Skip to content

Latest commit

 

History

History
381 lines (287 loc) · 14 KB

README.md

File metadata and controls

381 lines (287 loc) · 14 KB

FastCaloSim GPU Project

Table of contents

Introduction

This repository contains the source code for the standalone version of the ATLAS experiment's Liquid Argon Calorimeter parametrized simulation. The original code was written in C++ for CPUs as part of the ATLAS simulation software. A minimal form was extracted from the ATLAS repository to enable rapid development in a standalone environment without the multitude of ATLAS dependencies. This code was then rewritten to run on GPUs using CUDA as reported here

In order to study various portability layers to enable execution on different GPU architectures, the code has also been ported to Kokkos, HIP, SYCL, alpaka and std::par. Build instructions for these various technologies are listed below.

FastCaloSim has the following dependencies:

  • cmake (3.18 or higher)
  • C++ compiler that is compatible with C++17. Recent versions of gcc, icpx and hipcc are recommended
  • ROOT. A recent version is recommended, with newer versions of the C++ compiler necessitating newer versions of ROOT

Build instructions for cori.nersc.gov are shown below as an example. These should be easily replicable on any modern system with the appropriate backends and hardware installed.

The CUDA, Kokkos, alpaka and std::par versions can all be built from the same branch of the repository (main). The SYCL version is in the sycl branch, and the HIP version is in hip. The following build instructions assume that the repository has been cloned into the directory named src and the input data in $FCS_INPUTS.

Two different versions of the code have been developed. One simulates particle interactions one at a time, the other groups a number of particles together before offloading the work to the GPU to increase the GPU's workload. The latter is referred to as the "group simulation".

After the project has been built, source the setup.sh script in the build directory. To see all available options of the executable do

> runTFCSSimulation -h

A normal run will resemble

> runTFCSSimulation --earlyReturn --energy 65536

Build Instructions for Different Backends

First setup cmake and ROOT. If ROOT is installed in $ROOT_PATH, ensure that your $LD_LIBRARY_PATH includes $ROOT_PATH/lib and $CMAKE_PREFIX_PATH includes $ROOT_PATH.

Input data

The simulation requires input data and parametrization files. The base directory of these files can be specified either via the runtime parameter --dataDir=DIR or by setting the environment variable FCS_DATAPATH.

Original CPU code

cmake ../src/FastCaloSimAnalyzer \
-DENABLE_XROOTD=Off -DCMAKE_CXX_STANDARD=17 -DCMAKE_CXX_EXTENSIONS=Off \
-DENABLE_GPU=off

CUDA

Checkout from branch main. For group simulation use branch group_sim_combined. Build the project for an NVIDIA A100:

cmake ../src/FastCaloSimAnalyzer \
-DENABLE_XROOTD=Off -DCMAKE_CXX_STANDARD=17 -DCMAKE_CXX_EXTENSIONS=Off \
-DENABLE_GPU=on -DCMAKE_CUDA_ARCHITECTURES=80

Kokkos

Kokkos must be built with -DBUILD_SHARED_LIBS=On.

For the CUDA backend, also use -DKokkos_ENABLE_CUDA_RELOCATABLE_DEVICE_CODE=Off -DKokkos_ENABLE_CUDA_LAMBDA=On.

Checkout from branch main. For group simulation use branch group_sim_combined. Build the project with

cmake ../src/FastCaloSimAnalyzer \
-DENABLE_XROOTD=Off -DCMAKE_CXX_STANDARD=17 -DCMAKE_CXX_EXTENSIONS=Off \
-DCMAKE_CXX_COMPILER=nvcc_wrapper \
-DENABLE_GPU=on -DUSE_KOKKOS=ON

Other Kokkos backends

Other hardware backend architectures are also supported. FastCaloSim has been tested with the following Kokkos architectures:

  • CUDA
  • HIP
  • SYCL
  • pThreads
  • OpenMP
  • Serial

you will need to adjust the value of the cmake option -DCMAKE_CXX_COMPILER= or the environment variable $CXX accordingly.

SYCL

In order to run with SYCL, the sycl branch of repository should be used. If the GPU does not support double precision types, such as the Intel A770 GPU, use the sycl_A770 branch. It is recommended that ROOT be built with the same compiler that is used to build FastCaloSim, be it icpx or clang.

