forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
stacks-morphisms.tex
4829 lines (4296 loc) · 177 KB
/
stacks-morphisms.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Morphisms of Algebraic Stacks}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we introduce some types of morphisms of algebraic stacks.
A reference in the case of quasi-separated algebraic stacks with representable
diagonal is \cite{LM-B}.
\medskip\noindent
The goal is to extend the definition of each of the types of morphisms of
algebraic spaces to morphisms of algebraic stacks. Each case is slightly
different and it seems best to treat them all separately.
\medskip\noindent
For morphisms of algebraic stacks which are representable
by algebraic spaces we have already defined a large number of types of
morphisms, see
Properties of Stacks,
Section \ref{stacks-properties-section-properties-morphisms}.
For each corresponding case in this chapter
we have to make sure the definition in the general
case is compatible with the definition given there.
\section{Conventions and abuse of language}
\label{section-conventions}
\noindent
We continue to use the conventions and the abuse of language
introduced in
Properties of Stacks, Section \ref{stacks-properties-section-conventions}.
\section{Properties of diagonals}
\label{section-diagonals}
\noindent
The diagonal of an algebraic stack is closely related to the
$\mathit{Isom}$-sheaves, see
Algebraic Stacks, Lemma \ref{algebraic-lemma-representable-diagonal}.
By the second defining property of an algebraic stack these
$\mathit{Isom}$-sheaves are always algebraic spaces.
\begin{lemma}
\label{lemma-isom-locally-finite-type}
Let $\mathcal{X}$ be an algebraic stack.
Let $T$ be a scheme and let $x, y$ be objects of the fibre category of
$\mathcal{X}$ over $T$. Then the morphism
$\mathit{Isom}_\mathcal{X}(x, y) \to T$ is locally of finite type.
\end{lemma}
\begin{proof}
By
Algebraic Stacks, Lemma \ref{algebraic-lemma-stack-presentation}
we may assume that $\mathcal{X} = [U/R]$ for some smooth
groupoid in algebraic spaces.
By
Descent on Spaces,
Lemma \ref{spaces-descent-lemma-descending-property-locally-finite-type}
it suffices to check the property fppf locally on $T$.
Thus we may assume that $x, y$ come from morphisms
$x', y' : T \to U$. By
Groupoids in Spaces,
Lemma \ref{spaces-groupoids-lemma-quotient-stack-morphisms}
we see that in this case
$\mathit{Isom}_\mathcal{X}(x, y) = T \times_{(y', x'), U \times_S U} R$.
Hence it suffices to prove that $R \to U \times_S U$ is
locally of finite type. This follows from the fact that the composition
$s : R \to U \times_S U \to U$ is smooth (hence locally of finite type, see
Morphisms of Spaces, Lemmas
\ref{spaces-morphisms-lemma-smooth-locally-finite-presentation} and
\ref{spaces-morphisms-lemma-finite-presentation-finite-type})
and
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-permanence-finite-type}.
\end{proof}
\begin{lemma}
\label{lemma-isom-pseudo-torsor-aut}
Let $\mathcal{X}$ be an algebraic stack.
Let $T$ be a scheme and let $x, y$ be objects of the fibre category of
$\mathcal{X}$ over $T$. Then
\begin{enumerate}
\item $\mathit{Isom}_\mathcal{X}(y, y)$ is a group algebraic space
over $T$, and
\item $\mathit{Isom}_\mathcal{X}(x, y)$ is a pseudo torsor for
$\mathit{Isom}_\mathcal{X}(y, y)$ over $T$.
\end{enumerate}
\end{lemma}
\begin{proof}
See
Groupoids in Spaces,
Definitions \ref{spaces-groupoids-definition-group-space} and
\ref{spaces-groupoids-definition-pseudo-torsor}.
The lemma follows immediately from the fact that $\mathcal{X}$ is a
stack in groupoids.
\end{proof}
\noindent
Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks.
The {\it diagonal of $f$} is the morphism
$$
\Delta_f :
\mathcal{X}
\longrightarrow
\mathcal{X} \times_\mathcal{Y} \mathcal{X}
$$
Here are two properties that every diagonal morphism has.
\begin{lemma}
\label{lemma-properties-diagonal}
\begin{slogan}
Diagonals of morphisms of algebraic stacks are representable by
algebraic spaces and locally of finite type.
\end{slogan}
Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks.
Then
\begin{enumerate}
\item $\Delta_f$ is representable by algebraic spaces,
and
\item $\Delta_f$ is locally of finite type.
\end{enumerate}
\end{lemma}
\begin{proof}
Let $T$ be a scheme and let
$a : T \to \mathcal{X} \times_\mathcal{Y} \mathcal{X}$
be a morphism. By definition of the fibre product and the
$2$-Yoneda lemma the morphism $a$ is given by a triple
$a = (x, x', \alpha)$ where $x, x'$ are objects of $\mathcal{X}$
over $T$, and $\alpha : f(x) \to f(x')$ is a morphism in the fibre
category of $\mathcal{Y}$ over $T$. By definition of an algebraic
stack the sheaves $\mathit{Isom}_\mathcal{X}(x, x')$ and
$\mathit{Isom}_\mathcal{Y}(f(x), f(x'))$ are algebraic spaces
over $T$. In this language $\alpha$ defines a section of the morphism
$\mathit{Isom}_\mathcal{Y}(f(x), f(x')) \to T$. A $T'$-valued point of
$\mathcal{X} \times_{\mathcal{X} \times_\mathcal{Y} \mathcal{X}, a} T$
for $T' \to T$ a scheme over $T$ is the same thing as an isomorphism
$x|_{T'} \to x'|_{T'}$ whose image under $f$ is $\alpha|_{T'}$.
