============
- 161차 시작 위치
- start_kernel 1 ~/init/main.c
- rest_init 968 ~/init/main.c
- kernel_thread 453 ~/init/main.c
- do_fork 2067 ~/kernel/fork.c
- copy_process 2020 ~/kernel/fork.c
- sched_fork 1734 ~/kernel/fork.c
- call: start_kernel()
- lockdep_init()
- smp_setup_processor_id()
- debug_objects_early_init()
- boot_init_stack_canary()
- cgroup_init_early()
- local_irq_disable()
- boot_cpu_init()
- page_address_init()
- pr_notice()
- setup_arch()
- mm_init_owner()
- mm_init_cpumask()
- setup_command_line
- build_all_zonelists()
- page_alloc_init()
- pr_notice()
- parse_early_param()
- parse_args()
- jump_label_init()
- setup_log_buf()
- pidhash_init()
- vfs_caches_init_early()
- sort_main_extable()
- trap_init()
- mm_init()
- sched_init()
- preempt_disable()
- irqs_disabled()
- local_irq_disabled()
- idr_init_cache()
- rcu_init()
- tick_nohz_init()
- contect_tracking_init()
- radix_tree_init()
- early_irq_init()
- init_IRQ()
- tick_init()
- init_timers()
- hrtimers_init()
- softirq_init()
- timekeeping_init()
- time_init()
- sched_clock_postinit()
- pref_event_init()
- profile_init()
- call_function_init()
- irqs_disabled()
- local_irq_enabled()
- kmem_cache_init_late()
- console_init()
- lockdep_init()
- lockdep_info()
- locking_selftest()
- virt_to_page()
- page_to_pfn()
- page_cgroup_init()
- debug_objects_mem_init()
- kmemleak_init()
- setup_per_cpu_pageset()
- numa_policy_init()
- sched_clock_init()
- calibrate_delay()
- pidmap_init()
- anon_vma_init()
- thread_info_cache_init()
- cred_init()
- fork_init()
- proc_caches_init()
- buffer_init()
- key_init()
- security_init()
- dbg_late_init()
- vfs_caches_init()
- signals_init()
- page_writeback_init()
- proc_root_init()
- cgroup_init()
- cpuset_init()
- taskstats_init_early()
- delayacct_init()
- check_bugs()
- acpi_early_init()
- sfi_init_late()
- efi_enabled(EFI_RUNTIME_SERVICES)
- ftrace_init()
- rest_init()
- call: rest_init()
- rcu_scheduler_starting()
- kernel_thread()
- call: kernel_thread()
- do_fork()
- call: do_fork()
- copy_process()
- call: copy_process()
- security_task_create()
- dup_task_struct()
- ftrace_graph_init_task(p); // null function
- get_seccomp_filter(p); // null function
- rt_mutex_init_task(p);
- copy_creds(p, clone_flags);
- try_module_get()
- delayacct_tsk_init(p)
- copy_flags()
- INIT_LIST_HEAD(&p->children);
- INIT_LIST_HEAD(&p->sibling);
- rcu_copy_process(p);
- spin_lock_init(&p->alloc_lock);
- init_sigpending(&p->pending);
- memset(&p->rss_stat, 0, sizeof(p->rss_stat));
- task_io_accounting_init(&p->ioac); // null function
- acct_clear_integrals(p); // null function
- posix_cpu_timers_init(p);
- do_posix_clock_monotonic_gettime(&p->start_time);
- monotonic_to_bootbased(&p->real_start_time);
- cgroup_fork(p);
- sched_fork(clone_flags, p);
- call: sched_fork(clone_flags, p);
- get_cpu();
- __sched_fork(clone_flags, p);
- rt_prio(p->prio)
- call: start_kernel()
- lockdep_init()
- smp_setup_processor_id()
- debug_objects_early_init()
- boot_init_stack_canary()
- cgroup_init_early()
- local_irq_disable()
- boot_cpu_init()
- page_address_init()
- pr_notice()
- setup_arch()
- mm_init_owner()
- mm_init_cpumask()
- setup_command_line
- build_all_zonelists()
- page_alloc_init()
- pr_notice()
- parse_early_param()
- parse_args()
- jump_label_init()
- setup_log_buf()
- pidhash_init()
- vfs_caches_init_early()
- sort_main_extable()
- trap_init()
- mm_init()
- sched_init()
- preempt_disable()
- irqs_disabled()
- local_irq_disabled()
- idr_init_cache()
- rcu_init()
- tick_nohz_init()
- contect_tracking_init()
- radix_tree_init()
- early_irq_init()
- init_IRQ()
- tick_init()
- init_timers()
- hrtimers_init()
- softirq_init()
- timekeeping_init()
- time_init()
- sched_clock_postinit()
- pref_event_init()
- profile_init()
- call_function_init()
- irqs_disabled()
- local_irq_enabled()
- kmem_cache_init_late()
- console_init()
- lockdep_init()
- lockdep_info()
- locking_selftest()
- virt_to_page()
- page_to_pfn()
- page_cgroup_init()
- debug_objects_mem_init()
- kmemleak_init()
- setup_per_cpu_pageset()
- numa_policy_init()
- sched_clock_init()
- calibrate_delay()
- pidmap_init()
- anon_vma_init()
- thread_info_cache_init()
- cred_init()
- fork_init()
- proc_caches_init()
- buffer_init()
- key_init()
- security_init()
- dbg_late_init()
- vfs_caches_init()
- signals_init()
- page_writeback_init()
- proc_root_init()
- cgroup_init()
- cpuset_init()
- taskstats_init_early()
- delayacct_init()
- check_bugs()
- acpi_early_init()
- sfi_init_late()
- efi_enabled()
- efi_late_init()
- efi_free_boot_services()
- ftrace_init()
- rest_init()
// ARM10C 20130824
asmlinkage void __init start_kernel(void)
{
char * command_line;
extern const struct kernel_param __start___param[], __stop___param[];
// ATAG,DTB 정보로 사용
/*
* Need to run as early as possible, to initialize the
* lockdep hash:
*/
lockdep_init();
smp_setup_processor_id();
debug_objects_early_init();
/*
* Set up the the initial canary ASAP:
*/
boot_init_stack_canary();
cgroup_init_early();
// cgroup 를 사용하기 위한 cgroup_dummy_root, cgroup_subsys 의 구조체 초기화 수행
local_irq_disable();
// IRQ를 disable 함
early_boot_irqs_disabled = true;
// early_boot_irqs_disabled: true
/*
* Interrupts are still disabled. Do necessary setups, then
* enable them
*/
boot_cpu_init();
// 현재 cpu(core id)를 얻어서 cpu_XXX_bits[] 의 cpu를 셋한다.
page_address_init();
// 128개의 page_address_htable 배열을 초기화
pr_notice("%s", linux_banner);
// 배너:
// Linux version 2.6.37_DM385_IPNC_3.50.00
// (a0875405@bangvideoapps01) (gcc version 4.5.3 20110311
// (prerelease) (GCC) ) #1 Fri Dec 21 17:27:08 IST 2012
setup_arch(&command_line);
mm_init_owner(&init_mm, &init_task); // null function
mm_init_cpumask(&init_mm); // null function
// command_line: exynos5420-smdk5420.dts 파일의 chosen node 의 bootarg 값
// "console=ttySAC2,115200 init=/linuxrc"
setup_command_line(command_line);
// saved_command_line 및 static_command_line 할당
setup_nr_cpu_ids();
setup_per_cpu_areas();
// pcpu 구조체를 만들어 줌 (mm/percpu.c)
smp_prepare_boot_cpu(); /* arch-specific boot-cpu hooks */
// boot cpu 0의 pcpu 영역의 base주소를 core register에 설정해줌
build_all_zonelists(NULL, NULL);
page_alloc_init();
// cpu_chain에 page_alloc_cpu_notify를 연결함 (mutex lock/unlock 사용)
// boot_command_line: "console=ttySAC2,115200 init=/linuxrc"
pr_notice("Kernel command line: %s\n", boot_command_line);
// "Kernel command line: console=ttySAC2,115200 init=/linuxrc"
parse_early_param();
// setup_arch에서 수행했던 작업 다시 수행
// command arg에서 각 요소들을 파싱하여 early init section으로 설정된 디바이스 초기화.
// 우리는 serial device가 검색이 되지만 config설정은 없어서 아무것도 안함.
// static_command_line: "console=ttySAC2,115200 init=/linuxrc"
parse_args("Booting kernel", static_command_line, __start___param,
__stop___param - __start___param,
-1, -1, &unknown_bootoption);
// DTB에서 넘어온 bootargs를 파싱하여 param, val을 뽑아내고 그에 대응되는
// kernel_param 구조체에 값을 등록함.
jump_label_init();
// HAVE_JUMP_LABEL 이 undefined 이므로 NULL 함수
/*
* These use large bootmem allocations and must precede
* kmem_cache_init()
*/
setup_log_buf(0);
// defalut log_buf의 크기는 __LOG_BUF_LEN: 0x20000 (128KB) 임
// early_param 에서 호출했던 log_buf_len 값이 있다면 log_buf의 크기를 넘어온 크기로 만듬
pidhash_init();
// pidhash의 크기를 16kB만큼 할당 받고 4096개의 hash list를 만듬
vfs_caches_init_early();
// Dentry cache, Inode-cache용 hash를 위한 메모리 공간을 각각 512kB, 256kB만큼 할당 받고,
// 131072, 65536개 만큼 hash table을 각각 만듬
sort_main_extable();
// extable 을 cmp_ex를 이용하여 sort수행
trap_init(); // null function
mm_init();
// buddy와 slab 을 활성화 하고 기존 할당 받은 bootmem 은 buddy,
// pcpu 메모리, vmlist 는 slab으로 이관
/*
* Set up the scheduler prior starting any interrupts (such as the
* timer interrupt). Full topology setup happens at smp_init()
* time - but meanwhile we still have a functioning scheduler.
