forked from gy65896/DADFNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_real.py
168 lines (140 loc) · 6.42 KB
/
test_real.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
import time
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
from torch.utils.data import DataLoader
import numpy as np
import argparse
import cv2
import h5py
from makedataset import Dataset
from model import HTDNet, Discriminator
from skimage.measure.simple_metrics import compare_psnr, compare_mse
from skimage.measure import compare_ssim
from torchvision.utils import save_image as imwrite
from pytorch_msssim import msssim
from loss import *
from torchvision.models import vgg16
import math
from PIL import Image
from perceptual import LossNetwork
#调用GPU
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
def main():
#开关定义
parser = argparse.ArgumentParser(description = "network pytorch")
#train
parser.add_argument("--epoch", type=int, default = 1000, help = 'epoch number')
parser.add_argument("--bs", type=str, default =16, help = 'batchsize')
parser.add_argument("--lr", type=str, default = 1e-4, help = 'learning rate')
parser.add_argument("--model", type=str, default = "./checkpoint/", help = 'checkpoint')
#value
parser.add_argument("--intest", type=str, default = "./input/", help = 'input syn path')
parser.add_argument("--outest", type=str, default = "./output/", help = 'output syn path')
argspar = parser.parse_args()
print("\nnetwork pytorch")
for p, v in zip(argspar.__dict__.keys(), argspar.__dict__.values()):
print('\t{}: {}'.format(p, v))
print('\n')
arg = parser.parse_args()
#train
print('> Loading dataset...')
FNet, F_optimizer, DNet, D_optimizer, cur_epoch = load_checkpoint(argspar.model, argspar.lr)
test(argspar, FNet)
#加载模型
def load_checkpoint(checkpoint_dir, learnrate):
Fmodel_name = 'Fmodel.tar'
Dmodel_name = 'Dmodel.tar'
if os.path.exists(checkpoint_dir + Fmodel_name):
#加载存在的模型
Fmodel_info = torch.load(checkpoint_dir + Fmodel_name)
Dmodel_info = torch.load(checkpoint_dir + Dmodel_name)
print('==> loading existing model:', checkpoint_dir + Fmodel_name)
#模型名称
FNet = HTDNet()
DNet = Discriminator()
#显卡使用
device_ids = [0]
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
F_optimizer = torch.optim.Adam(FNet.parameters(), lr=learnrate)
D_optimizer = torch.optim.Adam(DNet.parameters(), lr=learnrate)
FNet = torch.nn.DataParallel(FNet, device_ids=device_ids).cuda()
DNet = torch.nn.DataParallel(DNet, device_ids=device_ids).cuda()
#将模型参数赋值进net
FNet.load_state_dict(Fmodel_info['state_dict'])
F_optimizer = torch.optim.Adam(FNet.parameters())
F_optimizer.load_state_dict(Fmodel_info['optimizer'])
DNet.load_state_dict(Dmodel_info['state_dict'])
D_optimizer = torch.optim.Adam(DNet.parameters())
D_optimizer.load_state_dict(Dmodel_info['optimizer'])
cur_epoch = Fmodel_info['epoch']
else:
# 创建模型
FNet = HTDNet()
DNet = Discriminator()
#显卡使用
device_ids = [0]
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
F_optimizer = torch.optim.Adam(FNet.parameters(), lr=learnrate)
D_optimizer = torch.optim.Adam(DNet.parameters(), lr=learnrate)
FNet = torch.nn.DataParallel(FNet, device_ids=device_ids).cuda()
DNet = torch.nn.DataParallel(DNet, device_ids=device_ids).cuda()
cur_epoch = 0
return FNet, F_optimizer, DNet, D_optimizer, cur_epoch
def save_checkpoint(stateF, stateD, checkpoint, epoch, mse, psnr, ssim, filename='model.tar'):#保存学习率
torch.save(stateF, checkpoint + 'Fmodel_%d_%.4f_%.4f_%.4f.tar'%(epoch,mse,psnr,ssim))
torch.save(stateD, checkpoint + 'Dmodel_%d_%.4f_%.4f_%.4f.tar'%(epoch,mse,psnr,ssim))
#调整学习率
def adjust_learning_rate(optimizer, epoch, lr_update_freq, i):
if not epoch % lr_update_freq and epoch:
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr'] * i
print( param_group['lr'])
return optimizer
def tensor_metric(img, imclean, model, data_range=1):#计算图像PSNR输入为Tensor
img_cpu = img.data.cpu().numpy().astype(np.float32).transpose(0,2,3,1)
imgclean = imclean.data.cpu().numpy().astype(np.float32).transpose(0,2,3,1)
SUM = 0
for i in range(img_cpu.shape[0]):
if model == 'PSNR':
SUM += compare_psnr(imgclean[i, :, :, :], img_cpu[i, :, :, :],data_range=data_range)
elif model == 'MSE':
SUM += compare_mse(imgclean[i, :, :, :], img_cpu[i, :, :, :])
elif model == 'SSIM':
SUM += compare_ssim(imgclean[i, :, :, :], img_cpu[i, :, :, :], data_range=data_range, multichannel = True)
else:
print('Model False!')
return SUM/img_cpu.shape[0]
def upsample(x,y):
_,_,H,W = y.size()
return F.upsample(x,size=(H,W),mode='bilinear')
def test(argspar, model):
files = os.listdir(argspar.intest)
m = 0
for i in range(len(files)):
haze = np.array(Image.open(argspar.intest + files[i]))/255
model.eval()
with torch.no_grad():
haze = torch.Tensor(haze.transpose(2, 0, 1)[np.newaxis,:,:,:]).cuda()
starttime = time.clock()
T_out, out1, out2, out = model(haze)
#out1=upsample(out1,T_out)
#out2=upsample(out2,T_out)
endtime1 = time.clock()
m = m + endtime1-starttime
#torch.cat((haze,T_out,out1, out2,out), dim = 3)
imwrite(out, argspar.outest+files[i][:-4]+'_DADFNet.png', range=(0, 1))
#imwrite(out1, argspar.outest+files[i][:-4]+'_our1.png', range=(0, 1))
#imwrite(out2, argspar.outest+files[i][:-4]+'_our2.png', range=(0, 1))
print('The '+str(i)+' Time: %.4f.'%(endtime1-starttime))
print(m)
def adjust_learning_rate(optimizer, epoch, lr_update_freq):
if not epoch % lr_update_freq and epoch:
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr'] /2#* 0.1
return optimizer
if __name__ == '__main__':
main()