Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

on kitti dataset #1

Open
thisiskiru opened this issue Aug 13, 2020 · 4 comments
Open

on kitti dataset #1

thisiskiru opened this issue Aug 13, 2020 · 4 comments

Comments

@thisiskiru
Copy link

thisiskiru commented Aug 13, 2020

error in inference.py

@thisiskiru
Copy link
Author

the following error raised while running inference.py
main()
File "inference.py", line 76, in main
flo_pred = inference(image_pairs, model=pwcnet)
File "C:\Users\CVR 2019 2020\Anaconda3\envs\tf2\lib\site-packages\tensorflow\python\eager\def_function.py", line 580, in call
result = self._call(*args, **kwds)
File "C:\Users\CVR 2019 2020\Anaconda3\envs\tf2\lib\site-packages\tensorflow\python\eager\def_function.py", line 627, in _call
self._initialize(args, kwds, add_initializers_to=initializers)
File "C:\Users\CVR 2019 2020\Anaconda3\envs\tf2\lib\site-packages\tensorflow\python\eager\def_function.py", line 506, in _initialize
*args, **kwds))
File "C:\Users\CVR 2019 2020\Anaconda3\envs\tf2\lib\site-packages\tensorflow\python\eager\function.py", line 2446, in _get_concrete_function_internal_garbage_collected
graph_function, _, _ = self._maybe_define_function(args, kwargs)
File "C:\Users\CVR 2019 2020\Anaconda3\envs\tf2\lib\site-packages\tensorflow\python\eager\function.py", line 2777, in _maybe_define_function
graph_function = self._create_graph_function(args, kwargs)
File "C:\Users\CVR 2019 2020\Anaconda3\envs\tf2\lib\site-packages\tensorflow\python\eager\function.py", line 2667, in _create_graph_function
capture_by_value=self._capture_by_value),
File "C:\Users\CVR 2019 2020\Anaconda3\envs\tf2\lib\site-packages\tensorflow\python\framework\func_graph.py", line 981, in func_graph_from_py_func
func_outputs = python_func(*func_args, **func_kwargs)
File "C:\Users\CVR 2019 2020\Anaconda3\envs\tf2\lib\site-packages\tensorflow\python\eager\def_function.py", line 441, in wrapped_fn
return weak_wrapped_fn().wrapped(*args, **kwds)
File "C:\Users\CVR 2019 2020\Anaconda3\envs\tf2\lib\site-packages\tensorflow\python\framework\func_graph.py", line 968, in wrapper
raise e.ag_error_metadata.to_exception(e)
tensorflow.python.framework.errors_impl.OutOfRangeError: in user code:

inference.py:53 inference  *
    flo_pred = model(image_pairs, is_training=False)
E:\LiteFlowNet2-TF2-master\PWCNet-tf2-master\PWCNet-tf2-master\PWCDCNet.py:175 call  *
    c11 = self.conv1b(self.conv1aa(self.conv1a(im1)))
E:\LiteFlowNet2-TF2-master\PWCNet-tf2-master\PWCNet-tf2-master\PWCDCNet.py:23 call  *
    x = self.conv_out(inputs)
C:\Users\CVR 2019 2020\Anaconda3\envs\tf2\lib\site-packages\tensorflow\python\keras\engine\base_layer.py:897 __call__  **
    self._maybe_build(inputs)
C:\Users\CVR 2019 2020\Anaconda3\envs\tf2\lib\site-packages\tensorflow\python\keras\engine\base_layer.py:2416 _maybe_build
    self.build(input_shapes)  # pylint:disable=not-callable
C:\Users\CVR 2019 2020\Anaconda3\envs\tf2\lib\site-packages\tensorflow\python\keras\layers\convolutional.py:163 build
    dtype=self.dtype)
C:\Users\CVR 2019 2020\Anaconda3\envs\tf2\lib\site-packages\tensorflow\python\keras\engine\base_layer.py:577 add_weight
    caching_device=caching_device)
C:\Users\CVR 2019 2020\Anaconda3\envs\tf2\lib\site-packages\tensorflow\python\training\tracking\base.py:724 _add_variable_with_custom_getter
    name=name, shape=shape)
C:\Users\CVR 2019 2020\Anaconda3\envs\tf2\lib\site-packages\tensorflow\python\training\tracking\base.py:791 _preload_simple_restoration
    checkpoint_position=checkpoint_position, shape=shape)
C:\Users\CVR 2019 2020\Anaconda3\envs\tf2\lib\site-packages\tensorflow\python\training\tracking\base.py:71 __init__
    self.wrapped_value = checkpoint_position.value_tensors()[VARIABLE_VALUE_KEY]
C:\Users\CVR 2019 2020\Anaconda3\envs\tf2\lib\site-packages\tensorflow\python\training\tracking\base.py:304 value_tensors
    name="%s_checkpoint_read" % (serialized_tensor.name,))
C:\Users\CVR 2019 2020\Anaconda3\envs\tf2\lib\site-packages\tensorflow\python\ops\gen_io_ops.py:1492 restore_v2
    ctx=_ctx)
C:\Users\CVR 2019 2020\Anaconda3\envs\tf2\lib\site-packages\tensorflow\python\ops\gen_io_ops.py:1532 restore_v2_eager_fallback
    attrs=_attrs, ctx=ctx, name=name)
C:\Users\CVR 2019 2020\Anaconda3\envs\tf2\lib\site-packages\tensorflow\python\eager\execute.py:60 quick_execute
    inputs, attrs, num_outputs)

OutOfRangeError: Read fewer bytes than requested [Op:RestoreV2]

@mjoannou
Copy link

Seconded, this error occurs using the sample images provided in the repository. Specifically the error arises during the 3rd line of PWCDCNet.call(), when you attempt to pass im1 to the first convolutional layer self.conv1a(im1)

@thisiskiru
Copy link
Author

Yes I see that but it even rise a error using other (not sample images provided in the repository) images too...

@hellochick
Copy link
Owner

Hi,

I'm sorry for your inconvenience, this repository works only with FlyingChairs and FlyingThings now.

If you are trying to train on Sintel or Kitti, there are several things to be noticed as below:

  1. I have tried this code on Sintel, and the test results are not desirable, which means it cannot reproduce the test results in the original paper.

  2. As for issue (1), I have tried several ways to improve it (not shown in this repo), but it still cannot reach the performance:
    (a) Re-write the data augmentation part (you can refer to this paper to see the importance of data augmentation to optical flow). I recommend people can refer to the augmentation part of hd3 and MaskFlowNet.

Issues that raised and related to the (a):

  1. It still not clear whether to rescale the flow ground truth or not.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants