diff --git a/.i18n/de/Game.pot b/.i18n/de/Game.pot index 445cc78..c4f8099 100644 --- a/.i18n/de/Game.pot +++ b/.i18n/de/Game.pot @@ -1,7 +1,7 @@ msgid "" msgstr "Project-Id-Version: Game v4.7.0\n" "Report-Msgid-Bugs-To: \n" -"POT-Creation-Date: Tue Sep 3 15:32:52 2024\n" +"POT-Creation-Date: Thu Sep 5 10:36:56 2024\n" "Last-Translator: \n" "Language-Team: none\n" "Language: de\n" @@ -5017,31 +5017,6 @@ msgid "**Robo**: Siehst du die Annahme `«{hs}» : f ∘ g = succ ∘ f`?\n" "`f₁ = f₂` in `∀ x, f₁ x = f₂ x` um." msgstr "" -#: Game.Levels.FunctionSurj.L13_SurjectiveRange -msgid "Range of Surjection" -msgstr "" - -#: Game.Levels.FunctionSurj.L13_SurjectiveRange -msgid "The range of a function is the set of all outputs.\n" -"\n" -"In this level you show that a function is surjective if and only if the range of\n" -"the function is equal to the universal subset of the codomain. For `f : A → B`,\n" -"the range of `f` is defined as\n" -"\n" -"```\n" -"range f : Set B := {b | ∃ a, f a = b}\n" -"```" -msgstr "" - -#: Game.Levels.FunctionSurj.L13_SurjectiveRange -msgid "**Du**: Wie zeigt man denn schon wieder Gleichheit von Mengen?" -msgstr "" - -#: Game.Levels.FunctionSurj.L13_SurjectiveRange -msgid "**Robo**: Ich habe ein relevantes Resultat gefunden: `mem_range`.\n" -"Such das mal in denem Inventar!" -msgstr "" - #: Game.Levels.FunctionSurj.L14_choose msgid "Every function with nonempty fibres has a right inverse." msgstr "" @@ -5176,15 +5151,6 @@ msgid "Als ihr das Problem gelöst habt, erschleicht euch ein starkes\n" "Also geht ihr zurück und nehmt die rechte Gabelung." msgstr "" -#: Game.Levels.FunctionInj.L03_InjectiveRange -msgid "Range of Injective" -msgstr "" - -#: Game.Levels.FunctionInj.L03_InjectiveRange -msgid "For an injective function `f : A → B` the fibres of the elements in the range\n" -"are singletons." -msgstr "" - #: Game.Levels.FunctionInj.L04_Injective msgid "Monotone Funktionen" msgstr "" @@ -5286,26 +5252,6 @@ msgstr "" msgid "" msgstr "" -#: Game.Levels.FunctionInj.L08_LeftInvPreimage -msgid "Preimage of the inverse" -msgstr "" - -#: Game.Levels.FunctionInj.L08_LeftInvPreimage -msgid "The image of a set `S : Set A` along a function `f : A → B` is the set of all elements\n" -"`b : B` that are the image of some element `a : A` in `S`. We denote it by `f '' S` and\n" -"define it as below.\n" -"```\n" -"f '' S = {b : B | ∃ a : A, a ∈ S ∧ f a = b}\n" -"```\n" -"\n" -"Note that an element of the image is a triple `⟨b, a, h⟩` where `b` is the image of `a` and `h`\n" -"is the proof that `a` is in `S` and `f a = b`.\n" -"\n" -"The image of function with a left in\n" -"verse is a subset of the preimage of the inverse of\n" -"the same subset." -msgstr "" - #: Game.Levels.FunctionInj.L09_InjOfHasLeftInv msgid "Functions with left inverses are injective." msgstr "" @@ -5323,11 +5269,11 @@ msgid "" msgstr "" #: Game.Levels.FunctionInj.L11_InjHasLeftInv -msgid "Injections with nonempty domain have retract." +msgid "Injections have a left inverse, and vice versa" msgstr "" #: Game.Levels.FunctionInj.L11_InjHasLeftInv -msgid "In this level you show that