forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
divisors.tex
5921 lines (5309 loc) · 224 KB
/
divisors.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Divisors}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we study some very basic questions related
to defining divisors, etc. A basic reference is \cite{EGA}.
\section{Associated points}
\label{section-associated}
\noindent
Let $R$ be a ring and let $M$ be an $R$-module.
Recall that a prime $\mathfrak p \subset R$ is {\it associated} to $M$
if there exists an element of $M$ whose annihilator is $\mathfrak p$.
See Algebra, Definition \ref{algebra-definition-associated}.
Here is the definition of associated points
for quasi-coherent sheaves on schemes
as given in \cite[IV Definition 3.1.1]{EGA}.
\begin{definition}
\label{definition-associated}
Let $X$ be a scheme.
Let $\mathcal{F}$ be a quasi-coherent sheaf on $X$.
\begin{enumerate}
\item We say $x \in X$ is {\it associated} to $\mathcal{F}$
if the maximal ideal
$\mathfrak m_x$ is associated to the $\mathcal{O}_{X, x}$-module
$\mathcal{F}_x$.
\item We denote $\text{Ass}(\mathcal{F})$ or $\text{Ass}_X(\mathcal{F})$
the set of associated points of $\mathcal{F}$.
\item The {\it associated points of $X$} are the associated
points of $\mathcal{O}_X$.
\end{enumerate}
\end{definition}
\noindent
These definitions are most useful when $X$ is locally Noetherian
and $\mathcal{F}$ of finite type.
For example it may happen that a generic point of an irreducible
component of $X$ is not associated to $X$, see
Example \ref{example-no-associated-prime}.
In the non-Noetherian case it may be more convenient to use weakly
associated points, see
Section \ref{section-weakly-associated}.
Let us link the scheme theoretic notion with the algebraic notion
on affine opens; note that this correspondence works perfectly only
for locally Noetherian schemes.
\begin{lemma}
\label{lemma-associated-affine-open}
Let $X$ be a scheme. Let $\mathcal{F}$ be a quasi-coherent sheaf on $X$.
Let $\Spec(A) = U \subset X$ be an affine open, and set
$M = \Gamma(U, \mathcal{F})$.
Let $x \in U$, and let $\mathfrak p \subset A$ be the corresponding prime.
\begin{enumerate}
\item If $\mathfrak p$ is associated to $M$, then $x$ is associated
to $\mathcal{F}$.
\item If $\mathfrak p$ is finitely generated, then the converse holds
as well.
\end{enumerate}
In particular, if $X$ is locally Noetherian, then the equivalence
$$
\mathfrak p \in \text{Ass}(M) \Leftrightarrow x \in \text{Ass}(\mathcal{F})
$$
holds for all pairs $(\mathfrak p, x)$ as above.
\end{lemma}
\begin{proof}
This follows from
Algebra, Lemma \ref{algebra-lemma-associated-primes-localize}.
But we can also argue directly as follows.
Suppose $\mathfrak p$ is associated to $M$.
Then there exists an $m \in M$ whose annihilator is $\mathfrak p$.
Since localization is exact we see that
$\mathfrak pA_{\mathfrak p}$ is the annihilator of
$m/1 \in M_{\mathfrak p}$. Since $M_{\mathfrak p} = \mathcal{F}_x$
(Schemes, Lemma \ref{schemes-lemma-spec-sheaves})
we conclude that $x$ is associated to $\mathcal{F}$.
\medskip\noindent
Conversely, assume that $x$ is associated to $\mathcal{F}$,
and $\mathfrak p$ is finitely generated.
As $x$ is associated to $\mathcal{F}$
there exists an element $m' \in M_{\mathfrak p}$ whose
annihilator is $\mathfrak pA_{\mathfrak p}$. Write
$m' = m/f$ for some $f \in A$, $f \not \in \mathfrak p$.
The annihilator $I$ of $m$ is an ideal of $A$ such that
$IA_{\mathfrak p} = \mathfrak pA_{\mathfrak p}$. Hence
$I \subset \mathfrak p$, and $(\mathfrak p/I)_{\mathfrak p} = 0$.
Since $\mathfrak p$ is finitely generated,
there exists a $g \in A$, $g \not \in \mathfrak p$ such that
$g(\mathfrak p/I) = 0$. Hence the annihilator of $gm$ is
$\mathfrak p$ and we win.
\medskip\noindent
If $X$ is locally Noetherian, then $A$ is Noetherian
(Properties, Lemma \ref{properties-lemma-locally-Noetherian})
and $\mathfrak p$ is always finitely generated.
\end{proof}
\begin{lemma}
\label{lemma-ass-support}
Let $X$ be a scheme.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Then $\text{Ass}(\mathcal{F}) \subset \text{Supp}(\mathcal{F})$.
\end{lemma}
\begin{proof}
This is immediate from the definitions.
\end{proof}
\begin{lemma}
\label{lemma-ses-ass}
Let $X$ be a scheme.
Let $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$
be a short exact sequence of quasi-coherent sheaves on $X$.
Then
$\text{Ass}(\mathcal{F}_2) \subset
\text{Ass}(\mathcal{F}_1) \cup \text{Ass}(\mathcal{F}_3)$
and
$\text{Ass}(\mathcal{F}_1) \subset \text{Ass}(\mathcal{F}_2)$.