*/
sched_init();
// scheduler가 사용하는 자료 구조 초기화, idle_threads를 init_task로 세팅
/*
* Disable preemption - early bootup scheduling is extremely
* fragile until we cpu_idle() for the first time.
*/
preempt_disable();
// preempt count를 증가시켜 preemption 못하도록 막음
// irqs_disabled(): 1
if (WARN(!irqs_disabled(), "Interrupts were enabled *very* early, fixing it\n"))
local_irq_disable();
idr_init_cache();
// integer ID management로 사용하는 idr_layer_cache에 kmem_cache#21 을 생성 및 초기화 후 할당
rcu_init();
// rcu 자료구조 bh, sched, preempt 를 각각 초기화 수행함
tick_nohz_init(); // null function
context_tracking_init(); // null function
radix_tree_init();
// radix tree로 사용하는 radix_tree_node_cachep에 kmem_cache#20을 생성 및 초기화 후 할당하고
// height_to_maxindex을 초기화 수행
/* init some links before init_ISA_irqs() */
early_irq_init();
// irq_desc 0 ~ 15 까지의 object을 할당 받고 초기화를 수행
// allocated_irqs에 bit를 1로 세팅하고 radix tree에 각 irq_desc를 노트로 추가
init_IRQ();
// gic, combiner이 사용할 메모리 할당과 자료 구조 설정,
// gic irq (0~15), combiner irq (32~63) interrupt 를 enable 시킴
tick_init();
// tick 관련 mask 변수를 0으로 초기화 수행
init_timers();
// boot_tvec_bases의 맴버 값을 초기화하고 timers_nb를 cpu_notifier 에 등록,
// softirq_vec[1] 에 run_timer_softirq 등록하여 초기화 수행
hrtimers_init();
// hrtimer_bases의 맴버 값을 초기화하고 hrtimers_nb를 cpu_notifier 에 등록,
// softirq_vec[8] 에 run_hrtimer_softirq 등록하여 초기화 수행
softirq_init();
// tasklet_vec, tasklet_hi_vec 맴버 값을 초기화하고,
// softirq_vec[6]에 tasklet_action, softirq_vec[0]에 tasklet_hi_action 등록하여 초기화 수행
timekeeping_init();
// ntp 관련 전역변수 초기화, timekeeper, shadow_timekeeper의 맴버값 초기화 수행
time_init();
// timer 를 사용하기 위한 clk source, clk_table 메모리 할당 및 초기화,
// timer event를 위한 timer irq (MCT) 초기화 수행
sched_clock_postinit();
// sched_clock_timer을 초기화 수행
perf_event_init(); // null function
profile_init(); // null function
call_function_init();
// 각 cpu core에서 사용할 call_single_queue를 맴버값 초기화
// cfd_data 맴버값을 초기화하고 pcp에서 사용할 메모리 공간 할당
// cpu_chain에 hotplug_cfd_notifier 를 등록함
// irqs_disabled(): 1
WARN(!irqs_disabled(), "Interrupts were enabled early\n");
// early_boot_irqs_disabled: true
early_boot_irqs_disabled = false;
// early_boot_irqs_disabled: false
local_irq_enable();
// IRQ를 enable 함
kmem_cache_init_late(); // null function
/*
* HACK ALERT! This is early. We're enabling the console before
* we've done PCI setups etc, and console_init() must be aware of
* this. But we do want output early, in case something goes wrong.
*/
console_init();
// panic_later: NULL
if (panic_later)
panic(panic_later, panic_param);
lockdep_info(); // null function
/*
* Need to run this when irqs are enabled, because it wants
* to self-test [hard/soft]-irqs on/off lock inversion bugs
* too:
*/
locking_selftest(); // null function
#ifdef CONFIG_BLK_DEV_INITRD // CONFIG_BLK_DEV_INITRD=y
// initrd_start: NULL, initrd_below_start_ok: 0
if (initrd_start && !initrd_below_start_ok &&
page_to_pfn(virt_to_page((void *)initrd_start)) < min_low_pfn) {
pr_crit("initrd overwritten (0x%08lx < 0x%08lx) - disabling it.\n",
page_to_pfn(virt_to_page((void *)initrd_start)),
min_low_pfn);
initrd_start = 0;
}
#endif
page_cgroup_init(); // null function
debug_objects_mem_init(); // null function
kmemleak_init(); // null function
setup_per_cpu_pageset();
// per cpu가 사용하는 pageset의 각각의 zone 맴버값 초기화 수행
numa_policy_init(); // null function
// late_time_init: NULL
if (late_time_init)
late_time_init();
sched_clock_init();
// sched_clock_running 값을 1 로 초기화 수행
calibrate_delay();
// BogoMIPS값을 결정하기위한 계산을 수행하고 결과를 출력함
pidmap_init();
// pidmap 을 사용하기 위한 초기화 수행
anon_vma_init();
// anon vma 를 사용하기 위한 kmem_cache 할당자 초기화 수행
#ifdef CONFIG_X86 // CONFIG_X86=n
if (efi_enabled(EFI_RUNTIME_SERVICES))
efi_enter_virtual_mode();
#endif
thread_info_cache_init(); // null function
cred_init();
// credentials 를 사용하기 위한 kmem_cache 할당자 초기화 수행
// totalram_pages: 총 free된 page 수
fork_init(totalram_pages);
// task_struct 를 사용하기 위한 kmem_cache 할당자 초기화 수행
// max_threads값을 계산하여 init_task에 threads값의 limit 값 설정함
proc_caches_init();
// sighand_struct, signal_struct, files_struct, fs_struct, mm_struct, vm_area_struct, nsproxy
// 를 사용하기 위한 kmem_cache 할당자 및 percpu list 초기화 수행
buffer_init();
// buffer_head 를 사용하기 위한 kmem_cache 할당자 및 max_buffer_heads 값 초기화 수행
key_init(); // null funtion
security_init(); // null funtion
dbg_late_init(); // null funtion
// totalram_pages: 총 free된 page 수
vfs_caches_init(totalram_pages);
// virtual file system을 위한 names, dentry, inode, filp, mount cache 생성 후
// file system 을 위한 초기화 수행 및 mount 수행, block, char dev 사용을 위한 초기화 수행
signals_init();
// signal을 사용하기 위한 kmem_cache 를 생성
/* rootfs populating might need page-writeback */
page_writeback_init();
// page writeback을 위한 global_dirty_limit, ratelimit_pages 값을 초기화 수행
#ifdef CONFIG_PROC_FS // CONFIG_PROC_FS=y
proc_root_init();
// proc filesystem을 등록 하고 proc을 사용하기 위한 dentry, inode 생성 후
// sysctl_base_table 에 등록된 kernel, vm, fs, debug, dev의 dir, files 를 recursive 하게 RB Tree 를 구성함
#endif
cgroup_init();
// cgroup에서 사용하는 sub system 인 debug_subsys, cpu_cgroup_subsys, cpuacct_subsys, freezer_subsys 를 등록 하고
// init_css_set.subsys 를 이용하여 hash key 값 생성, cgroup 을 위한 kobject 를 생성, cgroup용 fils system type을 추가 하여
// filesystem 에 등록함, cgroup 을 위한 proc 생성.
cpuset_init(); // null function
taskstats_init_early(); // null function
delayacct_init(); // null function
check_bugs();
// page 2개를 할당 받고 할당 받은 메모리에값을 쓰고 비교하여
// 메모리 동작을 테스트 수행한 이후 다시 메모리를 반환함
acpi_early_init(); /* before LAPIC and SMP init */ // null function
sfi_init_late(); // null function
// efi_enabled(EFI_RUNTIME_SERVICES): 1
if (efi_enabled(EFI_RUNTIME_SERVICES)) {
efi_late_init(); // null function
efi_free_boot_services(); // null function
}
ftrace_init(); // null function
/* Do the rest non-__init'ed, we're now alive */
rest_init();
}
- start_kernel()
- rest_init()
- call: rest_init()
// ARM10C 20160827
static noinline void __init_refok rest_init(void)
{
int pid;
rcu_scheduler_starting(); // null function
/*
* We need to spawn init first so that it obtains pid 1, however
* the init task will end up wanting to create kthreads, which, if
* we schedule it before we create kthreadd, will OOPS.
