forked from Yuantian013/GLC-abandon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSRDDPG_V7.py
569 lines (487 loc) · 26 KB
/
SRDDPG_V7.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
# Useful Package
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
import time
# from ENV_V0 import CartPoleEnv_adv as dreamer
from cartpole_uncertainty import CartPoleEnv_adv as dreamer
import os
import math
# For GPU
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
##################### 备忘 ###################
#Lambda更新
#Disturb训练方式
##################### hyper parameters ####################
MAX_EPISODES = 50000
MAX_EP_STEPS =2500
LR_A = 0.0001 # learning rate for actor
LR_C = 0.0002 # learning rate for critic
LR_D = 0.0001 # learning rate for disturb
GAMMA = 0.99 # reward discount
TAU = 0.01 # soft replacement
MEMORY_CAPACITY = 10000
CONS_MEMORY_CAPACITY = 1000
BATCH_SIZE = 128
labda=10.
tol = 0.001
MIU = 10.
ALPHA3 = 0
# Function switch
RENDER = True
DISTURB = False
DREAMER = False
print("Dreamer = ",DREAMER,",DISTURB = " ,DISTURB,",RENDER = ",RENDER)
# For analyse
EWMA_p=0.95
EWMA_step=np.zeros((1,MAX_EPISODES+1))
EWMA_reward=np.zeros((1,MAX_EPISODES+1))
iteration=np.zeros((1,MAX_EPISODES+1))
# Training setting
var = 5 # control exploration
t1 = time.time()
max_reward=400000
max_ewma_reward=200000
############################### DDPG ####################################
class DDPG(object):
def __init__(self, a_dim, s_dim, a_bound,disturb_switch):
############################### Model parameters ####################################
self.memory = np.zeros((MEMORY_CAPACITY, s_dim * 2 + a_dim + 4), dtype=np.float32)
self.cons_memory = np.zeros((CONS_MEMORY_CAPACITY, s_dim * 2 + a_dim + 4), dtype=np.float32)
self.pointer = 0
self.cons_pointer = 0
self.sess = tf.Session()
self.a_dim, self.s_dim, self.a_bound = a_dim, s_dim, a_bound,
self.S = tf.placeholder(tf.float32, [None, s_dim], 's')
self.S_ = tf.placeholder(tf.float32, [None, s_dim], 's_')
self.cons_S = tf.placeholder(tf.float32, [None, s_dim], 's')
self.cons_S_ = tf.placeholder(tf.float32, [None, s_dim], 's_')
self.R = tf.placeholder(tf.float32, [None, 1], 'r')
self.l_R = tf.placeholder(tf.float32, [None, 1], 'l_r') # 给lyapunov设计的reward
self.LR_A = tf.placeholder(tf.float32, None, 'LR_A')
self.LR_C = tf.placeholder(tf.float32, None, 'LR_C')
self.LR_D = tf.placeholder(tf.float32, None, 'LR_D')
self.labda = tf.placeholder(tf.float32, None, 'Lambda')
self.a = self._build_a(self.S, ) # 这个网络用于及时更新参数
self.d = self._build_d(self.S, ) # 这个网络用于及时更新参数
self.q = self._build_c(self.S, self.a, self.d) # 这个网络是用于及时更新参数
self.l = self._build_l(self.S, self.a) # lyapunov 网络
self.DISTURB=disturb_switch
a_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Actor')
c_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Critic')
d_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Disturber')
l_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Lyapunov')
############################### Model Learning Setting ####################################
ema = tf.train.ExponentialMovingAverage(decay=1 - TAU) # soft replacement