Checkout from branch sycl. Build the project with

cmake ../src/FastCaloSimAnalyzer \
-DENABLE_XROOTD=Off -DCMAKE_CXX_STANDARD=17 -DCMAKE_CXX_EXTENSIONS=Off \
-DENABLE_SYCL=ON -DSYCL_TARGET_GPU=ON

SYCL has been tested using the icpx (oneAPI) compiler on Intel GPUs, and llvm on NVIDIA and AMD GPUs.

std::par

Checkout from branch main. For group simulation use branch group_sim_combined. Build the project with

cmake ../src/FastCaloSimAnalyzer \
-DENABLE_XROOTD=Off -DCMAKE_CXX_STANDARD=17 -DCMAKE_CXX_EXTENSIONS=Off \
-DCMAKE_CXX_COMPILER=$PWD/../src/scripts/nvc++_p \
-DENABLE_GPU=on -DUSE_STDPAR=ON -DSTDPAR_TARGET=gpu -DCMAKE_CUDA_ARCHITECTURES=80

Use cmake flag -DUSE_STDPAR=On.

In order to compile for std::par, nvc++ from the nvidia nvhpc package must be chosen for the CXX compiler. However ROOT still cannot build with nvc++, so part of FastCaloSim must be built with g++. Also, nvc++ is not well supported in cmake, and a number of compiler flags must be removed from the command line for it to work. A wrapper script is provided in scripts/nvc++p which chooses the correct compiler for the various parts of FastCaloSim, and filters out the problematic compiler flags for nvc++. Either set the CXX environment variable to point to this, or explicitly set it during cmake configuration with -DCMAKE_CXX_COMPILER=$PWD/../src/scripts/nvc++_p. You may need to edit the script to pickup the correct localrc configuration file for nvc++. These can be generated with makelocalrc from the nvhpc package.

To see exactly what the wrapper script is doing, set the env var NVCPP_VERBOSE=1.

There are 3 backends for std::par: gpu, multicore, and serial cpu. These are normally triggered by the nvc++ flags -stdpar=gpu, -stdpar=multicore and -nostdpar. Select the desired backend with the cmake flags -DSTDPAR_TARGET=XXX where XXX is one of gpu, mutlicore or cpu. If cpu is selected, the random numbers must be generated on the cpu with -DRNDGEN_CPU=On

When profiling using nsys, make sure to pick it up from the nvhpc package, and not directly from cuda.

When using the multicore backend, it is currently recommended to set the environment variables NV_NOSWITCHERROR=1.

HIP

Checkout from branch main. For group simulation use branch group_sim_combined. Build the project with

cmake ../src/FastCaloSimAnalyzer \
-DENABLE_GPU=on -DUSE_HIP=on -DCMAKE_CXX_COMPILER=hipcc \
-DCMAKE_CXX_STANDARD=17 -DCMAKE_CXX_EXTENSIONS=Off 

BNL CSI lambda2: HIP for AMD

module use /work/software/modulefiles
module load rocmmod4.5.0
source /work/atif/packages/root-6.24-gcc-9.3.0/bin/thisroot.sh
export FCS_DATAPATH=/work/atif/FastCaloSimInputs/
/work/atif/packages/cmake-3.25.0-linux-x86_64/bin/cmake ../FastCaloSimAnalyzer \
 -DENABLE_XROOTD=Off -DCMAKE_C_COMPILER=gcc -DCMAKE_CXX_COMPILER=hipcc \
 -DCMAKE_CXX_STANDARD=14 -DCMAKE_CXX_EXTENSIONS=Off -DENABLE_GPU=on \
 -DUSE_HIP=on -DHIP_TARGET=AMD -DCMAKE_CXX_FLAGS="-I/opt/rocm/hip/include/hip/"