Thus we see that
\begin{equation}
\label{equation-diagonal}
\vcenter{
\xymatrix{
\mathcal{X} \times_{\mathcal{X} \times_\mathcal{Y} \mathcal{X}, a} T
\ar[d] \ar[r] &
\mathit{Isom}_\mathcal{X}(x, x') \ar[d] \\
T\ar[r]^-\alpha &
\mathit{Isom}_\mathcal{Y}(f(x), f(x'))
}
}
\end{equation}
is a fibre square of sheaves over $T$. In particular we see that
$\mathcal{X} \times_{\mathcal{X} \times_\mathcal{Y} \mathcal{X}, a} T$
is an algebraic space which proves part (1) of the lemma.
\medskip\noindent
To prove the second statement we have to show that the left
vertical arrow of Diagram (\ref{equation-diagonal}) is locally
of finite type. By
Lemma \ref{lemma-isom-locally-finite-type}
the algebraic space $\mathit{Isom}_\mathcal{X}(x, x')$ and
is locally of finite type over $T$. Hence the right vertical arrow of
Diagram (\ref{equation-diagonal}) is locally of finite type, see
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-permanence-finite-type}.
We conclude by
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-base-change-finite-type}.
\end{proof}
\begin{lemma}
\label{lemma-properties-diagonal-representable}
Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks
which is representable by algebraic spaces. Then
\begin{enumerate}
\item $\Delta_f$ is representable
(by schemes),
\item $\Delta_f$ is locally of finite type,
\item $\Delta_f$ is a monomorphism,
\item $\Delta_f$ is separated, and
\item $\Delta_f$ is locally quasi-finite.
\end{enumerate}
\end{lemma}
\begin{proof}
We have already seen in
Lemma \ref{lemma-properties-diagonal}
that $\Delta_f$ is representable by algebraic
spaces. Hence the statements (2) -- (5) make sense, see
Properties of Stacks,
Section \ref{stacks-properties-section-properties-morphisms}.
Also
Lemma \ref{lemma-properties-diagonal}
guarantees (2) holds.
Let $T \to \mathcal{X} \times_\mathcal{Y} \mathcal{X}$ be a morphism
and contemplate Diagram (\ref{equation-diagonal}). By
Algebraic Stacks, Lemma
\ref{algebraic-lemma-criterion-map-representable-spaces-fibred-in-groupoids}
the right vertical arrow is injective as a map of sheaves, i.e., a
monomorphism of algebraic spaces. Hence also the morphism
$T \times_{\mathcal{X} \times_\mathcal{Y} \mathcal{X}} \mathcal{X} \to T$
is a monomorphism. Thus (3) holds. We already know that
$T \times_{\mathcal{X} \times_\mathcal{Y} \mathcal{X}} \mathcal{X} \to T$
is locally of finite type. Thus
Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-monomorphism-loc-finite-type-loc-quasi-finite}
allows us to conclude that
$T \times_{\mathcal{X} \times_\mathcal{Y} \mathcal{X}} \mathcal{X} \to T$
is locally quasi-finite and separated. This proves (4) and (5).
Finally,
Morphisms of Spaces, Proposition
\ref{spaces-morphisms-proposition-locally-quasi-finite-separated-over-scheme}
implies that
$T \times_{\mathcal{X} \times_\mathcal{Y} \mathcal{X}} \mathcal{X}$
is a scheme which proves (1).
\end{proof}
\begin{lemma}
\label{lemma-representable-separated-diagonal-closed}
Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks
representable by algebraic spaces. Then the following are equivalent
\begin{enumerate}
\item $f$ is separated,
\item $\Delta_f$ is a closed immersion,
\item $\Delta_f$ is proper, or
\item $\Delta_f$ is universally closed.
\end{enumerate}
\end{lemma}
\begin{proof}
The statements
``$f$ is separated'',
``$\Delta_f$ is a closed immersion'',
``$\Delta_f$ is universally closed'', and
``$\Delta_f$ is proper''
refer to the notions defined in
Properties of Stacks,
Section \ref{stacks-properties-section-properties-morphisms}.
Choose a scheme $V$ and a surjective smooth morphism $V \to \mathcal{Y}$.
Set $U = \mathcal{X} \times_\mathcal{Y} V$ which is an algebraic
space by assumption, and the morphism $U \to \mathcal{X}$ is surjective
and smooth. By
Categories, Lemma \ref{categories-lemma-base-change-diagonal}
and
Properties of Stacks,
Lemma \ref{stacks-properties-lemma-check-property-covering}
we see that for any property $P$ (as in that lemma) we have:
$\Delta_f$ has $P$ if and only if $\Delta_{U/V} : U \to U \times_V U$ has $P$.
Hence the equivalence of (2), (3) and (4) follows from
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-separated-diagonal-proper}
applied to $U \to V$.
Moreover, if (1) holds, then $U \to V$ is separated and we see that
$\Delta_{U/V}$ is a closed immersion, i.e., (2) holds.
