-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathJointVAE.py
314 lines (237 loc) · 12.4 KB
/
JointVAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import torch
import torchvision
from torch import nn
from torchvision import transforms
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np
import imageio
from torchvision.utils import make_grid
import os
os.environ["CUDA_VISIBLE_DEVICES"] = '2'
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
batch_size = 64
img_transform = transforms.Compose([transforms.ToTensor()])
train_dataset = MNIST(root='./MNIST_data', train=True, transform=img_transform, download=True)
test_dataset = MNIST(root='./MNIST_data', train=False, transform=img_transform, download=True)
train_data = DataLoader(train_dataset, batch_size=batch_size, num_workers=4, pin_memory=True, shuffle=True)
test_data = DataLoader(test_dataset, batch_size=10000, num_workers=4, pin_memory=True, shuffle=True)
input_size = 28 * 28
EPS = 1e-12
class JointVAE(nn.Module):
def __init__(self, latent_cont_dim, latent_disc_dim, temperature=.67):
super(JointVAE, self).__init__()
self.hidden_dim = 64
self.latent_cont_dim = latent_cont_dim
self.latent_disc_dim = latent_disc_dim
self.temperature = temperature
self.reshape = (12, 3, 3)
self.num_pixels = input_size
self.training = False
self.conv_encode = nn.Sequential(
nn.Conv2d(in_channels=1, out_channels=6, kernel_size=4, stride=2, padding=1), nn.ReLU(), #nn.BatchNorm2d(14*14),
nn.MaxPool2d(kernel_size=2, stride=2, padding=0),
nn.Conv2d(in_channels=6, out_channels=12, kernel_size=3, stride=1, padding=1), nn.ReLU(), #nn.BatchNorm2d(7*7),
nn.MaxPool2d(kernel_size=2, stride=2, padding=0), # Final dimension = batch_size x 12 x 3 x 3
)
self.fully_connected_encode = nn.Sequential(
nn.Linear(12*3*3, self.hidden_dim), nn.ReLU()
)
self.mean = nn.Linear(self.hidden_dim, self.latent_cont_dim)
self.log_var = nn.Linear(self.hidden_dim, self.latent_cont_dim)
self.mass = nn.Linear(self.hidden_dim, self.latent_disc_dim)
self.fully_connected_decode = nn.Sequential(
nn.Linear(self.latent_cont_dim + self.latent_disc_dim, self.hidden_dim), nn.ReLU(),
nn.Linear(self.hidden_dim, 12*3*3), nn.ReLU()
)
self.conv_decode = nn.Sequential(
nn.ConvTranspose2d(in_channels=12, out_channels=6, kernel_size=3, stride=1, padding=1), nn.ReLU(),
nn.ConvTranspose2d(in_channels=6, out_channels=6, kernel_size=3, stride=2, padding=0, dilation=2), nn.ReLU(),
nn.ConvTranspose2d(in_channels=6, out_channels=1, kernel_size=4, stride=2, padding=0, dilation=3, output_padding=2), nn.Sigmoid()
)
def encode(self, x):
# Encodes an image into parameters of a latent distribution
batch_size = x.size()[0]
temp = self.fully_connected_encode(self.conv_encode(x).view(-1, 12*3*3))
mu = self.mean(temp)
log_sigma = self.log_var(temp)
alpha = nn.Softmax(dim=1)(self.mass(temp))
return mu, log_sigma, alpha
def reparametrize(self, latent_params):
if self.training:
# Sample continuous latent variable
std = torch.exp(0.5 * latent_params[1])
eps = torch.randn(std.size()).to(device)
cont_sample = latent_params[0] + std * eps
# Sample discrete latent variable
disc_sample = self.gumble_softmax(latent_params[2])
return torch.cat((cont_sample, disc_sample), dim=1)
else:
# When in Reconstruction, simply set continuous latent variable to be the mean
cont_sample = latent_params[0]
# When in Reconstruction, simply pick the most probable one
_, max_alpha_idx = torch.max(latent_params[2], dim=1)
one_hot_samples = torch.zeros(latent_params[2].size())
one_hot_samples.scatter_(1, max_alpha_idx.view(-1, 1).data.cpu(), 1)
return torch.cat((cont_sample, one_hot_samples), dim=1)
