forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
obsolete.tex
1440 lines (1245 loc) · 47.1 KB
/
obsolete.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Obsolete}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we put some lemmas that have become ``obsolete''
(see \cite{Miller}).
\section{Obsolete algebra lemmas}
\label{section-algebra}
\begin{lemma}
\label{lemma-finite-presentation-module-independent}
Let $M$ be an $R$-module of finite presentation.
For any surjection $\alpha : R^{\oplus n} \to M$ the
kernel of $\alpha$ is a finite $R$-module.
\end{lemma}
\begin{proof}
This is a special case of Algebra, Lemma \ref{algebra-lemma-extension}.
\end{proof}
\noindent
The following technical lemma says that you can lift any sequence
of relations from a fibre to the whole space of a ring
map which is essentially of finite type, in a suitable sense.
\begin{lemma}
\label{lemma-lift-elements-ideal}
Let $R \to S$ be a ring map.
Let $\mathfrak p \subset R$ be a prime.
Let $\mathfrak q \subset S$ be a prime lying over $\mathfrak p$.
Assume $S_{\mathfrak q}$ is essentially of finite type over $R_\mathfrak p$.
Assume given
\begin{enumerate}
\item an integer $n \geq 0$,
\item a prime $\mathfrak a \subset \kappa(\mathfrak p)[x_1, \ldots, x_n]$,
\item a surjective $\kappa(\mathfrak p)$-homomorphism
$$
\psi : (\kappa(\mathfrak p)[x_1, \ldots, x_n])_{\mathfrak a}
\longrightarrow
S_{\mathfrak q}/\mathfrak p S_{\mathfrak q},
$$
and
\item elements $\overline{f}_1, \ldots, \overline{f}_e$ in $\Ker(\psi)$.
\end{enumerate}
Then there exist
\begin{enumerate}
\item an integer $m \geq 0$,
\item and element $g \in S$, $g \not\in \mathfrak q$,
\item a map
$$
\Psi :
R[x_1, \ldots, x_n, x_{n + 1}, \ldots, x_{n + m}]
\longrightarrow
S_g,
$$
and
\item elements $f_1, \ldots, f_e, f_{e + 1}, \ldots, f_{e + m}$
of $\Ker(\Psi)$
\end{enumerate}
such that
\begin{enumerate}
\item the following diagram commutes
$$
\xymatrix{
R[x_1, \ldots, x_{n + m}] \ar[d]_\Psi
\ar[rr]_-{x_{n + j} \mapsto 0} & &
(\kappa(\mathfrak p)[x_1, \ldots, x_n])_{\mathfrak a} \ar[d]^\psi \\
S_g \ar[rr] & &
S_{\mathfrak q}/\mathfrak p S_{\mathfrak q}
},
$$
\item the element $f_i$, $i \leq n$ maps to a unit times
$\overline{f}_i$ in the local ring
$$
(\kappa(\mathfrak p)[x_1, \ldots, x_{n + m}])_{
(\mathfrak a, x_{n + 1}, \ldots, x_{n + m})},
$$
\item the element $f_{e + j}$ maps to
a unit times $x_{n + j}$ in the same local ring, and
\item the induced map $R[x_1, \ldots, x_{n + m}]_{\mathfrak b}
\to S_{\mathfrak q}$ is surjective, where
$\mathfrak b = \Psi^{-1}(\mathfrak qS_g)$.
\end{enumerate}
\end{lemma}
\begin{proof}
We claim that it suffices to prove the lemma in case $R$
and $S$ are local with maximal ideals $\mathfrak p$ and $\mathfrak q$.
Namely, suppose we have constructed
$$
\Psi' : R_{\mathfrak p}[x_1, \ldots, x_{n + m}]
\longrightarrow
S_{\mathfrak q}
$$
and $f_1', \ldots, f_{e + m}' \in R_{\mathfrak p}[x_1, \ldots, x_{n + m}]$
with all the required properties. Then there exists an element
$f \in R$, $f \not \in \mathfrak p$ such that each
$ff_k'$ comes from an element $f_k \in R[x_1, \ldots, x_{n + m}]$.
Moreover, for a suitable $g \in S$, $g \not \in \mathfrak q$
the elements $\Psi'(x_i)$ are the image of elements
$y_i \in S_g$. Let $\Psi$ be the $R$-algebra map defined
by the rule $\Psi(x_i) = y_i$. Since $\Psi(f_i)$ is zero
in the localization $S_{\mathfrak q}$ we may after possibly
replacing $g$ assume that $\Psi(f_i) = 0$. This proves the claim.
\medskip\noindent
Thus we may assume $R$ and $S$ are local
with maximal ideals $\mathfrak p$ and $\mathfrak q$.
Pick $y_1, \ldots, y_n \in S$ such that
$y_i \bmod \mathfrak pS = \psi(x_i)$.
Let $y_{n + 1}, \ldots, y_{n + m} \in S$ be elements which generate
an $R$-subalgebra of which $S$ is the localization.
These exist by the assumption that $S$ is essentially of
finite type over $R$. Since $\psi$ is surjective we
may write $y_{n + j} \bmod \mathfrak pS = \psi(h_j)$ for
some $h_j \in \kappa(\mathfrak p)[x_1, \ldots, x_n]_{\mathfrak a}$.