def ema_getter(getter, name, *args, **kwargs):
return ema.average(getter(name, *args, **kwargs))
target_update = [ema.apply(a_params), ema.apply(c_params), ema.apply(d_params), ema.apply(l_params)] # soft update operation
beta = 0.01
a_ = self._build_a(self.S_, reuse=True, custom_getter=ema_getter) # replaced target parameters
cons_a = self._build_a(self.cons_S, reuse=True)
cons_a_ = self._build_a(self.cons_S_, reuse=True)
d_ = self._build_d(self.S_, reuse=True, custom_getter=ema_getter) # replaced target parameters
# self.cons_d = self._build_d(self.cons_S, reuse=True)
# cons_d_ = self._build_d(self.cons_S_, reuse=True)
q_ = self._build_c(self.S_, tf.stop_gradient(a_), tf.stop_gradient(d_), reuse=True, custom_getter=ema_getter)
l_ = self._build_l(self.S_, tf.stop_gradient(a_), reuse=True, custom_getter=ema_getter) # lyapunov 网络
self.cons_l = self._build_l(self.cons_S, tf.stop_gradient(cons_a), reuse=True)
self.cons_l_ = self._build_l(self.cons_S_, cons_a_, reuse=True)
self.l_lambda = tf.reduce_mean(self.cons_l_ - self.cons_l + ALPHA3 * self.l_R)
a_loss = - tf.reduce_mean(self.q) +self.labda * self.l_lambda
d_loss = tf.reduce_mean(self.q)
self.atrain = tf.train.AdamOptimizer(self.LR_A).minimize(a_loss, var_list=a_params)#以learning_rate去训练,方向是minimize loss,调整列表参数,用adam
self.dtrain = tf.train.AdamOptimizer(self.LR_D).minimize(d_loss,
var_list=d_params) # 以learning_rate去训练,方向是minimize loss,调整列表参数,用adam
with tf.control_dependencies(target_update): # soft replacement happened at here
q_target = self.R + GAMMA * q_ + beta*tf.matmul(self.d, tf.transpose(self.d)) # 没有d的时候就是普通的ddpg
l_target = self.l_R + GAMMA/3 * l_ # Lyapunov critic
self.td_error = tf.losses.mean_squared_error(labels=q_target, predictions=self.q)
self.l_error = tf.losses.mean_squared_error(labels=l_target, predictions=self.l)
self.ctrain = tf.train.AdamOptimizer(self.LR_C).minimize(self.td_error, var_list=c_params)
self.ltrain = tf.train.AdamOptimizer(self.LR_C).minimize(self.l_error, var_list=l_params)
self.sess.run(tf.global_variables_initializer())
self.saver = tf.train.Saver()
def choose_action(self, s):
return self.sess.run(self.a, {self.S: s[np.newaxis, :]})[0]
def choose_disturb(self, s):
return self.sess.run(self.d, {self.S: s[np.newaxis, :]})[0]
def learn(self,LR_A,LR_D,LR_C,labda):
indices = np.random.choice(MEMORY_CAPACITY, size=BATCH_SIZE)
bt = self.memory[indices, :]
bs = bt[:, :self.s_dim] # state
ba = bt[:, self.s_dim: self.s_dim + self.a_dim] # action
bd = bt[:, self.s_dim + self.a_dim: self.s_dim + self.a_dim+2] # disturb
br = bt[:, -self.s_dim - 2: -self.s_dim-1] # reward
blr = bt[:, -self.s_dim - 1: -self.s_dim] # l_reward
bs_ = bt[:, -self.s_dim:] # next state
# 边缘的 s a s_ l_r
indices = np.random.choice(CONS_MEMORY_CAPACITY, size=BATCH_SIZE)
bt = self.cons_memory[indices, :]
cons_bs = bt[:, :self.s_dim]
cons_ba = bt[:, self.s_dim: self.s_dim + self.a_dim]
cons_bs_ = bt[:, -self.s_dim:]
cons_blr = bt[:, -self.s_dim - 1: -self.s_dim]
if self.DISTURB:
self.sess.run(self.dtrain, {self.S: bs, self.LR_D: LR_D})
self.sess.run(self.atrain, {self.S: bs, self.S_: bs_, self.LR_A: LR_A,self.labda: labda,self.cons_S:cons_bs,