Finally, assume (2) holds. Let $T$ be a scheme, and $a : T \to \mathcal{Y}$
a morphism. Set $T' = \mathcal{X} \times_\mathcal{Y} T$. To prove
(1) we have to show that the morphism of algebraic spaces $T' \to T$
is separated. Using
Categories, Lemma \ref{categories-lemma-base-change-diagonal}
once more we see that $\Delta_{T'/T}$ is the base change of
$\Delta_f$. Hence our assumption (2) implies that $\Delta_{T'/T}$
is a closed immersion, hence $T' \to T$ is separated as desired.
\end{proof}
\begin{lemma}
\label{lemma-representable-quasi-separated-diagonal-quasi-compact}
Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks
representable by algebraic spaces. Then the following are equivalent
\begin{enumerate}
\item $f$ is quasi-separated,
\item $\Delta_f$ is quasi-compact, or
\item $\Delta_f$ is finite type.
\end{enumerate}
\end{lemma}
\begin{proof}
The statements
``$f$ is quasi-separated'',
``$\Delta_f$ is quasi-compact'', and
``$\Delta_f$ is finite type''
refer to the notions defined in
Properties of Stacks,
Section \ref{stacks-properties-section-properties-morphisms}.
Note that (2) and (3) are equivalent in view of the fact that
$\Delta_f$ is locally of finite type by
Lemma \ref{lemma-properties-diagonal-representable}
(and
Algebraic Stacks, Lemma
\ref{algebraic-lemma-representable-transformations-property-implication}).
Choose a scheme $V$ and a surjective smooth morphism $V \to \mathcal{Y}$.
Set $U = \mathcal{X} \times_\mathcal{Y} V$ which is an algebraic
space by assumption, and the morphism $U \to \mathcal{X}$ is surjective
and smooth. By
Categories, Lemma \ref{categories-lemma-base-change-diagonal}
and
Properties of Stacks,
Lemma \ref{stacks-properties-lemma-check-property-covering}
we see that we have: $\Delta_f$ is quasi-compact if and only if
$\Delta_{U/V} : U \to U \times_V U$ is quasi-compact.
If (1) holds, then $U \to V$ is quasi-separated and we see that
$\Delta_{U/V}$ is quasi-compact, i.e., (2) holds.
Assume (2) holds. Let $T$ be a scheme, and $a : T \to \mathcal{Y}$
a morphism. Set $T' = \mathcal{X} \times_\mathcal{Y} T$. To prove
(1) we have to show that the morphism of algebraic spaces $T' \to T$
is quasi-separated. Using
Categories, Lemma \ref{categories-lemma-base-change-diagonal}
once more we see that $\Delta_{T'/T}$ is the base change of
$\Delta_f$. Hence our assumption (2) implies that $\Delta_{T'/T}$
is quasi-compact, hence $T' \to T$ is quasi-separated as desired.
\end{proof}
\begin{lemma}
\label{lemma-representable-locally-separated-diagonal-immersion}
Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks
representable by algebraic spaces. Then the following are equivalent
\begin{enumerate}
\item $f$ is locally separated, and
\item $\Delta_f$ is an immersion.
\end{enumerate}
\end{lemma}
\begin{proof}
The statements ``$f$ is locally separated'', and ``$\Delta_f$ is an immersion''
refer to the notions defined in
Properties of Stacks,
Section \ref{stacks-properties-section-properties-morphisms}.
Proof omitted. Hint: Argue as in the proofs of
Lemmas \ref{lemma-representable-separated-diagonal-closed} and
\ref{lemma-representable-quasi-separated-diagonal-quasi-compact}.
\end{proof}
\section{Separation axioms}
\label{section-separated}
\noindent
Let $\mathcal{X} = [U/R]$ be a presentation of an algebraic stack.
Then the properties of the diagonal of $\mathcal{X}$ over $S$, are
the properties of the morphism $j : R \to U \times_S U$. For example,
if $\mathcal{X} = [S/G]$ for some smooth group $G$ in algebraic spaces
over $S$ then $j$ is the structure morphism $G \to U$. Hence the diagonal
is not automatically separated itself (contrary to what happens in the
case of schemes and algebraic spaces). To say that $[S/G]$ is quasi-separated
over $S$ should certainly imply that $G \to S$ is quasi-compact, but we
hesitate to say that $[S/G]$ is quasi-separated over $S$ without also
requiring the morphism $G \to S$ to be quasi-separated. In other words,
requiring the diagonal morphism to be quasi-compact does not really agree
with our intuition for a ``quasi-separated algebraic stack'', and we should
also require the diagonal itself to be quasi-separated.
\medskip\noindent
What about ``separated algebraic stacks''? We have seen in
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-separated-diagonal-proper}
that an algebraic space is separated if and only if the diagonal is proper.
This is the condition that is usually used to define separated algebraic
stacks too. In the example $[S/G] \to S$ above this means that $G \to S$
is a proper group scheme. This means algebraic stacks of the form
$[\Spec(k)/E]$ are proper over $k$ where $E$ is an elliptic curve
over $k$ (insert future reference here). In certain situations it may be
more natural to assume the diagonal is finite.
\begin{definition}
\label{definition-separated}
Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks.
\begin{enumerate}
\item We say $f$ is {\it DM} if $\Delta_f$ is unramified\footnote{The
letters DM stand for Deligne-Mumford. If $f$ is DM then given any scheme
$T$ and any morphism $T \to \mathcal{Y}$ the fibre product
$\mathcal{X}_T = \mathcal{X} \times_\mathcal{Y} T$
is an algebraic stack over $T$ whose diagonal is unramified, i.e.,
$\mathcal{X}_T$ is DM. This implies $\mathcal{X}_T$
is a Deligne-Mumford stack, see Theorem \ref{theorem-DM}.