Write $h_j = g_j/d$, $g_j \in \kappa(\mathfrak p)[x_1, \ldots, x_n]$
for some common denominator $d \in \kappa(\mathfrak p)[x_1, \ldots, x_n]$,
$d \not \in \mathfrak a$. Choose lifts $G_j, D \in R[x_1, \ldots, x_n]$
of $g_j$ and $d$. Set
$y_{n + j}' = D(y_1, \ldots, y_n) y_{n + j} - G_j(y_1, \ldots, y_n)$.
By construction $y_{n + j}' \in \mathfrak p S$.
It is clear that $y_1, \ldots, y_n, y_n', \ldots, y_{n + m}'$
generate an $R$-subalgebra of $S$ whose localization is $S$.
We define
$$
\Psi : R[x_1, \ldots, x_{n + m}] \to S
$$
to be the map that sends $x_i$ to $y_i$ for $i = 1, \ldots, n$
and $x_{n + j}$ to $y'_{n + j}$ for $j = 1, \ldots, m$. Properties
(1) and (4) are clear by construction. Moreover the ideal
$\mathfrak b$ maps onto the ideal
$(\mathfrak a, x_{n + 1}, \ldots, x_{n + m})$
in the polynomial ring $\kappa(\mathfrak p)[x_1, \ldots, x_{n + m}]$.
\medskip\noindent
Denote $J = \Ker(\Psi)$. We have a short exact sequence
$$
0 \to J_{\mathfrak b}
\to R[x_1, \ldots, x_{n + m}]_{\mathfrak b}
\to S_{\mathfrak q}
\to 0.
$$
The surjectivity comes from our choice of
$y_1, \ldots, y_n, y_n', \ldots, y_{n + m}'$ above.
This implies that
$$
J_{\mathfrak b}/ \mathfrak pJ_{\mathfrak b}
\to \kappa(\mathfrak p)[x_1, \ldots, x_{n + m}]_{
(\mathfrak a, x_{n + 1}, \ldots, x_{n + m})}
\to S_{\mathfrak q}/\mathfrak pS_{\mathfrak q}
\to 0
$$
is exact. By construction $x_i$ maps to $\psi(x_i)$ and
$x_{n + j}$ maps to zero under the last map.
Thus it is easy to choose $f_i$ as in
(2) and (3) of the lemma.
\end{proof}
\begin{remark}[Projective resolutions]
\label{remark-projective-resolution}
Let $R$ be a ring.
For any set $S$ we let $F(S)$ denote the free $R$-module on $S$.
Then any left $R$-module has the following two step resolution
$$
F(M \times M) \oplus F(R \times M) \to F(M) \to M \to 0.
$$
The first map is given by the rule
$$
[m_1, m_2] \oplus [r, m] \mapsto [m_1 + m_2] - [m_1] - [m_2] + [rm] - r[m].
$$
\end{remark}
\begin{lemma}
\label{lemma-spec-localization-first}
Let $S$ be a multiplicative set of $A$. Then the map
$$
f: \Spec(S^{-1}A)\longrightarrow \Spec(A)
$$
induced by the canonical ring map
$A \to S^{-1}A$ is a homeomorphism onto its image and
$\Im(f) = \{ \mathfrak p \in \Spec(A) : \mathfrak p\cap S = \emptyset \}$.
\end{lemma}
\begin{proof}
This is a duplicate of Algebra, Lemma \ref{algebra-lemma-spec-localization}.
\end{proof}
\begin{lemma}
\label{lemma-finite-type-flat-over-integral-algebra}
Let $A \to B$ be a finite type, flat ring map with $A$ an integral
domain. Then $B$ is a finitely presented $A$-algebra.
\end{lemma}
\begin{proof}
Special case of More on Flatness, Proposition
\ref{flat-proposition-flat-finite-type-finite-presentation-domain}.
\end{proof}
\begin{lemma}
\label{lemma-helper-finite-type-flat-finite-presentation}
Let $R$ be a domain with fraction field $K$.
Let $S = R[x_1, \ldots, x_n]$ be a polynomial ring over $R$.
Let $M$ be a finite $S$-module. Assume that $M$ is flat over $R$.
If for every subring $R \subset R' \subset K$, $R \not = R'$
the module $M \otimes_R R'$ is finitely presented
over $S \otimes_R R'$, then $M$ is finitely presented over $S$.
\end{lemma}
\begin{proof}
This lemma is true because $M$ is finitely presented even without the
assumption that $M \otimes_R R'$ is finitely presented for every $R'$
as in the statement of the lemma. This follows from More on Flatness,
Proposition \ref{flat-proposition-flat-finite-type-finite-presentation-domain}.
Originally this lemma had an erroneous proof (thanks to Ofer Gabber
for finding the gap) and was used in an alternative proof of
the proposition cited. To reinstate this lemma, we need a correct argument
in case $R$ is a local normal domain using only
results from the chapters on commutative algebra; please email
\href{mailto:[email protected]}{[email protected]}
if you have an argument.
