Skip to content

Commit

Permalink
add ClusterJudge, OPWeight, phenopath, scmap
Browse files Browse the repository at this point in the history
git-svn-id: file:///home/git/hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/scmap@131231 bc3139a8-67e5-0310-9ffc-ced21a209358
  • Loading branch information
Martin Morgan committed Jul 14, 2017
0 parents commit b3ef5b6
Show file tree
Hide file tree
Showing 19 changed files with 1,882 additions and 0 deletions.
34 changes: 34 additions & 0 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
Package: scmap
Type: Package
Title: A tool for unsupervised projection of single cell RNA-seq data
Version: 0.99.2
Author: Vladimir Kiselev
Maintainer: Vladimir Kiselev <[email protected]>
Authors@R: c(person("Vladimir", "Kiselev", email =
"[email protected]", role=c("cre", "aut")),
person("Martin", "Hemberg", role=c("aut")))
Description: Single-cell RNA-seq (scRNA-seq) is widely used to
investigate the composition of complex tissues since the
technology allows researchers to define cell-types using
unsupervised clustering of the transcriptome. However, due to
differences in experimental methods and computational analyses,
it is often challenging to directly compare the cells
identified in two different experiments. scmap is a method for
projecting cells from a scRNA-seq experiment on to the
cell-types identified in a different experiment.
License: GPL-3
Imports: Biobase, scater, dplyr, reshape2, matrixStats, proxy, utils,
googleVis, ggplot2, methods, stats, e1071, randomForest
Depends: R(>= 3.4)
Encoding: UTF-8
LazyData: true
RoxygenNote: 6.0.1
Suggests: knitr, rmarkdown
VignetteBuilder: knitr
biocViews: SingleCell, Software, Classification, SupportVectorMachine,
RNASeq, Visualization, Transcriptomics, DataRepresentation,
Transcription, Sequencing, Preprocessing, GeneExpression,
DataImport
NeedsCompilation: no
URL: https://github.com/hemberg-lab/scmap
BugReports: https://support.bioconductor.org/t/scmap/
674 changes: 674 additions & 0 deletions LICENSE

Large diffs are not rendered by default.

40 changes: 40 additions & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
# Generated by roxygen2: do not edit by hand

export(createReference)
export(getFeatures)
export(getSankey)
export(projectData)
export(setFeatures)
importClassesFrom(scater,SCESet)
importFrom(Biobase,"fData<-")
importFrom(Biobase,"pData<-")
importFrom(Biobase,AnnotatedDataFrame)
importFrom(Biobase,fData)
importFrom(Biobase,pData)
importFrom(dplyr,"%>%")
importFrom(dplyr,group_by)
importFrom(dplyr,summarise)
importFrom(e1071,svm)
importFrom(ggplot2,aes)
importFrom(ggplot2,geom_abline)
importFrom(ggplot2,geom_point)
importFrom(ggplot2,ggplot)
importFrom(ggplot2,labs)
importFrom(ggplot2,scale_colour_manual)
importFrom(ggplot2,theme_classic)
importFrom(googleVis,gvisSankey)
importFrom(matrixStats,colMaxs)
importFrom(matrixStats,rowMaxs)
importFrom(methods,is)
importFrom(proxy,simil)
importFrom(randomForest,randomForest)
importFrom(reshape2,dcast)
importFrom(reshape2,melt)
importFrom(scater,calculateQCMetrics)
importFrom(scater,get_exprs)
importFrom(scater,newSCESet)
importFrom(stats,cor)
importFrom(stats,lm)
importFrom(stats,median)
importFrom(stats,predict)
importFrom(utils,head)
71 changes: 71 additions & 0 deletions R/AllGenerics.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
#' @export
#'
#' @examples
#' library(scater)
#' pd <- AnnotatedDataFrame(ann)
#' sceset <- newSCESet(fpkmData = yan, phenoData = pd, logExprsOffset = 1)
#' sceset <- calculateQCMetrics(sceset)
#' # use gene names as feature symbols
#' fData(sceset)$feature_symbol <- featureNames(sceset)
#' # remove features with duplicated names
#' sceset <- sceset[!duplicated(fData(sceset)$feature_symbol), ]
#' sceset <- getFeatures(sceset)
#'
setGeneric("getFeatures", signature = "object", function(object, n_features = 500, suppress_plot = TRUE) {
standardGeneric("getFeatures")
})

#' @export
#'
#' @examples
#' library(scater)
#' pd <- AnnotatedDataFrame(ann)
#' sceset <- newSCESet(fpkmData = yan, phenoData = pd, logExprsOffset = 1)
#' sceset <- calculateQCMetrics(sceset)
#' # use gene names as feature symbols
#' fData(sceset)$feature_symbol <- featureNames(sceset)
#' # remove features with duplicated names
#' sceset <- sceset[!duplicated(fData(sceset)$feature_symbol), ]
#' sceset <- setFeatures(sceset, c('MMP2', 'ZHX3'))
#'
setGeneric("setFeatures", signature = "object", function(object, features = NULL) {
standardGeneric("setFeatures")
})

#' @export
#'
#' @examples
#' library(scater)
#' pd <- AnnotatedDataFrame(ann)
#' sceset <- newSCESet(fpkmData = yan, phenoData = pd, logExprsOffset = 1)
#' sceset <- calculateQCMetrics(sceset)
#' # use gene names as feature symbols
#' fData(sceset)$feature_symbol <- featureNames(sceset)
#' # remove features with duplicated names
#' sceset <- sceset[!duplicated(fData(sceset)$feature_symbol), ]
#' sceset <- getFeatures(sceset)
#' sceset <- projectData(projection = sceset, reference = sceset)
#'
setGeneric("projectData", signature = "projection", function(projection = NULL, reference = NULL, cell_type_column = "cell_type1",
method = "scmap", threshold = 0.7) {
standardGeneric("projectData")
})

#' @export
#'
#' @examples
#' library(scater)
#' pd <- AnnotatedDataFrame(ann)
#' sceset <- newSCESet(fpkmData = yan, phenoData = pd, logExprsOffset = 1)
#' sceset <- calculateQCMetrics(sceset)
#' # use gene names as feature symbols
#' fData(sceset)$feature_symbol <- featureNames(sceset)
#' # remove features with duplicated names
#' sceset <- sceset[!duplicated(fData(sceset)$feature_symbol), ]
#' sceset <- getFeatures(sceset)
#' reference <- createReference(sceset[fData(sceset)$scmap_features, ])
#'
setGeneric("createReference", signature = "reference", function(reference = NULL, cell_type_column = "cell_type1") {
standardGeneric("createReference")
})

Loading

0 comments on commit b3ef5b6

Please sign in to comment.