an injective function with a nonempty domain has a left inverse." +msgid "" msgstr "" #: Game.Levels.FunctionInj @@ -5496,11 +5442,74 @@ msgstr "" msgid "In this level, you will prove that the the diagonal function is injective." msgstr "" -#: Game.Levels.FunctionBij.L09_Preimage_Injective +#: Game.Levels.FunctionBij +msgid "Bijektivität" +msgstr "" + +#: Game.Levels.FunctionBij +msgid "Auf der Suche nach dem Buch der Urbilder landet ihr auf einem kleinen Mond, der bis auf\n" +"eine Insel komplett mit Wasser bedeckt zu sein scheint.\n" +"\n" +"Auf der Insel seht ihr verschiedene große und kleine Behausungen, manche aus Stroh und Holz,\n" +"vereinzelte aus Lehm.\n" +"\n" +"Planlos geht ihr zum ersten Haus bei dem jemand vorne außen sitzt." +msgstr "" + +#: Game.Levels.FunctionImage.L01_ImagePreimage +msgid "Bild/Urbild" +msgstr "" + +#: Game.Levels.FunctionImage.L01_ImagePreimage +msgid "`f '' S` ist das Bild,\n" +"`f ⁻¹' V` das Urbild,\n" +"\n" +"`f '' S := {f a | a ∈ S}`\n" +"`f ⁻¹' V := {a | f a ∈ V}`" +msgstr "" + +#: Game.Levels.FunctionImage.L01_ImagePreimage +msgid "" +msgstr "" + +#: Game.Levels.FunctionImage.L02_ImagePreimage +msgid "" +msgstr "" + +#: Game.Levels.FunctionImage.L03_InjectiveRange +msgid "Range of Injective" +msgstr "" + +#: Game.Levels.FunctionImage.L03_InjectiveRange +msgid "For an injective function `f : A → B` the fibres of the elements in the range\n" +"are singletons." +msgstr "" + +#: Game.Levels.FunctionImage.L04_LeftInvPreimage +msgid "Preimage of the inverse" +msgstr "" + +#: Game.Levels.FunctionImage.L04_LeftInvPreimage +msgid "The image of a set `S : Set A` along a function `f : A → B` is the set of all elements\n" +"`b : B` that are the image of some element `a : A` in `S`. We denote it by `f '' S` and\n" +"define it as below.\n" +"```\n" +"f '' S = {b : B | ∃ a : A, a ∈ S ∧ f a = b}\n" +"```\n" +"\n" +"Note that an element of the image is a triple `⟨b, a, h⟩` where `b` is the image of `a` and `h`\n" +"is the proof that `a` is in `S` and `f a = b`.\n" +"\n" +"The image of function with a left in\n" +"verse is a subset of the preimage of the inverse of\n" +"the same subset." +msgstr "" + +#: Game.Levels.FunctionImage.L05_Preimage_Injective msgid "Preimage of surjective is injective" msgstr "" -#: Game.Levels.FunctionBij.L09_Preimage_Injective +#: Game.Levels.FunctionImage.L05_Preimage_Injective msgid "Given a function `f : A → B` we obtain a function `preimage f : Set B → Set A`\n" "by taking the preimage of sets of `B`. Recall that\n" "```\n" @@ -5510,22 +5519,37 @@ msgid "Given a function `f : A → B` we obtain a function `preimage f : Set B "Show that `preimage f` is injective iff f is surjective." msgstr "" -#: Game.Levels.FunctionBij.L09_Preimage_Injective +#: Game.Levels.FunctionImage.L05_Preimage_Injective msgid "Now `change (f ⁻¹' {«{y}»}).Nonempty`" msgstr "" -#: Game.Levels.FunctionBij -msgid "Bijektivität" +#: Game.Levels.FunctionImage.L06_SurjectiveRange +msgid "Range of Surjection" msgstr "" -#: Game.Levels.FunctionBij -msgid "Auf der Suche nach dem Buch der Urbilder landet ihr auf einem kleinen Mond, der bis auf\n" -"eine Insel komplett mit Wasser bedeckt zu sein scheint.