\end{proof}
\begin{lemma}
\label{lemma-relative-effective-cartier-algebra}
Let $A \to B$ be a ring map. Let $f \in B$. Assume that
\begin{enumerate}
\item $A \to B$ is flat,
\item $f$ is a nonzerodivisor, and
\item $A \to B/fB$ is flat.
\end{enumerate}
Then for every ideal $I \subset A$ the map
$f : B/IB \to B/IB$ is injective.
\end{lemma}
\begin{proof}
Note that $IB = I \otimes_A B$ and $I(B/fB) = I \otimes_A B/fB$
by the flatness of $B$ and $B/fB$ over $A$.
In particular $IB/fIB \cong I \otimes_A B/fB$ maps injectively
into $B/fB$. Hence the result follows from the snake lemma applied
to the diagram
$$
\xymatrix{
0 \ar[r] &
I \otimes_A B \ar[r] \ar[d]^f &
B \ar[r] \ar[d]^f &
B/IB \ar[r] \ar[d]^f &
0 \\
0 \ar[r] &
I \otimes_A B \ar[r] &
B \ar[r] &
B/IB \ar[r] &
0
}
$$
with exact rows.
\end{proof}
\section{Lemmas related to ZMT}
\label{section-ZMT}
\noindent
The lemmas in this section were originally used in the proof of the
(algebraic version of) Zariski's Main Theorem,
Algebra, Theorem \ref{algebra-theorem-main-theorem}.
\begin{lemma}
\label{lemma-make-integral-less-trivial}
Let $\varphi : R \to S$ be a ring map.
Suppose $t \in S$ satisfies the
relation $\varphi(a_0) + \varphi(a_1)t + \ldots + \varphi(a_n) t^n = 0$.
Set $u_n = \varphi(a_n)$, $u_{n-1} = u_n t + \varphi(a_{n-1})$,
and so on till $u_1 = u_2 t + \varphi(a_1)$.
Then all of $u_n, u_{n-1}, \ldots, u_1$ and
$u_nt, u_{n-1}t, \ldots, u_1t$ are integral over $R$,
and the ideals $(\varphi(a_0), \ldots, \varphi(a_n))$ and
$(u_n, \ldots, u_1)$ of $S$ are equal.
\end{lemma}
\begin{proof}
We prove this by induction on $n$. As $u_n = \varphi(a_n)$ we
conclude from
Algebra, Lemma \ref{algebra-lemma-make-integral-trivial}
that $u_nt$ is integral over $R$. Of course
$u_n = \varphi(a_n)$ is integral over $R$. Then
$u_{n - 1} = u_n t + \varphi(a_{n - 1})$ is integral over $R$ (see
Algebra, Lemma \ref{algebra-lemma-integral-closure-is-ring})
and we have
$$
\varphi(a_0) + \varphi(a_1)t + \ldots + \varphi(a_{n - 1})t^{n - 1} +
u_{n - 1}t^{n - 1} = 0.
$$
Hence by the induction hypothesis applied to the map
$S' \to S$ where $S'$ is the integral closure of $R$ in $S$
and the displayed equation we see that
$u_{n-1}, \ldots, u_1$ and $u_{n-1}t, \ldots, u_1t$
are all in $S'$ too. The statement on the ideals is immediate from the
shape of the elements and the fact that $u_1t + \varphi(a_0) = 0$.
\end{proof}
\begin{lemma}
\label{lemma-make-integral-not-in-ideal}
Let $\varphi : R \to S$ be a ring map.
Suppose $t \in S$ satisfies the
relation $\varphi(a_0) + \varphi(a_1)t + \ldots + \varphi(a_n) t^n = 0$.
Let $J \subset S$ be an ideal such that for at
least one $i$ we have $\varphi(a_i) \not \in J$.
Then there exists a $u \in S$, $u \not\in J$ such
that both $u$ and $ut$ are integral over $R$.
\end{lemma}
\begin{proof}
This is immediate from Lemma \ref{lemma-make-integral-less-trivial}
since one of the elements $u_i$ will not be in $J$.
\end{proof}
\noindent
The following two lemmas are a way of describing closed
subschemes of $\mathbf{P}^1_R$ cut out by one (nondegenerate)
equation.
\begin{lemma}
\label{lemma-P1}
Let $R$ be a ring.
Let $F(X, Y) \in R[X, Y]$ be homogeneous of degree
$d$. Assume that for every prime $\mathfrak p$ of $R$
at least one coefficient of $F$ is not in $\mathfrak p$.
Let $S = R[X, Y]/(F)$ as a graded ring.
Then for all $n \geq d$ the $R$-module $S_n$
is finite locally free of rank $d$.
\end{lemma}
\begin{proof}
The $R$-module $S_n$ has a presentation
$$
R[X, Y]_{n-d} \to R[X, Y]_n \to S_n \to 0.
$$
Thus by Algebra, Lemma \ref{algebra-lemma-cokernel-flat}
it is enough to show that multiplication
by $F$ induces an injective map
$\kappa(\mathfrak p)[X, Y]
\to \kappa(\mathfrak p)[X, Y]$
for all primes $\mathfrak p$.
This is clear from the assumption that
$F$ does not map to the zero polynomial mod $\mathfrak p$.
The assertion on ranks is clear from this as well.
