-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblr3001.mod
204 lines (190 loc) · 4.81 KB
/
blr3001.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
TITLE BLR rate
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX blr3001
}
UNITS {
(mV) = (millivolt)
(mA) = (milliamp)
(pA) = (picoampere)
(molar) = (1/liter)
(uM) = (micromolar)
(pC) = (picocoulomb)
(nS) = (nanosiemens)
(nF) = (nanofarad)
}
PARAMETER {
capInv = 18.727 (/nF)
cc1lin = 11.4109 (/s)
cc2 = 10.5600 (/s)
ck1lin = 0.7781 (/s)
ck2 = 0.3430 (/s)
clmax = 2.3131 (nS)
cnmax = 1.1266 (nS)
cx1lin = 0.8088 (/s)
cx2 = 9.2763 (/s)
ef = 1.5789 (/s)
gl = 0.8056 (nS)
hmc1 = 10.5250 (uM)
hmc2 = 19.4752 (uM)
inf = 1.0162 (uM/pC)
inhmax = 1.5105
k1 = 0.0011 (/uM-s)
k2 = 12.1312 (/s)
kI = 1.8815 (uM)
kinh = 1.0074 (uM)
kinhcng = 2.3202 (uM)
n1 = 2.9406
n2 = 1.2006
nI = 1.5708
ninh = 4.8356
ninhcng = 2.8548
pd = 0.6752 (/s)
r1 = 1.1133 (/s)
r2 = 5.2182 (/s)
smax = 189.0821 (uM/s)
vcl = -0.0246 (mV)
vcng = -2.9351e-7 (mV)
vl = -78.8361 (mV)
:from code of Multiscale, as values are not given in paper
Rtot = 1
Gtot = 1
:parameters for odor stimulus
:reduced sharpness to 0.01 for avoiding out of range error
sharpness = 0.01 (ms)
ostim = 300.0 (uM)
ipulse
hv1
hv2
od (uM)
Icng (pA)
inhcng (1)
JNCX (/s)
cc1 (/s)
ck1 (/s)
cx1 (/s)
IClCa (pA)
IL (pA)
syncAMP (uM/s)
kG (uM/s)
rG (uM/s)
synth (/s)
degrad (/s)
}
STATE {
blr (uM)
aG (uM)
aCaMK (uM)
cAMP (uM)
CaCaM (uM)
Ca (uM)
IX (uM)
memPot (mV)
}
ASSIGNED {
intTerm1
intTerm2
:terms added for calculating powers separately using intermediate terms and pow()
powTerm1
powTerm2
powTerm3
powTerm4
powTerm5
powTerm6
powTerm7
powTerm8
itot (pA)
grad
}
BREAKPOINT {
:Heaviside function for single pulse
hv1 = 1/(1+(exp(-(t-0.2)/sharpness)))
hv2 = 1/(1+(exp(-(t-60)/sharpness)))
ipulse = hv1 - hv2
:if ( t > 0.2 && t <= 1.2 ) {
: ipulse = 1
:}
:else {
: ipulse = 0
:}
:Odor stimulus
od = ostim * ipulse
:capInv = 1/capCilia
SOLVE blrrate METHOD cnexp
:printf("t: %g, blr: %g, aG: %g, synth: %g, degrad: %g, syncAMP: %g, Icng: %g, IX: %g, v: %g \n", t, blr, aG, cAMP, Ca, CaCaM, aCaMK, IX, v)
}
DERIVATIVE blrrate {
:calcParameters(blr, aG, cAMP, aCaMK, Vcilia, CaCaM, Ca, IX)
:printf("t: %g, blr: %g, aG: %g, cAMP: %g, Ca: %g, CaCaM: %g, aCaMK: %g, IX: %g, Vcilia: %g \n", t, blr, aG, cAMP, Ca, CaCaM, aCaMK, IX, Vcilia)
