forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
formal-defos.tex
6929 lines (6328 loc) · 256 KB
/
formal-defos.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Formal Deformation Theory}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
This chapter develops formal deformation theory in a form applicable
later in the stacks project, closely following Rim \cite[Exposee VI]{SGA7-I}
and Schlessinger \cite{Sch}. We strongly encourage the reader new to
this topic to read the paper by Schlessinger first, as it is sufficiently
general for most applications, and Schlessinger's results are indeed
used in most papers that use this kind of formal deformation theory.
\medskip\noindent
Let $\Lambda$ be a complete Noetherian local ring with residue field $k$,
and let $\mathcal{C}_\Lambda$ denote the category of Artinian local
$\Lambda$-algebras with residue field $k$. Given a functor
$F : \mathcal{C}_\Lambda \to \textit{Sets}$ such that $F(k)$
is a one element set, Schlessinger's paper introduced conditions
(H1)-(H4) such that:
\begin{enumerate}
\item $F$ has a ``hull'' if and only if (H1)-(H3) hold.
\item $F$ is prorepresentable if and only (H1)-(H4) hold.
\end{enumerate}
The purpose of this chapter is to generalize these results in two ways
exactly as is done in Rim's paper:
\begin{enumerate}
\item[(A)] The functor $F$ is replaced by a category $\mathcal{F}$ cofibered
in groupoids over $\mathcal{C}_\Lambda$, see
Section \ref{section-CLambda}.
\item[(B)] We let $\Lambda$ be a Noetherian ring and $\Lambda \to k$
a finite ring map to a field. The category $\mathcal{C}_\Lambda$ is
the category of Artinian local $\Lambda$-algebras $A$ endowed with a
given identification $A/\mathfrak m_A = k$.
\end{enumerate}
The analogue of the condition that $F(k)$ is a one element set is that
$\mathcal{F}(k)$ is the trivial groupoid. If $\mathcal{F}$ satisfies this
condition then we say it is a {\it predeformation category}, but in general
we do not make this assumption. Rim's paper \cite[Exposee VI]{SGA7-I} is the
original source for the results in this document. We also mention the useful
paper \cite{Vistoli}, which discusses deformation theory with groupoids but
in less generality than we do here.
\medskip\noindent
An important role is played by the ``completion''
$\widehat{\mathcal{C}}_\Lambda$ of the category $\mathcal{C}_\Lambda$.
An object of $\widehat{\mathcal{C}}_\Lambda$ is a Noetherian complete
local $\Lambda$-algebra $R$ whose residue field is identified with $k$, see
Section \ref{section-category-completion-CLambda}.
On the one hand $\mathcal{C}_\Lambda \subset \widehat{\mathcal{C}}_\Lambda$
is a strictly full subcategory and on the other hand
$\widehat{\mathcal{C}}_\Lambda$ is a full subcategory of the category
of pro-objects of $\mathcal{C}_\Lambda$. A functor
$\mathcal{C}_\Lambda \to \textit{Sets}$ is {\it prorepresentable}
if it is isomorphic to the restriction of a representable functor
$\underline{R} = \Mor_{\widehat{\mathcal{C}}_\Lambda}(R, -)$
to $\mathcal{C}_\Lambda$ where
$R \in \Ob(\widehat{\mathcal{C}}_\Lambda)$.
\medskip\noindent
{\it Categories cofibred in groupoids} are dual to categories fibred in
groupoids; we introduce them in Section \ref{section-preliminary}.
A {\it smooth} morphism of categories cofibred in groupoids over
$\mathcal{C}_\Lambda$ is one that satisfies the infinitesimal lifting
criterion for objects, see
Section \ref{section-smooth-morphisms}.
This is analogous to the definition of a formally smooth ring map, see
Algebra, Definition \ref{algebra-definition-formally-smooth}
and is exactly dual to the notion in
Criteria for Representability, Section \ref{criteria-section-formally-smooth}.
This is an important notion as we eventually want to prove that certain
kinds of categories cofibred in groupoids have a smooth prorepresentable
presentation, much like the characterization of algebraic stacks in
Algebraic Stacks, Sections \ref{algebraic-section-stack-to-presentation} and
\ref{algebraic-section-smooth-groupoid-gives-algebraic-stack}.
A {\it versal formal object} of a category $\mathcal{F}$ cofibred
in groupoids over $\mathcal{C}_\Lambda$ is an object
$\xi \in \widehat{\mathcal{F}}(R)$ of the completion such that the
associated morphism $\underline{\xi} : \underline{R} \to \mathcal{F}$
is smooth.
\medskip\noindent
In
Section \ref{section-schlessinger-conditions},
we define conditions (S1) and (S2) on $\mathcal{F}$ generalizing
Schlessinger's (H1) and (H2). The analogue of Schlessinger's
(H3)---the condition that $\mathcal{F}$ has finite dimensional
tangent space---is not given a name.
A key step in the development of the theory is the existence of
versal formal objects for predeformation categories satisfying
(S1), (S2) and (H3), see
Lemma \ref{lemma-versal-object-existence}.
Schlessinger's notion of a {\it hull} for a functor
$F : \mathcal{C}_\Lambda \to \textit{Sets}$
is, in our terminology, a versal formal object $\xi \in \widehat{F}(R)$
such that the induced map of tangent spaces
$d\underline{\xi} : T\underline{R} \to TF$ is an isomorphism.
In the literature a hull is often called a ``miniversal'' object.
We do not do so, and here is why. It can happen that a functor has a
versal formal object without having a hull. Moreover, we show in
Section \ref{section-minimal-versal}
that if a predeformation category has a versal formal object, then
it always has a {\it minimal} one (as defined in
Definition \ref{definition-minimal-versal})
which is unique up to isomorphism, see
Lemma \ref{lemma-minimal-versal}.
But it can happen that the minimal versal formal object does not
induce an isomorphism on tangent spaces! (See
Examples \ref{example-do-not-get-S2} and
\ref{example-smooth-continued}.)
\medskip\noindent
Keeping in mind the differences pointed out above,
Theorem \ref{theorem-miniversal-object-existence}
is the direct generalization of (1) above: it recovers Schlessinger's
result in the case that $\mathcal{F}$ is a functor and it characterizes
minimal versal formal objects, in the presence of conditions
(S1) and (S2), in terms of the map $d\underline{\xi} : T\underline{R} \to TF$
on tangent spaces.
\medskip\noindent
In Section \ref{section-RS-condition},
we define Rim's condition (RS) on $\mathcal{F}$ generalizing
Schlessinger's (H4). A {\it deformation category} is defined as a
predeformation category satisfying (RS).