*/
// CLONE_FS: 0x00000200, CLONE_SIGHAND: 0x00000800
kernel_thread(kernel_init, NULL, CLONE_FS | CLONE_SIGHAND);
- start_kernel()
- rest_init()
- call: rest_init()
- rcu_scheduler_starting()
- kernel_thread()
// ARM10C 20160827
// kernel_init, NULL, 0x00000A00
pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
{
// flags: 0x00000A00, CLONE_VM: 0x00000100, CLONE_UNTRACED: 0x00800000,
// fn: kernel_init, arg: NULL
return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
(unsigned long)arg, NULL, NULL);
}
- start_kernel()
- rest_init()
- call: rest_init()
- rcu_scheduler_starring()
- kernel_thread()
- call: kernel_thread()
- do_fork()
- call: do_fork()
// ARM10C 20160827
// flags: 0x00800B00, fn: kernel_init, arg: NULL, NULL, NULL
long do_fork(unsigned long clone_flags,
unsigned long stack_start,
unsigned long stack_size,
int __user *parent_tidptr,
int __user *child_tidptr)
{
struct task_struct *p;
int trace = 0;
// trace: 0
long nr;
/*
* Determine whether and which event to report to ptracer. When
* called from kernel_thread or CLONE_UNTRACED is explicitly
* requested, no event is reported; otherwise, report if the event
* for the type of forking is enabled.
*/
// clone_flags: 0x00800B00, CLONE_UNTRACED: 0x00800000
if (!(clone_flags & CLONE_UNTRACED)) {
if (clone_flags & CLONE_VFORK)
trace = PTRACE_EVENT_VFORK;
else if ((clone_flags & CSIGNAL) != SIGCHLD)
trace = PTRACE_EVENT_CLONE;
else
trace = PTRACE_EVENT_FORK;
if (likely(!ptrace_event_enabled(current, trace)))
trace = 0;
}
// clone_flags: 0x00800B00, stack_start: kernel_init, stack_size: 0, child_tidptr: 0, trace: 0
p = copy_process(clone_flags, stack_start, stack_size,
child_tidptr, NULL, trace);
- start_kernel()
- rest_init()
- call: rest_init()
- rcu_scheduler_starring()
- kernel_thread()
- call: kernel_thread()
- do_fork()
- call: do_fork()
- copy_process()
- call: copy_process()
// ARM10C 20160827
// clone_flags: 0x00800B00, stack_start: kernel_init, stack_size: 0, child_tidptr: 0, NULL, trace: 0
static struct task_struct *copy_process(unsigned long clone_flags,
unsigned long stack_start,
unsigned long stack_size,
int __user *child_tidptr,
struct pid *pid,
int trace)
{
int retval;
struct task_struct *p;
// clone_flags: 0x00800B00, CLONE_NEWNS: 0x00020000, CLONE_FS: 0x00000200
if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
return ERR_PTR(-EINVAL);
// clone_flags: 0x00800B00, CLONE_NEWUSER: 0x10000000, CLONE_FS: 0x00000200
if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
return ERR_PTR(-EINVAL);
/*
* Thread groups must share signals as well, and detached threads
* can only be started up within the thread group.
*/
// clone_flags: 0x00800B00, CLONE_THREAD: 0x00010000, CLONE_SIGHAND: 0x00000800
if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
return ERR_PTR(-EINVAL);
/*
* Shared signal handlers imply shared VM. By way of the above,
* thread groups also imply shared VM. Blocking this case allows
* for various simplifications in other code.
*/
// clone_flags: 0x00800B00, CLONE_SIGHAND: 0x00000800, CLONE_VM: 0x00000100
if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
return ERR_PTR(-EINVAL);
// 2016/08/27 종료
// 2016/09/03 시작
/*
* Siblings of global init remain as zombies on exit since they are
* not reaped by their parent (swapper). To solve this and to avoid
* multi-rooted process trees, prevent global and container-inits
* from creating siblings.
*/
// clone_flags: 0x00800B00, CLONE_PARENT: 0x00008000, SIGNAL_UNKILLABLE: 0x00000040
// current: &init_task, current->signal: &init_signals
// current->signal->flags: (&init_signals)->flags: 0
if ((clone_flags & CLONE_PARENT) &&
current->signal->flags & SIGNAL_UNKILLABLE)
return ERR_PTR(-EINVAL);
/*
* If the new process will be in a different pid or user namespace
* do not allow it to share a thread group or signal handlers or
* parent with the forking task.
*/
// clone_flags: 0x00800B00, CLONE_SIGHAND: 0x00000800
if (clone_flags & CLONE_SIGHAND) {
// clone_flags: 0x00800B00, CLONE_NEWUSER: 0x10000000, CLONE_NEWPID: 0x20000000
// current: &init_task, task_active_pid_ns(&init_task): &init_pid_ns,
// current->nsproxy: (&init_task)->nsproxy: &init_nsproxy,
// current->nsproxy->pid_ns_for_children: (&init_nsproxy)->pid_ns_for_children: &init_pid_ns
if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
(task_active_pid_ns(current) !=
current->nsproxy->pid_ns_for_children))
return ERR_PTR(-EINVAL);
}
// clone_flags: 0x00800B00, security_task_create(0x00800B00): 0
retval = security_task_create(clone_flags);
// retval: 0
// retval: 0
if (retval)
goto fork_out;
// ENOMEM: 12
retval = -ENOMEM;
// retval: -12
// current: &init_task
// dup_task_struct(&init_task): kmem_cache#15-oX (struct task_struct)
p = dup_task_struct(current);
// p: kmem_cache#15-oX (struct task_struct)
// dup_task_struct 에서 한일:
// struct task_struct 만큼의 메모리를 할당 받음
// kmem_cache#15-oX (struct task_struct)
//
// struct thread_info 를 구성 하기 위한 메모리를 할당 받음 (8K)
// 할당 받은 page 2개의 메로리의 가상 주소
//
// 할당 받은 kmem_cache#15-oX (struct task_struct) 메모리에 init_task 값을 전부 할당함
//
// (kmem_cache#15-oX (struct task_struct))->stack: 할당 받은 page 2개의 메로리의 가상 주소
//
// 할당 받은 kmem_cache#15-oX (struct task_struct) 의 stack의 값을 init_task 의 stack 값에서 전부 복사함
// 복사된 struct thread_info 의 task 주소값을 할당 받은 kmem_cache#15-oX (struct task_struct)로 변경함
// *(할당 받은 page 2개의 메로리의 가상 주소): init_thread_info
// ((struct thread_info *) 할당 받은 page 2개의 메로리의 가상 주소)->task: kmem_cache#15-oX (struct task_struct)
//
// (((struct thread_info *)(할당 받은 page 2개의 메로리의 가상 주소))->flags 의 1 bit 값을 clear 수행
//
// *((unsigned long *)(할당 받은 page 2개의 메로리의 가상 주소 + 1)): 0x57AC6E9D
//
// (&(kmem_cache#15-oX (struct task_struct))->usage)->counter: 2
// (kmem_cache#15-oX (struct task_struct))->splice_pipe: NULL
// (kmem_cache#15-oX (struct task_struct))->task_frag.page: NULL
//
// (&contig_page_data)->node_zones[0].vm_stat[16]: 1 을 더함
// vmstat.c의 vm_stat[16] 전역 변수에도 1을 더함
// p: kmem_cache#15-oX (struct task_struct)
if (!p)
goto fork_out;
// p: kmem_cache#15-oX (struct task_struct)
ftrace_graph_init_task(p); // null function
// p: kmem_cache#15-oX (struct task_struct)
get_seccomp_filter(p); // null function
// p: kmem_cache#15-oX (struct task_struct)
rt_mutex_init_task(p);
// rt_mutex_init_task 한일:
// &(kmem_cache#15-oX (struct task_struct))->pi_lock을 사용한 spinlock 초기화
// &(kmem_cache#15-oX (struct task_struct))->pi_waiters 리스트 초기화
// (kmem_cache#15-oX (struct task_struct))->pi_blocked_on: NULL
#ifdef CONFIG_PROVE_LOCKING // CONFIG_PROVE_LOCKING=n
DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
#endif
// EAGAIN: 11
retval = -EAGAIN;
// retval: -11
// p: kmem_cache#15-oX (struct task_struct)
// p->real_cred: (kmem_cache#15-oX (struct task_struct))->real_cred: &init_cred,
// p->real_cred->user: (&init_cred)->user: &root_user,
// &p->real_cred->user->processes: &(&root_user)->processes, atomic_read(&(&root_user)->processes): 1
// RLIMIT_NPROC: 6, task_rlimit(kmem_cache#15-oX (struct task_struct), 6): 0
if (atomic_read(&p->real_cred->user->processes) >=
task_rlimit(p, RLIMIT_NPROC)) {
// p->real_cred->user: (&init_cred)->user: &root_user, INIT_USER: (&root_user)
// CAP_SYS_RESOURCE: 24, capable(24): true, CAP_SYS_ADMIN: 21, capable(21): true
if (p->real_cred->user != INIT_USER &&
!capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
goto bad_fork_free;
// capable 에서 한일:
// (&init_task)->flags: 0x00200100
}
// current->flags: (&init_task)->flags: 0x00200100, PF_NPROC_EXCEEDED: 0x00001000
current->flags &= ~PF_NPROC_EXCEEDED;
// current->flags: (&init_task)->flags: 0x00200100
// retval: -11, p: kmem_cache#15-oX (struct task_struct), clone_flags: 0x00800B00
// copy_creds(kmem_cache#15-oX (struct task_struct), 0x00800B00): 0
retval = copy_creds(p, clone_flags);
// retval: 0
// copy_creds 에서 한일:
// struct cred 만큼의 메모리를 할당 받음
// kmem_cache#16-oX (struct cred)
//
// kmem_cache#16-oX (struct cred) 에 init_cred 에 있는 맴버값 전부를 복사함
// (&(kmem_cache#16-oX (struct cred))->usage)->counter: 1
// (&(&init_groups)->usage)->counter: 3
// (&(&root_user)->__count)->counter: 2
// (&(&root_user)->processes)->counter: 2
//
// (&(kmem_cache#16-oX (struct cred))->usage)->counter: 2
//
// (kmem_cache#15-oX (struct task_struct))->cred: kmem_cache#16-oX (struct cred)
// (kmem_cache#15-oX (struct task_struct))->real_cred: kmem_cache#16-oX (struct cred)
// retval: 0
if (retval < 0)
goto bad_fork_free;
/*
* If multiple threads are within copy_process(), then this check
* triggers too late. This doesn't hurt, the check is only there
* to stop root fork bombs.