\end{lemma}
\begin{proof}
For every point $x \in X$ the sequence of stalks
$0 \to \mathcal{F}_{1, x} \to \mathcal{F}_{2, x} \to \mathcal{F}_{3, x} \to 0$
is a short exact sequence of $\mathcal{O}_{X, x}$-modules.
Hence the lemma follows from
Algebra, Lemma \ref{algebra-lemma-ass}.
\end{proof}
\begin{lemma}
\label{lemma-finite-ass}
Let $X$ be a locally Noetherian scheme.
Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module.
Then $\text{Ass}(\mathcal{F}) \cap U$ is finite for
every quasi-compact open $U \subset X$.
\end{lemma}
\begin{proof}
This is true because the set of associated primes of a finite module over
a Noetherian ring is finite, see
Algebra, Lemma \ref{algebra-lemma-finite-ass}.
To translate from schemes to algebra use that $U$ is a finite union of
affine opens, each of these opens is the spectrum of a Noetherian ring
(Properties, Lemma \ref{properties-lemma-locally-Noetherian}),
$\mathcal{F}$ corresponds to a finite module over this ring
(Cohomology of Schemes, Lemma \ref{coherent-lemma-coherent-Noetherian}),
and finally use
Lemma \ref{lemma-associated-affine-open}.
\end{proof}
\begin{lemma}
\label{lemma-ass-zero}
Let $X$ be a locally Noetherian scheme. Let $\mathcal{F}$ be a
quasi-coherent $\mathcal{O}_X$-module. Then
$$
\mathcal{F} = 0 \Leftrightarrow \text{Ass}(\mathcal{F}) = \emptyset.
$$
\end{lemma}
\begin{proof}
If $\mathcal{F} = 0$, then $\text{Ass}(\mathcal{F}) = \emptyset$
by definition. Conversely, if $\text{Ass}(\mathcal{F}) = \emptyset$,
then $\mathcal{F} = 0$ by
Algebra, Lemma \ref{algebra-lemma-ass-zero}.
To translate from schemes to algebra, restrict to any affine and use
Lemma \ref{lemma-associated-affine-open}.
\end{proof}
\begin{example}
\label{example-no-associated-prime}
Let $k$ be a field. The ring $R = k[x_1, x_2, x_3, \ldots]/(x_i^2)$
is local with locally nilpotent maximal ideal $\mathfrak m$.
There exists no element of $R$ which has annihilator $\mathfrak m$.
Hence $\text{Ass}(R) = \emptyset$, and $X = \Spec(R)$
is an example of a scheme which has no associated points.
\end{example}
\begin{lemma}
\label{lemma-restriction-injective-open-contains-ass}
Let $X$ be a locally Noetherian scheme. Let $\mathcal{F}$ be a quasi-coherent
$\mathcal{O}_X$-module. If $\text{Ass}(\mathcal{F}) \subset U \subset X$
is open, then $\Gamma(X, \mathcal{F}) \to \Gamma(U, \mathcal{F})$
is injective.
\end{lemma}
\begin{proof}
Let $s \in \Gamma(X, \mathcal{F})$ be a section which restricts to zero on $U$.
Let $\mathcal{F}' \subset \mathcal{F}$ be the image of the map
$\mathcal{O}_X \to \mathcal{F}$ defined by $s$. Then
$\text{Supp}(\mathcal{F}') \cap U = \emptyset$. On the other hand,
$\text{Ass}(\mathcal{F}') \subset \text{Ass}(\mathcal{F})$
by Lemma \ref{lemma-ses-ass}. Since also
$\text{Ass}(\mathcal{F}') \subset \text{Supp}(\mathcal{F}')$
(Lemma \ref{lemma-ass-support}) we conclude
$\text{Ass}(\mathcal{F}') = \emptyset$.
Hence $\mathcal{F}' = 0$ by Lemma \ref{lemma-ass-zero}.
\end{proof}
\begin{lemma}
\label{lemma-minimal-support-in-ass}
Let $X$ be a locally Noetherian scheme.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Let $x \in \text{Supp}(\mathcal{F})$ be a point in the support
of $\mathcal{F}$ which is not a specialization of another point of
$\text{Supp}(\mathcal{F})$. Then $x \in \text{Ass}(\mathcal{F})$.
In particular, any generic point of an irreducible component of $X$
is an associated point of $X$.
\end{lemma}
\begin{proof}
Since $x \in \text{Supp}(\mathcal{F})$ the module $\mathcal{F}_x$
is not zero. Hence
$\text{Ass}(\mathcal{F}_x) \subset \Spec(\mathcal{O}_{X, x})$
is nonempty by
Algebra, Lemma \ref{algebra-lemma-ass-zero}.
On the other hand, by assumption
$\text{Supp}(\mathcal{F}_x) = \{\mathfrak m_x\}$.
Since
$\text{Ass}(\mathcal{F}_x) \subset \text{Supp}(\mathcal{F}_x)$
(Algebra, Lemma \ref{algebra-lemma-ass-support})
we see that $\mathfrak m_x$ is associated to $\mathcal{F}_x$
and we win.
\end{proof}
\noindent
The following lemma is the analogue of
More on Algebra, Lemma \ref{more-algebra-lemma-check-injective-on-ass}.
\begin{lemma}
\label{lemma-check-injective-on-ass}
Let $X$ be a locally Noetherian scheme. Let
$\varphi : \mathcal{F} \to \mathcal{G}$ be a map of
quasi-coherent $\mathcal{O}_X$-modules.