The analogue to prorepresentable functors are the categories
cofibred in groupoids over $\mathcal{C}_\Lambda$ which have
a {\it presentation by a smooth prorepresentable groupoid in functors}
on $\mathcal{C}_\Lambda$, see
Definitions \ref{definition-groupoid-in-functors},
\ref{definition-prorepresentable-groupoid-in-functors}, and
\ref{definition-smooth-groupoid-in-functors}.
This notion of a presentation takes into account the groupoid structure
of the fibers of $\mathcal{F}$. In
Theorem \ref{theorem-presentation-deformation-groupoid}
we prove that $\mathcal{F}$ has a presentation by a smooth prorepresentable
groupoid in functors if and only if $\mathcal{F}$ has a finite dimensional
tangent space and finite dimensional infinitesimal automorphism space.
This is the generalization of (2) above: it reduces to Schlessinger's result
in the case that $\mathcal{F}$ is a functor.
There is a final
Section \ref{section-minimality}
where we discuss how to use minimal versal formal objects
to produce a (unique up to isomorphism) minimal presentation
by a smooth prorepresentable groupoid in functors.
\medskip\noindent
We also find the following conceptual explanation for Schlessinger's
conditions. If a predeformation category $\mathcal{F}$ satisfies (RS),
then the associated functor of isomorphism classes
$\overline{\mathcal{F}}: \mathcal{C}_\Lambda \to \textit{Sets}$
satisfies (H1) and (H2)
(Lemmas \ref{lemma-RS-implies-S1-S2} and
\ref{lemma-S1-S2-associated-functor}).
Conversely, if a functor
$F : \mathcal{C}_\Lambda \to \textit{Sets}$
arises naturally as the functor of isomorphism classes of
a category $\mathcal{F}$ cofibered in groupoids, then it seems to happen in
practice that an argument showing $F$ satisfies (H1) and (H2) will also show
$\mathcal{F}$ satisfies (RS) (see
Artin's Axioms, Section \ref{artin-section-examples}
for examples). Moreover, if $\mathcal{F}$ satisfies (RS), then condition
(H4) for $\overline{\mathcal{F}}$ has a simple interpretation in terms of
extending automorphisms of objects of $\mathcal{F}$
(Lemma \ref{lemma-RS-associated-functor}).
These observations suggest that (RS) should be regarded as the
fundamental deformation theoretic glueing condition.
\section{Notation and Conventions}
\label{section-notations-conventions}
\noindent
A ring is commutative with $1$. The maximal ideal of a local ring $A$
is denoted by $\mathfrak{m}_A$. The set of positive integers is denoted
by $\mathbf{N} = \{1, 2, 3, \ldots\}$. If $U$ is an object of a
category $\mathcal{C}$, we denote by $\underline{U}$
the functor
$\Mor_\mathcal{C}(U, -): \mathcal{C} \to \textit{Sets}$, see
Remarks \ref{remarks-cofibered-groupoids} (\ref{item-definition-yoneda}).
Warning: this may conflict with the notation in other chapters where we
sometimes use $\underline{U}$ to denote $h_U(-) = \Mor_\mathcal{C}(-, U)$.
\medskip\noindent
Throughout this chapter $\Lambda$ is a Noetherian ring and
$\Lambda \to k$ is a finite ring map from $\Lambda$ to a field.
The kernel of this map is denoted $\mathfrak m_\Lambda$ and the
image $k' \subset k$. It turns out that $\mathfrak m_\Lambda$ is
a maximal ideal, $k' = \Lambda/\mathfrak m_\Lambda$ is a field, and
the extension $k' \subset k$ is finite. See discussion surrounding
(\ref{equation-k-prime}).
\section{The base category}
\label{section-CLambda}
\noindent
Motivation. An important application of formal deformation theory is
to criteria for representability by algebraic spaces. Suppose given a
locally Noetherian base change $S$ and a functor
$F : (\Sch/S)_{fppf}^{opp} \to \textit{Sets}$.
Let $k$ be a finite type field over $S$, i.e., we are given a
finite type morphism $\Spec(k) \to S$.
One of Artin's criteria is that for any element $x \in F(\Spec(k))$
the predeformation functor associated to
the triple $(S, k, x)$ should be prorepresentable. By
Morphisms, Lemma \ref{morphisms-lemma-point-finite-type}
the condition that $k$ is of finite type over $S$ means that there exists
an affine open $\Spec(\Lambda) \subset S$ such that $k$
is a finite $\Lambda$-algebra. This motivates why we work throughout
this chapter with a base category as follows.
\begin{definition}
\label{definition-CLambda}
Let $\Lambda$ be a Noetherian ring and let $\Lambda \to k$ be a finite
ring map where $k$ is a field. We define {\it $\mathcal{C}_\Lambda$} to be
the category with
\begin{enumerate}
\item objects are pairs $(A, \varphi)$ where $A$ is an Artinian local
$\Lambda$-algebra and where $\varphi : A/\mathfrak m_A \to k$ is a
$\Lambda$-algebra isomorphism, and
\item morphisms $f : (B, \psi) \to (A, \varphi)$ are local $\Lambda$-algebra
homomorphisms such that $\varphi \circ (f \bmod \mathfrak m) = \psi$.
\end{enumerate}
We say we are in the {\it classical case} if $\Lambda$ is a Noetherian
complete local ring and $k$ is its residue field.
\end{definition}
\noindent
Note that if $\Lambda \to k$ is surjective and if $A$ is an Artinian local
$\Lambda$-algebra, then the identification $\varphi$, if it exists,
is unique. Moreover, in this case any $\Lambda$-algebra map $A \to B$ is
going to be compatible with the identifications. Hence in this case
$\mathcal{C}_\Lambda$ is just the category of local Artinian $\Lambda$-algebras
whose residue field ``is'' $k$. By abuse of notation we also denote objects of
$\mathcal{C}_\Lambda$ simply $A$ in the general case. Moreover, we will
often write $A/\mathfrak m = k$, i.e., we will pretend all rings in
$\mathcal{C}_\Lambda$ have residue field $k$ (since all ring maps in
$\mathcal{C}_\Lambda$ are compatible with the given identifications this
should never cause any problems).
Throughout the rest of this chapter the base ring $\Lambda$ and the
field $k$ are fixed. The category $\mathcal{C}_\Lambda$ will be the base
category for the cofibered categories considered below.
\begin{definition}
\label{definition-small-extension}
Let $f: B \to A$ be a ring map in $\mathcal{C}_\Lambda$. We say $f$
is a {\it small extension} if it is surjective and $\Ker(f)$ is a nonzero
principal ideal which is annihilated by $\mathfrak{m}_B$.