\end{proof}
\begin{lemma}
\label{lemma-rel-prime-pols}
Let $k$ be a field. Let $F, G \in k[X, Y]$ be homogeneous
of degrees $d, e$. Assume $F, G$ relatively prime.
Then multiplication by $G$ is injective on $S = k[X, Y]/(F)$.
\end{lemma}
\begin{proof}
This is one way to define ``relatively prime''. If you have another
definition, then you can show it is equivalent to this one.
\end{proof}
\begin{lemma}
\label{lemma-P1-localize}
Let $R$ be a ring. Let $F(X, Y) \in R[X, Y]$ be homogeneous of degree
$d$. Let $S = R[X, Y]/(F)$ as a graded ring.
Let $\mathfrak p \subset R$ be a prime such that
some coefficient of $F$ is not in $\mathfrak p$.
There exists an $f \in R$ $f \not\in \mathfrak p$,
an integer $e$, and a $G \in R[X, Y]_e$
such that multiplication by $G$ induces isomorphisms
$(S_n)_f \to (S_{n + e})_f$ for all $n \geq d$.
\end{lemma}
\begin{proof}
During the course of the proof we may replace $R$ by $R_f$
for $f\in R$, $f\not\in \mathfrak p$ (finitely often).
As a first step we do such a replacement such that
some coefficient of $F$ is invertible in $R$.
In particular the modules $S_n$ are now locally
free of rank $d$ for $n \geq d$ by Lemma \ref{lemma-P1}.
Pick any $G \in R[X, Y]_e$ such that the image of
$G$ in $\kappa(\mathfrak p)[X, Y]$ is relatively
prime to the image of $F(X, Y)$ (this is possible for some $e$).
Apply Algebra, Lemma \ref{algebra-lemma-cokernel-flat} to the map
induced by multiplication by $G$ from $S_d \to S_{d + e}$.
By our choice of $G$ and Lemma \ref{lemma-rel-prime-pols}
we see
$S_d \otimes \kappa(\mathfrak p) \to S_{d + e} \otimes \kappa(\mathfrak p)$
is bijective. Thus, after replacing $R$ by $R_f$ for a suitable
$f$ we may assume that $G : S_d \to S_{d + e}$
is bijective. This in turn implies that the image
of $G$ in $\kappa(\mathfrak p')[X, Y]$ is relatively
prime to the image of $F$ for all primes $\mathfrak p'$
of $R$. And then by Algebra, Lemma \ref{algebra-lemma-cokernel-flat}
again we see that all the maps
$G : S_d \to S_{d + e}$, $n \geq d$ are isomorphisms.
\end{proof}
\begin{remark}
\label{remark-algebra}
Let $R$ be a ring. Suppose that we have $F \in R[X, Y]_d$
and $G \in R[X, Y]_e$ such that, setting $S = R[X, Y]/(F)$
we have (1) $S_n$ is finite locally free of rank $d$ for
all $n \geq d$, and (2) multiplication by $G$ defines
isomorphisms $S_n \to S_{n + e}$ for all $n \geq d$. In this
case we may define a finite, locally free $R$-algebra
$A$ as follows:
\begin{enumerate}
\item as an $R$-module $A = S_{ed}$, and
\item multiplication $A \times A \to A$ is given by
the rule that $H_1 H_2 = H_3$ if and only if $G^d H_3 = H_1 H_2$
in $S_{2ed}$.
\end{enumerate}
This makes sense because multiplication by $G^d$
induces a bijective map $S_{de} \to S_{2de}$.
It is easy to see that this defines a ring structure.
Note the confusing fact that the element $G^d$
defines the unit element of the ring $A$.
\end{remark}
\begin{lemma}
\label{lemma-finite-after-localization}
Let $R$ be a ring, let $f \in R$.
Suppose we have $S$, $S'$ and the solid arrows
forming the following commutative diagram of rings
$$
\xymatrix{
& S'' \ar@{-->}[rd] \ar@{-->}[dd] &
\\
R \ar[rr] \ar@{-->}[ru] \ar[d] & & S \ar[d]
\\
R_f \ar[r] & S' \ar[r] & S_f
}
$$
Assume that $R_f \to S'$ is finite. Then we can find
a finite ring map $R \to S''$ and dotted arrows as
in the diagram such that $S' = (S'')_f$.
\end{lemma}
\begin{proof}
Namely, suppose that $S'$ is generated by
$x_i$ over $R_f$, $i = 1, \ldots, w$. Let $P_i(t) \in R_f[t]$
be a monic polynomial such that $P_i(x_i) = 0$.
Say $P_i$ has degree $d_i > 0$. Write
$P_i(t) = t^{d_i} + \sum_{j < d_i} (a_{ij}/f^n) t^j$
for some uniform $n$. Also write
the image of $x_i$ in $S_f$ as $g_i / f^n$
for suitable $g_i \in S$. Then we know
that the element
$\xi_i = f^{nd_i} g_i^{d_i} + \sum_{j < d_i} f^{n(d_i - j)} a_{ij} g_i^j$
of $S$ is killed by a power of $f$.
Hence upon increasing $n$ to $n'$, which replaces
$g_i$ by $f^{n' - n}g_i$ we may assume $\xi_i = 0$.
Then $S'$ is generated by the elements
$f^n x_i$, each of which is a zero of the
monic polynomial $Q_i(t) = t^{d_i} +
\sum_{j < d_i} f^{n(d_i - j)} a_{ij} t^j$
with coefficients in $R$. Also, by construction
$Q_i(f^ng_i) = 0$ in $S$. Thus we get a finite $R$-algebra
$S'' = R[z_1, \ldots, z_w]/(Q_1(z_1), \ldots, Q_w(z_w))$
which fits into a commutative diagram as above.
The map $\alpha : S'' \to S$ maps $z_i$ to $f^ng_i$ and
the map $\beta : S'' \to S'$ maps $z_i$ to $f^nx_i$.
It may not yet be the case that $\beta$ induces an
isomorphism $(S'')_f \cong S'$.
For the moment we only know that this map
is surjective. The problem is that there could be
elements $h/f^n \in (S'')_f$ which map to zero
in $S'$ but are not zero. In this case $\beta(h)$
is an element of $S$ such that $f^N \beta(h) = 0$
for some $N$. Thus $f^N h$ is an element ot the ideal
$J = \{h \in S'' \mid \alpha(h) = 0 \text{ and }
\beta(h) = 0\}$ of $S''$. OK, and it is easy to see that
$S''/J$ does the job.
\end{proof}
\section{Formally smooth ring maps}
\label{section-formally-smooth}
\begin{lemma}
\label{lemma-formally-smooth-smooth}
Let $R$ be a ring. Let $S$ be a $R$-algebra.
If $S$ is of finite presentation and formally smooth over $R$
then $S$ is smooth over $R$.
\end{lemma}
\begin{proof}
See Algebra, Proposition \ref{algebra-proposition-smooth-formally-smooth}.
\end{proof}
\section{Simplicial methods}
\label{section-simplicial}
\begin{lemma}
\label{lemma-equiv}
Assumptions and notation as in
Simplicial, Lemma \ref{simplicial-lemma-section}.
There exists a section $g : U \to V$ to the morphism $f$ and
the composition $g \circ f$ is homotopy equivalent to the identity
on $V$. In particular, the morphism $f$ is a homotopy equivalence.
\end{lemma}
\begin{proof}
Immediate from Simplicial, Lemmas \ref{simplicial-lemma-section} and
\ref{simplicial-lemma-trivial-kan-homotopy}.
\end{proof}
\begin{lemma}
\label{lemma-cosk-hom-deltak}
Let $\mathcal{C}$ be a category with finite coproducts
and finite limits. Let $X$ be an object of $\mathcal{C}$.
Let $k \geq 0$. The canonical map
$$
\Hom(\Delta[k], X)
\longrightarrow
\text{cosk}_1 \text{sk}_1 \Hom(\Delta[k], X)
$$
is an isomorphism.
\end{lemma}
\begin{proof}
For any simplicial object $V$ we have
\begin{eqnarray*}
\Mor(V, \text{cosk}_1 \text{sk}_1 \Hom(\Delta[k], X))
& = &
\Mor(\text{sk}_1 V, \text{sk}_1 \Hom(\Delta[k], X)) \\
& = &
\Mor(i_{1!} \text{sk}_1 V, \Hom(\Delta[k], X)) \\
& = &
\Mor(i_{1!} \text{sk}_1 V \times \Delta[k], X)
\end{eqnarray*}
The first equality by the adjointness of $\text{sk}$ and $\text{cosk}$,
the second equality by the adjointness of $i_{1!}$ and $\text{sk}_1$, and
the first equality by
Simplicial, Definition \ref{simplicial-definition-hom-from-simplicial-set}
where the last $X$ denotes the constant simplicial object with value $X$.
By Simplicial, Lemma \ref{simplicial-lemma-augmentation-howto} an element
in this set depends only on the terms of degree $0$ and $1$
of $i_{1!} \text{sk}_1 V \times \Delta[k]$. These
agree with the degree $0$ and $1$ terms of
$V \times \Delta[k]$, see
Simplicial, Lemma \ref{simplicial-lemma-recovering-U-for-real}.
Thus the set above is equal to
$\Mor(V \times \Delta[k], X) = \Mor(V, \Hom(\Delta[k], X))$.
\end{proof}
\begin{lemma}
\label{lemma-cosk0-hom-deltak}
Let $\mathcal{C}$ be a category. Let $X$ be an object of $\mathcal{C}$
such that the self products $X \times \ldots \times X$ exist.
Let $k \geq 0$ and let $C[k]$ be as in
Simplicial, Example \ref{simplicial-example-simplex-cosimplicial-set}.
With notation as in
Simplicial, Lemma \ref{simplicial-lemma-morphism-into-product}
the canonical map
$$
\Hom(C[k], X)_1
\longrightarrow
(\text{cosk}_0 \text{sk}_0 \Hom(C[k], X))_1
$$
is identified with the map
$$
\prod\nolimits_{\alpha : [k] \to [1]} X
\longrightarrow
X \times X
$$
which is the projection onto the factors where $\alpha$
is a constant map.
\end{lemma}
\begin{proof}
This is shown in the proof of
Hypercoverings, Lemma \ref{hypercovering-lemma-covering}.
