-
Notifications
You must be signed in to change notification settings - Fork 123
/
Copy pathtools.py
85 lines (68 loc) · 2.98 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import scipy.io as sio
import numpy as np
import tensorflow as tf
import os
IMG_MEAN = np.array((103.939, 116.779, 123.68), dtype=np.float32)
label_colours = [(128, 64, 128), (244, 35, 231), (69, 69, 69)
# 0 = road, 1 = sidewalk, 2 = building
,(102, 102, 156), (190, 153, 153), (153, 153, 153)
# 3 = wall, 4 = fence, 5 = pole
,(250, 170, 29), (219, 219, 0), (106, 142, 35)
# 6 = traffic light, 7 = traffic sign, 8 = vegetation
,(152, 250, 152), (69, 129, 180), (219, 19, 60)
# 9 = terrain, 10 = sky, 11 = person
,(255, 0, 0), (0, 0, 142), (0, 0, 69)
# 12 = rider, 13 = car, 14 = truck
,(0, 60, 100), (0, 79, 100), (0, 0, 230)
# 15 = bus, 16 = train, 17 = motocycle
,(119, 10, 32)]
# 18 = bicycle
matfn = './utils/color150.mat'
def read_labelcolours(matfn):
mat = sio.loadmat(matfn)
color_table = mat['colors']
shape = color_table.shape
color_list = [tuple(color_table[i]) for i in range(shape[0])]
return color_list
def decode_labels(mask, img_shape, num_classes):
if num_classes == 150:
color_table = read_labelcolours(matfn)
else:
color_table = label_colours
color_mat = tf.constant(color_table, dtype=tf.float32)
onehot_output = tf.one_hot(mask, depth=num_classes)
onehot_output = tf.reshape(onehot_output, (-1, num_classes))
pred = tf.matmul(onehot_output, color_mat)
pred = tf.reshape(pred, (1, img_shape[0], img_shape[1], 3))
return pred
def prepare_label(input_batch, new_size, num_classes, one_hot=True):
with tf.name_scope('label_encode'):
input_batch = tf.image.resize_nearest_neighbor(input_batch, new_size) # as labels are integer numbers, need to use NN interp.
input_batch = tf.squeeze(input_batch, squeeze_dims=[3]) # reducing the channel dimension.
if one_hot:
input_batch = tf.one_hot(input_batch, depth=num_classes)
return input_batch
def load_img(img_path):
if os.path.isfile(img_path):
print('successful load img: {0}'.format(img_path))
else:
print('not found file: {0}'.format(img_path))
sys.exit(0)
filename = img_path.split('/')[-1]
ext = filename.split('.')[-1]
if ext.lower() == 'png':
img = tf.image.decode_png(tf.read_file(img_path), channels=3)
elif ext.lower() == 'jpg':
img = tf.image.decode_jpeg(tf.read_file(img_path), channels=3)
else:
print('cannot process {0} file.'.format(file_type))
return img, filename
def preprocess(img, h, w):
# Convert RGB to BGR
img_r, img_g, img_b = tf.split(axis=2, num_or_size_splits=3, value=img)
img = tf.cast(tf.concat(axis=2, values=[img_b, img_g, img_r]), dtype=tf.float32)
# Extract mean.
img -= IMG_MEAN
pad_img = tf.image.pad_to_bounding_box(img, 0, 0, h, w)
pad_img = tf.expand_dims(pad_img, dim=0)
return pad_img