\end{definition}
\noindent
By the following lemma we can often reduce arguments involving surjective ring
maps in $\mathcal{C}_\Lambda$ to the case of small extensions.
\begin{lemma}
\label{lemma-factor-small-extension}
Let $f: B \to A$ be a surjective ring map in $\mathcal{C}_\Lambda$.
Then $f$ can be factored as a composition of small extensions.
\end{lemma}
\begin{proof}
Let $I$ be the kernel of $f$. The maximal ideal $\mathfrak{m}_B$ is
nilpotent since $B$ is Artinian, say $\mathfrak{m}_B^n = 0$. Hence we get a
factorization
$$
B = B/I\mathfrak{m}_B^{n-1} \to B/I\mathfrak{m}_B^{n-2} \to
\ldots \to B/I \cong A
$$
of $f$ into a composition of surjective maps whose kernels are annihilated by
the maximal ideal. Thus it suffices to prove the lemma when $f$ itself is such
a map, i.e.\ when $I$ is annihilated by $\mathfrak{m}_B$. In this case
$I$ is a $k$-vector space, which has finite dimension, see
Algebra, Lemma \ref{algebra-lemma-artinian-finite-length}.
Take a basis $x_1, \ldots, x_n$ of $I$ as a $k$-vector space to get a
factorization
$$
B \to B/(x_1) \to \ldots \to B/(x_1, \ldots, x_n) \cong A
$$
of $f$ into a composition of small extensions.
\end{proof}
\noindent
The next lemma says that we can compute the length of a module over a local
$\Lambda$-algebra with residue field $k$ in terms of the length over
$\Lambda$. To explain the notation in the statement, let $k' \subset k$
be the image of our fixed finite ring map $\Lambda \to k$. Note
that $k/k'$ is a finite extension of rings. Hence $k'$ is a field
and $k'/k$ is a finite extension, see
Algebra, Lemma \ref{algebra-lemma-integral-under-field}.
Moreover, as $\Lambda \to k'$ is surjective we see that its kernel
is a maximal ideal $\mathfrak m_\Lambda$. Thus
\begin{equation}
\label{equation-k-prime}
[k : k'] = [k : \Lambda/\mathfrak m_\Lambda] < \infty
\end{equation}
and in the classical case we have $k = k'$. The notation
$k' = \Lambda/\mathfrak m_\Lambda$ will be fixed throughout this chapter.
\begin{lemma}
\label{lemma-length}
Let $A$ be a local $\Lambda$-algebra with residue field $k$.
Let $M$ be an $A$-module. Then
$[k : k'] \text{length}_A(M) = \text{length}_\Lambda(M)$.
In the classical case we have
$\text{length}_A(M) = \text{length}_\Lambda(M)$.
\end{lemma}
\begin{proof}
If $M$ is a simple $A$-module then $M \cong k$ as an $A$-module, see
Algebra, Lemma \ref{algebra-lemma-characterize-length-1}.
In this case $\text{length}_A(M) = 1$ and
$\text{length}_\Lambda(M) = [k' : k]$, see
Algebra, Lemma \ref{algebra-lemma-dimension-is-length}.
If $\text{length}_A(M)$ is finite, then the result follows on
choosing a filtration of $M$ by $A$-submodules with simple quotients
using additivity, see
Algebra, Lemma \ref{algebra-lemma-length-additive}.
If $\text{length}_A(M)$ is infinite, the result follows from the obvious
inequality $\text{length}_A(M) \leq \text{length}_\Lambda(M)$.
\end{proof}
\begin{lemma}
\label{lemma-surjective}
Let $A \to B$ be a ring map in $\mathcal{C}_\Lambda$.
The following are equivalent
\begin{enumerate}
\item $f$ is surjective,
\item $\mathfrak m_A/\mathfrak m_A^2 \to \mathfrak m_B/\mathfrak m_B^2$
is surjective, and
\item $\mathfrak m_A/(\mathfrak m_\Lambda A + \mathfrak m_A^2)
\to \mathfrak m_B/(\mathfrak m_\Lambda B + \mathfrak m_B^2)$ is surjective.
\end{enumerate}
\end{lemma}
\begin{proof}
For any ring map $f : A \to B$ in $\mathcal{C}_\Lambda$ we have
$f(\mathfrak m_A) \subset \mathfrak m_B$ for example because
$\mathfrak m_A$, $\mathfrak m_B$ is the set of nilpotent elements of
$A$, $B$. Suppose $f$ is surjective. Let $y \in \mathfrak m_B$.
Choose $x \in A$ with $f(x) = y$. Since $f$ induces an isomorphism
$A/\mathfrak m_A \to B/\mathfrak m_B$ we see that $x \in \mathfrak m_A$.
Hence the induced map
$\mathfrak m_A/\mathfrak m_A^2 \to \mathfrak m_B/\mathfrak m_B^2$
is surjective. In this way we see that (1) implies (2).
\medskip\noindent
It is clear that (2) implies (3). The map $A \to B$ gives rise
to a canonical commutative diagram
$$
\xymatrix{
\mathfrak m_\Lambda/\mathfrak m_\Lambda^2 \otimes_{k'} k \ar[r] \ar[d] &
\mathfrak m_A/\mathfrak m_A^2 \ar[r] \ar[d] &
\mathfrak m_A/(\mathfrak m_\Lambda A + \mathfrak m_A^2) \ar[r] \ar[d] & 0 \\
\mathfrak m_\Lambda/\mathfrak m_\Lambda^2 \otimes_{k'} k \ar[r] &
\mathfrak m_B/\mathfrak m_B^2 \ar[r] &
\mathfrak m_B/(\mathfrak m_\Lambda B + \mathfrak m_B^2) \ar[r] & 0
}
$$
with exact rows. Hence if (3) holds, then so does (2).
\medskip\noindent
Assume (2). To show that $A \to B$ is surjective it suffices by
Nakayama's lemma (Algebra, Lemma \ref{algebra-lemma-NAK})
to show that $A/\mathfrak m_A \to B/\mathfrak m_AB$ is surjective.
(Note that $\mathfrak m_A$ is a nilpotent ideal.)
As $k = A/\mathfrak m_A = B/\mathfrak m_B$ it suffices to show that
$\mathfrak m_AB \to \mathfrak m_B$ is surjective. Applying
Nakayama's lemma once more we see that it suffices to see that
$\mathfrak m_AB/\mathfrak m_A\mathfrak m_B \to \mathfrak m_B/\mathfrak m_B^2$
is surjective which is what we assumed.