\end{proof}
\section{Obsolete lemmas on schemes}
\label{section-devissage}
\noindent
Lemmas that seem superfluous.
\begin{lemma}
\label{lemma-stein-projective}
Let $(R, \mathfrak m, \kappa)$ be a local ring.
Let $X \subset \mathbf{P}^n_R$ be a closed subscheme.
Assume that $R = \Gamma(X, \mathcal{O}_X)$. Then the special fibre
$X_k$ is geometrically connected.
\end{lemma}
\begin{proof}
This is a special case of
More on Morphisms, Theorem
\ref{more-morphisms-theorem-stein-factorization-general}.
\end{proof}
\begin{lemma}
\label{lemma-property-irreducible-higher-rank}
Let $X$ be a Noetherian scheme.
Let $Z_0 \subset X$ be an irreducible closed subset with generic point $\xi$.
Let $\mathcal{P}$ be a property of coherent sheaves on $X$ such that
\begin{enumerate}
\item For any short exact sequence of coherent sheaves if two
out of three of them have property $\mathcal{P}$ then so does the
third.
\item If $\mathcal{P}$ holds for a direct sum of coherent sheaves
then it holds for both.
\item For every integral closed subscheme $Z \subset Z_0 \subset X$,
$Z \not = Z_0$ and every quasi-coherent sheaf of ideals
$\mathcal{I} \subset \mathcal{O}_Z$ we have
$\mathcal{P}$ for $(Z \to X)_*\mathcal{I}$.
\item There exists some coherent sheaf $\mathcal{G}$ on $X$ such that
\begin{enumerate}
\item $\text{Supp}(\mathcal{G}) = Z_0$,
\item $\mathcal{G}_\xi$ is annihilated by $\mathfrak m_\xi$, and
\item property $\mathcal{P}$ holds for $\mathcal{G}$.
\end{enumerate}
\end{enumerate}
Then property $\mathcal{P}$ holds for every coherent sheaf
$\mathcal{F}$ on $X$ whose support is contained in $Z_0$.
\end{lemma}
\begin{proof}
The proof is a variant on the proof of
Cohomology of Schemes, Lemma \ref{coherent-lemma-property-irreducible}.
In exactly the same manner as in that proof we see that
any coherent sheaf whose support is strictly contained in $Z_0$
has property $\mathcal{P}$.
\medskip\noindent
Consider a coherent sheaf $\mathcal{G}$ as in (3).
By Cohomology of Schemes, Lemma \ref{coherent-lemma-prepare-filter-irreducible}
there exists a sheaf of ideals $\mathcal{I}$ on $Z_0$ and
a short exact sequence
$$
0 \to
\left((Z_0 \to X)_*\mathcal{I}\right)^{\oplus r} \to
\mathcal{G} \to
\mathcal{Q} \to 0
$$
where the support of $\mathcal{Q}$ is strictly contained in $Z_0$.
In particular $r > 0$ and $\mathcal{I}$ is nonzero
because the support of $\mathcal{G}$ is equal to $Z$.
Since $\mathcal{Q}$ has property $\mathcal{P}$ we conclude that
also $\left((Z_0 \to X)_*\mathcal{I}\right)^{\oplus r}$
has property $\mathcal{P}$.
By (2) we deduce property $\mathcal{P}$ for
$(Z_0 \to X)_*\mathcal{I}$. Slotting this into the proof of
Cohomology of Schemes, Lemma \ref{coherent-lemma-property-irreducible}
at the appropriate point gives the lemma.
Some details omitted.
\end{proof}
\begin{lemma}
\label{lemma-property-higher-rank}
Let $X$ be a Noetherian scheme.
Let $\mathcal{P}$ be a property of coherent sheaves on $X$ such that
\begin{enumerate}
\item For any short exact sequence of coherent sheaves if two
out of three of them have property $\mathcal{P}$ then so does the
third.
\item If $\mathcal{P}$ holds for a direct sum of coherent sheaves
then it holds for both.
\item For every integral closed subscheme $Z \subset X$
with generic point $\xi$ there exists
some coherent sheaf $\mathcal{G}$ such that
\begin{enumerate}
\item $\text{Supp}(\mathcal{G}) = Z$,
\item $\mathcal{G}_\xi$ is annihilated by $\mathfrak m_\xi$, and
\item property $\mathcal{P}$ holds for $\mathcal{G}$.
\end{enumerate}
\end{enumerate}
Then property $\mathcal{P}$ holds for every coherent sheaf
on $X$.
\end{lemma}
\begin{proof}
This follows from Lemma \ref{lemma-property-irreducible-higher-rank}
in exactly the same way that
Cohomology of Schemes, Lemma \ref{coherent-lemma-property} follows from
Cohomology of Schemes, Lemma \ref{coherent-lemma-property-irreducible}.
\end{proof}
\begin{lemma}
\label{lemma-section-maps-back-into}
Let $X$ be a scheme.
Let $\mathcal{L}$ be an invertible $\mathcal{O}_X$-module.
Let $s \in \Gamma(X, \mathcal{L})$ be a section.
Let $\mathcal{F}' \subset \mathcal{F}$ be quasi-coherent
$\mathcal{O}_X$-modules. Assume that
\begin{enumerate}
\item $X$ is quasi-compact,
\item $\mathcal{F}$ is of finite type, and
\item $\mathcal{F}'|_{X_s} = \mathcal{F}|_{X_s}$.
\end{enumerate}
Then there exists an $n \geq 0$ such that
multiplication by $s^n$ on $\mathcal{F}$ factors
through $\mathcal{F}'$.
\end{lemma}
\begin{proof}
In other words we claim that
$s^n\mathcal{F} \subset
\mathcal{F}' \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n}$
for some $n \geq 0$. In other words, we claim that the quotient map
$\mathcal{F} \to \mathcal{F}/\mathcal{F}'$ becomes
zero after multiplying by a power of $s$.
This follows from Properties, Lemma
\ref{properties-lemma-section-maps-backwards}.
\end{proof}
\section{Functor of quotients}
\label{section-quotients}
\begin{lemma}
\label{lemma-factors-through-quotient}
Let $S = \Spec(R)$ be an affine scheme. Let $X$ be an algebraic space over
$S$. Let $q_i : \mathcal{F} \to \mathcal{Q}_i$, $i = 1, 2$
be surjective maps of quasi-coherent $\mathcal{O}_X$-modules.
Assume $\mathcal{Q}_1$ flat over $S$. Let $T \to S$ be a quasi-compact
morphism of schemes such that there exists a factorization
$$
\xymatrix{
& \mathcal{F}_T \ar[rd]^{q_{2, T}} \ar[ld]_{q_{1, T}} \\
\mathcal{Q}_{1, T} & & \mathcal{Q}_{2, T} \ar@{..>}[ll]
}
$$
Then exists a closed subscheme $Z \subset S$ such that
(a) $T \to S$ factors through $Z$ and (b)
$q_{1, Z}$ factors through $q_{2, Z}$.
If $\Ker(q_2)$ is a finite type $\mathcal{O}_X$-module and $X$
quasi-compact, then we can take $Z \to S$ of finite presentation.
\end{lemma}
\begin{proof}
Apply Quot, Lemma \ref{quot-lemma-F-zero-somewhat-closed}
to the map $\Ker(q_2) \to \mathcal{Q}_1$.
\end{proof}
\section{Spaces and fpqc coverings}
\label{section-fpqc}
\noindent
The material here was made obsolete by Gabber's argument showing that
algebraic spaces satisfy the sheaf condition with respect to fpqc
coverings. Please visit
Properties of Spaces, Section \ref{spaces-properties-section-fpqc}.
\begin{lemma}
\label{lemma-separated-fpqc}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $\{f_i : T_i \to T\}_{i \in I}$ be a fpqc covering of schemes over $S$.
Then the map
$$
\Mor_S(T, X)
\longrightarrow
\prod\nolimits_{i \in I} \Mor_S(T_i, X)
$$
is injective.
\end{lemma}
\begin{proof}
Immediate consequence of
Properties of Spaces, Proposition
\ref{spaces-properties-proposition-sheaf-fpqc}.
\end{proof}
\begin{lemma}
\label{lemma-sheaf-fpqc-open-covering}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $X = \bigcup_{j \in J} X_j$ be a Zariski covering, see
Spaces, Definition \ref{spaces-definition-Zariski-open-covering}.
If each $X_j$ satisfies the sheaf property for the fpqc topology
then $X$ satisfies the sheaf property for the fpqc topology.
\end{lemma}
\begin{proof}
This is true because all algebraic spaces satisfy the sheaf property
for the fpqc topology, see
Properties of Spaces, Proposition
\ref{spaces-properties-proposition-sheaf-fpqc}.
\end{proof}
\begin{lemma}
\label{lemma-sheaf-fpqc-quasi-separated}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
If $X$ is Zariski locally quasi-separated over $S$, then $X$ satisfies
the sheaf condition for the fpqc topology.
\end{lemma}
\begin{proof}
Immediate consequence of the general
Properties of Spaces, Proposition
\ref{spaces-properties-proposition-sheaf-fpqc}.
\end{proof}
\begin{remark}
\label{remark-proof-works-when}
This remark used to discuss to what extend the original proof of
Lemma \ref{lemma-sheaf-fpqc-quasi-separated} (of December 18, 2009)
generalizes.
\end{remark}
\section{Very reasonable algebraic spaces}
\label{section-very-reasonable}
\noindent
Material that is somewhat obsolete.
\begin{lemma}
\label{lemma-reasonable-kolmogorov}
Let $S$ be a scheme.
Let $X$ be a reasonable algebraic space over $S$.
Then $|X|$ is Kolmogorov (see
Topology, Definition \ref{topology-definition-generic-point}).
\end{lemma}
\begin{proof}
Follows from the definitions and
Decent Spaces, Lemma \ref{decent-spaces-lemma-kolmogorov}.
\end{proof}
\noindent
In the rest of this section we make some remarks about very reasonable
algebraic spaces. If there exists a scheme $U$ and a
surjective, \'etale, quasi-compact
morphism $U \to X$, then $X$ is very reasonable, see
Decent Spaces, Lemma \ref{decent-spaces-lemma-characterize-very-reasonable}.
\begin{lemma}
\label{lemma-scheme-very-reasonable}
A scheme is very reasonable.