def gumble_softmax(self, alpha):
unif = torch.rand(alpha.size()).to(device)
gumbel = -torch.log(-torch.log(unif + EPS) + EPS)
log_alpha = torch.log(alpha + EPS)
logit = (log_alpha + gumbel) / self.temperature
return nn.functional.softmax(logit, dim=1)
def decode(self, latent_sample):
features = self.fully_connected_decode(latent_sample)
return self.conv_decode(features.view(-1, *self.reshape))
def forward(self, x):
latent_params = self.encode(x)
latent_sample = self.reparametrize(latent_params)
return self.decode(latent_sample), latent_params, latent_sample
class Train:
def __init__(self, model, optimizer, cont_capacity=None, disc_capacity=None, print_loss_every=500, record_loss_every=5):
self.model = model # JointVAE
self.optimizer = optimizer # torch.optim.Optimizer instance
self.cont_capacity = cont_capacity # tuple (min_capacity, max_capacity, num_iters, gamma_z)
self.disc_capacity = disc_capacity # tuple (min_capacity, max_capacity, num_iters, gamma_c)
self.print_loss_every = print_loss_every
self.record_loss_every = record_loss_every
self.num_steps = 0
self.batch_size = None
self.losses = {'loss':[], 'recon_loss':[], 'kl_loss':[]}
self.losses['kl_loss_cont'] = []
for i in range(self.model.latent_cont_dim):
self.losses['kl_loss_cont_' + str(i)] = []
for i in range(1):
self.losses['kl_loss_disc_' + str(i)] = []
def train(self, data_loader, epochs=1, save_training_gif=None):
if save_training_gif is not None:
training_progress_images = []
self.batch_size = data_loader.batch_size
self.model.training = True
for epoch in range(epochs):
mean_epoch_loss = self._train_epoch(data_loader)
print('Epoch: {} Average Loss: {:.2f}'.format(epoch+1, self.batch_size * self.model.num_pixels * mean_epoch_loss))
if save_training_gif is not None:
# Generate batch of images and convert to grid
viz = save_training_gif[1]
viz.save_images = False
img_grid = viz.all_latent_traversals(size=10)
# Convert to numpy and transpose axes to fit imageio convention
# i.e. (width, height, channels)
img_grid = np.transpose(img_grid.numpy(), (1,2,0))
# Add image grid to training progress
training_progress_images.append(img_grid)
if save_training_gif is not None:
imageio.mimsave(save_training_gif[0], training_progress_images, fps=24)
def _train_epoch(self, data_loader):
epoch_loss = 0
print_every_loss = 0
for batch_idx, (data, label) in enumerate(data_loader):
iter_loss = self._train_iteration(data)
epoch_loss += iter_loss
print_every_loss += iter_loss
if batch_idx % self.print_loss_every == 0:
if batch_idx == 0:
mean_loss = print_every_loss
else:
mean_loss = print_every_loss / self.print_loss_every
print('{}/{}\tLoss: {:3f}'.format(batch_idx * len(data), len(data_loader.dataset), self.model.num_pixels * mean_loss))
print_every_loss = 0
# Mean Epoch Loss
return epoch_loss / len(data_loader.dataset)
def _train_iteration(self, data):
self.num_steps += 1
data = data.to(device)
self.optimizer.zero_grad()
recon_batch, latent_params, _ = self.model(data)
loss = self.loss_function(data, recon_batch, latent_params)
loss.backward()
self.optimizer.step()
train_loss = loss.item()
return train_loss
def loss_function(self, data, recon_data, latent_params):
# data shape (N, C, H, W)
# latent_params shape (mu, log_sigma^2, alpha)
Recon_loss = torch.sum((recon_data.view(-1, self.model.num_pixels) - data.view(-1, self.model.num_pixels)) ** 2)
#Recon_loss = - torch.sum(data.view(-1, self.model.num_pixels) * torch.log(recon_data.view(-1, self.model.num_pixels)) +(1-data.view(-1, self.model.num_pixels)) * torch.log(1-recon_data.view(-1, self.model.num_pixels)), dim=1)