*/
// EAGAIN: 11
retval = -EAGAIN;
// retval: -11
// nr_threads: 0, max_threads: 총 free된 page 수 / 16
if (nr_threads >= max_threads)
goto bad_fork_cleanup_count;
// p: kmem_cache#15-oX (struct task_struct),
// task_thread_info(kmem_cache#15-oX (struct task_struct)):
// (kmem_cache#15-oX (struct task_struct))->stack: 할당 받은 page 2개의 메로리의 가상 주소,
// task_thread_info(kmem_cache#15-oX (struct task_struct)->exec_domain:
// ((struct thread_info *) 할당 받은 page 2개의 메로리의 가상 주소)->exec_domain: &default_exec_domain,
// task_thread_info(kmem_cache#15-oX (struct task_struct)->exec_domain->module:
// (&default_exec_domain)->module: NULL,
// try_module_get(NULL): true
if (!try_module_get(task_thread_info(p)->exec_domain->module))
goto bad_fork_cleanup_count;
// p->did_exec: (kmem_cache#15-oX (struct task_struct))->did_exec
p->did_exec = 0;
// p->did_exec: (kmem_cache#15-oX (struct task_struct))->did_exec: 0
// p: kmem_cache#15-oX (struct task_struct)
delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ // null function
// clone_flags: 0x00800B00, p: kmem_cache#15-oX (struct task_struct)
copy_flags(clone_flags, p);
// copy_flags 에서 한일:
// (kmem_cache#15-oX (struct task_struct))->flags: 0x00200040
// &p->children: &(kmem_cache#15-oX (struct task_struct))->children
INIT_LIST_HEAD(&p->children);
// INIT_LIST_HEAD 에서 한일:
// (&(kmem_cache#15-oX (struct task_struct))->children)->next: &(kmem_cache#15-oX (struct task_struct))->children
// (&(kmem_cache#15-oX (struct task_struct))->children)->prev: &(kmem_cache#15-oX (struct task_struct))->children
// &p->sibling: &(kmem_cache#15-oX (struct task_struct))->sibling
INIT_LIST_HEAD(&p->sibling);
// INIT_LIST_HEAD 에서 한일:
// (&(kmem_cache#15-oX (struct task_struct))->sibling)->next: &(kmem_cache#15-oX (struct task_struct))->sibling
// (&(kmem_cache#15-oX (struct task_struct))->sibling)->prev: &(kmem_cache#15-oX (struct task_struct))->sibling
// p: kmem_cache#15-oX (struct task_struct)
rcu_copy_process(p);
// rcu_copy_process 에서 한일:
// (kmem_cache#15-oX (struct task_struct))->rcu_read_lock_nesting: 0
// (kmem_cache#15-oX (struct task_struct))->rcu_read_unlock_special: 0
// (kmem_cache#15-oX (struct task_struct))->rcu_blocked_node: NULL
// (&(kmem_cache#15-oX (struct task_struct))->rcu_node_entry)->next: &(kmem_cache#15-oX (struct task_struct))->rcu_node_entry
// (&(kmem_cache#15-oX (struct task_struct))->rcu_node_entry)->prev: &(kmem_cache#15-oX (struct task_struct))->rcu_node_entry
// p->vfork_done: (kmem_cache#15-oX (struct task_struct))->vfork_done
p->vfork_done = NULL;
// p->vfork_done: (kmem_cache#15-oX (struct task_struct))->vfork_done: NULL
// &p->alloc_lock: &(kmem_cache#15-oX (struct task_struct))->alloc_lock
spin_lock_init(&p->alloc_lock);
// spin_lock_init에서 한일:
// (&(kmem_cache#15-oX (struct task_struct))->alloc_lock)->raw_lock: { { 0 } }
// (&(kmem_cache#15-oX (struct task_struct))->alloc_lock)->magic: 0xdead4ead
// (&(kmem_cache#15-oX (struct task_struct))->alloc_lock)->owner: 0xffffffff
// (&(kmem_cache#15-oX (struct task_struct))->alloc_lock)->owner_cpu: 0xffffffff
// &p->pending: &(kmem_cache#15-oX (struct task_struct))->pending
init_sigpending(&p->pending);
// init_sigpending 에서 한일:
// (&(&(kmem_cache#15-oX (struct task_struct))->pending)->signal)->sig[0]: 0
// (&(&(kmem_cache#15-oX (struct task_struct))->pending)->signal)->sig[1]: 0
// (&(&(kmem_cache#15-oX (struct task_struct))->pending)->list)->next: &(&(kmem_cache#15-oX (struct task_struct))->pending)->list
// (&(&(kmem_cache#15-oX (struct task_struct))->pending)->list)->prev: &(&(kmem_cache#15-oX (struct task_struct))->pending)->list
// p->utime: (kmem_cache#15-oX (struct task_struct))->utime,
// p->stime: (kmem_cache#15-oX (struct task_struct))->stime,
// p->gtime: (kmem_cache#15-oX (struct task_struct))->gtime
p->utime = p->stime = p->gtime = 0;
// p->utime: (kmem_cache#15-oX (struct task_struct))->utime: 0
// p->stime: (kmem_cache#15-oX (struct task_struct))->stime: 0
// p->gtime: (kmem_cache#15-oX (struct task_struct))->gtime: 0
// p->utimescaled: (kmem_cache#15-oX (struct task_struct))->utimescaled,
// p->stimescaled: (kmem_cache#15-oX (struct task_struct))->stimescaled
p->utimescaled = p->stimescaled = 0;
// p->utimescaled: (kmem_cache#15-oX (struct task_struct))->utimescaled: 0
// p->stimescaled: (kmem_cache#15-oX (struct task_struct))->stimescaled: 0
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE // CONFIG_VIRT_CPU_ACCOUNTING_NATIVE=n
p->prev_cputime.utime = p->prev_cputime.stime = 0;
#endif
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN // CONFIG_VIRT_CPU_ACCOUNTING_GEN=n
seqlock_init(&p->vtime_seqlock);
p->vtime_snap = 0;
p->vtime_snap_whence = VTIME_SLEEPING;
#endif
#if defined(SPLIT_RSS_COUNTING)
// &p->rss_stat: &(kmem_cache#15-oX (struct task_struct))->rss_stat
memset(&p->rss_stat, 0, sizeof(p->rss_stat));
// memset 에서 한일:
// &(kmem_cache#15-oX (struct task_struct))->rss_stat 값을 0 으로 초기화 수행
#endif
// p->default_timer_slack_ns: (kmem_cache#15-oX (struct task_struct))->default_timer_slack_ns,
// current->timer_slack_ns: (&init_task)->timer_slack_ns: 50000
p->default_timer_slack_ns = current->timer_slack_ns;
// p->default_timer_slack_ns: (kmem_cache#15-oX (struct task_struct))->default_timer_slack_ns: 50000
// p->ioac: (kmem_cache#15-oX (struct task_struct))->ioac
task_io_accounting_init(&p->ioac); // null function
// p: kmem_cache#15-oX (struct task_struct)
acct_clear_integrals(p); // null function
// p: kmem_cache#15-oX (struct task_struct)
posix_cpu_timers_init(p);
// posix_cpu_timers_init 에서 한일:
// (kmem_cache#15-oX (struct task_struct))->cputime_expires.prof_exp: 0
// (kmem_cache#15-oX (struct task_struct))->cputime_expires.virt_exp: 0
// (kmem_cache#15-oX (struct task_struct))->cputime_expires.sched_exp: 0
// (&(kmem_cache#15-oX (struct task_struct))->cpu_timers[0])->next: &(kmem_cache#15-oX (struct task_struct))->cpu_timers[0]
// (&(kmem_cache#15-oX (struct task_struct))->cpu_timers[0])->prev: &(kmem_cache#15-oX (struct task_struct))->cpu_timers[0]
// (&(kmem_cache#15-oX (struct task_struct))->cpu_timers[1])->next: &(kmem_cache#15-oX (struct task_struct))->cpu_timers[1]
// (&(kmem_cache#15-oX (struct task_struct))->cpu_timers[1])->prev: &(kmem_cache#15-oX (struct task_struct))->cpu_timers[1]
// (&(kmem_cache#15-oX (struct task_struct))->cpu_timers[2])->next: &(kmem_cache#15-oX (struct task_struct))->cpu_timers[2]
// (&(kmem_cache#15-oX (struct task_struct))->cpu_timers[2])->prev: &(kmem_cache#15-oX (struct task_struct))->cpu_timers[2]
// &p->start_time: &(kmem_cache#15-oX (struct task_struct))->start_time
do_posix_clock_monotonic_gettime(&p->start_time);
// do_posix_clock_monotonic_gettime 에서 한일:
// (kmem_cache#15-oX (struct task_struct))->start_time 에 현재 시간 값을 가져옴
//
// (&(kmem_cache#15-oX (struct task_struct))->start_time)->tv_sec: 현재의 sec 값 + 현재의 nsec 값 / 1000000000L
// (&(kmem_cache#15-oX (struct task_struct))->start_time)->tv_nsec: 현재의 nsec 값 % 1000000000L
// p->real_start_time: (kmem_cache#15-oX (struct task_struct))->real_start_time,
// p->start_time: (kmem_cache#15-oX (struct task_struct))->start_time
p->real_start_time = p->start_time;
// (&(kmem_cache#15-oX (struct task_struct))->real_start_time)->tv_sec: 현재의 sec 값 + 현재의 nsec 값 / 1000000000L
// (&(kmem_cache#15-oX (struct task_struct))->real_start_time)->tv_nsec: 현재의 nsec 값 % 1000000000L
// &p->real_start_time: &(kmem_cache#15-oX (struct task_struct))->real_start_time
monotonic_to_bootbased(&p->real_start_time);
// monotonic_to_bootbased 에서 한일:
// (kmem_cache#15-oX (struct task_struct))->real_start_time.tv_sec: normalized 된 sec 값
// (kmem_cache#15-oX (struct task_struct))->real_start_time.tv_nsec: normalized 된 nsec 값
// p->io_context: (kmem_cache#15-oX (struct task_struct))->io_context
p->io_context = NULL;
// p->io_context: (kmem_cache#15-oX (struct task_struct))->io_context: NULL
// p->audit_context: (kmem_cache#15-oX (struct task_struct))->audit_context
p->audit_context = NULL;
// p->audit_context: (kmem_cache#15-oX (struct task_struct))->audit_context: NULL
if (clone_flags & CLONE_THREAD)
threadgroup_change_begin(current);
cgroup_fork(p);
- start_kernel()
- rest_init()
- call: rest_init()
- rcu_scheduler_starting()
- kernel_thread()
- call: kernel_thread()
- do_fork()
- call: do_fork()
- copy_process()
// ARM10C 20160827
// clone_flags: 0x00800B00, stack_start: kernel_init, stack_size: 0, child_tidptr: 0, NULL, trace: 0
static struct task_struct *copy_process(unsigned long clone_flags,
unsigned long stack_start,
unsigned long stack_size,
int __user *child_tidptr,
struct pid *pid,
int trace)
{
int retval;
struct task_struct *p;
// clone_flags: 0x00800B00, CLONE_NEWNS: 0x00020000, CLONE_FS: 0x00000200
if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
return ERR_PTR(-EINVAL);
// clone_flags: 0x00800B00, CLONE_NEWUSER: 0x10000000, CLONE_FS: 0x00000200
if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
return ERR_PTR(-EINVAL);
/*
* Thread groups must share signals as well, and detached threads
* can only be started up within the thread group.