self.cons_S_:cons_bs_, self.l_R:cons_blr})
self.sess.run(self.ctrain,
{self.S: bs, self.a: ba, self.R: br, self.S_: bs_,self.LR_C: LR_C, self.d: bd})
self.sess.run(self.ltrain,
{self.S: bs, self.a: ba, self.S_:bs_, self.l_R: blr, self.LR_C: LR_C})
return self.sess.run(self.l_lambda, {self.cons_S:cons_bs,
self.cons_S_:cons_bs_, self.l_R:cons_blr}), \
self.sess.run(self.td_error,
{self.S: bs, self.a: ba, self.R: br, self.S_: bs_, self.LR_C: LR_C, self.d: bd}), \
self.sess.run(self.l_error, {self.S: cons_bs, self.a: cons_ba, self.S_:cons_bs_, self.l_R: cons_blr})
def evaulate_lyapunov(self, s):
return self.sess.run(self.l, {self.S:s[np.newaxis, :]})
def store_transition(self, s, a, d, r, l_r, s_):
transition = np.hstack((s, a, d,[r], [l_r], s_))
index = self.pointer % MEMORY_CAPACITY # replace the old memory with new memory
self.memory[index, :] = transition
self.pointer += 1
def store_edge_transition(self, s, a, d, r, l_r, s_):
"""把数据存入constraint buffer"""
transition = np.hstack((s, a, d, [r], [l_r], s_))
index = self.pointer % CONS_MEMORY_CAPACITY # replace the old memory with new memory
self.cons_memory[index, :] = transition
self.cons_pointer += 1
#action 选择模块也是actor模块
def _build_a(self, s, reuse=None, custom_getter=None):
trainable = True
with tf.variable_scope('Actor', reuse=reuse, custom_getter=custom_getter):
net_0 = tf.layers.dense(s, 256, activation=tf.nn.relu, name='l1', trainable=trainable)#原始是30
net_1 = tf.layers.dense(net_0, 256, activation=tf.nn.relu, name='l2', trainable=trainable) # 原始是30
net_2 = tf.layers.dense(net_1, 256, activation=tf.nn.relu, name='l3', trainable=trainable) # 原始是30
net_3 = tf.layers.dense(net_2, 128, activation=tf.nn.relu, name='l4', trainable=trainable) # 原始是30
a = tf.layers.dense(net_3, self.a_dim, activation=tf.nn.tanh, name='a', trainable=trainable)
return tf.multiply(a, self.a_bound, name='scaled_a')
#critic模块
def _build_c(self, s, a,d,reuse=None, custom_getter=None):
trainable = True if reuse is None else False
with tf.variable_scope('Critic', reuse=reuse, custom_getter=custom_getter):
n_l1 = 512#30
w1_s = tf.get_variable('w1_s', [self.s_dim, n_l1], trainable=trainable)
w1_a = tf.get_variable('w1_a', [self.a_dim, n_l1], trainable=trainable)
w1_d = tf.get_variable('w1_d', [self.s_dim/2, n_l1], trainable=trainable)
b1 = tf.get_variable('b1', [1, n_l1], trainable=trainable)
net_0 = tf.nn.relu(tf.matmul(s, w1_s) + tf.matmul(a, w1_a)+tf.matmul(d, w1_d)+b1)
net_1 = tf.layers.dense(net_0, 512, activation=tf.nn.relu, name='l2', trainable=trainable)
net_2 = tf.layers.dense(net_1, 256, activation=tf.nn.relu, name='l3', trainable=trainable)
net_3 = tf.layers.dense(net_2, 128, activation=tf.nn.relu, name='l4', trainable=trainable)
# net_4 = tf.layers.dense(net_3, 64, activation=tf.nn.relu, name='l5', trainable=trainable)
return tf.layers.dense(net_3, 1, trainable=trainable) # Q(s,a)
# lyapunov模块
def _build_l(self, s, a, reuse=None, custom_getter=None):
trainable = True if reuse is None else False
with tf.variable_scope('Lyapunov', reuse=reuse, custom_getter=custom_getter):
n_l1 = 512#30
w1_s = tf.get_variable('w1_s', [self.s_dim, n_l1], trainable=trainable)