In other words a DM morphism is one whose ``fibres'' are Deligne-Mumford
stacks. This hopefully at least motivates the terminology.}.
\item We say $f$ is {\it quasi-DM} if $\Delta_f$ is
locally quasi-finite\footnote{If $f$ is quasi-DM, then the
``fibres'' $\mathcal{X}_T$ of $\mathcal{X} \to \mathcal{Y}$ are quasi-DM. An
algebraic stack $\mathcal{X}$ is quasi-DM exactly if there exists a
scheme $U$ and a surjective flat morphism $U \to \mathcal{X}$ of finite
presentation which is locally quasi-finite, see
Theorem \ref{theorem-quasi-DM}.
Note the similarity to being Deligne-Mumford, which
is defined in terms of having an \'etale covering by a scheme.}.
\item We say $f$ is {\it separated} if $\Delta_f$ is proper.
\item We say $f$ is {\it quasi-separated} if $\Delta_f$
is quasi-compact and quasi-separated.
\end{enumerate}
\end{definition}
\noindent
In this definition we are using that $\Delta_f$ is representable by algebraic
spaces and we are using
Properties of Stacks,
Section \ref{stacks-properties-section-properties-morphisms}
to make sense out of imposing conditions on $\Delta_f$.
We note that these definitions do not conflict with the already
existing notions if $f$ is representable by algebraic spaces, see
Lemmas \ref{lemma-representable-quasi-separated-diagonal-quasi-compact} and
\ref{lemma-representable-separated-diagonal-closed}.
There is an interesting way to characterize these conditions by looking
at higher diagonals, see
Lemma \ref{lemma-definition-separated}.
\begin{definition}
\label{definition-absolute-separated}
Let $\mathcal{X}$ be an algebraic stack over the base scheme $S$.
Denote $p : \mathcal{X} \to S$ the structure morphism.
\begin{enumerate}
\item We say $\mathcal{X}$ is {\it DM over $S$}
if $p : \mathcal{X} \to S$ is DM.
\item We say $\mathcal{X}$ is {\it quasi-DM over $S$}
if $p : \mathcal{X} \to S$ is quasi-DM.
\item We say $\mathcal{X}$ is {\it separated over $S$}
if $p : \mathcal{X} \to S$ is separated.
\item We say $\mathcal{X}$ is {\it quasi-separated over $S$} if
$p : \mathcal{X} \to S$ is quasi-separated.
\item We say $\mathcal{X}$ is {\it DM}
if $\mathcal{X}$ is DM\footnote{Theorem \ref{theorem-DM} shows
that this is equivalent to $\mathcal{X}$ being a Deligne-Mumford stack.}
over $\Spec(\mathbf{Z})$.
\item We say $\mathcal{X}$ is {\it quasi-DM}
if $\mathcal{X}$ is quasi-DM over $\Spec(\mathbf{Z})$.
\item We say $\mathcal{X}$ is {\it separated} if $\mathcal{X}$
is separated over $\Spec(\mathbf{Z})$.
\item We say $\mathcal{X}$ is {\it quasi-separated} if $\mathcal{X}$
is quasi-separated over $\Spec(\mathbf{Z})$.
\end{enumerate}
In the last 4 definitions we view $\mathcal{X}$
as an algebraic stack over $\Spec(\mathbf{Z})$
via
Algebraic Stacks, Definition \ref{algebraic-definition-viewed-as}.
\end{definition}
\noindent
Thus in each case we have an absolute notion and a notion relative to
our given base scheme (mention of which is usually suppressed by our
abuse of notation introduced in
Properties of Stacks, Section \ref{stacks-properties-section-conventions}).
We will see that (1) $\Leftrightarrow$ (5) and (2) $\Leftrightarrow$ (6) in
Lemma \ref{lemma-separated-implies-morphism-separated}.
We spend some time proving some standard results on these notions.
\begin{lemma}
\label{lemma-trivial-implications}
Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks.
\begin{enumerate}
\item If $f$ is separated, then $f$ is quasi-separated.
\item If $f$ is DM, then $f$ is quasi-DM.
\item If $f$ is representable by algebraic spaces, then $f$ is DM.
\end{enumerate}
\end{lemma}
\begin{proof}
To see (1) note that a proper morphism of algebraic spaces is quasi-compact
and quasi-separated, see
Morphisms of Spaces, Definition \ref{spaces-morphisms-definition-proper}.
To see (2) note that an unramified morphism of algebraic spaces is locally
quasi-finite, see
Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-unramified-quasi-finite}.
Finally (3) follows from Lemma \ref{lemma-properties-diagonal-representable}.
\end{proof}
\begin{lemma}
\label{lemma-base-change-separated}
All of the separation axioms listed in
Definition \ref{definition-separated}
are stable under base change.
\end{lemma}
\begin{proof}
Let $f : \mathcal{X} \to \mathcal{Y}$ and
$\mathcal{Y}' \to \mathcal{Y}$ be morphisms of algebraic stacks.
Let $f' : \mathcal{Y}' \times_\mathcal{Y} \mathcal{X} \to \mathcal{Y}'$
be the base change of $f$ by $\mathcal{Y}' \to \mathcal{Y}$.