#Recon_loss = nn.functional.binary_cross_entropy(recon_data.view(-1, self.model.num_pixels), data.view(-1, self.model.num_pixels))
#Recon_loss *= self.model.num_pixels
# KL divergences
kl_cont_loss = 0
kl_disc_loss = 0
cont_capacity_loss = 0
disc_capacity_loss = 0
'''For Continuous Variables'''
mean, log_var = latent_params[0:2]
kl_cont_loss =self._kl_normal_loss(mean, log_var)
# Linearly increase capacity of continuous channels
cont_min, cont_max, cont_num_iters, cont_gamma = self.cont_capacity
cont_cap_current = (cont_max - cont_min) * self.num_steps / float(cont_num_iters) + cont_min
cont_cap_current = min(cont_cap_current, cont_max)
cont_capacity_loss = cont_gamma * torch.abs(cont_cap_current - kl_cont_loss)
'''For Discrete Variables'''
kl_disc_loss = self._kl_discrete_loss(latent_params[2])
disc_min, disc_max, disc_num_iters, disc_gamma = self.disc_capacity
disc_cap_current = (disc_max - disc_min) * self.num_steps / float(disc_num_iters) + disc_min
disc_cap_current = min(disc_cap_current, disc_max)
# Require float conversion here to not end up with numpy float
disc_theoretical_max = float(np.log(self.model.latent_disc_dim))
disc_cap_current = min(disc_cap_current, disc_theoretical_max)
disc_capacity_loss = disc_gamma * torch.abs(disc_cap_current - kl_disc_loss)
# Calculate total kl value to record it
kl_loss = kl_cont_loss + kl_disc_loss
# Calculate total loss
total_loss = Recon_loss + cont_capacity_loss + disc_capacity_loss
if self.model.training and self.num_steps % self.record_loss_every == 1:
self.losses['recon_loss'].append(Recon_loss.item())
self.losses['kl_loss'].append(kl_loss.item())
self.losses['loss'].append(total_loss.item())
return total_loss / self.model.num_pixels
def _kl_normal_loss(self, mean, logvar):
kl_values = -0.5 * (1+logvar - mean.pow(2) - logvar.exp())
kl_means = torch.mean(kl_values, dim=0)
kl_loss = torch.sum(kl_means)
if self.model.training and self.num_steps % self.record_loss_every == 1:
self.losses['kl_loss_cont'].append(kl_loss.item())
for i in range(self.model.latent_cont_dim):
self.losses['kl_loss_cont_'+str(i)].append(kl_means[i].item())
return kl_loss
def _kl_discrete_loss(self, alpha):
disc_dim = alpha.size()[-1] # Should be type int
log_dim = torch.Tensor([np.log(self.model.latent_disc_dim)]).to(device)
neg_entropy = torch.sum(alpha * torch.log(alpha + EPS), dim=1)
# Mean over the batch size
mean_neg_entropy = torch.mean(neg_entropy, dim=0)
#KL loss of alpha with uniform categorical variable
kl_loss = log_dim + mean_neg_entropy
return kl_loss
batch_size = 64
lr = 5e-4
epochs = 50
data_loader, _ = train_data, test_data
img_size = (1, 28, 28)
model = JointVAE(100, 10, .67).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
trainer = Train(model, optimizer, cont_capacity=[0.0, 5.0, 25000, 30],
disc_capacity=[0.0, 5.0, 25000, 30])
trainer.train(data_loader, epochs)
model.training = False
for data in test_data:
input_test, label_test = data
output_test, latent_params, latent_vars = model(input_test)
from sklearn.decomposition import PCA
PCA = PCA(n_components=2)
reduced_array = latent_vars[:, :20].detach().numpy()
reduced_array = PCA.fit_transform(reduced_array)
plt.figure(figsize=(7,7))
plt.scatter(reduced_array[:,0], reduced_array[:,1], c=label_test, cmap='nipy_spectral', s=4)
original = input_test[1]
original_label = label_test[1]
plt.figure(figsize=(5,5))
plt.imshow(original.detach().numpy()[0], cmap='gray')
plt.imshow(output_test[1].detach().numpy()[0], cmap='gray')
import random
idx = random.choice(list(i for i in range(10000)))
plt.figure(figsize=(5,5))
plt.imshow(output_test[idx].detach().numpy()[0], cmap='gray')