\end{proof}
\noindent
If $A \to B$ is a ring map in $\mathcal{C}_\Lambda$, then the map
$\mathfrak m_A/(\mathfrak m_\Lambda A + \mathfrak m_A^2)
\to \mathfrak m_B/(\mathfrak m_\Lambda B + \mathfrak m_B^2)$
is the map on relative cotangent spaces. Here is a formal definition.
\begin{definition}
\label{definition-tangent-space-ring}
Let $R \to S$ be a local homomorphism of local rings. The
{\it relative cotangent space}\footnote{Caution: We will see later
that in our general setting the tangent
space of an object $A \in \mathcal{C}_\Lambda$ over $\Lambda$ should
not be defined simply as the $k$-linear dual of the relative
cotangent space. In fact, the correct definition of the relative
cotangent space is
$\Omega_{S/R} \otimes_S S/\mathfrak m_S$.} of $R$ over $S$ is the
$S/\mathfrak m_S$-vector space
$\mathfrak m_S/(\mathfrak m_R S + \mathfrak m_S^2)$.
\end{definition}
\noindent
If $f_1: A_1 \to A$ and $f_2: A_2 \to A$ are two ring maps, then the fiber
product $A_1 \times_A A_2$ is the subring of $A_1 \times A_2$ consisting of
elements whose two projections to $A$ are equal. Throughout this chapter we
will be considering conditions involving such a fiber product when $f_1$
and $f_2$ are in $\mathcal{C}_\Lambda$. It isn't always the case that the
fibre product is an object of $\mathcal{C}_\Lambda$.
\begin{example}
\label{example-fibre-product}
Let $p$ be a prime number and let $n \in \mathbf{N}$.
Let $\Lambda = \mathbf{F}_p(t_1, t_2, \ldots, t_n)$ and let
$k = \mathbf{F}_p(x_1, \ldots, x_n)$ with map $\Lambda \to k$ given
by $t_i \mapsto x_i^p$. Let $A = k[\epsilon] = k[x]/(x^2)$.
Then $A$ is an object of $\mathcal{C}_\Lambda$. Suppose that
$D : k \to k$ is a derivation of $k$ over $\Lambda$, for example
$D = \partial/\partial x_i$. Then the map
$$
f_D : k \longrightarrow k[\epsilon], \quad
a \mapsto a + D(a)\epsilon
$$
is a morphism of $\mathcal{C}_\Lambda$. Set $A_1 = A_2 = k$ and set
$f_1 = f_{\partial/\partial x_1}$ and $f_2(a) = a$. Then
$A_1 \times_A A_2 = \{a \in k \mid \partial/\partial x_1(a) = 0\}$
which does not surject onto $k$. Hence the fibre product isn't
an object of $\mathcal{C}_\Lambda$.
\end{example}
\noindent
It turns out that this problem can only occur if the residue field
extension $k' \subset k$ (\ref{equation-k-prime}) is inseparable
and neither $f_1$ nor $f_2$ is surjective.
\begin{lemma}
\label{lemma-fiber-product-CLambda}
Let $f_1 : A_1 \to A$ and $f_2 : A_2 \to A$ be ring maps in
$\mathcal{C}_\Lambda$. Then:
\begin{enumerate}
\item If $f_1$ or $f_2$ is surjective, then
$A_1 \times_A A_2$ is in $\mathcal{C}_\Lambda$.
\item If $f_2$ is a small extension, then so is
$A_1 \times_A A_2 \to A_1$.
\item If the field extension $k' \subset k$ is separable, then
$A_1 \times_A A_2$ is in $\mathcal{C}_\Lambda$.
\end{enumerate}
\end{lemma}
\begin{proof}
The ring $A_1 \times_A A_2$ is a $\Lambda$-algebra via the map
$\Lambda \to A_1 \times_A A_2$ induced by the maps
$\Lambda \to A_1$ and $\Lambda \to A_2$. It is a local ring with unique
maximal ideal
$$
\mathfrak m_{A_1} \times_{\mathfrak m_A} \mathfrak m_{A_2} =
\Ker(A_1 \times_A A_2 \longrightarrow k)
$$
A ring is Artinian if and only if it has finite length as a module
over itself, see
Algebra, Lemma \ref{algebra-lemma-artinian-finite-length}.
Since $A_1$ and $A_2$ are Artinian, Lemma \ref{lemma-length} implies
$\text{length}_\Lambda(A_1)$ and $\text{length}_\Lambda(A_2)$,
and hence $\text{length}_\Lambda(A_1 \times A_2)$, are all finite. As
$A_1 \times_A A_2 \subset A_1 \times A_2$ is a $\Lambda$-submodule, this
implies
$\text{length}_{A_1 \times_A A_2}(A_1 \times_A A_2) \leq
\text{length}_\Lambda(A_1 \times_A A_2)$ is finite. So $A_1
\times_A A_2$ is Artinian. Thus the only thing that is keeping
$A_1 \times_A A_2$ from being an object of $\mathcal{C}_\Lambda$ is
the possibility that its residue field maps to a proper subfield of $k$
via the map $A_1 \times_A A_2 \to A \to A/\mathfrak m_A = k$ above.
\medskip\noindent
Proof of (1). If $f_2$ is surjective, then the projection
$A_1 \times_A A_2 \to A_1$ is surjective. Hence the composition
$A_1 \times_A A_2 \to A_1 \to A_1/\mathfrak m_{A_1} = k$ is surjective
and we conclude that $A_1 \times_A A_2$ is an object of $\mathcal{C}_\Lambda$.
\medskip\noindent
Proof of (2). If $f_2$ is a small extension then $A_2 \to A$ and
$A_1 \times_A A_2 \to A_1$ are both surjective with the same kernel.
Hence the kernel of $A_1 \times_A A_2 \to A_1$ is a $1$-dimensional
$k$-vector space and we see that $A_1 \times_A A_2 \to A_1$ is a small
extension.
\medskip\noindent
Proof of (3). Choose $\overline{x} \in k$ such that
$k = k'(\overline{x})$ (see
Fields, Lemma \ref{fields-lemma-primitive-element}).
Let $P'(T) \in k'[T]$ be the minimal polynomial of $\overline{x}$ over $k'$.
Since $k/k'$ is separable we see that
$\text{d}P/\text{d}T(\overline{x}) \not = 0$.
