-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcondense_reg.py
executable file
·750 lines (624 loc) · 30.1 KB
/
condense_reg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
import os
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torchvision import datasets, transforms
from data import transform_imagenet, transform_cifar, transform_svhn, transform_mnist, transform_fashion
from data import TensorDataset, ImageFolder, save_img
from data import ClassDataLoader, ClassMemDataLoader, MultiEpochsDataLoader, Data
from data import MEANS, STDS
from train import define_model, train_epoch
from test import test_data, load_ckpt
from misc.augment import DiffAug
from misc import utils
from math import ceil
from matchloss import *
from reg_ipcx import *
import glob
import pickle
# Dream
from query_strategies import RandomSampling, KMeansSampling
import time
from aim import Run, Text
# Dream
def get_strategy(name):
if name == "RandomSampling":
return RandomSampling
elif name == "KMeansSampling":
return KMeansSampling
else:
raise NotImplementedError
class Synthesizer():
"""Condensed data class
"""
def __init__(self, args, nclass, nchannel, hs, ws, device='cuda'):
self.ipc = args.ipc
self.nclass = nclass
self.nchannel = nchannel
self.size = (hs, ws)
self.device = device
self.dream = args.slct_type == 'dream' # whether to use DREAM initialization
self.data = torch.randn(size=(self.nclass * self.ipc, self.nchannel, hs, ws),
dtype=torch.float,
requires_grad=True,
device=self.device)
self.data.data = torch.clamp(self.data.data / 4 + 0.5, min=0., max=1.)
self.targets = torch.tensor([np.ones(self.ipc) * i for i in range(nclass)],
dtype=torch.long,
requires_grad=False,
device=self.device).view(-1)
logger(f"\nDefine synthetic data: {self.data.shape}")
self.factor = max(1, args.factor)
self.decode_type = args.decode_type
self.resize = nn.Upsample(size=self.size, mode='bilinear')
logger(f"Factor: {self.factor} ({self.decode_type})")
def init(self, loader, init_type='noise'):
"""Condensed data initialization
"""
if init_type == 'random':
logger("Random initialize synset")
for c in range(self.nclass):
img, _ = loader.class_sample(c, self.ipc)
self.data.data[self.ipc * c:self.ipc * (c + 1)] = img.data.to(self.device)
elif init_type == 'mix':
logger("Mixed initialize synset")
for c in range(self.nclass):
if not self.dream: # use IDC initialization
img, _ = loader.class_sample(c, self.ipc * self.factor**2, start_idx=args.start_idx)
img = img.data.to(self.device)
else: # use DREAM initialization
assert hasattr(self, "dream_init_images"), "DREAM initialization images not found"
img = self.dream_init_images[c]
img = img.data.to(self.device)
s = self.size[0] // self.factor
remained = self.size[0] % self.factor
k = 0
n = self.ipc
h_loc = 0
for i in range(self.factor):
h_r = s + 1 if i < remained else s
w_loc = 0
for j in range(self.factor):
w_r = s + 1 if j < remained else s
img_part = F.interpolate(img[k * n:(k + 1) * n], size=(h_r, w_r))
self.data.data[n * c:n * (c + 1), :, h_loc:h_loc + h_r,
w_loc:w_loc + w_r] = img_part
w_loc += w_r
k += 1
h_loc += h_r
elif init_type == 'noise':
pass
def parameters(self):
parameter_list = [self.data]
return parameter_list
def subsample(self, data, target, max_size=-1):
if (data.shape[0] > max_size) and (max_size > 0):
indices = np.random.permutation(data.shape[0])
indices = indices[:max_size]
data = data[indices]
target = target[indices]