*/
// clone_flags: 0x00800B00, CLONE_THREAD: 0x00010000, CLONE_SIGHAND: 0x00000800
if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
return ERR_PTR(-EINVAL);
/*
* Shared signal handlers imply shared VM. By way of the above,
* thread groups also imply shared VM. Blocking this case allows
* for various simplifications in other code.
*/
// clone_flags: 0x00800B00, CLONE_SIGHAND: 0x00000800, CLONE_VM: 0x00000100
if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
return ERR_PTR(-EINVAL);
// 2016/08/27 종료
// 2016/09/03 시작
/*
* Siblings of global init remain as zombies on exit since they are
* not reaped by their parent (swapper). To solve this and to avoid
* multi-rooted process trees, prevent global and container-inits
* from creating siblings.
*/
// clone_flags: 0x00800B00, CLONE_PARENT: 0x00008000, SIGNAL_UNKILLABLE: 0x00000040
// current: &init_task, current->signal: &init_signals
// current->signal->flags: (&init_signals)->flags: 0
if ((clone_flags & CLONE_PARENT) &&
current->signal->flags & SIGNAL_UNKILLABLE)
return ERR_PTR(-EINVAL);
/*
* If the new process will be in a different pid or user namespace
* do not allow it to share a thread group or signal handlers or
* parent with the forking task.
*/
// clone_flags: 0x00800B00, CLONE_SIGHAND: 0x00000800
if (clone_flags & CLONE_SIGHAND) {
// clone_flags: 0x00800B00, CLONE_NEWUSER: 0x10000000, CLONE_NEWPID: 0x20000000
// current: &init_task, task_active_pid_ns(&init_task): &init_pid_ns,
// current->nsproxy: (&init_task)->nsproxy: &init_nsproxy,
// current->nsproxy->pid_ns_for_children: (&init_nsproxy)->pid_ns_for_children: &init_pid_ns
if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
(task_active_pid_ns(current) !=
current->nsproxy->pid_ns_for_children))
return ERR_PTR(-EINVAL);
}
// clone_flags: 0x00800B00, security_task_create(0x00800B00): 0
retval = security_task_create(clone_flags);
// retval: 0
// retval: 0
if (retval)
goto fork_out;
// ENOMEM: 12
retval = -ENOMEM;
// retval: -12
// current: &init_task
// dup_task_struct(&init_task): kmem_cache#15-oX (struct task_struct)
p = dup_task_struct(current);
// p: kmem_cache#15-oX (struct task_struct)
// dup_task_struct 에서 한일:
// struct task_struct 만큼의 메모리를 할당 받음
// kmem_cache#15-oX (struct task_struct)
//
// struct thread_info 를 구성 하기 위한 메모리를 할당 받음 (8K)
// 할당 받은 page 2개의 메로리의 가상 주소
//
// 할당 받은 kmem_cache#15-oX (struct task_struct) 메모리에 init_task 값을 전부 할당함
//
// (kmem_cache#15-oX (struct task_struct))->stack: 할당 받은 page 2개의 메로리의 가상 주소
//
// 할당 받은 kmem_cache#15-oX (struct task_struct) 의 stack의 값을 init_task 의 stack 값에서 전부 복사함
// 복사된 struct thread_info 의 task 주소값을 할당 받은 kmem_cache#15-oX (struct task_struct)로 변경함
// *(할당 받은 page 2개의 메로리의 가상 주소): init_thread_info
// ((struct thread_info *) 할당 받은 page 2개의 메로리의 가상 주소)->task: kmem_cache#15-oX (struct task_struct)
//
// (((struct thread_info *)(할당 받은 page 2개의 메로리의 가상 주소))->flags 의 1 bit 값을 clear 수행
//
// *((unsigned long *)(할당 받은 page 2개의 메로리의 가상 주소 + 1)): 0x57AC6E9D
//
// (&(kmem_cache#15-oX (struct task_struct))->usage)->counter: 2
// (kmem_cache#15-oX (struct task_struct))->splice_pipe: NULL
// (kmem_cache#15-oX (struct task_struct))->task_frag.page: NULL
//
// (&contig_page_data)->node_zones[0].vm_stat[16]: 1 을 더함
// vmstat.c의 vm_stat[16] 전역 변수에도 1을 더함
// p: kmem_cache#15-oX (struct task_struct)
if (!p)
goto fork_out;
// p: kmem_cache#15-oX (struct task_struct)
ftrace_graph_init_task(p); // null function
// p: kmem_cache#15-oX (struct task_struct)
get_seccomp_filter(p); // null function
// p: kmem_cache#15-oX (struct task_struct)
rt_mutex_init_task(p);
// rt_mutex_init_task 한일:
// &(kmem_cache#15-oX (struct task_struct))->pi_lock을 사용한 spinlock 초기화
// &(kmem_cache#15-oX (struct task_struct))->pi_waiters 리스트 초기화
// (kmem_cache#15-oX (struct task_struct))->pi_blocked_on: NULL
#ifdef CONFIG_PROVE_LOCKING // CONFIG_PROVE_LOCKING=n
DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
#endif
// EAGAIN: 11
retval = -EAGAIN;
// retval: -11
// p: kmem_cache#15-oX (struct task_struct)
// p->real_cred: (kmem_cache#15-oX (struct task_struct))->real_cred: &init_cred,
// p->real_cred->user: (&init_cred)->user: &root_user,
// &p->real_cred->user->processes: &(&root_user)->processes, atomic_read(&(&root_user)->processes): 1
// RLIMIT_NPROC: 6, task_rlimit(kmem_cache#15-oX (struct task_struct), 6): 0
if (atomic_read(&p->real_cred->user->processes) >=
task_rlimit(p, RLIMIT_NPROC)) {
// p->real_cred->user: (&init_cred)->user: &root_user, INIT_USER: (&root_user)
// CAP_SYS_RESOURCE: 24, capable(24): true, CAP_SYS_ADMIN: 21, capable(21): true
if (p->real_cred->user != INIT_USER &&
!capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
goto bad_fork_free;
// capable 에서 한일:
// (&init_task)->flags: 0x00200100
}
// current->flags: (&init_task)->flags: 0x00200100, PF_NPROC_EXCEEDED: 0x00001000
current->flags &= ~PF_NPROC_EXCEEDED;
// current->flags: (&init_task)->flags: 0x00200100
// retval: -11, p: kmem_cache#15-oX (struct task_struct), clone_flags: 0x00800B00
// copy_creds(kmem_cache#15-oX (struct task_struct), 0x00800B00): 0
retval = copy_creds(p, clone_flags);
// retval: 0
// copy_creds 에서 한일:
// struct cred 만큼의 메모리를 할당 받음
// kmem_cache#16-oX (struct cred)
//
// kmem_cache#16-oX (struct cred) 에 init_cred 에 있는 맴버값 전부를 복사함
// (&(kmem_cache#16-oX (struct cred))->usage)->counter: 1
// (&(&init_groups)->usage)->counter: 3
// (&(&root_user)->__count)->counter: 2
// (&(&root_user)->processes)->counter: 2
//
// (&(kmem_cache#16-oX (struct cred))->usage)->counter: 2
//
// (kmem_cache#15-oX (struct task_struct))->cred: kmem_cache#16-oX (struct cred)
// (kmem_cache#15-oX (struct task_struct))->real_cred: kmem_cache#16-oX (struct cred)
// retval: 0
if (retval < 0)
goto bad_fork_free;
/*
* If multiple threads are within copy_process(), then this check
* triggers too late. This doesn't hurt, the check is only there
* to stop root fork bombs.