Choose a monic $P \in \Lambda[T]$ which maps to $P'$ under the surjective map
$\Lambda[T] \to k'[T]$. Because $A, A_1, A_2$ are henselian, see
Algebra, Lemma \ref{algebra-lemma-local-dimension-zero-henselian},
we can find $x, x_1, x_2 \in A, A_1, A_2$ with $P(x) = 0, P(x_1) = 0,
P(x_2) = 0$ and such that the image of $x, x_1, x_2$ in $k$ is $\overline{x}$.
Then $(x_1, x_2) \in A_1 \times_A A_2$ because $x_1, x_2$
map to $x \in A$ by uniqueness, see
Algebra, Lemma \ref{algebra-lemma-uniqueness}.
Hence the residue field of
$A_1 \times_A A_2$ contains a generator of $k$ over $k'$ and we win.
\end{proof}
\noindent
Next we define essential surjections in $\mathcal{C}_\Lambda$. A necessary
and sufficient condition for a surjection in $\mathcal{C}_\Lambda$ to be
essential is given in Lemma \ref{lemma-essential-surjection}.
\begin{definition}
\label{definition-essential-surjection}
Let $f: B \to A$ be a ring map in $\mathcal{C}_\Lambda$. We say $f$
is an {\it essential surjection} if it has the following properties:
\begin{enumerate}
\item $f$ is surjective.
\item If $g: C \to B$ is a ring map in $\mathcal{C}_\Lambda$ such that
$f \circ g$ is surjective, then $g$ is surjective.
\end{enumerate}
\end{definition}
\noindent
Using Lemma \ref{lemma-surjective}, we can characterize
essential surjections in $\mathcal{C}_\Lambda$ as follows.
\begin{lemma}
\label{lemma-essential-surjection-mod-squares}
Let $f: B \to A$ be a ring map in $\mathcal{C}_\Lambda$.
The following are equivalent
\begin{enumerate}
\item $f$ is an essential surjection,
\item the map $B/\mathfrak m_B^2 \to A/\mathfrak m_A^2$ is an essential
surjection, and
\item the map
$B/(\mathfrak m_\Lambda B + \mathfrak m_B^2) \to
A/(\mathfrak m_\Lambda A + \mathfrak m_A^2)$ is an essential surjection.
\end{enumerate}
\end{lemma}
\begin{proof}
Assume (3). Let $C \to B$ be a ring map in $\mathcal{C}_\Lambda$ such
that $C \to A$ is surjective. Then
$C \to A/(\mathfrak m_\Lambda A + \mathfrak m_A^2)$ is surjective
too. We conclude that $C \to B/(\mathfrak m_\Lambda B + \mathfrak m_B^2)$
is surjective by our assumption. Hence $C \to B$ is surjective by applying
Lemma \ref{lemma-surjective} (2 times).
\medskip\noindent
Assume (1). Let $C \to B/(\mathfrak m_\Lambda B + \mathfrak m_B^2)$
be a morphism of $\mathcal{C}_\Lambda$ such that
$C \to A/(\mathfrak m_\Lambda A + \mathfrak m_A^2)$ is surjective. Set
$C' = C \times_{B/(\mathfrak m_\Lambda B + \mathfrak m_B^2)} B$
which is an object of $\mathcal{C}_\Lambda$ by
Lemma \ref{lemma-fiber-product-CLambda}.
Note that $C' \to A/(\mathfrak m_\Lambda A + \mathfrak m_A^2)$
is still surjective, hence $C' \to A$ is surjective by
Lemma \ref{lemma-surjective}.
Thus $C' \to B$ is surjective by our assumption. This implies
that $C' \to B/(\mathfrak m_\Lambda B + \mathfrak m_B^2)$ is
surjective, which implies by the construction of $C'$ that
$C \to B/(\mathfrak m_\Lambda B + \mathfrak m_B^2)$ is surjective.
\medskip\noindent
In the first paragraph we proved (3) $\Rightarrow$ (1) and in the second
paragraph we proved (1) $\Rightarrow$ (3). The equivalence of
(2) and (3) is a special case of the equivalence of (1) and (3), hence
we are done.
\end{proof}
\noindent
To analyze essential surjections in $\mathcal{C}_\Lambda$ a bit more
we introduce some notation. Suppose that $A$ is an object
of $\mathcal{C}_\Lambda$. There is a canonical exact sequence
\begin{equation}
\label{equation-sequence}
\mathfrak m_A/\mathfrak m_A^2 \xrightarrow{\text{d}_A}
\Omega_{A/\Lambda} \otimes_A k \to
\Omega_{k/\Lambda} \to 0
\end{equation}
see
Algebra, Lemma \ref{algebra-lemma-differential-seq}.
Note that $\Omega_{k/\Lambda} = \Omega_{k/k'}$ with $k'$ as
in (\ref{equation-k-prime}). Let $H_1(L_{k/\Lambda})$
be the first homology module of the naive cotangent complex of $k$
over $\Lambda$, see
Algebra, Definition \ref{algebra-definition-naive-cotangent-complex}.
Then we can extend (\ref{equation-sequence})
to the exact sequence
\begin{equation}
\label{equation-sequence-extended}
H_1(L_{k/\Lambda}) \to
\mathfrak m_A/\mathfrak m_A^2 \xrightarrow{\text{d}_A}
\Omega_{A/\Lambda} \otimes_A k \to
\Omega_{k/\Lambda} \to 0,
\end{equation}
see
Algebra, Lemma \ref{algebra-lemma-exact-sequence-NL}.
If $B \to A$ is a ring map in $\mathcal{C}_\Lambda$ then we obtain a
commutative diagram
\begin{equation}
\label{equation-sequence-functorial}
\vcenter{
\xymatrix{
H_1(L_{k/\Lambda}) \ar[r] \ar@{=}[d] &
\mathfrak m_B/\mathfrak m_B^2 \ar[r]_{\text{d}_B} \ar[d] &
\Omega_{B/\Lambda} \otimes_B k \ar[r] \ar[d] &
\Omega_{k/\Lambda} \ar[r] \ar@{=}[d] & 0 \\
H_1(L_{k/\Lambda}) \ar[r] &
\mathfrak m_A/\mathfrak m_A^2 \ar[r]^{\text{d}_A} &
\Omega_{A/\Lambda} \otimes_A k \ar[r] &
\Omega_{k/\Lambda} \ar[r] & 0
}
}
\end{equation}
with exact rows.
\begin{lemma}
\label{lemma-H1-separable-case}
There is a canonical map
$$
\mathfrak m_\Lambda/\mathfrak m_\Lambda^2 \longrightarrow H_1(L_{k/\Lambda}).
$$
If $k' \subset k$ is separable (for example if the characteristic
of $k$ is zero), then this map induces an isomorphism
$\mathfrak m_\Lambda/\mathfrak m_\Lambda^2 \otimes_{k'} k = H_1(L_{k/\Lambda})$.