\n" +#: Game.Levels.FunctionImage.L06_SurjectiveRange +msgid "The range of a function is the set of all outputs.\n" "\n" -"Auf der Insel seht ihr verschiedene große und kleine Behausungen, manche aus Stroh und Holz,\n" -"vereinzelte aus Lehm.\n" +"In this level you show that a function is surjective if and only if the range of\n" +"the function is equal to the universal subset of the codomain. For `f : A → B`,\n" +"the range of `f` is defined as\n" "\n" -"Planlos geht ihr zum ersten Haus bei dem jemand vorne außen sitzt." +"```\n" +"range f : Set B := {b | ∃ a, f a = b}\n" +"```" +msgstr "" + +#: Game.Levels.FunctionImage.L06_SurjectiveRange +msgid "**Du**: Wie zeigt man denn schon wieder Gleichheit von Mengen?" +msgstr "" + +#: Game.Levels.FunctionImage.L06_SurjectiveRange +msgid "**Robo**: Ich habe ein relevantes Resultat gefunden: `mem_range`.\n" +"Such das mal in denem Inventar!" +msgstr "" + +#: Game.Levels.FunctionImage +msgid "Injektivität" msgstr "" #: Game diff --git a/Game.lean b/Game.lean index c15d239..97df290 100644 --- a/Game.lean +++ b/Game.lean @@ -18,6 +18,7 @@ import Game.Levels.NewStuff.Prime import Game.Levels.FunctionSurj import Game.Levels.FunctionInj import Game.Levels.FunctionBij +import Game.Levels.FunctionImage -- import Game.Levels.SetTheory -- *uncomment the following line to get the incomplete planets.* diff --git a/Game/Levels/FunctionBij.lean b/Game/Levels/FunctionBij.lean index 7ed3d90..03a8cce 100644 --- a/Game/Levels/FunctionBij.lean +++ b/Game/Levels/FunctionBij.lean @@ -6,7 +6,6 @@ import Game.Levels.FunctionBij.L05_BijectionEquivalence import Game.Levels.FunctionBij.L06_CurryEquiv import Game.Levels.FunctionBij.L07_CurrySurjective import Game.Levels.FunctionBij.L08_Diagonal -import Game.Levels.FunctionBij.L09_Preimage_Injective World "FunctionBij" Title "Bijektivität" diff --git a/Game/Levels/FunctionImage.lean b/Game/Levels/FunctionImage.lean new file mode 100644 index 0000000..a757b18 --- /dev/null +++ b/Game/Levels/FunctionImage.lean @@ -0,0 +1,9 @@ +import Game.Levels.FunctionImage.L01_ImagePreimage +import Game.Levels.FunctionImage.L02_ImagePreimage +import Game.Levels.FunctionImage.L03_InjectiveRange +import Game.Levels.FunctionImage.L04_LeftInvPreimage +import Game.Levels.FunctionImage.L05_Preimage_Injective +import Game.Levels.FunctionImage.L06_SurjectiveRange + +World "FunctionImage" +Title "Image/Preimage" diff --git a/Game/Levels/FunctionImage/L01_ImagePreimage.lean b/Game/Levels/FunctionImage/L01_ImagePreimage.lean new file mode 100644 index 0000000..f49b8ec --- /dev/null +++ b/Game/Levels/FunctionImage/L01_ImagePreimage.lean @@ -0,0 +1,34 @@ +import Game.Metadata + +open Function Set + +World "FunctionImage" +Level 1 +Title "Bild/Urbild" + +Introduction " +`f '' S` ist das Bild, +`f ⁻¹' V` das Urbild, + +`f '' S := {f a | a ∈ S}` +`f ⁻¹' V := {a | f a ∈ V}` +" + +/-- -/ +TheoremDoc Set.image_preimage_subset as "image_preimage_subset" in "Set" + +-- Set theory +example {x : Nat} (h : x ∈ {a : ℕ | Even a}) : False := by + obtain ⟨⟩ := h + sorry + +Statement Set.image_preimage_subset {A B : Type} (f : A → B) (S : Set B) : +f '' (f ⁻¹' S) ⊆ S := by + intro b + intro hb + simp at hb + obtain ⟨a, ha₁, ha₂⟩ := hb + rw [ha₂] at ha₁ + assumption + +NewDefinition Set.image Set.preimage diff --git a/Game/Levels/FunctionImage/L02_ImagePreimage.lean b/Game/Levels/FunctionImage/L02_ImagePreimage.lean new file mode 100644 index 0000000..322e88c --- /dev/null +++ b/Game/Levels/FunctionImage/L02_ImagePreimage.lean @@ -0,0 +1,22 @@ +import Game.Metadata + + +World "FunctionImage" +Level 2 +Title "" + +open Function Set + +Statement {A B : Type} {f : A → B} (hf : Surjective f) (s : Set B) : +f '' (f ⁻¹' s) = s := by + ext b + simp + constructor + · apply image_preimage_subset -- Lvl 1 + · intro hb + obtain ⟨a, ha⟩ := hf b + use a + constructor + · rw [ha] + assumption + · assumption diff --git a/Game/Levels/FunctionInj/L03_InjectiveRange.lean b/Game/Levels/FunctionImage/L03_InjectiveRange.lean similarity index 92% rename from Game/Levels/FunctionInj/L03_InjectiveRange.lean rename to Game/Levels/FunctionImage/L03_InjectiveRange.lean index 5cb8615..3292e33 100644 --- a/Game/Levels/FunctionInj/L03_InjectiveRange.lean +++ b/Game/Levels/FunctionImage/L03_InjectiveRange.lean @@ -1,7 +1,6 @@ import Game.Metadata - -World "FunctionInj" +World "FunctionImage" Level 3 Title "Range of Injective" @@ -27,3 +26,5 @@ Statement Injective.exists_unique_of_mem_range {A B : Type} {f : A → B} (hf : · intro a' ha' apply hf rw [ha',ha] + +NewDefinition Set.Range diff --git a/Game/Levels/FunctionInj/L08_LeftInvPreimage.lean b/Game/Levels/FunctionImage/L04_LeftInvPreimage.lean similarity index 97% rename from Game/Levels/FunctionInj/L08_LeftInvPreimage.lean rename to Game/Levels/FunctionImage/L04_LeftInvPreimage.lean index 47ffe41..68898ed 100644 --- a/Game/Levels/FunctionInj/L08_LeftInvPreimage.lean +++ b/Game/Levels/FunctionImage/L04_LeftInvPreimage.lean @@ -1,8 +1,8 @@ import Game.Metadata -World "FunctionInj" -Level 8 +World "FunctionImage" +Level 4 Title "Preimage of the inverse" diff --git a/Game/Levels/FunctionBij/L09_Preimage_Injective.lean b/Game/Levels/FunctionImage/L05_Preimage_Injective.lean similarity index 97% rename from Game/Levels/FunctionBij/L09_Preimage_Injective.lean rename to Game/Levels/FunctionImage/L05_Preimage_Injective.lean index 70bd8d1..252ae70 100644 --- a/Game/Levels/FunctionBij/L09_Preimage_Injective.lean +++ b/Game/Levels/FunctionImage/L05_Preimage_Injective.lean @@ -1,8 +1,8 @@ import Game.Metadata -World "FunctionBij" -Level 9 +World "FunctionImage" +Level 5 Title "Preimage of surjective is injective" diff --git a/Game/Levels/FunctionSurj/L13_SurjectiveRange.lean b/Game/Levels/FunctionImage/L06_SurjectiveRange.lean similarity index 97% rename from Game/Levels/FunctionSurj/L13_SurjectiveRange.lean rename to Game/Levels/FunctionImage/L06_SurjectiveRange.lean index 6482b6e..e9e84b5 100644 --- a/Game/Levels/FunctionSurj/L13_SurjectiveRange.lean +++ b/Game/Levels/FunctionImage/L06_SurjectiveRange.lean @@ -1,8 +1,8 @@ import Game.Metadata -World "FunctionSurj" -Level 13 +World "FunctionImage" +Level 6 Title "Range of Surjection" diff --git a/Game/Levels/FunctionImage/LXX_Set6.lean b/Game/Levels/FunctionImage/LXX_Set6.lean new file mode 100644 index 0000000..0d053c5 --- /dev/null +++ b/Game/Levels/FunctionImage/LXX_Set6.lean @@ -0,0 +1,15 @@ +import Game.Metadata + +open Set + +-- DELETE? + +example (f : ℝ → ℝ) (hfib : ncard (f ⁻¹' {0}) = 2) : ∃ (x₁ x₂ : ℝ ), x₁ ≠ x₂ ∧ f x₁ = 0 ∧ f x₂ = 0 := by + apply ncard_eq_two.mp at hfib + obtain ⟨ x₁, x₂, h_ne, h_fib_eq ⟩ := hfib + use x₁, x₂ + constructor + assumption + change x₁ ∈ f ⁻¹' {0} ∧ x₂ ∈ f ⁻¹' {0} + rw [h_fib_eq] + tauto diff --git a/Game/Levels/FunctionInj.lean b/Game/Levels/FunctionInj.lean index 291bf73..324fb8c 100644 --- a/Game/Levels/FunctionInj.lean +++ b/Game/Levels/FunctionInj.lean @@ -1,11 +1,9 @@ import Game.Levels.FunctionInj.L01_Injective import Game.Levels.FunctionInj.L02_Injective -import Game.Levels.FunctionInj.L03_InjectiveRange import Game.Levels.FunctionInj.L04_Injective import Game.Levels.FunctionInj.L05_Injective import Game.Levels.FunctionInj.L06_SuccHasLeftInv import Game.Levels.FunctionInj.L07_Extend -import Game.Levels.FunctionInj.L08_LeftInvPreimage import Game.Levels.FunctionInj.L09_InjOfHasLeftInv import Game.Levels.FunctionInj.L10_RightInvOfLeftInv import Game.Levels.FunctionInj.L11_InjHasLeftInv diff --git a/Game/Levels/FunctionInj/L04_Injective.lean b/Game/Levels/FunctionInj/L04_Injective.lean index 369e1ac..f375777 100644 --- a/Game/Levels/FunctionInj/L04_Injective.lean +++ b/Game/Levels/FunctionInj/L04_Injective.lean @@ -2,7 +2,7 @@ import Game.Metadata World "FunctionInj" -Level 4 +Level 3 Title "Monotone Funktionen" diff --git a/Game/Levels/FunctionInj/L05_Injective.lean b/Game/Levels/FunctionInj/L05_Injective.lean index 3edc215..69c55b8 100644 --- a/Game/Levels/FunctionInj/L05_Injective.lean +++ b/Game/Levels/FunctionInj/L05_Injective.lean @@ -2,7 +2,7 @@ import Game.Metadata World "FunctionInj" -Level 5 +Level 4 Title "Monotone Funktionen" diff --git a/Game/Levels/FunctionInj/L06_SuccHasLeftInv.lean b/Game/Levels/FunctionInj/L06_SuccHasLeftInv.lean index 350db50..03c88a1 100644 --- a/Game/Levels/FunctionInj/L06_SuccHasLeftInv.lean +++ b/Game/Levels/FunctionInj/L06_SuccHasLeftInv.lean @@ -2,7 +2,7 @@ import Game.Metadata World "FunctionInj" -Level 6 +Level 5 Title "Left Inverse" diff --git a/Game/Levels/FunctionInj/L07_Extend.lean b/Game/Levels/FunctionInj/L07_Extend.lean index b5f3921..d750516 100644 --- a/Game/Levels/FunctionInj/L07_Extend.lean +++ b/Game/Levels/FunctionInj/L07_Extend.lean @@ -2,7 +2,7 @@ import Game.Metadata World "FunctionInj" -Level 7 +Level 6 Title "Choosing an arbitrary element of a nonempty type." diff --git a/Game/Levels/FunctionInj/L09_InjOfHasLeftInv.lean b/Game/Levels/FunctionInj/L09_InjOfHasLeftInv.lean index c663014..92d5c85 100644 --- a/Game/Levels/FunctionInj/L09_InjOfHasLeftInv.lean +++ b/Game/Levels/FunctionInj/L09_InjOfHasLeftInv.lean @@ -2,7 +2,7 @@ import Game.Metadata World "FunctionInj" -Level 9 +Level 7 Title "Functions with left inverses are injective." diff --git a/Game/Levels/FunctionInj/L10_RightInvOfLeftInv.lean