w1_a = tf.get_variable('w1_a', [self.a_dim, n_l1], trainable=trainable)
b1 = tf.get_variable('b1', [1, n_l1], trainable=trainable)
net_0 = tf.nn.relu(tf.matmul(s, w1_s) + tf.matmul(a, w1_a)+b1)
net_1 = tf.layers.dense(net_0, 512, activation=tf.nn.relu, name='l2', trainable=trainable)
net_2 = tf.layers.dense(net_1, 256, activation=tf.nn.relu, name='l3', trainable=trainable)
net_3 = tf.layers.dense(net_2, 128, activation=tf.nn.relu, name='l4', trainable=trainable)
return tf.layers.dense(net_3, 1, trainable=trainable) # Q(s,a)
def _build_d(self, s, reuse=None, custom_getter=None):
theta_threshold_radians = 20 * 2 * math.pi / 360
x_threshold = 5
trainable = True
with tf.variable_scope('Disturber', reuse=reuse, custom_getter=custom_getter):
net_0 = tf.layers.dense(s, 512, activation=tf.nn.relu, name='l1', trainable=trainable)
net_1 = tf.layers.dense(net_0, 512, activation=tf.nn.relu, name='l2', trainable=trainable)
net_2 = tf.layers.dense(net_1, 512, activation=tf.nn.relu, name='l3', trainable=trainable)
net_3 = tf.layers.dense(net_2, 256, activation=tf.nn.relu, name='l4', trainable=trainable)
d = tf.layers.dense(net_3, self.s_dim/2, activation=tf.nn.tanh, name='d', trainable=trainable)
return tf.multiply(d, [x_threshold/500,theta_threshold_radians/500], name='scaled_d')
def save_result(self):
save_path = self.saver.save(self.sess, "Model/V7.ckpt")
print("Save to path: ", save_path)
############################### DREAMER ####################################
class Dreamer(object):
metadata = {
'render.modes': ['human', 'rgb_array'],
'video.frames_per_second': 50
}
def __init__(self, a_dim, s_dim, a_bound,):
tf.reset_default_graph()
# Model parameter
self.memory = np.zeros((MEMORY_CAPACITY, s_dim * 3 + a_dim), dtype=np.float32)
self.pointer = 0
self.sess = tf.Session()
self.a_dim, self.s_dim, self.a_bound = a_dim, s_dim, a_bound,
self.S = tf.placeholder(tf.float32, [None, s_dim], 's')
self.S_ = tf.placeholder(tf.float32, [None, s_dim], 's_')
self.S_L = tf.placeholder(tf.float32, [None, s_dim], 's_l')
self.LR_D= tf.placeholder(tf.float32, None, 'LR_D')
self.A = tf.placeholder(tf.float32, [None, a_dim], 'a')
# Dynamics Parameter
self.gravity = 10
self.masscart = 1
self.masspole = 0.1
self.total_mass = (self.masspole + self.masscart)
self.length = 0.5 # actually half the pole's length
self.polemass_length = (self.masspole * self.length)
self.force_mag = 20
self.tau = 0.02 # seconds between state updates
#Render Part
self.viewer = None
self.state = None
self.x_threshold=5
#Learning Part
self.dreamer = self._build_dreamer(self.S, self.A,self.S_L) #S_=linear_model+DNN=S_L+DNN(S,A)
d_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Dreamer')
self.dreamer_loss_s = tf.reduce_mean(tf.squared_difference(self.S_ , self.dreamer))
self.dreamertrain_s = tf.train.AdamOptimizer(self.LR_D).minimize(self.dreamer_loss_s,var_list = d_params)
self.sess.run(tf.global_variables_initializer())
self.saver = tf.train.Saver()
self.saver.restore(self.sess, "Model/SRDDPG_Dreamer_V1.ckpt") # 1 0.1 0.5 0.001
def dream(self, s,a,d):
# self.gravity = np.random.normal(10, 0.1)
# self.masscart = np.random.normal(1, 0.1)
# self.masspole = np.random.normal(0.1, 0.01)
x, x_dot, theta, theta_dot = s
force = a[0]
costheta = 1
sintheta = theta
temp = (force + self.polemass_length * theta_dot * theta_dot * sintheta) / self.total_mass
thetaacc = (self.gravity * sintheta - costheta * temp) / (
self.length * (4.0 / 3.0 - self.masspole * costheta * costheta / self.total_mass))
xacc = temp - self.polemass_length * thetaacc * costheta / self.total_mass
x_ = x + self.tau * x_dot+d[0]
x_dot_ = x_dot + self.tau * xacc
theta_ = theta + self.tau * theta_dot+d[1]
theta_dot_ = theta_dot + self.tau * thetaacc
s_linear = np.array([x_, x_dot_, theta_, theta_dot_])
s_=self.sess.run(self.dreamer, {self.S: s[np.newaxis, :],self.A: a[np.newaxis, :],self.S_L: s_linear[np.newaxis, :]})[0]
x, _, theta, _ = s_
r_1 = ((1 - abs(x)))
r_2 = (((20 * 2 * math.pi / 360) / 4) - abs(theta)) / ((20 * 2 * math.pi / 360) / 4)
reward = np.sign(r_2) * ((10 * r_2) ** 2) + np.sign(r_1) * ((10 * r_1) ** 2)
self.state = s_
return s_,reward
def learn(self,LR_D):
indices = np.random.choice(MEMORY_CAPACITY, size=BATCH_SIZE)
bt = self.memory[indices, :]
bs = bt[:, :self.s_dim]
ba = bt[:, self.s_dim: self.s_dim + self.a_dim]
bs_ = bt[:, -self.s_dim:]
bs_l=bt[:, -self.s_dim - 4: -self.s_dim]
self.sess.run(self.dreamertrain_s, {self.S: bs,self.A: ba, self.S_: bs_,self.S_L: bs_l, self.LR_D: LR_D})
return self.sess.run(self.dreamer_loss_s, {self.S: bs,self.A: ba, self.S_: bs_,self.S_L: bs_l, self.LR_D: LR_D})
def store_transition(self, s, a,s_):
x, x_dot, theta, theta_dot = s
force = a[0]
costheta = 1
sintheta = theta
temp = (force + self.polemass_length * theta_dot * theta_dot * sintheta) / self.total_mass
thetaacc = (self.gravity * sintheta - costheta * temp) / (
self.length * (4.0 / 3.0 - self.masspole * costheta * costheta / self.total_mass))
xacc = temp - self.polemass_length * thetaacc * costheta / self.total_mass
x_ = x + self.tau * x_dot
x_dot_ = x_dot + self.tau * xacc
theta_ = theta + self.tau * theta_dot
theta_dot_ = theta_dot + self.tau * thetaacc
s_linear = np.array([x_, x_dot_, theta_, theta_dot_])
transition = np.hstack((s, a,s_linear,s_))
index = self.pointer % MEMORY_CAPACITY # replace the old memory with new memory
self.memory[index, :] = transition
self.pointer += 1
def _build_dreamer(self, s, a,s_linear,reuse=None, custom_getter=None):
trainable = True if reuse is None else False
with tf.variable_scope('Dreamer', reuse=reuse, custom_getter=custom_getter):
n_l1 = 512#30
w1_s = tf.get_variable('w1_s', [self.s_dim, n_l1], trainable=trainable)
w1_a = tf.get_variable('w1_a', [self.a_dim, n_l1], trainable=trainable)
b1 = tf.get_variable('b1', [1, n_l1], trainable=trainable)
net_0 = tf.nn.relu(tf.matmul(s, w1_s) + tf.matmul(a, w1_a)+ b1)
net_1 = tf.layers.dense(net_0, 512, activation=tf.nn.relu, name='l2', trainable=trainable)
net_2 = tf.layers.dense(net_1, 256, activation=tf.nn.relu, name='l3', trainable=trainable)
return tf.layers.dense(net_2, self.s_dim, trainable=trainable)+s_linear
def save_result(self):
save_path = self.saver.save(self.sess, "Model/SRDDPG_Dreamer_V2.ckpt")
