This repository has been archived by the owner on Aug 29, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbpm_export.py
executable file
·73 lines (61 loc) · 2.33 KB
/
bpm_export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#! /usr/bin/env python
"""
Script to read BPM profile exports in .CSV format, calculate mean and standard
error using our own function, and then print out all entries in a simple TXT
format.
Usage:
./bpm_export.py <CSV_FILES>...
"""
import pandas as pd
from time import strptime, mktime
def weighted_mean(x, w):
"""Calculate weighted mean and standard error according to
https://en.wikipedia.org/wiki/Weighted_arithmetic_mean#Bootstrapping_validation
"""
w_tot = sum(w)
x_mean = sum(x * w) / w_tot
sig_sq = sum(w**2 * (x - x_mean)**2) / w_tot * len(x) / (len(x) - 1)
return x_mean, sig_sq**0.5
def csv_to_tab(fnames, mean_func=weighted_mean):
"""Read a list of CSV files, calculate mean and standard error from the
beam profiles using the given function, and return as pandas DataFrame."""
dicts = []
for fname in fnames:
header, custom, data = parse_csv_export(fname)
x, sigx = mean_func(data['Drahtposition x'], data['X'])
y, sigy = mean_func(data['Drahtposition y'], data['Y'])
time = mktime(strptime(header['Startzeit'], '%d.%m.%Y %H:%M:%S'))
dicts.append({
'bpm': header['Gerät'],
'x': x,
'y': y,
'sigx': sigx,
'sigy': sigy,
'cycle': header['Zyklus ID'],
'time': round(time),
})
return pd.DataFrame(
dicts, columns=['bpm', 'x', 'y', 'sigx', 'sigy', 'cycle', 'time'])
def parse_csv_export(fname):
"""Parses a single CSV file, returns ``(header, custom, data)`` with
header and custom given as dicts, and data as pandas.DataFrame."""
with open(fname, encoding='latin1') as f:
header = dict(_parse_section(f, '<HEADER>', '</HEADER>'))
custom = dict(_parse_section(f, '<CUSTOM>', '</CUSTOM>'))
data = pd.read_csv(f, sep=';')
data.set_index('Drahtnummer')
return header, custom, data
def _parse_section(lines, start, end):
"""Internal function, parses a <START></END> delimited section in a .CSV
file, iterates over the items."""
for line in lines:
if line.strip() == start:
break
for line in lines:
if line.strip() == end:
break
yield line.strip().split(';')
if __name__ == '__main__':
import sys
df = csv_to_tab(sys.argv[1:])
print(df.to_string())