-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathwandb.py
158 lines (128 loc) · 5.35 KB
/
wandb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import torch
import os
import wandb
import torchvision # torch package for vision related things
import torch.nn.functional as F # Parameterless functions, like (some) activation functions
import torchvision.datasets as datasets # Standard datasets
import torchvision.transforms as transforms # Transformations we can perform on our dataset for augmentation
from torch import optim # For optimizers like SGD, Adam, etc.
from torch import nn # All neural network modules
from torch.utils.data import DataLoader # Gives easier dataset managment by creating mini batches etc.
from tqdm import tqdm # For nice progress bar!
# Set Device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
wandb.login()
config=dict(
in_channels = 1,
num_classes = 10,
learning_rate = 0.001,
batch_size = 64,
num_epochs = 3,
slice=10,
load_model = True,
checkpoint_name = os.path.join("./checkpoints", "cnn_checkpoint.pth.tar" )
)
def save_checkpoint(state, config):
print("=> Saving Checkpoint")
torch.save(state, config.checkpoint_name)
def load_checkpoint(checkpoint, model, optimizer):
print("=> Loading checkpoint")
model.load_state_dict(checkpoint["model"])
optimizer.load_state_dict(checkpoint["optimizer"])
def model_pipeline(hyperparameters):
with wandb.init(project="cnn_demo",name = "pytorch", config=hyperparameters):
config = wandb.config
model, train_loader, test_loader, criterion, optimizer = make(config)
print(model)
train(model, train_loader, criterion, optimizer, config)
print(f"Train Accuracy = {test(model, train_loader)}")
print(f"Test Accuracy = {test(model, test_loader)}")
return model
def make(config):
train_dataset = datasets.MNIST(root="dataset/", train=True, transform=transforms.ToTensor(), download=True)
test_dataset = datasets.MNIST(root="dataset/", train=False, transform=transforms.ToTensor(), download=True)
# train_subset = torch.utils.data.DataLoader(train_dataset, indices=range(0, len(train_dataset), config.slice))
# test_subset = torch.utils.data.DataLoader(test_dataset, indices=range(0, len(test_dataset), config.slice))
train_loader = DataLoader(dataset=train_dataset, batch_size=config.batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=config.batch_size, shuffle=True)
model = CNN(config.in_channels, config.num_classes)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=config.learning_rate)
return model, train_loader, test_loader, criterion, optimizer
def train(model, loader, criterion, optimizer, config):
wandb.watch(model, criterion, log="all", log_freq=30)
if config.load_model:
load_checkpoint(torch.load(config.checkpoint_name), model, optimizer)
for epoch in range(config.num_epochs):
print(f"Training epoch: {epoch}")
losses = []
if epoch %2 == 0:
checkpoint = {"model" : model.state_dict(), "optimizer": optimizer.state_dict()}
save_checkpoint(checkpoint)
example_ct = 0
for batch_idx, (data, targets) in enumerate(tqdm(loader)):
# Get data to cuda if possible
data = data.to(device=device)
targets = targets.to(device=device)
# forward
scores = model(data)
loss = criterion(scores, targets)
losses.append(loss.item())
# backward
optimizer.zero_grad()
loss.backward()
# gradient descent or adam step
optimizer.step()
example_ct += len(data)
if batch_idx % 25 == 0:
train_log(loss, example_ct, epoch)
def train_log(loss, example_ct, epoch):
wandb.log({"epoch": epoch, "loss": loss}, step=example_ct)
print(f"Loss after" + str(example_ct).zfill(5) + f"examples: {loss:.3f}")
def test(model, loader):
num_correct = 0
num_samples = 0
model.eval()
with torch.no_grad():
for x, y in loader: # x=images, y=labels
x = x.to(device=device)
y = y.to(device=device)
scores = model(x)
_, predictions = scores.max(1)
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
accuracy = (100*num_correct)/num_samples
wandb.log({"Accuracy": accuracy})
model.train()
torch.onnx.export(model, x, "model.onnx")
wandb.save("model.onnx")
return accuracy
class CNN(nn.Module):
def __init__(self, in_channels=1, num_classes=10):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(
in_channels=in_channels,
out_channels=8,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
)
self.pool = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
self.conv2 = nn.Conv2d(
in_channels=8,
out_channels=16,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
)
self.fc1 = nn.Linear(16 * 7 * 7, num_classes)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool(x)
x = F.relu(self.conv2(x))
x = self.pool(x)
x = x.reshape(x.shape[0], -1)
x = self.fc1(x)
return x
if __name__ == "__main__":
model = model_pipeline(config)