\end{lemma}
\begin{proof}
This is true because the identity map is a quasi-compact, surjective
\'etale morphism.
\end{proof}
\begin{lemma}
\label{lemma-very-reasonable-Zariski-local}
Let $S$ be a scheme.
Let $X$ be an algebraic space over $S$.
If there exists a Zariski open covering $X = \bigcup X_i$ such that
each $X_i$ is very reasonable, then $X$ is very reasonable.
\end{lemma}
\begin{proof}
This is case $(\epsilon)$ of
Decent Spaces, Lemma \ref{decent-spaces-lemma-properties-local}.
\end{proof}
\begin{lemma}
\label{lemma-quasi-separated-very-reasonable}
An algebraic space which is Zariski locally quasi-separated is very reasonable.
In particular any quasi-separated algebraic space is very reasonable.
\end{lemma}
\begin{proof}
This is one of the implications of
Decent Spaces, Lemma \ref{decent-spaces-lemma-bounded-fibres}.
\end{proof}
\begin{lemma}
\label{lemma-representable-very-reasonable}
Let $S$ be a scheme.
Let $X$, $Y$ be algebraic spaces over $S$.
Let $Y \to X$ be a representable morphism.
If $X$ is very reasonable, so is $Y$.
\end{lemma}
\begin{proof}
This is case $(\epsilon)$ of
Decent Spaces, Lemma \ref{decent-spaces-lemma-representable-properties}.
\end{proof}
\begin{remark}
\label{remark-very-reasonable-Zariski-locally-quasi-separated}
Very reasonable algebraic spaces form a strictly larger collection than
Zariski locally quasi-separated algebraic spaces. Consider
an algebraic space of the form $X = [U/G]$ (see
Spaces, Definition \ref{spaces-definition-quotient})
where $G$ is a finite group acting without fixed points on a
non-quasi-separated scheme $U$. Namely, in this case
$U \times_X U = U \times G$ and clearly both projections to $U$ are
quasi-compact, hence $X$ is very reasonable. On the other hand, the diagonal
$U \times_X U \to U \times U$ is not quasi-compact, hence this
algebraic space is not quasi-separated. Now, take $U$ the infinite
affine space over a field $k$ of characteristic $\not = 2$ with
zero doubled, see
Schemes, Example \ref{schemes-example-not-quasi-separated}.
Let $0_1, 0_2$ be the two zeros of $U$. Let $G = \{+1, -1\}$, and
let $-1$ act by $-1$ on all coordinates, and by switching
$0_1$ and $0_2$. Then $[U/G]$ is very reasonable but not Zariski locally
quasi-separated (details omitted).
\end{remark}
\noindent
Warning: The following lemma should be used with caution, as the schemes
$U_i$ in it are not necessarily separated or even quasi-separated.
\begin{lemma}
\label{lemma-very-reasonable-quasi-compact-pieces}
Let $S$ be a scheme.
Let $X$ be a very reasonable algebraic space over $S$.
There exists a set of schemes
$U_i$ and morphisms $U_i \to X$ such that
\begin{enumerate}
\item each $U_i$ is a quasi-compact scheme,
\item each $U_i \to X$ is \'etale,
\item both projections $U_i \times_X U_i \to U_i$ are quasi-compact, and
\item the morphism $\coprod U_i \to X$ is surjective (and \'etale).
\end{enumerate}
\end{lemma}
\begin{proof}
Decent Spaces, Definition \ref{decent-spaces-definition-very-reasonable}
says that there exist $U_i \to X$ such that (2), (3) and (4) hold.
Fix $i$, and set $R_i = U_i \times_X U_i$, and denote $s, t : R_i \to U_i$
the projections.
For any affine open $W \subset U_i$ the open $W' = t(s^{-1}(W)) \subset U_i$
is a quasi-compact $R_i$-invariant open (see
Groupoids, Lemma \ref{groupoids-lemma-constructing-invariant-opens}).
Hence $W'$ is a quasi-compact scheme, $W' \to X$ is \'etale, and
$W' \times_X W' = s^{-1}(W') = t^{-1}(W')$ so both projections
$W' \times_X W' \to W'$ are quasi-compact. This means the family of
$W' \to X$, where $W \subset U_i$ runs through the members of affine
open coverings of the $U_i$ gives what we want.
\end{proof}
\section{Variants of cotangent complexes for schemes}
\label{section-cotangent-schemes-variant}
\noindent
This section gives an alternative construction of the cotangent complex
of a morphism of schemes. This section is currently in the obsolete
chapter as we can get by with the easier version discussed in
Cotangent, Section \ref{cotangent-section-cotangent-schemes-variant}
for applications.
\medskip\noindent
Let $f : X \to Y$ be a morphism of schemes. Let $\mathcal{C}_{X/Y}$ be the
category whose objects are commutative diagrams
\begin{equation}
\label{equation-object}
\vcenter{
\xymatrix{
X \ar[d] & U \ar[l] \ar[d] \ar[r]_i & A \ar[ld] \\
Y & V \ar[l]
}
}
\end{equation}
of schemes where
\begin{enumerate}