# [49, 123, 231, ...]
else:
indices = np.arange(data.shape[0])
# [ 0, ..., 39]
return data, target, indices
def decode_zoom(self, img, target, factor):
"""Uniform multi-formation
"""
h = img.shape[-1]
remained = h % factor
if remained > 0:
img = F.pad(img, pad=(0, factor - remained, 0, factor - remained), value=0.5)
s_crop = ceil(h / factor)
n_crop = factor**2
cropped = []
for i in range(factor):
for j in range(factor):
h_loc = i * s_crop
w_loc = j * s_crop
cropped.append(img[:, :, h_loc:h_loc + s_crop, w_loc:w_loc + s_crop])
cropped = torch.cat(cropped)
data_dec = self.resize(cropped)
target_dec = torch.cat([target for _ in range(n_crop)])
return data_dec, target_dec
def decode_zoom_multi(self, img, target, factor_max):
"""Multi-scale multi-formation
"""
data_multi = []
target_multi = []
for factor in range(1, factor_max + 1):
decoded = self.decode_zoom(img, target, factor)
data_multi.append(decoded[0])
target_multi.append(decoded[1])
return torch.cat(data_multi), torch.cat(target_multi)
def decode_zoom_bound(self, img, target, factor_max, bound=128):
"""Uniform multi-formation with bounded number of synthetic data
"""
bound_cur = bound - len(img)
budget = len(img)
data_multi = []
target_multi = []
idx = 0
decoded_total = 0
for factor in range(factor_max, 0, -1):
decode_size = factor**2
if factor > 1:
n = min(bound_cur // decode_size, budget)
else:
n = budget
decoded = self.decode_zoom(img[idx:idx + n], target[idx:idx + n], factor)
data_multi.append(decoded[0])
target_multi.append(decoded[1])
idx += n
budget -= n
decoded_total += n * decode_size
bound_cur = bound - decoded_total - budget
if budget == 0:
break
data_multi = torch.cat(data_multi)
target_multi = torch.cat(target_multi)
return data_multi, target_multi
def decode(self, data, target, bound=128):
"""Multi-formation
"""
if self.factor > 1:
if self.decode_type == 'multi':
data, target = self.decode_zoom_multi(data, target, self.factor)
elif self.decode_type == 'bound':
data, target = self.decode_zoom_bound(data, target, self.factor, bound=bound)
else:
data, target = self.decode_zoom(data, target, self.factor)
return data, target
def sample(self, c, max_size=128):
"""Sample synthetic data per class
"""
idx_from = self.ipc * c
idx_to = self.ipc * (c + 1)
data = self.data[idx_from:idx_to]
target = self.targets[idx_from:idx_to]
data, target = self.decode(data, target, bound=max_size)
data, target, indices = self.subsample(data, target, max_size=max_size)
return data, target, indices
def loader(self, args, augment=True, ipcx=-1, indices=None):
"""Data loader for condensed data
"""
if args.dataset == 'imagenet':
train_transform, _ = transform_imagenet(augment=augment,
from_tensor=True,
size=0,
rrc=args.rrc,
rrc_size=self.size[0])
elif args.dataset[:5] == 'cifar':
train_transform, _ = transform_cifar(augment=augment, from_tensor=True)
elif args.dataset == 'svhn':
train_transform, _ = transform_svhn(augment=augment, from_tensor=True)
elif args.dataset == 'mnist':
train_transform, _ = transform_mnist(augment=augment, from_tensor=True)
elif args.dataset == 'fashion':
train_transform, _ = transform_fashion(augment=augment, from_tensor=True)
data_dec = []
target_dec = []
for c in range(self.nclass):
idx_from = self.ipc * c
if ipcx > 0:
idx_to = self.ipc * c + ipcx
else:
idx_to = self.ipc * (c + 1)
data = self.data[idx_from:idx_to].detach()
target = self.targets[idx_from:idx_to].detach()
data, target = self.decode(data, target)
if indices is not None: # use indices after decoding
data = data[indices]
target = target[indices]
data_dec.append(data)
target_dec.append(target)
data_dec = torch.cat(data_dec)
target_dec = torch.cat(target_dec)
train_dataset = TensorDataset(data_dec.cpu(), target_dec.cpu(), train_transform)
logger(f"Decode condensed data: {data_dec.shape}")
nw = 0 if not augment else args.workers
train_loader = MultiEpochsDataLoader(train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=nw,
persistent_workers=nw > 0)
return train_loader
def test(self, args, val_loader, logger, ipcx=-1, indices=None, aim_run=None, step=None, context=None):
"""Condensed data evaluation
"""
loader = self.loader(args, args.augment, ipcx=ipcx, indices=indices)
return test_data(args, loader, val_loader, logger=logger, aim_run=aim_run, step=step, context=context)
def load_resized_data(args):
"""Load original training data (fixed spatial size and without augmentation) for condensation
