOHDkVbW1skSRJvvfVWPPvss3HjjTcO+zgDAwPR39+fugFQ+uQMAFmSMwCcSVElWW9vb5w4cSJqa2tT47W1tdHT0zPkNY2NjbFly5ZYvnx5TJkyJS677LK4+OKL46c//emwj9Pa2ho1NTWDt5kzZxazTADOU3IGgCzJGQDOZEQf3F9WVpa6nyRJwdgpe/fujZUrV8b9998fHR0d8fLLL8eBAweiubl52J+/Zs2a6OvrG7wdPHhwJMsE4DwlZwDIkpwBYCgVxUyeNm1alJeXFzzLcvjw4YJnY05pbW2NxYsXx7333hsREZ///OfjoosuiiVLlsSDDz4YdXV1BddUVlZGZWVlMUsDoATIGQCyJGcAOJOiXkk2ZcqUaGhoiPb29tR4e3t7NDY2DnnN+++/H5MmpR+mvLw8Ij58xgYATpEzAGRJzgBwJkW/3bKlpSUef/zx2Lx5c+zbty9Wr14dXV1dgy83XrNmTaxYsWJw/k033RTPP/98bNy4Mfbv3x+vvfZarFy5MhYsWBDTp08fvd8EgJIgZwDIkpwBYDhFvd0yImL58uVx5MiRWL9+fXR3d8fcuXOjra0tZs2aFRER3d3d0dXVNTj/9ttvj6NHj8YjjzwS3/nOd+Liiy+Oa665Jn7wgx+M3m8BQMmQMwBkSc4AMJyy5Dx4jXB/f3/U1NREX19fVFdXj/dyAM57ztU0+wEwupyrafYDYHRlda6O6NstAQAAAKCUKMkAAAAAyD0lGQAAAAC5pyQDAAAAIPeUZAAAAADknpIMAAAAgNxTkgEAAACQe0oyAAAAAHJPSQYAAABA7inJAAAAAMg9JRkAAAAAuackAwAAACD3lGQAAAAA5J6SDAAAAIDcU5IBAAAAkHtKMgAAAAByT0kGAAAAQO4pyQAAAADIPSUZAAAAALmnJAMAAAAg95RkAAAAAOSekgwAAACA3FOSAQAAAJB7SjIAAAAAck9JBgAAAEDuKckAAAAAyD0lGQAAAAC5pyQDAAAAIPeUZAAAAADknpIMAAAAgNxTkgEAAACQe0oyAAAAAHJPSQYAAABA7o2oJNuwYUPU19dHVVVVNDQ0xI4dO844f2BgINauXRuzZs2KysrK+OQnPxmbN28e0YIBKH1yBoAsyRkAhlJR7AVbt26NVatWxYYNG2Lx4sXxs5/9LJYuXRp79+6NK664Yshrbr755njrrbdi06ZN8alPfSoOHz4cx48fP+fFA1B65AwAWZIzAAynLEmSpJgLFi5cGPPmzYuNGzcOjs2ZMyeWLVsWra2tBfNffvnl+PrXvx779++PSy65ZESL7O/vj5qamujr64vq6uoR/QwA/mIin6tyBuD8N5HPVTkDcP7L6lwt6u2Wx44di46OjmhqakqNNzU1xc6dO4e85qWXXor58+fHD3/4w7j88svjqquuinvuuSf+/Oc/D/s4AwMD0d/fn7oBUPrkDABZkjMAnElRb7fs7e2NEydORG1tbWq8trY2enp6hrxm//798eqrr0ZVVVW88MIL0dvbG9/85jfj7bffHvZ9/K2trbFu3bpilgZACZAzAGRJzgBwJiP64P6ysrLU/SRJCsZOOXnyZJSVlcWWLVtiwYIFccMNN8RDDz0UTz755LDPvqxZsyb6+voGbwcPHhzJMgE4T8kZALIkZwAYSlGvJJs2bVqUl5cXPMty+PDhgmdjTqmrq4vLL788ampqBsfmzJkTSZLEoUOH4sorryy4prKyMiorK4tZGgAlQM4AkCU5A8CZFPVKsilTpkRDQ0O0t7enxtvb26OxsXHIaxYvXhx/+tOf4t133x0ce/3112PSpEkxY8aMESwZgFIlZwDIkpwB4EyKfrtlS0tLPP7447F58+bYt29frF69Orq6uqK5uTkiPnxp8YoVKwbn33LLLTF16tS44447Yu/evfHKK6/EvffeG//4j/8YF1xwwej9JgCUBDkDQJbkDADDKertlhERy5cvjyNHjsT69euju7s75s6dG21tbTFr1qyIiOju7o6urq7B+X/zN38T7e3t8U//9E8xf/78mDp1atx8883x4IMPjt5vAUDJkDMAZEnOADCcsiRJkvFexEfp7++Pmpqa6Ovri+rq6vFeDsB5z7maZj8ARpdzNc1+AIyurM7VEX27JQAAAACUEiUZAAAAALmnJAMAAAAg95RkAAAAAOSekgwAAACA3FOSAQAAAJB7SjIAAAAAck9JBgAAAEDuKckAAAAAyD0lGQAAAAC5pyQDAAAAIPeUZAAAAADknpIMAAAAgNxTkgEAAACQe0oyAAAAAHJPSQYAAABA7inJAAAAAMg9JRkAAAAAuackAwAAACD3lGQAAAAA5J6SDAAAAIDcU5IBAAAAkHtKMgAAAAByT0kGAAAAQO4pyQAAAADIPSUZAAAAALmnJAMAAAAg95RkAAAAAOSekgwAAACA3FOSAQAAAJB7SjIAAAAAck9JBgAAAEDuKckAAAAAyL0RlWQbNmyI+vr6qKqqioaGhtixY8dZXffaa69FRUVFfOELXxjJwwKQE3IGgCzJGQCGUnRJtnXr1li1alWsXbs2Ojs7Y8mSJbF06dLo6uo643V9fX2xYsWK+Lu/+7sRLxaA0idnAMiSnAFgOGVJkiTFXLBw4cKYN29ebNy4cXBszpw5sWzZsmhtbR32uq9//etx5ZVXRnl5ebz44ouxZ8+es37M/v7+qKmpib6+vqiuri5muQAMYSKfq3IG4Pw3kc9VOQNw/svqXC3qlWTHjh2Ljo6OaGpqSo03NTXFzp07h73uiSeeiDfeeCMeeOCBs3qcgYGB6O/vT90AKH1yBoAsyRkAzqSokqy3tzdOnDgRtbW1qfHa2tro6ekZ8po//OEPcd9998WWLVuioqLirB6ntbU1ampqBm8zZ84sZpkAnKfkDABZkjMAnMmIPri/rKwsdT9JkoKxiIgTJ07ELbfcEuvWrYurrrrqrH/+mjVroq+vb/B28ODBkSwTgPOUnAEgS3IGgKGc3VMh/9+0adOivLy84FmWw4cPFzwbExFx9OjR2L17d3R2dsa3v/3tiIg4efJkJEkSFRUVsW3btrjmmmsKrqusrIzKyspilgZACZAzAGRJzgBwJkW9kmzKlCnR0NAQ7e3tqfH29vZobGwsmF9dXR2/+93vYs+ePYO35ubm+PSnPx179uyJhQsXntvqASgpcgaALMkZAM6kqFeSRUS0tLTErbfeGvPnz49FixbFz3/+8+jq6orm5uaI+PClxX/84x/jl7/8ZUyaNCnmzp2buv7SSy+NqqqqgnEAiJAzAGRLzgAwnKJLsuXLl8eRI0di/fr10d3dHXPnzo22traYNWtWRER0d3dHV1fXqC8UgHyQMwBkSc4AMJyyJEmS8V7ER+nv74+ampro6+uL6urq8V4OwHnPuZpmPwBGl3M1zX4AjK6sztURfbslAAAAAJQSJRkAAAAAuackAwAAACD3lGQAAAAA5J6SDAAAAIDcU5IBAAAAkHtKMgAAAAByT0kGAAAAQO4pyQAAAADIPSUZAAAAALmnJAMAAAAg95RkAAAAAOSekgwAAACA3FOSAQAAAJB7SjIAAAAAck9JBgAAAEDuKckAAAAAyD0lGQAAAAC5pyQDAAAAIPeUZAAAAADknpIMAAAAgNxTkgEAAACQe0oyAAAAAHJPSQYAAABA7inJAAAAAMg9JRkAAAAAuackAwAAACD3lGQAAAAA5J6SDAAAAIDcU5IBAAAAkHtKMgAAAAByT0kGAAAAQO4pyQAAAADIvRGVZBs2bIj6+vqoqqqKhoaG2LFjx7Bzn3/++bjuuuvi4x//eFRXV8eiRYviV7/61YgXDEDpkzMAZEnOADCUokuyrVu3xqpVq2Lt2rXR2dkZS5YsiaVLl0ZXV9eQ81955ZW47rrroq2tLTo6OuIrX/lK3HTTTdHZ2XnOiweg9MgZALIkZwAYTlmSJEkxFyxcuDDmzZsXGzduHBybM2dOLFu2LFpbW8/qZ3zuc5+L5cuXx/33339W8/v7+6Ompib6+vqiurq6mOUCMISJfK7KGYDz30Q+V+UMwPkvq3O1qFeSHTt2LDo6OqKpqSk13tTUFDt37jyrn3Hy5Mk4evRoXHLJJcPOGRgYiP7+/tQNgNInZwDIkpwB4EyKKsl6e3vjxIkTUVtbmxqvra2Nnp6es/oZP/rRj+K9996Lm2++edg5ra2tUVNTM3ibOXNmMcsE4DwlZwDIkpwB4ExG9MH9ZWVlqftJkhSMDeXpp5+O73//+7F169a49NJLh523Zs2a6OvrG7wdPHhwJMsE4DwlZwDIkpwBYCgVxUyeNm1alJeXFzzLcvjw4YJnY063devWuPPOO+OZZ56Ja6+99oxzKysro7KyspilAVAC5AwAWZIzAJxJUa8kmzJlSjQ0NER7e3tqvL29PRobG4e97umnn47bb789nnrqqbjxxhtHtlIASp6cASBLcgaAMynqlWQRES0tLXHrrbfG/PnzY9GiRfHzn/88urq6orm5OSI+fGnxH//4x/jlL38ZER8GyooVK+InP/lJfPGLXxx81uaCCy6ImpqaUfxVACgFcgaALMkZAIZTdEm2fPnyOHLkSKxfvz66u7tj7ty50dbWFrNmzYqIiO7u7ujq6hqc/7Of/SyOHz8e3/rWt+Jb3/rW4Phtt90WTz755Ln/BgCUFDkDQJbkDADDKUuSJBnvRXyU/v7+qKmpib6+vqiurh7v5QCc95yrafYDYHQ5V9PsB8DoyupcHdG3WwIAAABAKVGSAQAAAJB7SjIAAAAAck9JBgAAAEDuKckAAAAAyD0lGQAAAAC5pyQDAAAAIPeUZAAAAADknpIMAAAAgNxTkgEAAACQe0oyAAAAAHJPSQYAAABA7inJAAAAAMg9JRkAAAAAuackAwAAACD3lGQAAAAA5J6SDAAAAIDcU5IBAAAAkHtKMgAAAAByT0kGAAAAQO4pyQAAAADIPSUZAAAAALmnJAMAAAAg95RkAAAAAOSekgwAAACA3FOSAQAAAJB7SjIAAAAAck9JBgAAAEDuKckAAAAAyD0lGQAAAAC5pyQDAAAAIPeUZAAAAADknpIMAAAAgNwbUUm2YcOGqK+vj6qqqmhoaIgdO3accf727dujoaEhqqqqYvbs2fHYY4+NaLEA5IOcASBLcgaAoRRdkm3dujVWrVoVa9eujc7OzliyZEksXbo0urq6hpx/4MCBuOGGG2LJkiXR2dkZ3/ve92LlypXx3HPPnfPiASg9cgaALMkZAIZTliRJUswFCxcujHnz5sXGjRsHx+bMmRPLli2L1tbWgvnf/e5346WXXop9+/YNjjU3N8dvf/vb2LVr11k9Zn9/f9TU1ERfX19UV1cXs1wAhjCRz1U5A3D+m8