-
Notifications
You must be signed in to change notification settings - Fork 1
/
dgemm-blocked.c
314 lines (273 loc) · 8.56 KB
/
dgemm-blocked.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
#include <xmmintrin.h>
#include <stdio.h>
#include <string.h>
#include <pmmintrin.h>
#include <immintrin.h>
const char* dgemm_desc = "dgemm with sse acceleration.";
#define BLOCK_L1 256
#define BLOCK_L2 512
#define ARRAY(A,i,j) (A)[(j)*lda + (i)]
#define min(a,b) (((a)<(b))?(a):(b))
static inline void matmul_4xkxkx4(int lda, int K, double* a, double* b, double* c)
{
__m256d a_coli, bi0, bi1, bi2, bi3;
__m256d c_col0, c_col1, c_col2, c_col3;
/* layout of 4x4 c matrix
00 01 02 03
10 11 12 13
20 21 22 23
30 31 32 33
*/
double* c01_ptr = c + lda;
double* c02_ptr = c01_ptr + lda;
double* c03_ptr = c02_ptr + lda;
// load old value of c
c_col0 = _mm256_loadu_pd(c);
c_col1 = _mm256_loadu_pd(c01_ptr);
c_col2 = _mm256_loadu_pd(c02_ptr);
c_col3 = _mm256_loadu_pd(c03_ptr);
// for every column of a (or every row of b)
for (int i = 0; i < K; ++i)
{
a_coli = _mm256_loadu_pd(a);
a += 4;
bi0 = _mm256_broadcast_sd(b++);
bi1 = _mm256_broadcast_sd(b++);
bi2 = _mm256_broadcast_sd(b++);
bi3 = _mm256_broadcast_sd(b++);
c_col0 = _mm256_add_pd(c_col0, _mm256_mul_pd(a_coli, bi0));
c_col1 = _mm256_add_pd(c_col1, _mm256_mul_pd(a_coli, bi1));
c_col2 = _mm256_add_pd(c_col2, _mm256_mul_pd(a_coli, bi2));
c_col3 = _mm256_add_pd(c_col3, _mm256_mul_pd(a_coli, bi3));
}
_mm256_storeu_pd(c, c_col0);
_mm256_storeu_pd(c01_ptr, c_col1);
_mm256_storeu_pd(c02_ptr, c_col2);
_mm256_storeu_pd(c03_ptr, c_col3);
}
static inline void matmul_4xkxkx4_unrolled(int lda, int K, double* a, double* b, double* c)
{
__m256d a_coli_l, a_coli_r, bi0, bi1, bi2, bi3, bi4, bi5, bi6, bi7;
__m256d c_col0, c_col1, c_col2, c_col3, c_col4, c_col5, c_col6, c_col7;
/* layout of 4x4 c matrix
00 01 02 03
10 11 12 13
20 21 22 23
30 31 32 33
*/
double* c01_ptr = c + lda;
double* c02_ptr = c01_ptr + lda;
double* c03_ptr = c02_ptr + lda;
// load old value of c
c_col0 = _mm256_loadu_pd(c);
c_col1 = _mm256_loadu_pd(c01_ptr);
c_col2 = _mm256_loadu_pd(c02_ptr);
c_col3 = _mm256_loadu_pd(c03_ptr);
c_col4 = _mm256_setzero_pd();
c_col5 = _mm256_setzero_pd();
c_col6 = _mm256_setzero_pd();
c_col7 = _mm256_setzero_pd();
// for every column of a (or every row of b)
int K_floor = K - (K % 2);
for (int i = 0; i < K_floor; i += 2)
{
a_coli_l = _mm256_loadu_pd(a);
a += 4;
a_coli_r = _mm256_loadu_pd(a);
a += 4;
bi0 = _mm256_broadcast_sd(b++);
bi1 = _mm256_broadcast_sd(b++);
bi2 = _mm256_broadcast_sd(b++);
bi3 = _mm256_broadcast_sd(b++);
c_col0 = _mm256_add_pd(c_col0, _mm256_mul_pd(a_coli_l, bi0));
c_col1 = _mm256_add_pd(c_col1, _mm256_mul_pd(a_coli_l, bi1));
c_col2 = _mm256_add_pd(c_col2, _mm256_mul_pd(a_coli_l, bi2));
c_col3 = _mm256_add_pd(c_col3, _mm256_mul_pd(a_coli_l, bi3));
bi4 = _mm256_broadcast_sd(b++);
bi5 = _mm256_broadcast_sd(b++);
bi6 = _mm256_broadcast_sd(b++);
bi7 = _mm256_broadcast_sd(b++);
c_col4 = _mm256_add_pd(c_col4, _mm256_mul_pd(a_coli_r, bi4));
c_col5 = _mm256_add_pd(c_col5, _mm256_mul_pd(a_coli_r, bi5));
c_col6 = _mm256_add_pd(c_col6, _mm256_mul_pd(a_coli_r, bi6));
c_col7 = _mm256_add_pd(c_col7, _mm256_mul_pd(a_coli_r, bi7));
}
if (K % 2 != 0){
a_coli_l = _mm256_loadu_pd(a);
bi0 = _mm256_broadcast_sd(b++);
bi1 = _mm256_broadcast_sd(b++);
bi2 = _mm256_broadcast_sd(b++);
bi3 = _mm256_broadcast_sd(b++);
c_col0 = _mm256_add_pd(c_col0, _mm256_mul_pd(a_coli_l, bi0));
c_col1 = _mm256_add_pd(c_col1, _mm256_mul_pd(a_coli_l, bi1));
c_col2 = _mm256_add_pd(c_col2, _mm256_mul_pd(a_coli_l, bi2));
c_col3 = _mm256_add_pd(c_col3, _mm256_mul_pd(a_coli_l, bi3));
}
c_col0 = _mm256_add_pd(c_col0, c_col4);
c_col1 = _mm256_add_pd(c_col1, c_col5);
c_col2 = _mm256_add_pd(c_col2, c_col6);
c_col3 = _mm256_add_pd(c_col3, c_col7);
_mm256_storeu_pd(c, c_col0);
_mm256_storeu_pd(c01_ptr, c_col1);
_mm256_storeu_pd(c02_ptr, c_col2);