print("Save to path: ", save_path)
def render(self, mode='human'):
screen_width = 800
screen_height = 400
world_width = self.x_threshold * 2
scale = screen_width / world_width
carty = 100 # TOP OF CART
polewidth = 10.0
polelen = scale * 1.0
cartwidth = 50.0
cartheight = 30.0
if self.viewer is None:
from gym.envs.classic_control import rendering
self.viewer = rendering.Viewer(screen_width, screen_height)
l, r, t, b = -cartwidth / 2, cartwidth / 2, cartheight / 2, -cartheight / 2
axleoffset = cartheight / 4.0
cart = rendering.FilledPolygon([(l, b), (l, t), (r, t), (r, b)])
self.carttrans = rendering.Transform()
cart.add_attr(self.carttrans)
self.viewer.add_geom(cart)
l, r, t, b = -polewidth / 2, polewidth / 2, polelen - polewidth / 2, -polewidth / 2
pole = rendering.FilledPolygon([(l, b), (l, t), (r, t), (r, b)])
pole.set_color(.8, .6, .4)
self.poletrans = rendering.Transform(translation=(0, axleoffset))
pole.add_attr(self.poletrans)
pole.add_attr(self.carttrans)
self.viewer.add_geom(pole)
self.axle = rendering.make_circle(polewidth / 2)
self.axle.add_attr(self.poletrans)
self.axle.add_attr(self.carttrans)
self.axle.set_color(.5, .5, .8)
self.viewer.add_geom(self.axle)
self.track = rendering.Line((0, carty), (screen_width, carty))
self.track.set_color(0, 0, 0)
self.viewer.add_geom(self.track)
if self.state is None: return None
x = self.state
cartx = x[0] * scale + screen_width / 2.0 # MIDDLE OF CART
self.carttrans.set_translation(cartx, carty)
self.poletrans.set_rotation(-x[2])
return self.viewer.render(return_rgb_array=mode == 'rgb_array')
def close(self):
if self.viewer:
self.viewer.close()
self.viewer = None
def draw(x,y):
plt.ion()
plt.plot(x, y)
plt.grid(True)
plt.pause(10)
plt.close()
############################### INITIALIZE ####################################
env = dreamer()
env = env.unwrapped
s_dim = env.observation_space.shape[0]
a_dim = env.action_space.shape[0]
a_bound = env.action_space.high
env_dream=Dreamer(a_dim, s_dim, a_bound)
ddpg = DDPG(a_dim, s_dim, a_bound,DISTURB)
############################### TRAINING ####################################
# env.seed(1) # 普通的 Policy gradient 方法, 使得回合的 variance 比较大, 所以我们选了一个好点的随机种子
for i in range(MAX_EPISODES):
iteration[0,i+1]=i+1
s = env.reset()
REWARD = 0
l_loss = np.nan
c_loss = np.nan
L_values = []
l_rewards = []
for j in range(MAX_EP_STEPS):
#Visulization
if RENDER:
if DREAMER:
env_dream.render()
else:
env.render()
# Choose action
# Add exploration noise
a = ddpg.choose_action(s)
a = np.clip(np.random.normal(a, var), -a_bound, a_bound) # add randomness to action selection for exploration
# L_values.append(ddpg.evaulate_lyapunov(s))
if DISTURB:
# Choose disturb
# Add exploration noise
d = ddpg.choose_disturb(s)
d = np.random.normal(d, abs(d * 0.02 * var)) # add randomness to disturb selection for exploration
else:
d=[0,0]
# RUN IN REAL IN TO GET INFORMATION OF DIE OR NOT
# IF Dreamer_update=True, GET INFORMATION OF THE S,A,R1,S_
# 得到的是真实的 s,a->s_ 和 r
# 主要是判断是否游戏结束
s_, r, done, hit = env.step(a) # S_=ENV(S,A), R=REWARD(S_)