jnqpwBOP9lda5WFDP52LFj0dHREffdd19qvKmpKXbu3DnkNbt27YqmpqbU2PXXXx+bNm2KDz74ICZPnlxwzcDAQAwMDAze7+vri4gPNwGAc3fqPC3yeZLMyRmA0iBn5AxAlrLKmaJKst7e3jhx4kTU1tamxmtra6Onp2fIa3p6eoacf/z48ejt7Y26urqCa1pbW2PdunUF4zNnzixmuQB8hCNHjkRNTc14L2OQnAEoLXImTc4AjK7RzpmiSrJTysrKUveTJCkY+6j5Q42fsmbNmmhpaRm8/84778SsWbOiq6trQoXseOnv74+ZM2fGwYMHvVz7/7MnafYjzX4U6uvriyuuuCIuueSS8V7KkOTM+PP/Js1+pNmPQvYkTc7ImY/i/0ya/ShkT9LsR1pWOVNUSTZt2rQoLy8veJbl8OHDBc+unHLZZZcNOb+ioiKmTp065DWVlZVRWVlZMF5TU+OP4a9UV1fbj9PYkzT7kWY/Ck2aNKIvOc6MnJl4/L9Jsx9p9qOQPUmTM2lyppD/M2n2o5A9SbMfaaOdM0X9tClTpkRDQ0O0t7enxtvb26OxsXHIaxYtWlQwf9u2bTF//vwh378PQH7JGQCyJGcAOJOiK7eWlpZ4/PHHY/PmzbFv375YvXp1dHV1RXNzc0R8+NLiFStWDM5vbm6ON998M1paWmLfvn2xefPm2LRpU9xzzz2j91sAUDLkDABZkjMADKfozyRbvnx5HDlyJNavXx/d3d0xd+7caGtri1mzZkVERHd3d3R1dQ3Or6+vj7a2tli9enU8+uijMX369Hj44Yfja1/72lk/ZmVlZTzwwANDvmQ5j+xHIXuSZj/S7EehibwncmZisCdp9iPNfhSyJ2kTeT/kzMRgT9LsRyF7kmY/0rLaj7Jkon0vMwAAAACMsYn1SZoAAAAAMA6UZAAAAADknpIMAAAAgNxTkgEAAACQexOmJNuwYUPU19dHVVVVNDQ0xI4dO844f/v27dHQ0BBVVVUxe/bseOyxx8ZopWOjmP14/vnn47rrrouPf/zjUV1dHYsWLYpf/epXY7ja7BX793HKa6+9FhUVFfGFL3wh2wWOg2L3ZGBgINauXRuzZs2KysrK+OQnPxmbN28eo9Vmr9j92LJlS1x99dVx4YUXRl1dXdxxxx1x5MiRMVpttl555ZW46aabYvr06VFWVhYvvvjiR15T6mdqhJw5nZwpJGvS5EyanEmTNYXkTCFZkyZn0uRMIVnzF+OWM8kE8G//9m/J5MmTk1/84hfJ3r17k7vvvju56KKLkjfffHPI+fv3708uvPDC5O6770727t2b/OIXv0gmT56cPPvss2O88mwUux9333138oMf/CD57//+7+T1119P1qxZk0yePDn5n//5nzFeeTaK3Y9T3nnnnWT27NlJU1NTcvXVV4/NYsfISPbkq1/9arJw4cKkvb09OXDgQPJf//VfyWuvvTaGq85OsfuxY8eOZNKkSclPfvKTZP/+/cmOHTuSz33uc8myZcvGeOXZaGtrS9auXZs899xzSUQkL7zwwhnnl/qZmiRy5nRyppCsSZMzaXKmkKxJkzOFZE2anEmTM4VkTdp45cyEKMkWLFiQNDc3p8Y+85nPJPfdd9+Q8//5n/85+cxnPpMa+8Y3vpF88YtfzGyNY6nY/RjKZz/72WTdunWjvbRxMdL9WL58efIv//IvyQMPPFBSgZIkxe/Jv//7vyc1NTXJkSNHxmJ5Y67Y/fjXf/3XZPbs2amxhx9+OJkxY0ZmaxwvZxMopX6mJomcOZ2cKSRr0uRMmpw5M1kjZ4Yia9LkTJqcKSRrhjeWOTPub7c8duxYdHR0RFNTU2q8qakpdu7cOeQ1u3btKph//fXXx+7du+ODDz7IbK1jYST7cbqTJ0/G0aNH45JLLsliiWNqpPvxxBNPxBtvvBEPPPBA1ksccyPZk5deeinmz58fP/zhD+Pyyy+Pq666Ku65557485//PBZLztRI9qOxsTEOHToUbW1tkSRJvPXWW/Hss8/GjTfeOBZLnnBK+UyNkDOnkzOFZE2anEmTM6PDuZpWyvsRIWtOJ2fS5EwhWXPuRutcrRjthRWrt7c3Tpw4EbW1tanx2tra6OnpGfKanp6eIecfP348ent7o66uLrP1Zm0k+3G6H/3oR/Hee+/FzTffnMUSx9RI9uMPf/hD3HfffbFjx46oqBj3P/FRN5I92b9/f7z66qtRVVUVL7zwQvT29sY3v/nNePvtt8/79/GPZD8aGxtjy5YtsXz58vi///u/OH78eHz1q1+Nn/70p2Ox5AmnlM/UCDlzOjlTSNakyZk0OTM6nKtppbwfEbLmdHImTc4UkjXnbrTO1XF/JdkpZWVlqftJkhSMfdT8ocbPV8XuxylPP/10fP/734+tW7fGpZdemtXyxtzZ7seJEyfilltuiXXr1sVVV101VssbF8X8jZw8eTLKyspiy5YtsWDBgrjhhhvioYceiieffLJknn0pZj/27t0bK1eujPvvvz86Ojri5ZdfjgMHDkRzc/NYLHVCKvUzNULOnE7OFJI1aXImTc6cO+fqR88favx8JmvS5EyanCkka87NaJyr415JT5s2LcrLywva0cOHDxe0gKdcdtllQ86vqKiIqVOnZrbWsTCS/Thl69atceedd8YzzzwT1157bZbLHDPF7sfRo0dj9+7d0dnZGd/+9rcj4sMDNUmSqKioiG3btsU111wzJmvPykj+Rurq6uLyyy+PmpqawbE5c+ZEkiRx6NChuPLKKzNdc5ZGsh+tra2xePHiuPfeeyMi4vOf/3xcdNFFsWTJknjwwQfP+2dvi1XKZ2qEnDmdnCkka9LkTJqcGR3O1bRS3o8IWXM6OZMmZwrJmnM3WufquL+SbMqUKdHQ0BDt7e2p8fb29mhsbBzymkWLFhXM37ZtW8yfPz8mT56c2VrHwkj2I+LDZ1tuv/32eOqpp0rqPcjF7kd1dXX87ne/iz179gzempub49Of/nTs2bMnFi5cOFZLz8xI/kYWL14cf/rTn+Ldd98dHHv99ddj0qRJMWPGjEzXm7WR7Mf7778fkyalj7/y8vKI+MuzDXlSymdqhJw5nZwpJGvS5EyanBkdztW0Ut6PCFlzOjmTJmcKyZpzN2rnalEf85+RU191umnTpmTv3r3JqlWrkosuuij53//93yRJkuS+++5Lbr311sH5p77ac/Xq1cnevXuTTZs2ldRXJhe7H0899VRSUVGRPProo0l3d/fg7Z133hmvX2FUFbsfpyu1b4JJkuL35OjRo8mMGTOSv//7v09+//vfJ9u3b0+uvPLK5K677hqvX2FUFbsfTzzxRFJRUZFs2LAheeONN5JXX301mT9/frJgwYLx+hVG1dGjR5POzs6ks7MziYjkoYceSjo7Owe/PjpvZ2qSyJnTyZlCsiZNzqTJmUKyJk3OFJI1aXImTc4UkjVp45UzE6IkS5IkefTRR5NZs2YlU6ZMSebNm5ds37598N9uu+225Mtf/nJq/n/+538mf/u3f5tMmTIl+cQnPpFs3LhxjFecrWL248tf/nISEQW32267bewXnpFi/z7+WqkFyinF7sm+ffuSa6+9NrnggguSGTNmJC0tLcn7778/xqvOTrH78fDDDyef/exnkwsuuCCpq6tL/uEf/iE5dOjQGK86G//xH/9xxjMhj2dqksiZ08mZQrImTc6kyZk0WVNIzhSSNWlyJk3OFJI1fzFeOVOWJDl8HR4AAAAA/JVx/0wyAAAAABhvSjIAAAAAck9JBgAAAEDuKckAAAAAyD0lGQAAAAC5pyQDAAAAIPeUZAAAAADknpIMAAAAgNxTkgEAAACQe0oyAAAAAHJPSQYAAABA7inJAAAAAMg9JRkAAAAAuackAwAAACD3lGQAAAAA5J6SDAAAAIDcU5IBAAAAkHtKMgAAAAByr+iS7JVXXombbroppk+fHmVlZfHiiy9+5DXbt2+PhoaGqKqqitmzZ8djjz02krUCkANyBoAsyRkAhlN0Sfbee+/F1VdfHY888shZzT9w4EDccMMNsWTJkujs7Izvfe97sXLlynjuueeKXiwApU/OAJAlOQPAcMqSJElGfHFZWbzwwguxbNmyYed897vfjZdeein27ds3ONbc3By//e1vY9euXSN9aAByQM4AkCU5A8Bfq8j6AXbt2hVNTU2pseuvvz42bdoUH3zwQUyePLngmoGBgRgYGBi8f/LkyXj77bdj6tSpUVZWlvWSAUpekiRx9OjRmD59ekyadH5/PKWcAZh45IycAchSVjmTeUnW09MTtbW1qbHa2to4fvx49Pb2Rl1dXcE1ra2tsW7duqyXBpB7Bw8ejBkzZoz3Ms6JnAGYuOQMAFka7ZzJvCSLiIJnS069w3O4Z1HWrFkTLS0tg/f7+vriiiuuiIMHD0Z1dXV2CwXIif7+/pg5c2Z87GMfG++ljAo5AzCxyBk5A5ClrHIm85Lssssui56entTY4cOHo6KiIqZOnTrkNZWVlVFZWVkwXl1dLVQARlEpvOVDzgBMXHImTc4AjK7RzpnMPyBg0aJF0d7enhrbtm1bzJ8/f8j37wNAMeQMAFmSMwD5UXRJ9u6778aePXtiz549EfHhVyLv2bMnurq6IuLDlxavWLFicH5zc3O8+eab0dLSEvv27YvNmzfHpk2b4p577hmd3wCAkiJnAMiSnAFgOEW/3XL37t3xla98ZfD+qffa33bbbfHkk09Gd3f3YMBERNTX10dbW1usXr06Hn300Zg+fXo8/PDD8bWvfW0Ulg9AqZEzAGRJzgAwnLLk1KdOTmD9/f1RU1MTfX193sMPMAqcq2n2A2B0OVfT7AfA6MrqXM38M8kAAAAAYKJTkgEAAACQe0oyAAAAAHJPSQYAAABA7inJAAAAAMg9JRkAAAAAuackAwAAACD3lGQAAAAA5J6SDAAAAIDcU5IBAAAAkHtKMgAAAAByT0kGAAAAQO4pyQAAAADIPSUZAAAAALmnJAMAAAAg95RkAAAAAOSekgwAAACA3FOSAQAAAJB7SjIAAAAAck9JBgAAAEDuKckAAAAAyD0lGQAAAAC5pyQDAAAAIPeUZAAAAADknpIMAAAAgNxTkgEAAACQe0oyAAAAAHJPSQYAAABA7inJAAAAAMg9JRkAAAAAuackAwAAACD3lGQAAAAA5J6SDAAAAIDcG1FJtmHDhqivr4+qqqpoaGiIHTt2nHH+li1b4uqrr44LL7ww6urq4o477ogjR46MaMEAlD45A0CW5AwAQym6JNu6dWusWrUq1q5dG52dnbFkyZJYunRpdHV1DTn/1VdfjRUrVsSdd94Zv//97+OZZ56J3/zmN3HXXXed8+IBKD1yBoAsyRkAhlN0SfbQQw/FnXfeGXfddVfMmTMnfvzjH8fMmTNj48aNQ87/9a9/HZ/4xCdi5cqVUV9fH1/60pfiG9/4RuzevfucFw9A6ZEzAGRJzgAwnKJKsmPHjkVHR0c0NTWlxpuammLnzp1DXtPY2BiHDh2Ktra2SJIk3nrrrXj22WfjxhtvHPZxBgYGor+/P3UDoPTJGQCyJGcAOJOiSrLe3t44ceJE1NbWpsZra2ujp6dnyGsaGxtjy5YtsXz58pgyZUpcdtllcfHFF8dPf/rTYR+ntbU1ampqBm8zZ84sZpkAnKfkDABZkjMAnMmIPri/rKwsdT9JkoKxU/bu3RsrV66M+++/Pzo6OuLll1+OAwcORHNz87A/f82aNdHX1zd4O3jw4EiWCcB5Ss4AkCU5A8BQKoqZPG3atCgvLy94luXw4cMFz8ac0traGosXL4577703IiI+//nPx0UXXRRLliyJBx98MOrq6gquqaysjMrKymKWBkAJkDMAZEnOAHAmRb2SbMqUKdHQ0BDt7e2p8fb29mhsbBzymvfffz8mTUo/THl5eUR8+IwNAJwiZwDIkpwB4EyKfrtlS0tLPP7447F58+bYt29frF69Orq6ugZfbrxmzZpYsWLF4Pybbropnn/++di4cWPs378/XnvttVi5cmUsWLAgpk+fPnq/CQAlQc4AkCU5A8Bwinq7ZUTE8uXL48iRI7F+/fro7u6OuXPnRltbW8yaNSsiIrq7u6Orq2tw/u233x5Hjx6NRx55JL7zne/ExRdfHNdcc0384Ac/GL3fAoCSIWcAyJKcAWA4Zcl58Brh/v7+qKmpib6+vqiurh7v5QCc95yrafYDYHQ5V9PsB8DoyupcHdG3WwIAAABAKVGSAQAAAJB7SjIAAAAAck9JBgAAAEDuKckAAAAAyD0lGQAAAAC5pyQDAAAAIPeUZAAAAADknpIMAAAAgNxTkgEAAACQe0oyAAAAAHJPSQYAAABA7inJAAAAAMg9JRkAAAAAuackAwAAACD3lGQAAAAA5J6SDAAAAIDcU5IBAAAAkHtKMgAAAAByT0kGAAAAQO4pyQAAAADIPSUZAAAAALmnJAMAAAAg95RkAAAAAOSekgwAAACA3FOSAQAAAJB7SjIAAAAAck9JBgAAAEDuKckAAAAAyD0lGQAAAAC5pyQDAAAAIPeUZAAAAADknpIMAAAAgNwbUUm2YcOGqK+vj6qqqmhoaIgdO3accf7AwECsXbs2Zs2aFZWVlfHJT34yNm/ePKIFA1D65AwAWZIzAAylotgLtm7dGqtWrYoNGzbE4sWL42c/+1ksXbo09u7dG1dcccWQ19x8883x1ltvxaZNm+JTn/pUHD58OI4fP37Oiweg9MgZALIkZwAYTlmSJEkxFyxcuDDmzZsXGzduHBybM2dOLFu2LFpbWwvmv/zyy/H1r3899u/fH5dccsmIFtnf3x81NTXR19cX1dXVI/oZAPzFRD5X5QzA+W8in6tyBuD8l9W5WtTbLY8dOxYdHR3R1NSUGm9qaoqdO3cOec1LL70U8+fPjx/+8Idx+eWXx1VXXRX33HNP/PnPfx72cQYGBqK/vz91A6D0yRkAsiRnADiTot5u2dvbGydOnIja2trUeG1tbfT09Ax5zf79++PVV1+NqqqqeOGFF6K3tze++c1vxttvvz3s+/hbW1tj3bp1xSwNgBIgZwDIkpwB4ExG9MH9ZWVlqftJkhSMnXLy5MkoKyuLLVu2xIIFC+KGG26Ihx56KJ588slhn31Zs2ZN9PX1Dd4OHjw4kmUCcJ6SMwBkSc4AMJSiXkk2bdq0KC8vL3iW5fDhwwXPxpxSV1cX/6+9+4+tur73B/4qlLbqvT2LMCsIdrCrGxuZu7SBUS5Z5tUaNC4ku7GLN6JeTdZsuwi9egfjRgcxababme/cBLcJmiXobfwZ/+h19I97sQr3B9yyLIPERbgWtlbSGlvU3SLw+f7hpbsfTouc0tOW83k8kvNH37w/Pe/zTnk/k+f5ddVVV0UulxseW7hwYSRJEkePHo1rrrkm75rKysqorKwsZGkAlAA5A0AxyRkAzqWgV5JVVFREXV1ddHR0pMY7OjqioaFhxGuWL18ev//97+O9994bHnvjjTdi2rRpMXfu3DEsGYBSJWcAKCY5A8C5FPx2y5aWlnjiiSdi+/btcfDgwVi3bl10d3dHc3NzRHz00uLVq1cPz7/99ttj5syZcffdd8eBAwfi1VdfjQceeCD+5m/+Ji655JLxeyQAlAQ5A0AxyRkARlPQ2y0jIpqamqK/vz82b94cPT09sWjRomhvb4/a2tqIiOjp6Ynu7u7h+X/yJ38SHR0d8bd/+7dRX18fM2fOjNtuuy0efvjh8XsUAJQMOQNAMckZAEZTliRJMtmL+DiDg4ORy+ViYGAgqqurJ3s5ABc952qa/QAYX87VNPsBML6Kda6O6dstAQAAAKCUKMkAAAAAyDwlGQAAAACZpyQDAAAAIPOUZAAAAABknpIMAAAAgMxTkgEAAACQeUoyAAAAADJPSQYAAABA5inJAAAAAMg8JRkAAAAAmackAwAAACDzlGQAAAAAZJ6SDAAAAIDMU5IBAAAAkHlKMgAAAAAyT0kGAAAAQOYpyQAAAADIPCUZAAAAAJmnJAMAAAAg85RkAAAAAGSekgwAAACAzFOSAQAAAJB5SjIAAAAAMk9JBgAAAEDmKckAAAAAyDwlGQAAAACZpyQDAAAAIPOUZAAAAABknpIMAAAAgMxTkgEAAACQeUoyAAAAADJPSQYAAABA5o2pJNuyZUvMnz8/qqqqoq6uLjo7O8/rutdffz3Ky8vji1/84ljuFoCMkDMAFJOcAWAkBZdkbW1tsXbt2ti4cWN0dXXFihUrYuXKldHd3X3O6wYGBmL16tXxl3/5l2NeLAClT84AUExyBoDRlCVJkhRywdKlS2Px4sWxdevW4bGFCxfGqlWrorW1ddTrvv71r8c111wT06dPj5deein2799/3vc5ODgYuVwuBgYGorq6upDlAjCCqXyuyhmAi99UPlflDMDFr1jnakGvJDtx4kTs27cvGhsbU+ONjY2xe/fuUa978skn480334yHHnrovO5naGgoBgcHUzcASp+cAaCY5AwA51JQSdbX1xenTp2Kmpqa1HhNTU309vaOeM1vf/vbWL9+fezYsSPKy8vP635aW1sjl8sN3+bNm1fIMgG4SMkZAIpJzgBwLmP64P6ysrLUz0mS5I1FRJw6dSpuv/322LRpU1x77bXn/fs3bNgQAwMDw7cjR46MZZkAXKTkDADFJGcAGMn5PRXyv2bNmhXTp0/Pe5bl2LFjec/GREQcP3489u7dG11dXfHtb387IiJOnz4dSZJEeXl57Ny5M66//vq86yorK6OysrKQpQFQAuQMAMUkZwA4l4JeSVZRURF1dXXR0dGRGu/o6IiGhoa8+dXV1fHrX/869u/fP3xrbm6Oz3zmM7F///5YunTpha0egJIiZwAoJjkDwLkU9EqyiIiWlpa44447or6+PpYtWxY/+9nPoru7O5qbmyPio5cW/+53v4tf/OIXMW3atFi0aFHq+iuuuCKqqqryxgEgQs4AUFxyBoDRFFySNTU1RX9/f2zevDl6enpi0aJF0d7eHrW1tRER0dPTE93d3eO+UACyQc4AUExyBoDRlCVJkkz2Ij7O4OBg5HK5GBgYiOrq6sleDsBFz7maZj8AxpdzNc1+AIyvYp2rY/p2SwAAAAAoJUoyAAAAADJPSQYAAABA5inJAAAAAMg8JRkAAAAAmackAwAAACDzlGQAAAAAZJ6SDAAAAIDMU5IBAAAAkHlKMgAAAAAyT0kGAAAAQOYpyQAAAADIPCUZAAAAAJmnJAMAAAAg85RkAAAAAGSekgwAAACAzFOSAQAAAJB5SjIAAAAAMk9JBgAAAEDmKckAAAAAyDwlGQAAAACZpyQDAAAAIPOUZAAAAABknpIMAAAAgMxTkgEAAACQeUoyAAAAADJPSQYAAABA5inJAAAAAMg8JRkAAAAAmackAwAAACDzlGQAAAAAZJ6SDAAAAIDMU5IBAAAAkHljKsm2bNkS8+fPj6qqqqirq4vOzs5R577wwgtx4403xic/+cmorq6OZcuWxS9/+csxLxiA0idnACgmOQPASAouydra2mLt2rWxcePG6OrqihUrVsTKlSuju7t7xPmvvvpq3HjjjdHe3h779u2Lr3zlK3HrrbdGV1fXBS8egNIjZwAoJjkDwGjKkiRJCrlg6dKlsXjx4ti6devw2MKFC2PVqlXR2tp6Xr/j85//fDQ1NcWDDz54XvMHBwcjl8vFwMBAVFdXF7JcAEYwlc9VOQNw8ZvK56qcAbj4FetcLeiVZCdOnIh9+/ZFY2NjaryxsTF27959Xr/j9OnTcfz48bj88stHnTM0NBSDg4OpGwClT84AUExyBoBzKagk6+vri1OnTkVNTU1qvKamJnp7e8/rd/zwhz+M999/P2677bZR57S2tkYulxu+zZs3r5BlAnCRkjMAFJOcAeBcxvTB/WVlZamfkyTJGxvJM888E9/73veira0trrjiilHnbdiwIQYGBoZvR44cGcsyAbhIyRkAiknOADCS8kImz5o1K6ZPn573LMuxY8fyno05W1tbW9xzzz3x7LPPxg033HDOuZWVlVFZWVnI0gAoAXIGgGKSMwCcS0GvJKuoqIi6urro6OhIjXd0dERDQ8Oo1z3zzDNx1113xdNPPx233HLL2FYKQMmTMwAUk5wB4FwKeiVZRERLS0vccccdUV9fH8uWLYuf/exn0d3dHc3NzRHx0UuLf/e738UvfvGLiPgoUFavXh0/+tGP4ktf+tLwszaXXHJJ5HK5cXwoAJQCOQNAMckZAEZTcEnW1NQU/f39sXnz5ujp6YlFixZFe3t71NbWRkRET09PdHd3D8//6U9/GidPnoxvfetb8a1vfWt4/M4774ynnnrqwh8BACVFzgBQTHIGgNGUJUmSTPYiPs7g4GDkcrkYGBiI6urqyV4OwEXPuZpmPwDGl3M1zX4AjK9inatj+nZLAAAAACglSjIAAAAAMk9JBgAAAEDmKckAAAAAyDwlGQAAAACZpyQDAAAAIPOUZAAAAABknpIMAAAAgMxTkgEAAACQeUoyAAAAADJPSQYAAABA5inJAAAAAMg8JRkAAAAAmackAwAAACDzlGQAAAAAZJ6SDAAAAIDMU5IBAAAAkHlKMgAAAAAyT0kGAAAAQOYpyQAAAADIPCUZAAAAAJmnJAMAAAAg85RkAAAAAGSekgwAAACAzFOSAQAAAJB5SjIAAAAAMk9JBgAAAEDmKckAAAAAyDwlGQAAAACZpyQDAAAAIPOUZAAAAABknpIMAAAAgMxTkgEAAACQeWMqybZs2RLz58+PqqqqqKuri87OznPO37VrV9TV1UVVVVUsWLAgHn/88TEtFoBskDMAFJOcAWAkBZdkbW1tsXbt2ti4cWN0dXXFihUrYuXKldHd3T3i/MOHD8fNN98cK1asiK6urvjud78ba9asieeff/6CFw9A6ZEzABSTnAFgNGVJkiSFXLB06dJYvHhxbN26dXhs4cKFsWrVqmhtbc2b/53vfCdefvnlOHjw4PBYc3Nz/OpXv4o9e/ac130ODg5GLpeLgYGBqK6uLmS5AIxgKp+rcgbg4jeVz1U5A3DxK9a5Wl7I5BMnTsS+ffti/fr1qfHGxsbYvXv3iNfs2bMnGhsbU2M33XRTbNu2LT788MOYMWNG3jVDQ0MxNDQ0/PPAwEBEfLQJAFy4M+dpgc+TFJ2cASgNckbOABRTsXKmoJKsr68vTp06FTU1Nanxmpqa6O3tHfGa3t7eEeefPHky+vr6Yvbs2XnXtLa2xqZNm/LG582bV8hyAfgY/f39kcvlJnsZw+QMQGmRM2lyBmB8jXfOFFSSnVFWVpb6OUmSvLGPmz/S+BkbNmyIlpaW4Z/ffffdqK2tje7u7ikVspNlcHAw5s2bF0eOHPFy7f9lT9LsR5r9yDcwMBBXX311XH755ZO9lBHJmcnn/02a/UizH/nsSZqckTMfx/+ZNPuRz56k2Y+0YuVMQSXZrFmzYvr06XnPshw7dizv2ZUzrrzyyhHnl5eXx8yZM0e8prKyMiorK/PGc7mcP4b/o7q62n6cxZ6k2Y80+5Fv2rQxfclx0ciZqcf/mzT7kWY/8tmTNDmTJmfy+T+TZj/y2ZM0+5E23jlT0G+rqKiIurq66OjoSI13dHREQ0PDiNcsW7Ysb/7OnTujvr5+xPfvA5BdcgaAYpIzAJxLwZVbS0tLPPHEE7F9+/Y4ePBgrFu3Lrq7u6O5uTkiPnpp8erVq4fnNzc3x1tvvRUtLS1x8ODB2L59e2zbti3uv//+8XsUAJQMOQNAMckZAEZT8GeSNTU1RX9/f2zevDl6enpi0aJF0d7eHrW1tRER0dPTE93d3cPz58+fH+3t7bFu3bp47LHHYs6cOfHoo4/G1772tfO+z8rKynjooYdGfMlyFtmPfPYkzX6k2Y98U3lP5MzUYE/S7Eea/chnT9Km8n7ImanBnqTZj3z2JM1+pBVrP8qSqfa9zAAAAAAwwabWJ2kCAAAAwCRQkgEAAACQeUoyAAAAADJPSQYAAABA5k2ZkmzLli0xf/78qKqqirq6uujs7Dzn/F27dkVdXV1UVVXFggUL4vHHH5+glU6MQvbjhRdeiBtvvDE++clPRnV1dSxbtix++ctfTuBqi6/Qv48zXn/99SgvL48vfvGLxV3gJCh0T4aGhmLjxo1RW1sblZWV8elPfzq2b98+QastvkL3Y8eOHXHdddfFpZdeGrNnz4677747+vv7J2i1xfXqq6/GrbfeGnPmzImysrJ46aWXPvaaUj9TI+TM2eRMPlmTJmfS5EyarMknZ/LJmjQ5kyZn8smaP5q0nEmmgH/6p39KZsyYkfz85z9PDhw4kNx3333JZZddlrz11lsjzj906FBy6aWXJvfdd19y4MCB5Oc//3kyY8aM5LnnnpvglRdHoftx3333Jd///veT//iP/0jeeOONZMOGDcmMGTOS//qv/5rglRdHoftxxrvvvpssWLAgaWxsTK677rqJWewEGcuefPWrX02WLl2adHR0JIcPH07+/d//PXn99dcncNXFU+h+dHZ2JtOmTUt+9KMfJYcOHUo6OzuTz3/+88mqVasmeOXF0d7enmzcuDF5/vnnk4hIXnzxxXPOL/UzNUnkzNnkTD5ZkyZn0uRMPlmTJmfyyZo0OZMmZ/LJmrTJypkpUZItWbIkaW5uTo199rOfTdavXz/i/L//+79PPvvZz6bGvvGNbyRf+tKXirbGiVTofozkc5/7XLJp06bxXtqkGOt+NDU1Jf/wD/+QPPTQQyUVKElS+J788z//c5LL5ZL+/v6JWN6EK3Q//vEf/zFZsGBBauzRRx9N5s6dW7Q1TpbzCZRSP1OTRM6cTc7kkzVpciZNzpybrJEzI5E1aXImTc7kkzWjm8icmfS3W544cSL27dsXjY2NqfHGxsbYvXv3iNfs2bMnb/5NN90Ue/fujQ8//LBoa50IY9mPs50+fTqOHz8el19+eTGWOKHGuh9PPvlkvPnmm/HQQw8Ve4kTbix78vLLL0d9fX384Ac/iKuuuiquvfbauP/+++MPf/jDRCy5qMayHw0NDXH06NFob2+PJEni7bffjueeey5uueWWiVjylFPKZ2qEnDmbnMkna9LkTJqcGR/O1bRS3o8IWXM2OZMmZ/LJmgs3Xudq+XgvrFB9fX1x6tSpqKmpSY3X1NREb2/viNf09vaOOP/kyZPR19cXs2fPLtp6i20s+3G2H/7wh/H+++/HbbfdVowlTqix7Mdvf/vbWL9+fXR2dkZ5+aT/iY+7sezJoUOH4rXXXouqqqp48cUXo6+vL775zW/GO++8c9G/j38s+9HQ0BA7duyIpqam+J//+Z84efJkfPWrX40f//jHE7HkKaeUz9QIOXM2OZNP1qTJmTQ5Mz6cq2mlvB8RsuZsciZNzuSTNRduvM7VSX8l2RllZWWpn5MkyRv7uPkjjV+sCt2PM5555pn43ve+F21tbXHFFVcUa3kT7nz349SpU3H77bfHpk2b4tprr52o5U2KQv5GTp8+HWVlZbFjx45YsmRJ3HzzzfHII4/EU089VTLPvhSyHwcOHIg1a9bEgw8+GPv27YtXXnklDh8+HM3NzROx1Cmp1M/UCDlzNjmTT9akyZk0OXPhnKsfP3+k8YuZrEmTM2lyJp+suTDjca5OeiU9a9asmD59el47euzYsbwW8Iwrr7xyxPnl5eUxc+bMoq11IoxlP85oa2uLe+65J5599tm44YYbirnMCVPofhw/fjz27t0bXV1d8e1vfzsiPjpQkySJ8vLy2LlzZ1x//fUTsvZiGcvfyOzZs+Oqq66KXC43PLZw4cJIkiSOHj0a11xzTVHXXExj2Y/W1tZYvnx5PPDAAxER8YUvfCEuu+yyWLFiRTz88MMX/bO3hSrlMzVCzpxNzuSTNWlyJk3OjA/nalop70eErDmbnEmTM/lkzYUbr3N10l9JVlFREXV1ddHR0ZEa7+joiIaGhhGvWbZsWd78nTt3Rn19fcyYMaNoa50IY9mPiI+ebbnrrrvi6aefLqn3IBe6H9XV1fHrX/869u/fP3xrbm6Oz3zmM7F///5YunTpRC29aMbyN7J8+fL4/e9/H++9997w2BtvvBHTpk2LuXPnFnW9xTaW/fjggw9i2rT08Td9+vSI+OOzDVlSymdqhJw5m5zJJ2vS5EyanBkfztW0Ut6PCFlzNjmTJmfyyZoLN27nakEf818kZ77qdNu2bcmBAweStWvXJpdddlny3//930mSJMn69euTO+64Y3j+ma/2XLduXXLgwIFk27ZtJfWVyYXux9NPP52Ul5cnjz32WNLT0zN8e/fddyfrIYyrQvfjbKX2TTBJUvieHD9+PJk7d27yV3/1V8lvfvObZNeuXck111yT3HvvvZP1EMZVofvx5JNPJuXl5cmWLVuSN998M3nttdeS+vr6ZMmSJZP1EMbV8ePHk66urqSrqyuJiOSRRx5Jurq6hr8+OmtnapLImbPJmXyyJk3OpMmZfLImTc7kkzVpciZNzuSTNWmTlTNToiRLkiR57LHHktra2qSioiJZvHhxsmvXruF/u/POO5Mvf/nLqfn/+q//mvz5n/95UlFRkXzqU59Ktm7dOsErLq5C9uPLX/5yEhF5tzvvvHPiF14khf59/F+lFihnFLonBw8eTG644YbkkksuSebOnZu0tLQkH3zwwQSvungK3Y9HH300+dznPpdccsklyezZs5O//uu/To4ePTrBqy6Of/mXfznnmZDFMzVJ5MzZ5Ew+WZMmZ9LkTJqsySdn8smaNDmTJmfyyZo/mqycKUuSDL4ODwAAAAD+j0n/TDIAAAAAmGxKMgAAAAAyT0kGAAAAQOYpyQAAAADIPCUZAAAAAJmnJAMAAAAg85RkAAAAAGSekgwAAACAzFOSAQAAAJB5SjIAAAAAMk9JBgAAAEDmKckAAAAAyDwlGQAAAACZpyQDAAAAIPOUZAAAAABknpIMAAAAgMxTkgEAAACQeUoyAAAAADKv4JLs1VdfjVtvvTXmzJkTZWVl8dJLL33sNbt27Yq6urqoqqqKBQsWxOOPPz6WtQKQAXIGgGKSMwCMpuCS7P3334/rrrsufvKTn5zX/MOHD8fNN98cK1asiK6urvjud78ba9asieeff77gxQJQ+uQMAMUkZwAYTVmSJMmYLy4rixdffDFWrVo16pzvfOc78fLLL8fBgweHx5qbm+NXv/pV7NmzZ6x3DUAGyBkAiknOAPB/lRf7Dvbs2RONjY2psZtuuim2bdsWH374YcyYMSPvmqGhoRgaGhr++fTp0/HOO+/EzJkzo6ysrNhLBih5SZLE8ePHY86cOTFt2sX98ZRyBmDqkTNyBqCYipUzRS/Jent7o6amJjVWU1MTJ0+ejL6+vpg9e3beNa2trbFp06ZiLw0g844cORJz586d7GVcEDkDMHXJGQCKabxzpuglWUTkPVty5h2eoz2LsmHDhmhpaRn+eWBgIK6++uo4cuRIVFdXF2+hABkxODgY8+bNiz/90z+d7KWMCzkDMLXIGTkDUEzFypmil2RXXnll9Pb2psaOHTsW5eXlMXPmzBGvqaysjMrKyrzx6upqoQIwjkrhLR9yBmDqkjNpcgZgfI13zhT9AwKWLVsWHR0dqbGdO3dGfX39iO/fB4BCyBkAiknOAGRHwSXZe++9F/v374/9+/dHxEdfibx///7o7u6OiI9eWrx69erh+c3NzfHWW29FS0tLHDx4MLZv3x7btm2L+++/f3weAQAlRc4AUExyBoDRFPx2y71798ZXvvKV4Z/PvNf+zjvvjKeeeip6enqGAyYiYv78+dHe3h7r1q2Lxx57LObMmROPPvpofO1rXxuH5QNQauQMAMUkZwAYTVly5lMnp7DBwcHI5XIxMDDgPfwA48C5mmY/AMaXczXNfgCMr2Kdq0X/TDIAAAAAmOqUZAAAAABknpIMAAAAgMxTkgEAAACQeUoyAAAAADJPSQYAAABA5inJAAAAAMg8JRkAAAAAmackAwAAACDzlGQAAAAAZJ6SDAAAAIDMU5IBAAAAkHlKMgAAAAAyT0kGAAAAQOYpyQAAAADIPCUZAAAAAJmnJAMAAAAg85RkAAAAAGSekgwAAACAzFOSAQAAAJB5SjIAAAAAMk9JBgAAAEDmKckAAAAAyDwlGQAAAACZpyQDAAAAIPOUZAAAAABknpIMAAAAgMxTkgEAAACQeUoyAAAAADJPSQYAAABA5inJAAAAAMg8JRkAAAAAmackAwAAACDzxlSSbdmyJebPnx9VVVVRV1cXnZ2d55y/Y8eOuO666+LSSy+N2bNnx9133x39/f1jWjAApU/OAFBMcgaAkRRckrW1tcXatWtj48aN0dXVFStWrIiVK1dGd3f3iPNfe+21WL16ddxzzz3xm9/8Jp599tn4z//8z7j33nsvePEAlB45A0AxyRkARlNwSfbII4/EPffcE/fee28sXLgw/t//+38xb9682Lp164jz/+3f/i0+9alPxZo1a2L+/PnxF3/xF/GNb3wj9u7de8GLB6D0yBkAiknOADCagkqyEydOxL59+6KxsTE13tjYGLt37x7xmoaGhjh69Gi0t7dHkiTx9ttvx3PPPRe33HLLqPczNDQUg4ODqRsApU/OAFBMcgaAcymoJOvr64tTp05FTU1NarympiZ6e3tHvKahoSF27NgRTU1NUVFREVdeeWV84hOfiB//+Mej3k9ra2vkcrnh27x58wpZJgAXKTkDQDHJGQDOZUwf3F9WVpb6OUmSvLEzDhw4EGvWrIkHH3ww9u3bF6+88kocPnw4mpubR/39GzZsiIGBgeHbkSNHxrJMAC5ScgaAYpIzAIykvJDJs2bNiunTp+c9y3Ls2LG8Z2POaG1tjeXLl8cDDzwQERFf+MIX4rLLLosVK1bEww8/HLNnz867prKyMiorKwtZGgAlQM4AUExyBoBzKeiVZBUVFVFXVxcdHR2p8Y6OjmhoaBjxmg8++CCmTUvfzfTp0yPio2dsAOAMOQNAMckZAM6l4LdbtrS0xBNPPBHbt2+PgwcPxrp166K7u3v45cYbNmyI1atXD8+/9dZb44UXXoitW7fGoUOH4vXXX481a9bEkiVLYs6cOeP3SAAoCXIGgGKSMwCMpqC3W0ZENDU1RX9/f2zevDl6enpi0aJF0d7eHrW1tRER0dPTE93d3cPz77rrrjh+/Hj85Cc/ib/7u7+LT3ziE3H99dfH97///fF7FACUDDkDQDHJGQBGU5ZcBK8RHhwcjFwuFwMDA1FdXT3ZywG46DlX0+wHwPhyrqbZD4DxVaxzdUzfbgkAAAAApURJBgAAAEDmKckAAAAAyDwlGQAAAACZpyQDAAAAIPOUZAAAAABknpIMAAAAgMxTkgEAAACQeUoyAAAAADJPSQYAAABA5inJAAAAAMg8JRkAAAAAmackAwAAACDzlGQAAAAAZJ6SDAAAAIDMU5IBAAAAkHlKMgAAAAAyT0kGAAAAQOYpyQAAAADIPCUZAAAAAJmnJAMAAAAg85RkAAAAAGSekgwAAACAzFOSAQAAAJB5SjIAAAAAMk9JBgAAAEDmKckAAAAAyDwlGQAAAACZpyQDAAAAIPOUZAAAAABknpIMAAAAgMxTkgEAAACQeUoyAAAAADJvTCXZli1bYv78+VFVVRV1dXXR2dl5zvlDQ0OxcePGqK2tjcrKyvj0pz8d27dvH9OCASh9cgaAYpIzAIykvNAL2traYu3atbFly5ZYvnx5/PSnP42VK1fGgQMH4uqrrx7xmttuuy3efvvt2LZtW/zZn/1ZHDt2LE6ePHnBiweg9MgZAIpJzgAwmrIkSZJCLli6dGksXrw4tm7dOjy2cOHCWLVqVbS2tubNf+WVV+LrX/96HDp0KC6//PIxLXJwcDByuVwMDAxEdXX1mH4HAH80lc9VOQNw8ZvK56qcAbj4FetcLejtlidOnIh9+/ZFY2NjaryxsTF279494jUvv/xy1NfXxw9+8IO46qqr4tprr437778//vCHP4x6P0NDQzE4OJi6AVD65AwAxSRnADiXgt5u2dfXF6dOnYqamprUeE1NTfT29o54zaFDh+K1116LqqqqePHFF6Ovry+++c1vxjvvvDPq+/hbW1tj06ZNhSwNgBIgZwAoJjkDwLmM6YP7y8rKUj8nSZI3dsbp06ejrKwsduzYEUuWLImbb745HnnkkXjqqadGffZlw4YNMTAwMHw7cuTIWJYJwEVKzgBQTHIGgJEU9EqyWbNmxfTp0/OeZTl27FjeszFnzJ49O6666qrI5XLDYwsXLowkSeLo0aNxzTXX5F1TWVkZlZWVhSwNgBIgZwAoJjkDwLkU9EqyioqKqKuri46OjtR4R0dHNDQ0jHjN8uXL4/e//3289957w2NvvPFGTJs2LebOnTuGJQNQquQMAMUkZwA4l4LfbtnS0hJPPPFEbN++PQ4ePBjr1q2L7u7uaG5ujoiPXlq8evXq4fm33357zJw5M+6+++44cOBAvPrqq/HAAw/E3/zN38Qll1wyfo8EgJIgZwAoJjkDwGgKertlRERTU1P09/fH5s2bo6enJxYtWhTt7e1RW1sbERE9PT3R3d09PP9P/uRPoqOjI/72b/826uvrY+bMmXHbbbfFww8/PH6PAoCSIWcAKCY5A8BoypIkSSZ7ER9ncHAwcrlcDAwMRHV19WQvB+Ci51xNsx8A48u5mmY/AMZXsc7VMX27JQAAAACUEiUZAAAAAJmnJAMAAAAg85RkAAAAAGSekgwAAACAzFOSAQAAAJB5SjIAAAAAMk9JBgAAAEDmKckAAAAAyDwlGQAAAACZpyQDAAAAIPOUZAAAAABknpIMAAAAgMxTkgEAAACQeUoyAAAAADJPSQYAAABA5inJAAAAAMg8JRkAAAAAmackAwAAACDzlGQAAAAAZJ6SDAAAAIDMU5IBAAAAkHlKMgAAAAAyT0kGAAAAQOYpyQAAAADIPCUZAAAAAJmnJAMAAAAg85RkAAAAAGSekgwAAACAzFOSAQAAAJB5SjIAAAAAMk9JBgAAAEDmKckAAAAAyLwxlWRbtmyJ+fPnR1VVVdTV1UVnZ+d5Xff6669HeXl5fPGLXxzL3QKQEXIGgGKSMwCMpOCSrK2tLdauXRsbN26Mrq6uWLFiRaxcuTK6u7vPed3AwECsXr06/vIv/3LMiwWg9MkZAIpJzgAwmrIkSZJCLli6dGksXrw4tm7dOjy2cOHCWLVqVbS2to563de//vW45pprYvr06fHSSy/F/v37z/s+BwcHI5fLxcDAQFRXVxeyXABGMJXPVTkDcPGbyueqnAG4+BXrXC3olWQnTpyIffv2RWNjY2q8sbExdu/ePep1Tz75ZLz55pvx0EMPndf9DA0NxeDgYOoGQOmTMwAUk5wB4FwKKsn6+vri1KlTUVNTkxqvqamJ3t7eEa/57W9/G+vXr48dO3ZEeXn5ed1Pa2tr5HK54du8efMKWSYAFyk5A0AxyRkAzmVMH9xfVlaW+jlJkryxiIhTp07F7bffHps2bYprr732vH//hg0bYmBgYPh25MiRsSwTgIuUnAGgmOQMACM5v6dC/tesWbNi+vTpec+yHDt2LO/ZmIiI48ePx969e6Orqyu+/e1vR0TE6dOnI0mSKC8vj507d8b111+fd11lZWVUVlYWsjQASoCcAaCY5AwA51LQK8kqKiqirq4uOjo6UuMdHR3R0NCQN7+6ujp+/etfx/79+4dvzc3N8ZnPfCb2798fS5cuvbDVA1BS5AwAxSRnADiXgl5JFhHR0tISd9xxR9TX18eyZcviZz/7WXR3d0dzc3NEfPTS4t/97nfxi1/8IqZNmxaLFi1KXX/FFVdEVVVV3jgARMgZAIpLzgAwmoJLsqampujv74/NmzdHT09PLFq0KNrb26O2tjYiInp6eqK7u3vcFwpANsgZAIpJzgAwmrIkSZLJXsTHGRwcjFwuFwMDA1FdXT3ZywG46DlX0+wHwPhyrqbZD4DxVaxzdUzfbgkAAAAApURJBgAAAEDmKckAAAAAyDwlGQAAAACZpyQDAAAAIPOUZAAAAABknpIMAAAAgMxTkgEAAACQeUoyAAAAADJPSQYAAABA5inJAAAAAMg8JRkAAAAAmackAwAAACDzlGQAAAAAZJ6SDAAAAIDMU5IBAAAAkHlKMgAAAAAyT0kGAAAAQOYpyQAAAADIPCUZAAAAAJmnJAMAAAAg85RkAAAAAGSekgwAAACAzFOSAQAAAJB5SjIAAAAAMk9JBgAAAEDmKckAAAAAyDwlGQAAAACZpyQDAAAAIPOUZAAAAABknpIMAAAAgMxTkgEAAACQeUoyAAAAADJvTCXZli1bYv78+VFVVRV1dXXR2dk56twXXnghbrzxxvjkJz8Z1dXVsWzZsvjlL3855gUDUPrkDADFJGcAGEnBJVlbW1usXbs2Nm7cGF1dXbFixYpYuXJldHd3jzj/1VdfjRtvvDHa29tj37598ZWvfCVuvfXW6OrquuDFA1B65AwAxSRnABhNWZIkSSEXLF26NBYvXhxbt24dHlu4cGGsWrUqWltbz+t3fP7zn4+mpqZ48MEHz2v+4OBg5HK5GBgYiOrq6kKWC8AIpvK5KmcALn5T+VyVMwAXv2KdqwW9kuzEiROxb9++aGxsTI03NjbG7t27z+t3nD59Oo4fPx6XX375qHOGhoZicHAwdQOg9MkZAIpJzgBwLgWVZH19fXHq1KmoqalJjdfU1ERvb+95/Y4f/vCH8f7778dtt9026pzW1tbI5XLDt3nz5hWyTAAuUnIGgGKSMwCcy5g+uL+srCz1c5IkeWMjeeaZZ+J73/tetLW1xRVXXDHqvA0bNsTAwMDw7ciRI2NZJgAXKTkDQDHJGQBGUl7I5FmzZsX06dPznmU5duxY3rMxZ2tra4t77rknnn322bjhhhvOObeysjIqKysLWRoAJUDOAFBMcgaAcynolWQVFRVRV1cXHR0dqfGOjo5oaGgY9bpnnnkm7rrrrnj66afjlltuGdtKASh5cgaAYpIzAJxLQa8ki4hoaWmJO+64I+rr62PZsmXxs5/9LLq7u6O5uTkiPnpp8e9+97v4xS9+EREfBcrq1avjRz/6UXzpS18aftbmkksuiVwuN44PBYBSIGcAKCY5A8BoCi7Jmpqaor+/PzZv3hw9PT2xaNGiaG9vj9ra2oiI6Onpie7u7uH5P/3pT+PkyZPxrW99K771rW8Nj995553x1FNPXfgjAKCkyBkAiknOADCasiRJkslexMcZHByMXC4XAwMDUV1dPdnLAbjoOVfT7AfA+HKuptkPgPFVrHN1TN9uCQAAAAClREkGAAAAQOYpyQAAAADIPCUZAAAAAJmnJAMAAAAg85RkAAAAAGSekgwAAACAzFOSAQAAAJB5SjIAAAAAMk9JBgAAAEDmKckAAAAAyDwlGQAAAACZpyQDAAAAIPOUZAAAAABknpIMAAAAgMxTkgEAAACQeUoyAAAAADJPSQYAAABA5inJAAAAAMg8JRkAAAAAmackAwAAACDzlGQAAAAAZJ6SDAAAAIDMU5IBAAAAkHlKMgAAAAAyT0kGAAAAQOYpyQAAAADIPCUZAAAAAJmnJAMAAAAg85RkAAAAAGSekgwAAACAzFOSAQAAAJB5SjIAAAAAMm9MJdmWLVti/vz5UVVVFXV1ddHZ2XnO+bt27Yq6urqoqqqKBQsWxOOPPz6mxQKQDXIGgGKSMwCMpOCSrK2tLdauXRsbN26Mrq6uWLFiRaxcuTK6u7tHnH/48OG4+eabY8WKFdHV1RXf/e53Y82aNfH8889f8OIBKD1yBoBikjMAjKYsSZKkkAuWLl0aixcvjq1btw6PLVy4MFatWhWtra1587/zne/Eyy+/HAcPHhwea25ujl/96lexZ8+e87rPwcHByOVyMTAwENXV1YUsF4ARTOVzVc4AXPym8rkqZwAufsU6V8sLmXzixInYt29frF+/PjXe2NgYu3fvHvGaPXv2RGNjY2rspptuim3btsWHH34YM2bMyLtmaGgohoaGhn8eGBiIiI82AYALd+Y8LfB5kqKTMwClQc7IGYBiKlbOFFSS9fX1xalTp6KmpiY1XlNTE729vSNe09vbO+L8kydPRl9fX8yePTvvmtbW1ti0aVPe+Lx58wpZLgAfo7+/P3K53GQvY5icASgtciZNzgCMr/HOmYJKsjPKyspSPydJkjf2cfNHGj9jw4YN0dLSMvzzu+++G7W1tdHd3T2lQnayDA4Oxrx58+LIkSNerv2/7Ema/UizH/kGBgbi6quvjssvv3yylzIiOTP5/L9Jsx9p9iOfPUmTM3Lm4/g/k2Y/8tmTNPuRVqycKagkmzVrVkyfPj3vWZZjx47lPbtyxpVXXjni/PLy8pg5c+aI11RWVkZlZWXeeC6X88fwf1RXV9uPs9iTNPuRZj/yTZs2pi85Lho5M/X4f5NmP9LsRz57kiZn0uRMPv9n0uxHPnuSZj/SxjtnCvptFRUVUVdXFx0dHanxjo6OaGhoGPGaZcuW5c3fuXNn1NfXj/j+fQCyS84AUExyBoBzKbhya2lpiSeeeCK2b98eBw8ejHXr1kV3d3c0NzdHxEcvLV69evXw/Obm5njrrbeipaUlDh48GNu3b49t27bF/fffP36PAoCSIWcAKCY5A8BoCv5Msqampujv74/NmzdHT09PLFq0KNrb26O2tjYiInp6eqK7u3t4/vz586O9vT3WrVsXjz32WMyZMyceffTR+NrXvnbe91lZWRkPPfTQiC9ZziL7kc+epNmPNPuRbyrviZyZGuxJmv1Isx/57EnaVN4POTM12JM0+5HPnqTZj7Ri7UdZMtW+lxkAAAAAJtjU+iRNAAAAAJgESjIAAAAAMk9JBgAAAEDmKckAAAAAyLwpU5Jt2bIl5s+fH1VVVVFXVxednZ3nnL9r166oq6uLqqqqWLBgQTz++OMTtNKJUch+vPDCC3HjjTfGJz/5yaiuro5ly5bFL3/5ywlcbfEV+vdxxuuvvx7l5eXxxS9+sbgLnASF7snQ0FBs3Lgxamtro7KyMj796U/H9u3bJ2i1xVfofuzYsSOuu+66uPTSS2P27Nlx9913R39//wSttrheffXVuPXWW2POnDlRVlYWL7300sdeU+pnaoScOZucySdr0uRMmpxJkzX55Ew+WZMmZ9LkTD5Z80eTljPJFPBP//RPyYwZM5Kf//znyYEDB5L77rsvueyyy5K33nprxPmHDh1KLr300uS+++5LDhw4kPz85z9PZsyYkTz33HMTvPLiKHQ/7rvvvuT73/9+8h//8R/JG2+8kWzYsCGZMWNG8l//9V8TvPLiKHQ/znj33XeTBQsWJI2Njcl11103MYudIGPZk69+9avJ0qVLk46OjuTw4cPJv//7vyevv/76BK66eArdj87OzmTatGnJj370o+TQoUNJZ2dn8vnPfz5ZtWrVBK+8ONrb25ONGzcmzz//fBIRyYsvvnjO+aV+piaJnDmbnMkna9LkTJqcySdr0uRMPlmTJmfS5Ew+WZM2WTkzJUqyJUuWJM3Nzamxz372s8n69etHnP/3f//3yWc/+9nU2De+8Y3kS1/6UtHWOJEK3Y+RfO5zn0s2bdo03kubFGPdj6ampuQf/uEfkoceeqikAiVJCt+Tf/7nf05yuVzS398/EcubcIXuxz/+4z8mCxYsSI09+uijydy5c4u2xslyPoFS6mdqksiZs8mZfLImTc6kyZlzkzVyZiSyJk3OpMmZfLJmdBOZM5P+dssTJ07Evn37orGxMTXe2NgYu3fvHvGaPXv25M2/6aabYu/evfHhhx8Wba0TYSz7cbbTp0/H8ePH4/LLLy/GEifUWPfjySefjDfffDMeeuihYi9xwo1lT15++eWor6+PH/zgB3HVVVfFtddeG/fff3/84Q9/mIglF9VY9qOhoSGOHj0a7e3tkSRJvP322/Hcc8/FLbfcMhFLnnJK+UyNkDNnkzP5ZE2anEmTM+PDuZpWyvsRIWvOJmfS5Ew+WXPhxutcLR/vhRWqr68vTp06FTU1Nanxmpqa6O3tHfGa3t7eEeefPHky+vr6Yvbs2UVbb7GNZT/O9sMf/jDef//9uO2224qxxAk1lv347W9/G+vXr4/Ozs4oL5/0P/FxN5Y9OXToULz22mtRVVUVL774YvT19cU3v/nNeOeddy769/GPZT8aGhpix44d0dTUFP/zP/8TJ0+ejK9+9avx4x//eCKWPOWU8pkaIWfOJmfyyZo0OZMmZ8aHczWtlPcjQtacTc6kyZl8subCjde5OumvJDujrKws9XOSJHljHzd/pPGLVaH7ccYzzzwT3/ve96KtrS2uuOKKYi1vwp3vfpw6dSpuv/322LRpU1x77bUTtbxJUcjfyOnTp6OsrCx27NgRS5YsiZtvvjkeeeSReOqpp0rm2ZdC9uPAgQOxZs2aePDBB2Pfvn3xyiuvxOHDh6O5uXkiljollfqZGiFnziZn8smaNDmTJmcunHP14+ePNH4xkzVpciZNzuSTNRdmPM7VSa+kZ82aFdOnT89rR48dO5bXAp5x5ZVXjji/vLw8Zs6cWbS1ToSx7McZbW1tcc8998Szzz4bN9xwQzGXOWEK3Y/jx4/H3r17o6urK7797W9HxEcHapIkUV5eHjt37ozrr79+QtZeLGP5G5k9e3ZcddVVkcvlhscWLlwYSZLE0aNH45prrinqmotpLPvR2toay5cvjwceeCAiIr7whS/EZZddFitWrIiHH374on/2tlClfKZGyJmzyZl8siZNzqTJmfHhXE0r5f2IkDVnkzNpciafrLlw43WuTvorySoqKqKuri46OjpS4x0dHdHQ0DDiNcuWLcubv3Pnzqivr48ZM2YUba0TYSz7EfHRsy133XVXPP300yX1HuRC96O6ujp+/etfx/79+4dvzc3N8ZnPfCb2798fS5cunailF81Y/kaWL18ev//97+O9994bHnvjjTdi2rRpMXfu3KKut9jGsh8ffPBBTJuWPv6mT58eEX98tiFLSvlMjZAzZ5Mz+WRNmpxJkzPjw7maVsr7ESFrziZn0uRMPllz4cbtXC3oY/6L5MxXnW7bti05cOBAsnbt2uSyyy5L/vu//ztJkiRZv359cscddwzPP/PVnuvWrUsOHDiQbNu2raS+MrnQ/Xj66aeT8vLy5LHHHkt6enqGb+++++5kPYRxVeh+nK3UvgkmSQrfk+PHjydz585N/uqv/ir5zW9+k+zatSu55pprknvvvXeyHsK4KnQ/nnzyyaS8vDzZsmVL8uabbyavvfZaUl9fnyxZsmSyHsK4On78eNLV1ZV0dXUlEZE88sgjSVdX1/DXR2ftTE0SOXM2OZNP1qTJmTQ5k0/WpMmZfLImTc6kyZl8siZtsnJmSpRkSZIkjz32WFJbW5tUVFQkixcvTnbt2jX8b3feeWfy5S9/OTX/X//1X5M///M/TyoqKpJPfepTydatWyd4xcVVyH58+ctfTiIi73bnnXdO/MKLpNC/j/+r1ALljEL35ODBg8kNN9yQXHLJJcncuXOTlpaW5IMPPpjgVRdPofvx6KOPJp/73OeSSy65JJk9e3by13/918nRo0cneNXF8S//8i/nPBOyeKYmiZw5m5zJJ2vS5EyanEmTNfnkTD5ZkyZn0uRMPlnzR5OVM2VJksHX4QEAAADA/zHpn0kGAAAAAJNNSQYAAABA5inJAAAAAMg8JRkAAAAAmackAwAAACDzlGQAAAAAZJ6SDAAAAIDMU5IBAAAAkHlKMgAAAAAyT0kGAAAAQOYpyQAAAADIPCUZAAAAAJmnJAMAAAAg85RkAAAAAGSekgwAAACAzFOSAQAAAJB5SjIAAAAAMk9JBgAAAEDmFVySvfrqq3HrrbfGnDlzoqysLF566aWPvWbXrl1RV1cXVVVVsWDBgnj88cfHslYAMkDOAFBMcgaA0RRckr3//vtx3XXXxU9+8pPzmn/48OG4+eabY8WKFdHV1RXf/e53Y82aNfH8888XvFgASp+cAaCY5AwAoylLkiQZ88VlZfHiiy/GqlWrRp3zne98J15++eU4ePDg8Fhzc3P86le/ij179oz1rgHIADkDQDHJGQD+r/Ji38GePXuisbExNXbTTTfFtm3b4sMPP4wZM2bkXTM0NBRDQ0PDP58+fTreeeedmDlzZpSVlRV7yQAlL0mSOH78eMyZMyemTbu4P55SzgBMPXJGzgAUU7FypuglWW9vb9TU1KTGampq4uTJk9HX1xezZ8/Ou6a1tTU2bdpU7KUBZN6RI0di7ty5k72MCyJnAKYuOQNAMY13zhS9JIuIvGdLzrzDc7RnUTZs2BAtLS3DPw8MDMTVV18dR44cierq6uItFCAjBgcHY968efGnf/qnk72UcSFnAKYWOSNnAIqpWDlT9JLsyiuvjN7e3tTYsWPHory8PGbOnDniNZWVlVFZWZk3Xl1dLVQAxlEpvOVDzgBMXXImTc4AjK/xzpmif0DAsmXLoqOjIzW2c+fOqK+vH/H9+wBQCDkDQDHJGYDsKLgke++992L//v2xf//+iPjoK5H3798f3d3dEfHRS4tXr149PL+5uTneeuutaGlpiYMHD8b27dtj27Ztcf/994/PIwCgpMgZAIpJzgAwmoLfbrl37974yle+Mvzzmffa33nnnfHUU09FT0/PcMBERMyfPz/a29tj3bp18dhjj8WcOXPi0Ucfja997WvjsHwASo2cAaCY5AwAoylLznzq5BQ2ODgYuVwuBgYGvIcfYBw4V9PsB8D4cq6m2Q+A8VWsc7Xon0kGAAAAAFOdkgwAAACAzFOSAQAAAJB5SjIAAAAAMk9JBgAAAEDmKckAAAAAyDwlGQAAAACZpyQDAAAAIPOUZAAAAABknpIMAAAAgMxTkgEAAACQeUoyAAAAADJPSQYAAABA5inJAAAAAMg8JRkAAAAAmackAwAAACDzlGQAAAAAZJ6SDAAAAIDMU5IBAAAAkHlKMgAAAAAyT0kGAAAAQOYpyQAAAADIPCUZAAAAAJmnJAMAAAAg85RkAAAAAGSekgwAAACAzFOSAQAAAJB5SjIAAAAAMk9JBgAAAEDmKckAAAAAyDwlGQAAAACZpyQDAAAAIPOUZAAAAABk3phKsi1btsT8+fOjqqoq6urqorOz85zzd+zYEdddd11ceumlMXv27Lj77rujv79/TAsGoPTJGQCKSc4AMJKCS7K2trZYu3ZtbNy4Mbq6umLFihWxcuXK6O7uHnH+a6+9FqtXr4577rknfvOb38Szzz4b//mf/xn33nvvBS8egNIjZwAoJjkDwGgKLskeeeSRuOeee+Lee++NhQsXxv/7f/8v5s2bF1u3bh1x/r/927/Fpz71qVizZk3Mnz8//uIv/iK+8Y1vxN69ey948QCUHjkDQDHJGQBGU1BJduLEidi3b180NjamxhsbG2P37t0jXtPQ0BBHjx6N9vb2SJIk3n777XjuuefilltuGfV+hoaGYnBwMHUDoPTJGQCKSc4AcC4FlWR9fX1x6tSpqKmpSY3X1NREb2/viNc0NDTEjh07oqmpKSoqKuLKK6+MT3ziE/HjH/941PtpbW2NXC43fJs3b14hywTgIiVnACgmOQPAuYzpg/vLyspSPydJkjd2xoEDB2LNmjXx4IMPxr59++KVV16Jw4cPR3Nz86i/f8OGDTEwMDB8O3LkyFiWCcBFSs4AUExyBoCRlBcyedasWTF9+vS8Z1mOHTuW92zMGa2trbF8+fJ44IEHIiLiC1/4Qlx22WWxYsWKePjhh2P27Nl511RWVkZlZWUhSwOgBMgZAIpJzgBwLgW9kqyioiLq6uqio6MjNd7R0RENDQ0jXvPBBx/EtGnpu5k+fXpEfPSMDQCcIWcAKCY5A8C5FPx2y5aWlnjiiSdi+/btcfDgwVi3bl10d3cPv9x4w4YNsXr16uH5t956a7zwwguxdevWOHToULz++uuxZs2aWLJkScyZM2f8HgkAJUHOAFBMcgaA0RT0dsuIiKampujv74/NmzdHT09PLFq0KNrb26O2tjYiInp6eqK7u3t4/l133RXHjx+Pn/zkJ/F3f/d38YlPfCKuv/76+P73vz9+jwKAkiFnACgmOQPAaMqSi+A1woODg5HL5WJgYCCqq6snezkAFz3napr9ABhfztU0+wEwvop1ro7p2y0BAAAAoJQoyQAAAADIPCUZAAAAAJmnJAMAAAAg85RkAAAAAGSekgwAAACAzFOSAQAAAJB5SjIAAAAAMk9JBgAAAEDmKckAAAAAyDwlGQAAAACZpyQDAAAAIPOUZAAAAABknpIMAAAAgMxTkgEAAACQeUoyAAAAADJPSQYAAABA5inJAAAAAMg8JRkAAAAAmackAwAAACDzlGQAAAAAZJ6SDAAAAIDMU5IBAAAAkHlKMgAAAAAyT0kGAAAAQOYpyQAAAADIPCUZAAAAAJmnJAMAAAAg85RkAAAAAGSekgwAAACAzFOSAQAAAJB5SjIAAAAAMk9JBgAAAEDmjakk27JlS8yfPz+qqqqirq4uOjs7zzl/aGgoNm7cGLW1tVFZWRmf/vSnY/v27WNaMAClT84AUExyBoCRlBd6QVtbW6xduza2bNkSy5cvj5/+9KexcuXKOHDgQFx99dUjXnPbbbfF22+/Hdu2bYs/+7M/i2PHjsXJkycvePEAlB45A0AxyRkARlOWJElSyAVLly6NxYsXx9atW4fHFi5cGKtWrYrW1ta8+a+88kp8/etfj0OHDsXll18+pkUODg5GLpeLgYGBqK6uHtPvAOCPpvK5KmcALn5T+VyVMwAXv2KdqwW93fLEiROxb9++aGxsTI03NjbG7t27R7zm5Zdfjvr6+vjBD34QV111VVx77bVx//33xx/+8IdR72doaCgGBwdTNwBKn5wBoJjkDADnUtDbLfv6+uLUqVNRU1OTGq+pqYne3t4Rrzl06FC89tprUVVVFS+++GL09fXFN7/5zXjnnXdGfR9/a2trbNq0qZClAVAC5AwAxSRnADiXMX1wf1lZWernJEnyxs44ffp0lJWVxY4dO2LJkiVx8803xyOPPBJPPfXUqM++bNiwIQYGBoZvR44cGcsyAbhIyRkAiknOADCSgl5JNmvWrJg+fXresyzHjh3LezbmjNmzZ8dVV10VuVxueGzhwoWRJEkcPXo0rrnmmrxrKisro7KyspClAVAC5AwAxSRnADiXgl5JVlFREXV1ddHR0ZEa7+joiIaGhhGvWb58efz+97+P9957b3jsjTfeiGnTpsXcuXPHsGQASpWcAaCY5AwA51Lw2y1bWlriiSeeiO3bt8fBgwdj3bp10d3dHc3NzRHx0UuLV69ePTz/9ttvj5kzZ8bdd98dBw4ciFdffTUeeOCB+Ju/+Zu45JJLxu+RAFAS5AwAxSRnABhNQW+3jIhoamqK/v7+2Lx5c/T09MSiRYuivb09amtrIyKip6cnuru7h+f/yZ/8SXR0dMTf/u3fRn19fcycOTNuu+22ePjhh8fvUQBQMuQMAMUkZwAYTVmSJMlkL+LjDA4ORi6Xi4GBgaiurp7s5QBc9JyrafYDYHw5V9PsB8D4Kta5OqZvtwQAAACAUqIkAwAAACDzlGQAAAAAZJ6SDAAAAIDMU5IBAAAAkHlKMgAAAAAyT0kGAAAAQOYpyQAAAADIPCUZAAAAAJmnJAMAAAAg85RkAAAAAGSekgwAAACAzFOSAQAAAJB5SjIAAAAAMk9JBgAAAEDmKckAAAAAyDwlGQAAAACZpyQDAAAAIPOUZAAAAABknpIMAAAAgMxTkgEAAACQeUoyAAAAADJPSQYAAABA5inJAAAAAMg8JRkAAAAAmackAwAAACDzlGQAAAAAZJ6SDAAAAIDMU5IBAAAAkHlKMgAAAAAyT0kGAAAAQOYpyQAAAADIPCUZAAAAAJk3ppJsy5YtMX/+/Kiqqoq6urro7Ow8r+tef/31KC8vjy9+8YtjuVsAMkLOAFBMcgaAkRRckrW1tcXatWtj48aN0dXVFStWrIiVK1dGd3f3Oa8bGBiI1atXx1/+5V+OebEAlD45A0AxyRkARlOWJElSyAVLly6NxYsXx9atW4fHFi5cGKtWrYrW1tZRr/v6178e11xzTUyfPj1eeuml2L9//3nf5+DgYORyuRgYGIjq6upClgvACKbyuSpnAC5+U/lclTMAF79inasFvZLsxIkTsW/fvmhsbEyNNzY2xu7du0e97sknn4w333wzHnroofO6n6GhoRgcHEzdACh9cgaAYpIzAJxLQSVZX19fnDp1KmpqalLjNTU10dvbO+I1v/3tb2P9+vWxY8eOKC8vP6/7aW1tjVwuN3ybN29eIcsE4CIlZwAoJjkDwLmM6YP7y8rKUj8nSZI3FhFx6tSpuP3222PTpk1x7bXXnvfv37BhQwwMDAzfjhw5MpZlAnCRkjMAFJOcAWAk5/dUyP+aNWtWTJ8+Pe9ZlmPHjuU9GxMRcfz48di7d290dXXFt7/97YiIOH36dCRJEuXl5bFz5864/vrr866rrKyMysrKQpYGQAmQMwAUk5wB4FwKeiVZRUVF1NXVRUdHR2q8o6MjGhoa8uZXV1fHr3/969i/f//wrbm5OT7zmc/E/v37Y+nSpRe2egBKipwBoJjkDADnUtArySIiWlpa4o477oj6+vpYtmxZ/OxnP4vu7u5obm6OiI9eWvy73/0ufvGLX8S0adNi0aJFqeuvuOKKqKqqyhsHgAg5A0BxyRkARlNwSdbU1BT9/f2xefPm6OnpiUWLFkV7e3vU1tZGRERPT090d3eP+0IByAY5A0AxyRkARlOWJEky2Yv4OIODg5HL5WJgYCCqq6snezkAFz3napr9ABhfztU0+wEwvop1ro7p2y0BAAAAoJQoyQAAAADIPCUZAAAAAJmnJAMAAAAg85RkAAAAAGSekgwAAACAzFOSAQAAAJB5SjIAAAAAMk9JBgAAAEDmKckAAAAAyDwlGQAAAACZpyQDAAAAIPOUZAAAAABknpIMAAAAgMxTkgEAAACQeUoyAAAAADJPSQYAAABA5inJAAAAAMg8JRkAAAAAmackAwAAACDzlGQAAAAAZJ6SDAAAAIDMU5IBAAAAkHlKMgAAAAAyT0kGAAAAQOYpyQAAAADIPCUZAAAAAJmnJAMAAAAg85RkAAAAAGSekgwAAACAzFOSAQAAAJB5SjIAAAAAMk9JBgAAAEDmjakk27JlS8yfPz+qqqqirq4uOjs7R537wgsvxI033hif/OQno7q6OpYtWxa//OUvx7xgAEqfnAGgmOQMACMpuCRra2uLtWvXxsaNG6OrqytWrFgRK1eujO7u7hHnv/rqq3HjjTdGe3t77Nu3L77yla/ErbfeGl1dXRe8eABKj5wBoJjkDACjKUuSJCnkgqVLl8bixYtj69atw2MLFy6MVatWRWtr63n9js9//vPR1NQUDz744HnNHxwcjFwuFwMDA1FdXV3IcgEYwVQ+V+UMwMVvKp+rcgbg4lesc7WgV5KdOHEi9u3bF42NjanxxsbG2L1793n9jtOnT8fx48fj8ssvH3XO0NBQDA4Opm4AlD45A0AxyRkAzqWgkqyvry9OnToVNTU1qfGampro7e09r9/xwx/+MN5///247bbbRp3T2toauVxu+DZv3rxClgnARUrOAFBMcgaAcxnTB/eXlZWlfk6SJG9sJM8880x873vfi7a2trjiiitGnbdhw4YYGBgYvh05cmQsywTgIiVnACgmOQPASMoLmTxr1qyYPn163rMsx44dy3s25mxtbW1xzz33xLPPPhs33HDDOedWVlZGZWVlIUsDoATIGQCKSc4AcC4FvZKsoqIi6urqoqOjIzXe0dERDQ0No173zDPPxF133RVPP/103HLLLWNbKQAlT84AUExyBoBzKeiVZBERLS0tcccdd0R9fX0sW7Ysfvazn0V3d3c0NzdHxEcvLf7d734Xv/jFLyLio0BZvXp1/OhHP4ovfelLw8/aXHLJJZHL5cbxoQBQCuQMAMUkZwAYTcElWVNTU/T398fmzZujp6cnFi1aFO3t7VFbWxsRET09PdHd3T08/6c//WmcPHkyvvWtb8W3vvWt4fE777wznnrqqQt/BACUFDkDQDHJGQBGU5YkSTLZi/g4g4ODkcvlYmBgIKqrqyd7OQAXPedqmv0AGF/O1TT7ATC+inWujunbLQEAAACglCjJAAAAAMg8JRkAAAAAmackAwAAACDzlGQAAAAAZJ6SDAAAAIDMU5IBAAAAkHlKMgAAAAAyT0kGAAAAQOYpyQAAAADIPCUZAAAAAJmnJAMAAAAg85RkAAAAAGSekgwAAACAzFOSAQAAAJB5SjIAAAAAMk9JBgAAAEDmKckAAAAAyDwlGQAAAACZpyQDAAAAIPOUZAAAAABknpIMAAAAgMxTkgEAAACQeUoyAAAAADJPSQYAAABA5inJAAAAAMg8JRkAAAAAmackAwAAACDzlGQAAAAAZJ6SDAAAAIDMU5IBAAAAkHlKMgAAAAAyT0kGAAAAQOaNqSTbsmVLzJ8/P6qqqqKuri46OzvPOX/Xrl1RV1cXVVVVsWDBgnj88cfHtFgAskHOAFBMcgaAkRRckrW1tcXatWtj48aN0dXVFStWrIiVK1dGd3f3iPMPHz4cN998c6xYsSK6urriu9/9bqxZsyaef/75C148AKVHzgBQTHIGgNGUJUmSFHLB0qVLY/HixbF169bhsYULF8aqVauitbU1b/53vvOdePnll+PgwYPDY83NzfGrX/0q9uzZc173OTg4GLlcLgYGBqK6urqQ5QIwgql8rsoZgIvfVD5X5QzAxa9Y52p5IZNPnDgR+/bti/Xr16fGGxsbY/fu3SNes2fPnmhsbEyN3XTTTbFt27b48MMPY8aMGXnXDA0NxdDQ0PDPAwMDEfHRJgBw4c6cpwU+T1J0cgagNMgZOQNQTMXKmYJKsr6+vjh16lTU1NSkxmtqaqK3t3fEa3p7e0ecf/Lkyejr64vZs2fnXdPa2hqbNm3KG583b14hywXgY/T390cul5vsZQyTMwClRc6kyRmA8TXeOVNQSXZGWVlZ6uckSfLGPm7+SONnbNiwIVpaWoZ/fvfdd6O2tja6u7unVMhOlsHBwZg3b14cOXLEy7X/lz1Jsx9p9iPfwMBAXH311XH55ZdP9lJGJGcmn/83afYjzX7ksydpckbOfBz/Z9LsRz57kmY/0oqVMwWVZLNmzYrp06fnPcty7NixvGdXzrjyyitHnF9eXh4zZ84c8ZrKysqorKzMG8/lcv4Y/o/q6mr7cRZ7kmY/0uxHvmnTxvQlx0UjZ6Ye/2/S7Eea/chnT9LkTJqcyef/TJr9yGdP0uxH2njnTEG/raKiIurq6qKjoyM13tHREQ0NDSNes2zZsrz5O3fujPr6+hHfvw9AdskZAIpJzgBwLgVXbi0tLfHEE0/E9u3b4+DBg7Fu3bro7u6O5ubmiPjopcWrV68ent/c3BxvvfVWtLS0xMGDB2P79u2xbdu2uP/++8fvUQBQMuQMAMUkZwAYTcGfSdbU1BT9/f2xefPm6OnpiUWLFkV7e3vU1tZGRERPT090d3cPz58/f360t7fHunXr4rHHHos5c+bEo48+Gl/72tfO+z4rKyvjoYceGvEly1lkP/LZkzT7kWY/8k3lPZEzU4M9SbMfafYjnz1Jm8r7IWemBnuSZj/y2ZM0+5FWrP0oS6ba9zIDAAAAwASbWp+kCQAAAACTQEkGAAAAQOYpyQAAAADIPCUZAAAAAJk3ZUqyLVu2xPz586Oqqirq6uqis7PznPN37doVdXV1UVVVFQsWLIjHH398glY6MQrZjxdeeCFuvPHG+OQnPxnV1dWxbNmy+OUvfzmBqy2+Qv8+znj99dejvLw8vvjFLxZ3gZOg0D0ZGhqKjRs3Rm1tbVRWVsanP/3p2L59+wSttvgK3Y8dO3bEddddF5deemnMnj077r777ujv75+g1RbXq6++GrfeemvMmTMnysrK4qWXXvrYa0r9TI2QM2eTM/lkTZqcSZMzabImn5zJJ2vS5EyanMkna/5o0nImmQL+6Z/+KZkxY0by85//PDlw4EBy3333JZdddlny1ltvjTj/0KFDyaWXXprcd999yYEDB5Kf//znyYwZM5LnnntugldeHIXux3333Zd8//vfT/7jP/4jeeONN5INGzYkM2bMSP7rv/5rgldeHIXuxxnvvvtusmDBgqSxsTG57rrrJmaxE2Qse/LVr341Wbp0adLR0ZEcPnw4+fd///fk9ddfn8BVF0+h+9HZ2ZlMmzYt+dGPfpQcOnQo6ezsTD7/+c8nq1atmuCVF0d7e3uycePG5Pnnn08iInnxxRfPOb/Uz9QkkTNnkzP5ZE2anEmTM/lkTZqcySdr0uRMmpzJJ2vSJitnpkRJtmTJkqS5uTk19tnPfjZZv379iPP//u//PvnsZz+bGvvGN76RfOlLXyraGidSofsxks997nPJpk2bxntpk2Ks+9HU1JT8wz/8Q/LQQw+VVKAkSeF78s///M9JLpdL+vv7J2J5E67Q/fjHf/zHZMGCBamxRx99NJk7d27R1jhZzidQSv1MTRI5czY5k0/WpMmZNDlzbrJGzoxE1qTJmTQ5k0/WjG4ic2bS32554sSJ2LdvXzQ2NqbGGxsbY/fu3SNes2fPnrz5N910U+zduzc+/PDDoq11IoxlP852+vTpOH78eFx++eXFWOKEGut+PPnkk/Hmm2/GQw89VOwlTrix7MnLL78c9fX18YMf/CCuuuqquPbaa+P++++PP/zhDxOx5KIay340NDTE0aNHo729PZIkibfffjuee+65uOWWWyZiyVNOKZ+pEXLmbHImn6xJkzNpcmZ8OFfTSnk/ImTN2eRMmpzJJ2su3Hidq+XjvbBC9fX1xalTp6KmpiY1XlNTE729vSNe09vbO+L8kydPRl9fX8yePbto6y22sezH2X74wx/G+++/H7fddlsxljihxrIfv/3tb2P9+vXR2dkZ5eWT/ic+7sayJ4cOHYrXXnstqqqq4sUXX4y+vr745je/Ge+8885F/z7+sexHQ0ND7NixI5qamuJ//ud/4uTJk/HVr341fvzjH0/EkqecUj5TI+TM2eRMPlmTJmfS5Mz4cK6mlfJ+RMias8mZNDmTT9ZcuPE6Vyf9lWRnlJWVpX5OkiRv7OPmjzR+sSp0P8545pln4nvf+160tbXFFVdcUazlTbjz3Y9Tp07F7bffHps2bYprr712opY3KQr5Gzl9+nSUlZXFjh07YsmSJXHzzTfHI488Ek899VTJPPtSyH4cOHAg1qxZEw8++GDs27cvXnnllTh8+HA0NzdPxFKnpFI/UyPkzNnkTD5ZkyZn0uTMhXOufvz8kcYvZrImTc6kyZl8subCjMe5OumV9KxZs2L69Ol57eixY8fyWsAzrrzyyhHnl5eXx8yZM4u21okwlv04o62tLe6555549tln44YbbijmMidMoftx/Pjx2Lt3b3R1dcW3v/3tiPjoQE2SJMrLy2Pnzp1x/fXXT8jai2UsfyOzZ8+Oq666KnK53PDYwoULI0mSOHr0aFxzzTVFXXMxjWU/WltbY/ny5fHAAw9ERMQXvvCFuOyyy2LFihXx8MMPX/TP3haqlM/UCDlzNjmTT9akyZk0OTM+nKtppbwfEbLmbHImTc7kkzUXbrzO1Ul/JVlFRUXU1dVFR0dHaryjoyMaGhpGvGbZsmV583fu3Bn19fUxY8aMoq11IoxlPyI+erblrrvuiqeffrqk3oNc6H5UV1fHr3/969i/f//wrbm5OT7zmc/E/v37Y+nSpRO19KIZy9/I8uXL4/e//3289957w2NvvPFGTJs2LebOnVvU9RbbWPbjgw8+iGnT0sff9OnTI+KPzzZkSSmfqRFy5mxyJp+sSZMzaXJmfDhX00p5PyJkzdnkTJqcySdrLty4nasFfcx/kZz5qtNt27YlBw4cSNauXZtcdtllyX//938nSZIk69evT+64447h+We+2nPdunXJgQMHkm3btpXUVyYXuh9PP/10Ul5enjz22GNJT0/P8O3dd9+drIcwrgrdj7OV2jfBJEnhe3L8+PFk7ty5yV/91V8lv/nNb5Jdu3Yl11xzTXLvvfdO1kMYV4Xux5NPPpmUl5cnW7ZsSd58883ktddeS+rr65MlS5ZM1kMYV8ePH0+6urqSrq6uJCKSRx55JOnq6hr++uisnalJImfOJmfyyZo0OZMmZ/LJmjQ5k0/WpMmZNDmTT9akTVbOTImSLEmS5LHHHktqa2uTioqKZPHixcmuXbuG/+3OO+9MvvzlL6fm/+u//mvy53/+50lFRUXyqU99Ktm6desEr7i4CtmPL3/5y0lE5N3uvPPOiV94kRT69/F/lVqgnFHonhw8eDC54YYbkksuuSSZO3du0tLSknzwwQcTvOriKXQ/Hn300eRzn/tccskllySzZ89O/vqv/zo5evToBK+6OP7lX/7lnGdCFs/UJJEzZ5Mz+WRNmpxJkzNpsiafnMkna9LkTJqcySdr/miycqYsSTL4OjwAAAAA+D8m/TPJAAAAAGCyKckAAAAAyDwlGQAAAACZpyQDAAAAIPOUZAAAAABknpIMAAAAgMxTkgEAAACQeUoyAAAAADJPSQYAAABA5inJAAAAAMg8JRkAAAAAmackAwAAACDz/j/3qpkSLOYPoAAAAABJRU5ErkJggg==",
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -2757,60 +1180,19 @@
},
{
"cell_type": "code",
- "execution_count": 25,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " scenario \n",
- " mp_EUR/MWh \n",
- " ecc \n",
- " exp_qty_TWh \n",
- " total_cost_bnEUR \n",
- " system_savings_bnEUR \n",
- " system_savings_EUR/TWh \n",
- " elec_price_EUR/MWh \n",
- " elec_savings_bnEUR \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- "Empty DataFrame\n",
- "Columns: [scenario, mp_EUR/MWh, ecc, exp_qty_TWh, total_cost_bnEUR, system_savings_bnEUR, system_savings_EUR/TWh, elec_price_EUR/MWh, elec_savings_bnEUR]\n",
- "Index: []"
- ]
- },
- "execution_count": 25,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
- "df"
+ "df.to_csv(\"bright_sensitivity_analysis_241104.csv\", index=False)"
]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
}
],
"metadata": {