If $k = k'$ (for example in the classical case), then
$\mathfrak m_\Lambda/\mathfrak m_\Lambda^2 = H_1(L_{k/\Lambda})$.
The composition
$$
\mathfrak m_\Lambda/\mathfrak m_\Lambda^2 \longrightarrow
H_1(L_{k/\Lambda}) \longrightarrow \mathfrak m_A/\mathfrak m_A^2
$$
comes from the canonical map $\mathfrak m_\Lambda \to \mathfrak m_A$.
\end{lemma}
\begin{proof}
Note that $H_1(L_{k'/\Lambda}) = \mathfrak m_\Lambda/\mathfrak m_\Lambda^2$
as $\Lambda \to k'$ is surjective with kernel $\mathfrak m_\Lambda$.
The map arises from functoriality of the naive cotangent complex.
If $k' \subset k$ is separable, then $k' \to k$ is an \'etale ring map, see
Algebra, Lemma \ref{algebra-lemma-etale-over-field}.
Thus its naive cotangent complex has trivial homology groups, see
Algebra, Definition \ref{algebra-definition-etale}.
Then
Algebra, Lemma \ref{algebra-lemma-exact-sequence-NL}
applied to the ring maps $\Lambda \to k' \to k$ implies that
$\mathfrak m_\Lambda/\mathfrak m_\Lambda^2 \otimes_{k'} k = H_1(L_{k/\Lambda})$.
We omit the proof of the final statement.
\end{proof}
\begin{lemma}
\label{lemma-essential-surjection}
Let $f: B \to A$ be a ring map in $\mathcal{C}_\Lambda$.
Notation as in (\ref{equation-sequence-functorial}).
\begin{enumerate}
\item The equivalent conditions of
Lemma \ref{lemma-essential-surjection-mod-squares}
characterizing when $f$ is surjective are also equivalent to
\begin{enumerate}
\item $\Im(\text{d}_B) \to \Im(\text{d}_A)$ is surjective, and
\item the map $\Omega_{B/\Lambda} \otimes_B k \to
\Omega_{A/\Lambda} \otimes_A k$ is surjective.
\end{enumerate}
\item The following are equivalent
\begin{enumerate}
\item $f$ is an essential surjection,
\item the map $\Im(\text{d}_B) \to \Im(\text{d}_A)$ is an
isomorphism, and
\item the map $\Omega_{B/\Lambda} \otimes_B k \to
\Omega_{A/\Lambda} \otimes_A k$ is an isomorphism.
\end{enumerate}
\item If $k/k'$ is separable, then $f$ is an essential surjection if
and only if the map
$\mathfrak m_B/(\mathfrak m_\Lambda B + \mathfrak m_B^2) \to
\mathfrak m_A/(\mathfrak m_\Lambda A + \mathfrak m_A^2)$
is an isomorphism.
\item If $f$ is a small extension, then $f$ is not essential if and only if
$f$ has a section $s: A \to B$ in $\mathcal{C}_\Lambda$
with $f \circ s = \text{id}_A$.
\end{enumerate}
\end{lemma}
\begin{proof}
Proof of (1). It follows from (\ref{equation-sequence-functorial})
that (1)(a) and (1)(b) are equivalent. Also, if
$A \to B$ is surjective, then (1)(a) and (1)(b) hold. Assume (1)(a).
Since the kernel of $\text{d}_A$ is the image of
$H_1(L_{k/\Lambda})$ which also maps to
$\mathfrak m_B/\mathfrak m_B^2$ we conclude that
$\mathfrak m_B/\mathfrak m_B^2 \to \mathfrak m_A/\mathfrak m_A^2$
is surjective. Hence $B \to A$ is surjective by
Lemma \ref{lemma-surjective}. This finishes the proof of (1).
\medskip\noindent
Proof of (2). The equivalence of (2)(b) and (2)(c) is immediate from
(\ref{equation-sequence-functorial}).
\medskip\noindent
Assume (2)(b). Let $g : C \to B$ be a ring map in $\mathcal{C}_\Lambda$
such that $f \circ g$ is surjective. We conclude that
$\mathfrak m_C/\mathfrak m_C^2 \to \mathfrak m_A/\mathfrak m_A^2$
is surjective by
Lemma \ref{lemma-surjective}.
Hence
$\Im(\text{d}_C) \to \Im(\text{d}_A)$ is surjective
and by the assumption we see that
$\Im(\text{d}_C) \to \Im(\text{d}_B)$ is surjective.
It follows that $C \to B$ is surjective by (1).
\medskip\noindent
Assume (2)(a). Then $f$ is surjective and we see that
$\Omega_{B/\Lambda} \otimes_B k \to \Omega_{A/\Lambda} \otimes_A k$
is surjective. Let $K$ be the kernel. Note that
$K = \text{d}_B(\Ker(\mathfrak m_B/\mathfrak m_B^2 \to
\mathfrak m_A/\mathfrak m_A^2))$ by (\ref{equation-sequence-functorial}).
Choose a splitting
$$
\Omega_{B/\Lambda} \otimes_B k =
\Omega_{A/\Lambda} \otimes_A k \oplus K
$$
of $k$-vector space. The map $\text{d} : B \to \Omega_{B/\Lambda}$
induces via the projection onto $K$ a map $D : B \to K$. Set
$C = \{b \in B \mid D(b) = 0\}$. The Leibniz rule shows that this is
a $\Lambda$-subalgebra of $B$. Let $\overline{x} \in k$. Choose $x \in B$
mapping to $\overline{x}$. If $D(x) \not = 0$, then we can find an element
$y \in \mathfrak m_B$ such that $D(y) = D(x)$. Hence $x - y \in C$ is
an element which maps to $\overline{x}$. Thus $C \to k$ is surjective
and $C$ is an object of $\mathcal{C}_\Lambda$. Similarly, pick
$\omega \in \Im(\text{d}_A)$. We can find $x \in \mathfrak m_B$
such that $\text{d}_B(x)$ maps to $\omega$ by (1). If $D(x) \not = 0$, then
we can find an element $y \in \mathfrak m_B$ which maps to zero
in $\mathfrak m_A/\mathfrak m_A^2$ such that $D(y) = D(x)$.
Hence $z = x - y$ is an element of $\mathfrak m_C$ whose
image $\text{d}_C(z) \in \Omega_{C/k} \otimes_C k$ maps to $\omega$.