"""
if args.dataset == 'cifar10':
train_dataset = datasets.CIFAR10(args.data_dir, train=True, transform=transforms.ToTensor(), download=True)
normalize = transforms.Normalize(mean=MEANS['cifar10'], std=STDS['cifar10'])
transform_test = transforms.Compose([transforms.ToTensor(), normalize])
val_dataset = datasets.CIFAR10(args.data_dir, train=False, transform=transform_test)
train_dataset.nclass = 10
elif args.dataset == 'cifar100':
train_dataset = datasets.CIFAR100(args.data_dir,
train=True,
transform=transforms.ToTensor(),
download=True)
normalize = transforms.Normalize(mean=MEANS['cifar100'], std=STDS['cifar100'])
transform_test = transforms.Compose([transforms.ToTensor(), normalize])
val_dataset = datasets.CIFAR100(args.data_dir, train=False, transform=transform_test)
train_dataset.nclass = 100
elif args.dataset == 'svhn':
train_dataset = datasets.SVHN(os.path.join(args.data_dir, 'svhn'),
split='train',
transform=transforms.ToTensor(),
download=True)
train_dataset.targets = train_dataset.labels
normalize = transforms.Normalize(mean=MEANS['svhn'], std=STDS['svhn'])
transform_test = transforms.Compose([transforms.ToTensor(), normalize])
val_dataset = datasets.SVHN(os.path.join(args.data_dir, 'svhn'),
split='test',
transform=transform_test)
train_dataset.nclass = 10
elif args.dataset == 'mnist':
train_dataset = datasets.MNIST(args.data_dir, train=True, transform=transforms.ToTensor())
normalize = transforms.Normalize(mean=MEANS['mnist'], std=STDS['mnist'])
transform_test = transforms.Compose([transforms.ToTensor(), normalize])
val_dataset = datasets.MNIST(args.data_dir, train=False, transform=transform_test)
train_dataset.nclass = 10
elif args.dataset == 'fashion':
train_dataset = datasets.FashionMNIST(args.data_dir,
train=True,
transform=transforms.ToTensor())
normalize = transforms.Normalize(mean=MEANS['fashion'], std=STDS['fashion'])
transform_test = transforms.Compose([transforms.ToTensor(), normalize])
val_dataset = datasets.FashionMNIST(args.data_dir, train=False, transform=transform_test)
train_dataset.nclass = 10
elif args.dataset == 'imagenet':
traindir = os.path.join(args.imagenet_dir, 'train')
valdir = os.path.join(args.imagenet_dir, 'val')
# We preprocess images to the fixed size (default: 224)
resize = transforms.Compose([
transforms.Resize(args.size),
transforms.CenterCrop(args.size),
transforms.PILToTensor()
])
if args.load_memory: # uint8
transform = None
load_transform = resize
else:
transform = transforms.Compose([resize, transforms.ConvertImageDtype(torch.float)])
load_transform = None
_, test_transform = transform_imagenet(size=args.size)
train_dataset = ImageFolder(traindir,
transform=transform,
nclass=args.nclass,
phase=args.phase,
seed=args.dseed,
load_memory=args.load_memory,
load_transform=load_transform)
val_dataset = ImageFolder(valdir,
test_transform,
nclass=args.nclass,
phase=args.phase,
seed=args.dseed,
load_memory=False)
val_loader = MultiEpochsDataLoader(val_dataset,
batch_size=args.batch_size // 2,
shuffle=False,
persistent_workers=True,
num_workers=4)
assert train_dataset[0][0].shape[-1] == val_dataset[0][0].shape[-1] # width check
return train_dataset, val_loader
def remove_aug(augtype, remove_aug):
aug_list = []
for aug in augtype.split("_"):
if aug not in remove_aug.split("_"):
aug_list.append(aug)
return "_".join(aug_list)
def diffaug(args, device='cuda'):
"""Differentiable augmentation for condensation
"""
aug_type = args.aug_type
normalize = utils.Normalize(mean=MEANS[args.dataset], std=STDS[args.dataset], device=device)
logger(f"Augmentataion Matching: {aug_type}")
augment = DiffAug(strategy=aug_type, batch=True)
aug_batch = transforms.Compose([normalize, augment])
if args.mixup_net == 'cut':
aug_type = remove_aug(aug_type, 'cutout')
logger(f"Augmentataion Net update: {aug_type}")
augment_rand = DiffAug(strategy=aug_type, batch=False)
aug_rand = transforms.Compose([normalize, augment_rand])
return aug_batch, aug_rand
def pretrain_sample(args, model, verbose=False):
"""Load pretrained networks
"""
folder_base = f'./pretrained/{args.datatag}/{args.modeltag}_cut'
folder_list = glob.glob(f'{folder_base}*')
tag = np.random.randint(len(folder_list))
folder = folder_list[tag]
epoch = args.pt_from
if args.pt_num > 1:
epoch = np.random.randint(args.pt_from, args.pt_from + args.pt_num)
ckpt = f'checkpoint{epoch}.pth.tar'