Then $\Delta_{f'}$ is the base change of $\Delta_f$ by the morphism
$\mathcal{X}' \times_{\mathcal{Y}'} \mathcal{X}' \to
\mathcal{X} \times_\mathcal{Y} \mathcal{X}$, see
Categories, Lemma \ref{categories-lemma-base-change-diagonal}.
By the results of
Properties of Stacks,
Section \ref{stacks-properties-section-properties-morphisms}
each of the properties of the diagonal used in
Definition \ref{definition-separated}
is stable under base change. Hence the lemma is true.
\end{proof}
\begin{lemma}
\label{lemma-check-separated-covering}
Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks.
Let $W \to \mathcal{Y}$ be a surjective, flat, and locally of finite
presentation where $W$ is an algebraic space. If the base change
$W \times_\mathcal{Y} \mathcal{X} \to W$ has one of the separation properties
of Definition \ref{definition-separated}
then so does $f$.
\end{lemma}
\begin{proof}
Denote $g : W \times_\mathcal{Y} \mathcal{X} \to W$ the base change.
Then $\Delta_g$ is the base change of $\Delta_f$ by the morphism
$q : W \times_\mathcal{Y} (\mathcal{X} \times_\mathcal{Y} \mathcal{X})
\to \mathcal{X} \times_\mathcal{Y} \mathcal{X}$. Since $q$ is the base
change of $W \to \mathcal{Y}$ we see that $q$ is representable by algebraic
spaces, surjective, flat, and locally of finite presentation. Hence the
result follows from
Properties of Stacks, Lemma
\ref{stacks-properties-lemma-check-property-weak-covering}.
\end{proof}
\begin{lemma}
\label{lemma-change-of-base-separated}
Let $S$ be a scheme. The property of being
quasi-DM over $S$, quasi-separated over $S$, or separated over $S$ (see
Definition \ref{definition-absolute-separated})
is stable under change of base scheme, see
Algebraic Stacks, Definition \ref{algebraic-definition-change-of-base}.
\end{lemma}
\begin{proof}
Follows immediately from
Lemma \ref{lemma-base-change-separated}.
\end{proof}
\begin{lemma}
\label{lemma-fibre-product-after-map}
Let $f : \mathcal{X} \to \mathcal{Z}$, $g : \mathcal{Y} \to \mathcal{Z}$
and $\mathcal{Z} \to \mathcal{T}$ be morphisms of algebraic stacks.
Consider the induced morphism
$i : \mathcal{X} \times_\mathcal{Z} \mathcal{Y} \to
\mathcal{X} \times_\mathcal{T} \mathcal{Y}$.
Then
\begin{enumerate}
\item $i$ is representable by algebraic spaces and locally of finite type,
\item if $\Delta_{\mathcal{Z}/\mathcal{T}}$ is quasi-separated, then
$i$ is quasi-separated,
\item if $\Delta_{\mathcal{Z}/\mathcal{T}}$ is separated, then
$i$ is separated,
\item if $\mathcal{Z} \to \mathcal{T}$ is DM,
then $i$ is unramified,
\item if $\mathcal{Z} \to \mathcal{T}$ is quasi-DM,
then $i$ is locally quasi-finite,
\item if $\mathcal{Z} \to \mathcal{T}$ is separated, then $i$ is proper, and
\item if $\mathcal{Z} \to \mathcal{T}$ is quasi-separated, then
$i$ is quasi-compact and quasi-separated.
\end{enumerate}
\end{lemma}
\begin{proof}
The following diagram
$$
\xymatrix{
\mathcal{X} \times_\mathcal{Z} \mathcal{Y} \ar[r]_i \ar[d] &
\mathcal{X} \times_\mathcal{T} \mathcal{Y} \ar[d] \\
\mathcal{Z} \ar[r]^-{\Delta_{\mathcal{Z}/\mathcal{T}}} \ar[r] &
\mathcal{Z} \times_\mathcal{T} \mathcal{Z}
}
$$
is a $2$-fibre product diagram, see
Categories, Lemma \ref{categories-lemma-fibre-product-after-map}.
Hence $i$ is the base change of the
diagonal morphism $\Delta_{\mathcal{Z}/\mathcal{T}}$. Thus the lemma follows
from
Lemma \ref{lemma-properties-diagonal},
and the material in
Properties of Stacks,
Section \ref{stacks-properties-section-properties-morphisms}.
\end{proof}
\begin{lemma}
\label{lemma-semi-diagonal}
Let $\mathcal{T}$ be an algebraic stack. Let $g : \mathcal{X} \to \mathcal{Y}$
be a morphism of algebraic stacks over $\mathcal{T}$. Consider the graph
$i : \mathcal{X} \to \mathcal{X} \times_\mathcal{T} \mathcal{Y}$ of $g$. Then
\begin{enumerate}
\item $i$ is representable by algebraic spaces and locally of finite type,
\item if $\mathcal{Y} \to \mathcal{T}$ is DM, then $i$ is unramified,
\item if $\mathcal{Y} \to \mathcal{T}$ is quasi-DM, then $i$ is locally
quasi-finite,
\item if $\mathcal{Y} \to \mathcal{T}$ is separated, then $i$ is proper, and
\item if $\mathcal{Y} \to \mathcal{T}$ is quasi-separated, then $i$ is
quasi-compact and quasi-separated.
\end{enumerate}
\end{lemma}
\begin{proof}
This is a special case of Lemma \ref{lemma-fibre-product-after-map}
applied to the morphism
$\mathcal{X} = \mathcal{X} \times_\mathcal{Y} \mathcal{Y} \to
\mathcal{X} \times_\mathcal{T} \mathcal{Y}$.
\end{proof}
\begin{lemma}
\label{lemma-section-immersion}
Let $f : \mathcal{X} \to \mathcal{T}$ be a morphism of algebraic stacks.
Let $s : \mathcal{T} \to \mathcal{X}$ be a morphism such that
$f \circ s$ is $2$-isomorphic to $\text{id}_\mathcal{T}$. Then
\begin{enumerate}
\item $s$ is representable by algebraic spaces and locally of finite type,
\item if $f$ is DM, then $s$ is unramified,
\item if $f$ is quasi-DM, then $s$ is locally quasi-finite,
\item if $f$ is separated, then $s$ is proper, and
\item if $f$ is quasi-separated, then $s$ is quasi-compact and quasi-separated.
\end{enumerate}
\end{lemma}
\begin{proof}
This is a special case of Lemma \ref{lemma-semi-diagonal} applied to
$g = s$ and $\mathcal{Y} = \mathcal{T}$ in which case
$i : \mathcal{T} \to \mathcal{T} \times_\mathcal{T} \mathcal{X}$
is $2$-isomorphic to $s$.
\end{proof}
\begin{lemma}
\label{lemma-composition-separated}
All of the separation axioms listed in
Definition \ref{definition-separated}
are stable under composition of morphisms.
\end{lemma}
\begin{proof}
Let $f : \mathcal{X} \to \mathcal{Y}$ and
$g : \mathcal{Y} \to \mathcal{Z}$ be morphisms of algebraic stacks
to which the axiom in question applies.
The diagonal $\Delta_{\mathcal{X}/\mathcal{Z}}$ is the composition
$$
\mathcal{X} \longrightarrow
\mathcal{X} \times_\mathcal{Y} \mathcal{X} \longrightarrow
\mathcal{X} \times_\mathcal{Z} \mathcal{X}.
$$
Our separation axiom is defined by requiring the diagonal
to have some property $\mathcal{P}$. By
Lemma \ref{lemma-fibre-product-after-map}
above we see that the second arrow also has this property.
Hence the lemma follows since the composition of
morphisms which are representable by algebraic spaces with property
$\mathcal{P}$ also is a morphism with property $\mathcal{P}$, see
our general discussion in
Properties of Stacks,
Section \ref{stacks-properties-section-properties-morphisms}
and
Morphisms of Spaces, Lemmas
\ref{spaces-morphisms-lemma-composition-unramified},
\ref{spaces-morphisms-lemma-composition-quasi-finite},
\ref{spaces-morphisms-lemma-composition-proper},
\ref{spaces-morphisms-lemma-composition-quasi-compact}, and
\ref{spaces-morphisms-lemma-composition-separated}.
\end{proof}
\begin{lemma}
\label{lemma-separated-over-separated}
Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks
over the base scheme $S$.
\begin{enumerate}
\item If $\mathcal{Y}$ is DM over $S$ and $f$ is DM,
then $\mathcal{X}$ is DM over $S$.
\item If $\mathcal{Y}$ is quasi-DM over $S$ and $f$ is quasi-DM,
then $\mathcal{X}$ is quasi-DM over $S$.
\item If $\mathcal{Y}$ is separated over $S$ and $f$ is separated,
then $\mathcal{X}$ is separated over $S$.
\item If $\mathcal{Y}$ is quasi-separated over $S$ and $f$ is quasi-separated,
then $\mathcal{X}$ is quasi-separated over $S$.
\item If $\mathcal{Y}$ is DM and $f$ is DM,
then $\mathcal{X}$ is DM.
\item If $\mathcal{Y}$ is quasi-DM and $f$ is quasi-DM,
then $\mathcal{X}$ is quasi-DM.
\item If $\mathcal{Y}$ is separated and $f$ is separated,
then $\mathcal{X}$ is separated.
\item If $\mathcal{Y}$ is quasi-separated and $f$ is quasi-separated,
then $\mathcal{X}$ is quasi-separated.
\end{enumerate}
\end{lemma}
\begin{proof}
Parts (1), (2), (3), and (4) follow immediately from
Lemma \ref{lemma-composition-separated}
and
Definition \ref{definition-absolute-separated}.
For (5), (6), (7), and (8) think of $\mathcal{X}$ and $\mathcal{Y}$ as
algebraic stacks over $\Spec(\mathbf{Z})$ and apply
Lemma \ref{lemma-composition-separated}.
Details omitted.
\end{proof}
\noindent
The following lemma is a bit different to the analogue for algebraic
spaces. To compare take a look at
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-compose-after-separated}.
\begin{lemma}
\label{lemma-compose-after-separated}
Let $f : \mathcal{X} \to \mathcal{Y}$ and
$g : \mathcal{Y} \to \mathcal{Z}$ be morphisms of algebraic stacks.
\begin{enumerate}
\item If $g \circ f$ is DM then so is $f$.
\item If $g \circ f$ is quasi-DM then so is $f$.
\item If $g \circ f$ is separated and $\Delta_g$ is separated, then
$f$ is separated.
\item If $g \circ f$ is quasi-separated and
$\Delta_g$ is quasi-separated, then $f$ is quasi-separated.
\end{enumerate}
\end{lemma}
\begin{proof}
Consider the factorization
$$
\mathcal{X} \to
\mathcal{X} \times_\mathcal{Y} \mathcal{X} \to
\mathcal{X} \times_\mathcal{Z} \mathcal{X}
$$
of the diagonal morphism of $g \circ f$. Both morphisms are representable by
algebraic spaces, see
Lemmas \ref{lemma-properties-diagonal} and
\ref{lemma-fibre-product-after-map}.