Hence $\Im(\text{d}_C) \to \Im(\text{d}_A)$ is surjective.
We conclude that $C \to A$ is surjective by (1). Hence $C \to B$ is
surjective by assumption. Hence $D = 0$, i.e., $K = 0$, i.e., (2)(c) holds.
This finishes the proof of (2).
\medskip\noindent
Proof of (3). If $k'/k$ is separable, then
$H_1(L_{k/\Lambda}) =
\mathfrak m_\Lambda/\mathfrak m_\Lambda^2 \otimes_{k'} k$, see
Lemma \ref{lemma-H1-separable-case}.
Hence $\Im(\text{d}_A) =
\mathfrak m_A/(\mathfrak m_\Lambda A + \mathfrak m_A^2)$
and similarly for $B$. Thus (3) follows from (2).
\medskip\noindent
Proof of (4). A section $s$ of $f$ is not surjective (by definition a
small extension has nontrivial kernel), hence $f$ is not essentially
surjective. Conversely, assume $f$ is a small surjection but not an
essential surjection. Choose a ring map $C \to B$ in $\mathcal{C}_\Lambda$
which is not surjective, such that $C \to A$ is surjective. Let
$C' \subset B$ be the image of $C \to B$. Then $C' \not = B$ but
$C'$ surjects onto $A$. Since $f : B \to A$ is a small extension,
$\text{length}_C(B) = \text{length}_C(A) + 1$. Thus
$\text{length}_C(C') \leq \text{length}_C(A)$ since
$C'$ is a proper subring of $B$. But $C' \to A$ is surjective, so in
fact we must have $\text{length}_C(C') = \text{length}_C(A)$ and
$C' \to A$ is an isomorphism which gives us our section.
\end{proof}
\begin{example}
\label{example-essential-surjection}
Let $\Lambda = k[[x]]$ be the power series ring in $1$ variable over $k$.
Set $A = k$ and $B = \Lambda/(x^2)$. Then $B \to A$ is an essential
surjection by
Lemma \ref{lemma-essential-surjection}
because it is a small extension and the map $B \to A$ does not have a
right inverse (in the category $\mathcal{C}_\Lambda$). But the map
$$
k \cong \mathfrak m_B/\mathfrak m_B^2
\longrightarrow
\mathfrak m_A/\mathfrak m_A^2 = 0
$$
is not an isomorphism. Thus in
Lemma \ref{lemma-essential-surjection} (3)
it is necessary to consider the map of relative cotangent spaces
$\mathfrak m_B/(\mathfrak m_\Lambda B + \mathfrak m_B^2) \to
\mathfrak m_A/(\mathfrak m_\Lambda A + \mathfrak m_A^2)$.
\end{example}
\section{The completed base category}
\label{section-category-completion-CLambda}
\noindent
The following ``completion'' of the category $\mathcal{C}_\Lambda$ will serve
as the base category of the completion of a category cofibered in groupoids
over $\mathcal{C}_\Lambda$
(Section \ref{section-formal-objects}).
\begin{definition}
\label{definition-completion-CLambda}
Let $\Lambda$ be a Noetherian ring and let $\Lambda \to k$ be a finite
ring map where $k$ is a field. We define {\it $\widehat{\mathcal{C}}_\Lambda$}
to be the category with
\begin{enumerate}
\item objects are pairs $(R, \varphi)$ where $R$ is a Noetherian complete
local $\Lambda$-algebra and where $\varphi : R/\mathfrak m_R \to k$ is a
$\Lambda$-algebra isomorphism, and
\item morphisms $f : (S, \psi) \to (R, \varphi)$ are local $\Lambda$-algebra
homomorphisms such that $\varphi \circ (f \bmod \mathfrak m) = \psi$.
\end{enumerate}
\end{definition}
\noindent
As in the discussion following
Definition \ref{definition-CLambda}
we will usually denote an object of $\widehat{\mathcal{C}}_\Lambda$
simply $R$, with the identification $R/\mathfrak m_R = k$ understood.
In this section we discuss some basic properties of objects and morphisms
of the category $\widehat{\mathcal{C}}_\Lambda$ paralleling our discussion of
the category $\mathcal{C}_\Lambda$ in the previous section.
\medskip\noindent
Our first observation is that any object $A \in \mathcal{C}_\Lambda$
is an object of $\widehat{\mathcal{C}}_\Lambda$ as an Artinian local
ring is always Noetherian and complete with respect to its maximal ideal
(which is after all a nilpotent ideal). Moreover, it is clear from the
definitions that
$\mathcal{C}_\Lambda \subset \widehat{\mathcal{C}}_\Lambda$
is the strictly full subcategory consisting of all Artinian rings.
As it turns out, conversely every object of
$\widehat{\mathcal{C}}_\Lambda$ is a limit of objects of
$\mathcal{C}_\Lambda$.
\medskip\noindent
Suppose that $R$ is an object of $\widehat{\mathcal{C}}_\Lambda$.
Consider the rings $R_n = R/\mathfrak m_R^n$ for $n \in \mathbf{N}$.
These are Noetherian local rings with a unique nilpotent prime ideal, hence
Artinian, see
Algebra, Proposition \ref{algebra-proposition-dimension-zero-ring}.
The ring maps
$$
\ldots \to R_{n + 1} \to R_n \to \ldots \to R_2 \to R_1 = k
$$
are all surjective. Completeness of $R$ by definition means
that $R = \lim R_n$. If $f : R \to S$ is a ring map in
$\widehat{\mathcal{C}}_\Lambda$ then we obtain a system of ring maps
$f_n : R_n \to S_n$ whose limit is the given map.
\begin{lemma}
\label{lemma-surjective-cotangent-space}
Let $f: R \to S$ be a ring map in $\widehat{\mathcal{C}}_\Lambda$.
The following are equivalent
\begin{enumerate}
\item $f$ is surjective,
\item the map
$\mathfrak m_R/\mathfrak m_R^2 \to \mathfrak m_S/\mathfrak m_S^2$
is surjective, and
\item the map
$\mathfrak m_R/(\mathfrak m_\Lambda R + \mathfrak m_R^2) \to
\mathfrak m_S/(\mathfrak m_\Lambda S + \mathfrak m_S^2)$
is surjective.
\end{enumerate}
\end{lemma}
\begin{proof}
Note that for $n \geq 2$ we have the equality of relative cotangent spaces
$$
\mathfrak m_R/(\mathfrak m_\Lambda R + \mathfrak m_R^2)
=
\mathfrak m_{R_n}/(\mathfrak m_\Lambda R_n + \mathfrak m_{R_n}^2)
$$
and similarly for $S$. Hence by
Lemma \ref{lemma-surjective}
we see that $R_n \to S_n$ is surjective for all $n$.