*/
// EAGAIN: 11
retval = -EAGAIN;
// retval: -11
// nr_threads: 0, max_threads: 총 free된 page 수 / 16
if (nr_threads >= max_threads)
goto bad_fork_cleanup_count;
// p: kmem_cache#15-oX (struct task_struct),
// task_thread_info(kmem_cache#15-oX (struct task_struct)):
// (kmem_cache#15-oX (struct task_struct))->stack: 할당 받은 page 2개의 메로리의 가상 주소,
// task_thread_info(kmem_cache#15-oX (struct task_struct)->exec_domain:
// ((struct thread_info *) 할당 받은 page 2개의 메로리의 가상 주소)->exec_domain: &default_exec_domain,
// task_thread_info(kmem_cache#15-oX (struct task_struct)->exec_domain->module:
// (&default_exec_domain)->module: NULL,
// try_module_get(NULL): true
if (!try_module_get(task_thread_info(p)->exec_domain->module))
goto bad_fork_cleanup_count;
// p->did_exec: (kmem_cache#15-oX (struct task_struct))->did_exec
p->did_exec = 0;
// p->did_exec: (kmem_cache#15-oX (struct task_struct))->did_exec: 0
// p: kmem_cache#15-oX (struct task_struct)
delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ // null function
// clone_flags: 0x00800B00, p: kmem_cache#15-oX (struct task_struct)
copy_flags(clone_flags, p);
// copy_flags 에서 한일:
// (kmem_cache#15-oX (struct task_struct))->flags: 0x00200040
// &p->children: &(kmem_cache#15-oX (struct task_struct))->children
INIT_LIST_HEAD(&p->children);
// INIT_LIST_HEAD 에서 한일:
// (&(kmem_cache#15-oX (struct task_struct))->children)->next: &(kmem_cache#15-oX (struct task_struct))->children
// (&(kmem_cache#15-oX (struct task_struct))->children)->prev: &(kmem_cache#15-oX (struct task_struct))->children
// &p->sibling: &(kmem_cache#15-oX (struct task_struct))->sibling
INIT_LIST_HEAD(&p->sibling);
// INIT_LIST_HEAD 에서 한일:
// (&(kmem_cache#15-oX (struct task_struct))->sibling)->next: &(kmem_cache#15-oX (struct task_struct))->sibling
// (&(kmem_cache#15-oX (struct task_struct))->sibling)->prev: &(kmem_cache#15-oX (struct task_struct))->sibling
// p: kmem_cache#15-oX (struct task_struct)
rcu_copy_process(p);
// rcu_copy_process 에서 한일:
// (kmem_cache#15-oX (struct task_struct))->rcu_read_lock_nesting: 0
// (kmem_cache#15-oX (struct task_struct))->rcu_read_unlock_special: 0
// (kmem_cache#15-oX (struct task_struct))->rcu_blocked_node: NULL
// (&(kmem_cache#15-oX (struct task_struct))->rcu_node_entry)->next: &(kmem_cache#15-oX (struct task_struct))->rcu_node_entry
// (&(kmem_cache#15-oX (struct task_struct))->rcu_node_entry)->prev: &(kmem_cache#15-oX (struct task_struct))->rcu_node_entry
// p->vfork_done: (kmem_cache#15-oX (struct task_struct))->vfork_done
p->vfork_done = NULL;
// p->vfork_done: (kmem_cache#15-oX (struct task_struct))->vfork_done: NULL
// &p->alloc_lock: &(kmem_cache#15-oX (struct task_struct))->alloc_lock
spin_lock_init(&p->alloc_lock);
// spin_lock_init에서 한일:
// (&(kmem_cache#15-oX (struct task_struct))->alloc_lock)->raw_lock: { { 0 } }
// (&(kmem_cache#15-oX (struct task_struct))->alloc_lock)->magic: 0xdead4ead
// (&(kmem_cache#15-oX (struct task_struct))->alloc_lock)->owner: 0xffffffff
// (&(kmem_cache#15-oX (struct task_struct))->alloc_lock)->owner_cpu: 0xffffffff
// &p->pending: &(kmem_cache#15-oX (struct task_struct))->pending
init_sigpending(&p->pending);
// init_sigpending 에서 한일:
// (&(&(kmem_cache#15-oX (struct task_struct))->pending)->signal)->sig[0]: 0
// (&(&(kmem_cache#15-oX (struct task_struct))->pending)->signal)->sig[1]: 0
// (&(&(kmem_cache#15-oX (struct task_struct))->pending)->list)->next: &(&(kmem_cache#15-oX (struct task_struct))->pending)->list
// (&(&(kmem_cache#15-oX (struct task_struct))->pending)->list)->prev: &(&(kmem_cache#15-oX (struct task_struct))->pending)->list
// p->utime: (kmem_cache#15-oX (struct task_struct))->utime,
// p->stime: (kmem_cache#15-oX (struct task_struct))->stime,
// p->gtime: (kmem_cache#15-oX (struct task_struct))->gtime
p->utime = p->stime = p->gtime = 0;
// p->utime: (kmem_cache#15-oX (struct task_struct))->utime: 0
// p->stime: (kmem_cache#15-oX (struct task_struct))->stime: 0
// p->gtime: (kmem_cache#15-oX (struct task_struct))->gtime: 0
// p->utimescaled: (kmem_cache#15-oX (struct task_struct))->utimescaled,
// p->stimescaled: (kmem_cache#15-oX (struct task_struct))->stimescaled
p->utimescaled = p->stimescaled = 0;
// p->utimescaled: (kmem_cache#15-oX (struct task_struct))->utimescaled: 0
// p->stimescaled: (kmem_cache#15-oX (struct task_struct))->stimescaled: 0
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE // CONFIG_VIRT_CPU_ACCOUNTING_NATIVE=n
p->prev_cputime.utime = p->prev_cputime.stime = 0;
#endif
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN // CONFIG_VIRT_CPU_ACCOUNTING_GEN=n
seqlock_init(&p->vtime_seqlock);
p->vtime_snap = 0;
p->vtime_snap_whence = VTIME_SLEEPING;
#endif
#if defined(SPLIT_RSS_COUNTING)
// &p->rss_stat: &(kmem_cache#15-oX (struct task_struct))->rss_stat
memset(&p->rss_stat, 0, sizeof(p->rss_stat));
// memset 에서 한일:
// &(kmem_cache#15-oX (struct task_struct))->rss_stat 값을 0 으로 초기화 수행
#endif
// p->default_timer_slack_ns: (kmem_cache#15-oX (struct task_struct))->default_timer_slack_ns,
// current->timer_slack_ns: (&init_task)->timer_slack_ns: 50000
p->default_timer_slack_ns = current->timer_slack_ns;
// p->default_timer_slack_ns: (kmem_cache#15-oX (struct task_struct))->default_timer_slack_ns: 50000
// p->ioac: (kmem_cache#15-oX (struct task_struct))->ioac
task_io_accounting_init(&p->ioac); // null function
// p: kmem_cache#15-oX (struct task_struct)
acct_clear_integrals(p); // null function
// p: kmem_cache#15-oX (struct task_struct)
posix_cpu_timers_init(p);
// posix_cpu_timers_init 에서 한일:
// (kmem_cache#15-oX (struct task_struct))->cputime_expires.prof_exp: 0
// (kmem_cache#15-oX (struct task_struct))->cputime_expires.virt_exp: 0
// (kmem_cache#15-oX (struct task_struct))->cputime_expires.sched_exp: 0
// (&(kmem_cache#15-oX (struct task_struct))->cpu_timers[0])->next: &(kmem_cache#15-oX (struct task_struct))->cpu_timers[0]
// (&(kmem_cache#15-oX (struct task_struct))->cpu_timers[0])->prev: &(kmem_cache#15-oX (struct task_struct))->cpu_timers[0]
// (&(kmem_cache#15-oX (struct task_struct))->cpu_timers[1])->next: &(kmem_cache#15-oX (struct task_struct))->cpu_timers[1]
// (&(kmem_cache#15-oX (struct task_struct))->cpu_timers[1])->prev: &(kmem_cache#15-oX (struct task_struct))->cpu_timers[1]
// (&(kmem_cache#15-oX (struct task_struct))->cpu_timers[2])->next: &(kmem_cache#15-oX (struct task_struct))->cpu_timers[2]
// (&(kmem_cache#15-oX (struct task_struct))->cpu_timers[2])->prev: &(kmem_cache#15-oX (struct task_struct))->cpu_timers[2]
// &p->start_time: &(kmem_cache#15-oX (struct task_struct))->start_time
do_posix_clock_monotonic_gettime(&p->start_time);
// do_posix_clock_monotonic_gettime 에서 한일:
// (kmem_cache#15-oX (struct task_struct))->start_time 에 현재 시간 값을 가져옴
//
// (&(kmem_cache#15-oX (struct task_struct))->start_time)->tv_sec: 현재의 sec 값 + 현재의 nsec 값 / 1000000000L
// (&(kmem_cache#15-oX (struct task_struct))->start_time)->tv_nsec: 현재의 nsec 값 % 1000000000L
// p->real_start_time: (kmem_cache#15-oX (struct task_struct))->real_start_time,
// p->start_time: (kmem_cache#15-oX (struct task_struct))->start_time
