Skip to content

Latest commit

 

History

History

Spring2019

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 

Probabilistic Graphical Models in Bioinformatics

Overview

  • Instructor: Hesam Montazeri (hesam.montazeri at ut.ac.ir)
  • Teaching Assistants: Naser Elmi (naser.elmi at ut.ac.ir) & Samaneh Maleknia (maleknias at ut.ac.ir) & Fahimeh Palizban (fahimehpalizban at ut.ac.ir)
  • Time & Location: Feb-July 2019, lectures are held on Wednesdays 10:00 to 12:00 at Ghods st. 37, Department of Bioinformatics, IBB, Tehran.

Textbooks

  • Probabilistic Graphical Models by Daphne Koller & Nir Friedman.
  • Pattern Recognition and Machine Learning by Christopher Bishop.

Exam

Lecture Schedule

Date Lecture Reading Assignments Homeworks & Projects
16/11/1397 Lecture 1- Introduction to probabilistic graphical models (slides) Required: Koller Textbook, Sec. 1.2, 2.1
Optional: Koller Textbook, Sec. 2.2
Project 1
Project1.R
HW1
29/11/1397 Lecture 2- Bayesian network representation (slides) Required: Koller Textbook, Sec. 3.1, 3.2 HW2
6/12/1397 Lecture 3- Bayesian network representation 2 (slides)

Tutorial 1- Introduction to R by Samaneh Maleknia (slides, R Script)
Required: Koller Textbook, Sec. 3.3.1, 3.3.4, 3.4.1, 3.4.2
Optional: Koller Textbook, Sec. 3.3.2, 3.3.3
HW3
13/12/1397 Lecture 4- Conditional probability distributions; Gaussian Bayesian networks (slides)

Tutorial 2- Lagrange multiplier (notes); multivariate Gaussian distributions (slides)
Required: Koller Textbook, Sec. 5.1-3, 5.4.2, 5.5, 7.1-2
Optional: McGeachie, 2014 (CGBayesNets: Conditional Gaussian Bayesian Networks)
HW4
HW4.R
HW4train.csv
HW4test.csv
20/12/1397 Lecture 5- Learning Bayesian networks (MLE, fully observed data) (slides)

Tutorial 3- Introduction to overfitting, Beta and Dirichlet distributions (slides)
Required: Koller Textbook, Sec. 17.1-2
Optional: Koller Textbook, Ch. 16
HW5
HW5.csv
21/01/1398 Lecture 6- Bayesian paramater estimation (slides) Required: Koller Textbook, Sec. 17.3 Project 2
HW6
28/01/1398 Lecture 7- Bayesian parameter estimation; constraint-based structure learning (slides)

Tutorial 4- Introduction to information theory and JAGS (slides)
Required: Koller Textbook, Sec. 17.4.1-3, 18.1-2, 3.4.3 HW7
JAGS-Example
04/02/1398 Lecture 8- Score-based structure learning (slides) Required: Koller Textbook, Sec. 18.3, 18.4.1 HW8
11/02/1398 Lecture 9- Score-based structure learning; partially observed data (slides) Required: Koller Textbook, Sec. 18.4.1-3, 19.1.3, 19.2.1, A.5.1, A.5.2.1
Optional: Koller Textbook, Sec. 18.5
HW9
18/02/1398 Lecture 10-Expectation-maximization; regulatory motif finding (slides) Required: Koller Textbook, Sec. 19.2.2 and Section 2.1 of Quang 2014.
Optional: Bishop Textbook, Sec. 2.3.9, 9.2-3
Project 3
P3-Data
HW10
25/02/1398 Lecture 11- Undirected graphical models; variable elimination (slides) Required: Koller Textbook, Sec. 4.1-2, 9.2, 9.3.1 HW11
1/03/1398 Lecture 12- Variable elimination; Gibbs sampling for motif finding (slides); Gaussian mixture model (notes) Koller Textbook, Sec. 9.3.2, 9.4.2; Compeau Textbook, Ch. 2 HW12
08/03/1398 Lecture 13- Clique trees; MAP inference (slides) Koller Textbook, Sec. 10.1, 10.2.1-2, 10.4, 13.1.2, 13.2
08/03/1398 Lecture 14- Bayesian networks for temporal data (slides) (notes) Koller Textbook, 6.1-2; Compeau Textbook, Ch. 10 HW13/14
Data
R code
13/03/1398 Lecture 15- Particle-based approximate inference (slides) Koller Textbook, Sec. 12.1-3 HW15