file_dir = os.path.join(folder, ckpt)
load_ckpt(model, file_dir, verbose=verbose)
def condense(args, logger, device='cuda'):
"""Optimize condensed data
"""
device = 'cuda' if torch.cuda.is_available() else 'cpu'
trainset, val_loader = load_resized_data(args)
nclass = trainset.nclass
nch, hs, ws = trainset[0][0].shape
# DREAM Setup
if args.slct_type == 'dream':
# Define model: used for dream initialization only
model = define_model(args, nclass).to(device)
model.train()
optim_net = optim.SGD(model.parameters(),
args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
images_all = []
labels_all = []
images_all = [torch.unsqueeze(trainset[i][0], dim=0) for i in range(len(trainset))]
labels_all = [trainset[i][1] for i in range(len(trainset))]
images_all = torch.cat(images_all, dim=0).to(device)
labels_all = torch.tensor(labels_all, dtype=torch.long, device=device)
dataset = Data(images_all, labels_all)
strategy_init = get_strategy('KMeansSampling')(dataset, model)
query_list=torch.tensor(np.ones(shape=(nclass,args.batch_real)), dtype=torch.long, requires_grad=False, device=device)
def get_init_images(c,n):
query_idxs= strategy_init.query(c,n)
return images_all[query_idxs]
# Define real dataset and loader
if args.load_memory:
loader_real = ClassMemDataLoader(trainset, batch_size=args.batch_real)
else:
loader_real = ClassDataLoader(trainset,
batch_size=args.batch_real,
num_workers=args.workers,
shuffle=True,
pin_memory=True,
drop_last=True)
# Define syn dataset
synset = Synthesizer(args, nclass, nch, hs, ws)
resume_epoch = 0
if args.load_checkpoint:
logger("======= LOAD CHECKPOINT SETTING ========")
resume_epoch = torch.load(os.path.join(args.save_dir, 'it.pt'))
synset.data, _ = torch.load(os.path.join(args.save_dir, f'data_{resume_epoch}.pt'))
synset.data = synset.data.cuda().requires_grad_(True)
logger(f"RESUME FROM ITERATION: {resume_epoch}")
else:
if args.slct_type == 'dream':
imgs = [[] for i in range(nclass)]
for c in range(nclass):
imgs[c] = get_init_images(c, synset.ipc * synset.factor**2).detach()
synset.dream_init_images = imgs
synset.init(loader_real, init_type=args.init)
logger(f"init_size: {synset.data.size()}")
save_img(os.path.join(args.save_dir, 'init.png'),
synset.data,
unnormalize=False,
dataname=args.dataset)
step = resume_epoch
# Define augmentation function
aug, aug_rand = diffaug(args)
if args.start_idx > 0:
save_img(os.path.join(args.save_dir, f'aug.png'),
aug(synset.sample(0, max_size=args.batch_syn_max)[0]),
unnormalize=True,
dataname=args.dataset)
# MDC Setup
use_reg_flag = args.adaptive_reg
if use_reg_flag:
# create regularizer objects for each class
regularizer_list = []
for c in range(nclass):
regularizer_list.append(Regularizer(args))
freeze_ipc = -1
# compute regularize index
ipcx_index_class_dict = {}
ipcs_list = list(range(1, args.ipc))
args.adaptive_reg_list = ipcs_list
for ipcx in ipcs_list:
ipcx_num = ipcx * args.factor ** 2
ipcx_index_class = [i for i in range(ipcx_num)]
ipcx_index_class_dict[ipcx] = ipcx_index_class
if not args.test:
synset.test(args, val_loader, logger, aim_run=run, step=step, context=f"ipc{args.ipc}")
if use_reg_flag and (args.ipc <= 10) and (args.factor < 3): # test for the regularized ipc version
for ipcx in set(args.adaptive_reg_list):
ipcx_index_class = ipcx_index_class_dict[ipcx]
synset.test(args, val_loader, logger, ipcx=-1, indices=ipcx_index_class, aim_run=run, step=step, context=f"ipc{ipcx}")
# Data distillation
optim_img = torch.optim.SGD(synset.parameters(), lr=args.lr_img, momentum=args.mom_img)
ts = utils.TimeStamp(args.time)
period = 100
n_iter = args.niter * 100 // args.inner_loop
it_log = n_iter // 50
it_test = [i*period for i in range(args.niter//period+1)]
it_test += [n_iter]
logger(f"\nStart condensing with {args.match} matching for {n_iter} iteration")
args.fix_iter = max(1, args.fix_iter)
for init_loop in range(resume_epoch, n_iter):
if init_loop % args.fix_iter == 0:
model = define_model(args, nclass).to(device)
model.train()
optim_net = optim.SGD(model.parameters(),
args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
criterion = nn.CrossEntropyLoss()
if args.pt_from >= 0:
pretrain_sample(args, model)
if args.early > 0:
for _ in range(args.early):
train_epoch(args,
loader_real,
model,
criterion,
optim_net,
aug=aug_rand,
mixup=args.mixup_net)
loss_total = 0
synset.data.data = torch.clamp(synset.data.data, min=0., max=1.)