p->real_start_time = p->start_time;
// (&(kmem_cache#15-oX (struct task_struct))->real_start_time)->tv_sec: 현재의 sec 값 + 현재의 nsec 값 / 1000000000L
// (&(kmem_cache#15-oX (struct task_struct))->real_start_time)->tv_nsec: 현재의 nsec 값 % 1000000000L
// &p->real_start_time: &(kmem_cache#15-oX (struct task_struct))->real_start_time
monotonic_to_bootbased(&p->real_start_time);
// monotonic_to_bootbased 에서 한일:
// (kmem_cache#15-oX (struct task_struct))->real_start_time.tv_sec: normalized 된 sec 값
// (kmem_cache#15-oX (struct task_struct))->real_start_time.tv_nsec: normalized 된 nsec 값
// p->io_context: (kmem_cache#15-oX (struct task_struct))->io_context
p->io_context = NULL;
// p->io_context: (kmem_cache#15-oX (struct task_struct))->io_context: NULL
// p->audit_context: (kmem_cache#15-oX (struct task_struct))->audit_context
p->audit_context = NULL;
// p->audit_context: (kmem_cache#15-oX (struct task_struct))->audit_context: NULL
// 2016/09/10 종료
// 2016/10/08 시작
// clone_flags: 0x00800B00, CLONE_THREAD: 0x00010000
if (clone_flags & CLONE_THREAD)
threadgroup_change_begin(current);
// p: kmem_cache#15-oX (struct task_struct)
cgroup_fork(p);
// cgroup_fork 에서 한일:
// rcu reference의 값 (&init_task)->cgroups 이 유요한지 체크하고 그 값을 리턴함
// ((&init_task)->cgroups)->refcount: 1
// (kmem_cache#15-oX (struct task_struct))->cgroups: (&init_task)->cgroups
//
// (&(kmem_cache#15-oX (struct task_struct))->cg_list)->next: &(kmem_cache#15-oX (struct task_struct))->cg_list
// (&(kmem_cache#15-oX (struct task_struct))->cg_list)->prev: &(kmem_cache#15-oX (struct task_struct))->cg_list
#ifdef CONFIG_NUMA // CONFIG_NUMA=n
p->mempolicy = mpol_dup(p->mempolicy);
if (IS_ERR(p->mempolicy)) {
retval = PTR_ERR(p->mempolicy);
p->mempolicy = NULL;
goto bad_fork_cleanup_cgroup;
}
mpol_fix_fork_child_flag(p);
#endif
#ifdef CONFIG_CPUSETS // CONFIG_CPUSETS=n
p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
seqcount_init(&p->mems_allowed_seq);
#endif
#ifdef CONFIG_TRACE_IRQFLAGS // CONFIG_TRACE_IRQFLAGS=n
p->irq_events = 0;
p->hardirqs_enabled = 0;
p->hardirq_enable_ip = 0;
p->hardirq_enable_event = 0;
p->hardirq_disable_ip = _THIS_IP_;
p->hardirq_disable_event = 0;
p->softirqs_enabled = 1;
p->softirq_enable_ip = _THIS_IP_;
p->softirq_enable_event = 0;
p->softirq_disable_ip = 0;
p->softirq_disable_event = 0;
p->hardirq_context = 0;
p->softirq_context = 0;
#endif
#ifdef CONFIG_LOCKDEP // CONFIG_LOCKDEP=n
p->lockdep_depth = 0; /* no locks held yet */
p->curr_chain_key = 0;
p->lockdep_recursion = 0;
#endif
#ifdef CONFIG_DEBUG_MUTEXES // CONFIG_DEBUG_MUTEXES=y
// p->blocked_on: (kmem_cache#15-oX (struct task_struct))->blocked_on
p->blocked_on = NULL; /* not blocked yet */
// p->blocked_on: (kmem_cache#15-oX (struct task_struct))->blocked_on: NULL
#endif
#ifdef CONFIG_MEMCG // CONFIG_MEMCG=n
p->memcg_batch.do_batch = 0;
p->memcg_batch.memcg = NULL;
#endif
#ifdef CONFIG_BCACHE // CONFIG_BCACHE=n
p->sequential_io = 0;
p->sequential_io_avg = 0;
#endif
/* Perform scheduler related setup. Assign this task to a CPU. */
// clone_flags: 0x00800B00, p: kmem_cache#15-oX (struct task_struct)
sched_fork(clone_flags, p);
- start_kernel()
- rest_init()
- call: rest_init()
- rcu_scheduler_starting()
- kernel_thread()
- call: kernel_thread()
- do_fork()
- call: do_fork()
- copy_process()
- call: copy_process()
- security_task_create()
- dup_task_struct()
- ftrace_graph_init_task(p); // null function
- get_seccomp_filter(p); // null function
- rt_mutex_init_task(p);
- copy_creds(p, clone_flags);
- try_module_get()
- delayacct_tsk_init(p)
- copy_flags()
- INIT_LIST_HEAD(&p->children);
- INIT_LIST_HEAD(&p->sibling);
- rcu_copy_process(p);
- spin_lock_init(&p->alloc_lock);
- init_sigpending(&p->pending);
- memset(&p->rss_stat, 0, sizeof(p->rss_stat));
- task_io_accounting_init(&p->ioac); // null function
- acct_clear_integrals(p); // null function
- posix_cpu_timers_init(p);
- do_posix_clock_monotonic_gettime(&p->start_time);
- monotonic_to_bootbased(&p->real_start_time);
- cgroup_fork(p);
- sched_fork(clone_flags, p);
// ARM10C 20161008
// clone_flags: 0x00800B00, p: kmem_cache#15-oX (struct task_struct)
void sched_fork(unsigned long clone_flags, struct task_struct *p)
{
unsigned long flags;
// get_cpu(): 0
int cpu = get_cpu();
// cpu: 0
// clone_flags: 0x00800B00, p: kmem_cache#15-oX (struct task_struct)
__sched_fork(clone_flags, p);
// __sched_fork에서 한일:
// (&kmem_cache#15-oX (struct task_struct))->on_rq: 0
// (&kmem_cache#15-oX (struct task_struct))->se.on_rq: 0
// (&kmem_cache#15-oX (struct task_struct))->se.exec_start: 0
// (&kmem_cache#15-oX (struct task_struct))->se.sum_exec_runtime: 0
// (&kmem_cache#15-oX (struct task_struct))->se.prev_sum_exec_runtime: 0
// (&kmem_cache#15-oX (struct task_struct))->se.nr_migrations: 0
// (&kmem_cache#15-oX (struct task_struct))->se.vruntime: 0
// &(&kmem_cache#15-oX (struct task_struct))->se.group_node의 리스트 초기화
// &(&kmem_cache#15-oX (struct task_struct))->rt.run_list의 리스트 초기화
/*
* We mark the process as running here. This guarantees that
* nobody will actually run it, and a signal or other external
* event cannot wake it up and insert it on the runqueue either.
*/
// p->state: (kmem_cache#15-oX (struct task_struct))->state, TASK_RUNNING: 0
p->state = TASK_RUNNING;
// p->state: (kmem_cache#15-oX (struct task_struct))->state: 0
/*
* Make sure we do not leak PI boosting priority to the child.
*/
// p->prio: (kmem_cache#15-oX (struct task_struct))->prio,
// current: &init_task, current->normal_prio: (&init_task)->normal_prio: 120
p->prio = current->normal_prio;
// p->prio: (kmem_cache#15-oX (struct task_struct))->prio: 120
/*
* Revert to default priority/policy on fork if requested.
*/
// p->>sched_reset_on_fork: (kmem_cache#15-oX (struct task_struct))->sched_reset_on_fork: 0
if (unlikely(p->sched_reset_on_fork)) {
if (task_has_rt_policy(p)) {
p->policy = SCHED_NORMAL;
p->static_prio = NICE_TO_PRIO(0);
p->rt_priority = 0;
} else if (PRIO_TO_NICE(p->static_prio) < 0)
p->static_prio = NICE_TO_PRIO(0);
p->prio = p->normal_prio = __normal_prio(p);
set_load_weight(p);
/*
* We don't need the reset flag anymore after the fork. It has
* fulfilled its duty:
*/
p->sched_reset_on_fork = 0;
}
// p->prio: (kmem_cache#15-oX (struct task_struct))->prio: 120, rt_prio(120): 0
if (!rt_prio(p->prio))
// p->sched_class: (kmem_cache#15-oX (struct task_struct))->sched_class
p->sched_class = &fair_sched_class;
// p->sched_class: (kmem_cache#15-oX (struct task_struct))->sched_class: &fair_sched_class
// 2016/10/15 종료
// p->sched_class: (kmem_cache#15-oX (struct task_struct))->sched_class: &fair_sched_class,
// p->sched_class->task_fork: (&fair_sched_class)->task_fork: task_fork_fair
if (p->sched_class->task_fork)
// p->sched_class->task_fork: (&fair_sched_class)->task_fork: task_fork_fair,
// p: kmem_cache#15-oX (struct task_struct),
// task_fork_fair(kmem_cache#15-oX (struct task_struct))
p->sched_class->task_fork(p);
// task_fork_fair 에서 한일:
/*
* The child is not yet in the pid-hash so no cgroup attach races,
* and the cgroup is pinned to this child due to cgroup_fork()
* is ran before sched_fork().