Assume that for every $x \in X$
at least one of the following happens
\begin{enumerate}
\item $\mathcal{F}_x \to \mathcal{G}_x$ is injective, or
\item $x \not \in \text{Ass}(\mathcal{F})$.
\end{enumerate}
Then $\varphi$ is injective.
\end{lemma}
\begin{proof}
The assumptions imply that $\text{WeakAss}(\Ker(\varphi)) = \emptyset$
and hence $\Ker(\varphi) = 0$ by Lemma \ref{lemma-ass-zero}.
\end{proof}
\begin{lemma}
\label{lemma-check-isomorphism-via-depth-and-ass}
Let $X$ be a locally Noetherian scheme. Let
$\varphi : \mathcal{F} \to \mathcal{G}$ be a map of
quasi-coherent $\mathcal{O}_X$-modules. Assume $\mathcal{F}$ is coherent
and that for every $x \in X$ one of the following happens
\begin{enumerate}
\item $\mathcal{F}_x \to \mathcal{G}_x$ is an isomorphism, or
\item $\text{depth}(\mathcal{F}_x) \geq 2$ and
$x \not \in \text{Ass}(\mathcal{G})$.
\end{enumerate}
Then $\varphi$ is an isomorphism.
\end{lemma}
\begin{proof}
This is a translation of More on Algebra, Lemma
\ref{more-algebra-lemma-check-isomorphism-via-depth-and-ass}
into the language of schemes.
\end{proof}
\section{Morphisms and associated points}
\label{section-morphisms-associated}
\begin{lemma}
\label{lemma-bourbaki}
Let $f : X \to S$ be a morphism of schemes.
Let $\mathcal{F}$ be a quasi-coherent sheaf on $X$ which is flat over $S$.
Let $\mathcal{G}$ be a quasi-coherent sheaf on $S$.
Then we have
$$
\text{Ass}_X(\mathcal{F} \otimes_{\mathcal{O}_X} f^*\mathcal{G})
\supset
\bigcup\nolimits_{s \in \text{Ass}_S(\mathcal{G})}
\text{Ass}_{X_s}(\mathcal{F}_s)
$$
and equality holds if $S$ is locally Noetherian.
\end{lemma}
\begin{proof}
Let $x \in X$ and let $s = f(x) \in S$.
Set $B = \mathcal{O}_{X, x}$, $A = \mathcal{O}_{S, s}$,
$N = \mathcal{F}_x$, and $M = \mathcal{G}_s$.
Note that the stalk of $\mathcal{F} \otimes_{\mathcal{O}_X} f^*\mathcal{G}$
at $x$ is equal to the $B$-module $M \otimes_A N$. Hence
$x \in \text{Ass}_X(\mathcal{F} \otimes_{\mathcal{O}_X} f^*\mathcal{G})$
if and only if $\mathfrak m_B$ is in $\text{Ass}_B(M \otimes_A N)$.
Similarly $s \in \text{Ass}_S(\mathcal{G})$ and
$x \in \text{Ass}_{X_s}(\mathcal{F}_s)$ if and only if
$\mathfrak m_A \in \text{Ass}_A(M)$ and
$\mathfrak m_B/\mathfrak m_A B \in
\text{Ass}_{B \otimes \kappa(\mathfrak m_A)}(N \otimes \kappa(\mathfrak m_A))$.
Thus the lemma follows from
Algebra, Lemma \ref{algebra-lemma-bourbaki-fibres}.
\end{proof}
\section{Embedded points}
\label{section-embedded}
\noindent
Let $R$ be a ring and let $M$ be an $R$-module.
Recall that a prime $\mathfrak p \subset R$ is an
{\it embedded associated prime} of $M$ if it is an associated prime of
$M$ which is not minimal among the associated primes of $M$. See
Algebra, Definition \ref{algebra-definition-embedded-primes}.
Here is the definition of embedded associated points
for quasi-coherent sheaves on schemes
as given in \cite[IV Definition 3.1.1]{EGA}.
\begin{definition}
\label{definition-embedded}
Let $X$ be a scheme.
Let $\mathcal{F}$ be a quasi-coherent sheaf on $X$.
\begin{enumerate}
\item An {\it embedded associated point} of $\mathcal{F}$
is an associated point which is not maximal among the
associated points of $\mathcal{F}$, i.e., it is the specialization
of another associated point of $\mathcal{F}$.
\item A point $x$ of $X$ is called an {\it embedded point}
if $x$ is an embedded associated point of $\mathcal{O}_X$.
\item An {\it embedded component} of $X$ is an irreducible
closed subset $Z = \overline{\{x\}}$ where $x$ is an embedded
point of $X$.
\end{enumerate}
\end{definition}
\noindent
In the Noetherian case when $\mathcal{F}$ is coherent we have
the following.
\begin{lemma}
\label{lemma-embedded}
Let $X$ be a locally Noetherian scheme.
Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module.
Then
\begin{enumerate}
\item the generic points of irreducible components of
$\text{Supp}(\mathcal{F})$ are associated points of $\mathcal{F}$, and
\item an associated point of $\mathcal{F}$ is embedded if and only
if it is not a generic point of an irreducible component
of $\text{Supp}(\mathcal{F})$.
\end{enumerate}
In particular an embedded point of $X$ is an associated point of $X$
which is not a generic point of an irreducible component of $X$.