loss_list_per_class = [[] for i in range(nclass)] # should have shape (nclass, )
freeze_ipc_list = [-1 for i in range(nclass)]
for model_loop in range(args.inner_loop):
ts.set()
if args.test:
continue
# Update synset
for c in range(nclass):
if args.slct_type == 'dream': # use DREAM sampling
if model_loop % args.interval == 0:
strategy = get_strategy('KMeansSampling')(dataset, model)
query_index = strategy.query_match_sample(c,args.batch_real)
query_list[c] = query_index
img = images_all[query_list[c]]
lab = torch.tensor([np.ones(img.size(0))*c], dtype=torch.long, requires_grad=False, device=device).view(-1)
else:
img, lab = loader_real.class_sample(c)
img_syn, lab_syn, sampled_indices = synset.sample(c, max_size=args.batch_syn_max)
ts.stamp("data")
if use_reg_flag:
regularizer_list[c].update_status(init_loop) # update regularizer status
freeze_ipc_list[c] = regularizer_list[c].get_freeze_ipc()
if freeze_ipc_list[c] > 0: # freeze the ipcx
freeze_ipc_idx = ipcx_index_class_dict[freeze_ipc_list[c]]
detached_img_syn = img_syn[freeze_ipc_idx].detach()
detached_img_syn.requires_grad = False
# replace the freeze ipcx with the detached version
img_syn[freeze_ipc_idx] = detached_img_syn
n = img.shape[0]
img_aug = aug(torch.cat([img, img_syn]))
ts.stamp("aug")
# track the feature loss of each IPC
condition1 = args.adaptive_reg
condition2 = (init_loop == 0) or ((init_loop + 1) % args.adaptive_period == 0)
if condition1 and condition2:
# loss_list contains the loss of all ipcx in search space
loss_list = feat_loss_for_ipc_reg(args, img_aug[:n], img_aug[n:], model, indices=ipcx_index_class_dict)
loss_list_per_class[c].append(loss_list)
if use_reg_flag:
reg_ipcx_list = regularizer_list[c].get_regularized_ipc()
loss = grad_loss_for_img_update(args, img_aug[:n], img_aug[n:], lab, lab_syn, model, ipcx_list=reg_ipcx_list, indices=ipcx_index_class_dict)
else:
loss = matchloss(args, img_aug[:n], img_aug[n:], lab, lab_syn, model)
loss_total += loss.item()
ts.stamp("loss")
optim_img.zero_grad()
loss.backward()
optim_img.step()
ts.stamp("backward")
# Net update
if args.n_data > 0:
for _ in range(args.net_epoch):
top1, top5, model_loss = train_epoch(args,
loader_real,
model,
criterion,
optim_net,
n_data=args.n_data,
aug=aug_rand,
mixup=args.mixup_net)
ts.stamp("net update")
if (model_loop + 1) % 10 == 0:
ts.flush()
if run and (not args.test):
run.track(top1, name="top1", step=init_loop+1, context={"subset": "model"})
run.track(model_loss, name="loss", step=init_loop+1, context={"subset": "model"})
# Logging
if (init_loop % it_log == 0) and (not args.test):
logger(
f"{utils.get_time()} (Iter {init_loop:3d}) loss: {loss_total/nclass/args.inner_loop:.1f}")
# update the regularizer
condition1 = args.adaptive_reg
condition2 = (init_loop == 0) or ((init_loop + 1) % args.adaptive_period == 0)
if condition1 and condition2:
for c in range(nclass):
if args.adaptive_class_wise:
cur_loss = torch.sum(tensor(loss_list_per_class[c]), axis=0)
cur_loss = torch.round(cur_loss/args.inner_loop, decimals=2).tolist()
else:
flattened_loss_list = torch.Tensor(loss_list_per_class).reshape(-1, len(loss_list_per_class[0][0]))
cur_loss = torch.sum(flattened_loss_list, axis=0)
cur_loss = torch.round(cur_loss/args.nclass/args.inner_loop, decimals=2).tolist()
