forked from DebeshJha/ResUNetPlusPlus
-
Notifications
You must be signed in to change notification settings - Fork 1
/
infer.py
64 lines (50 loc) · 1.93 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import os
import numpy as np
import cv2
from glob import glob
from tqdm import tqdm
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.keras.utils import CustomObjectScope
from data_generator import *
from metrics import dice_coef, dice_loss
def mask_to_3d(mask):
mask = np.squeeze(mask)
mask = [mask, mask, mask]
mask = np.transpose(mask, (1, 2, 0))
return mask
if __name__ == "__main__":
model_path = "files/resunetplusplus.h5"
save_path = "result"
test_path = "new_data/kvasir_segmentation_dataset/test/"
image_size = 256
batch_size = 1
test_image_paths = glob(os.path.join(test_path, "images", "*"))
test_mask_paths = glob(os.path.join(test_path, "masks", "*"))
test_image_paths.sort()
test_mask_paths.sort()
## Create result folder
try:
os.mkdir(save_path)
except:
pass
## Model
with CustomObjectScope({'dice_loss': dice_loss, 'dice_coef': dice_coef}):
model = load_model(model_path)
## Test
print("Test Result: ")
test_steps = len(test_image_paths)//batch_size
test_gen = DataGen(image_size, test_image_paths, test_mask_paths, batch_size=batch_size)
model.evaluate_generator(test_gen, steps=test_steps, verbose=1)
## Generating the result
for i, path in tqdm(enumerate(test_image_paths), total=len(test_image_paths)):
image = parse_image(test_image_paths[i], image_size)
mask = parse_mask(test_mask_paths[i], image_size)
predict_mask = model.predict(np.expand_dims(image, axis=0))[0]
predict_mask = (predict_mask > 0.5) * 255.0
sep_line = np.ones((image_size, 10, 3)) * 255
mask = mask_to_3d(mask)
predict_mask = mask_to_3d(predict_mask)
all_images = [image * 255, sep_line, mask * 255, sep_line, predict_mask]
cv2.imwrite(f"{save_path}/{i}.png", np.concatenate(all_images, axis=1))
print("Test image generation complete")