Hence for any scheme $T$ and morphism
$T \to \mathcal{X} \times_\mathcal{Y} \mathcal{X}$
we get morphisms of algebraic spaces
$$
A = \mathcal{X} \times_{(\mathcal{X} \times_\mathcal{Z} \mathcal{X})} T
\longrightarrow
B = (\mathcal{X} \times_\mathcal{Y} \mathcal{X})
\times_{(\mathcal{X} \times_\mathcal{Z} \mathcal{X})} T
\longrightarrow
T.
$$
If $g \circ f$ is DM (resp.\ quasi-DM), then the composition $A \to T$
is unramified (resp.\ locally quasi-finite). Hence (1) (resp.\ (2))
follows on applying
Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-permanence-unramified}
(resp.
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-permanence-quasi-finite}).
This proves (1) and (2).
\medskip\noindent
Proof of (4). Assume $g \circ f$ is quasi-separated and $\Delta_g$ is
quasi-separated. Consider the factorization
$$
\mathcal{X} \to
\mathcal{X} \times_\mathcal{Y} \mathcal{X} \to
\mathcal{X} \times_\mathcal{Z} \mathcal{X}
$$
of the diagonal morphism of $g \circ f$. Both morphisms are
representable by algebraic spaces and the second one is quasi-separated, see
Lemmas \ref{lemma-properties-diagonal} and
\ref{lemma-fibre-product-after-map}.
Hence for any scheme $T$ and morphism
$T \to \mathcal{X} \times_\mathcal{Y} \mathcal{X}$
we get morphisms of algebraic spaces
$$
A = \mathcal{X} \times_{(\mathcal{X} \times_\mathcal{Z} \mathcal{X})} T
\longrightarrow
B = (\mathcal{X} \times_\mathcal{Y} \mathcal{X})
\times_{(\mathcal{X} \times_\mathcal{Z} \mathcal{X})} T
\longrightarrow
T
$$
such that $B \to T$ is quasi-separated.
The composition $A \to T$ is quasi-compact and quasi-separated
as we have assumed that $g \circ f$ is quasi-separated.
Hence $A \to B$ is quasi-separated by
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-compose-after-separated}.
And $A \to B$ is quasi-compact by
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-quasi-compact-permanence}.
Thus $f$ is quasi-separated.
\medskip\noindent
Proof of (3). Assume $g \circ f$ is separated and $\Delta_g$ is
separated. Consider the factorization
$$
\mathcal{X} \to
\mathcal{X} \times_\mathcal{Y} \mathcal{X} \to
\mathcal{X} \times_\mathcal{Z} \mathcal{X}
$$
of the diagonal morphism of $g \circ f$. Both morphisms are
representable by algebraic spaces and the second one is separated, see
Lemmas \ref{lemma-properties-diagonal} and
\ref{lemma-fibre-product-after-map}.
Hence for any scheme $T$ and morphism
$T \to \mathcal{X} \times_\mathcal{Y} \mathcal{X}$
we get morphisms of algebraic spaces
$$
A = \mathcal{X} \times_{(\mathcal{X} \times_\mathcal{Z} \mathcal{X})} T
\longrightarrow
B = (\mathcal{X} \times_\mathcal{Y} \mathcal{X})
\times_{(\mathcal{X} \times_\mathcal{Z} \mathcal{X})} T
\longrightarrow
T
$$
such that $B \to T$ is separated.
The composition $A \to T$ is proper as we have assumed that
$g \circ f$ is quasi-separated. Hence $A \to B$ is proper by
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-universally-closed-permanence}
which means that $f$ is separated.
\end{proof}
\begin{lemma}
\label{lemma-separated-implies-morphism-separated}
Let $\mathcal{X}$ be an algebraic stack over the base scheme $S$.
\begin{enumerate}
\item
$\mathcal{X}$ is DM $\Leftrightarrow$
$\mathcal{X}$ is DM over $S$.
\item
$\mathcal{X}$ is quasi-DM $\Leftrightarrow$
$\mathcal{X}$ is quasi-DM over $S$.
\item If $\mathcal{X}$ is separated, then
$\mathcal{X}$ is separated over $S$.
\item If $\mathcal{X}$ is quasi-separated, then
$\mathcal{X}$ is quasi-separated over $S$.
\end{enumerate}
Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks
over the base scheme $S$.
\begin{enumerate}
\item[(5)] If $\mathcal{X}$ is DM over $S$, then $f$ is DM.
\item[(6)] If $\mathcal{X}$ is quasi-DM over $S$, then $f$ is quasi-DM.
\item[(7)] If $\mathcal{X}$ is separated over $S$ and
$\Delta_{\mathcal{Y}/S}$ is separated, then $f$ is separated.
\item[(8)] If $\mathcal{X}$ is quasi-separated over $S$ and
$\Delta_{\mathcal{Y}/S}$ is quasi-separated, then $f$ is quasi-separated.
\end{enumerate}
\end{lemma}
\begin{proof}
Parts (5), (6), (7), and (8) follow immediately from
Lemma \ref{lemma-compose-after-separated}
and
Spaces, Definition \ref{spaces-definition-separated}.