\end{lemma}
\begin{proof}
Recall that in this case $Z = \text{Supp}(\mathcal{F})$ is closed, see
Morphisms, Lemma \ref{morphisms-lemma-support-finite-type}
and that the generic points of irreducible components of $Z$ are
associated points of $\mathcal{F}$, see
Lemma \ref{lemma-minimal-support-in-ass}.
Finally, we have $\text{Ass}(\mathcal{F}) \subset Z$, by
Lemma \ref{lemma-ass-support}.
These results, combined with the fact that $Z$ is a sober topological
space and hence every point of $Z$ is a specialization of a generic
point of $Z$, imply (1) and (2).
\end{proof}
\begin{lemma}
\label{lemma-S1-no-embedded}
Let $X$ be a locally Noetherian scheme.
Let $\mathcal{F}$ be a coherent sheaf on $X$.
Then the following are equivalent:
\begin{enumerate}
\item $\mathcal{F}$ has no embedded associated points, and
\item $\mathcal{F}$ has property $(S_1)$.
\end{enumerate}
\end{lemma}
\begin{proof}
This is Algebra, Lemma \ref{algebra-lemma-criterion-no-embedded-primes},
combined with Lemma \ref{lemma-associated-affine-open} above.
\end{proof}
\begin{lemma}
\label{lemma-scheme-theoretically-dense-contain-embedded-points}
Let $X$ be a locally Noetherian scheme. Let $U \subset X$ be an
open subscheme. The following are equivalent
\begin{enumerate}
\item $U$ is scheme theoretically dense in $X$
(Morphisms, Definition \ref{morphisms-definition-scheme-theoretically-dense}),
\item $U$ is dense in $X$ and $U$ contains all embedded points of $X$.
\end{enumerate}
\end{lemma}
\begin{proof}
The question is local on $X$, hence we may assume that $X = \Spec(A)$
where $A$ is a Noetherian ring. Then $U$ is quasi-compact
(Properties, Lemma \ref{properties-lemma-immersion-into-noetherian})
hence $U = D(f_1) \cup \ldots \cup D(f_n)$
(Algebra, Lemma \ref{algebra-lemma-qc-open}).
In this situation $U$ is scheme theoretically dense in $X$ if and only if
$A \to A_{f_1} \times \ldots \times A_{f_n}$ is injective, see
Morphisms, Example \ref{morphisms-example-scheme-theoretic-closure}.
Condition (2) translated into algebra means that for every associated
prime $\mathfrak p$ of $A$ there exists an $i$ with $f_i \not \in \mathfrak p$.
\medskip\noindent
Assume (1), i.e., $A \to A_{f_1} \times \ldots \times A_{f_n}$ is injective.
If $x \in A$ has annihilator a prime $\mathfrak p$, then $x$ maps
to a nonzero element of $A_{f_i}$ for some $i$ and hence
$f_i \not \in \mathfrak p$. Thus (2) holds.
Assume (2), i.e., every associated prime $\mathfrak p$ of $A$
corresponds to a prime of $A_{f_i}$ for some $i$. Then
$A \to A_{f_1} \times \ldots \times A_{f_n}$ is injective because
$A \to \prod_{\mathfrak p \in \text{Ass}(A)} A_\mathfrak p$ is injective
by Algebra, Lemma \ref{algebra-lemma-zero-at-ass-zero}.
\end{proof}
\begin{lemma}
\label{lemma-remove-embedded-points}
Let $X$ be a locally Noetherian scheme.
Let $\mathcal{F}$ be a coherent sheaf on $X$.
The set of coherent subsheaves
$$
\{
\mathcal{K} \subset \mathcal{F}
\mid
\text{Supp}(\mathcal{K})\text{ is nowhere dense in }\text{Supp}(\mathcal{F})
\}
$$
has a maximal element $\mathcal{K}$.
Setting $\mathcal{F}' = \mathcal{F}/\mathcal{K}$ we have the
following
\begin{enumerate}
\item $\text{Supp}(\mathcal{F}') = \text{Supp}(\mathcal{F})$,
\item $\mathcal{F}'$ has no embedded associated points, and
\item there exists a dense open $U \subset X$ such that
$U \cap \text{Supp}(\mathcal{F})$ is dense in $\text{Supp}(\mathcal{F})$
and $\mathcal{F}'|_U \cong \mathcal{F}|_U$.
\end{enumerate}
\end{lemma}
\begin{proof}
This follows from
Algebra, Lemmas \ref{algebra-lemma-remove-embedded-primes} and
\ref{algebra-lemma-remove-embedded-primes-localize}.
Note that $U$ can be taken as the complement of the closure
of the set of embedded associated points of $\mathcal{F}$.
\end{proof}
\begin{lemma}
\label{lemma-no-embedded-points-endos}
Let $X$ be a locally Noetherian scheme.
Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module
without embedded associated points. Set
$$
\mathcal{I}
=
\Ker(\mathcal{O}_X
\longrightarrow
\SheafHom_{\mathcal{O}_X}(\mathcal{F}, \mathcal{F})).
$$
This is a coherent sheaf of ideals which defines a closed
subscheme $Z \subset X$ without embedded points. Moreover
there exists a coherent sheaf $\mathcal{G}$ on $Z$
such that (a) $\mathcal{F} = (Z \to X)_*\mathcal{G}$,
(b) $\mathcal{G}$ has no associated embedded points, and
(c) $\text{Supp}(\mathcal{G}) = Z$ (as sets).