b/Game/Levels/FunctionInj/L10_RightInvOfLeftInv.lean index c2b7714..8ac6e3d 100644 --- a/Game/Levels/FunctionInj/L10_RightInvOfLeftInv.lean +++ b/Game/Levels/FunctionInj/L10_RightInvOfLeftInv.lean @@ -2,7 +2,7 @@ import Game.Metadata World "FunctionInj" -Level 10 +Level 8 Title "Injections with nonempty domain have retract." diff --git a/Game/Levels/FunctionInj/L11_InjHasLeftInv.lean b/Game/Levels/FunctionInj/L11_InjHasLeftInv.lean index 2166947..09eb1da 100644 --- a/Game/Levels/FunctionInj/L11_InjHasLeftInv.lean +++ b/Game/Levels/FunctionInj/L11_InjHasLeftInv.lean @@ -2,7 +2,7 @@ import Game.Metadata World "FunctionInj" -Level 11 +Level 9 Title "Injections have a left inverse, and vice versa" @@ -18,7 +18,7 @@ open Function Set Statement {A B : Type} [hA : Nonempty A] (f : A → B ) : ∀ b : B, ∃ a : A, f a = b ∨ ¬ ∃ a' : A , f a' = b := by have a₀ : A := Classical.arbitrary A intro b - by_cases hb : ∃ a' : A, f a' = b + by_cases hb : ∃ a' : A, f a' = b · obtain ⟨a,ha⟩ := hb use a left @@ -37,7 +37,7 @@ Statement injective_iff_hasLeftInverse {A B : Type} [hA : Nonempty A] (f : A /- exactly a previous level, now without hints -/ have a₀ : A := Classical.arbitrary A intro b - by_cases hb : ∃ a' : A, f a' = b + by_cases hb : ∃ a' : A, f a' = b · obtain ⟨a,ha⟩ := hb use a left @@ -52,9 +52,9 @@ Statement injective_iff_hasLeftInverse {A B : Type} [hA : Nonempty A] (f : A obtain hpos | hneg := hg (f a) · assumption · push_neg at hneg - have : f a ≠ f a := hneg a + have : f a ≠ f a := hneg a contradiction - · /- Injective f → HasLeftInverse f + · /- Injective f → HasLeftInverse f exactly a previous level, now without hints-/ intro hL intro a a' ha @@ -63,4 +63,3 @@ Statement injective_iff_hasLeftInverse {A B : Type} [hA : Nonempty A] (f : A unfold LeftInverse at hg rw [hg a, hg a'] at ha assumption - diff --git a/Game/Levels/FunctionSurj.lean b/Game/Levels/FunctionSurj.lean index afad8c1..aad9514 100644 --- a/Game/Levels/FunctionSurj.lean +++ b/Game/Levels/FunctionSurj.lean @@ -10,7 +10,6 @@ import Game.Levels.FunctionSurj.L09_LeftInverse import Game.Levels.FunctionSurj.L10_RightInverse import Game.Levels.FunctionSurj.L11_Surjective import Game.Levels.FunctionSurj.L12_Surjective -import Game.Levels.FunctionSurj.L13_SurjectiveRange import Game.Levels.FunctionSurj.L14_choose import Game.Levels.FunctionSurj.L15_SurjectiveTFAE diff --git a/Game/Levels/FunctionSurj/L14_choose.lean b/Game/Levels/FunctionSurj/L14_choose.lean index 6aa62fd..4cc0db4 100644 --- a/Game/Levels/FunctionSurj/L14_choose.lean +++ b/Game/Levels/FunctionSurj/L14_choose.lean @@ -2,7 +2,7 @@ import Game.Metadata World "FunctionSurj" -Level 14 +Level 13 Title "Every function with nonempty fibres has a right inverse." diff --git a/Game/Levels/FunctionSurj/L15_SurjectiveTFAE.lean b/Game/Levels/FunctionSurj/L15_SurjectiveTFAE.lean index 3de688a..8540a1d 100644 --- a/Game/Levels/FunctionSurj/L15_SurjectiveTFAE.lean +++ b/Game/Levels/FunctionSurj/L15_SurjectiveTFAE.lean @@ -2,7 +2,7 @@ import Game.Metadata World "FunctionSurj" -Level 15 +Level 14 Title "Every surjection has a right inverse"