regularizer_list[c].stats["cur_loss"] = cur_loss
run.track(Text(f"{cur_loss}"), name="loss", step = init_loop+1, context={"subset": "cur_loss"})
# update reg ipcx status
ipcx_list = select_reg_ipc(args, regularizer_list[c], init_loop+1, logger=logger, aim_run=run)
run.track(Text(f"Reg ipc: {ipcx_list}"), name="regularized_ipc", step=init_loop+1, context={"subset": f"class_{c}"})
regularizer_list[c].update_ipc_prev_list() # Clear prev list
for ipcx in ipcx_list:
regularizer_list[c].regularize_ipcx(ipcx, prev=True)
regularizer_list[c].set_quit_iteration(ipcx, init_loop+1 + args.adaptive_period) # quit and freeze ipcx after adaptive_period iterations
# update loss stats
regularizer_list[c].history.append(cur_loss)
regularizer_list[c].stats["prev_loss"] = cur_loss
regularizer_list[c].stats["cur_loss"] = []
condition1 = (init_loop + 1) in it_test
condition2 = args.adaptive_reg and ((init_loop + 1) % args.adaptive_period == 0)
if condition1 or condition2:
torch.save(init_loop+1, os.path.join(args.save_dir, f'it.pt'))
# save regularizer objectj as pickle file
pickle.dump(regularizer_list, open(os.path.join(args.save_dir, f"regularizer_{init_loop+1}.pkl"), "wb"))
# It is okay to clamp data to [0, 1] at here.
# synset.data.data = torch.clamp(synset.data.data, min=0., max=1.)
torch.save(
[synset.data.detach().cpu(), synset.targets.cpu()],
os.path.join(args.save_dir, f'data_{init_loop+1}.pt'))
logger("img and data saved!")
if not args.test:
synset.test(args, val_loader, logger, aim_run=run, step=init_loop+1, context=f"ipc{args.ipc}")
if args.adaptive_reg and (args.ipc <= 10) and (args.factor < 3): # test for the regularized ipc version
for ipcx in set(args.adaptive_reg_list):
ipcx_index_class = ipcx_index_class_dict[ipcx]
synset.test(args, val_loader, logger, ipcx=-1, indices=ipcx_index_class, aim_run=run, step=init_loop+1, context=f"ipc{ipcx}")
if __name__ == '__main__':
import shutil
from misc.utils import Logger
from argument import args
import torch.backends.cudnn as cudnn
import json
# create time for log
args.cur_time = time.strftime("%Y%m%d-%H%M%S")
assert args.ipc > 0
cudnn.benchmark = True
if args.seed > 0:
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
os.makedirs(args.save_dir, exist_ok=True)
cur_file = os.path.join(os.getcwd(), __file__)
shutil.copy(cur_file, args.save_dir)
logger = Logger(args.save_dir)
logger(f"Save dir: {args.save_dir}")
with open(os.path.join(args.save_dir, 'args.txt'), 'w') as f:
json.dump(args.__dict__, f, indent=2)
global run
if args.use_aim:
# check path exist: os.path.join(args.load_checkpoint, 'run_hash.pt')
hash_path = os.path.join(args.save_dir, 'run_hash.pt')
if os.path.exists(hash_path):
run_hash = torch.load(hash_path)
args.load_checkpoint = True
else:
run_hash = None
run = Run(experiment=args.exp_name, repo=args.aim_repo, run_hash=run_hash)
run.name = args.run_name
if not args.test:
torch.save(run.hash, os.path.join(args.save_dir, 'run_hash.pt'))
hyperparams = dict()
for key, value in vars(args).items():
hyperparams.update({key: value})
run["hparams"] = hyperparams
else:
run = None
condense(args, logger)
from misc.aim_export import aim_log
if run:
dir_name = args.save_dir
aim_log(run, dir_name, args)