\end{lemma}
\begin{proof}
Some of the statements we have seen in the proof of
Cohomology of Schemes, Lemma \ref{coherent-lemma-coherent-support-closed}.
The others follow from
Algebra, Lemma \ref{algebra-lemma-no-embedded-primes-endos}.
\end{proof}
\section{Weakly associated points}
\label{section-weakly-associated}
\noindent
Let $R$ be a ring and let $M$ be an $R$-module.
Recall that a prime $\mathfrak p \subset R$ is {\it weakly associated}
to $M$ if there exists an element $m$ of $M$ such that $\mathfrak p$ is
minimal among the primes containing the annihilator of $m$. See
Algebra, Definition \ref{algebra-definition-weakly-associated}.
If $R$ is a local ring with maximal ideal $\mathfrak m$, then
$\mathfrak m$ is associated to $M$ if and only if there exists an
element $m \in M$ whose annihilator has radical $\mathfrak m$, see
Algebra, Lemma \ref{algebra-lemma-weakly-ass-local}.
\begin{definition}
\label{definition-weakly-associated}
Let $X$ be a scheme.
Let $\mathcal{F}$ be a quasi-coherent sheaf on $X$.
\begin{enumerate}
\item We say $x \in X$ is {\it weakly associated} to $\mathcal{F}$
if the maximal ideal $\mathfrak m_x$ is weakly associated to the
$\mathcal{O}_{X, x}$-module $\mathcal{F}_x$.
\item We denote $\text{WeakAss}(\mathcal{F})$ the set of weakly associated
points of $\mathcal{F}$.
\item The {\it weakly associated points of $X$} are the weakly associated
points of $\mathcal{O}_X$.
\end{enumerate}
\end{definition}
\noindent
In this case, on any affine open, this corresponds exactly to the
weakly associated primes as defined above. Here is the precise statement.
\begin{lemma}
\label{lemma-weakly-associated-affine-open}
Let $X$ be a scheme. Let $\mathcal{F}$ be a quasi-coherent sheaf on $X$.
Let $\Spec(A) = U \subset X$ be an affine open, and set
$M = \Gamma(U, \mathcal{F})$.
Let $x \in U$, and let $\mathfrak p \subset A$ be the corresponding prime.
The following are equivalent
\begin{enumerate}
\item $\mathfrak p$ is weakly associated to $M$, and
\item $x$ is weakly associated to $\mathcal{F}$.
\end{enumerate}
\end{lemma}
\begin{proof}
This follows from
Algebra, Lemma \ref{algebra-lemma-weakly-ass-local}.
\end{proof}
\begin{lemma}
\label{lemma-weakly-ass-support}
Let $X$ be a scheme.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Then
$$
\text{Ass}(\mathcal{F}) \subset \text{WeakAss}(\mathcal{F}) \subset
\text{Supp}(\mathcal{F}).
$$
\end{lemma}
\begin{proof}
This is immediate from the definitions.
\end{proof}
\begin{lemma}
\label{lemma-ses-weakly-ass}
Let $X$ be a scheme.
Let $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$
be a short exact sequence of quasi-coherent sheaves on $X$.
Then
$\text{WeakAss}(\mathcal{F}_2) \subset
\text{WeakAss}(\mathcal{F}_1) \cup \text{WeakAss}(\mathcal{F}_3)$
and
$\text{WeakAss}(\mathcal{F}_1) \subset \text{WeakAss}(\mathcal{F}_2)$.
\end{lemma}
\begin{proof}
For every point $x \in X$ the sequence of stalks
$0 \to \mathcal{F}_{1, x} \to \mathcal{F}_{2, x} \to \mathcal{F}_{3, x} \to 0$
is a short exact sequence of $\mathcal{O}_{X, x}$-modules.
Hence the lemma follows from
Algebra, Lemma \ref{algebra-lemma-weakly-ass}.
\end{proof}
\begin{lemma}
\label{lemma-weakly-ass-zero}
Let $X$ be a scheme.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Then
$$
\mathcal{F} = (0) \Leftrightarrow \text{WeakAss}(\mathcal{F}) = \emptyset
$$
\end{lemma}
\begin{proof}
Follows from
Lemma \ref{lemma-weakly-associated-affine-open}
and
Algebra, Lemma \ref{algebra-lemma-weakly-ass-zero}
\end{proof}
\begin{lemma}
\label{lemma-restriction-injective-open-contains-weakly-ass}
Let $X$ be a scheme. Let $\mathcal{F}$ be a quasi-coherent
$\mathcal{O}_X$-module. If $\text{WeakAss}(\mathcal{F}) \subset U \subset X$
is open, then $\Gamma(X, \mathcal{F}) \to \Gamma(U, \mathcal{F})$
is injective.
\end{lemma}
\begin{proof}
Let $s \in \Gamma(X, \mathcal{F})$ be a section which restricts to zero on $U$.
Let $\mathcal{F}' \subset \mathcal{F}$ be the image of the map
$\mathcal{O}_X \to \mathcal{F}$ defined by $s$. Then
$\text{Supp}(\mathcal{F}') \cap U = \emptyset$. On the other hand,
$\text{WeakAss}(\mathcal{F}') \subset \text{WeakAss}(\mathcal{F})$
by Lemma \ref{lemma-ses-weakly-ass}. Since also
$\text{Ass}(\mathcal{F}') \subset \text{Supp}(\mathcal{F}')$
(Lemma \ref{lemma-weakly-ass-support}) we conclude
$\text{Ass}(\mathcal{F}') = \emptyset$.