_mm256_storeu_pd(c03_ptr, c_col3);
}
static inline void copy_a (int lda, const int K, double* a_src, double* a_dst) {
for (int i = 0; i < K; ++i)
{
for ( int j = 0; j < 4; ++j){
*a_dst++ = a_src[j];
}
a_src += lda;
}
}
// copy and transpose B
static inline void copy_b (int lda, const int K, double* b_src, double* b_dst) {
double* b_ptr[4];
b_ptr[0] = b_src;
for(int i = 1; i < 4; ++i){
b_ptr[i] = b_ptr[i-1] + lda;
}
for (int i = 0; i < K; ++i) {
for (int j = 0; j < 4; ++j){
*b_dst++ = *b_ptr[j]++;
}
}
}
// this function assumes data is stored in col-major
// if data is in row major, call it like matmul4x4(B, A, C)
void matmul4x4(double *A, double *B, double *C) {
__m256d col[4], sum[4];
//load every column into registers
for(int i=0; i<4; i++)
col[i] = _mm256_load_pd(&A[i*4]);
for(int i=0; i<4; i++) {
sum[i] = _mm256_setzero_pd();
for(int j=0; j<4; j++) {
sum[i] = _mm256_add_pd(_mm256_mul_pd(_mm256_set1_pd(B[i*4+j]), col[j]), sum[i]);
}
}
for(int i=0; i<4; i++)
_mm256_store_pd(&C[i*4], sum[i]);
}
/* This auxiliary subroutine performs a smaller dgemm operation
* C := C + A * B
* where C is M-by-N, A is M-by-K, and B is K-by-N. */
static inline void do_block (int lda, int M, int N, int K, double* A, double* B, double* C)
{
double A_block[M*K], B_block[K*N];
double *a_ptr, *b_ptr, *c;
//posix_memalign((void **)&A_block, 64, M * K * sizeof(double));
//posix_memalign((void **)&B_block, 64, K * N * sizeof(double));
int residue1 = M % 4;
int residue2 = N % 4;
int M_floor = M - residue1;
int N_floor = N - residue2;
int i = 0, j = 0, p = 0;
/* For each column of B */
for (j = 0 ; j < N_floor; j += 4)
{
b_ptr = &B_block[K * j];
// copy and transpose B_block
copy_b(lda, K, B + j*lda, b_ptr);
/* For each row of A */
for (i = 0; i < M_floor; i += 4) {
a_ptr = &A_block[i * K];
if (j == 0) copy_a(lda, K, A + i, a_ptr);
c = C + i + j*lda;
matmul_4xkxkx4(lda, K, a_ptr, b_ptr, c);
}
}
if (residue1 != 0)
{
/* For each row of A */
for ( ; i < M; ++i)
/* For each column of B */
for (p = 0; p < N; ++p)
{
/* Compute C[i,j] */
double c_ip = ARRAY(C,i,p);
for (int k = 0; k < K; ++k)
c_ip += ARRAY(A,i,k) * ARRAY(B,k,p);
ARRAY(C,i,p) = c_ip;
}
}
if (residue2 != 0)
{
/* For each column of B */
for ( ; j < N; ++j)
/* For each row of A */
for (i = 0; i < M_floor; ++i)
{
/* Compute C[i,j] */
double cij = ARRAY(C,i,j);
for (int k = 0; k < K; ++k)
cij += ARRAY(A,i,k) * ARRAY(B,k,j);
ARRAY(C,i,j) = cij;
}
}
}
void print_matrix(double *M, int n_row, int n_col) {
for (int i = 0; i < n_row; i++){
for (int j = 0; j < n_col; j++){
printf("%f ", M[i + j * n_row]);
}
printf("\n");
}
printf("\n");
}
/* This routine performs a dgemm operation
* C := C + A * B
* where A, B, and C are lda-by-lda matrices stored in column-major format.
* On exit, A and B maintain their input values. */
/*
s
_________________
| ------- |
| | | | |
| i------- |
t | | | | |
| ------- |
| j |
| |
|_______________|
loop r and k are for accumulation
*/
void square_dgemm (int lda, double* A, double* B, double* C)
{
// reorcder loops for cache efficiency
for (int t = 0; t < lda; t += BLOCK_L2)
{
// For each block column of B
for (int s = 0; s < lda; s += BLOCK_L2)
{
// For each block row of A
for (int r = 0; r < lda; r += BLOCK_L2)
{
// compute end index of smaller block
int end_k = t + min(BLOCK_L2, lda-t);
int end_j = s + min(BLOCK_L2, lda-s);
int end_i = r + min(BLOCK_L2, lda-r);
for (int k = t; k < end_k; k += BLOCK_L1)
{
// For each block column of B
for (int j = s; j < end_j; j += BLOCK_L1)
{
// For each block row of A
for (int i = r; i < end_i; i += BLOCK_L1)
{
// compute block size
int K = min(BLOCK_L1, end_k-k);
int N = min(BLOCK_L1, end_j-j);
int M = min(BLOCK_L1, end_i-i);
/* Performs a smaller dgemm operation
* C' := C' + A' * B'
* where C' is M-by-N, A' is M-by-K, and B' is K-by-N. */
do_block(lda, M, N, K, A + i + k*lda, B + k + j*lda, C + i + j*lda);
}
}
}
}
}
}
}