Now let $K_n$ be the kernel of $R_n \to S_n$. Then the sequences
$$
0 \to K_n \to R_n \to S_n \to 0
$$
form an exact sequence of directed inverse systems. The system $(K_n)$ is
Mittag-Leffler since each $K_n$ is Artinian. Hence by
Algebra, Lemma \ref{algebra-lemma-ML-exact-sequence}
taking limits preserves exactness. So
$\lim R_n \to \lim S_n$ is surjective, i.e., $f$ is surjective.
\end{proof}
\begin{lemma}
\label{lemma-CLambdahat-pushouts}
The category $\widehat{\mathcal{C}}_\Lambda$ admits pushouts.
\end{lemma}
\begin{proof}
Let $R \to S_1$ and $R \to S_2$ be morphisms of
$\widehat{\mathcal{C}}_\Lambda$. Consider the ring
$C = S_1 \otimes_R S_2$.
This ring has a finitely generated maximal ideal
$\mathfrak m = \mathfrak m_{S_1} \otimes S_2 +
S_1 \otimes \mathfrak m_{S_2}$ with residue field $k$.
Set $C^\wedge$ equal to the completion of $C$ with respect to $\mathfrak m$.
Then $C^\wedge$ is a Noetherian ring complete with respect to
the maximal ideal $\mathfrak m^\wedge = \mathfrak mC^\wedge$
whose residue field is identified with $k$, see
Algebra, Lemma \ref{algebra-lemma-completion-Noetherian}.
Hence $C^\wedge$ is an object of $\widehat{\mathcal{C}}_\Lambda$.
Then $S_1 \to C^\wedge$ and $S_2 \to C^\wedge$ turn $C^\wedge$
into a pushout over $R$ in $\widehat{\mathcal{C}}_\Lambda$ (details omitted).
\end{proof}
\noindent
We will not need the following lemma.
\begin{lemma}
\label{lemma-CLambdahat-coproducts}
The category $\widehat{\mathcal{C}}_\Lambda$ admits coproducts
of pairs of objects.
\end{lemma}
\begin{proof}
Let $R$ and $S$ be objects of $\widehat{\mathcal{C}}_\Lambda$.
Consider the ring $C = R \otimes_\Lambda S$. There is a canonical
surjective map $C \to R \otimes_\Lambda S \to k \otimes_\Lambda k \to k$
where the last map is the multiplication map. The kernel of
$C \to k$ is a maximal ideal $\mathfrak m$. Note that $\mathfrak m$
is generated by $\mathfrak m_R C$, $\mathfrak m_S C$ and finitely many
elements of $C$ which map to generators of the kernel of
$k \otimes_\Lambda k \to k$. Hence $\mathfrak m$ is a finitely
generated ideal. Set
$C^\wedge$ equal to the completion of $C$ with respect to $\mathfrak m$.
Then $C^\wedge$ is a Noetherian ring complete with respect to
the maximal ideal $\mathfrak m^\wedge = \mathfrak mC^\wedge$
with residue field $k$, see
Algebra, Lemma \ref{algebra-lemma-completion-Noetherian}.
Hence $C^\wedge$ is an object of $\widehat{\mathcal{C}}_\Lambda$.
Then $R \to C^\wedge$ and $S \to C^\wedge$ turn $C^\wedge$
into a coproduct in $\widehat{\mathcal{C}}_\Lambda$ (details omitted).
\end{proof}
\noindent
An empty coproduct in a category is an initial object of the category.
In the classical case $\widehat{\mathcal{C}}_\Lambda$ has an initial
object, namely $\Lambda$ itself. More generally, if $k' = k$, then
the completion $\Lambda^\wedge$ of $\Lambda$ with respect to
$\mathfrak m_\Lambda$ is an initial object. More generally still, if
$k' \subset k$ is separable, then $\widehat{\mathcal{C}}_\Lambda$ has an
initial object too. Namely, choose a monic polynomial $P \in \Lambda[T]$
such that $k \cong k'[T]/(P')$ where $p' \in k'[T]$ is the image
of $P$. Then $R = \Lambda^\wedge[T]/(P)$ is an initial object, see proof of
Lemma \ref{lemma-fiber-product-CLambda}.
\medskip\noindent
If $R$ is an initial object as above, then we have
$\mathcal{C}_\Lambda = \mathcal{C}_R$ and
$\widehat{\mathcal{C}}_\Lambda = \widehat{\mathcal{C}}_R$ which effectively
brings the whole discussion in this chapter back to the classical case.
But, if $k' \subset k$ is inseparable, then an initial object does not
exist.
\begin{lemma}
\label{lemma-derivations-finite}
Let $S$ be an object of $\widehat{\mathcal{C}}_\Lambda$.
Then $\dim_k \text{Der}_\Lambda(S, k) < \infty$.
\end{lemma}
\begin{proof}
Let $x_1, \ldots, x_n \in \mathfrak m_S$ map to a $k$-basis
for the relative cotangent space
$\mathfrak m_S/(\mathfrak m_\Lambda S + \mathfrak m_S^2)$.
Choose $y_1, \ldots, y_m \in S$ whose images in $k$ generate $k$
over $k'$. We claim that $\dim_k \text{Der}_\Lambda(S, k) \leq n + m$.
To see this it suffices to prove that if $D(x_i) = 0$ and
$D(y_j) = 0$, then $D = 0$. Let $a \in S$. We can find a
polynomial $P = \sum \lambda_J y^J$ with $\lambda_J \in \Lambda$
whose image in $k$ is the same as the image of $a$ in $k$.
Then we see that $D(a - P) = D(a) - D(P) = D(a)$ by our assumption
that $D(y_j) = 0$ for all $j$. Thus we may assume $a \in \mathfrak m_S$.
Write $a = \sum a_i x_i$ with $a_i \in S$. By the Leibniz rule
$$
D(a) = \sum x_iD(a_i) + \sum a_iD(x_i) = \sum x_iD(a_i)
$$
as we assumed $D(x_i) = 0$. We have $\sum x_iD(a_i) = 0$
as multiplication by $x_i$ is zero on $k$.
\end{proof}
\begin{lemma}
\label{lemma-derivations-surjective}
Let $f : R \to S$ be a morphism of $\widehat{\mathcal{C}}_\Lambda$.
If $\text{Der}_\Lambda(S, k) \to \text{Der}_\Lambda(R, k)$ is injective,
then $f$ is surjective.
\end{lemma}
\begin{proof}