:printf("t: %g, syncAMP: %g, Icng: %g, inhcng: %g, JNCX: %g, cc1: %g, ck1: %g, cx1: %g, IClCa: %g, IL: %g, Itotal: %g grad: %g \n", t, syncAMP, Icng, inhcng, JNCX, cc1, ck1, cx1, IClCa, IL, Itotal, grad)
:calcParameters()
blr' = k1 * od * (Rtot - blr) - r1 * blr
aG' = kG * (Gtot - aG) - rG
cAMP' = syncAMP - pd * cAMP
Ca' = inf * Icng - JNCX - (cc1 - cc2 * CaCaM)
CaCaM' = cc1 - cc2 * CaCaM
aCaMK' = ck1 - ck2 * aCaMK
IX' = cx1 - cx2 * IX
memPot' = capInv * (Icng+IClCa+IL) * 0.001
calcParameters()
:printf("t: %g, Icng: %g, IClCa: %g IL: %g \n", t, Icng, IClCa ,IL)
}
INITIAL {
:calcParameters(blr, aG, cAMP, aCaMK, Vcilia, CaCaM, Ca, IX)
blr=1.e-8 (uM)
aG=1.e-8 (uM)
cAMP=1.e-8 (uM)
Ca=1.e-8 (uM)
CaCaM=1.e-8 (uM)
aCaMK=1.e-8 (uM)
IX=1.e-8 (uM)
memPot=-78.8361 (mV)
inhcng = 0
calcParameters()
}
:PROCEDURE calcParameters(blr, aG, cAMP, aCaMK, Vcilia, CaCaM, Ca, IX) {
:calculation of intermediate terms for DE
PROCEDURE calcParameters() {
kG = k2 * blr
rG = r2 * aG
intTerm1 = aCaMK/kinh
:powTerm1 = calcExp(intFrac(aCaMK,kinh), ninh)
powTerm1 = calcExp(intTerm1, ninh)
syncAMP = aG * (smax/(1+powTerm1))
:printf("t: %g, aG: %g", t , aG)
powTerm2 = calcExp(cAMP, n1)
intTerm2 = inhcng * hmc1
:powTerm3 = calcExp(intProd(inhcng, hmc1), n1)
powTerm3 = calcExp(intTerm2, n1)
powTerm4 = calcExp(CaCaM, ninhcng)
powTerm5 = calcExp(kinhcng, ninhcng)
inhcng = 1 + (((inhmax-1) * powTerm4)/(powTerm4 + powTerm5))
Icng = cnmax * (powTerm2 /(powTerm2 + powTerm3)) * (vcng - memPot)
:intTerm3 = IX/kI
powTerm6 = calcExp(intFrac(IX, kI),nI)
JNCX = (ef * Ca)/(1+powTerm6)
:JNCX = ef * Ca
cc1 = intProd(cc1lin, Ca)
ck1 = intProd(ck1lin, CaCaM)
cx1 = intProd(cx1lin, Ca)
powTerm7 = calcExp(Ca, n2)
powTerm8 = calcExp(hmc2, n2)
IClCa = clmax * (powTerm7 / (powTerm7 + powTerm8)) * (vcl - memPot)
IL = intProd(gl, (vl - memPot))
itot = (Icng+IClCa+IL)
:printf("t: %g, Vcilia: %g \n", t, Vcilia)
:printf("t: %g, powterm1: %g, powterm2: %g, powterm3: %g, powterm4: %g, powterm5: %g, powterm6: %g, powterm7: %g, powterm8: %g \n", powTerm1, powTerm2, powTerm3, powTerm4, powTerm5, powTerm6, powTerm7, powTerm8)
:grad = Itotal * capInv
}
:to calculate power terms
FUNCTION calcExp(term1, term2) {
calcExp = pow(term1, term2)
}
:to evaluate fractions
FUNCTION intFrac(term3, term4) {
intFrac = term3/term4
}
:to evaluate product
FUNCTION intProd(term5, term6) {
intProd = term5 * term6
}