Hence $\mathcal{F}' = 0$ by Lemma \ref{lemma-weakly-ass-zero}.
\end{proof}
\begin{lemma}
\label{lemma-minimal-support-in-weakly-ass}
Let $X$ be a scheme.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Let $x \in \text{Supp}(\mathcal{F})$ be a point in the support
of $\mathcal{F}$ which is not a specialization of another point of
$\text{Supp}(\mathcal{F})$. Then
$x \in \text{WeakAss}(\mathcal{F})$.
In particular, any generic point of an irreducible component of $X$
is weakly associated to $\mathcal{O}_X$.
\end{lemma}
\begin{proof}
Since $x \in \text{Supp}(\mathcal{F})$ the module $\mathcal{F}_x$
is not zero. Hence
$\text{WeakAss}(\mathcal{F}_x) \subset \Spec(\mathcal{O}_{X, x})$
is nonempty by
Algebra, Lemma \ref{algebra-lemma-weakly-ass-zero}.
On the other hand, by assumption
$\text{Supp}(\mathcal{F}_x) = \{\mathfrak m_x\}$.
Since
$\text{WeakAss}(\mathcal{F}_x) \subset \text{Supp}(\mathcal{F}_x)$
(Algebra, Lemma \ref{algebra-lemma-weakly-ass-support})
we see that $\mathfrak m_x$ is weakly associated to $\mathcal{F}_x$
and we win.
\end{proof}
\begin{lemma}
\label{lemma-ass-weakly-ass}
Let $X$ be a scheme.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
If $\mathfrak m_x$ is a finitely generated ideal of $\mathcal{O}_{X, x}$,
then
$$
x \in \text{Ass}(\mathcal{F}) \Leftrightarrow
x \in \text{WeakAss}(\mathcal{F}).
$$
In particular, if $X$ is locally Noetherian, then
$\text{Ass}(\mathcal{F}) = \text{WeakAss}(\mathcal{F})$.
\end{lemma}
\begin{proof}
See
Algebra, Lemma \ref{algebra-lemma-ass-weakly-ass}.
\end{proof}
\begin{lemma}
\label{lemma-weakass-pushforward}
Let $X$ be a scheme. Let $j : U \to X$ be the inclusion of an
open subscheme. Let $\mathcal{F}$ be a quasi-coherent
$\mathcal{O}_U$-module. Assume $j$ is quasi-compact, i.e., $U$
is retro-compact in $X$. Let $x \in X$, $x \not \in U$. Then
$x$ is not weakly associated to $j_*\mathcal{F}$.
\end{lemma}
\begin{proof}
The question is local so we may assume $X = \Spec(A)$.
Say $U = D(f_1) \cup \ldots \cup D(f_r)$ and $x$
corresponds to $\mathfrak p \subset A$.
By Schemes, Lemma \ref{schemes-lemma-push-forward-quasi-coherent}
the sheaf $j_*\mathcal{F}$ is quasi-coherent, say corresponding
to the $A$-module $M$. Then
$$
M \to M_{f_1} \oplus \ldots \oplus M_{f_r}
$$
is injective. Hence for any nonzero element $m$ of the stalk $M_\mathfrak p$
there exists an $i$ such that $f_i^n m$ is nonzero for all $n \geq 0$.
Thus $\mathfrak pA_\mathfrak p$ is not weakly associated to $M_\mathfrak p$.
\end{proof}
\begin{lemma}
\label{lemma-check-injective-on-weakass}
Let $X$ be a scheme. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a map of
quasi-coherent $\mathcal{O}_X$-modules. Assume that for every $x \in X$
at least one of the following happens
\begin{enumerate}
\item $\mathcal{F}_x \to \mathcal{G}_x$ is injective, or
\item $x \not \in \text{WeakAss}(\mathcal{F})$.
\end{enumerate}
Then $\varphi$ is injective.
\end{lemma}
\begin{proof}
The assumptions imply that $\text{WeakAss}(\Ker(\varphi)) = \emptyset$
and hence $\Ker(\varphi) = 0$ by Lemma \ref{lemma-weakly-ass-zero}.
\end{proof}
\section{Morphisms and weakly associated points}
\label{section-morphisms-weakly-associated}
\begin{lemma}
\label{lemma-weakly-ass-reverse-functorial}
Let $f : X \to S$ be an affine morphism of schemes.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Then we have
$$
\text{WeakAss}_S(f_*\mathcal{F}) \subset f(\text{WeakAss}_X(\mathcal{F}))
$$
\end{lemma}
\begin{proof}
We may assume $X$ and $S$ affine, so $X \to S$ comes from a ring map
$A \to B$. Then $\mathcal{F} = \widetilde M$ for some $B$-module $M$. By
Lemma \ref{lemma-weakly-associated-affine-open}
the weakly associated points of $\mathcal{F}$ correspond exactly to the
weakly associated primes of $M$. Similarly, the weakly associated points
of $f_*\mathcal{F}$ correspond exactly to the weakly associated primes
of $M$ as an $A$-module. Hence the lemma follows from
Algebra, Lemma \ref{algebra-lemma-weakly-ass-reverse-functorial}.