*
* Silence PROVE_RCU.
*/
raw_spin_lock_irqsave(&p->pi_lock, flags);
set_task_cpu(p, cpu);
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
{
#ifdef CONFIG_SCHED_DEBUG
/*
* We should never call set_task_cpu() on a blocked task,
* ttwu() will sort out the placement.
*/
WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
!(task_preempt_count(p) & PREEMPT_ACTIVE));
#ifdef CONFIG_LOCKDEP
/*
* The caller should hold either p->pi_lock or rq->lock, when changing
* a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
*
* sched_move_task() holds both and thus holding either pins the cgroup,
* see task_group().
*
* Furthermore, all task_rq users should acquire both locks, see
* task_rq_lock().
*/
WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
lockdep_is_held(&task_rq(p)->lock)));
#endif
#endif
trace_sched_migrate_task(p, new_cpu);
if (task_cpu(p) != new_cpu) {
if (p->sched_class->migrate_task_rq)
p->sched_class->migrate_task_rq(p, new_cpu);
p->se.nr_migrations++;
perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
}
__set_task_cpu(p, new_cpu);
}
// ARM10C 20140913
// idle: &init_task, cpu: 0
// ARM10C 20161015
// p: kmem_cache#15-oX (struct task_struct), this_cpu: 0
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
// p: &init_task, cpu: 0
set_task_rq(p, cpu);
// set_task_rq 에서 한일:
// (&init_task)->se.cfs_rq: [pcp0] &(&runqueues)->cfs
// (&init_task)->se.parent: NULL
// (&init_task)->rt.rt_rq: [pcp0] &(&runqueues)->rt
// (&init_task)->rt.parent: NULL
#ifdef CONFIG_SMP // CONFIG_SMP=y
/*
* After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
* successfuly executed on another CPU. We must ensure that updates of
* per-task data have been completed by this moment.
*/
smp_wmb();
// memory barrier 수행
// p: &init_task, cpu: 0
// (&init_task)->stack: &init_thread_info
// task_thread_info(&init_task)->cpu: ((struct thread_info *)(&init_task)->stack)->cpu
task_thread_info(p)->cpu = cpu;
// task_thread_info(&init_task)->cpu: ((struct thread_info *)(&init_task)->stack)->cpu: 0
// p->wake_cpu: (&init_task)->wake_cpu, cpu: 0
p->wake_cpu = cpu;
// p->wake_cpu: (&init_task)->wake_cpu: 0
#endif
}
// ARM10C 20161008
// clone_flags: 0x00800B00, p: kmem_cache#15-oX (struct task_struct)
void sched_fork(unsigned long clone_flags, struct task_struct *p)
{
unsigned long flags;
// get_cpu(): 0
int cpu = get_cpu();
// cpu: 0
// clone_flags: 0x00800B00, p: kmem_cache#15-oX (struct task_struct)
__sched_fork(clone_flags, p);
// __sched_fork에서 한일:
// (&kmem_cache#15-oX (struct task_struct))->on_rq: 0
// (&kmem_cache#15-oX (struct task_struct))->se.on_rq: 0
// (&kmem_cache#15-oX (struct task_struct))->se.exec_start: 0
// (&kmem_cache#15-oX (struct task_struct))->se.sum_exec_runtime: 0
// (&kmem_cache#15-oX (struct task_struct))->se.prev_sum_exec_runtime: 0
// (&kmem_cache#15-oX (struct task_struct))->se.nr_migrations: 0
// (&kmem_cache#15-oX (struct task_struct))->se.vruntime: 0
// &(&kmem_cache#15-oX (struct task_struct))->se.group_node의 리스트 초기화
// &(&kmem_cache#15-oX (struct task_struct))->rt.run_list의 리스트 초기화
/*
* We mark the process as running here. This guarantees that
* nobody will actually run it, and a signal or other external
* event cannot wake it up and insert it on the runqueue either.
*/
// p->state: (kmem_cache#15-oX (struct task_struct))->state, TASK_RUNNING: 0
p->state = TASK_RUNNING;
// p->state: (kmem_cache#15-oX (struct task_struct))->state: 0
/*
* Make sure we do not leak PI boosting priority to the child.
*/
// p->prio: (kmem_cache#15-oX (struct task_struct))->prio,
// current: &init_task, current->normal_prio: (&init_task)->normal_prio: 120
p->prio = current->normal_prio;
// p->prio: (kmem_cache#15-oX (struct task_struct))->prio: 120
/*
* Revert to default priority/policy on fork if requested.
*/
// p->>sched_reset_on_fork: (kmem_cache#15-oX (struct task_struct))->sched_reset_on_fork: 0
if (unlikely(p->sched_reset_on_fork)) {
if (task_has_rt_policy(p)) {
p->policy = SCHED_NORMAL;
p->static_prio = NICE_TO_PRIO(0);
p->rt_priority = 0;
} else if (PRIO_TO_NICE(p->static_prio) < 0)
p->static_prio = NICE_TO_PRIO(0);
p->prio = p->normal_prio = __normal_prio(p);
set_load_weight(p);
/*
* We don't need the reset flag anymore after the fork. It has
* fulfilled its duty:
*/
p->sched_reset_on_fork = 0;
}
// p->prio: (kmem_cache#15-oX (struct task_struct))->prio: 120, rt_prio(120): 0
if (!rt_prio(p->prio))
// p->sched_class: (kmem_cache#15-oX (struct task_struct))->sched_class
p->sched_class = &fair_sched_class;
// p->sched_class: (kmem_cache#15-oX (struct task_struct))->sched_class: &fair_sched_class
// 2016/10/15 종료
// p->sched_class: (kmem_cache#15-oX (struct task_struct))->sched_class: &fair_sched_class,
// p->sched_class->task_fork: (&fair_sched_class)->task_fork: task_fork_fair
if (p->sched_class->task_fork)
// p->sched_class->task_fork: (&fair_sched_class)->task_fork: task_fork_fair,
// p: kmem_cache#15-oX (struct task_struct),
// task_fork_fair(kmem_cache#15-oX (struct task_struct))
p->sched_class->task_fork(p);
// task_fork_fair 에서 한일:
/*
* The child is not yet in the pid-hash so no cgroup attach races,
* and the cgroup is pinned to this child due to cgroup_fork()
* is ran before sched_fork().
*
* Silence PROVE_RCU.
*/
raw_spin_lock_irqsave(&p->pi_lock, flags);
set_task_cpu(p, cpu);
raw_spin_unlock_irqrestore(&p->pi_lock, flags);
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
if (likely(sched_info_on()))
memset(&p->sched_info, 0, sizeof(p->sched_info));
#endif
#if defined(CONFIG_SMP)
p->on_cpu = 0;
#endif
init_task_preempt_count(p);
#ifdef CONFIG_SMP
plist_node_init(&p->pushable_tasks, MAX_PRIO);
#endif
put_cpu();
}
- 1st log
bcc0aa2..af56134 master -> origin/master
Updating bcc0aa2..af56134
Fast-forward
arch/arm/include/asm/atomic.h | 4 +
arch/arm/include/asm/thread_info.h | 1 +
fs/file.c | 135 +++++++++++++++++++++++++++
include/asm-generic/bitops/non-atomic.h | 2 +
include/asm-generic/bitsperlong.h | 1 +
include/asm-generic/current.h | 1 +
include/asm-generic/preempt.h | 13 +++
include/linux/audit.h | 4 +-
include/linux/compiler-gcc.h | 1 +
include/linux/fdtable.h | 8 ++
include/linux/fs.h | 1 +
include/linux/gfp.h | 1 +
include/linux/list.h | 4 +
include/linux/lockdep.h | 2 +
include/linux/perf_event.h | 2 +
include/linux/plist.h | 16 ++++
include/linux/preempt.h | 4 +
include/linux/preempt_mask.h | 15 +++
include/linux/rcupdate.h | 29 +++++-
include/linux/sched.h | 17 +++-
include/linux/sched/rt.h | 1 +
include/linux/sem.h | 2 +
include/linux/smp.h | 1 +
include/linux/spinlock.h | 8 ++
include/linux/thread_info.h | 3 +
include/trace/events/sched.h | 2 +
include/uapi/asm-generic/errno-base.h | 1 +
include/uapi/linux/sched.h | 4 +
ipc/sem.c | 7 ++
kernel/fork.c | 159 +++++++++++++++++++++++++++++++-
kernel/locking/lockdep.c | 2 +
kernel/rcu/update.c | 2 +-
kernel/sched/core.c | 79 ++++++++++++++--
kernel/sched/fair.c | 2 +-
kernel/sched/sched.h | 2 +
mm/slub.c | 2 +
36 files changed, 524 insertions(+), 14 deletions(-)