Perlmutter: HIP for Nvidia

For Nvidia backend with HIP select HIP_PLATFORM=nvidia, HIP_COMPILER=nvcc, HIP_RUNTIME=cuda and use hipcc_nvidia compiler script

export HIP_PLATFORM=nvidia
export HIP_COMPILER=nvcc
export HIP_RUNTIME=cuda
module load hip
export ROCM_PATH=/global/common/software/nersc/pe/rocm/5.5.1
export FCS_DATAPATH=/pscratch/sd/a/atif/FastCaloSimInputs
source /global/homes/a/atif/packages/root_install/bin/thisroot.sh
cmake ../FastCaloSimAnalyzer/ -DENABLE_XROOTD=Off -DCMAKE_C_COMPILER=gcc -DCMAKE_CXX_COMPILER=/global/homes/a/atif/FCS-GPU/scripts/hipcc_nvidia -DCMAKE_CXX_STANDARD=17 -DCMAKE_CXX_EXTENSIONS=Off -DENABLE_GPU=on -DUSE_HIP=on -DHIP_TARGET=NVIDIA -DCMAKE_LIBRARY_PATH="/opt/nvidia/hpc_sdk/Linux_x86_64/22.7/math_libs/11.7/lib64/;/global/common/software/nersc/pe/rocm/5.5.1/hip/include/hip/" -DRNDGEN_CPU=on

alpaka

The alpaka version of FastCaloSim has been tested with two backends: CUDA and HIP. For the former backend alpaka should be configured with -Dalpaka_ACC_GPU_CUDA_ENABLE=ON, while for the latter one should use -Dalpaka_ACC_GPU_HIP_ENABLE=ON. For more information about CMake arguments used by alpaka see this documentation.

For building the alpaka version of FastCaloSim checkout from branch dev/stdpar, for group simulation use branch group_sim_combined.

For CUDA backend build the project with:

cmake ../src/FastCaloSimAnalyzer -DENABLE_XROOTD=off -DENABLE_GPU=on \
  -DCMAKE_CXX_STANDARD=17 -DCMAKE_CUDA_ARCHITECTURES=N -DUSE_ALPAKA=on -Dalpaka_ROOT=<path_to_alpaka_installation> \
  -Dalpaka_ACC_GPU_CUDA_ENABLE=ON -Dalpaka_ACC_GPU_CUDA_ONLY_MODE=ON

For HIP backend build the project with:

export CXX=hipcc 
cmake ../src/FastCaloSimAnalyzer -DENABLE_XROOTD=off -DENABLE_GPU=on \
  -DCMAKE_CXX_STANDARD=17 -DUSE_ALPAKA=on -Dalpaka_ROOT=<path_to_alpaka_installation> \
  -Dalpaka_ACC_GPU_HIP_ENABLE=ON -Dalpaka_ACC_GPU_HIP_ONLY_MODE=ON

OpenMP

To enable OpenMP Target Offloading with Clang-15.0.0 and above, appropriate hardware info such as --offload-arch=sm_xy for NVIDIA and --offload-arch=gfx90x should be edited in CMAKE_CXX_FLAGS in FastCaloGpu/src/CMakeLists.txt.

Checkout from branch openmp. For group simulation use branch group_openmp. For alpha/lambda machines at CSI,BNL load the modules

module use /work/software/modulefiles
module load llvm-openmp-dev
source /work/atif/packages/root-6.24-gcc-9.3.0/bin/thisroot.sh
export FCS_DATAPATH=/work/atif/FastCaloSimInputs/
export OMP_TARGET_OFFLOAD=mandatory (mandatory | disabled)
/work/atif/packages/cmake-3.25.0-linux-x86_64/bin/cmake ../FastCaloSimAnalyzer -DENABLE_XROOTD=off -DENABLE_GPU=on -DRNDGEN_CPU=off -DENABLE_OMPGPU=on -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_CXX_STANDARD=14 -DCMAKE_CUDA_ARCHITECTURES=86 -DCUDAToolkit_ROOT=/usr/local/cuda/ -DCMAKE_CXX_FLAGS="-I/usr/local/cuda/include" -DCMAKE_CUDA_COMPILER=/usr/local/cuda/bin/nvcc
./x86_64-ubuntu2004-clang150-opt/bin/runTFCSSimulation --energy=1048576 > cpu_1048576.log
./x86_64-ubuntu2004-clang150-opt/bin/runTFCSSimulation --energy=2097152 > cpu_2097152.log
./x86_64-ubuntu2004-clang150-opt/bin/runTFCSSimulation --energy=4194304 > cpu_4194304.log

Build Instructions for Cori

Building ROOT

ROOT v 6.14.08 (from tag) has been built with gcc8.3 and c++14 and installed in /global/cfs/cdirs/atlas/leggett/root/v6-14-08_gcc83_c14