\end{proof}
\begin{lemma}
\label{lemma-ass-functorial-equal}
Let $f : X \to S$ be an affine morphism of schemes.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
If $X$ is locally Noetherian, then we have
$$
f(\text{Ass}_X(\mathcal{F})) =
\text{Ass}_S(f_*\mathcal{F}) =
\text{WeakAss}_S(f_*\mathcal{F}) =
f(\text{WeakAss}_X(\mathcal{F}))
$$
\end{lemma}
\begin{proof}
We may assume $X$ and $S$ affine, so $X \to S$ comes from a ring map
$A \to B$. As $X$ is locally Noetherian the ring $B$ is Noetherian, see
Properties, Lemma \ref{properties-lemma-locally-Noetherian}.
Write $\mathcal{F} = \widetilde M$ for some $B$-module $M$. By
Lemma \ref{lemma-associated-affine-open}
the associated points of $\mathcal{F}$ correspond exactly to the associated
primes of $M$, and any associated prime of $M$ as an $A$-module is an
associated points of $f_*\mathcal{F}$.
Hence the inclusion
$$
f(\text{Ass}_X(\mathcal{F})) \subset \text{Ass}_S(f_*\mathcal{F})
$$
follows from
Algebra, Lemma \ref{algebra-lemma-ass-functorial-Noetherian}.
We have the inclusion
$$
\text{Ass}_S(f_*\mathcal{F}) \subset \text{WeakAss}_S(f_*\mathcal{F})
$$
by
Lemma \ref{lemma-weakly-ass-support}.
We have the inclusion
$$
\text{WeakAss}_S(f_*\mathcal{F}) \subset f(\text{WeakAss}_X(\mathcal{F}))
$$
by
Lemma \ref{lemma-weakly-ass-reverse-functorial}.
The outer sets are equal by
Lemma \ref{lemma-ass-weakly-ass}
hence we have equality everywhere.
\end{proof}
\begin{lemma}
\label{lemma-weakly-associated-finite}
Let $f : X \to S$ be a finite morphism of schemes.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Then $\text{WeakAss}(f_*\mathcal{F}) = f(\text{WeakAss}(\mathcal{F}))$.
\end{lemma}
\begin{proof}
We may assume $X$ and $S$ affine, so $X \to S$ comes from a finite ring map
$A \to B$. Write $\mathcal{F} = \widetilde M$ for some $B$-module $M$. By
Lemma \ref{lemma-weakly-associated-affine-open}
the weakly associated points of $\mathcal{F}$ correspond exactly to the
weakly associated primes of $M$. Similarly, the weakly associated points
of $f_*\mathcal{F}$ correspond exactly to the weakly associated primes
of $M$ as an $A$-module. Hence the lemma follows from
Algebra, Lemma \ref{algebra-lemma-weakly-ass-finite-ring-map}.
\end{proof}
\begin{lemma}
\label{lemma-weakly-ass-pullback}
Let $f : X \to S$ be a morphism of schemes. Let $\mathcal{G}$ be a
quasi-coherent $\mathcal{O}_S$-module. Let $x \in X$ with $s = f(x)$.
If $f$ is flat at $x$, the point $x$ is a generic point of the fibre $X_s$, and
$s \in \text{WeakAss}_S(\mathcal{G})$, then
$x \in \text{WeakAss}(f^*\mathcal{G})$.
\end{lemma}
\begin{proof}
Let $A = \mathcal{O}_{S, s}$, $B = \mathcal{O}_{X, x}$, and
$M = \mathcal{G}_s$. Let $m \in M$ be an element whose annihilator
$I = \{a \in A \mid am = 0\}$ has radical $\mathfrak m_A$. Then
$m \otimes 1$ has annihilator $I B$ as $A \to B$ is
faithfully flat. Thus it suffices to see that $\sqrt{I B} = \mathfrak m_B$.
This follows from the fact that the maximal ideal of $B/\mathfrak m_AB$
is locally nilpotent (see
Algebra, Lemma \ref{algebra-lemma-minimal-prime-reduced-ring})
and the assumption that $\sqrt{I} = \mathfrak m_A$.
Some details omitted.
\end{proof}
\section{Relative assassin}
\label{section-relative-assassin}
\begin{definition}
\label{definition-relative-assassin}
Let $f : X \to S$ be a morphism of schemes.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
The {\it relative assassin of $\mathcal{F}$ in $X$ over $S$}
is the set
$$
\text{Ass}_{X/S}(\mathcal{F}) =
\bigcup\nolimits_{s \in S} \text{Ass}_{X_s}(\mathcal{F}_s)
$$
where $\mathcal{F}_s = (X_s \to X)^*\mathcal{F}$ is the restriction
of $\mathcal{F}$ to the fibre of $f$ at $s$.
\end{definition}
\noindent
Again there is a caveat that this is best used when the fibres of $f$
are locally Noetherian and $\mathcal{F}$ is of finite type. In the general
case we should probably use the relative weak assassin (defined in the next
section).
\begin{lemma}
\label{lemma-base-change-relative-assassin}
Let $f : X \to S$ be a morphism of schemes.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Let $g : S' \to S$ be a morphism of schemes.
Consider the base change diagram
$$
\xymatrix{
X' \ar[d] \ar[r]_{g'} & X \ar[d] \\
S' \ar[r]^g & S
}
$$
and set $\mathcal{F}' = (g')^*\mathcal{F}$. Let $x' \in X'$ be a point
with images $x \in X$, $s' \in S'$ and $s \in S$.
Assume $f$ locally of finite type.
Then $x' \in \text{Ass}_{X'/S'}(\mathcal{F}')$ if and only if
$x \in \text{Ass}_{X/S}(\mathcal{F})$ and $x'$ corresponds to
a generic point of an irreducible component of
$\Spec(\kappa(s') \otimes_{\kappa(s)} \kappa(x))$.
\end{lemma}
\begin{proof}
Consider the morphism $X'_{s'} \to X_s$ of fibres. As
$X_{s'} = X_s \times_{\Spec(\kappa(s))} \Spec(\kappa(s'))$
this is a flat morphism. Moreover $\mathcal{F}'_{s'}$ is the pullback
of $\mathcal{F}_s$ via this morphism. As $X_s$ is locally of finite
type over the Noetherian scheme $\Spec(\kappa(s))$ we have that
$X_s$ is locally Noetherian, see
Morphisms, Lemma \ref{morphisms-lemma-finite-type-noetherian}.
Thus we may apply
Lemma \ref{lemma-bourbaki}
and we see that
$$
\text{Ass}_{X'_{s'}}(\mathcal{F}'_{s'}) =
\bigcup\nolimits_{x \in \text{Ass}(\mathcal{F}_s)} \text{Ass}((X'_{s'})_x).
$$
Thus to prove the lemma it suffices to show that the associated points
of the fibre $(X'_{s'})_x$ of the morphism $X'_{s'} \to X_s$ over $x$
are its generic points. Note that
$(X'_{s'})_x = \Spec(\kappa(s') \otimes_{\kappa(s)} \kappa(x))$
as schemes. By
Algebra, Lemma \ref{algebra-lemma-tensor-fields-CM}
the ring $\kappa(s') \otimes_{\kappa(s)} \kappa(x)$ is a Noetherian
Cohen-Macaulay ring. Hence its associated primes are its minimal primes, see
Algebra, Proposition \ref{algebra-proposition-minimal-primes-associated-primes}
(minimal primes are associated) and
Algebra, Lemma \ref{algebra-lemma-criterion-no-embedded-primes}
(no embedded primes).
\end{proof}
\begin{remark}
\label{remark-base-change-relative-assassin}
With notation and assumptions as in
Lemma \ref{lemma-base-change-relative-assassin}
we see that it is always the case that
$(g')^{-1}(\text{Ass}_{X/S}(\mathcal{F})) \supset
\text{Ass}_{X'/S'}(\mathcal{F}')$.
If the morphism $S' \to S$ is locally quasi-finite, then we actually have
$$
(g')^{-1}(\text{Ass}_{X/S}(\mathcal{F}))
=
\text{Ass}_{X'/S'}(\mathcal{F}')
$$
because in this case the field extensions $\kappa(s) \subset \kappa(s')$
are always finite. In fact, this holds more generally for any morphism
$g : S' \to S$ such that all the field extensions
$\kappa(s) \subset \kappa(s')$ are algebraic, because in this case all
prime ideals of $\kappa(s') \otimes_{\kappa(s)} \kappa(x)$ are
maximal (and minimal) primes, see
Algebra, Lemma \ref{algebra-lemma-integral-over-field}.
\end{remark}
\section{Relative weak assassin}
\label{section-relative-weak-assassin}
\begin{definition}
\label{definition-relative-weak-assassin}
Let $f : X \to S$ be a morphism of schemes.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
The {\it relative weak assassin of $\mathcal{F}$ in $X$ over $S$}
is the set
$$
\text{WeakAss}_{X/S}(\mathcal{F}) =
\bigcup\nolimits_{s \in S} \text{WeakAss}(\mathcal{F}_s)
$$
where $\mathcal{F}_s = (X_s \to X)^*\mathcal{F}$ is the restriction
of $\mathcal{F}$ to the fibre of $f$ at $s$.
\end{definition}
\begin{lemma}
\label{lemma-relative-weak-assassin-assassin-finite-type}
Let $f : X \to S$ be a morphism of schemes which is locally of finite type.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Then $\text{WeakAss}_{X/S}(\mathcal{F}) = \text{Ass}_{X/S}(\mathcal{F})$.
\end{lemma}
\begin{proof}
This is true bacause the fibres of $f$ are locally Noetherian schemes,
and associated and weakly associated points agree on locally Noetherian
schemes, see
Lemma \ref{lemma-ass-weakly-ass}.
\end{proof}
\section{Torsion free modules}
\label{section-torsion-free}
\noindent
This section is the analogue of
More on Algebra, Section \ref{more-algebra-section-torsion-flat}
for quasi-coherent modules.
\begin{lemma}
\label{lemma-torsion-sections}
let $X$ be an integral scheme with generic point $\eta$. Let $\mathcal{F}$
be a quasi-coherent $\mathcal{O}_X$-module. Let $U \subset X$ be nonempty
open and $s \in \mathcal{F}(U)$. The following are equivalent
\begin{enumerate}
\item for some $x \in U$ the image of $s$ in $\mathcal{F}_x$ is torsion,
\item for all $x \in U$ the image of $s$ in $\mathcal{F}_x$ is torsion,
\item the image of $s$ in $\mathcal{F}_\eta$ is zero,
\item the image of $s$ in $j_*\mathcal{F}_\eta$ is zero, where $j : \eta \to X$
is the inclusion morphism.
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{definition}
\label{definition-torsion}
Let $X$ be an integral scheme. Let $\mathcal{F}$ be a quasi-coherent
$\mathcal{O}_X$-module.
\begin{enumerate}
\item We say a local section of $\mathcal{F}$ is {\it torsion}