To prove (3) and (4) think of $X$ and $Y$ as algebraic stacks over
$\Spec(\mathbf{Z})$ and apply
Lemma \ref{lemma-compose-after-separated}.
Similarly, to prove (1) and (2), think of $\mathcal{X}$ as an algebraic
stack over $\Spec(\mathbf{Z})$ consider the
morphisms
$$
\mathcal{X} \longrightarrow
\mathcal{X} \times_S \mathcal{X} \longrightarrow
\mathcal{X} \times_{\Spec(\mathbf{Z})} \mathcal{X}
$$
Both arrows are representable by algebraic spaces.
The second arrow is unramified and locally quasi-finite as the base change of
the immersion $\Delta_{S/\mathbf{Z}}$. Hence the composition is
unramified (resp.\ locally quasi-finite) if and only if the first arrow
is unramified (resp.\ locally quasi-finite), see
Morphisms of Spaces,
Lemmas \ref{spaces-morphisms-lemma-composition-unramified} and
\ref{spaces-morphisms-lemma-permanence-unramified}
(resp.\ Morphisms of Spaces,
Lemmas \ref{spaces-morphisms-lemma-composition-quasi-finite} and
\ref{spaces-morphisms-lemma-permanence-quasi-finite}).
\end{proof}
\begin{lemma}
\label{lemma-properties-covering-imply-diagonal}
Let $\mathcal{X}$ be an algebraic stack.
Let $W$ be an algebraic space, and let $f : W \to \mathcal{X}$
be a surjective, flat, locally finitely presented morphism.
\begin{enumerate}
\item If $f$ is unramified (i.e., \'etale, i.e., $\mathcal{X}$
is Deligne-Mumford), then $\mathcal{X}$ is DM.
\item If $f$ is locally quasi-finite, then $\mathcal{X}$ is quasi-DM.
\end{enumerate}
\end{lemma}
\begin{proof}
Note that if $f$ is unramified, then it is \'etale by
Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-unramified-flat-lfp-etale}.
This explains the parenthetical remark in (1).
Assume $f$ is unramified (resp.\ locally quasi-finite). We have to show that
$\Delta_\mathcal{X} : \mathcal{X} \to \mathcal{X} \times \mathcal{X}$
is unramified (resp.\ locally quasi-finite). Note that
$W \times W \to \mathcal{X} \times \mathcal{X}$ is also
surjective, flat, and locally of finite presentation. Hence it suffices to
show that
$$
W \times_{\mathcal{X} \times \mathcal{X}, \Delta_\mathcal{X}} \mathcal{X}
=
W \times_\mathcal{X} W
\longrightarrow
W \times W
$$
is unramified (resp.\ locally quasi-finite), see
Properties of Stacks, Lemma
\ref{stacks-properties-lemma-check-property-covering}.
By assumption the morphism $\text{pr}_i : W \times_\mathcal{X} W \to W$
is unramified (resp.\ locally quasi-finite). Hence
the displayed arrow is unramified (resp.\ locally quasi-finite) by
Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-permanence-unramified}
(resp.\ Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-permanence-quasi-finite}).
\end{proof}
\begin{lemma}
\label{lemma-monomorphism-separated}
A monomorphism of algebraic stacks is separated and DM.
The same is true for immersions of algebraic stacks.
\end{lemma}
\begin{proof}
If $f : \mathcal{X} \to \mathcal{Y}$ is a monomorphism of algebraic stacks,
then $\Delta_f$ is an isomorphism, see
Properties of Stacks, Lemma \ref{stacks-properties-lemma-monomorphism}.
Since an isomorphism of algebraic spaces is proper and unramified we
see that $f$ is separated and DM. The second assertion follows from the
first as an immersion is a monomorphism, see
Properties of Stacks,
Lemma \ref{stacks-properties-lemma-immersion-monomorphism}.
\end{proof}
\begin{lemma}
\label{lemma-separation-properties-residual-gerbe}
Let $\mathcal{X}$ be an algebraic stack. Let $x \in |\mathcal{X}|$.
Assume the residual gerbe $\mathcal{Z}_x$ of $\mathcal{X}$ at $x$ exists.
If $\mathcal{X}$ is DM, resp.\ quasi-DM, resp.\ separated,
resp.\ quasi-separated, then so is $\mathcal{Z}_x$.
\end{lemma}
\begin{proof}
This is true because $\mathcal{Z}_x \to \mathcal{X}$ is a monomorphism
hence DM and separated by
Lemma \ref{lemma-monomorphism-separated}.
Apply
Lemma \ref{lemma-separated-over-separated}
to conclude.
\end{proof}
\section{Inertia stacks}
\label{section-inertia}
\noindent
The (relative) inertia stack of a stack in groupoids is defined in
Stacks, Section \ref{stacks-section-the-inertia-stack}.
The actual construction, in the setting of fibred categories, and some
of its properties is in
Categories, Section \ref{categories-section-inertia}.
\begin{lemma}
\label{lemma-inertia}
Let $\mathcal{X}$ be an algebraic stack. Then the inertia stack
$\mathcal{I}_\mathcal{X}$ is an algebraic stack as well.
The morphism
$$
\mathcal{I}_\mathcal{X} \longrightarrow \mathcal{X}
$$
is representable by algebraic spaces and locally of finite type.
More generally, let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism
of algebraic stacks. Then the morphism
$$
\mathcal{I}_{\mathcal{X}/\mathcal{Y}} \longrightarrow \mathcal{X}
$$
is representable by algebraic spaces and locally of finite type.
\end{lemma}