-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdamc-target-visda.sh
executable file
·20 lines (19 loc) · 1.35 KB
/
damc-target-visda.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#!/bin/bash
echo "Begin Visda DA experiments"
num_c=12 # number of classifiers, for visda the optimal is just the number of categories due to sufficient synthetic source domain
model_ep=10 # load pre-trained src model at ep
tgt_max_ep=30 # the maximum SF adaptation epochs
save="save/" # model check point directory
gpu="0" # use which gpu
task="visda" # SFUDA task name
target="validation" # target domain, for visda the data is saved in "$damc_dir/visda/validation"
p_start=2 # the epoch that will use pseudo label
seed=2021 # random seed for reproducing experiment
interval=2 # the frequency of updating pseudo labels
bndim=256 # dimension of bottle neck layer
beta=0.01 # coefficient of pseudo label loss
alpha=0.3 # used to load the src mode trained by a particular src_alpha hyper-parameter
alphat=0.1 # coefficient of pair of trace loss
smo=0 # 0: doest not use label smoothing, should be consisitent with the pre-trained source model
epsilon=0.0 # label smoothing, valid if smoothig==1
python damc_target.py --tgt_alpha $alphat --epsilon $epsilon --p_start $p_start --save $save --smoothing $smo --model_ep $model_ep --tgt_max_epoch $tgt_max_ep --src_alpha $alpha --bn_dim $bndim --gpuid $gpu --task $task --pseudo_interval $interval --pseudo_beta $beta --seed $seed --num_c $num_c --target $target