# rl_1 = np.square(10*s_[0]/env.x_threshold)
# if abs(s_[0])<3:
# rl_1=0
# # rl_2 =np.square(10*s_[2]/env.theta_threshold_radians)
# # if abs(s_[2])<env.theta_threshold_radians*8/10:
# # rl_2=0
# l_r=rl_1+0
l_r = np.square(5 * s_[0] / env.x_threshold) #+ np.square(10 * s_[2] / env.theta_threshold_radians)
if abs(s_[0])<3:
rl_1=0
# l_r = 25*max(s_[0]-4,0)+ 25*np.abs(s_[2]/env.theta_threshold_radians)
l_rewards.append(l_r)
# l_r = np.linalg.norm(s_,2)
# RUN IN DREAM
# 得到的是梦境中的s,a->s_dream 和 r_dream
# 如果在梦境,那么s_next 和 reward 就被梦境值覆盖
s_next=s_
reward=r
if DREAMER:
s_next, reward = env_dream.dream(s,a,d)
#储存s,a和s_next,reward用于DDPG的学习
ddpg.store_transition(s, a, d,(reward / 10), l_r/10, s_next)
#如果状态接近边缘 就存储到边缘memory里
if np.abs(s[0]) > 4:# or np.abs(s[2]) > env.theta_threshold_radians*0.8
ddpg.store_edge_transition(s, a, d, (reward / 10), l_r/10, s_next)
# ddpg.store_edge_transition(s, a, d, (reward / 10), l_r, s_next)
#DDPG LEARN
# if ddpg.pointer > MEMORY_CAPACITY and ddpg.cons_pointer <= CONS_MEMORY_CAPACITY:
# var *= .99999
# c_loss, l_loss = ddpg.pre_learn(LR_A, LR_C, LR_D)
if ddpg.pointer > MEMORY_CAPACITY and ddpg.cons_pointer > CONS_MEMORY_CAPACITY:
# Decay the action randomness
var *= .99999
l_q,c_loss, l_loss=ddpg.learn(LR_A,LR_C,LR_D,labda)
if l_q>tol:
if labda==0:
labda = 1e-8
labda = min(labda*2,11)
if labda==1e8:
labda = 1e-8
if l_q<-tol:
labda = labda/2
# 梦境状态更新
s = s_next
# 现实状态与梦境同步,用于进行下一次的现实STEP
env.state = s_next
# 计算总得分
REWARD += reward
# OUTPUT TRAINING INFORMATION AND LEARNING RATE DECAY
if j == MAX_EP_STEPS - 1:
L_values = np.array(L_values)
# draw(range(len(L_values)), L_values[:,0,0])
draw(range(len(l_rewards)), l_rewards[:])
EWMA_step[0,i+1]=EWMA_p*EWMA_step[0,i]+(1-EWMA_p)*j
EWMA_reward[0,i+1]=EWMA_p*EWMA_reward[0,i]+(1-EWMA_p)*REWARD
print('Episode:', i, ' Reward: %.1f' % REWARD,'Explore: %.2f' % var,"good",
"EWMA_step = ",int(EWMA_step[0,i+1]),"EWMA_reward = ",EWMA_reward[0,i+1],"LR_A = ",LR_A,'lambda',labda,
'LR_D :',LR_D, 'lyapunov_error:', l_loss , 'critic_error:', c_loss )
if EWMA_reward[0,i+1]>max_ewma_reward:
max_ewma_reward=EWMA_reward[0,i+1]
LR_A *= .8 # learning rate for actor
LR_D *= .8 # learning rate for disturb
LR_C *= .8 # learning rate for critic
ddpg.save_result()
if REWARD> max_reward:
max_reward = REWARD
LR_A *= .8 # learning rate for actor
LR_D *= .8 # learning rate for disturb
LR_C *= .8 # learning rate for critic
ddpg.save_result()
print("min_reward : ",REWARD)
else:
LR_A *= .99
LR_D *= .99
LR_C *= .99
break
elif done:
EWMA_step[0,i+1]=EWMA_p*EWMA_step[0,i]+(1-EWMA_p)*j
EWMA_reward[0,i+1]=EWMA_p*EWMA_reward[0,i]+(1-EWMA_p)*REWARD
if hit==1:
print('Episode:', i, ' Reward: %.1f' % REWARD, 'Explore: %.2f' % var, "break in : ", j, "due to ",
"hit the wall", "EWMA_step = ",int(EWMA_step[0,i+1]), "EWMA_reward = ", EWMA_reward[0, i + 1],
"LR_A = ",LR_A,'lambda',labda,'LR_D :',LR_D, 'lyapunov_error:', l_loss, 'critic_error:', c_loss)
else:
print('Episode:', i, ' Reward: %.1f' % REWARD,'Explore: %.2f' % var, "break in : ", j, "due to",
"fall down","EWMA_step = ",int(EWMA_step[0,i+1]), "EWMA_reward = ", EWMA_reward[0, i + 1],
"LR_A = ",LR_A,'lambda',labda,'LR_D :',LR_D, 'lyapunov_error:', l_loss, 'critic_error:', c_loss)
break