While FastCaloSim can be built with c++17 support, nvcc (for CUDA) can only handle c++14

ROOT was built with
module load gcc/8.3.0
module load cmake/3.14.4

export CC=`which gcc`
export CXX=`which g++`

cmake -Dcxx=14 -Dcxx14=ON ../src
make -j30 VERBOSE=1 >& make.log

an example script is here

Building FastCaloSim

(code checked out in directory "src")

module load cuda
module load gcc/8.3.0
module load cmake/3.14.4

export ROOTDIR=/global/cfs/cdirs/atlas/leggett/root/v6-14-08_gcc83
export CMAKE_PREFIX_PATH=$ROOTDIR
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ROOTDIR/lib
export PATH=$PATH:$ROOTDIR/bin

export CC=`which gcc`
export CXX=`which g++`

mkdir build
cd build
cmake ../src/FastCaloSimAnalyzer -DENABLE_XROOTD=off -DENABLE_GPU=on -DCMAKE_CXX_STANDARD=14
make -j 30 VERBOSE=1 >& make.log

to disable GPU, set option -DENABLE_GPU=off

To run on GPU nodes

source $BUILD_DIR/x86_64-linux15-gcc8-opt/setup.sh

module load esslurm
salloc -N 1 -t 30 -c 80 --gres=gpu:8 --exclusive -C gpu -A m1759
srun -N1 -n1 runTFCSSimulation --dataDir=/global/cfs/cdirs/atlas/leggett/data/FastCaloSimInputs

Kokkos

If Kokkos with a CUDA backend is already installed, ensure that the environment variables KOKKOS_ROOT points to the install area, and that nvcc_wrapper is in your PATH. Otherwise:

Install Kokkos With CUDA backend

Checkout Kokkos from [email protected]:kokkos/kokkos.git into $KOKKOS_SRC

Set the env var KOKKOS_INSTALL_DIR to an appropriate value. CPU and GPU architectures must be chosen. See here. For example, on a Haswell CPU and V100 GPU:

Build with

cmake ../src \
-DCMAKE_INSTALL_PREFIX=${KOKKOS_INSTALL_DIR} \
-DKokkos_ARCH_HSW=${CPU_ARCH} \
-DBUILD_SHARED_LIBS=On -DKokkos_ENABLE_CUDA_RELOCATABLE_DEVICE_CODE=Off \
-DKokkos_ENABLE_CUDA=On -DKokkos_ARCH_VOLTA72=On -DKokkos_ENABLE_CUDA_LAMBDA=On \
-DKokkos_ENABLE_SERIAL=On \
-DKokkos_CXX_STANDARD=14 \
-DCMAKE_CXX_COMPILER=${KOKKOS_SRC}/bin/nvcc_wrapper

make
make install

An example script to build and install Kokkos is here

Build FastCaloSim with CUDA enabled Kokkos

To build with Kokkos instead of plain nvcc, make sure you have the Kokkos environment loaded, and that $CXX points to nvcc_wrapper from Kokkos.

Then add -DUSE_KOKKOS=on to the FastCaloSim cmake configuration

Validation

Random Numbers

Random numbers are by default generated on the GPU if -DENABLE_GPU=On is set during configuration. Alternatively, to help comparison between CPU and GPU codes, the random numbers can be generated on the CPU and transferred to the GPU. This is enabled by setting the cmake configuration parameter -DRNDGEN_CPU=On.

Checking Output

The number of hit cells and counts can be displayed by setting the environment variable FCS_DUMP_HITCOUNT=1 at run time. This will result in an output like:

 HitCellCount:  12 /  12   nhit:   55   
 HitCellCount:  48 /  60   nhit: 1220  *
 HitCellCount:  76 / 136   nhit: 4944  *
 HitCellCount:   6 / 142   nhit:   10   
 HitCellCount:   1 / 143   nhit:    1

Lines marked with an asterisk were executed on the GPU.

Formatting

The FastCaloSimAnalyzer code has been formatted with:

find FastCaloSimAnalyzer -type f -iname \*.h -o -iname \*.cpp -o -iname \*.cxx -o -iname \*.cu | xargs clang-format-9 -i -style=file