forked from dvschultz/stylegan2-ada-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassifier.py
241 lines (201 loc) · 7.59 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import logging
from pathlib import Path
import hydra
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torchvision.transforms as tvf
import wandb
from adabelief_pytorch import AdaBelief
from omegaconf import DictConfig, OmegaConf
from pytorch_lightning.callbacks import ModelCheckpoint, RichProgressBar
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.plugins import DDPPlugin
from torch.distributed.algorithms.ddp_comm_hooks import default_hooks as default
from torch.utils.data import DataLoader, random_split
from torchmetrics import Accuracy, F1Score, MetricCollection, Precision, Recall
from torchvision.datasets import ImageFolder
from torchvision.models import vgg19_bn
from lightning_utils import set_debug_apis, split_normalization_params
log = logging.getLogger(__name__)
class MyDataset(ImageFolder):
def __init__(
self,
root: str,
transform=None,
target_transform=None,
label_smoothing=0.0,
):
super().__init__(root, transform, target_transform)
self.label_smoothing = label_smoothing
def __getitem__(self, index: int):
sample, target = super().__getitem__(index)
if self.label_smoothing > 0.0:
target = abs(target - self.label_smoothing)
return sample, target
class DataModule(pl.LightningDataModule):
def __init__(self, config):
super().__init__()
self.config = config
self.normal_transform = tvf.ToTensor()
def setup(self, stage=None) -> None:
dataset = MyDataset(
root=self.config.root,
transform=self.normal_transform,
label_smoothing=self.config.label_smoothing,
)
self.val_set, self.train_set = random_split(
dataset, (self.config.val_size, self.config.train_size)
)
self.train_set.dataset.transform = tvf.Compose(
[tvf.RandomHorizontalFlip(), self.normal_transform]
)
def train_dataloader(self):
return DataLoader(
self.train_set,
batch_size=self.config.batch_size,
shuffle=True,
num_workers=self.config.num_workers,
pin_memory=self.config.pin_memory,
drop_last=True,
)
def val_dataloader(self):
return DataLoader(
self.val_set,
batch_size=self.config.batch_size,
shuffle=False,
num_workers=self.config.num_workers,
pin_memory=self.config.pin_memory,
drop_last=False,
)
class Classifier(pl.LightningModule):
def __init__(self, config):
super().__init__()
self.save_hyperparameters(config)
self.net = vgg19_bn(
pretrained=self.hparams.pretrained, progress=True, num_classes=1
) # We're doing binary classification
self.criterion = nn.BCEWithLogitsLoss()
metrics = MetricCollection([Accuracy(), Precision(), Recall(), F1Score()])
self.train_metrics = metrics.clone(prefix="train/")
self.val_metrics = metrics.clone(prefix="val/")
def forward(self, x):
return self.net(x)
def _calculate_loss(self, logit, y):
y = y.unsqueeze(-1)
loss = self.criterion(logit, y.to(logit.dtype))
return {"loss": loss}
def step(self, batch):
x, y = batch
logit = self(x)
loss_dict = self._calculate_loss(logit, y)
return logit, y, loss_dict
def get_log(self, loss_dict, logit, y, state="train"):
assert state in ["train", "val"]
y = y.unsqueeze(-1)
if y.is_floating_point():
y = y.round().to(torch.int64)
y_hat = logit.sigmoid()
logs = {"train": self.train_metrics, "val": self.val_metrics}[state](y_hat, y)
for key, val in loss_dict.items():
logs[f"{state}/{key}"] = val
return logs
def training_step(self, batch, *args, **kwargs):
logit, y, loss_dict = self.step(batch)
logs = self.get_log(loss_dict, logit, y, state="train")
self.log_dict(
logs,
on_step=True,
on_epoch=True,
sync_dist=self.hparams.sync_dist,
)
return loss_dict["loss"]
def validation_step(self, batch, *args, **kwargs):
logit, y, loss_dict = self.step(batch)
logs = self.get_log(loss_dict, logit, y, state="val")
self.log_dict(
logs,
on_step=True,
on_epoch=True,
sync_dist=self.hparams.sync_dist,
)
return None
def configure_optimizers(self):
optim_ops = self.hparams.optimizer
if optim_ops.norm_weight_decay is None:
parameters = self.parameters()
else:
param_groups = split_normalization_params(self)
wd_groups = [optim_ops.norm_weight_decay, optim_ops.weight_decay]
parameters = [
{"params": p, "weight_decay": w}
for p, w in zip(param_groups, wd_groups)
if p
]
optimizer = AdaBelief(
parameters, lr=optim_ops.lr, weight_decay=optim_ops.weight_decay
)
return {
"optimizer": optimizer,
}
def optimizer_zero_grad(self, epoch, batch_idx, optimizer, optimizer_idx):
optimizer.zero_grad(
set_to_none=True
) # This is said that can speed up the training process
def train(config):
config.seed = pl.seed_everything(seed=config.seed, workers=True)
wandb_logger = WandbLogger(
project="nsd-bedroom256-boundary",
log_model=False,
settings=wandb.Settings(start_method="fork"),
name=Path.cwd().stem,
)
# Create callbacks
callbacks = []
callbacks.append(ModelCheckpoint(**config.model_ckpt))
callbacks.append(RichProgressBar(config.refresh_rate))
OmegaConf.set_struct(config, False)
strategy = config.trainer.pop("strategy", None)
OmegaConf.set_struct(config, True)
if strategy == "ddp":
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have
# TODO: Currently only handles gpus = -1 or an int number
if config.trainer.gpus == -1:
config.trainer.gpus = torch.cuda.device_count()
num_nodes = getattr(config.trainer, "num_nodes", 1)
total_gpus = max(1, config.trainer.gpus * num_nodes)
config.dataset.batch_size = int(config.dataset.batch_size / total_gpus)
config.dataset.num_workers = int(config.dataset.num_workers / total_gpus)
strategy = DDPPlugin(
find_unused_parameters=config.ddp_plugin.find_unused_params,
gradient_as_bucket_view=True,
ddp_comm_hook=default.fp16_compress_hook
if config.ddp_plugin.fp16_hook
else None,
)
model = Classifier(config.model)
datamodule = DataModule(config.dataset)
trainer = pl.Trainer(
logger=wandb_logger,
callbacks=callbacks,
strategy=strategy,
**config.trainer,
)
wandb_logger.watch(model, log_graph=False)
trainer.fit(model, datamodule=datamodule)
@hydra.main(config_path="configs", config_name="classification")
def main(config: DictConfig) -> None:
log.info("Bedroom 256 boundary finder")
log.info(f"Current working directory : {Path.cwd()}")
if config.state == "train":
set_debug_apis(state=False)
train(config)
elif config.state == "debug":
pass
elif config.state == "test":
set_debug_apis(state=False)
pass
if __name__ == "__main__":
main()